

Openflowplugin Documentation

Contents:

	Openflowplugin User Guides
	Architecture

	Installation

	Operation

	Flow examples

	Openflowplugin Developer Guides
	Plugin Guide

	Library Guide

	Openflowplugin Design Specifications
	Reconciliation Framework

	Group Command OFPGC_ADD_OR_MOD support

	Openflow Bundle Reconciliation

	Southbound CLI

	Reconciliation CLI and Alarm

	Arbitrator Reconciliation using OpenFlow bundle

	Device Connection Rate Limiter

	Openflowplugin Event Logging Using Log4j

	Openflowplugin Test Plans
	Bundles Resync

	Testplan Template

Openflowplugin User Guides

Contents:

	Architecture

	Installation

	Operation

	Flow examples

OpenFlow Plugin Architeture

Overview

OpenFlow is a vendor-neutral standard communications interface defined
to enable interaction between the control and forwarding layers of an
SDN architecture. The OpenFlow plugin project intends to develop a
plugin to support implementations of the OpenFlow specification as it
develops and evolves. Specifically the project has developed a plugin
aiming to support OpenFlow 1.0 and 1.3.x. It can be extended to add
support for subsequent OpenFlow specifications. The plugin is based on
the Model Driven Service Abstraction Layer (MD-SAL) architecture.

Goals

	Southbound plugin and integration of OpenFlow 1.0/1.3.x library.

	Ongoing support and integration of the OpenFlow specification.

	The plugin should be implemented in an easily extensible manner.

	Protocol verification activities will be performed on supported
OpenFlow specifications.

High Level Architecture

[image: ../_images/plugin_arch.png]

	OpenFlowJava: is a library that implements the OpenFlow codec –
it translates OpenFlow messages into their respective internal
representations and vice versa.

	OpenFlow Plugin: terminates sessions to OpenFlow switches,
provides a per-switch low-level OpenFlow service API (add-modify-flow,
delete-flow, etc.)

	Statistics Manager: is responsible for collecting statistics and
status from attached OpenFlow switches and storing them into the
operational data store for applications’ use.

	Topology Manager: is responsible for discovering the OpenFlow
topology using LLDP and putting them into the operational data store
for applications’ use.

	Forwarding Rules Manager: the “top level” OpenFlow module that
exposes the OF functionality to controller apps, provides the app-level
API. Main entity that manages the OpenFlow switch inventory and the
configuration (programming) of flows in switches. It also reconciles
user configuration with network state discovered by the OpenFlow plugin.

Security

It is strongly recommended that any production deployments utilising
the OpenFlow Plugin do so with TLS encryption to protect against
various man-in-the-middle attacks. For more details please refer
to the TLS section of the Operations guide.

Protocol Coverage

Coverage has been moved to a GoogleDoc Spreadsheet [https://docs.google.com/spreadsheet/ccc?key=0AtpUuSEP8OyMdHNTZjBoM0VjOE9BcGhHMzk3N19uamc&usp=sharing%23gid=2#gid=0]

OF 1.3 Considerations

The baseline model is a OF 1.3 model, and the coverage tables primarily
deal with OF 1.3. However for OF 1.0, we have a column to indicate
either N/A if it doesn’t apply, or whether its been confirmed working.

OF 1.0 Considerations

OF 1.0 is being considered as a switch with: * 1 Table * 0 Groups * 0
Meters * 1 Instruction (Apply Actions) * and a limited vocabulary of
matches and actions.

OpenFlow Plugin Installation

OpenFlow Plugin installation follows standard OpenDaylight installation procedure
described in install-odl [https://docs.opendaylight.org/en/latest/getting-started-guide/installing_opendaylight.html].

Next sections describe typical OpenFlow user and test features. For a complete list
of available features check the OpenFlow Plugin Release Notes.

Typical User features

	odl-openflowplugin-flow-services-rest: OF plugin with REST API.

	odl-openflowplugin-app-table-miss-enforcer: Adds default flow to controller.

	odl-openflowplugin-nxm-extensions: Nicira extensions for OVS.

Typical Test features

	odl-openflowplugin-app-table-miss-enforcer: Adds default flow to controller.

	odl-openflowplugin-drop-test: Test application for pushing flows on packet-in.

	odl-openflowplugin-app-bulk-o-matic: Test application for pushing bulk flows.

OpenFlow Plugin Operation

Overview

The OpenFlow standard describes a communications protocol that allows
an external application, such as an SDN Controller, to access and
configure the forwarding plane of a network device normally called
the OpenFlow-enabled switch.

The switch and the controller communicate by exchanging OpenFlow
protocol messages, which the controller uses to add, modify, and delete
flows in the switch. By using OpenFlow, it is possible to control
various aspects of the network, such as traffic forwarding, topology
discovery, Quality of Service, and so on.

For more information about OpenFlow, refer to the Open Networking
Foundation website openflow-specs [https://www.opennetworking.org/software-defined-standards/specifications].

The OpenFlow Plugin provides the following RESTCONF APIs:

	OpenFlow Topology

	OpenFlow Statistics

	OpenFlow Programming

OpenFlow Topology

The controller provides a centralized logical view of the OpenFlow network.

The controller uses Link Layer Discovery Protocol (LLDP) messages to discover
the links between the connected OpenFlow devices. The topology manager
stores and manages the information (nodes and links) in the controller
data stores.

This works as follows:

	LLDP speaker application sends LLDP packets to all the node connectors of
all the switches that are connected.

	LLDP speaker application also monitors status events for a node connector.
If the status of a node connector for the connected switch changes from up
to down, the LLDP speaker does not send packets out to that node connector.
If the status changes from down to up, the LLDP speaker sends packets to
that node connector.

	The LLDP discovery application monitors the LLDP packets that are sent by a
switch to the controller and notifies the topology manager of a new
link-discovery event. The information includes: source node, source node
connector, destination node, and destination node connector, from the
received LLDP packets.

	The LLDP discovery application also checks for an expired link and notifies
the topology manager. A link expires when it does not receive an update from
the switch for the three LLDP speaker cycles.

Retrieving topology details by using RESTCONF

You can retrieve OpenFlow topology information (nodes and links) from the
controller by sending a RESTCONF request. The controller fetches the topology
data from the operational datastore and returns it in response to the RESTCONF
request.

To view the topology data for all the connected nodes, send the following
request to the controller:

URL: /restconf/operational/network-topology:network-topology/topology/flow:1

RFC8040 URL: /rests/data/network-topology:network-topology/topology=flow%3A1?content=nonconfig

Method: GET

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>flow: 1</topology-id>
 <node>
 <node-id>openflow: 2</node-id>
 <termination-point>
 <tp-id>openflow: 2: 2</tp-id>
 <inventory-node-connector-ref xmlns="urn:opendaylight:model:topology:inventory" xmlns:a="urn:opendaylight:inventory">/a:nodes/a:node[a:id='openflow: 2']/a:node-connector[a:id='openflow: 2: 2']
 </inventory-node-connector-ref>
 </termination-point>
 <termination-point>
 <tp-id>openflow: 2: 1</tp-id>
 <inventory-node-connector-ref xmlns="urn:opendaylight:model:topology:inventory" xmlns:a="urn:opendaylight:inventory">/a:nodes/a:node[a:id='openflow: 2']/a:node-connector[a:id='openflow: 2: 1']
 </inventory-node-connector-ref>
 </termination-point>
 <termination-point>
 <tp-id>openflow: 2:LOCAL</tp-id>
 <inventory-node-connector-ref xmlns="urn:opendaylight:model:topology:inventory" xmlns:a="urn:opendaylight:inventory">/a:nodes/a:node[a:id='openflow: 2']/a:node-connector[a:id='openflow: 2:LOCAL']
 </inventory-node-connector-ref>
 </termination-point>
 <inventory-node-ref xmlns="urn:opendaylight:model:topology:inventory" xmlns:a="urn:opendaylight:inventory">/a:nodes/a:node[a:id='openflow: 2']
 </inventory-node-ref>
 </node>
 <node>
 <node-id>openflow: 1</node-id>
 <termination-point>
 <tp-id>openflow: 1: 1</tp-id>
 <inventory-node-connector-ref xmlns="urn:opendaylight:model:topology:inventory" xmlns:a="urn:opendaylight:inventory">/a:nodes/a:node[a:id='openflow: 1']/a:node-connector[a:id='openflow: 1: 1']
 </inventory-node-connector-ref>
 </termination-point>
 <termination-point>
 <tp-id>openflow: 1:LOCAL</tp-id>
 <inventory-node-connector-ref xmlns="urn:opendaylight:model:topology:inventory" xmlns:a="urn:opendaylight:inventory">/a:nodes/a:node[a:id='openflow: 1']/a:node-connector[a:id='openflow: 1:LOCAL']
 </inventory-node-connector-ref>
 </termination-point>
 <termination-point>
 <tp-id>openflow: 1: 2</tp-id>
 <inventory-node-connector-ref xmlns="urn:opendaylight:model:topology:inventory" xmlns:a="urn:opendaylight:inventory">/a:nodes/a:node[a:id='openflow: 1']/a:node-connector[a:id='openflow: 1: 2']
 </inventory-node-connector-ref>
 </termination-point>
 <inventory-node-ref xmlns="urn:opendaylight:model:topology:inventory" xmlns:a="urn:opendaylight:inventory">/a:nodes/a:node[a:id='openflow: 1']
 </inventory-node-ref>
 </node>
 <link>
 <link-id>openflow:1:2</link-id>
 <destination>
 <dest-tp>openflow:2:2</dest-tp>
 <dest-node>openflow:2</dest-node>
 </destination>
 <source>
 <source-node>openflow:1</source-node>
 <source-tp>openflow:1:2</source-tp>
 </source>
 </link>
 <link>
 <link-id>openflow:2:2</link-id>
 <destination>
 <dest-tp>openflow:1:2</dest-tp>
 <dest-node>openflow:1</dest-node>
 </destination>
 <source>
 <source-node>openflow:2</source-node>
 <source-tp>openflow:2:2</source-tp>
 </source>
 </link>
</topology>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "topology": [
 {
 "topology-id": "flow:1",
 "node": [
 {
 "node-id": "openflow:2",
 "termination-point": [
 {
 "tp-id": "openflow:2:2",
 "opendaylight-topology-inventory:inventory-node-connector-ref":
 "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:2']/opendaylight-inventory:node-connector[opendaylight-inventory:id='openflow:2:2']"
 },
 {
 "tp-id": "openflow:2:1",
 "opendaylight-topology-inventory:inventory-node-connector-ref":
 "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:2']/opendaylight-inventory:node-connector[opendaylight-inventory:id='openflow:2:1']"
 },
 {
 "tp-id": "openflow:2:LOCAL",
 "opendaylight-topology-inventory:inventory-node-connector-ref":
 "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:2']/opendaylight-inventory:node-connector[opendaylight-inventory:id='openflow:2:LOCAL']"
 }
],
 "opendaylight-topology-inventory:inventory-node-ref": "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:2']"
 },
 {
 "node-id": "openflow:1",
 "termination-point": [
 {
 "tp-id": "openflow:1:1",
 "opendaylight-topology-inventory:inventory-node-connector-ref":
 "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:1']/opendaylight-inventory:node-connector[opendaylight-inventory:id='openflow:1:1']"
 },
 {
 "tp-id": "openflow:1:LOCAL",
 "opendaylight-topology-inventory:inventory-node-connector-ref":
 "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:1']/opendaylight-inventory:node-connector[opendaylight-inventory:id='openflow:1:LOCAL']"
 },
 {
 "tp-id": "openflow:1:2",
 "opendaylight-topology-inventory:inventory-node-connector-ref":
 "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:1']/opendaylight-inventory:node-connector[opendaylight-inventory:id='openflow:1:2']"
 }
],
 "opendaylight-topology-inventory:inventory-node-ref": "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:1']"
 }
],
 "link": [
 {
 "link-id": "openflow:1:2",
 "destination": {
 "dest-tp": "openflow:2:2",
 "dest-node": "openflow:2"
 },
 "source": {
 "source-node": "openflow:1",
 "source-tp": "openflow:1:2"
 }
 },
 {
 "link-id": "openflow:2:2",
 "destination": {
 "dest-tp": "openflow:1:2",
 "dest-node": "openflow:1"
 },
 "source": {
 "source-node": "openflow:2",
 "source-tp": "openflow:2:2"
 }
 }
]
 }
]
}

Note

In the examples above the OpenFlow node is represented as openflow:1
where 1 is the datapath ID of the OpenFlow-enabled device.

Note

In the examples above the OpenFlow node connector is represented as
openflow:1:2 where 1 is the datapath ID and 2 is the port ID of the
OpenFlow-enabled device.

OpenFlow Statistics

The controller provides the following information for the connected
OpenFlow devices:

Inventory information:

	Node description: Description of the OpenFlow-enabled device, such as
the switch manufacturer, hardware revision, software revision, serial number,
and so on.

	Flow table features: Features supported by flow tables of the switch.

	Port description: Properties supported by each node connector of the
node.

	Group features: Features supported by the group table of the switch.

	Meter features: Features supported by the meter table of the switch.

Statistics:

	Individual flow statistics: Statistics related to individual flow
installed in the flow table.

	Aggregate flow statistics: Statistics related to aggregate flow for
each table level.

	Flow table statistics: Statistics related to the individual flow table
of the switch.

	Port statistics: Statistics related to all node connectors of the node.

	Group description: Description of the groups installed in the switch
group table.

	Group statistics: Statistics related to an individual group installed
in the group table.

	Meter configuration: Statistics related to the configuration of the
meters installed in the switch meter table.

	Meter statistics: Statistics related to an individual meter installed
in the switch meter table.

	Queue statistics: Statistics related to the queues created on each
node connector of the switch.

The controller fetches both inventory and statistics information whenever a
node connects to the controller. After that the controller fetches statistics
periodically within a time interval of three seconds. The controller augments
inventory information and statistics fetched from each connected node to its
respective location in the operational data store. The controller also cleans
the stale statistics at periodic intervals.

You can retrieve the inventory information (nodes, ports, and tables) and
statistics (ports, flows, groups and meters) by sending a RESTCONF request.
The controller fetches the inventory data from the operational data store
and returns it in response to the RESTCONF request.

The following sections provide a few examples for retrieving inventory and
statistics information.

Example of node inventory data

To view the inventory data of a connected node, send the following request to
the controller:

URL: /restconf/operational/opendaylight-inventory:nodes/node/openflow:1

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1?content=nonconfig

Method: GET

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<node xmlns="urn:opendaylight:inventory">
 <id>openflow:1</id>
 <serial-number xmlns="urn:opendaylight:flow:inventory">None</serial-number>
 <port-number xmlns="urn:opendaylight:flow:inventory">45170</port-number>
 <description xmlns="urn:opendaylight:flow:inventory">None</description>
 <hardware xmlns="urn:opendaylight:flow:inventory">Open vSwitch</hardware>
 <manufacturer xmlns="urn:opendaylight:flow:inventory">Nicira, Inc.</manufacturer>
 <switch-features xmlns="urn:opendaylight:flow:inventory">
 <max_tables>254</max_tables>
 <capabilities>flow-feature-capability-queue-stats</capabilities>
 <capabilities>flow-feature-capability-flow-stats</capabilities>
 <capabilities>flow-feature-capability-port-stats</capabilities>
 <capabilities>flow-feature-capability-table-stats</capabilities>
 <max_buffers>256</max_buffers>
 </switch-features>

 --- Omitted output —--

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "opendaylight-inventory:nodes": {
 "node": [
 {
 "id": "openflow:1",
 "flow-node-inventory:serial-number": "None",
 "flow-node-inventory:port-number": 45170,
 "flow-node-inventory:description": "None",
 "flow-node-inventory:hardware": "Open vSwitch",
 "flow-node-inventory:manufacturer": "Nicira, Inc.",
 "flow-node-inventory:switch-features": {
 "max_tables": 254,
 "capabilities": [
 "flow-node-inventory:flow-feature-capability-queue-stats",
 "flow-node-inventory:flow-feature-capability-flow-stats",
 "flow-node-inventory:flow-feature-capability-port-stats",
 "flow-node-inventory:flow-feature-capability-table-stats"
],
 "max_buffers": 256
 },
 "flow-node-inventory:software": "2.0.2",
 "flow-node-inventory:ip-address": "192.168.56.106",
 "flow-node-inventory:table": [
 {
 "id": 88,
 "opendaylight-flow-table-statistics:flow-table-statistics": {
 "packets-looked-up": "0",
 "active-flows": 0,
 "packets-matched": "0"
 }
 },

 --- Omitted output —--

Note

In the examples above the OpenFlow node is represented as openflow:1
where 1 is the datapath ID of the OpenFlow-enabled device.

Example of port description and port statistics

To view the port description and port statistics of a connected node, send the
following request to the controller:

URL: /restconf/operational/opendaylight-inventory:nodes/node/openflow:1/node-connector/openflow:1:2

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/node-connector=openflow%3A1%3A2?content=nonconfig

Method: GET

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<node-connector xmlns="urn:opendaylight:inventory">
 <id>openflow:1:2</id>
 <supported xmlns="urn:opendaylight:flow:inventory"></supported>
 <peer-features xmlns="urn:opendaylight:flow:inventory"></peer-features>
 <port-number xmlns="urn:opendaylight:flow:inventory">2</port-number>
 <hardware-address xmlns="urn:opendaylight:flow:inventory">4e:92:4a:c8:4c:fa</hardware-address>
 <current-feature xmlns="urn:opendaylight:flow:inventory">ten-gb-fd copper</current-feature>
 <maximum-speed xmlns="urn:opendaylight:flow:inventory">0</maximum-speed>
 <reason xmlns="urn:opendaylight:flow:inventory">update</reason>
 <configuration xmlns="urn:opendaylight:flow:inventory"></configuration>
 <advertised-features xmlns="urn:opendaylight:flow:inventory"></advertised-features>
 <current-speed xmlns="urn:opendaylight:flow:inventory">10000000</current-speed>
 <name xmlns="urn:opendaylight:flow:inventory">s1-eth2</name>
 <state xmlns="urn:opendaylight:flow:inventory">
 <link-down>false</link-down>
 <blocked>false</blocked>
 <live>true</live>
 </state>
 <flow-capable-node-connector-statistics xmlns="urn:opendaylight:port:statistics">
 <receive-errors>0</receive-errors>
 <packets>
 <transmitted>444</transmitted>
 <received>444</received>
 </packets>
 <receive-over-run-error>0</receive-over-run-error>
 <transmit-drops>0</transmit-drops>
 <collision-count>0</collision-count>
 <receive-frame-error>0</receive-frame-error>
 <bytes>
 <transmitted>37708</transmitted>
 <received>37708</received>
 </bytes>
 <receive-drops>0</receive-drops>
 <transmit-errors>0</transmit-errors>
 <duration>
 <second>2181</second>
 <nanosecond>550000000</nanosecond>
 </duration>
 <receive-crc-error>0</receive-crc-error>
 </flow-capable-node-connector-statistics>
</node-connector>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "node-connector": [
 {
 "id": "openflow:1:2",
 "flow-node-inventory:hardware-address": "ca:56:91:bf:07:c9",
 "flow-node-inventory:supported": "",
 "flow-node-inventory:peer-features": "",
 "flow-node-inventory:advertised-features": "",
 "flow-node-inventory:name": "s1-eth2",
 "flow-node-inventory:port-number": 2,
 "flow-node-inventory:current-speed": 10000000,
 "flow-node-inventory:configuration": "",
 "flow-node-inventory:current-feature": "ten-gb-fd copper",
 "flow-node-inventory:maximum-speed": 0,
 "flow-node-inventory:state": {
 "blocked": false,
 "link-down": false,
 "live": false
 },
 "opendaylight-port-statistics:flow-capable-node-connector-statistics": {
 "packets": {
 "transmitted": 203,
 "received": 203
 },
 "receive-frame-error": 0,
 "collision-count": 0,
 "receive-errors": 0,
 "transmit-errors": 0,
 "bytes": {
 "transmitted": 17255,
 "received": 17255
 },
 "receive-crc-error": 0,
 "duration": {
 "nanosecond": 246000000,
 "second": 1008
 },
 "receive-drops": 0,
 "transmit-drops": 0,
 "receive-over-run-error": 0
 }
 }
]
 }

Note

In the examples above the OpenFlow node connector is represented as
openflow:1:2 where 1 is the datapath ID and 2 is the port ID of the
OpenFlow-enabled device.

Example of flow table and aggregated statistics

To view the flow table and flow aggregated statistics for a connected node,
send the following request to the controller:

URL: /restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/table=0?content=nonconfig

Method: GET

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<table xmlns="urn:opendaylight:flow:inventory">
 <id>0</id>
 <flow-table-statistics xmlns="urn:opendaylight:flow:table:statistics">
 <packets-looked-up>1570</packets-looked-up>
 <active-flows>1</active-flows>
 <packets-matched>1570</packets-matched>
 </flow-table-statistics>
 <flow>
 <id>#UF$TABLE*0-1</id>
 <table_id>0</table_id>
 <flow-statistics xmlns="urn:opendaylight:flow:statistics">
 <duration>
 <second>4004</second>
 <nanosecond>706000000</nanosecond>
 </duration>
 <packet-count>786</packet-count>
 <byte-count>66810</byte-count>
 </flow-statistics>
 <priority>0</priority>
 <hard-timeout>0</hard-timeout>
 <match/>
 <cookie_mask>0</cookie_mask>
 <cookie>10</cookie>
 <flags>SEND_FLOW_REM</flags>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>CONTROLLER</output-node-connector>
 <max-length>65535</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <idle-timeout>0</idle-timeout>
 </flow>
 </table>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "flow-node-inventory:table": [
 {
 "id": 0,
 "opendaylight-flow-table-statistics:flow-table-statistics": {
 "packets-looked-up": 1581,
 "active-flows": 1,
 "packets-matched": 1581
 },
 "flow": [
 {
 "id": "#UF$TABLE*0-1",
 "table_id": 0,
 "opendaylight-flow-statistics:flow-statistics": {
 "duration": {
 "second": 4056,
 "nanosecond": 4000000
 },
 "packet-count": 797,
 "byte-count": 67745
 },
 "priority": 0,
 "hard-timeout": 0,
 "cookie_mask": 0,
 "cookie": 10,
 "flags": "SEND_FLOW_REM",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "CONTROLLER",
 "max-length": 65535
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 }
]
 }
]
 }

Note

In the examples above the OpenFlow node table is 0.

