

Transport PCE Documentation

	TransportPCE Developer Guide

	TransportPCE User Guide

TransportPCE Developer Guide

Overview

TransportPCE describes an application running on top of the OpenDaylight
controller. Its primary function is to control an optical transport
infrastructure using a non-proprietary South Bound Interface (SBI). It may be
interconnected with Controllers of different layers (L2, L3 Controller…), a
higher layer Controller and/or an Orchestrator through non-proprietary
Application Programing Interfaces (APIs). Control includes the capability to
configure the optical equipment, and to provision services according to a
request coming from a higher layer controller and/or an orchestrator.
This capability may rely on the controller only or it may be delegated to
distributed (standardized) protocols.

Architecture

TransportPCE modular architecture is described on the next diagram. Each main
function such as Topology management, Path Calculation Engine (PCE), Service
handler, Renderer _responsible for the path configuration through optical
equipment_ and Optical Line Management (OLM) is associated with a generic block
relying on open models, each of them communicating through published APIs.

[image: TransportPCE architecture]
TransportPCE architecture

The current version of transportPCE is dedicated to the control of WDM transport
infrastructure. OTN layer will be integrated in a later step. The WDM layer is
built from colorless ROADMs and transponders.

The interest of using a controller to provision automatically services strongly
relies on its ability to handle end to end optical services that spans through
the different network domains, potentially equipped with equipment coming from
different suppliers. Thus, interoperability in the optical layer is a key
element to get the benefit of automated control.

Initial design of TransportPCE leverages Open ROADM Multi-Source-Agreement (MSA)
which defines interoperability specifications, consisting of both Optical
interoperability and Yang data models.

Module description

ServiceHandler

Service Handler handles request coming from a higher level controller or an orchestrator
through the northbound API, as defined in the Open ROADM service model. Current
implementation addresses the following rpcs: service-create, temp-service-create,
service–delete, temp-service-delete, service-reroute, and service-restoration. It checks the
request consistency and trigs path calculation sending rpcs to the PCE. If a valid path is
returned by the PCE, path configuration is initiated relying on Renderer and OLM. At the
confirmation of a successful service creation, the Service Handler updates the service-
list/temp-service-list in the MD-SAL. For service deletion, the Service Handler relies on the
Renderer and the OLM to delete connections and reset power levels associated with the
service. The service-list is updated following a successful service deletion. In Neon SR0 is
added the support for service from ROADM to ROADM, which brings additional flexibility and
notably allows reserving resources when transponders are not in place at day one.

PCE

The Path Computation Element (PCE) is the component responsible for path
calculation. An interface allows the Renderer or external components such as an
orchestrator to request a path computation and get a response from the PCE
including the computed path(s) in case of success, or errors and indication of
the reason for the failure in case the request cannot be satisfied. Additional
parameters can be provided by the PCE in addition to the computed paths if
requested by the client module. An interface to the Topology Management module
allows keeping PCE aligned with the latest changes in the topology. Information
about current and planned services is available in the MD-SAL data store.

Current implementation of PCE allows finding the shortest path, minimizing either the hop
count (default) or the propagation delay. Wavelength is assigned considering a fixed grid of
96 wavelengths. In Neon SR0, the PCE calculates the OSNR, on the base of incremental
noise specifications provided in Open RAODM MSA. The support of unidirectional ports is
also added. PCE handles the following constraints as hard constraints:

	Node exclusion

	SRLG exclusion

	Maximum latency

Topology Management

Topology management module builds the Topology according to the Network model
defined in OpenROADM. The topology is aligned with I2RS model. It includes
several network layers:

	CLLI layer corresponds to the locations that host equipment

	Network layer corresponds to a first level of disaggregation where we
separate Xponders (transponder, muxponders or switchponders) from ROADMs

	Topology layer introduces a second level of disaggregation where ROADMs
Add/Drop modules (“SRGs”) are separated from the degrees which includes line
amplifiers and WSS that switch wavelengths from one to another degree

OTN layer which includes OTN elements having or not the ability to switch OTN
containers from client to line cards is not currently implemented.

