
Transport PCE
Release master

Oct 01, 2019





Contents

1 TransportPCE Developer Guide 1

2 TransportPCE User Guide 13

i



ii



CHAPTER 1

TransportPCE Developer Guide

1.1 Overview

TransportPCE describes an application running on top of the OpenDaylight controller. Its primary function is to con-
trol an optical transport infrastructure using a non-proprietary South Bound Interface (SBI). It may be interconnected
with Controllers of different layers (L2, L3 Controller. . . ), a higher layer Controller and/or an Orchestrator through
non-proprietary Application Programing Interfaces (APIs). Control includes the capability to configure the optical
equipment, and to provision services according to a request coming from a higher layer controller and/or an orches-
trator. This capability may rely on the controller only or it may be delegated to distributed (standardized) protocols.

1.2 Architecture

TransportPCE modular architecture is described on the next diagram. Each main function such as Topology man-
agement, Path Calculation Engine (PCE), Service handler, Renderer _responsible for the path configuration through
optical equipment_ and Optical Line Management (OLM) is associated with a generic block relying on open models,
each of them communicating through published APIs.

The current version of transportPCE is dedicated to the control of WDM transport infrastructure. OTN layer will be
integrated in a later step. The WDM layer is built from colorless ROADMs and transponders.

The interest of using a controller to provision automatically services strongly relies on its ability to handle end to end
optical services that spans through the different network domains, potentially equipped with equipment coming from
different suppliers. Thus, interoperability in the optical layer is a key element to get the benefit of automated control.

Initial design of TransportPCE leverages Open ROADM Multi-Source-Agreement (MSA) which defines interoper-
ability specifications, consisting of both Optical interoperability and Yang data models.

1.2.1 Module description

1



Transport PCE, Release master

Fig. 1: TransportPCE architecture

ServiceHandler

Service Handler handles request coming from a higher level controller or an orchestrator through the northbound
API, as defined in the Open ROADM service model. Current implementation addresses the following rpcs: service-
create, temp-service-create, service–delete, temp-service-delete, service-reroute, and service-restoration. It checks
the request consistency and trigs path calculation sending rpcs to the PCE. If a valid path is returned by the PCE,
path configuration is initiated relying on Renderer and OLM. At the confirmation of a successful service creation, the
Service Handler updates the service- list/temp-service-list in the MD-SAL. For service deletion, the Service Handler
relies on the Renderer and the OLM to delete connections and reset power levels associated with the service. The
service-list is updated following a successful service deletion. In Neon SR0 is added the support for service from
ROADM to ROADM, which brings additional flexibility and notably allows reserving resources when transponders
are not in place at day one.

PCE

The Path Computation Element (PCE) is the component responsible for path calculation. An interface allows the
Renderer or external components such as an orchestrator to request a path computation and get a response from the
PCE including the computed path(s) in case of success, or errors and indication of the reason for the failure in case the
request cannot be satisfied. Additional parameters can be provided by the PCE in addition to the computed paths if
requested by the client module. An interface to the Topology Management module allows keeping PCE aligned with
the latest changes in the topology. Information about current and planned services is available in the MD-SAL data
store.

Current implementation of PCE allows finding the shortest path, minimizing either the hop count (default) or the prop-
agation delay. Wavelength is assigned considering a fixed grid of 96 wavelengths. In Neon SR0, the PCE calculates the
OSNR, on the base of incremental noise specifications provided in Open RAODM MSA. The support of unidirectional
ports is also added. PCE handles the following constraints as hard constraints:

2 Chapter 1. TransportPCE Developer Guide



Transport PCE, Release master

• Node exclusion

• SRLG exclusion

• Maximum latency

Topology Management

Topology management module builds the Topology according to the Network model defined in OpenROADM. The
topology is aligned with I2RS model. It includes several network layers:

• CLLI layer corresponds to the locations that host equipment

• Network layer corresponds to a first level of disaggregation where we separate Xponders (transponder,
muxponders or switchponders) from ROADMs

• Topology layer introduces a second level of disaggregation where ROADMs Add/Drop modules (“SRGs”)
are separated from the degrees which includes line amplifiers and WSS that switch wavelengths from one
to another degree

OTN layer which includes OTN elements having or not the ability to switch OTN containers from client to line cards
is not currently implemented.