Example of flow description and flow statistics

To view the individual flow statistics, send the following request to the
controller but before that :

URL: /restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/flow/fm-sr-link-discovery

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/table=0/flow=fm-sr-link-discovery?content=nonconfig

Method: GET

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<flow>
 <id>fm-sr-link-discovery</id>
 <flow-statistics xmlns="urn:opendaylight:flow:statistics">
 <packet-count>536</packet-count>
 <duration>
 <nanosecond>174000000</nanosecond>
 <second>2681</second>
 </duration>
 <byte-count>45560</byte-count>
 </flow-statistics>
 <priority>99</priority>
 <table_id>0</table_id>
 <cookie_mask>0</cookie_mask>
 <hard-timeout>0</hard-timeout>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>35020</type>
 </ethernet-type>
 </ethernet-match>
 </match>
 <cookie>1000000000000001</cookie>
 <flags></flags>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <max-length>65535</max-length>
 <output-node-connector>CONTROLLER</output-node-connector>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <idle-timeout>0</idle-timeout>
</flow>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "flow-node-inventory:flow": [
 {
 "id": "fm-sr-link-discovery",
 "table_id": 0,
 "opendaylight-flow-statistics:flow-statistics": {
 "duration": {
 "second": 2681,
 "nanosecond": 174000000
 },
 "packet-count": 536,
 "byte-count": 45560
 },
 "priority": 99,
 "hard-timeout": 0,
 "match": {
 "ethernet-match": {
 "ethernet-type": {
 "type": 35020
 }
 }
 },
 "cookie_mask": 0,
 "cookie": 1000000000000001,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "CONTROLLER",
 "max-length": 65535
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 }
]
 }

Note

In the examples above the flow ID fm-sr-link-discovery is internal to
the controller and has to match the datastore configured flow ID.
For more information see flow ID match section
Flow ID match function.

Example of group description and group statistics

To view the group description and group statistics, send the following request
to the controller:

URL: /restconf/operational/opendaylight-inventory:nodes/node/openflow:1/group/2

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/group=2?content=nonconfig

Method: GET

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<group xmlns="urn:opendaylight:flow:inventory">
 <group-id>2</group-id>
 <buckets>
 <bucket>
 <bucket-id>0</bucket-id>
 <action>
 <order>1</order>
 <output-action>
 <max-length>0</max-length>
 <output-node-connector>2</output-node-connector>
 </output-action>
 </action>
 <action>
 <order>0</order>
 <pop-mpls-action>
 <ethernet-type>34887</ethernet-type>
 </pop-mpls-action>
 </action>
 <watch_group>4294967295</watch_group>
 <weight>0</weight>
 <watch_port>2</watch_port>
 </bucket>
 </buckets>
 <group-type>group-ff</group-type>
 <group-statistics xmlns="urn:opendaylight:group:statistics">
 <buckets>
 <bucket-counter>
 <bucket-id>0</bucket-id>
 <packet-count>0</packet-count>
 <byte-count>0</byte-count>
 </bucket-counter>
 </buckets>
 <group-id>2</group-id>
 <packet-count>0</packet-count>
 <byte-count>0</byte-count>
 <duration>
 <second>4116</second>
 <nanosecond>746000000</nanosecond>
 </duration>
 <ref-count>1</ref-count>
 </group-statistics>
</group>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "flow-node-inventory:group": [
 {
 "group-id": 2,
 "buckets": {
 "bucket": [
 {
 "bucket-id": 0,
 "watch_group": 4294967295,
 "action": [
 {
 "order": 0,
 "pop-mpls-action": {
 "ethernet-type": 34887
 }
 },
 {
 "order": 1,
 "output-action": {
 "output-node-connector": "2",
 "max-length": 0
 }
 }
],
 "weight": 0,
 "watch_port": 2
 }
]
 },
 "group-type": "group-ff",
 "opendaylight-group-statistics:group-statistics": {
 "byte-count": 0,
 "group-id": 2,
 "buckets": {
 "bucket-counter": [
 {
 "bucket-id": 0,
 "packet-count": 0,
 "byte-count": 0
 }
]
 },
 "duration": {
 "nanosecond": 746000000,
 "second": 4116
 },
 "ref-count": 1,
 "packet-count": 0
 }
 }
]
 }

Note

In the examples above the group ID 2 matches the switch stored
group ID.

Example of meter description and meter statistics

To view the meter description and meter statistics, send the following request
to the controller:

URL: /restconf/operational/opendaylight-inventory:nodes/node/openflow:1/meter/2

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/meter=2?content=nonconfig

Method: GET

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<?xml version="1.0"?>
<meter xmlns="urn:opendaylight:flow:inventory">
 <meter-id>2</meter-id>
 <flags>meter-kbps</flags>
 <meter-statistics xmlns="urn:opendaylight:meter:statistics">
 <packet-in-count>0</packet-in-count>
 <byte-in-count>0</byte-in-count>
 <meter-band-stats>
 <band-stat>
 <band-id>0</band-id>
 <byte-band-count>0</byte-band-count>
 <packet-band-count>0</packet-band-count>
 </band-stat>
 </meter-band-stats>
 <duration>
 <nanosecond>364000000</nanosecond>
 <second>114</second>
 </duration>
 <meter-id>2</meter-id>
 <flow-count>0</flow-count>
 </meter-statistics>
 <meter-band-headers>
 <meter-band-header>
 <band-id>0</band-id>
 <band-rate>100</band-rate>
 <band-burst-size>0</band-burst-size>
 <meter-band-types>
 <flags>ofpmbt-drop</flags>
 </meter-band-types>
 <drop-burst-size>0</drop-burst-size>
 <drop-rate>100</drop-rate>
 </meter-band-header>
 </meter-band-headers>
</meter>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "flow-node-inventory:meter": [
 {
 "meter-id": 2,
 "meter-band-headers": {
 "meter-band-header": [
 {
 "band-id": 0,
 "drop-rate": 100,
 "drop-burst-size": 0,
 "band-rate": 100,
 "band-burst-size": 0,
 "meter-band-types": {
 "flags": "ofpmbt-drop"
 }
 }
]
 },
 "opendaylight-meter-statistics:meter-statistics": {
 "packet-in-count": 0,
 "flow-count": 0,
 "meter-id": 2,
 "byte-in-count": 0,
 "meter-band-stats": {
 "band-stat": [
 {
 "band-id": 0,
 "packet-band-count": 0,
 "byte-band-count": 0
 }
]
 },
 "duration": {
 "nanosecond": 364000000,
 "second": 114
 }
 },
 "flags": "meter-kbps"
 }
]
 }

Note

In the examples above the meter ID 2 matches the switch stored
meter ID.

OpenFlow Programming

The controller provides interfaces that can be used to program the connected
OpenFlow devices. These interfaces interact with the OpenFlow southbound plugin
that uses OpenFlow modification messages to program flows, groups and meters
in the switch.

The controller provides the following RESTCONF interfaces:

	Configuration Datastore: allows user to configure flows, groups and
meters. The configuration is stored in the controller datastore, persisted
in disk and replicated in the controller cluster. The OpenFlow southbound
plugin reads the configuration and sends the appropriate OpenFlow
modification messages to the connected devices.

	RPC Operations: allows user to configure flows, groups and meters
overriding the datastore. In this case the OpenFlow southbound plugin
translates the use configuration straight into an OpenFlow modification
message that is sent to the connected device.

Example of flow programming by using config datastore

This example programs a flow that matches IPv4 packets (ethertype 0x800)
with destination address in the 10.0.10.0/24 subnet and sends them to port 1.
The flow is installed in table 0 of the switch with datapath ID 1.

URL: /restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/0/flow/1

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/table=0/flow=1

Method: PUT

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <hard-timeout>0</hard-timeout>
 <idle-timeout>0</idle-timeout>
 <cookie>1</cookie>
 <priority>2</priority>
 <flow-name>flow1</flow-name>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.10.0/24</ipv4-destination>
 </match>
 <id>1</id>
 <table_id>0</table_id>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <output-action>
 <output-node-connector>1</output-node-connector>
 </output-action>
 <order>0</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
</flow>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "flow-node-inventory:flow": [
 {
 "id": "1",
 "priority": 2,
 "table_id": 0,
 "hard-timeout": 0,
 "match": {
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 }
 },
 "ipv4-destination": "10.0.10.0/24"
 },
 "cookie": 1,
 "flow-name": "flow1",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "1"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 }
]
 }

Note

In the examples above the flow ID 1 is internal to the controller and
the same ID can be found when retrieving the flow statistics if
controller finds a match between the configured flow and the flow
received from switch. For more information see flow ID match section
Flow ID match function.

Note

To use a different flow ID or table ID, ensure that the URL and the
request body are synchronized.

Note

For more examples of flow programming using datastore, refer to
the OpenDaylight OpenFlow plugin Flow Examples.

For more information about flow configuration options check the
opendaylight_models [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Model_Reference].

To verify that the flow has been correctly programmed in the switch, issue the
RESTCONF request as provided in Example of flow description and flow statistics.

Deleting flows from config datastore:

This example deletes the flow with ID 1 in table 0 of the switch with datapath
ID 1.

Headers:

	Content-type: application/xml

	Accept: application/xml

	Authentication: admin:admin

URL: /restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/0/flow/1

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/table=0/flow=1

Method: DELETE

You can also use the below URL to delete all flows in table 0 of the switch
with datapath ID 1:

URL: /restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/0

To verify that the flow has been correctly removed in the switch, issue the
RESTCONF request as provided in Example of flow table and aggregated statistics.

Example of flow programming by using RPC operation

This example programs a flow that matches IPv4 packets (ethertype 0x800)
with destination address in the 10.0.10.0/24 subnet and sends them to port 1.
The flow is installed in table 0 of the switch with datapath ID 1.

URL: /restconf/operations/sal-flow:add-flow

RFC8040 URL: /rests/operations/sal-flow:add-flow

Method: POST

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<input xmlns="urn:opendaylight:flow:service">
 <node xmlns:inv="urn:opendaylight:inventory">/inv:nodes/inv:node[inv:id="openflow:1"]</node>
 <table_id>0</table_id>
 <priority>2</priority>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.1.0/24</ipv4-destination>
 </match>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <output-action>
 <output-node-connector>1</output-node-connector>
 </output-action>
 <order>0</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
</input>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "input": {
 "node": "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:1']",
 "table_id": 0,
 "priority": 2,
 "match": {
 "ipv4-destination": "10.0.1.0/24",
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 }
 }
 },
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "1",
 "max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 }

Note

This payload does not require flow ID as this value is internal to
controller and only used to store flows in the datastore. When
retrieving flow statistics users will see an alien flow ID for flows
created this way. For more information see flow ID match section
Flow ID match function.

To verify that the flow has been correctly programmed in the switch, issue the
RESTCONF request as provided in Example of flow table and aggregated statistics.

Deleting flows from switch using RPC operation:

This example removes a flow that matches IPv4 packets (ethertype 0x800)
with destination address in the 10.0.10.0/24 subnet from table 0 of the switch
with datapath ID 1.

URL: /restconf/operations/sal-flow:remove-flow

RFC8040 URL: /rests/operations/sal-flow:remove-flow

Method: POST

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<input xmlns="urn:opendaylight:flow:service">
 <node xmlns:inv="urn:opendaylight:inventory">/inv:nodes/inv:node[inv:id="openflow:1"]</node>
 <table_id>0</table_id>
 <priority>2</priority>
 <strict>true</strict>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.10.0/24</ipv4-destination>
 </match>
</input>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "input": {
 "node": "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:1']",
 "table_id": 0,
 "priority": 2,
 "strict": true,
 "match": {
 "ipv4-destination": "10.0.1.0/24",
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 }
 }
 }
 }
 }

To verify that the flow has been correctly programmed in the switch, issue the
RESTCONF request as provided in Example of flow table and aggregated statistics.

Example of a group programming by using config datastore

This example programs a select group to equally load balance traffic across
port 1 and port 2 in switch with datapath ID 1.

URL: /restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/2

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/group=2

Method: PUT

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<group xmlns="urn:opendaylight:flow:inventory">
 <group-type>group-select</group-type>
 <buckets>
 <bucket>
 <weight>1</weight>
 <action>
 <output-action>
 <output-node-connector>1</output-node-connector>
 </output-action>
 <order>1</order>
 </action>
 <bucket-id>1</bucket-id>
 </bucket>
 <bucket>
 <weight>1</weight>
 <action>
 <output-action>
 <output-node-connector>2</output-node-connector>
 </output-action>
 <order>1</order>
 </action>
 <bucket-id>2</bucket-id>
 </bucket>
 </buckets>
 <barrier>false</barrier>
 <group-name>SelectGroup</group-name>
 <group-id>2</group-id>
</group>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "flow-node-inventory:group": [
 {
 "group-id": 2,
 "barrier": false,
 "group-name": "SelectGroup",
 "buckets": {
 "bucket": [
 {
 "bucket-id": 1,
 "weight": 1,
 "action": [
 {
 "order": 1,
 "output-action": {
 "output-node-connector": "1"
 }
 }
]
 },
 {
 "bucket-id": 2,
 "weight": 1,
 "action": [
 {
 "order": 1,
 "output-action": {
 "output-node-connector": "2"
 }
 }
]
 }
]
 },
 "group-type": "group-select"
 }
]
 }

Note

In the example above the group ID 1 will be stored in the switch
and will be used by the switch to report group statistics.

Note

To use a different group ID, ensure that the URL and the request
body are synchronized.

For more information about group configuration options check the
opendaylight_models [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Model_Reference].

To verify that the group has been correctly programmed in the switch,
issue the RESTCONF request as provided in
Example of group description and group statistics.

To add a group action in a flow just add this statement in the flow body:

<apply-actions>
 <action>
 <group-action>
 <group-id>1</group-id>
 </group-action>
 <order>1</order>
 </action>
</apply-actions>

Deleting groups from config datastore

This example deletes the group ID 1 in the switch with datapath ID 1.

Headers:

	Content-type: application/xml

	Accept: application/xml

	Authentication: admin:admin

URL: /restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/2

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/group=2

Method: DELETE

Example of a meter programming by using config datastore

This example programs a meter to drop traffic exceeding 256 kbps with a burst
size of 512 in switch with datapath ID 1.

URL: /restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/2

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/meter=2

Method: PUT

XML

Headers:

Content-type: application/xml

Accept: application/xml

Authentication: admin:admin

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<meter xmlns="urn:opendaylight:flow:inventory">
 <flags>meter-kbps</flags>
 <meter-band-headers>
 <meter-band-header>
 <band-id>0</band-id>
 <drop-rate>256</drop-rate>
 <drop-burst-size>512</drop-burst-size>
 <meter-band-types>
 <flags>ofpmbt-drop</flags>
 </meter-band-types>
 </meter-band-header>
 </meter-band-headers>
 <meter-id>2</meter-id>
 <meter-name>Foo</meter-name>
</meter>

JSON

Headers:

Content-type: application/json

Accept: application/json

Authentication: admin:admin

{
 "flow-node-inventory:meter": [
 {
 "meter-id": 2,
 "meter-band-headers": {
 "meter-band-header": [
 {
 "band-id": 0,
 "drop-rate": 256,
 "drop-burst-size": 512,
 "meter-band-types": {
 "flags": "ofpmbt-drop"
 }
 }
]
 },
 "flags": "meter-kbps",
 "meter-name": "Foo"
 }
]
 }

Note

In the example above the meter ID 1 will be stored in the switch
and will be used by the switch to report group statistics.

Note

To use a different meter ID, ensure that the URL and the request
body are synchronized.

For more information about meter configuration options check the
opendaylight_models [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Model_Reference].

To verify that the meter has been correctly programmed in the switch,
issue the RESTCONF request as provided in
Example of meter description and meter statistics.

To add a meter instruction in a flow just add this statement in the flow body:

<instructions>
 <instruction>
 <order>1</order>
 <meter>
 <meter-id>1</meter-id>
 </meter>
 </instruction>
</instructions>

Deleting meters from config datastore

This example deletes the meter ID 1 in the switch with datapath ID 1.

Headers:

	Content-type: application/xml

	Accept: application/xml

	Authentication: admin:admin

URL: /restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/2

RFC8040 URL: /rests/data/opendaylight-inventory:nodes/node=openflow%3A1/meter=2

Method: DELETE

Flow ID match function

When the controller receives flow information from a switch, this information
is compared with all flows stored in the configuration datastore, in case of
a match the flow ID in the flow configuration is automatically added to the
flow operational information. This way we can easily relate flows stored
in controller with flows received from the switch.

However in case of flows added via RPC or in general when the controller
cannot match received flow information with any flow in datastore, it adds
an alien ID in the flow operational information like in the example below.

<flow>
 <id>#UF$TABLE*0-555</id>
 <flow-statistics xmlns="urn:opendaylight:flow:statistics">
 <packet-count>5227</packet-count>
 <duration>
 <nanosecond>642000000</nanosecond>
 <second>26132</second>
 </duration>
 <byte-count>444295</byte-count>
 </flow-statistics>
 <priority>99</priority>
 <table_id>0</table_id>
 <cookie_mask>0</cookie_mask>
 <hard-timeout>0</hard-timeout>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>35020</type>
 </ethernet-type>
 </ethernet-match>
 </match>
 <cookie>1000000000000001</cookie>
 <flags></flags>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <max-length>65535</max-length>
 <output-node-connector>CONTROLLER</output-node-connector>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <idle-timeout>0</idle-timeout>
</flow>

OpenFlow clustering

For high availability, it is recommended a three-node cluster setup in
which each switch is connected to all nodes in the controller cluster.

Note

Normal OpenFlow operations, such as adding a flow, can be done on
any cluster member. For more information about OpenFlow operations,
refer to OpenFlow Programming.

In OpenFlow 1.3, one of the following roles is assigned to each
switch-controller connection:

	Master: All synchronous and asynchronous messages are sent to the
master controller. This controller has write privileges on the
switch.

	Slave: Only synchronous messages are sent to this controller. Slave
controllers have only read privileges on the switch.

	Equal: When the equal role is assigned to a controller, it has the
same privileges as the master controller. By default, a controller is
assigned the equal role when it first connects to the switch.

A switch can be connected to one or more controllers. Each controller
communicates the OpenFlow channel role through an OFTP_ROLE_REQUEST
message. The switch must retain the role of each switch connection; a
controller may change this role at any time.

If a switch connects to multiple controllers in the cluster, the cluster
selects one controller as the master controller; the remaining
controllers assume the slave role. The election of a master controller
proceeds as follows.

	Each controller in the cluster that is handling switch connections
registers to the Entity Ownership Service (EOS) as a candidate for
switch ownership.

Note

The EOS is a clustering service that plays the role of the
arbiter to elect an owner (master) of an entity from a registered
set of candidates.

	The EOS then selects one controller as the owner.

Note

Master ownership is for each device; each individual controller
can be a master for a set of connected devices and a slave for the
remaining set of connected devices.

	The selected owner then sends an OFTP_ROLE_REQUEST message to the
switch to set the connection to the master role, and the other
controllers send the role message to set the slave role.

When the switch master connection goes down, the election of a new
master controller proceeds as follows.

	The related controller deregisters itself as a candidate for Entity
Ownership from the EOS.

	The EOS then selects a new owner from the remaining candidates.

	The new owner accordingly sends an OFTP_ROLE_REQUEST message to the
switch to set the connection to the master role.

If a controller that currently has the master role is shut down, a new
master from the remaining candidate controllers is selected.

Verifying the EOS owner and candidates by using RESTCONF

To verify the EOS owner and candidates in an OpenFlow cluster, send the
following request to the controller:

Headers:

	Content-type: application/json

	Accept: application/json

	Authentication: admin:admin

URL: /restconf/operational/entity-owners:entity-owners

RFC8040 URL: /rests/data/entity-owners:entity-owners?content=nonconfig

Method: GET

Sample JSON output:

{
 "entity-owners":{
 "entity-type":[
 {
 "type":"org.opendaylight.mdsal.ServiceEntityType",
 "entity":[
 {
 "id":"/odl-general-entity:entity[odl-general-entity:name='openflow:1']",
 "candidate":[
 {
 "name":"member-3"
 },
 {
 "name":"member-2"
 },
 {
 "name":"member-1"
 }
],
 "owner":"member-3"
 },
 {
 "id":"/odl-general-entity:entity[odl-general-entity:name='openflow:2']",
 "candidate":[
 {
 "name":"member-1"
 },
 {
 "name":"member-3"
 },
 {
 "name":"member-2"
 }
],
 "owner":"member-1"
 },
 {
 "id":"/odl-general-entity:entity[odl-general-entity:name='openflow:3']",
 "candidate":[
 {
 "name":"member-1"
 },
 {
 "name":"member-2"
 },
 {
 "name":"member-3"
 }
],
 "owner":"member-1"
 }
]
 },
 {
 "type":"org.opendaylight.mdsal.AsyncServiceCloseEntityType",
 "entity":[
 {
 "id":"/odl-general-entity:entity[odl-general-entity:name='openflow:1']",
 "candidate":[
 {
 "name":"member-3"
 }
],
 "owner":"member-3"
 },
 {
 "id":"/odl-general-entity:entity[odl-general-entity:name='openflow:2']",
 "candidate":[
 {
 "name":"member-1"
 }
],
 "owner":"member-1"
 },
 {
 "id":"/odl-general-entity:entity[odl-general-entity:name='openflow:3']",
 "candidate":[
 {
 "name":"member-1"
 }
],
 "owner":"member-1"
 }
]
 }
]
 }
 }

In the above sample outputs, member 3 is the master controller
(EOS owner) for the OpenFlow device with datapath ID 1, and
member-1 is the master controller (EOS owner) for the OpenFlow
devices with the datapath IDs of 2 and 3.

Configuring the OpenFlow Plugin

OpenFlow plugin configuration file is in the opendaylight /etc folder:
opendaylight-0.9.0/etc/org.opendaylight.openflowplugin.cfg

The org.opendaylight.openflowplugin.cfg file can be modified at any
time, however a controller restart is required for the changes to take
effect.

This configuration is local to a given node. You must repeat these steps
on each node to enable the same functionality across the cluster.

Configuring OpenFlow TLS

This section describes how to secure OpenFlow connections between
controller and OpenFlow devices using Transport Layer Security (TLS).

TLS Concepts

TLS uses digital certificates to perform remote peer authentication,
message integrity and data encryption. Public Key Infrastructure (PKI)
is required to create, manage and verify digital certificates.

For OpenFlow symmetric authentication (controller authenticates device
and device authenticates controller) both controller and device require:

	A private key: used to generate own public certificate and therefore
required for own authentication at the other end.

	A public certificate or a chain of certificates if public certificate
is signed by an intermediate (not root) CA: the chain contains the public
certificate as well as all the intermediate CA certificates used to
validate the public certificate, this public information is sent to the
other peer during the TLS negotiation and it is used for own
authentication at the other end.

	A list of root CA certificates: this contains the root CA certificate
that signed the remote peer certificate or the remote peer intermediate
CA certificate (in case of certificate chain). This public information
is used to authenticate the other end.

Note

Some devices like Open vSwitch (OVS) do not support certificate
chains, this means controller can only send its own certificate
and receive the switch certificate without any intermediate CA
certificates. For TLS negotiation to be successful in this scenario
both ends need to store all intermediate CA certificates used by
the other end (in addition to the remote peer root CA certificate).

Generate Controller Private Key and Certificate

You may skip this step if you already have the required key and certificate
from an external Public Key Infrastructure (PKI). In the examples below we
use openSSL tool to generate private key and certificates for controller.

	Generate controller private key

The command below generates 2048 bytes RSA key:

openssl genrsa -out controller.key 2048

This will generate the private key file controller.key

	Generate controller certificate

The command below creates a certificate sign request:

openssl req -new -sha256 -key controller.key -out controller.csr

This will generate the certificate signing request file controller.csr

Submit the file to the desired Certificate Authority (CA) and get the CA
signed certificate along with any intermediate CA certificate in the file
controller.crt (X.509 format).