Renderer

The Renderer module, on request coming from the Service Handler through a service-
implementation-request /service delete rpc, sets/deletes the path corresponding to a specific
service between A and Z ends. The path description provided by the service-handler to the
renderer is based on abstracted resources (nodes, links and termination-points), as provided
by the PCE module. The renderer converts this path-description in a path topology based on
device resources (circuit-packs, ports,…). The conversion from abstracted resources to
device resources is performed relying on the portmapping module which maintains the
connections between these different resource types. In Neon (SR0), portmapping modules
has been enriched to support both openroadm 1.2.1 and 2.2 device models. The full support
of openroadm 2.2 device models (both in the topology management and the rendering
function) is planned at a later step (ORD2.2 full support is targeted for Neon SR1).

After the path is provided, the renderer first checks what are the existing interfaces on the
ports of the different nodes that the path crosses. It then creates missing interfaces. After all
needed interfaces have been created it sets the connections required in the nodes and
notifies the Service Handler on the status of the path creation. Path is created in 2 steps
(from A to Z and Z to A). In case the path between A and Z could not be fully created, a
rollback function is called to set the equipment on the path back to their initial configuration
(as they were before invoking the Renderer).

OLM

Optical Line Management module implements two main features: it is responsible
for setting up the optical power levels on the different interfaces, and is in
charge of adjusting these settings across the life of the optical
infrastructure.

After the different connections have been established in the ROADMS, between 2
Degrees for an express path, or between a SRG and a Degree for an Add or Drop
path; meaning the devices have set WSS and all other required elements to
provide path continuity, power setting are provided as attributes of these
connections. This allows the device to set all complementary elements such as
VOAs, to guaranty that the signal is launched at a correct power level
(in accordance to the specifications) in the fiber span. This also applies
to X-Ponders, as their output power must comply with the specifications defined
for the Add/Drop ports (SRG) of the ROADM. OLM has the responsibility of
calculating the right power settings, sending it to the device, and check the
PM retrieved from the device to verify that the setting was correctly applied
and the configuration was successfully completed.

Key APIs and Interfaces

External API

North API, interconnecting the Service Handler to higher level applications
relies on the Service Model defined in the MSA. The Renderer and the OLM are
developed to allow configuring Open ROADM devices through a southbound
Netconf/Yang interface and rely on the MSA’s device model.

ServiceHandler Service

	RPC call

	service-create (given service-name, service-aend, service-zend)

	service-delete (given service-name)

	service-reroute (given service-name, service-aend, service-zend)

	service-restoration (given service-name, service-aend, service-zend)

	temp-service-create (given common-id, service-aend, service-zend)

	temp-service-delete (given common-id)

	Data structure

	service list : made of services

	temp-service list : made of temporary services

	service : composed of service-name, topology wich describes the detailed path (list of used resources)

	Notification

	service-rpc-result : result of service RPC

	service-notification : service has been added, modified or removed

Netconf Service

	RPC call

	connect-device : PUT

	disconnect-device : DELETE

	check-connected-device : GET

	Data Structure

	node list : composed of netconf nodes in topology-netconf

Internal APIs

Internal APIs define REST APIs to interconnect TransportPCE modules :

	Service Handler to PCE

	PCE to Topology Management

	Service Handler to Renderer

	Renderer to OLM

Pce Service

	RPC call

	path-computation-request (given service-name, service-aend, service-zend)

	cancel-resource-reserve (given service-name)

	Notification

	service-path-rpc-result : result of service RPC

Renderer Service

	RPC call

	service-implementation-request (given service-name, service-aend, service-zend)

	service-delete (given service-name)

	Data structure

	service path list : composed of service paths

	service path : composed of service-name, path description giving the list of abstracted elements (nodes, tps, links)

	Notification

	service-path-rpc-result : result of service RPC

Topology Management Service

	Data structure

	network list : composed of networks(openroadm-topology, netconf-topology)

	node list : composed of node-id

	link list : composed of link-id

	node : composed of roadm, xponder
link : composed of links of different types (roadm-to-roadm, express, add-drop …)

OLM Service

	RPC call

	get-pm (given node-id)

	service-power-setup

	service-power-turndown

	service-power-reset

	calculate-spanloss-base

	calculate-spanloss-current

odl-transportpce-stubmodels

	This feature provides function to be able to stub some of TransportPCE modules, pce and
renderer (Stubpce and Stubrenderer).
Stubs are used for development purposes and can be used for some of the functionnal tests.