Renderer

The Renderer module, on request coming from the Service Handler through a service- implementation-request /service
delete rpc, sets/deletes the path corresponding to a specific service between A and Z ends. The path description
provided by the service-handler to the renderer is based on abstracted resources (nodes, links and termination-points),
as provided by the PCE module. The renderer converts this path-description in a path topology based on device
resources (circuit-packs, ports,. . . ). The conversion from abstracted resources to device resources is performed relying
on the portmapping module which maintains the connections between these different resource types. In Neon (SR0),
portmapping modules has been enriched to support both openroadm 1.2.1 and 2.2 device models. The full support of
openroadm 2.2 device models (both in the topology management and the rendering function) is planned at a later step
(ORD2.2 full support is targeted for Neon SR1).

After the path is provided, the renderer first checks what are the existing interfaces on the ports of the different nodes
that the path crosses. It then creates missing interfaces. After all needed interfaces have been created it sets the
connections required in the nodes and notifies the Service Handler on the status of the path creation. Path is created in
2 steps (from A to Z and Z to A). In case the path between A and Z could not be fully created, a rollback function is
called to set the equipment on the path back to their initial configuration (as they were before invoking the Renderer).

OLM

Optical Line Management module implements two main features: it is responsible for setting up the optical power
levels on the different interfaces, and is in charge of adjusting these settings across the life of the optical infrastructure.

After the different connections have been established in the ROADMS, between 2 Degrees for an express path, or
between a SRG and a Degree for an Add or Drop path; meaning the devices have set WSS and all other required
elements to provide path continuity, power setting are provided as attributes of these connections. This allows the
device to set all complementary elements such as VOAs, to guaranty that the signal is launched at a correct power
level (in accordance to the specifications) in the fiber span. This also applies to X-Ponders, as their output power must
comply with the specifications defined for the Add/Drop ports (SRG) of the ROADM. OLM has the responsibility of
calculating the right power settings, sending it to the device, and check the PM retrieved from the device to verify that
the setting was correctly applied and the configuration was successfully completed.

1.2. Architecture 3



Transport PCE, Release master

1.3 Key APIs and Interfaces

1.3.1 External API

North API, interconnecting the Service Handler to higher level applications relies on the Service Model defined in the
MSA. The Renderer and the OLM are developed to allow configuring Open ROADM devices through a southbound
Netconf/Yang interface and rely on the MSA’s device model.

ServiceHandler Service

• RPC call

– service-create (given service-name, service-aend, service-zend)

– service-delete (given service-name)

– service-reroute (given service-name, service-aend, service-zend)

– service-restoration (given service-name, service-aend, service-zend)

– temp-service-create (given common-id, service-aend, service-zend)

– temp-service-delete (given common-id)

• Data structure

– service list : made of services

– temp-service list : made of temporary services

– service : composed of service-name, topology wich describes the detailed path (list of used resources)

• Notification

– service-rpc-result : result of service RPC

– service-notification : service has been added, modified or removed

Netconf Service

• RPC call

– connect-device : PUT

– disconnect-device : DELETE

– check-connected-device : GET

• Data Structure

– node list : composed of netconf nodes in topology-netconf

1.3.2 Internal APIs

Internal APIs define REST APIs to interconnect TransportPCE modules :

• Service Handler to PCE

• PCE to Topology Management

• Service Handler to Renderer

4 Chapter 1. TransportPCE Developer Guide



Transport PCE, Release master

• Renderer to OLM

Pce Service

• RPC call

– path-computation-request (given service-name, service-aend, service-zend)

– cancel-resource-reserve (given service-name)

• Notification

– service-path-rpc-result : result of service RPC

Renderer Service

• RPC call

– service-implementation-request (given service-name, service-aend, service-zend)

– service-delete (given service-name)

• Data structure

– service path list : composed of service paths

– service path : composed of service-name, path description giving the list of abstracted elements (nodes,
tps, links)

• Notification

– service-path-rpc-result : result of service RPC

Topology Management Service

• Data structure

– network list : composed of networks(openroadm-topology, netconf-topology)

– node list : composed of node-id

– link list : composed of link-id

– node : composed of roadm, xponder link : composed of links of different types (roadm-to-roadm, express,
add-drop . . . )

OLM Service

• RPC call

– get-pm (given node-id)

– service-power-setup

– service-power-turndown

– service-power-reset

– calculate-spanloss-base

– calculate-spanloss-current

1.3. Key APIs and Interfaces 5



Transport PCE, Release master

odl-transportpce-stubmodels

• This feature provides function to be able to stub some of TransportPCE modules, pce and renderer (Stubpce and
Stubrenderer). Stubs are used for development purposes and can be used for some of the functionnal tests.