The following is not recommended for production but if you want to just
check the TLS communication you can create a “self-signed” certificate for
the controller using below command:

openssl req -new -x509 -nodes -sha1 -days 1825 -key controller.key -out controller.crt

Create Controller Key Stores

Controller requires 2 Key Stores for OpenFlow TLS:

	Keystore: Used for controller authentication in the remote device. This
contains the controller private key (controller.key) and the controller
certificate or the controller certificate chain (controller.crt) in case
of an intermediate CA signs the controller certificate.

	Truststore: Used to authenticate remote devices. This contains the root
CA certificates signing the OpenFlow devices certificates or the
intermediate CA certificates (in case of certificate chain).

You may skip this step if you already generated the Key Stores from a
previous TLS installation. In the examples below we will use openSSL and
Java keytool tooling to create the Key Stores.

	Create the controller Keystore

The command below generates the controller Keystore in PKCS12 format:

openssl pkcs12 -export -in controller.crt -inkey controller.key -out keystore.p12 -name controller

When asked for a password select ‘opendaylight’ (or anything else).

This will generate the keystore.p12 file.

Note

If device (e.g. Open vSwitch) does not support certificate chains,
make sure controller.crt only contains the controller certificate
with no extra intermediate CA certificates.

	Create the controller Truststore

The command below generates the controller Truststore in PKCS12 format
and adds the device root CA certificates rootca1.crt and rootca2.crt:

keytool -importcert -storetype pkcs12 -file rootca1.crt -keystore truststore.p12 -storepass opendaylight -alias root-ca-1
keytool -importcert -storetype pkcs12 -file rootca2.crt -keystore truststore.p12 -storepass opendaylight -alias root-ca-2

Note in the examples we use ‘opendaylight’ as the store password.

This will generate the truststore.p12 file.

Note

If device (e.g. Open vSwitch) does not support certificate chains,
make sure you add all device intermediate CA certificates in the
controller Truststore.

Enable Controller TLS

Controller listens for OpenFlow connections on ports 6633 and 6653 (TCP).
You can enable TLS in both or just one of the ports.

	Copy the Key Stores to a controller folder (e.g. opendaylight /etc folder)

	Enable TLS on port 6633:

Create file legacy-openflow-connection-config.xml with following content:

<switch-connection-config xmlns="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:config">
 <instance-name>openflow-switch-connection-provider-legacy-impl</instance-name>
 <port>6633</port>
 <transport-protocol>TLS</transport-protocol>
 <tls>
 <keystore>etc/keystore.p12</keystore>
 <keystore-type>PKCS12</keystore-type>
 <keystore-path-type>PATH</keystore-path-type>
 <keystore-password>opendaylight</keystore-password>
 <truststore>etc/truststore.p12</truststore>
 <truststore-type>PKCS12</truststore-type>
 <truststore-path-type>PATH</truststore-path-type>
 <truststore-password>opendaylight</truststore-password>
 <certificate-password>opendaylight</certificate-password>
 </tls>
</switch-connection-config>

Note

Change password ‘opendaylight’ above if you used different password.

Note

Change the path above of you used different folder than opendaylight /etc.

Copy the file to opendaylight folder: /etc/opendaylight/datastore/initial/config

	Enable TLS on port 6653:

Create file default-openflow-connection-config.xml with following content:

<switch-connection-config xmlns="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:config">
 <instance-name>openflow-switch-connection-provider-default-impl</instance-name>
 <port>6653</port>
 <transport-protocol>TLS</transport-protocol>
 <tls>
 <keystore>etc/keystore.p12</keystore>
 <keystore-type>PKCS12</keystore-type>
 <keystore-path-type>PATH</keystore-path-type>
 <keystore-password>opendaylight</keystore-password>
 <truststore>etc/truststore.p12</truststore>
 <truststore-type>PKCS12</truststore-type>
 <truststore-path-type>PATH</truststore-path-type>
 <truststore-password>opendaylight</truststore-password>
 <certificate-password>opendaylight</certificate-password>
 </tls>
</switch-connection-config>

Note

Change password ‘opendaylight’ above if you used different password.

Note

Change the path above of you used different folder than opendaylight /etc.

Copy the file to opendaylght folder /etc/opendaylight/datastore/initial/config

	Restart Controller

For changes to take effect, controller has to be restarted.

Troubleshooting

Controller log is in opendaylight /data/log folder:
opendaylight-0.9.0/data/log/karaf.log

Logs can be also displayed on karaf console:

log:display

To troubleshoot OpenFlow plugin enable this TRACE in karaf console:

log:set TRACE org.opendaylight.openflowplugin.openflow.md.core
log:set TRACE org.opendaylight.openflowplugin.impl

To restore log settings:

log:set INFO org.opendaylight.openflowplugin.openflow.md.core
log:set INFO org.opendaylight.openflowplugin.impl

Flow Examples

Overview

The flow examples on this page are tested to work with OVS.

Use, for example, POSTMAN with the following parameters:

PUT http://<ctrl-addr>:8181/restconf/config/opendaylight-inventory:nodes/node/<Node-id>/table/<Table-#>/flow/<Flow-#>

- Accept: application/xml
- Content-Type: application/xml

For example:

PUT http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/127

Use RFC 8040 URL, for example, POSTMAN with the following parameters:

PUT http://<ctrl-addr>:8181/rests/data/opendaylight-inventory:nodes/node=<Node-id>/table=<Table-#>/flow=<Flow-#>

- Accept: application/json
- Content-Type: application/json

For example:

PUT http://localhost:8181/rests/data/opendaylight-inventory:nodes/node=openflow%3A1/table=2/flow=127

Make sure that the Table-# and Flow-# in the URL and in the XML match.

The format of the flow-programming XML is determined by the grouping
flow in the opendaylight-flow-types yang model: MISSING LINK.

Match Examples

The format of the XML that describes OpenFlow matches is determined by
the opendaylight-match-types yang model: .

IPv4 Dest Address

	Flow=124, Table=2, Priority=2,
Instructions=\{Apply_Actions={dec_nw_ttl}},
match=\{ipv4_destination_address=10.0.1.1/24}

	Note that ethernet-type MUST be 2048 (0x800)

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>124</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.1.1/24</ipv4-destination>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>1</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf1</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "124",
 "table_id": 2,
 "installHw": false,
 "barrier": false,
 "flow-name": "FooXf1",
 "strict": false,
 "idle-timeout": 34,
 "priority": 2,
 "hard-timeout": 12,
 "cookie_mask": 255,
 "match": {
 "ipv4-destination": "10.0.1.1/24",
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 }
 }
 },
 "cookie": 1,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Ethernet Src Address

	Flow=126, Table=2, Priority=2,
Instructions=\{Apply_Actions={drop}},
match=\{ethernet-source=00:00:00:00:00:01}

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <drop-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>126</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <ethernet-match>
 <ethernet-source>
 <address>00:00:00:00:00:01</address>
 </ethernet-source>
 </ethernet-match>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>3</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf3</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "126",
 "table_id": 2,
 "installHw": false,
 "barrier": false,
 "flow-name": "FooXf3",
 "strict": false,
 "idle-timeout": 34,
 "priority": 2,
 "hard-timeout": 12,
 "cookie_mask": 255,
 "match": {
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:00:00:01"
 }
 }
 },
 "cookie": 3,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "drop-action": {}
 }
]
 }
 }
]
 }
 }
]
 }

Ethernet Src & Dest Addresses, Ethernet Type

	Flow=127, Table=2, Priority=2,
Instructions=\{Apply_Actions={drop}},
match=\{ethernet-source=00:00:00:00:23:ae,
ethernet-destination=ff:ff:ff:ff:ff:ff, ethernet-type=45}

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-mpls-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>127</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>45</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:ff:ff</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:00:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>4</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf4</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "127",
 "table_id": 2,
 "installHw": false,
 "barrier": false,
 "flow-name": "FooXf4",
 "strict": false,
 "idle-timeout": 34,
 "priority": 2,
 "hard-timeout": 12,
 "cookie_mask": 255,
 "match": {
 "ethernet-match": {
 "ethernet-type": {
 "type": 45
 },
 "ethernet-source": {
 "address": "00:00:00:00:23:ae"
 },
 "ethernet-destination": {
 "address": "ff:ff:ff:ff:ff:ff"
 }
 }
 },
 "cookie": 4,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-mpls-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, Input Port

	Note that ethernet-type MUST be 34887 (0x8847)

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-mpls-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>128</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:ff:ff</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:00:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>10.1.2.3/24</ipv4-source>
 <ipv4-destination>20.4.5.6/16</ipv4-destination>
 <in-port>0</in-port>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>5</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf5</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "128",
 "table_id": 2,
 "barrier": false,
 "flow-name": "FooXf5",
 "strict": false,
 "idle-timeout": 34,
 "priority": 2,
 "hard-timeout": 12,
 "cookie_mask": 255,
 "match": {
 "ipv4-source": "10.1.2.3/24",
 "ipv4-destination": "20.4.5.6/16",
 "in-port": "0",
 "ethernet-match": {
 "ethernet-type": {
 "type": 34887
 },
 "ethernet-source": {
 "address": "00:00:00:00:23:ae"
 },
 "ethernet-destination": {
 "address": "ff:ff:ff:ff:ff:ff"
 }
 }
 },
 "cookie": 5,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-mpls-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, IP

Protocol #, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>130</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:ff:aa</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>10.1.2.3/24</ipv4-source>
 <ipv4-destination>20.4.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>56</ip-protocol>
 <ip-dscp>15</ip-dscp>
 <ip-ecn>1</ip-ecn>
 </ip-match>
 <in-port>0</in-port>
 </match>
 <hard-timeout>12000</hard-timeout>
 <cookie>7</cookie>
 <idle-timeout>12000</idle-timeout>
 <flow-name>FooXf7</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "130",
 "table_id": 2,
 "barrier": false,
 "flow-name": "FooXf7",
 "strict": false,
 "idle-timeout": 12000,
 "priority": 2,
 "hard-timeout": 12000,
 "cookie_mask": 255,
 "match": {
 "ipv4-source": "10.1.2.3/24",
 "ipv4-destination": "20.4.5.6/16",
 "ip-match": {
 "ip-dscp": 15,
 "ip-protocol": 56,
 "ip-ecn": 1
 },
 "in-port": "0",
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-destination": {
 "address": "ff:ff:ff:ff:ff:aa"
 }
 }
 },
 "cookie": 7,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, TCP Src &

Dest Ports, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

	Note that IP Protocol Type MUST be 6

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>131</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>2</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>25364</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 <in-port>0</in-port>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>8</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf8</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "131",
 "table_id": 2,
 "barrier": false,
 "flow-name": "FooXf8",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "ipv4-source": "17.1.2.3/8",
 "ipv4-destination": "172.168.5.6/16",
 "ip-match": {
 "ip-dscp": 2,
 "ip-protocol": 6,
 "ip-ecn": 2
 },
 "in-port": "0",
 "tcp-source-port": 25364,
 "tcp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-destination": {
 "address": "ff:ff:29:01:19:61"
 }
 }
 },
 "cookie": 8,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, UDP Src &

Dest Ports, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

	Note that IP Protocol Type MUST be 17

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>132</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>9</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf9</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "132",
 "table_id": 2,
 "barrier": false,
 "flow-name": "FooXf9",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "ipv4-source": "19.1.2.3/10",
 "ipv4-destination": "172.168.5.6/18",
 "ip-match": {
 "ip-dscp": 8,
 "ip-protocol": 17,
 "ip-ecn": 3
 },
 "in-port": "0",
 "udp-source-port": 25364,
 "udp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-destination": {
 "address": "20:14:29:01:19:61"
 }
 }
 },
 "cookie": 9,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, ICMPv4

Type & Code, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

	Note that IP Protocol Type MUST be 1

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>134</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>1</ip-protocol>
 <ip-dscp>27</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <icmpv4-match>
 <icmpv4-type>6</icmpv4-type>
 <icmpv4-code>3</icmpv4-code>
 </icmpv4-match>
 <in-port>0</in-port>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>11</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf11</flow-name>
 <priority>2</priority>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "134",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "ipv4-source": "17.1.2.3/8",
 "ipv4-destination": "172.168.5.6/16",
 "ip-match": {
 "ip-dscp": 27,
 "ip-protocol": 1,
 "ip-ecn": 3
 },
 "icmpv4-match": {
 "icmpv4-type": 6,
 "icmpv4-code": 3
 },
 "in-port": "0",
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-destination": {
 "address": "ff:ff:29:01:19:61"
 }
 }
 },
 "cookie": 11,
 "flow-name": "FooXf11",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

Ethernet Src & Dest Addresses, ARP Operation, ARP Src & Target

Transport Addresses, ARP Src & Target Hw Addresses

	Note that ethernet-type MUST be 2054 (0x806)

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 <action>
 <order>1</order>
 <dec-mpls-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>137</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2054</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:FF:ff</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:FC:01:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <arp-op>1</arp-op>
 <arp-source-transport-address>192.168.4.1/10</arp-source-transport-address>
 <arp-target-transport-address>10.21.22.23/25</arp-target-transport-address>
 <arp-source-hardware-address>
 <address>12:34:56:78:98:AB</address>
 </arp-source-hardware-address>
 <arp-target-hardware-address>
 <address>FE:DC:BA:98:76:54</address>
 </arp-target-hardware-address>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>14</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf14</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "137",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 12,
 "cookie_mask": 255,
 "match": {
 "arp-source-transport-address": "192.168.4.1/10",
 "arp-target-hardware-address": {
 "address": "FE:DC:BA:98:76:54"
 },
 "arp-op": 1,
 "arp-source-hardware-address": {
 "address": "12:34:56:78:98:AB"
 },
 "arp-target-transport-address": "10.21.22.23/25",
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:FC:01:23:ae"
 },
 "ethernet-type": {
 "type": 2054
 },
 "ethernet-destination": {
 "address": "ff:ff:ff:ff:FF:ff"
 }
 }
 },
 "barrier": false,
 "cookie": 14,
 "flow-name": "FooXf14",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 },
 {
 "order": 1,
 "dec-mpls-ttl": {}
 }
]
 }
 }
]
 },
 "idle-timeout": 34
 }
]
 }

Ethernet Src & Dest Addresses, Ethernet Type, VLAN ID, VLAN PCP

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>138</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <vlan-match>
 <vlan-id>
 <vlan-id>78</vlan-id>
 <vlan-id-present>true</vlan-id-present>
 </vlan-id>
 <vlan-pcp>3</vlan-pcp>
 </vlan-match>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>15</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf15</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "138",
 "table_id": 2,
 "barrier": false,
 "flow-name": "FooXf15",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "vlan-match": {
 "vlan-id": {
 "vlan-id-present": true,
 "vlan-id": 78
 },
 "vlan-pcp": 3
 },
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-destination": {
 "address": "ff:ff:29:01:19:61"
 }
 }
 },
 "cookie": 15,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Ethernet Src & Dest Addresses, MPLS Label, MPLS TC, MPLS BoS

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <flow-name>FooXf17</flow-name>
 <id>140</id>
 <cookie_mask>255</cookie_mask>
 <cookie>17</cookie>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <priority>2</priority>
 <table_id>2</table_id>
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <protocol-match-fields>
 <mpls-label>567</mpls-label>
 <mpls-tc>3</mpls-tc>
 <mpls-bos>1</mpls-bos>
 </protocol-match-fields>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "140",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "protocol-match-fields": {
 "mpls-bos": 1,
 "mpls-tc": 3,
 "mpls-label": 567
 },
 "ethernet-match": {
 "ethernet-type": {
 "type": 34887
 },
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-destination": {
 "address": "ff:ff:29:01:19:61"
 }
 }
 },
 "cookie": 17,
 "flow-name": "FooXf17",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

IPv6 Src & Dest Addresses

	Note that ethernet-type MUST be 34525

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf18</flow-name>
 <id>141</id>
 <cookie_mask>255</cookie_mask>
 <cookie>18</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>fe80::2acf:e9ff:fe21:6431/128</ipv6-source>
 <ipv6-destination>aabb:1234:2acf:e9ff::fe21:6431/64</ipv6-destination>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "141",
 "table_id": 2,
 "installHw": false,
 "flow-name": "FooXf18",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "ipv6-source": "fe80::2acf:e9ff:fe21:6431/128",
 "ipv6-destination": "aabb:1234:2acf:e9ff::fe21:6431/64",
 "ethernet-match": {
 "ethernet-type": {
 "type": 34525
 }
 }
 },
 "cookie": 18,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Metadata

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf19</flow-name>
 <id>142</id>
 <cookie_mask>255</cookie_mask>
 <cookie>19</cookie>
 <table_id>2</table_id>
 <priority>1</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "142",
 "table_id": 2,
 "installHw": false,
 "flow-name": "FooXf19",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 1,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "metadata": {
 "metadata": 12345
 }
 },
 "cookie": 19,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Metadata, Metadata Mask

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf20</flow-name>
 <id>143</id>
 <cookie_mask>255</cookie_mask>
 <cookie>20</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <metadata>
 <metadata>12345</metadata>
 <metadata-mask>0xFF</metadata-mask>
 </metadata>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "143",
 "table_id": 2,
 "installHw": false,
 "flow-name": "FooXf20",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "metadata": {
 "metadata": 12345,
 "metadata-mask": 255
 }
 },
 "cookie": 20,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, UDP Src & Dest Ports

	Note that ethernet-type MUST be 34525

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf21</flow-name>
 <id>144</id>
 <cookie_mask>255</cookie_mask>
 <cookie>21</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80::2acf:e9ff:fe21:6431/128</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "144",
 "table_id": 2,
 "installHw": false,
 "flow-name": "FooXf21",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "ipv6-source": "1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76",
 "ipv6-destination": "fe80::2acf:e9ff:fe21:6431/128",
 "metadata": {
 "metadata": 12345
 },
 "ip-match": {
 "ip-dscp": 8,
 "ip-protocol": 17,
 "ip-ecn": 3
 },
 "udp-source-port": 25364,
 "udp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-type": {
 "type": 34525
 }
 }
 },
 "cookie": 21,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dest Ports

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 6

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf22</flow-name>
 <id>145</id>
 <cookie_mask>255</cookie_mask>
 <cookie>22</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "145",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv6-source": "1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76",
 "ipv6-destination": "fe80:2acf:e9ff:fe21::6431/94",
 "metadata": {
 "metadata": 12345
 },
 "ip-match": {
 "ip-dscp": 60,
 "ip-protocol": 6,
 "ip-ecn": 3
 },
 "tcp-source-port": 183,
 "tcp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-type": {
 "type": 34525
 }
 }
 },
 "cookie": 22,
 "flow-name": "FooXf22",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dest Ports, IPv6 Label

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 6

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf23</flow-name>
 <id>146</id>
 <cookie_mask>255</cookie_mask>
 <cookie>23</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ipv6-label>
 <ipv6-flabel>33</ipv6-flabel>
 </ipv6-label>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "146",
 "table_id": 2,
 "installHw": false,
 "flow-name": "FooXf23",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "ipv6-source": "1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76",
 "ipv6-destination": "fe80:2acf:e9ff:fe21::6431/94",
 "ipv6-label": {
 "ipv6-flabel": 33
 },
 "metadata": {
 "metadata": 12345
 },
 "ip-match": {
 "ip-dscp": 60,
 "ip-protocol": 6,
 "ip-ecn": 3
 },
 "tcp-source-port": 183,
 "tcp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-type": {
 "type": 34525
 }
 }
 },
 "cookie": 23,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Tunnel ID

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf24</flow-name>
 <id>147</id>
 <cookie_mask>255</cookie_mask>
 <cookie>24</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <tunnel>
 <tunnel-id>2591</tunnel-id>
 </tunnel>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "147",
 "table_id": 2,
 "installHw": false,
 "flow-name": "FooXf24",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "tunnel": {
 "tunnel-id": 2591
 }
 },
 "cookie": 24,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, ICMPv6 Type & Code, IPv6 Label

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 58

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf25</flow-name>
 <id>148</id>
 <cookie_mask>255</cookie_mask>
 <cookie>25</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ipv6-label>
 <ipv6-flabel>33</ipv6-flabel>
 </ipv6-label>
 <ip-match>
 <ip-protocol>58</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <icmpv6-match>
 <icmpv6-type>6</icmpv6-type>
 <icmpv6-code>3</icmpv6-code>
 </icmpv6-match>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "148",
 "table_id": 2,
 "installHw": false,
 "flow-name": "FooXf25",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "ipv6-source": "1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76",
 "ipv6-destination": "fe80:2acf:e9ff:fe21::6431/94",
 "ipv6-label": {
 "ipv6-flabel": 33
 },
 "metadata": {
 "metadata": 12345
 },
 "ip-match": {
 "ip-dscp": 60,
 "ip-protocol": 58,
 "ip-ecn": 3
 },
 "icmpv6-match": {
 "icmpv6-type": 6,
 "icmpv6-code": 3
 },
 "ethernet-match": {
 "ethernet-type": {
 "type": 34525
 }
 }
 },
 "cookie": 25,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dst Ports, IPv6 Label, IPv6 Ext Header

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 58

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf27</flow-name>
 <id>150</id>
 <cookie_mask>255</cookie_mask>
 <cookie>27</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ipv6-label>
 <ipv6-flabel>33</ipv6-flabel>
 </ipv6-label>
 <ipv6-ext-header>
 <ipv6-exthdr>0</ipv6-exthdr>
 </ipv6-ext-header>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "150",
 "table_id": 2,
 "installHw": false,
 "flow-name": "FooXf27",
 "strict": false,
 "idle-timeout": 3400,
 "priority": 2,
 "hard-timeout": 1200,
 "cookie_mask": 255,
 "match": {
 "ipv6-source": "1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76",
 "ipv6-destination": "fe80:2acf:e9ff:fe21::6431/94",
 "ipv6-label": {
 "ipv6-flabel": 33
 },
 "ipv6-ext-header": {
 "ipv6-exthdr": 0
 },
 "metadata": {
 "metadata": 12345
 },
 "ip-match": {
 "ip-dscp": 60,
 "ip-protocol": 6,
 "ip-ecn": 3
 },
 "tcp-source-port": 183,
 "tcp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-type": {
 "type": 34525
 }
 }
 },
 "cookie": 27,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "dec-nw-ttl": {}
 }
]
 }
 }
]
 }
 }
]
 }

Actions

The format of the XML that describes OpenFlow actions is determined by
the opendaylight-action-types yang model:

Apply Actions

Output to TABLE

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf101</flow-name>
 <id>256</id>
 <cookie_mask>255</cookie_mask>
 <cookie>101</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>TABLE</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "256",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv6-source": "1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76",
 "ipv6-destination": "fe80:2acf:e9ff:fe21::6431/94",
 "metadata": {
 "metadata": 12345
 },
 "ip-match": {
 "ip-dscp": 60,
 "ip-protocol": 6,
 "ip-ecn": 3
 },
 "tcp-source-port": 183,
 "tcp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-type": {
 "type": 34525
 }
 }
 },
 "cookie": 101,
 "flow-name": "FooXf101",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "TABLE",
 "max-length": 60
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