Running transportPCE project

To use transportPCE controller, the first step is to connect the controller to optical nodes
through the NETCONF connector.

Note

In the current version, only optical equipment compliant with open ROADM datamodels are managed
by transportPCE.

Connecting nodes

To connect a node, use the following JSON RPC

REST API : POST /restconf/config/network-topology:network-topology/topology/topology-netconf/node/<node-id>

Sample JSON Data

{
 "node": [
 {
 "node-id": "<node-id>",
 "netconf-node-topology:tcp-only": "false",
 "netconf-node-topology:reconnect-on-changed-schema": "false",
 "netconf-node-topology:host": "<node-ip-address>",
 "netconf-node-topology:default-request-timeout-millis": "120000",
 "netconf-node-topology:max-connection-attempts": "0",
 "netconf-node-topology:sleep-factor": "1.5",
 "netconf-node-topology:actor-response-wait-time": "5",
 "netconf-node-topology:concurrent-rpc-limit": "0",
 "netconf-node-topology:between-attempts-timeout-millis": "2000",
 "netconf-node-topology:port": "<netconf-port>",
 "netconf-node-topology:connection-timeout-millis": "20000",
 "netconf-node-topology:username": "<node-username>",
 "netconf-node-topology:password": "<node-password>",
 "netconf-node-topology:keepalive-delay": "300"
 }
]
}

Then check that the netconf session has been correctly established between the controller and the
node. the status of netconf-node-topology:connection-status must be connected

REST API : GET /restconf/operational/network-topology:network-topology/topology/topology-netconf/node/<node-id>

Node configuration discovery

Once the controller is connected to the node, transportPCE application automatically launchs a
discovery of the node configuration datastore and creates Logical Connection Points to any
physical ports related to transmission. All circuit-packs inside the node configuration are
analyzed.

Use the following JSON RPC to check that function internally named portMapping.

REST API : GET /restconf/config/portmapping:network

Note

in Neon SR0, the support of openroadm 2.2 device model is added. Thus 2.2 nodes can be
discovered and added to the portmapping node list. However, full topology management
support (and notably link discovery) is not provided for 2.2 nodes. The support for link
discovery and full topology management with 1.2.1 and 2.2 nodes will be added in a next release.

Note

	In org-openroadm-device.yang, two types of optical nodes can be managed:
	
	rdm: ROADM device (optical switch)

	xpdr: Xponder device (device that converts client to optical channel interface)

Depending on the kind of open ROADM device connected, different kind of Logical Connection Points
should appear, if the node configuration is not empty:

	DEG<degree-number>-TTP-<port-direction>: created on the line port of a degree on a rdm equipment

	SRG<srg-number>-PP<port-number>: created on the client port of a srg on a rdm equipment

	XPDR<number>-CLIENT<port-number>: created on the client port of a xpdr equipment

	XPDR<number>-NETWORK<port-number>: created on the line port of a xpdr equipment

For further details on openROADM device models, see openROADM MSA white paper [https://0201.nccdn.net/1_2/000/000/134/c50/Open-ROADM-MSA-release-2-Device-White-paper-v1-1.pdf].

Optical Network topology

Before creating an optical connectivity service, your topology must contain at least two xpdr
devices connected to two different rdm devices. Normally, the openroadm-topology is automatically
created by transportPCE. Nevertheless, depending on the configuration inside optical nodes, this
topology can be partial. Check that link of type ROADMtoROADM exists between two adjacent rdm
nodes.

REST API : GET /restconf/config/ietf-network:network/openroadm-topology

If it is not the case, you need to manually complement the topology with ROADMtoROADM link using
the following REST RPC:

REST API : POST /restconf/operations/networkutils:init-roadm-nodes

Sample JSON Data

{
 "networkutils:input": {
 "networkutils:rdm-a-node": "<node-id-A>",
 "networkutils:deg-a-num": "<degree-A-number>",
 "networkutils:termination-point-a": "<Logical-Connection-Point>",
 "networkutils:rdm-z-node": "<node-id-Z>",
 "networkutils:deg-z-num": "<degree-Z-number>",
 "networkutils:termination-point-z": "<Logical-Connection-Point>"
 }
}

<Logical-Connection-Point> comes from the portMapping function.