1.4 Running transportPCE project

To use transportPCE controller, the first step is to connect the controller to optical nodes through the NETCONF
connector.

Note: In the current version, only optical equipment compliant with open ROADM datamodels are managed by
transportPCE.

1.4.1 Connecting nodes

To connect a node, use the following JSON RPC

REST API : POST /restconf/config/network-topology:network-topology/topology/topology-netconf/node/<node-id>

Sample JSON Data

{
"node": [

{
"node-id": "<node-id>",
"netconf-node-topology:tcp-only": "false",
"netconf-node-topology:reconnect-on-changed-schema": "false",
"netconf-node-topology:host": "<node-ip-address>",
"netconf-node-topology:default-request-timeout-millis": "120000",
"netconf-node-topology:max-connection-attempts": "0",
"netconf-node-topology:sleep-factor": "1.5",
"netconf-node-topology:actor-response-wait-time": "5",
"netconf-node-topology:concurrent-rpc-limit": "0",
"netconf-node-topology:between-attempts-timeout-millis": "2000",
"netconf-node-topology:port": "<netconf-port>",
"netconf-node-topology:connection-timeout-millis": "20000",
"netconf-node-topology:username": "<node-username>",
"netconf-node-topology:password": "<node-password>",
"netconf-node-topology:keepalive-delay": "300"

}
]

}

Then check that the netconf session has been correctly established between the controller and the node. the status of
netconf-node-topology:connection-status must be connected

REST API : GET /restconf/operational/network-topology:network-topology/topology/topology-netconf/node/<node-
id>

1.4.2 Node configuration discovery

Once the controller is connected to the node, transportPCE application automatically launchs a discovery of the node
configuration datastore and creates Logical Connection Points to any physical ports related to transmission. All

6 Chapter 1. TransportPCE Developer Guide



Transport PCE, Release master

circuit-packs inside the node configuration are analyzed.

Use the following JSON RPC to check that function internally named portMapping.

REST API : GET /restconf/config/portmapping:network

Note: in Neon SR0, the support of openroadm 2.2 device model is added. Thus 2.2 nodes can be discovered and
added to the portmapping node list. However, full topology management support (and notably link discovery) is not
provided for 2.2 nodes. The support for link discovery and full topology management with 1.2.1 and 2.2 nodes will be
added in a next release.

Note:

In org-openroadm-device.yang, two types of optical nodes can be managed:

• rdm: ROADM device (optical switch)

• xpdr: Xponder device (device that converts client to optical channel interface)

Depending on the kind of open ROADM device connected, different kind of Logical Connection Points should appear,
if the node configuration is not empty:

• DEG<degree-number>-TTP-<port-direction>: created on the line port of a degree on a rdm equipment

• SRG<srg-number>-PP<port-number>: created on the client port of a srg on a rdm equipment

• XPDR<number>-CLIENT<port-number>: created on the client port of a xpdr equipment

• XPDR<number>-NETWORK<port-number>: created on the line port of a xpdr equipment

For further details on openROADM device models, see openROADM MSA white paper.

1.4.3 Optical Network topology

Before creating an optical connectivity service, your topology must contain at least two xpdr devices connected to two
different rdm devices. Normally, the openroadm-topology is automatically created by transportPCE. Nevertheless,
depending on the configuration inside optical nodes, this topology can be partial. Check that link of type ROADM-
toROADM exists between two adjacent rdm nodes.