Output to INPORT

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf102</flow-name>
 <id>257</id>
 <cookie_mask>255</cookie_mask>
 <cookie>102</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>INPORT</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>2</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>25364</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "257",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv4-source": "17.1.2.3/8",
 "ipv4-destination": "172.168.5.6/16",
 "ip-match": {
 "ip-dscp": 2,
 "ip-protocol": 6,
 "ip-ecn": 2
 },
 "tcp-source-port": 25364,
 "tcp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-destination": {
 "address": "ff:ff:29:01:19:61"
 }
 }
 },
 "cookie": 102,
 "flow-name": "FooXf102",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "INPORT",
 "max-length": 60
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

Output to Physical Port

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf103</flow-name>
 <id>258</id>
 <cookie_mask>255</cookie_mask>
 <cookie>103</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>1</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>2</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>25364</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "258",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv4-source": "17.1.2.3/8",
 "ipv4-destination": "172.168.5.6/16",
 "ip-match": {
 "ip-dscp": 2,
 "ip-protocol": 6,
 "ip-ecn": 2
 },
 "tcp-source-port": 25364,
 "tcp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-destination": {
 "address": "ff:ff:29:01:19:61"
 }
 }
 },
 "cookie": 103,
 "flow-name": "FooXf103",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "1",
 "max-length": 60
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

Output to LOCAL

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf104</flow-name>
 <id>259</id>
 <cookie_mask>255</cookie_mask>
 <cookie>104</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>LOCAL</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "259",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv6-source": "1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76",
 "ipv6-destination": "fe80:2acf:e9ff:fe21::6431/94",
 "metadata": {
 "metadata": 12345
 },
 "ip-match": {
 "ip-dscp": 60,
 "ip-protocol": 6,
 "ip-ecn": 3
 },
 "tcp-source-port": 183,
 "tcp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-type": {
 "type": 34525
 }
 }
 },
 "cookie": 104,
 "flow-name": "FooXf104",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "LOCAL",
 "max-length": 60
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

Output to NORMAL

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf105</flow-name>
 <id>260</id>
 <cookie_mask>255</cookie_mask>
 <cookie>105</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>NORMAL</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/84</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/90</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>45</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>20345</tcp-source-port>
 <tcp-destination-port>80</tcp-destination-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "260",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv6-source": "1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/84",
 "ipv6-destination": "fe80:2acf:e9ff:fe21::6431/90",
 "metadata": {
 "metadata": 12345
 },
 "ip-match": {
 "ip-dscp": 45,
 "ip-protocol": 6,
 "ip-ecn": 2
 },
 "tcp-source-port": 20345,
 "tcp-destination-port": 80,
 "ethernet-match": {
 "ethernet-type": {
 "type": 34525
 }
 }
 },
 "cookie": 105,
 "flow-name": "FooXf105",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "NORMAL",
 "max-length": 60
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

Output to FLOOD

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf106</flow-name>
 <id>261</id>
 <cookie_mask>255</cookie_mask>
 <cookie>106</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>FLOOD</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/100</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/67</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>45</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>20345</tcp-source-port>
 <tcp-destination-port>80</tcp-destination-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "261",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv6-source": "1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/100",
 "ipv6-destination": "fe80:2acf:e9ff:fe21::6431/67",
 "metadata": {
 "metadata": 12345
 },
 "ip-match": {
 "ip-dscp": 45,
 "ip-protocol": 6,
 "ip-ecn": 2
 },
 "tcp-source-port": 20345,
 "tcp-destination-port": 80,
 "ethernet-match": {
 "ethernet-type": {
 "type": 34525
 }
 }
 },
 "cookie": 106,
 "flow-name": "FooXf106",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "FLOOD",
 "max-length": 60
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

Output to ALL

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf107</flow-name>
 <id>262</id>
 <cookie_mask>255</cookie_mask>
 <cookie>107</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>ALL</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "262",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv4-source": "19.1.2.3/10",
 "ipv4-destination": "172.168.5.6/18",
 "ip-match": {
 "ip-dscp": 8,
 "ip-protocol": 17,
 "ip-ecn": 3
 },
 "in-port": "0",
 "udp-source-port": 25364,
 "udp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-destination": {
 "address": "20:14:29:01:19:61"
 }
 }
 },
 "cookie": 107,
 "flow-name": "FooXf107",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "ALL",
 "max-length": 60
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

Output to CONTROLLER

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf108</flow-name>
 <id>263</id>
 <cookie_mask>255</cookie_mask>
 <cookie>108</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>CONTROLLER</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "263",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv4-source": "19.1.2.3/10",
 "ipv4-destination": "172.168.5.6/18",
 "ip-match": {
 "ip-dscp": 8,
 "ip-protocol": 17,
 "ip-ecn": 3
 },
 "in-port": "0",
 "udp-source-port": 25364,
 "udp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-destination": {
 "address": "20:14:29:01:19:61"
 }
 }
 },
 "cookie": 108,
 "flow-name": "FooXf108",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "CONTROLLER",
 "max-length": 60
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

Output to ANY

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf109</flow-name>
 <id>264</id>
 <cookie_mask>255</cookie_mask>
 <cookie>109</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>ANY</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "264",
 "table_id": 2,
 "priority": 2,
 "hard-timeout": 1200,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv4-source": "19.1.2.3/10",
 "ipv4-destination": "172.168.5.6/18",
 "ip-match": {
 "ip-dscp": 8,
 "ip-protocol": 17,
 "ip-ecn": 3
 },
 "in-port": "0",
 "udp-source-port": 25364,
 "udp-destination-port": 8080,
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:11:23:ae"
 },
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-destination": {
 "address": "20:14:29:01:19:61"
 }
 }
 },
 "cookie": 109,
 "flow-name": "FooXf109",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "ANY",
 "max-length": 60
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 3400
 }
]
 }

Push VLAN

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <push-vlan-action>
 <ethernet-type>33024</ethernet-type>
 </push-vlan-action>
 <order>0</order>
 </action>
 <action>
 <set-field>
 <vlan-match>
 <vlan-id>
 <vlan-id>79</vlan-id>
 <vlan-id-present>true</vlan-id-present>
 </vlan-id>
 </vlan-match>
 </set-field>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>5</output-node-connector>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>0</table_id>
 <id>31</id>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>FF:FF:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:AE</address>
 </ethernet-source>
 </ethernet-match>
 <in-port>1</in-port>
 </match>
 <flow-name>vlan_flow</flow-name>
 <priority>2</priority>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "31",
 "table_id": 0,
 "priority": 2,
 "match": {
 "in-port": "1",
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:11:23:AE"
 },
 "ethernet-type": {
 "type": 2048
 },
 "ethernet-destination": {
 "address": "FF:FF:29:01:19:61"
 }
 }
 },
 "flow-name": "vlan_flow",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "push-vlan-action": {
 "ethernet-type": 33024
 }
 },
 {
 "order": 1,
 "set-field": {
 "vlan-match": {
 "vlan-id": {
 "vlan-id-present": true,
 "vlan-id": 79
 }
 }
 }
 },
 {
 "order": 2,
 "output-action": {
 "output-node-connector": "5"
 }
 }
]
 }
 }
]
 }
 }
]
 }

Push MPLS

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <flow-name>push-mpls-action</flow-name>
 <instructions>
 <instruction>
 <order>3</order>
 <apply-actions>
 <action>
 <push-mpls-action>
 <ethernet-type>34887</ethernet-type>
 </push-mpls-action>
 <order>0</order>
 </action>
 <action>
 <set-field>
 <protocol-match-fields>
 <mpls-label>27</mpls-label>
 </protocol-match-fields>
 </set-field>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>2</output-node-connector>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <strict>false</strict>
 <id>100</id>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <in-port>1</in-port>
 <ipv4-destination>10.0.0.4/32</ipv4-destination>
 </match>
 <idle-timeout>0</idle-timeout>
 <cookie_mask>255</cookie_mask>
 <cookie>401</cookie>
 <priority>8</priority>
 <hard-timeout>0</hard-timeout>
 <installHw>false</installHw>
 <table_id>0</table_id>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "100",
 "table_id": 0,
 "priority": 8,
 "hard-timeout": 0,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "ipv4-destination": "10.0.0.4/32",
 "in-port": "1",
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 }
 }
 },
 "cookie": 401,
 "flow-name": "push-mpls-action",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 3,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "push-mpls-action": {
 "ethernet-type": 34887
 }
 },
 {
 "order": 1,
 "set-field": {
 "protocol-match-fields": {
 "mpls-label": 27
 }
 }
 },
 {
 "order": 2,
 "output-action": {
 "output-node-connector": "2"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 }
]
 }

Swap MPLS

	Note that ethernet-type MUST be 34887

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <flow-name>push-mpls-action</flow-name>
 <instructions>
 <instruction>
 <order>2</order>
 <apply-actions>
 <action>
 <set-field>
 <protocol-match-fields>
 <mpls-label>37</mpls-label>
 </protocol-match-fields>
 </set-field>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>2</output-node-connector>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <strict>false</strict>
 <id>101</id>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 </ethernet-match>
 <in-port>1</in-port>
 <protocol-match-fields>
 <mpls-label>27</mpls-label>
 </protocol-match-fields>
 </match>
 <idle-timeout>0</idle-timeout>
 <cookie_mask>255</cookie_mask>
 <cookie>401</cookie>
 <priority>8</priority>
 <hard-timeout>0</hard-timeout>
 <installHw>false</installHw>
 <table_id>0</table_id>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "101",
 "table_id": 0,
 "priority": 8,
 "hard-timeout": 0,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "in-port": "1",
 "protocol-match-fields": {
 "mpls-label": 27
 },
 "ethernet-match": {
 "ethernet-type": {
 "type": 34887
 }
 }
 },
 "cookie": 401,
 "flow-name": "push-mpls-action",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 2,
 "apply-actions": {
 "action": [
 {
 "order": 1,
 "set-field": {
 "protocol-match-fields": {
 "mpls-label": 37
 }
 }
 },
 {
 "order": 2,
 "output-action": {
 "output-node-connector": "2"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 }
]
 }

Pop MPLS

	Note that ethernet-type MUST be 34887

	Issue with OVS 2.1 OVS
fix [http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=openvswitch;a=commitdiff;h=b3f2fc93e3f357f8d05a92f53ec253339a40887f]

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <flow-name>FooXf10</flow-name>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <pop-mpls-action>
 <ethernet-type>2048</ethernet-type>
 </pop-mpls-action>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>2</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <id>11</id>
 <strict>false</strict>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 </ethernet-match>
 <in-port>1</in-port>
 <protocol-match-fields>
 <mpls-label>37</mpls-label>
 </protocol-match-fields>
 </match>
 <idle-timeout>0</idle-timeout>
 <cookie>889</cookie>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <hard-timeout>0</hard-timeout>
 <priority>10</priority>
 <table_id>0</table_id>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "11",
 "table_id": 0,
 "priority": 10,
 "hard-timeout": 0,
 "installHw": false,
 "cookie_mask": 255,
 "match": {
 "in-port": "1",
 "protocol-match-fields": {
 "mpls-label": 37
 },
 "ethernet-match": {
 "ethernet-type": {
 "type": 34887
 }
 }
 },
 "cookie": 889,
 "flow-name": "FooXf10",
 "strict": false,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 1,
 "pop-mpls-action": {
 "ethernet-type": 2048
 }
 },
 {
 "order": 2,
 "output-action": {
 "output-node-connector": "2",
 "max-length": 60
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 }
]
 }

Learn

	Nicira extension defined in
https://github.com/osrg/openvswitch/blob/master/include/openflow/nicira-ext.h

	Example section is -
https://github.com/osrg/openvswitch/blob/master/include/openflow/nicira-ext.h#L788

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <id>ICMP_Ingress258a5a5ad-08a8-4ff7-98f5-ef0b96ca3bb8</id>
 <hard-timeout>0</hard-timeout>
 <idle-timeout>0</idle-timeout>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <metadata>
 <metadata>2199023255552</metadata>
 <metadata-mask>2305841909702066176</metadata-mask>
 </metadata>
 <ip-match>
 <ip-protocol>1</ip-protocol>
 </ip-match>
 </match>
 <cookie>110100480</cookie>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>1</order>
 <nx-resubmit
 xmlns="urn:opendaylight:openflowplugin:extension:nicira:action">
 <table>220</table>
 </nx-resubmit>
 </action>
 <action>
 <order>0</order>
 <nx-learn
 xmlns="urn:opendaylight:openflowplugin:extension:nicira:action">
 <idle-timeout>60</idle-timeout>
 <fin-idle-timeout>0</fin-idle-timeout>
 <hard-timeout>60</hard-timeout>
 <flags>0</flags>
 <table-id>41</table-id>
 <priority>61010</priority>
 <fin-hard-timeout>0</fin-hard-timeout>
 <flow-mods>
 <flow-mod-add-match-from-value>
 <src-ofs>0</src-ofs>
 <value>2048</value>
 <src-field>1538</src-field>
 <flow-mod-num-bits>16</flow-mod-num-bits>
 </flow-mod-add-match-from-value>
 </flow-mods>
 <flow-mods>
 <flow-mod-add-match-from-field>
 <src-ofs>0</src-ofs>
 <dst-ofs>0</dst-ofs>
 <dst-field>4100</dst-field>
 <src-field>3588</src-field>
 <flow-mod-num-bits>32</flow-mod-num-bits>
 </flow-mod-add-match-from-field>
 </flow-mods>
 <flow-mods>
 <flow-mod-add-match-from-field>
 <src-ofs>0</src-ofs>
 <dst-ofs>0</dst-ofs>
 <dst-field>518</dst-field>
 <src-field>1030</src-field>
 <flow-mod-num-bits>48</flow-mod-num-bits>
 </flow-mod-add-match-from-field>
 </flow-mods>
 <flow-mods>
 <flow-mod-add-match-from-field>
 <src-ofs>0</src-ofs>
 <dst-ofs>0</dst-ofs>
 <dst-field>3073</dst-field>
 <src-field>3073</src-field>
 <flow-mod-num-bits>8</flow-mod-num-bits>
 </flow-mod-add-match-from-field>
 </flow-mods>
 <flow-mods>
 <flow-mod-copy-value-into-field>
 <dst-ofs>0</dst-ofs>
 <value>1</value>
 <dst-field>65540</dst-field>
 <flow-mod-num-bits>8</flow-mod-num-bits>
 </flow-mod-copy-value-into-field>
 </flow-mods>
 <cookie>110100480</cookie>
 </nx-learn>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <installHw>true</installHw>
 <barrier>false</barrier>
 <strict>false</strict>
 <priority>61010</priority>
 <table_id>253</table_id>
 <flow-name>ACL</flow-name>
</flow>

JSON

{
 "flow-node-inventory:flow": [
 {
 "id": "ICMP_Ingress258a5a5ad-08a8-4ff7-98f5-ef0b96ca3bb8",
 "table_id": 253,
 "installHw": true,
 "barrier": false,
 "flow-name": "ACL",
 "strict": false,
 "idle-timeout": 0,
 "priority": 61010,
 "hard-timeout": 0,
 "match": {
 "metadata": {
 "metadata": 2199023255552,
 "metadata-mask": 2305841909702066176
 },
 "ip-match": {
 "ip-protocol": 1
 },
 "ethernet-match": {
 "ethernet-type": {
 "type": 2048
 }
 }
 },
 "cookie": 110100480,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "openflowplugin-extension-nicira-action:nx-learn": {
 "flags": 0,
 "idle-timeout": 60,
 "fin-idle-timeout": 0,
 "hard-timeout": 60,
 "fin-hard-timeout": 0,
 "flow-mods": [
 {
 "flow-mod-add-match-from-value": {
 "src-ofs": 0,
 "src-field": 1538,
 "flow-mod-num-bits": 16,
 "value": 2048
 }
 },
 {
 "flow-mod-add-match-from-field": {
 "dst-ofs": 0,
 "src-ofs": 0,
 "dst-field": 4100,
 "src-field": 3588,
 "flow-mod-num-bits": 32
 }
 },
 {
 "flow-mod-add-match-from-field": {
 "dst-ofs": 0,
 "src-ofs": 0,
 "dst-field": 518,
 "src-field": 1030,
 "flow-mod-num-bits": 48
 }
 },
 {
 "flow-mod-add-match-from-field": {
 "dst-ofs": 0,
 "src-ofs": 0,
 "dst-field": 3073,
 "src-field": 3073,
 "flow-mod-num-bits": 8
 }
 },
 {
 "flow-mod-copy-value-into-field": {
 "dst-ofs": 0,
 "dst-field": 65540,
 "flow-mod-num-bits": 8,
 "value": 1
 }
 }
],
 "cookie": 110100480,
 "priority": 61010,
 "table-id": 41
 }
 },
 {
 "order": 1,
 "openflowplugin-extension-nicira-action:nx-resubmit": {
 "table": 220
 }
 }
]
 }
 }
]
 }
 }
]
 }

Openflowplugin Developer Guides

Contents:

	Plugin Guide

	Library Guide

OpenFlow Plugin Project Developer Guide

This section covers topics which are developer specific and which have
not been covered in the user guide. Please see the OpenFlow
plugin user guide first.

It can be found on the OpenDaylight software download
page [https://www.opendaylight.org/downloads].

Event Sequences

Session Establishment

The OpenFlow Protocol
Library provides
interface SwitchConnectionHandler which contains method
onSwitchConnected (step 1). This event is raised in the OpenFlow
Protocol Library when an OpenFlow device connects to OpenDaylight and
caught in the ConnectionManagerImpl class in the OpenFlow plugin.

There the plugin creates a new instance of the ConnectionContextImpl
class (step 1.1) and also instances of HandshakeManagerImpl (which
uses HandshakeListenerImpl) and ConnectionReadyListenerImpl.
ConnectionReadyListenerImpl contains method onConnectionReady()
which is called when connection is prepared. This method starts the
handshake with the OpenFlow device (switch) from the OpenFlow plugin
side. Then handshake can be also started from device side. In this case
method shake() from HandshakeManagerImpl is called (steps 1.1.1
and 2).

The handshake consists of an exchange of HELLO messages in addition to
an exchange of device features (steps 2.1. and 3). The handshake is
completed by HandshakeManagerImpl. After receiving device features,
the HandshakeListenerImpl is notifed via the
onHanshakeSuccessfull() method. After this, the device features, node
id and connection state are stored in a ConnectionContext and the
method deviceConnected() of DeviceManagerImpl is called.

When deviceConnected() is called, it does the following:

	creates a new transaction chain (step 4.1)

	creates a new instance of DeviceContext (step 4.2.2)

	initializes the device context: the static context of device is
populated by calling createDeviceFeaturesForOF<version>() to
populate table, group, meter features and port descriptions (step
4.2.1 and 4.2.1.1)

	creates an instance of RequestContext for each type of feature

When the OpenFlow device responds to these requests (step 4.2.1.1) with
multipart replies (step 5) they are processed and stored to MD-SAL
operational datastore. The createDeviceFeaturesForOF<version>() method
returns a Future which is processed in the callback (step 5.1) (part
of initializeDeviceContext() in the deviceConnected() method) by
calling the method onDeviceCtxLevelUp() from StatisticsManager
(step 5.1.1).

The call to createDeviceFeaturesForOF<version>(): . creates a new
instance of StatisticsContextImpl (step 5.1.1.1).

	calls gatherDynamicStatistics() on that instance which returns a
Future which will produce a value when done

	this method calls methods to get dynamic data (flows, tables,
groups) from the device (step 5.1.1.2, 5.1.1.2.1, 5.1.1.2.1.1)

	if everything works, this data is also stored in the MD-SAL
operational datastore

If the Future is successful, it is processed (step 6.1.1) in a
callback in StatisticsManagerImpl which:

	schedules the next time to poll the device for statistics

	sets the device state to synchronized (step 6.1.1.2)

	calls onDeviceContextLevelUp() in RpcManagerImpl

The onDeviceContextLevelUp() call:

	creates a new instance of RequestContextImpl

	registers implementation for supported services

	calls onDeviceContextLevelUp() in DeviceManagerImpl (step
6.1.1.2.1.2) which causes the information about the new device be be
written to the MD-SAL operational datastore (step 6.1.1.2.2)

[image: Session establishment]

Session establishment

Handshake

The first thing that happens when an OpenFlow device connects to
OpenDaylight is that the OpenFlow plugin gathers basic information about
the device and establishes agreement on key facts like the version of
OpenFlow which will be used. This process is called the handshake.

The handshake starts with HELLO message which can be sent either by the
OpenFlow device or the OpenFlow plugin. After this, there are several
scenarios which can happen:

	if the first HELLO message contains a version bitmap, it is
possible to determine if there is a common version of OpenFlow or
not:

	if there is a single common version use it and the VERSION IS
SETTLED

	if there are more than one common versions, use the highest
(newest) protocol and the VERSION IS SETTLED

	if there are no common versions, the device is DISCONNECTED

	if the first HELLO message does not contain a version bitmap, then
STEB-BY-STEP negotiation is used

	if second (or more) HELLO message is received, then STEP-BY-STEP
negotiation is used

STEP-BY-STEP negotiation:

	if last version proposed by the OpenFlow plugin is the same as the
version received from the OpenFlow device, then the VERSION IS
SETTLED

	if the version received in the current HELLO message from the device
is the same as from previous then negotiation has failed and the
device is DISCONNECTED

	if the last version from the device is greater than the last version
proposed from the plugin, wait for the next HELLO message in the hope
that it will advertise support for a lower version

	if the last version from the device is is less than the last version
proposed from the plugin:

	propose the highest version the plugin supports that is less than
or equal to the version received from the device and wait for the
next HELLO message

	if if the plugin doesn’t support a lower version, the device is
DISCONNECTED

After selecting of version we can say that the VERSION IS SETTLED
and the OpenFlow plugin can ask device for its features. At this point
handshake ends.

[image: Handshake process]

Handshake process

Adding a Flow

There are two ways to add a flow in in the OpenFlow plugin: adding it to
the MD-SAL config datastore or calling an RPC. Both of these can either
be done using the native MD-SAL interfaces or using RESTCONF. This
discussion focuses on calling the RPC.

If user send flow via REST interface (step 1) it will cause that
invokeRpc() is called on RpcBroker. The RpcBroker then looks
for an appropriate implementation of the interface. In the case of the
OpenFlow plugin, this is the addFlow() method of
SalFlowServiceImpl (step 1.1). The same thing happens if the RPC is
called directly from the native MD-SAL interfaces.

The addFlow() method then

	calls the commitEntry() method (step 2) from the OpenFlow Protocol
Library which is responsible for sending the flow to the device

	creates a new RequestContext by calling createRequestContext()
(step 3)

	creates a callback to handle any events that happen because of
sending the flow to the device

The callback method is triggered when a barrier reply message (step 2.1)
is received from the device indicating that the flow was either
installed or an appropriate error message was sent. If the flow was
successfully sent to the device, the RPC result is set to success (step
5). // SalFlowService contains inside method addFlow() other
callback which caught notification from callback for barrier message.

At this point, no information pertaining to the flow has been added to
the MD-SAL operational datastore. That is accomplished by the periodic
gathering of statistics from OpenFlow devices.

The StatisticsContext for each given OpenFlow device periodically
polls it using gatherStatistics() of StatisticsGatheringUtil which
issues an OpenFlow OFPT_MULTIPART_REQUEST - OFPMP_FLOW. The response
to this request (step 7) is processed in StatisticsGatheringUtil
class where flow data is written to the MD-SAL operational datastore via
the writeToTransaction() method of DeviceContext.