Unidirectional links between xpdr and rdm nodes must be created manually. To that end use the two
following REST RPCs:

From xpdr to rdm:

REST API : POST /restconf/operations/networkutils:init-xpdr-rdm-links

Sample JSON Data

{
 "networkutils:input": {
 "networkutils:links-input": {
 "networkutils:xpdr-node": "<xpdr-node-id>",
 "networkutils:xpdr-num": "1",
 "networkutils:network-num": "<xpdr-network-port-number>",
 "networkutils:rdm-node": "<rdm-node-id>",
 "networkutils:srg-num": "<srg-number>",
 "networkutils:termination-point-num": "<Logical-Connection-Point>"
 }
 }
}

From rdm to xpdr:

REST API : POST /restconf/operations/networkutils:init-rdm-xpdr-links

Sample JSON Data

{
 "networkutils:input": {
 "networkutils:links-input": {
 "networkutils:xpdr-node": "<xpdr-node-id>",
 "networkutils:xpdr-num": "1",
 "networkutils:network-num": "<xpdr-network-port-number>",
 "networkutils:rdm-node": "<rdm-node-id>",
 "networkutils:srg-num": "<srg-number>",
 "networkutils:termination-point-num": "<Logical-Connection-Point>"
 }
 }
}

Creating a service

Use the following REST RPC to invoke service handler module in order to create a bidirectional
end-to-end optical connectivity service between two xpdr over an optical network composed of rdm
nodes.

REST API : POST /restconf/operations/org-openroadm-service:service-create

Sample JSON Data

{
 "input": {
 "sdnc-request-header": {
 "request-id": "request-1",
 "rpc-action": "service-create",
 "request-system-id": "appname"
 },
 "service-name": "test1",
 "common-id": "commonId",
 "connection-type": "service",
 "service-a-end": {
 "service-rate": "100",
 "node-id": "<xpdr-node-id>",
 "service-format": "Ethernet",
 "clli": "<ccli-name>",
 "tx-direction": {
 "port": {
 "port-device-name": "<xpdr-client-port>",
 "port-type": "fixed",
 "port-name": "<xpdr-client-port-number>",
 "port-rack": "000000.00",
 "port-shelf": "Chassis#1"
 },
 "lgx": {
 "lgx-device-name": "Some lgx-device-name",
 "lgx-port-name": "Some lgx-port-name",
 "lgx-port-rack": "000000.00",
 "lgx-port-shelf": "00"
 }
 },
 "rx-direction": {
 "port": {
 "port-device-name": "<xpdr-client-port>",
 "port-type": "fixed",
 "port-name": "<xpdr-client-port-number>",
 "port-rack": "000000.00",
 "port-shelf": "Chassis#1"
 },
 "lgx": {
 "lgx-device-name": "Some lgx-device-name",
 "lgx-port-name": "Some lgx-port-name",
 "lgx-port-rack": "000000.00",
 "lgx-port-shelf": "00"
 }
 },
 "optic-type": "gray"
 },
 "service-z-end": {
 "service-rate": "100",
 "node-id": "<xpdr-node-id>",
 "service-format": "Ethernet",
 "clli": "<ccli-name>",
 "tx-direction": {
 "port": {
 "port-device-name": "<xpdr-client-port>",
 "port-type": "fixed",
 "port-name": "<xpdr-client-port-number>",
 "port-rack": "000000.00",
 "port-shelf": "Chassis#1"
 },
 "lgx": {
 "lgx-device-name": "Some lgx-device-name",
 "lgx-port-name": "Some lgx-port-name",
 "lgx-port-rack": "000000.00",
 "lgx-port-shelf": "00"
 }
 },
 "rx-direction": {
 "port": {
 "port-device-name": "<xpdr-client-port>",
 "port-type": "fixed",
 "port-name": "<xpdr-client-port-number>",
 "port-rack": "000000.00",
 "port-shelf": "Chassis#1"
 },
 "lgx": {
 "lgx-device-name": "Some lgx-device-name",
 "lgx-port-name": "Some lgx-port-name",
 "lgx-port-rack": "000000.00",
 "lgx-port-shelf": "00"
 }
 },
 "optic-type": "gray"
 },
 "due-date": "yyyy-mm-ddT00:00:01Z",
 "operator-contact": "some-contact-info"
 }
}

Most important parameters for this REST RPC are the identification of the two physical client ports
on xpdr nodes.This RPC invokes the PCE module to compute a path over the openroadm-topology and
then invokes renderer and OLM to implement the end-to-end path into the devices.