REST API : GET /restconf/config/ietf-network:network/openroadm-topology

If it is not the case, you need to manually complement the topology with ROADMtoROADM link using the following
REST RPC:

REST API : POST /restconf/operations/networkutils:init-roadm-nodes

Sample JSON Data

{
"networkutils:input": {
"networkutils:rdm-a-node": "<node-id-A>",
"networkutils:deg-a-num": "<degree-A-number>",
"networkutils:termination-point-a": "<Logical-Connection-Point>",
"networkutils:rdm-z-node": "<node-id-Z>",
"networkutils:deg-z-num": "<degree-Z-number>",
"networkutils:termination-point-z": "<Logical-Connection-Point>"

}
}

1.4. Running transportPCE project 7

https://0201.nccdn.net/1_2/000/000/134/c50/Open-ROADM-MSA-release-2-Device-White-paper-v1-1.pdf


Transport PCE, Release master

<Logical-Connection-Point> comes from the portMapping function.

Unidirectional links between xpdr and rdm nodes must be created manually. To that end use the two following REST
RPCs:

From xpdr to rdm:

REST API : POST /restconf/operations/networkutils:init-xpdr-rdm-links

Sample JSON Data

{
"networkutils:input": {
"networkutils:links-input": {

"networkutils:xpdr-node": "<xpdr-node-id>",
"networkutils:xpdr-num": "1",
"networkutils:network-num": "<xpdr-network-port-number>",
"networkutils:rdm-node": "<rdm-node-id>",
"networkutils:srg-num": "<srg-number>",
"networkutils:termination-point-num": "<Logical-Connection-Point>"

}
}

}

From rdm to xpdr:

REST API : POST /restconf/operations/networkutils:init-rdm-xpdr-links

Sample JSON Data

{
"networkutils:input": {
"networkutils:links-input": {

"networkutils:xpdr-node": "<xpdr-node-id>",
"networkutils:xpdr-num": "1",
"networkutils:network-num": "<xpdr-network-port-number>",
"networkutils:rdm-node": "<rdm-node-id>",
"networkutils:srg-num": "<srg-number>",
"networkutils:termination-point-num": "<Logical-Connection-Point>"

}
}

}

1.4.4 Creating a service

Use the following REST RPC to invoke service handler module in order to create a bidirectional end-to-end optical
connectivity service between two xpdr over an optical network composed of rdm nodes.

REST API : POST /restconf/operations/org-openroadm-service:service-create

Sample JSON Data

{
"input": {

"sdnc-request-header": {

(continues on next page)

8 Chapter 1. TransportPCE Developer Guide



Transport PCE, Release master

(continued from previous page)

"request-id": "request-1",
"rpc-action": "service-create",
"request-system-id": "appname"

},
"service-name": "test1",
"common-id": "commonId",
"connection-type": "service",
"service-a-end": {

"service-rate": "100",
"node-id": "<xpdr-node-id>",
"service-format": "Ethernet",
"clli": "<ccli-name>",
"tx-direction": {

"port": {
"port-device-name": "<xpdr-client-port>",
"port-type": "fixed",
"port-name": "<xpdr-client-port-number>",
"port-rack": "000000.00",
"port-shelf": "Chassis#1"

},
"lgx": {

"lgx-device-name": "Some lgx-device-name",
"lgx-port-name": "Some lgx-port-name",
"lgx-port-rack": "000000.00",
"lgx-port-shelf": "00"

}
},
"rx-direction": {

"port": {
"port-device-name": "<xpdr-client-port>",
"port-type": "fixed",
"port-name": "<xpdr-client-port-number>",
"port-rack": "000000.00",
"port-shelf": "Chassis#1"

},
"lgx": {

"lgx-device-name": "Some lgx-device-name",
"lgx-port-name": "Some lgx-port-name",
"lgx-port-rack": "000000.00",
"lgx-port-shelf": "00"

}
},
"optic-type": "gray"

},
"service-z-end": {

"service-rate": "100",
"node-id": "<xpdr-node-id>",
"service-format": "Ethernet",
"clli": "<ccli-name>",
"tx-direction": {

"port": {
"port-device-name": "<xpdr-client-port>",
"port-type": "fixed",
"port-name": "<xpdr-client-port-number>",
"port-rack": "000000.00",
"port-shelf": "Chassis#1"

},
(continues on next page)

1.4. Running transportPCE project 9



Transport PCE, Release master

(continued from previous page)

"lgx": {
"lgx-device-name": "Some lgx-device-name",
"lgx-port-name": "Some lgx-port-name",
"lgx-port-rack": "000000.00",
"lgx-port-shelf": "00"