[image: Add flow]

Add flow

Description of OpenFlow Plugin Modules

The OpenFlow plugin project contains a variety of OpenDaylight modules,
which are loaded using the configuration subsystem. This section
describes the YANG files used to model each module.

General model (interfaces) - openflow-plugin-cfg.yang.

	the provided module is defined (identity openflow-provider)

	and target implementation is assigned (...OpenflowPluginProvider)

module openflow-provider {
 yang-version 1;
 namespace "urn:opendaylight:params:xml:ns:yang:openflow:common:config[urn:opendaylight:params:xml:ns:yang:openflow:common:config]";
 prefix "ofplugin-cfg";

 import config {prefix config; revision-date 2013-04-05; }
 description
 "openflow-plugin-custom-config";
 revision "2014-03-26" {
 description
 "Initial revision";
 }
 identity openflow-provider{
 base config:service-type;
 config:java-class "org.opendaylight.openflowplugin.openflow.md.core.sal.OpenflowPluginProvider";
 }
}

Implementation model - openflow-plugin-cfg-impl.yang

	the implementation of module is defined
(identity openflow-provider-impl)

	class name of generated implementation is defined
(ConfigurableOpenFlowProvider)

	via augmentation the configuration of module is defined:

	this module requires instance of binding-aware-broker
(container binding-aware-broker)

	and list of openflow-switch-connection-provider (those are
provided by openflowjava, one plugin instance will orchestrate
multiple openflowjava modules)

module openflow-provider-impl {
 yang-version 1;
 namespace "urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl[urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl]";
 prefix "ofplugin-cfg-impl";

 import config {prefix config; revision-date 2013-04-05;}
 import openflow-provider {prefix openflow-provider;}
 import openflow-switch-connection-provider {prefix openflow-switch-connection-provider;revision-date 2014-03-28;}
 import opendaylight-md-sal-binding { prefix md-sal-binding; revision-date 2013-10-28;}

 description
 "openflow-plugin-custom-config-impl";

 revision "2014-03-26" {
 description
 "Initial revision";
 }

 identity openflow-provider-impl {
 base config:module-type;
 config:provided-service openflow-provider:openflow-provider;
 config:java-name-prefix ConfigurableOpenFlowProvider;
 }

 augment "/config:modules/config:module/config:configuration" {
 case openflow-provider-impl {
 when "/config:modules/config:module/config:type = 'openflow-provider-impl'";

 container binding-aware-broker {
 uses config:service-ref {
 refine type {
 mandatory true;
 config:required-identity md-sal-binding:binding-broker-osgi-registry;
 }
 }
 }
 list openflow-switch-connection-provider {
 uses config:service-ref {
 refine type {
 mandatory true;
 config:required-identity openflow-switch-connection-provider:openflow-switch-connection-provider;
 }
 }
 }
 }
 }
}

Generating config and sal classes out of yangs

In order to involve suitable code generators, this is needed in pom:

<build> ...
 <plugins>
 <plugin>
 <groupId>org.opendaylight.yangtools</groupId>
 <artifactId>yang-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>generate-sources</goal>
 </goals>
 <configuration>
 <codeGenerators>
 <generator>
 <codeGeneratorClass>
 org.opendaylight.controller.config.yangjmxgenerator.plugin.JMXGenerator
 </codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/generated-sources/config</outputBaseDir>
 <additionalConfiguration>
 <namespaceToPackage1>
 urn:opendaylight:params:xml:ns:yang:controller==org.opendaylight.controller.config.yang
 </namespaceToPackage1>
 </additionalConfiguration>
 </generator>
 <generator>
 <codeGeneratorClass>
 org.opendaylight.yangtools.maven.sal.api.gen.plugin.CodeGeneratorImpl
 </codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/generated-sources/sal</outputBaseDir>
 </generator>
 <generator>
 <codeGeneratorClass>org.opendaylight.yangtools.yang.unified.doc.generator.maven.DocumentationGeneratorImpl</codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/site/models</outputBaseDir>
 </generator>
 </codeGenerators>
 <inspectDependencies>true</inspectDependencies>
 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>yang-jmx-generator-plugin</artifactId>
 <version>0.2.5-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.yangtools</groupId>
 <artifactId>maven-sal-api-gen-plugin</artifactId>
 <version>${yangtools.version}</version>
 <type>jar</type>
 </dependency>
 </dependencies>
 </plugin>
 ...

	JMX generator (target/generated-sources/config)

	sal CodeGeneratorImpl (target/generated-sources/sal)

Altering generated files

Those files were generated under src/main/java in package as referred in
yangs (if exist, generator will not overwrite them):

	ConfigurableOpenFlowProviderModuleFactory

here the instantiateModule methods are extended in order to
capture and inject osgi BundleContext into module, so it can be
injected into final implementation - OpenflowPluginProvider +
module.setBundleContext(bundleContext);

	ConfigurableOpenFlowProviderModule

here the createInstance method is extended in order to inject
osgi BundleContext into module implementation +
pluginProvider.setContext(bundleContext);

Configuration xml file

Configuration file contains

	required capabilities

	modules definitions from openflowjava

	modules definitions from openflowplugin

	modules definition

	openflow:switch:connection:provider:impl (listening on port 6633,
name=openflow-switch-connection-provider-legacy-impl)

	openflow:switch:connection:provider:impl (listening on port 6653,
name=openflow-switch-connection-provider-default-impl)

	openflow:common:config:impl (having 2 services (wrapping those 2
previous modules) and binding-broker-osgi-registry injected)

	provided services

	openflow-switch-connection-provider-default

	openflow-switch-connection-provider-legacy

	openflow-provider

<snapshot>
 <required-capabilities>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl?module=openflow-switch-connection-provider-impl&revision=2014-03-28</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider?module=openflow-switch-connection-provider&revision=2014-03-28</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl?module=openflow-provider-impl&revision=2014-03-26</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:common:config?module=openflow-provider&revision=2014-03-26</capability>
 </required-capabilities>
 <configuration>
 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-default-impl</name>
 <port>6633</port>
 <switch-idle-timeout>15000</switch-idle-timeout>
 </module>
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-legacy-impl</name>
 <port>6653</port>
 <switch-idle-timeout>15000</switch-idle-timeout>
 </module>
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl">prefix:openflow-provider-impl</type>
 <name>openflow-provider-impl</name>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-default</name>
 </openflow-switch-connection-provider>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-legacy</name>
 </openflow-switch-connection-provider>
 <binding-aware-broker>
 <type xmlns:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-aware-broker>
 </module>
 </modules>
 <services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">prefix:openflow-switch-connection-provider</type>
 <instance>
 <name>openflow-switch-connection-provider-default</name>
 <provider>/modules/module[type='openflow-switch-connection-provider-impl'][name='openflow-switch-connection-provider-default-impl']</provider>
 </instance>
 <instance>
 <name>openflow-switch-connection-provider-legacy</name>
 <provider>/modules/module[type='openflow-switch-connection-provider-impl'][name='openflow-switch-connection-provider-legacy-impl']</provider>
 </instance>
 </service>
 <service>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:common:config">prefix:openflow-provider</type>
 <instance>
 <name>openflow-provider</name>
 <provider>/modules/module[type='openflow-provider-impl'][name='openflow-provider-impl']</provider>
 </instance>
 </service>
 </services>
 </configuration>
</snapshot>

API changes

In order to provide multiple instances of modules from openflowjava
there is an API change. Previously OFPlugin got access to
SwitchConnectionProvider exposed by OFJava and injected collection of
configurations so that for each configuration new instance of tcp
listening server was created. Now those configurations are provided by
configSubsystem and configured modules (wrapping the original
SwitchConnectionProvider) are injected into OFPlugin (wrapping
SwitchConnectionHandler).

Providing config file (IT, local distribution/base, integration/distributions/base)

openflowplugin-it

Here the whole configuration is contained in one file (controller.xml).
Required entries needed in order to startup and wire OEPlugin + OFJava
are simply added there.

OFPlugin/distribution/base

Here new config file has been added
(src/main/resources/configuration/initial/42-openflow-protocol-impl.xml)
and is being copied to config/initial subfolder of build.

integration/distributions/build

In order to push the actual config into config/initial subfolder of
distributions/base in integration project there was a new artifact in
OFPlugin created - openflowplugin-controller-config, containing only
the config xml file under src/main/resources. Another change was
committed into integration project. During build this config xml is
being extracted and copied to the final folder in order to be accessible
during controller run.

Internal message statistics API

To aid in testing and diagnosis, the OpenFlow plugin provides
information about the number and rate of different internal events.

The implementation does two things: collects event counts and exposes
counts. Event counts are grouped by message type, e.g.,
PacketInMessage, and checkpoint, e.g.,
TO_SWITCH_ENQUEUED_SUCCESS. Once gathered, the results are logged
as well as being exposed using OSGi command line (deprecated) and JMX.

Collect

Each message is counted as it passes through various processing
checkpoints. The following checkpoints are defined as a Java enum and
tracked:

/**
 * statistic groups overall in OFPlugin
 */
enum STATISTIC_GROUP {
 /** message from switch, enqueued for processing */
 FROM_SWITCH_ENQUEUED,
 /** message from switch translated successfully - source */
 FROM_SWITCH_TRANSLATE_IN_SUCCESS,
 /** message from switch translated successfully - target */
 FROM_SWITCH_TRANSLATE_OUT_SUCCESS,
 /** message from switch where translation failed - source */
 FROM_SWITCH_TRANSLATE_SRC_FAILURE,
 /** message from switch finally published into MD-SAL */
 FROM_SWITCH_PUBLISHED_SUCCESS,
 /** message from switch - publishing into MD-SAL failed */
 FROM_SWITCH_PUBLISHED_FAILURE,

 /** message from MD-SAL to switch via RPC enqueued */
 TO_SWITCH_ENQUEUED_SUCCESS,
 /** message from MD-SAL to switch via RPC NOT enqueued */
 TO_SWITCH_ENQUEUED_FAILED,
 /** message from MD-SAL to switch - sent to OFJava successfully */
 TO_SWITCH_SUBMITTED_SUCCESS,
 /** message from MD-SAL to switch - sent to OFJava but failed*/
 TO_SWITCH_SUBMITTED_FAILURE
}

When a message passes through any of those checkpoints then counter
assigned to corresponding checkpoint and message is incremented by 1.

Expose statistics

As described above, there are three ways to access the statistics:

	OSGi command line (this is considered deprecated)

osgi> dumpMsgCount

	OpenDaylight logging console (statistics are logged here every 10
seconds)

required logback settings :
<logger name="org.opendaylight.openflowplugin.openflow.md.queue.MessageSpyCounterImpl" level="DEBUG"\/>

	JMX (via JConsole)

start OpenFlow plugin with the -jmx parameter

start JConsole by running jconsole

the JConsole MBeans tab should contain
org.opendaylight.controller

RuntimeBean has a msg-spy-service-impl

Operations provides makeMsgStatistics report functionality

Example results

[image: OFplugin Debug stats.png]

OFplugin Debug stats.png

DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[PortStatusMessage] -> +0 | 1
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[MultipartReplyMessage] -> +24 | 81
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[PacketInMessage] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS: MSG[PortStatusMessage] -> +0 | 1
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS: MSG[MultipartReplyMessage] -> +24 | 81
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS: MSG[PacketInMessage] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[QueueStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[NodeUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[NodeConnectorStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[GroupDescStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[FlowsStatisticsUpdate] -> +3 | 19
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[PacketReceived] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[MeterFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[GroupStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[GroupFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[MeterConfigStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[MeterStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[NodeConnectorUpdated] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[FlowTableStatisticsUpdate] -> +3 | 8
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_SRC_FAILURE: no activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[QueueStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[NodeUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[NodeConnectorStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[GroupDescStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[FlowsStatisticsUpdate] -> +3 | 19
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[PacketReceived] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[MeterFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[GroupStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[GroupFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[MeterConfigStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[MeterStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[NodeConnectorUpdated] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[FlowTableStatisticsUpdate] -> +3 | 8
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_FAILURE: no activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_ENQUEUED_SUCCESS: MSG[AddFlowInput] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_ENQUEUED_FAILED: no activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_SUBMITTED_SUCCESS: MSG[AddFlowInput] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_SUBMITTED_FAILURE: no activity detected

Application: Forwarding Rules Synchronizer

Basics

Description

Forwarding Rules Synchronizer (FRS) is a newer version of Forwarding
Rules Manager (FRM). It was created to solve most shortcomings of FRM.
FRS solving errors with retry mechanism. Sending barrier if needed.
Using one service for flows, groups and meters. And it has less changes
requests send to device since calculating difference and using
compression queue.

It is located in the Java package:

package org.opendaylight.openflowplugin.applications.frsync;

Listeners

	1x config - FlowCapableNode

	1x operational - Node

System of work

	one listener in config datastore waiting for changes

	update cache

	skip event if operational not present for node

	send syncup entry to reactor for synchronization

	node added: after part of modification and whole operational
snapshot

	node updated: after and before part of modification

	node deleted: null and before part of modification

	one listener in operational datastore waiting for changes

	update cache

	on device connected

	register for cluster services

	on device disconnected remove from cache

	remove from cache

	unregister for cluster services

	if registered for reconciliation

	do reconciliation through syncup (only when config present)

	reactor (provides syncup w/decorators assembled in this order)

	Cluster decorator - skip action if not master for device

	FutureZip decorator (FutureZip extends Future decorator)

	Future - run delegate syncup in future - submit task to
executor service

	FutureZip - provides state compression - compress optimized
config delta if waiting for execution with new one

	Guard decorator - per device level locking

	Retry decorator - register for reconciliation if syncup failed

	Reactor impl - calculate diff from after/before parts of syncup
entry and execute

Strategy

In the old FRM uses an incremental strategy with all changes made one
by one, where FRS uses a flat batch system with changes made in bulk. It
uses one service SalFlatBatchService instead of three (flow, group,
meter).

Boron release

FRS is used in Boron as separate feature and it is not loaded by any
other feature. It has to be run separately.

odl-openflowplugin-app-forwardingrules-sync

FRS additions

Retry mechanism

	is started when change request to device return as failed (register
for reconcile)

	wait for next consistent operational and do reconciliation with
actual config (not only diff)

ZipQueue

	only the diff (before/after) between last config changes is sent to
device

	when there are more config changes for device in a row waiting to be
processed they are compressed into one entry (after is still replaced
with the latest)

Cluster-aware

	FRS is cluster aware using ClusteringSingletonServiceProvider from
the MD-SAL

	on mastership change reconciliation is done (register for reconcile)

SalFlatBatchService

FRS uses service with implemented barrier waiting logic between
dependent objects

Service: SalFlatBatchService

Basics

SalFlatBatchService was created along forwardingrules-sync application
as the service that should application used by default. This service uses
only one input with bag of flow/group/meter objects and their common
add/update/remove action. So you practically send only one input (of specific
bags) to this service.

	interface: org.opendaylight.yang.gen.v1.urn.opendaylight.flat.batch.service.rev160321.SalFlatBatchService

	implementation: org.opendaylight.openflowplugin.impl.services.SalFlatBatchServiceImpl

	method: processFlatBatch(input)

	input: org.opendaylight.yang.gen.v1.urn.opendaylight.flat.batch.service.rev160321.ProcessFlatBatchInput

Usage benefits

	possibility to use only one input bag with particular failure analysis preserved

	automatic barrier decision (chain+wait)

	less RPC routing in cluster environment (since one call encapsulates all others)

ProcessFlatBatchInput

Input for SalFlatBatchService (ProcessFlatBatchInput object) consists of:

	node - NodeRef

	batch steps - List<Batch> - defined action + bag of objects + order for failures analysis

	BatchChoice - yang-modeled action choice (e.g. FlatBatchAddFlowCase) containing batch bag of objects (e.g. flows to be added)

	BatchOrder - (integer) order of batch step (should be incremented by single action)

	exitOnFirstError - boolean flag

Workflow

	prepare list of steps based on input

	mark barriers in steps where needed

	prepare particular F/G/M-batch service calls from Flat-batch steps

	F/G/M-batch services encapsulate bulk of single service calls

	they actually chain barrier after processing all single calls if actual step is marked as barrier-needed

	chain futures and start executing

	start all actions that can be run simultaneously (chain all on one starting point)

	in case there is a step marked as barrier-needed

	wait for all fired jobs up to one with barrier

	merge rpc results (status, errors, batch failures) into single one

	the latest job with barrier is new starting point for chaining

Services encapsulation

	SalFlatBatchService

	SalFlowBatchService

	SalFlowService

	SalGroupBatchService

	SalGroupService

	SalMeterBatchService

	SalMeterService

Barrier decision

	decide on actual step and all previous steps since the latest barrier

	if condition in table below is satisfied the latest step before actual is marked as barrier-needed

	actual step

	previous steps contain

	FLOW_ADD or FLOW_UPDATE

	GROUP_ADD or METER_ADD

	GROUP_ADD

	GROUP_ADD or GROUP_UPDATE

	GROUP_REMOVE

	FLOW_UPDATE or FLOW_REMOVE or GROUP_UPDATE or GROUP_REMOVE

	METER_REMOVE

	FLOW_UPDATE or FLOW_REMOVE

Error handling

There is flag in ProcessFlatBatchInput to stop process on the first error.

	true - if partial step is not successful stop whole processing

	false (default) - try to process all steps regardless partial results

If error occurs in any of partial steps upper FlatBatchService call will return as unsuccessful in both cases.
However every partial error is attached to general flat batch result along with BatchFailure (contains BatchOrder
and BatchItemIdChoice to identify failed step).

Cluster singleton approach in plugin

Basics

Description

The existing OpenDaylight service deployment model assumes symmetric
clusters, where all services are activated on all nodes in the cluster.
However, many services require that there is a single active service
instance per cluster. We call such services singleton services. The
Entity Ownership Service (EOS) represents the base Leadership choice for
one Entity instance. Every Cluster Singleton service type must have
its own Entity and every Cluster Singleton service instance must
have its own Entity Candidate. Every registered Entity Candidate should
be notified about its actual role. All this “work” is done by MD-SAL so
the Openflowplugin need “only” to register as service in
SingletonClusteringServiceProvider given by MD-SAL.

Change against using EOS service listener

In this new clustering singleton approach plugin uses API from the
MD-SAL project: SingletonClusteringService which comes with three
methods.

instantiateServiceInstance()
closeServiceInstance()
getIdentifier()

This service has to be registered to a
SingletonClusteringServiceProvider from MD-SAL which take care if
mastership is changed in cluster environment.

First method in SingletonClusteringService is being called when the
cluster node becomes a MASTER. Second is being called when status
changes to SLAVE or device is disconnected from cluster. Last method
plugins returns NodeId as ServiceGroupIdentifier Startup after device is
connected

On the start up the plugin we need to initialize first four managers for
each working area providing information and services

	Device manager

	RPC manager

	Role manager

	Statistics manager

After connection the device the listener Device manager get the event
and start up to creating the context for this connection. Startup after
device connection

Services are managed by SinlgetonClusteringServiceProvider from MD-SAL
project. So in startup we simply create a instance of LifecycleService
and register all contexts into it.

Role change

Plugin is no longer registered as Entity Ownership Service (EOS)
listener therefore does not need to and cannot respond on EOS ownership
changes.

Service start

Services start asynchronously but the start is managed by
LifecycleService. If something goes wrong LifecycleService stop starting
services in context and this speeds up the reconnect process. But the
services haven’t changed and plugin need to start all this:

	Activating transaction chain manager

	Initial gathering of device statistics

	Initial submit to DS

	Sending role MASTER to device

	RPC services registration

	Statistics gathering start

Service stop

If closeServiceInstance occurred plugin just simply try to store all
unsubmitted transactions and close the transaction chain manager, stop
RPC services, stop Statistics gathering and after that all unregister
txEntity from EOS.

Yang models and API

	Model

	Openflow basic types

	opendaylight-table-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-table-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-action-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-action-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-flow-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-flow-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-meter-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-meter-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-group-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-group-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-match-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-match-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-port-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-port-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-queue-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-queue-types.yang;a=blob;hb=refs/heads/stable/boron]

	Openflow services

	sal-table.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-table.yang;a=blob;hb=refs/heads/stable/boron]

	sal-group.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-group.yang;a=blob;hb=refs/heads/stable/boron]

	sal-queue.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-queue.yang;a=blob;hb=refs/heads/stable/boron]

	flow-errors.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-errors.yang;a=blob;hb=refs/heads/stable/boron]

	flow-capable-transaction.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-capable-transaction.yang;a=blob;hb=refs/heads/stable/boron]

	sal-flow.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-flow.yang;a=blob;hb=refs/heads/stable/boron]

	sal-meter.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-meter.yang;a=blob;hb=refs/heads/stable/boron]

	flow-topology-discovery.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-topology-discovery.yang;a=blob;hb=refs/heads/stable/boron]

	node-errors.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/node-errors.yang;a=blob;hb=refs/heads/stable/boron]

	node-config.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/node-config.yang;a=blob;hb=refs/heads/stable/boron]

	sal-echo.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-echo.yang;a=blob;hb=refs/heads/stable/boron]

	sal-port.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-port.yang;a=blob;hb=refs/heads/stable/boron]

	packet-processing.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/packet-processing.yang;a=blob;hb=refs/heads/stable/boron]

	flow-node-inventory.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-node-inventory.yang;a=blob;hb=refs/heads/stable/boron]

	Openflow statistics

	opendaylight-queue-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-queue-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-flow-table-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-flow-table-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-port-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-port-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-statistics-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-statistics-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-group-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-group-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-flow-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-flow-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-meter-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-meter-statistics.yang;a=blob;hb=refs/heads/stable/boron]

Karaf feature tree

[image: Openflow plugin karaf feature tree]

Openflow plugin karaf feature tree

Short
HOWTO [https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:FeatureTreeHowto]
create such a tree.

Wiring up notifications

Introduction

We need to translate OpenFlow messages coming up from the OpenFlow
Protocol Library into
MD-SAL Notification objects and then publish them to the MD-SAL.

Mechanics

	Create a Translator class

	Register the Translator

	Register the notificationPopListener to handle your Notification
Objects

Create a Translator class

You can see an example in
PacketInTranslator.java [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/translator/PacketInTranslator.java;hb=refs/heads/stable/boron].

First, simply create the class

public class PacketInTranslator implements IMDMessageTranslator<OfHeader, List<DataObject>> {

Then implement the translate function:

public class PacketInTranslator implements IMDMessageTranslator<OfHeader, List<DataObject>> {

 protected static final Logger LOG = LoggerFactory
 .getLogger(PacketInTranslator.class);
 @Override
 public PacketReceived translate(SwitchConnectionDistinguisher cookie,
 SessionContext sc, OfHeader msg) {
 ...
 }

Make sure to check that you are dealing with the expected type and cast
it:

if(msg instanceof PacketInMessage) {
 PacketInMessage message = (PacketInMessage)msg;
 List<DataObject> list = new CopyOnWriteArrayList<DataObject>();

Do your transation work and return

PacketReceived pktInEvent = pktInBuilder.build();
list.add(pktInEvent);
return list;

Register your Translator Class

Next you need to go to
MDController.java [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/MDController.java;hb=refs/heads/stable/boron]
and in init() add register your Translator:

public void init() {
 LOG.debug("Initializing!");
 messageTranslators = new ConcurrentHashMap<>();
 popListeners = new ConcurrentHashMap<>();
 //TODO: move registration to factory
 addMessageTranslator(ErrorMessage.class, OF10, new ErrorTranslator());
 addMessageTranslator(ErrorMessage.class, OF13, new ErrorTranslator());
 addMessageTranslator(PacketInMessage.class,OF10, new PacketInTranslator());
 addMessageTranslator(PacketInMessage.class,OF13, new PacketInTranslator());

Notice that there is a separate registration for each of OpenFlow 1.0
and OpenFlow 1.3. Basically, you indicate the type of OpenFlow Protocol
Library message you wish to translate for, the OpenFlow version, and an
instance of your Translator.