Deleting a service

Use the following REST RPC to invoke service handler module in order to delete a given optical
connectivity service.

REST API : POST /restconf/operations/org-openroadm-service:service-delete

Sample JSON Data

{
 "input": {
 "sdnc-request-header": {
 "request-id": "request-1",
 "rpc-action": "service-delete",
 "request-system-id": "appname",
 "notification-url": "http://localhost:8585/NotificationServer/notify"
 },
 "service-delete-req-info": {
 "service-name": "test1",
 "tail-retention": "no"
 }
 }
}

Most important parameters for this REST RPC is the service-name.

Help

	TransportPCE Wiki [https://wiki.opendaylight.org/display/ODL/TransportPCE]

TransportPCE User Guide

Overview

TransportPCE describes an application running on top of the OpenDaylight
controller. Its primary function is to control an optical transport
infrastructure using a non-proprietary South Bound Interface (SBI). It may be
interconnected with Controllers of different layers (L2, L3 Controller…),
a higher layer Controller and/or an Orchestrator through non-proprietary
Application Programing Interfaces (APIs). Control includes the capability to
configure the optical equipment, and to provision services according to a
request coming from a higher layer controller and/or an orchestrator.
This capability may rely on the controller only or it may be delegated to
distributed (standardized) protocols.

It provides alarm/fault and performance
monitoring, but this function might be externalized to improve the scalability.
A Graphical User Interface could be developed in a later step, but is not
considered as a priority since automated control does not imply user
interactions at the transport controller level.

TransportPCE modular architecture is described on the next diagram. Each main
function such as Topology management, Path Calculation Engine (PCE), Service
handler, Renderer responsible for the path configuration through optical
equipment and Optical Line Management (OLM) is associated with a generic block
relying on open models, each of them communicating through published APIs.

[image: TransportPCE architecture]
TransportPCE architecture

TransportPCE User-Facing Features

	odl-transportpce

	This feature contains all other features/bundles of TransportPCE project.
If you install it, it provides all functions that the TransportPCE project
can support.

	odl-transportpce-api

	This feature contains all Transportpce project specific models defined in “Service-path”.
These models complement OpenROADM models describing South and Northbound APIs, and define the
data structure used to interconnect the generic blocks/functions described on the previous
diagram.

	odl-transportpce-ordmodels

	This feature contains all OpenROADM models : Common, Device, Network and Service models.

How To Start

Preparing for Installation

	Devices must support the standard OpenROADM Models more precisely versions
1.2.1 and 2.1. Experimental support is provided for 2.2 and 2.2.1 devices
(portmapping only at this moment).

	Devices must support configuration through NETCONF protocol/API.

Installation Feature

Run OpenDaylight and install TransportPCE Service odl-transportpce as below:

feature:install odl-transportpce

For a more detailed overview of the TransportPCE, see the TransportPCE Developer Guide.

Index

 nav.xhtml

 Table of Contents

 		
 Transport PCE Documentation

 		
 TransportPCE Developer Guide

 		
 Overview

 		
 Architecture

 		
 Module description

 		
 Key APIs and Interfaces

 		
 External API

 		
 Internal APIs

 		
 Running transportPCE project

 		
 Connecting nodes

 		
 Node configuration discovery

 		
 Optical Network topology

 		
 Creating a service

 		
 Deleting a service

 		
 Help

 		
 TransportPCE User Guide

 		
 Overview

 		
 TransportPCE User-Facing Features

 		
 How To Start

 		
 Preparing for Installation

 		
 Installation Feature

_images/tpce_architecture.jpg
Path Calculation

Engine

transportPCE

|

Routing metrics.
Policy repository

Topology

Services

Topology.

Devices

Data Store

Alarm & PM Inventory
management | Management

Configuration
management

o

management

*DAYLIGHT

@m Published API based on

_ﬁ transportPCE models

Available modules

Plal%

_static/plus.png

_static/file.png

_static/logo.png

_static/minus.png