}
},
"rx-direction": {

"port": {
"port-device-name": "<xpdr-client-port>",
"port-type": "fixed",
"port-name": "<xpdr-client-port-number>",
"port-rack": "000000.00",
"port-shelf": "Chassis#1"

},
"lgx": {

"lgx-device-name": "Some lgx-device-name",
"lgx-port-name": "Some lgx-port-name",
"lgx-port-rack": "000000.00",
"lgx-port-shelf": "00"

}
},
"optic-type": "gray"

},
"due-date": "yyyy-mm-ddT00:00:01Z",
"operator-contact": "some-contact-info"

}
}

Most important parameters for this REST RPC are the identification of the two physical client ports on xpdr nodes.This
RPC invokes the PCE module to compute a path over the openroadm-topology and then invokes renderer and OLM to
implement the end-to-end path into the devices.

1.4.5 Deleting a service

Use the following REST RPC to invoke service handler module in order to delete a given optical connectivity service.

REST API : POST /restconf/operations/org-openroadm-service:service-delete

Sample JSON Data

{
"input": {

"sdnc-request-header": {
"request-id": "request-1",
"rpc-action": "service-delete",
"request-system-id": "appname",
"notification-url": "http://localhost:8585/NotificationServer/notify"

},
"service-delete-req-info": {

"service-name": "test1",
"tail-retention": "no"

}
}

}

Most important parameters for this REST RPC is the service-name.

10 Chapter 1. TransportPCE Developer Guide



Transport PCE, Release master

1.5 Help

• TransportPCE Wiki

• TransportPCE Mailing List (developer)

1.5. Help 11

https://wiki.opendaylight.org/view/TransportPCE:Main
https://lists.opendaylight.org/mailman/listinfo/transportpce-dev


Transport PCE, Release master

12 Chapter 1. TransportPCE Developer Guide



CHAPTER 2

TransportPCE User Guide

2.1 Overview

TransportPCE describes an application running on top of the OpenDaylight controller. Its primary function is to con-
trol an optical transport infrastructure using a non-proprietary South Bound Interface (SBI). It may be interconnected
with Controllers of different layers (L2, L3 Controller. . . ), a higher layer Controller and/or an Orchestrator through
non-proprietary Application Programing Interfaces (APIs). Control includes the capability to configure the optical
equipment, and to provision services according to a request coming from a higher layer controller and/or an orches-
trator. This capability may rely on the controller only or it may be delegated to distributed (standardized) protocols.

It provides alarm/fault and performance monitoring, but this function might be externalized to improve the scalability.
A Graphical User Interface could be developed in a later step, but is not considered as a priority since automated
control does not imply user interactions at the transport controller level.

TransportPCE modular architecture is described on the next diagram. Each main function such as Topology manage-
ment, Path Calculation Engine (PCE), Service handler, Renderer responsible for the path configuration through optical
equipment and Optical Line Management (OLM) is associated with a generic block relying on open models, each of
them communicating through published APIs.

2.2 TransportPCE User-Facing Features

• odl-transportpce

– This feature contains all other features/bundles of TransportPCE project. If you install it, it provides all
functions that the TransportPCE project can support.

• odl-transportpce-api

– This feature contains all Transportpce project specific models defined in “Service-path”. These models
complement OpenROADM models describing South and Northbound APIs, and define the data structure
used to interconnect the generic blocks/functions described on the previous diagram.

• odl-transportpce-ordmodels

13



Transport PCE, Release master

Fig. 1: TransportPCE architecture

– This feature contains all OpenROADM models : Common, Device, Network and Service models.

2.3 How To Start

2.3.1 Preparing for Installation

1. Devices must support the standard OpenROADM Models more precisely versions 1.2.1 and 2.1. Experimental
support is provided for 2.2 and 2.2.1 devices (portmapping only at this moment).

2. Devices must support configuration through NETCONF protocol/API.

2.3.2 Installation Feature

Run OpenDaylight and install TransportPCE Service odl-transportpce as below:

feature:install odl-transportpce

For a more detailed overview of the TransportPCE, see the TransportPCE Developer Guide.

14 Chapter 2. TransportPCE User Guide


	TransportPCE Developer Guide
	TransportPCE User Guide