Register your MD-SAL Message for Notification to the MD-SAL

Now, also in MDController.init() register to have the
notificationPopListener handle your MD-SAL Message:

addMessagePopListener(PacketReceived.class, new NotificationPopListener<DataObject>());

You are done

That’s all there is to it. Now when a message comes up from the OpenFlow
Protocol Library, it will be translated and published to the MD-SAL.

Message Order Preservation

While the Helium release of OpenFlow Plugin relied on queues to ensure
messages were delivered in order, subsequent releases instead ensure
that all the messages from a given device are delivered using the same
thread and thus message order is guaranteed without queues. The OpenFlow
plugin allocates a number of threads equal to twice the number of
processor cores on machine it is run, e.g., 8 threads if the machine has
4 cores.

Note

While each device is assigned to one thread, multiple devices can be
assigned to the same thread.

OpenFlow Protocol Library Developer Guide

Introduction

OpenFlow Protocol Library is component in OpenDaylight, that mediates
communication between OpenDaylight controller and hardware devices
supporting OpenFlow protocol. Primary goal is to provide user (or upper
layers of OpenDaylight) communication channel, that can be used for
managing network hardware devices.

Features Overview

There are three features inside openflowjava:

	odl-openflowjava-protocol provides all openflowjava bundles, that
are needed for communication with openflow devices. It ensures
message translation and handles network connections. It also provides
openflow protocol specific model.

	odl-openflowjava-all currently contains only
odl-openflowjava-protocol feature.

	odl-openflowjava-stats provides mechanism for message counting
and reporting. Can be used for performance analysis.

odl-openflowjava-protocol Architecture

Basic bundles contained in this feature are openflow-protocol-api,
openflow-protocol-impl, openflow-protocol-spi and util.

	openflow-protocol-api - contains openflow model, constants and
keys used for (de)serializer registration.

	openflow-protocol-impl - contains message factories, that
translate binary messages into DataObjects and vice versa. Bundle
also contains network connection handlers - servers, netty pipeline
handlers, …

	openflow-protocol-spi - entry point for openflowjava
configuration, startup and close. Basically starts implementation.

	util - utility classes for binary-Java conversions and to ease
experimenter key creation

odl-openflowjava-stats Feature

Runs over odl-openflowjava-protocol. It counts various message types /
events and reports counts in specified time periods. Statistics
collection can be configured in
openflowjava-config/src/main/resources/45-openflowjava-stats.xml

Key APIs and Interfaces

Basic API / SPI classes are ConnectionAdapter (Rpc/notifications) and
SwitchConnectionProcider (configure, start, shutdown)

Installation

Pull the code and import project into your IDE.

git clone ssh://<username>@git.opendaylight.org:29418/openflowjava.git

Configuration

Current implementation allows to configure:

	listening port (mandatory)

	transfer protocol (mandatory)

	switch idle timeout (mandatory)

	TLS configuration (optional)

	thread count (optional)

You can find exemplary Openflow Protocol Library instance configuration
below:

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <!-- default OF-switch-connection-provider (port 6633) -->
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-default-impl</name>
 <port>6633</port>
<!-- Possible transport-protocol options: TCP, TLS, UDP -->
 <transport-protocol>TCP</transport-protocol>
 <switch-idle-timeout>15000</switch-idle-timeout>
<!-- Exemplary TLS configuration:
 - uncomment the <tls> tag
 - copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and exemplary-cacert.pem
 files into your virtual machine
 - set VM encryption options to use copied keys
 - start communication
 Please visit OpenflowPlugin or Openflow Protocol Library#Documentation wiki pages
 for detailed information regarding TLS -->
<!-- <tls>
 <keystore>/exemplary-ctlKeystore</keystore>
 <keystore-type>JKS</keystore-type>
 <keystore-path-type>CLASSPATH</keystore-path-type>
 <keystore-password>opendaylight</keystore-password>
 <truststore>/exemplary-ctlTrustStore</truststore>
 <truststore-type>JKS</truststore-type>
 <truststore-path-type>CLASSPATH</truststore-path-type>
 <truststore-password>opendaylight</truststore-password>
 <certificate-password>opendaylight</certificate-password>
 </tls> -->
<!-- Exemplary thread model configuration. Uncomment <threads> tag below to adjust default thread model -->
<!-- <threads>
 <boss-threads>2</boss-threads>
 <worker-threads>8</worker-threads>
 </threads> -->
 </module>

 <!-- default OF-switch-connection-provider (port 6653) -->
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-legacy-impl</name>
 <port>6653</port>
<!-- Possible transport-protocol options: TCP, TLS, UDP -->
 <transport-protocol>TCP</transport-protocol>
 <switch-idle-timeout>15000</switch-idle-timeout>
<!-- Exemplary TLS configuration:
 - uncomment the <tls> tag
 - copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and exemplary-cacert.pem
 files into your virtual machine
 - set VM encryption options to use copied keys
 - start communication
 Please visit OpenflowPlugin or Openflow Protocol Library#Documentation wiki pages
 for detailed information regarding TLS -->
<!-- <tls>
 <keystore>/exemplary-ctlKeystore</keystore>
 <keystore-type>JKS</keystore-type>
 <keystore-path-type>CLASSPATH</keystore-path-type>
 <keystore-password>opendaylight</keystore-password>
 <truststore>/exemplary-ctlTrustStore</truststore>
 <truststore-type>JKS</truststore-type>
 <truststore-path-type>CLASSPATH</truststore-path-type>
 <truststore-password>opendaylight</truststore-password>
 <certificate-password>opendaylight</certificate-password>
 </tls> -->
<!-- Exemplary thread model configuration. Uncomment <threads> tag below to adjust default thread model -->
<!-- <threads>
 <boss-threads>2</boss-threads>
 <worker-threads>8</worker-threads>
 </threads> -->
 </module>

 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl">prefix:openflow-provider-impl</type>
 <name>openflow-provider-impl</name>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-default</name>
 </openflow-switch-connection-provider>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-legacy</name>
 </openflow-switch-connection-provider>
 <binding-aware-broker>
 <type xmlns:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-aware-broker>
 </module>
</modules>

Possible transport-protocol options:

	TCP

	TLS

	UDP

Switch-idle timeout specifies time needed to detect idle state of
switch. When no message is received from switch within this time, upper
layers are notified on switch idleness. To be able to use this exemplary
TLS configuration:

	uncomment the <tls> tag

	copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and
exemplary-cacert.pem files into your virtual machine

	set VM encryption options to use copied keys (please visit TLS
support wiki page for detailed information regarding TLS)

	start communication

Thread model configuration specifies how many threads are desired to
perform Netty’s I/O operations.

	boss-threads specifies the number of threads that register incoming
connections

	worker-threads specifies the number of threads performing read /
write (+ serialization / deserialization) operations.

Architecture

Public API (openflow-protocol-api)

Set of interfaces and builders for immutable data transfer objects
representing Openflow Protocol structures.

Transfer objects and service APIs are infered from several YANG models
using code generator to reduce verbosity of definition and repeatibility
of code.

The following YANG modules are defined:

	openflow-types - defines common Openflow specific types

	openflow-instruction - defines base Openflow instructions

	openflow-action - defines base Openflow actions

	openflow-augments - defines object augmentations

	openflow-extensible-match - defines Openflow OXM match

	openflow-protocol - defines Openflow Protocol messages

	system-notifications - defines system notification objects

	openflow-configuration - defines structures used in ConfigSubsystem

This modules also reuse types from following YANG modules:

	ietf-inet-types - IP adresses, IP prefixes, IP-protocol related types

	ietf-yang-types - Mac Address, etc.

The use of predefined types is to make APIs contracts more safe, better
readable and documented (e.g using MacAddress instead of byte array…)

TCP Channel pipeline (openflow-protocol-impl)

Creates channel processing pipeline based on configuration and support.

TCP Channel pipeline.

imageopenflowjava/500px-TCPChannelPipeline.png[width=500]

Switch Connection Provider.

Implementation of connection point for other projects. Library exposes
its functionality through this class. Library can be configured, started
and shutdowned here. There are also methods for custom (de)serializer
registration.

Tcp Connection Initializer.

In order to initialize TCP connection to a device (switch), OF Plugin
calls method initiateConnection() in SwitchConnectionProvider.
This method in turn initializes (Bootstrap) server side channel towards
the device.

TCP Handler.

Represents single server that is handling incoming connections over TCP
/ TLS protocol. TCP Handler creates a single instance of TCP Channel
Initializer that will initialize channels. After that it binds to
configured InetAddress and port. When a new device connects, TCP Handler
registers its channel and passes control to TCP Channel Initializer.

TCP Channel Initializer.

This class is used for channel initialization / rejection and passing
arguments. After a new channel has been registered it calls Switch
Connection Handler’s (OF Plugin) accept method to decide if the library
should keep the newly registered channel or if the channel should be
closed. If the channel has been accepted, TCP Channel Initializer
creates the whole pipeline with needed handlers and also with
ConnectionAdapter instance. After the channel pipeline is ready, Switch
Connection Handler is notified with onConnectionReady notification.
OpenFlow Plugin can now start sending messages downstream.

Idle Handler.

If there are no messages received for more than time specified, this
handler triggers idle state notification. The switch idle timeout is
received as a parameter from ConnectionConfiguration settings. Idle
State Handler is inactive while there are messages received within the
switch idle timeout. If there are no messages received for more than
timeout specified, handler creates SwitchIdleEvent message and sends it
upstream.

TLS Handler.

It encrypts and decrypts messages over TLS protocol. Engaging TLS
Handler into pipeline is matter of configuration (<tls> tag). TLS
communication is either unsupported or required. TLS Handler is
represented as a Netty’s SslHandler.

OF Frame Decoder.

Parses input stream into correct length message frames for further
processing. Framing is based on Openflow header length. If received
message is shorter than minimal length of OpenFlow message (8 bytes), OF
Frame Decoder waits for more data. After receiving at least 8 bytes the
decoder checks length in OpenFlow header. If there are still some bytes
missing, the decoder waits for them. Else the OF Frame Decoder sends
correct length message to next handler in the channel pipeline.

OF Version Detector.

Detects version of used OpenFlow Protocol and discards unsupported
version messages. If the detected version is supported, OF Version
Detector creates VersionMessageWrapper object containing the
detected version and byte message and sends this object upstream.

OF Decoder.

Chooses correct deserilization factory (based on message type) and
deserializes messages into generated DTOs (Data Transfer Object). OF
Decoder receives VersionMessageWrapper object and passes it to
DeserializationFactory which will return translated DTO.
DeserializationFactory creates MessageCodeKey object with
version and type of received message and Class of object that will be
the received message deserialized into. This object is used as key when
searching for appropriate decoder in DecoderTable. DecoderTable
is basically a map storing decoders. Found decoder translates received
message into DTO. If there was no decoder found, null is returned. After
returning translated DTO back to OF Decoder, the decoder checks if it is
null or not. When the DTO is null, the decoder logs this state and
throws an Exception. Else it passes the DTO further upstream. Finally,
the OF Decoder releases ByteBuf containing received and decoded byte
message.

OF Encoder.

Chooses correct serialization factory (based on type of DTO) and
serializes DTOs into byte messages. OF Encoder does the opposite than
the OF Decoder using the same principle. OF Encoder receives DTO, passes
it for translation and if the result is not null, it sends translated
DTO downstream as a ByteBuf. Searching for appropriate encoder is done
via MessageTypeKey, based on version and class of received DTO.

Delegating Inbound Handler.

Delegates received DTOs to Connection Adapter. It also reacts on
channelInactive and channelUnregistered events. Upon one of these events
is triggered, DelegatingInboundHandler creates DisconnectEvent message
and sends it upstream, notifying upper layers about switch
disconnection.

Channel Outbound Queue.

Message flushing handler. Stores outgoing messages (DTOs) and flushes
them. Flush is performed based on time expired and on the number of
messages enqueued.

Connection Adapter.

Provides a facade on top of pipeline, which hides netty.io specifics.
Provides a set of methods to register for incoming messages and to send
messages to particular channel / session. ConnectionAdapterImpl
basically implements three interfaces (unified in one superinterface
ConnectionFacade):

	ConnectionAdapter

	MessageConsumer

	OpenflowProtocolService

ConnectionAdapter interface has methods for setting up listeners
(message, system and connection ready listener), method to check if all
listeners are set, checking if the channel is alive and disconnect
method. Disconnect method clears responseCache and disables consuming of
new messages.

MessageConsumer interface holds only one method: consume().
Consume() method is called from DelegatingInboundHandler. This
method processes received DTO’s based on their type. There are three
types of received objects:

	System notifications - invoke system notifications in OpenFlow Plugin
(systemListener set). In case of DisconnectEvent message, the
Connection Adapter clears response cache and disables consume()
method processing,

	OpenFlow asynchronous messages (from switch) - invoke corresponding
notifications in OpenFlow Plugin,

	OpenFlow symmetric messages (replies to requests) - create
RpcResponseKey with XID and DTO’s class set. This
RpcResponseKey is then used to find corresponding future object
in responseCache. Future object is set with success flag, received
message and errors (if any occurred). In case no corresponding future
was found in responseCache, Connection Adapter logs warning and
discards the message. Connection Adapter also logs warning when an
unknown DTO is received.

OpenflowProtocolService interface contains all rpc-methods for
sending messages from upper layers (OpenFlow Plugin) downstream and
responding. Request messages return Future filled with expected reply
message, otherwise the expected Future is of type Void.

NOTE: MultipartRequest message is the only exception. Basically it
is request - reply Message type, but it wouldn’t be able to process more
following MultipartReply messages if this was implemented as rpc (only
one Future). This is why MultipartReply is implemented as notification.
OpenFlow Plugin takes care of correct message processing.

UDP Channel pipeline (openflow-protocol-impl)

Creates UDP channel processing pipeline based on configuration and
support. Switch Connection Provider, Channel Outbound Queue and
Connection Adapter fulfill the same role as in case of TCP
connection / channel pipeline (please see above).

[image: UDP Channel pipeline]

UDP Channel pipeline

UDP Handler.

Represents single server that is handling incoming connections over UDP
(DTLS) protocol. UDP Handler creates a single instance of UDP Channel
Initializer that will initialize channels. After that it binds to
configured InetAddress and port. When a new device connects, UDP Handler
registers its channel and passes control to UDP Channel Initializer.

UDP Channel Initializer.

This class is used for channel initialization and passing arguments.
After a new channel has been registered (for UDP there is always only
one channel) UDP Channel Initializer creates whole pipeline with needed
handlers.

DTLS Handler.

Haven’t been implemented yet. Will take care of secure DTLS connections.

OF Datagram Packet Handler.

Combines functionality of OF Frame Decoder and OF Version Detector.
Extracts messages from received datagram packets and checks if message
version is supported. If there is a message received from yet unknown
sender, OF Datagram Packet Handler creates Connection Adapter for this
sender and stores it under sender’s address in UdpConnectionMap.
This map is also used for sending the messages and for correct
Connection Adapter lookup - to delegate messages from one channel to
multiple sessions.

OF Datagram Packet Decoder.

Chooses correct deserilization factory (based on message type) and
deserializes messages into generated DTOs. OF Decoder receives
VersionMessageUdpWrapper object and passes it to
DeserializationFactory which will return translated DTO.
DeserializationFactory creates MessageCodeKey object with
version and type of received message and Class of object that will be
the received message deserialized into. This object is used as key when
searching for appropriate decoder in DecoderTable. DecoderTable
is basically a map storing decoders. Found decoder translates received
message into DTO (DataTransferObject). If there was no decoder found,
null is returned. After returning translated DTO back to OF Datagram
Packet Decoder, the decoder checks if it is null or not. When the DTO is
null, the decoder logs this state. Else it looks up appropriate
Connection Adapter in UdpConnectionMap and passes the DTO to found
Connection Adapter. Finally, the OF Decoder releases ByteBuf
containing received and decoded byte message.

OF Datagram Packet Encoder.

Chooses correct serialization factory (based on type of DTO) and
serializes DTOs into byte messages. OF Datagram Packet Encoder does the
opposite than the OF Datagram Packet Decoder using the same principle.
OF Encoder receives DTO, passes it for translation and if the result is
not null, it sends translated DTO downstream as a datagram packet.
Searching for appropriate encoder is done via MessageTypeKey, based on
version and class of received DTO.

SPI (openflow-protocol-spi)

Defines interface for library’s connection point for other projects.
Library exposes its functionality through this interface.

Integration test (openflow-protocol-it)

Testing communication with simple client.

Simple client(simple-client)

Lightweight switch simulator - programmable with desired scenarios.

Utility (util)

Contains utility classes, mainly for work with ByteBuf.

Library’s lifecycle

Steps (after the library’s bundle is started):

	[1] Library is configured by ConfigSubsystem (adress, ports,
encryption, …)

	[2] Plugin injects its SwitchConnectionHandler into the Library

	[3] Plugin starts the Library

	[4] Library creates configured protocol handler (e.g. TCP Handler)

	[5] Protocol Handler creates Channel Initializer

	[6] Channel Initializer asks plugin whether to accept incoming
connection on each new switch connection

	[7] Plugin responds:

	true - continue building pipeline

	false - reject connection / disconnect channel

	[8] Library notifies Plugin with onSwitchConnected(ConnectionAdapter)
notification, passing reference to ConnectionAdapter, that will
handle the connection

	[9] Plugin registers its system and message listeners

	[10] FireConnectionReadyNotification() is triggered, announcing that
pipeline handlers needed for communication have been created and
Plugin can start communication

	[11] Plugin shutdowns the Library when desired

[image: Library lifecycle]

Library lifecycle

Statistics collection

Introduction

Statistics collection collects message statistics. Current collected
statistics (DS - downstream, US - upstream):

	DS_ENTERED_OFJAVA - all messages that entered openflowjava
(picked up from openflowplugin)

	DS_ENCODE_SUCCESS - successfully encoded messages

	DS_ENCODE_FAIL - messages that failed during encoding
(serialization) process

	DS_FLOW_MODS_ENTERED - all flow-mod messages that entered
openflowjava

	DS_FLOW_MODS_SENT - all flow-mod messages that were successfully
sent

	US_RECEIVED_IN_OFJAVA - messages received from switch

	US_DECODE_SUCCESS - successfully decoded messages

	US_DECODE_FAIL - messages that failed during decoding
(deserialization) process

	US_MESSAGE_PASS - messages handed over to openflowplugin

Karaf

In orded to start statistics, it is needed to feature:install
odl-openflowjava-stats. To see the logs one should use log:set DEBUG
org.opendaylight.openflowjava.statistics and than probably log:display
(you can log:list to see if the logging has been set). To adjust
collection settings it is enough to modify 45-openflowjava-stats.xml.

JConsole

JConsole provides two commands for the statistics collection:

	printing current statistics

	resetting statistic counters

After attaching JConsole to correct process, one only needs to go into
MBeans
tab → org.opendaylight.controller → RuntimeBean → statistics-collection-service-impl
→ statistics-collection-service-impl → Operations to be able to use
this commands.

TLS Support

Note

see OpenFlow Plugin Developper Guide

Extensibility

Introduction

Entry point for the extensibility is SwitchConnectionProvider.
SwitchConnectionProvider contains methods for (de)serializer
registration. To register deserializer it is needed to use
.register*Deserializer(key, impl). To register serializer one must use
.register*Serializer(key, impl). Registration can occur either during
configuration or at runtime.

NOTE: In case when experimenter message is received and no
(de)serializer was registered, the library will throw
IllegalArgumentException.

Basic Principle

In order to use extensions it is needed to augment existing model and
register new (de)serializers.

Augmenting the model: 1. Create new augmentation

Register (de)serializers: 1. Create your (de)serializer 2. Let it
implement OFDeserializer<> / OFSerializer<> - in case the
structure you are (de)serializing needs to be used in Multipart
TableFeatures messages, let it implement HeaderDeserializer<> /
HeaderSerializer 3. Implement prescribed methods 4. Register your
deserializer under appropriate key (in our case
ExperimenterActionDeserializerKey) 5. Register your serializer under
appropriate key (in our case ExperimenterActionSerializerKey) 6.
Done, test your implementation

NOTE: If you don’t know what key should be used with your
(de)serializer implementation, please visit Registration
keys page.

Example

Let’s say we have vendor / experimenter action represented by this
structure:

struct foo_action {
 uint16_t type;
 uint16_t length;
 uint32_t experimenter;
 uint16_t first;
 uint16_t second;
 uint8_t pad[4];
}

First, we have to augment existing model. We create new module, which
imports “openflow-types.yang” (don’t forget to update your
pom.xml with api dependency). Now we create foo action identity:

import openflow-types {prefix oft;}
identity foo {
 description "Foo action description";
 base oft:action-base;
}

This will be used as type in our structure. Now we must augment existing
action structure, so that we will have the desired fields first and
second. In order to create new augmentation, our module has to import
“openflow-action.yang”. The augment should look like this:

import openflow-action {prefix ofaction;}
augment "/ofaction:actions-container/ofaction:action" {
 ext:augment-identifier "foo-action";
 leaf first {
 type uint16;
 }
 leaf second {
 type uint16;
 }
 }

We are finished with model changes. Run mvn clean compile to generate
sources. After generation is done, we need to implement our
(de)serializer.

Deserializer:

public class FooActionDeserializer extends OFDeserializer<Action> {
 @Override
 public Action deserialize(ByteBuf input) {
 ActionBuilder builder = new ActionBuilder();
 input.skipBytes(SIZE_OF_SHORT_IN_BYTES); *// we know the type of action*
 builder.setType(Foo.class);
 input.skipBytes(SIZE_OF_SHORT_IN_BYTES); *// we don't need length*
 *// now create experimenterIdAugmentation - so that openflowplugin can
 differentiate correct vendor codec*
 ExperimenterIdActionBuilder expIdBuilder = new ExperimenterIdActionBuilder();
 expIdBuilder.setExperimenter(new ExperimenterId(input.readUnsignedInt()));
 builder.addAugmentation(ExperimenterIdAction.class, expIdBuilder.build());
 FooActionBuilder fooBuilder = new FooActionBuilder();
 fooBuilder.setFirst(input.readUnsignedShort());
 fooBuilder.setSecond(input.readUnsignedShort());
 builder.addAugmentation(FooAction.class, fooBuilder.build());
 input.skipBytes(4); *// padding*
 return builder.build();
 }
}

Serializer:

public class FooActionSerializer extends OFSerializer<Action> {
 @Override
 public void serialize(Action action, ByteBuf outBuffer) {
 outBuffer.writeShort(FOO_CODE);
 outBuffer.writeShort(16);
 *// we don't have to check for ExperimenterIdAction augmentation - our
 serializer*
 *// was called based on the vendor / experimenter ID, so we simply write
 it to buffer*
 outBuffer.writeInt(VENDOR / EXPERIMENTER ID);
 FooAction foo = action.getAugmentation(FooAction.class);
 outBuffer.writeShort(foo.getFirst());
 outBuffer.writeShort(foo.getSecond());
 outBuffer.writeZero(4); //write padding
 }
}

Register both deserializer and serializer:
SwitchConnectionProvider.registerDeserializer(new
ExperimenterActionDeserializerKey(0x04, VENDOR / EXPERIMENTER ID),
new FooActionDeserializer());
SwitchConnectionProvider.registerSerializer(new
ExperimenterActionSerializerKey(0x04, VENDOR / EXPERIMENTER ID),
new FooActionSerializer());

We are ready to test our implementation.

NOTE: Vendor / Experimenter structures define only vendor /
experimenter ID as common distinguisher (besides action type). Vendor /
Experimenter ID is unique for all vendor messages - that’s why vendor is
able to register only one class under
ExperimenterAction(De)SerializerKey. And that’s why vendor has to switch
/ choose between his subclasses / subtypes on his own.

Detailed walkthrough: Deserialization extensibility

External interface & class description.

OFGeneralDeserializer:

	OFDeserializer<E extends DataObject>

	deserialize(ByteBuf) - deserializes given ByteBuf

	HeaderDeserializer<E extends DataObject>

	deserializeHeaders(ByteBuf) - deserializes only E headers (used
in Multipart TableFeatures messages)

DeserializerRegistryInjector

	injectDeserializerRegistry(DeserializerRegistry) - injects
deserializer registry into deserializer. Useful when custom
deserializer needs access to other deserializers.

NOTE: DeserializerRegistryInjector is not OFGeneralDeserializer
descendand. It is a standalone interface.

MessageCodeKey and its descendants These keys are used as for
deserializer lookup in DeserializerRegistry. MessageCodeKey should is
used in general, while its descendants are used in more special cases.
For Example ActionDeserializerKey is used for Action deserializer lookup
and (de)registration. Vendor is provided with special keys, which
contain only the most necessary fields. These keys usually start with
“Experimenter” prefix (MatchEntryDeserializerKey is an exception).

MessageCodeKey has these fields:

	short version - Openflow wire version number

	int value - value read from byte message

	Class<?> clazz - class of object being creating

	[1] The scenario starts in a custom bundle which wants to extend
library’s functionality. The custom bundle creates deserializers
which implement exposed OFDeserializer / HeaderDeserializer
interfaces (wrapped under OFGeneralDeserializer unifying super
interface).

	[2] Created deserializers are paired with corresponding
ExperimenterKeys, which are used for deserializer lookup. If you
don’t know what key should be used with your (de)serializer
implementation, please visit Registration
keys page.

	[3] Paired deserializers are passed to the OF Library via
SwitchConnectionProvider.registerCustomDeserializer(key,
impl). Library registers the deserializer.

	While registering, Library checks if the deserializer is an
instance of DeserializerRegistryInjector interface. If yes,
the DeserializerRegistry (which stores all deserializer
references) is injected into the deserializer.

This is particularly useful when the deserializer needs access to other
deserializers. For example IntructionsDeserializer needs access to
ActionsDeserializer in order to be able to process
OFPIT_WRITE_ACTIONS/OFPIT_APPLY_ACTIONS instructions.

[image: Deserialization scenario walkthrough]

Deserialization scenario walkthrough

Detailed walkthrough: Serialization extensibility

External interface & class description.

OFGeneralSerializer:

	OFSerializer<E extends DataObject>

	serialize(E,ByteBuf) - serializes E into given ByteBuf

	HeaderSerializer<E extends DataObject>

	serializeHeaders(E,ByteBuf) - serializes E headers (used in
Multipart TableFeatures messages)

SerializerRegistryInjector *
injectSerializerRegistry(SerializerRegistry) - injects serializer
registry into serializer. Useful when custom serializer needs access to
other serializers.

NOTE: SerializerRegistryInjector is not OFGeneralSerializer
descendand.

MessageTypeKey and its descendants These keys are used as for
serializer lookup in SerializerRegistry. MessageTypeKey should is used
in general, while its descendants are used in more special cases. For
Example ActionSerializerKey is used for Action serializer lookup and
(de)registration. Vendor is provided with special keys, which contain
only the most necessary fields. These keys usually start with
“Experimenter” prefix (MatchEntrySerializerKey is an exception).

MessageTypeKey has these fields:

	short version - Openflow wire version number

	Class<E> msgType - DTO class

Scenario walkthrough

	[1] Serialization extensbility principles are similar to the
deserialization principles. The scenario starts in a custom bundle.
The custom bundle creates serializers which implement exposed
OFSerializer / HeaderSerializer interfaces (wrapped under
OFGeneralSerializer unifying super interface).

	[2] Created serializers are paired with their ExperimenterKeys, which
are used for serializer lookup. If you don’t know what key should be
used with your serializer implementation, please visit Registration
keys page.

	[3] Paired serializers are passed to the OF Library via
SwitchConnectionProvider.registerCustomSerializer(key, impl).
Library registers the serializer.

	While registering, Library checks if the serializer is an instance of
SerializerRegistryInjector interface. If yes, the
SerializerRegistry (which stores all serializer references) is
injected into the serializer.

This is particularly useful when the serializer needs access to other
deserializers. For example IntructionsSerializer needs access to
ActionsSerializer in order to be able to process
OFPIT_WRITE_ACTIONS/OFPIT_APPLY_ACTIONS instructions.

[image: Serialization scenario walkthrough]

Serialization scenario walkthrough

Internal description

SwitchConnectionProvider SwitchConnectionProvider constructs and
initializes both deserializer and serializer registries with default
(de)serializers. It also injects the DeserializerRegistry into the
DeserializationFactory, the SerializerRegistry into the
SerializationFactory. When call to register custom (de)serializer is
made, SwitchConnectionProvider calls register method on appropriate
registry.

DeserializerRegistry / SerializerRegistry Both registries contain
init() method to initialize default (de)serializers. Registration checks
if key or (de)serializer implementation are not null. If at least
one of the is null, NullPointerException is thrown. Else the
(de)serializer implementation is checked if it is
(De)SerializerRegistryInjector instance. If it is an instance of
this interface, the registry is injected into this (de)serializer
implementation.

GetSerializer(key) or GetDeserializer(key) performs registry
lookup. Because there are two separate interfaces that might be put into
the registry, the registry uses their unifying super interface.
Get(De)Serializer(key) method casts the super interface to desired type.
There is also a null check for the (de)serializer received from the
registry. If the deserializer wasn’t found, NullPointerException
with key description is thrown.

Registration keys

Deserialization.

Possible openflow extensions and their keys

There are three vendor specific extensions in Openflow v1.0 and eight in
Openflow v1.3. These extensions are registered under registration keys,
that are shown in table below:

	Extension type

	OpenFlo
w

	Registration key

	Utility class

	Vendor message

	1.0

	ExperimenterIdDeserializerKe
y(1,
experimenterId,
ExperimenterMessage.class)

	ExperimenterDeseriali
zerKeyFactory

	Action

	1.0

	ExperimenterActionDeserializ
erKey(1,
experimenter ID)

	.

	Stats message

	1.0

	ExperimenterMultipartReplyMe
ssageDeserializerKey(1,
experimenter ID)

	ExperimenterDeseriali
zerKeyFactory

	Experimenter
message

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
ExperimenterMessage.class)

	ExperimenterDeseriali
zerKeyFactory

	Match entry

	1.3

	MatchEntryDeserializerKey(4,
(number) ${oxm_class},
(number) ${oxm_field});

	.

	
	
	key.setExperimenterId(experi
menter
ID);

	.

	Action

	1.3

	ExperimenterActionDeserializ
erKey(4,
experimenter ID)

	.

	Instruction

	1.3

	ExperimenterInstructionDeser
ializerKey(4,
experimenter ID)

	.

	Multipart

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
MultipartReplyMessage.class)

	ExperimenterDeseriali
zerKeyFactory

	Multipart -
Table features

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
TableFeatureProperties.class
)

	ExperimenterDeseriali
zerKeyFactory

	Error

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
ErrorMessage.class)

	ExperimenterDeseriali
zerKeyFactory

	Queue property

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
QueueProperty.class)

	ExperimenterDeseriali
zerKeyFactory

	Meter band
type

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
MeterBandExperimenterCase.cl
ass)

	ExperimenterDeseriali
zerKeyFactory

Table: Deserialization

Serialization.

Possible openflow extensions and their keys

There are three vendor specific extensions in Openflow v1.0 and seven
Openflow v1.3. These extensions are registered under registration keys,
that are shown in table below:

	Extension type

	OpenFlo
w

	Registration key

	Utility class

	Vendor message

	1.0

	ExperimenterIdSerializerKey<
>(1,
experimenterId,
ExperimenterInput.class)

	ExperimenterSerialize
rKeyFactory

	Action

	1.0

	ExperimenterActionSerializer
Key(1,
experimenterId, sub-type)

	.

	Stats message

	1.0

	ExperimenterMultipartRequest
SerializerKey(1,
experimenter ID)

	ExperimenterSerialize
rKeyFactory

	Experimenter
message

	1.3

	ExperimenterIdSerializerKey<
>(4,
experimenterId,
ExperimenterInput.class)

	ExperimenterSerialize
rKeyFactory

	Match entry

	1.3

	MatchEntrySerializerKey<>(4,
(class) ${oxm_class},
(class) ${oxm_field});

	.

	
	
	key.setExperimenterId(experi
menter
ID)

	.

	Action

	1.3

	ExperimenterActionSerializer
Key(4,
experimenterId, sub-type)

	.

	Instruction

	1.3

	ExperimenterInstructionSeria
lizerKey(4,
experimenter ID)

	.

	Multipart

	1.3

	ExperimenterIdSerializerKey<
>(4,
experimenterId,
MultipartRequestExperimenter
Case.class)

	ExperimenterSerialize
rKeyFactory

	Multipart -
Table features

	1.3

	ExperimenterIdSerializerKey<
>(4,
experimenterId,
TableFeatureProperties.class
)

	ExperimenterSerialize
rKeyFactory

	Meter band
type

	1.3

	ExperimenterIdSerializerKey<
>(4,
experimenterId,
MeterBandExperimenterCase.cl
ass)

	ExperimenterSerialize
rKeyFactory

Table: Serialization

Openflowplugin Design Specifications

Contents:

	Reconciliation Framework

	Group Command OFPGC_ADD_OR_MOD support

	Openflow Bundle Reconciliation

	Southbound CLI

	Reconciliation CLI and Alarm

	Arbitrator Reconciliation using OpenFlow bundle

	Device Connection Rate Limiter

	Openflowplugin Event Logging Using Log4j

Table of Contents

	Reconciliation Framework

	Problem description

	Use Cases

	Proposed change

	Implementation Details

	ReconciliationManager

	ReconciliationNotificationListener

	Priority

	Result State - Intent Action

	Name

	ReconciliationNotificationListener

	Command Line Interface (CLI)

	Other Changes

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Reconciliation Framework

Reconciliation Framework Reviews [https://git.opendaylight.org/gerrit/#/q/topic:bug/8902]

This feature aims to overcome the drawbacks of the current reconciliation implementation. As part of this enhancement,
reconciliation framework will be introduced which will coordinate the reconciliation across various applications.

Applications should register themself with reconciliation framework with a specific priority.
Application should decide the priority and the reconciliation framework will use it for executing in an priority.

Problem description

When a switch connected to controller, the current ODL reconciliation implementation pushes all the
table/meters/groups/flows from the inventory configuration datastore to the switch.

When the switch is connected, all the applications including FRM(Forwarding Rules Manager) will receive the node added
DTCN(Data Tree Change Listener) and starts pushing the flows for the openflow switch. FRM reconciliation will read the
data from the config and starts pushing the flows one by one.
In the meantime, applications can react to the node added DTCN change and will start pushing
the flows through the config DS. With this, there is a high chance the application flow can be overwritten by the old
flows by FRM via reconciliation.

With framework, the problem will be avoided by doing the reconciliation for all the registered services including FRM
and then the openflow switch will be submitted to the DS. With this, applications won’t receive the node added DTCN until
registered applications are done with reconciliation for the switch.

The current reconciliation mechanism lacks an ordered execution of tasks across multiple applications resulting
in the forwarding plane not correctly reflecting the changes in the control plane.
The issue becomes more prominent in case of multi-application scenarios, resulting in errors.

Use Cases

Priority based/Ordered Coordination of Reconciliation across multiple applications.

Proposed change

Reconciliation Framework will be introduced, framework will coordinate the reconciliation across applications.
The Openflow switch won’t be advertised to application until Openflow switch is in KNOWN state.

KNOWN state controller and switch state should be in sync(reconciliation), once the switch connects.

Application participating in reconciliation needs to register with framework.

	Application can either be FRM, FRS or any other application(s).

	Application(s) registering with Reconciliation module is encouraged since: Applications would know the right
Flows/Groups/Meters which needs to be replayed (Add/Delete/Update). FRM/FRS(Forwarding Rules Sync) would not have
application view of flows/group, it would blindly replay the flows/groups. Also flows having idle/hard timeout
can be gracefully handled by application rather than FRM/FRS.

As applications register with reconciliation module

	Reconciliation module maintains the numbers of application registered in an order based on the priority.

	Applications will be executed in the priority order of higher to lower, 1 - Highest n - lowest

	Reconciliation will be triggered as per the priority, applications with same priority will be processed in parallel,
once the higher priority application completed, next priority of applications will be processed.

Openflow switch establishes connections with openflowplugin.

	Openflow switch sends connection request.

	Openflowplugin accepts connection and than establishes the connection.

Openflowplugin after establishing the connection with openflow switch, elects the mastership and invokes reconciliation
framework through ReconciliationFrameworkEvent onDevicePrepared.

	Before invoking the reconciliation API, all the RPCs are registered with MD-SAL by openflowplugin.

	Reconciliation framework will register itself with the MastershipChangeServiceManager.

All registered applications would be indicated to start the reconciliation.
* DeviceInfo would be passed for the API/Event and it contains all the information needed by application.

Application(s) would than fetch the flows / groups for that particular Node, which needs to be replayed.

Application(s) would than replay the selected flows / group on to the switch.

Application(s) would also wait for error from switch, for pre-defined time.

Application(s) would inform the reconciliation status to reconciliation module.

Reconciliation framework would co-relate result status from all the applications and decides the final status.
If success, framework will report back DO_NOTHING and in case of failure it will be DISCONNECT.

Based on result state, openflowplugin should do the following

	On success case, openflowplugin should continue with the openflow switch –> write the switch to the operational datastore.

	On failure case, openflowplugin should disconnect the openflow switch.

	When the switch reconnects, the same steps will be followed again.

When there is a disconnect/mastership change while the reconciliation is going on, openflowplugin should notify the
framework and the framework should halt the current reconciliation.

Implementation Details

Following new interface will be introduced from Reconciliation framework (RF).

	ReconciliationManager

	ReconciliationNotificationListener

ReconciliationManager

/* Application who are interested in reconciliation should use this API to register themself to the RF */
/* NotificationRegistration will be return to the registered application, who needs to take of closing the registration */
NotificationRegistration registerService(ReconciliationNotificationListener object);

/* API exposed by RF for get list of registered services */
Map<Integer, List<ReconciliationNotificationListener>> getRegisteredServices();

ReconciliationNotificationListener

/* This method will be a callback from RF to start the application reconciliation */
ListenableFuture<Boolean> startReconciliation(DeviceInfo deviceInfo);

/* This method will be a callback from RF when openflow switch disconnects during reconciliation */
ListenableFuture<Boolean> endReconciliation(DeviceInfo deviceInfo);

/* Priority of the application */
int getPriority();

/* Name of the application */
String getName();

/* Application's intent when the application's reconciliation fails */
ResultState getResultState();

Priority

Framework will maintain the list of registered applications in an order based on the priority. Applications having the
same priority will be executed in parallel and once those are done. Next priority applications will be called.
Consider 2 applications, A and B. A is handling of programming groups and flows and B is handling of programming
flows which is dependent of the groups programmed by A. So, B has to register with lower priority than A.

Application don’t do any conflict resolution or guarantee any specific order among the application registered at the
same priority level.

Result State - Intent Action

When the application fails to reconcile, what is the action that framework should take.

	DO_NOTHING - continue with the next reconciliation

	DISCONNECT - disconnect the switch (reconciliation will start again once the switch connects back)

Name

Name of the application who wants to register for reconciliation

ReconciliationNotificationListener

Applications who wants to register should implement ReconciliationNotificationListener interface.

	ReconciliationNotificationListener having api’s like startReconciliation and endReconciliation

	startReconciliation –> applications can take action to trigger reconciliation

	endReconciliation –> application can take action to cancel their current reconcile tasks

Command Line Interface (CLI)

CLI interface will be provided to get all the registered services and their status

	List of registered services

	Status of each application for respective openflow switch

Other Changes

Pipeline changes

None.

Yang changes

None

Configuration impact

None

Clustering considerations

None

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release

Nitrogen.

Alternatives

N.A.

Usage

Features to Install

Will be updated

REST API

None

CLI

None

Implementation

Assignee(s)

	Primary assignee:
	
	Prasanna Huddar <prasanna.k.huddar@ericsson.com>

	Arunprakash D <d.arunprakash@ericsson.com>

	Gobinath Suganthan <gobinath@ericsson.com>

Other contributors:

Work Items

N.A.

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

Unit Tests

None

Integration Tests

None

CSIT

None

Documentation Impact

This feature will not require any change in User Guide.

References

[1] Openflowplugin reconciliation enhancements [https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:Reconciliation#Future_Enhancements]

Table of Contents

	Group Command OFPGC_ADD_OR_MOD support

	Problem description

	Reconciliation

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	CSIT

	Documentation Impact

	References

Group Command OFPGC_ADD_OR_MOD support

Group ADD-MOD Reviews [https://git.opendaylight.org/gerrit/#/q/topic:group-add-mod]

This spec addresses following enhancement in Openflowplugin module:

Addition of new command OFPGC_ADD_OR_MOD for OFPT_GROUP_MOD message that adds a new group that
does not exist (like ADD) or modifies an existing groups (like MODIFY).

OFPGC_ADD_OR_MOD group command will be supported only for OVS2.6 and above.

Problem description

In OpenFlow 1.x the Group Mod commands OFPGC_ADD and OFPGC_MODIFY have strict semantics:
ADD fails if the group exists, while MODIFY fails if the group does not exist. This requires
a controller to exactly know the state of the switch when programming a group in order not run
the risk of getting an OFP Error message in response. This is hard to achieve and maintain at
all times in view of possible switch and controller restarts or other connection losses between
switch and controller.

Due to the un-acknowledged nature of the Group Mod message programming groups safely and
efficiently at the same time is virtually impossible as the controller has to either query
the existence of the group prior to each Group Mod message or to insert a Barrier Request/Reply
after every group to be sure that no Error can be received at a later stage and require a
complicated roll-back of any dependent actions taken between the failed Group Mod and the Error.

Reconciliation

The current implementation of reconciliation is to read the complete set of groups from config inventory
and start pushing the groups one by one. This will always end up in GROUP_ALREADY_EXITS error as the
reconciliation will always send GROUP ADD.

This can be avoided by reading the groups from switch and compare with the list from inventory config
and push only the delta. This is an overhead comparision and can be simply avoided by updating the
group command as OFPGC_ADD_OR_MOD.

Use Cases

	Normal group provisioning via FRM: ADD/UPDATE group should send new command OFPGC_ADD_OR_MOD.

	Reconciliation of groups should send OFPGC_ADD_OR_MOD. Current implementation of openflowplugin will
always send group add OFPGC_ADD irrespective of the state of the switch. This results in failure with
GROUP_ALREADY_EXISTS error.

Proposed change

The implementation of OFPGC_ADD_OR_MOD command is specific to OVS2.6 and above and the same can be extended
to other openflow switch based on the group command support by them.

New configuration parameter will be introduced in default-openflow-connection-config.xml and
legacy-openflow-connection-config.xml, which can be modified by users to enable the GROUP ADD MOD support.

default(legacy)-openflow-connection-config.xml

<group-add-mod-enabled>false</group-add-mod-enabled>

By default the group-add-mod-enabled flag will be kept as false, which means existing group mod commands
OFPGC_ADD/OFPGC_MODIFY will be used.

GroupMessageSerializer will use the above flag to determine which group command should be set for group add/update.
The above class is applicable for single layer serialization and the for multi-layer serialization changes will be
done in openflowjava GroupModInputMessageFactory java classs.

When flag is enabled, openflowplugin will always send OFPGC_ADD_OR_MOD (32768) for both group add and modify.

Pipeline changes

None

Yang changes

Below yang changes will be done in order to provide configuration support for group-add-mod-enabled field.

openflow-switch-connection-config.yang

leaf group-add-mod-enabled {
 description "Group Add Mod Enabled";
 type boolean;
 default false;
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Unknown

Targeted Release

Oxygen

Alternatives

None

Usage

No external rpc/api will be provided. The implementation is internal to openflowplugin.

User can enable OFPGC_ADD_OR_MOD by changing the value to true in below files,

default(legacy)-openflow-connection-config.xml

default-openflow-connection-config.xml <group-add-mod-enabled>false</group-add-mod-enabled>
legacy-openflow-connection-config.xml <group-add-mod-enabled>false</group-add-mod-enabled>

REST API

No new REST API is being added.

CLI

No new CLI being added.

Implementation

Assignee(s)

	Primary assignee:
	Arunprakash D <d.arunprakash@ericsson.com>

	Other contributors:
	Gobinath Suganthan <gobinath@ericsson.com>

Work Items

	Implementation of GROUP ADD MOD support

	Addition of configuration flag to enable/disable group add mod command

Dependencies

No new dependencies.

Testing

Unit Tests

	Verify group provisioning via FRM with group-add-mod-supported disabled

	Verify group provisioning via FRM with group-add-mod-supported enabled

	Verify reconciliation via FRM with with group-add-mod-supported disabled

	Verify reconciliation via FRM with with group-add-mod-supported enabled

CSIT

CSIT test cases will be added in future

Documentation Impact

None

References

Openvswitch ADD_OR_MOD [https://github.com/openvswitch/ovs/commit/88b87a36123e5ce3704b5e79950e83651db43ef7]

Table of Contents

	Openflow Bundle Reconciliation

	Problem description

	Bundle Reconciliation

	Bundle Concepts

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	CSIT

	Documentation Impact

	References

Openflow Bundle Reconciliation

Bundle Reconciliation Review [https://git.opendaylight.org/gerrit/#/c/60520/]

This spec addresses following enhancement in Openflowplugin module:

Addition of new reconciliation mechanism in openflowplugin using openflow bundles.

Bundle reconciliation will be supported from OVS2.6 and above.

Problem description

Current reconciliation mechanism exists in FRM will read the config inventory data and push all the groups and flows
via group and flow add messages and this mechanism is having the following limitations,

	Group add during reconcilation will fail with GROUP_ALREADY_EXISTS error

	Stale flows won’t be removed from openflow switch after reconciliation. This leads to stale flow aggregation after
every controller version upgarde.

	Datapath traffic will get impacted as the flows will get replaced during reconciliation window.

Bundle Reconciliation

Reconciliation using openflow bundles will overcome all the above mentioned limitations. Mainly there will be minimal
or no datapath traffic hit.

Bundle Concepts

A bundle is a sequence of OpenFlow requests from the controller that is applied as a single OpenFlow operation.
The first goal of bundles is to group related state changes on a switch so that all changes are applied together
or that none of them is applied. The second goal is to better synchronise changes across a set of OpenFlow switches,
bundles can be prepared and pre-validated on each switch and applied at the same time.

A bundle is specified as all controllers messages encoded with the same bundle_id on a specific controller connection.
Messages part of the bundle are encapsulated in a Bundle Add message, the payload of the Bundle Add message is
formatted like a regular OpenFlow messages and has the same semantic. The messages part of a bundle are pre-validated
as they are stored in the bundle, minimising the risk of errors when the bundle is applied. The applications of the
message included in the Bundle Add message is postponed to when the bundle is committed.

A switch is not required to accept arbitrary messages in a bundle, a switch may not accept some message types in
bundles, and a switch may not allow all combinations of message types to be bundled together. For example, a switch
should not allow to embed a bundle message within a Bundle Add message. At a minimum, a switch must be able to
support a bundle of multiple flow-mods and port-mods in any order.

When a bundle is opened, modifications are saved into a temporary staging area without taking effect. When the bundle
is committed, the changes in the staging area are applied to the state (e.g. tables) used by the switch. If an error
occurs in one modification, no change is applied to the state.

Use Cases

	Reconciliation using openflow bundles when controller restarts

	Reconciliation using openflow bundles when openflow switch restarts

Proposed change

Bundle reconciliation will be supported by ovs2.6 and above version or any openflow switch with bundles support.

Bundle reconciliation will be disabled by default and user has to manually enable it when needed by making a
configuration change. New configuration parameter will be introduced in openflowplugin.cfg to support the same.

openflowplugin.cfg

#
Bundle reconciliation can be enabled by making this flag to true.
By default bundle reconciliation is disabled and reconciliation happens
via normal flow/group mods.
NOTE: This option will be effective with disable_reconciliation=false.
#
bundle-based-reconciliation-enabled=false

By default bundle-based-reconciliation-enabled flag will be kept as false, which means reconciliation will happen via
flow/group mod commands.

Following steps will be executed in order to achieve bundle reconciliation,

	Send open bundle message to the openflow switch

	Send delete all flows bundle message

	Send delete all groups bundle message

	Read flows and groups from config inventory

	Push groups via bundle message

	Push flows via bundle message

	Send commit bundle message to the openflow switch

Pipeline changes

None

Yang changes

Below yang changes will be done in order to provide configuration support for bundle-based-reconciliation-enabled field.

forwardingrules-manager-config.yang

leaf bundle-based-reconciliation-enabled {
 type boolean;
 default false;
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Unknown

Targeted Release

Oxygen

Alternatives

None

Usage

No external rpc/api will be provided. The implementation is internal to openflowplugin.

User can enable bundles reconciliation by changing the value to true in openflowplugin.cfg

openflowplugin.cfg

#
Bundle reconciliation can be enabled by making this flag to true.
By default bundle reconciliation is disabled and reconciliation happens
via normal flow/group mods.
NOTE: This option will be effective with disable_reconciliation=false.
#
bundle-based-reconciliation-enabled=true

REST API

No new REST API is being added.

CLI

No new CLI being added.

Implementation

Assignee(s)

	Primary assignee:
	Arunprakash D <d.arunprakash@ericsson.com>

	Other contributors:
	Sunil Kumar G <sunil.g.kumar@ericsson.com>

Suja T <suja.t@ericsson.com>

Work Items

	Implementation of bundle reconciliation

	Addition of configuration flag to enable/disable bundle reconciliation

Dependencies

No new dependencies.

Testing

Unit Tests

	Verify bundle reconciliation for controller restart

	Verify bundle reconciliation for openflow switch restart

CSIT

CSIT test cases will be added in future

Documentation Impact

None

References

[1] https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:Bundles_extension_support

[2] https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:Bundles_usage

Table of Contents

	Southbound CLI

	Problem description

	Southbound CLI

	Use Cases

	Proposed change

	Yang changes

	Targeted Release

	Alternatives

	Usage

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	CSIT

	Documentation Impact

	References

Southbound CLI

Southbound CLI Reviews [https://git.opendaylight.org/gerrit/#/c/63521/]

This spec addresses following enhancement in Openflowplugin module:

Addition of new Karaf feature odl-openflowplugin-app-southbound-cli under openflowplugin module that provides useful
CLIs for users. This feature won’t be part of any existing openflowplugin feature and user needs to explicitly install
it in addition to the existing features.

Problem description

Currently there is no way of getting the formatted list of openflow nodes connected to the OpenDaylight controller. User
has to fetch operational inventory using Restconf and search for all the connected nodes. Even to get the list of ports
available under a OpenFlow node, user need to search the entire inventory dump. From user experience perspective it’s
not really very helpful, and at scale fetching the entire inventor from data store can cause CPU spike for the
controller because of the huge data present under inventory tree.

Southbound CLI

New Karaf feature is developed that will provide command line interface to the user using which user can retrieving
the list of connected OpenFlow nodes and the ports available under each OpenFlow node.

Use Cases

	List of all OpenFlow node(s) connected to the OpenDaylight controller in either standalone or cluster environment.

	List ports information available under a connected OpenFlow node

Proposed change

New karaf feature odl-openflowplugin-app-southbound-cli will be added and it will not be part of any existing
openflowplugin feature. User will have to explicitly install the feature to get the available CLIs.

Following 2 CLIs will be added:

	openflow:getallnodes

	openflow:shownode

openflow:getallnodes will display information like NodeId and NodeName(datapath description) for all the connected
nodes.

openflow:shownode will display information like NodeId, NodeName(datapath description) and Ports for a given
openflow node.

Yang changes

None

Targeted Release

Oxygen

Alternatives

Use RestConf to fetch entire operational inventory and parse through it.

Usage

Install odl-openflowplugin-app-southbound-cli feature as it is not part of any existing openflowplugin features.

List the connected openflow nodes under odl controller either in standalone or cluster environment. In clustered
environment user need to install this feature on all the three nodes if it wants to use any node to run these CLI
commands, but user also can choose to install it on a dedicated node only if that’s the master node to run CLI commands.
This feature can be install at any point of time during or after controller start.

openflow:getallnodes

opendaylight-user@root>openflow:getallnodes
Number of nodes: 1
NodeId NodeName

--
137313212546623 None

List the available ports under openflow node.

openflow:shownode

opendaylight-user@root>openflow:shownode -d 137313212546623
OFNode Name Ports
--
137313212546623 None br-int

Implementation

Assignee(s)

Primary assignee:
* Arunprakash D <d.arunprakash@ericsson.com>

Contributors:
* Gobinath Suganthan <gobinath@ericsson.com>

Work Items

	Implementation of cli to list the connected openflow nodes across standalone or clustered environment.

	Implementation of cli to list the ports available under openflow node.

Dependencies

No new dependencies.

Testing

Unit Tests

	Verify CLI to list all the connected openflow nodes

	Verify CLI to list all the ports under openflow node

CSIT

None

Documentation Impact

None

References

None

Table of Contents

	Reconciliation CLI and Alarm

	Problem description

	Reconciliation

	Reconciliation Alarm

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Targeted Release

	Alternatives

	REST API

	Usage

	CLI:

	REST:

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	CSIT

	Documentation Impact

	References

Reconciliation CLI and Alarm

This spec addresses following enhancement in Openflowplugin module:

Addition of user triggered reconciliation via karaf cli command or rpc in Openflowplugin.

Problem description

Whenever there is a state (flow/group) mismatch between config inventory and Openflow switch, user has to either restart
the Openflow switch or odl controller. This will sync the state again between odl controller and Openflow switch.

Reconciliation

User can trigger reconciliation to sync the state between controller and Openflow switch. It can be done either via
karaf cli command or rest rpc.

Reconciliation Alarm

Reconciliation alarm will be generated whenever user trigger the reconciliation via cli command or rest rpc and the
same will be cleared once reconciliation is completed.

Use Cases

	Trigger reconciliation for a single Openflow switch

	Trigger reconciliation for a list of Openflow switch

	Trigger reconciliation for all the connected Openflow switches

	Raise alarm whenever user triggers reconciliation for a Openflow switch

	Clear the alarm when the reconciliation completed for a Openflow swtich

Proposed change

Karaf CLI command will be added to trigger reconciliation for the given Openflow nodes.
Rest rpc will be exposed to trigger reconciliation for the given Openflow nodes.

Feature odl-openflowplugin-app-southbound-cli should be installed in order to get these karaf cli and rest rpc.
This feature is not part of any existing openflowplugin features and has to be installed explicitly by user.

Ref: Southbound CLI [https://docs.opendaylight.org/projects/openflowplugin/en/latest/specs/southbound-cli.html]

Below two CLIs will be added,

	openflow:reconcile

	openflow:getreconciliationcount

Pipeline changes

None

Yang changes

reconciliation.yang

container reconciliation-counter {
 description "Number of reconciliation triggered for openflow nodes";
 config false;
 list reconcile-counter {
 key node-id;
 uses counter;
 }
}

grouping counter {
 leaf node-id {
 type uint64;
 }
 leaf success-count {
 type uint32;
 default 0;
 }
 leaf failure-count {
 type uint32;
 default 0;
 }
 leaf last-request-time {
 description "Timestamp when reconciliation was last requested";
 type string;
 }
}

container reconciliation-state {
 description "Reconciliation state for the given openflow nodes";
 config false;
 list reconciliation-state-list {
 key node-id;
 uses node-reconcile-state;
 }
}

grouping node-reconcile-state {
 leaf node-id {
 type uint64;
 }
 leaf state {
 description "Expresses the current state of the reconcile on a specific NODE";
 type enumeration {
 enum IN_PROGRESS;
 enum COMPLETED;
 enum FAILED;
 }
 }
}

rpc reconcile {
 description "Request the reconciliation for given device or set of devices to the controller."
 input {
 leaf-list nodes {
 description "List of nodes to be reconciled";
 type uint64;
 }
 leaf reconcile-all-nodes {
 description "Flag to indicate that all nodes to be reconciled";
 type boolean;
 mandatory false;
 default false;
 }
 }
 output {
 leaf result {
 type boolean;
 }
 leaf-list inprogress-nodes {
 description "List of nodes that are already in reconciling mode";
 type uint64;
 }
 }
}

Targeted Release

Flourine

Alternatives

Disconnect the device from controller and reconnect or restart the controller.

REST API

	POST: http://localhost:8181/restconf/operations/reconciliation:reconcile

	GET: http://localhost:8181/restconf/operational/reconciliation:reconciliation-counter

Usage

Install odl-openflowplugin-app-southbound-cli feature.

CLI:

Trigger reconciliation for a connected openflow node via cli command openflow:reconcile.

openflow:reconcile

opendaylight-user@root>openflow:reconcile 244711506862915
reconcile successfully completed for the nodes

Trigger reconciliation for all the connected openflow nodes via cli command openflow:reconcile -all.

openflow:reconcile -all

 opendaylight-user@root>openflow:reconcile -all
 reconcile successfully completed for the nodes

Get details about number of times user triggered reconciliation for openflow nodes via openflow:getreconciliationcount.

openflow:getreconciliationcount

opendaylight-user@root>openflow:getreconcilecount
NodeId ReconcileSuccessCount ReconcileFailureCount LastReconcileTime
--
244711506862915 2 0 2018-06-06T11:51:51.989

REST:

Trigger reconciliation for a single datapath node.

http://localhost:8181/restconf/operations/reconciliation:reconcile

POST /restconf/operations/reconciliation:reconcile
{
 "input" : {
 "nodes":["244711506862915"]
 }
}

Get reconciliation counter details

http://localhost:8181/restconf/operational/reconciliation:reconciliation-counter

GET /restconf/operational/reconciliation:reconciliation-counter

OUTPUT:
=======
Request URL
http://localhost:8181/restconf/operational/reconciliation:reconciliation-counter

Response Body
{
 "reconciliation-counter": {
 "reconcile-counter": [
 {
 "node-id": 244711506862915,
 "success-count": 4,
 "last-request-time": "2018-06-06T12:09:53.325"
 }
]
 }
}

Trigger reconciliation for a openflow switch using routed rpc. This rpc will be exposed without installing southbound-cli
feature and user can trigger reconciliation for the given Openflow node. This will not affect the counter and alarm.

http://localhost:8181/restconf/operations/reconciliation:reconcile-node

POST /restconf/operations/reconciliation:reconcile-node
{
 "input": {
 "nodeId": "244711506862915",
 "node": "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:244711506862915']"
 }
}

Request URL
http://localhost:8181/restconf/operations/reconciliation:reconcile-node

Response Body
{
 "output": {
 "result": true
 }
}

Implementation

Assignee(s)

Primary assignee:

	Arunprakash D <d.arunprakash@ericsson.com>

Contributors:

	Suja T <suja.t@ericsson.com>

	Somashekhar Javalagi <somashekhar.manohara.javalagi@ericsson.com>

Work Items

	Implementation of cli to trigger reconciliation for openflow node(s).

	Implementation of reconciliation alarm for user triggered reconciliation.

Dependencies

No new dependencies.

Testing

Unit Tests

	Verify reconciliation for single openflow node

	Verify reconciliation for list of openflow nodes

	Verify reconciliation for all the openflow nodes

	Verify reconciliation alarm generated for user triggered reconciliation node

	Verify reconciliation alarm cleared once the reconciliation completed

CSIT

None

Documentation Impact

None

References

None

Table of Contents

	Arbitrator Reconciliation using OpenFlow bundle

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	CSIT

	Documentation Impact

	References

Arbitrator Reconciliation using OpenFlow bundle

Arbitrator Reconciliation Reviews [https://git.opendaylight.org/gerrit/#/q/topic:arbitrator-reconcile]

This spec addresses following enhancement in openflowplugin module:

Addition of new reconciliation mode in openflowplugin which will allow applications to program flow/group within
reconciliation window instead of frm reads and pushes the configuration down to the openflow switch.

AUTONOMOUS mode implies that Openflowplugin shall perform reconciliation autonomously as it does now without any change
in the workflow - ie. Switch-connection-handling followed by flow-based/bundle-based reconciliation execution followed
by publishing of switch to the Inventory Operational datastore. This will be the default mode until arbitrated mode is enabled.

ARBITRATED mode implies that the default openflowplugin reconciliation will be disabled and consumer application will
have to initiate and complete the reconciliation including any error-handling.
In the current implementation ARBITRATED mode will only supported bundle based reconciliation.

Openflowplugin will switch to arbitrator reconciliation mode based on the upgradeState provided by ServiceUtils.

Problem description

During replay based upgrade, the inventory configuration DS will be empty and applications has to program flows/groups
based on the configuration pushed by user or external orchestrator. These new configurations has to applied on the
switch without datapath disruption.

This can be achieved using OpenFlow bundles. Bundle is a sequence of OpenFlow requests from odl controller that switch
will apply in atomic transaction.

Use Cases

Application controlled reconciliation of OpenFlow devices after controller re/start.

Proposed change

Arbitrator Reconciliation using bundles support will be provided. Openflowplugin will switch to arbitrator reconciliation
based on the upgradeState provided by ServiceUtils. Orchestrator can enable or disable this mode as per their deployment
requirements.

upgradeInProgress presents in ServiceUtils project and can be changed to true to enable arbitrator reconciliation.

serviceutils-upgrade-config.xml

<upgrade-config xmlns="urn:opendaylight:serviceutils:upgrade">
 <upgradeInProgress>false</upgradeInProgress>
</upgrade-config>

ArbitratorReconciliation module registers itself with reconciliation framework with priority 1.

When OpenFlow switch connect event received by Openflowplugin, it notifies Reconciliation Framework(RF).

FlowNode Reconciliation will be notified first by RF as it registered with higher priority. FlowNode reconciliation
module is the one responsible for reconciliation of OpenFlow node. It can be done either via flow/group based or
OpenFlow bundle based.

When upgradeInProgress is set to true, FlowNode reconciliation will be skipped as the config datastore will be empty
and return success to the RF.

RF callbacks Arbitrator Reconcilition to executes its task.

Arbitrator Reconcilition will do the following steps in arbitrator-reconcilition(upgradeInProgress) mode

	Open OpenFlow bundle on the connected OpenFlow switch and stores the bundle id in the local cache

	Send delete-all groups and delete-all flows message to the opened bundle in the OpenFlow switch

NOTE: Above clean up step is needed during upgrade to clean the previous version controller states, but the real switch
clean-up will only happen when controller will commit the bundle.

Arbitrator Reconciliation module sends success to RF if the previous steps are successful or it sends failure.

RF notifies Openflowplugin with the completion state.

	Success: Openflowplugin writes the OpenFlow node information into operational inventory datastore.

	Failure: OpenFlow node will be disconnected and all the above steps will be repeated on the next reconnect till the
mode is in arbitrator reconciliation

Consumer application listening to inventory data store will receive Node added, Port status Data Tree Change Notification(DTCN)
from data store.

Applications programs flows and groups into config inventory datastore and Forwarding Rules Manager(FRM) application in
in Openflowplugin receives DTCN from config inventory for the flows and groups.

Arbitrator Reconciliation exposes rpc to get Active bundle id for the OpenFlow node.

FRM Flow/Group Forwarder invokes get-active-bundle rpc and gets the bundle id.

GetActiveBundle will executes the following steps.

	Check if bundle commit is in progress for the requested node, if yes wait on commit bundle future

	Returns Active bundle id and the same will be used by FRM forwarder to push the configuration via bundle add messages.

	This call will return null in case of arbitrator-reconciliation disabled and FRM will push the configuration via normal
Flow/Group messages.

arbitrator-reconcile.yang

rpc get-active-bundle {
 description "Fetches the active available bundle in openflowplugin";
 input {
 uses "inv:node-context-ref";
 leaf node-id {
 description "Node for which the bundle active has to be fetched";
 type uint64;
 }
 }
 output {
 leaf result {
 description "The retrieved active bundle for the node";
 type "onf-ext:bundle-id";
 }
 }
}

Routed RPC will be exposed for committing the bundle on a specified Openflow node. It’s orchestrator responsibility to
commit the bundle across connected OpenFlow node.
Configurations will be pushed only via OpenFlow bundles till the commit bundle rpc is invoked.

arbitrator-reconcile.yang

rpc commit-active-bundle {
 description "Commits the active available bundle for the given node in openflowplugin";
 input {
 uses "inv:node-context-ref";
 leaf node-id {
 description "Node for which the commit bundle to be executed";
 type uint64;
 }
 }
 output {
 leaf result {
 description "Success/Failure of the commit bundle for the node";
 type boolean;
 }
 }
}

Consumer application calls commit-active-bundle rpc with OpenFlow node id

	It commits the current active bundle on the OpenFlow node and stores the future till it gets completed.

	When bundle commit is in progress, configuration pushed via config datastore will be blocked on the commit future.
This will make sure the new configuration is not lost during the transient state. The logic during arbitrator reconciliation
will clear all the existing flows and groups and programs the new configuration and if we allow the flow programming
during commit bundle phase, we might loose the new configuration.

	When commit bundle is done, it will return the rpc result to the orchestrator and removes the future from the cache.

	Subsequent flow/group provisioning will be done via flow-mod/group-mod messages.

	Orchestrator can decide further actions based on the rpc result.

Once commit bundle executes on all the connected OpenFlow switch, orchestrator can disable the arbitrator reconciliation
by invoking rest rpc call on ServiceUtils http://localhost:8383/restconf/config/odl-serviceutils-upgrade:upgrade-config/.

Subsequent OpenFlow switch connect/re-connect will go through FlowNode reconciliation.

Note: There is no bundle timeout logic available as of now and the same will be added in future and will be kept as
configurable parameter by user.

Pipeline changes

None

Yang changes

Below yang changes will done to enable arbitrator reconciliation.

RPC will be exposed to get current active bundle id for the given openflow node.

arbitrator-reconcile.yang

rpc get-active-bundle {
 description "Fetches the active available bundle in openflowplugin";
 input {
 uses "inv:node-context-ref";
 leaf node-id {
 description "Node for which the bundle active has to be fetched";
 type uint64;
 }
 }
 output {
 leaf result {
 description "The retrieved active bundle for the node";
 type "onf-ext:bundle-id";
 }
 }
}

RPC will be exposed for external application/user/consumer applications to commit the active bundle for OpenFlow switch.

arbitrator-reconcile.yang

rpc commit-active-bundle {
 description "Commits the active available bundle for the given node in openflowplugin";
 input {
 uses "inv:node-context-ref";
 leaf node-id {
 description "Node for which the commit bundle to be executed";
 type uint64;
 }
 }
 output {
 leaf result {
 description "Success/Failure of the commit bundle for the node";
 type boolean;
 }
 }
}

Configuration impact

None

Clustering considerations

User can fire the commit-bundle rpc call to any controller node in the cluster. This rpc will only be executed by the
node that currently be owning the device.

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Unknown

Targeted Release

Flourine

Alternatives

Default reconciliation will be used or application can just reconfigure all the configuration using the normal
flow/group add/remove process.

Usage

None

REST API

http://localhost:8181/restconf/operations/arbitrator-reconcile:get-active-bundle

Output:
======
{
 "output": {1}
}

http://localhost:8181/restconf/operations/arbitrator-reconcile:commit-bundle-node

{
 "input": {
 "node": "/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:<OpenFlow datapath id>']",
 "node-id": "<OpenFlow datapath id>"
 }
}

CLI

None.

Implementation

Assignee(s)

Primary assignee:

Arunprakash D <d.arunprakash@ericsson.com>

Gobinath Suganthan <gobinath@ericsson.com>

Muthukumaran K <muthukumaran.k@ericsson.com>

Work Items

	Implementation of arbritrator reconcile module

	Changes in FRM for flow/group programming via openflow bundle

	Read reconciliation mode(upgradeInProgress) from service utils

	Expose RPC to commit bundle for a given OpenFlow node

Dependencies

No new dependencies.

Testing

Unit Tests

CSIT

Documentation Impact

None

References

Bundle Extension Support [https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:Bundles_extension_support]

Table of Contents

	Device Connection Rate Limiter

	Problem Description

	Use Cases

	Proposed Change

	Command Line Interface (CLI)

	Other Changes

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Device Connection Rate Limiter

Device Connection Rate Limiter Reviews [https://git.opendaylight.org/gerrit/#/c/70157]

When many openflow devices try to connect at the same time, this feature helps to reduce load on ODL controller, by
limiting the number of devices connecting per minute.

Before starting the contoller, user should uncomment and configure device-connection-rate-limit-per-min property
value in openflowplugin.cfg file for limiting the number of device connections.

Problem Description

When many openflow devices try to connect to the ODL controller via openflowplugin at the same time, controller gets
overloaded by processing too many device connection requests, port information, switch feature information and supported
statistics. Due to which controller gets overwhelmed, that can result in device disconnection and message drops. Hence
this can largely impact the performance of the controller.

Device connection rate limiter is intended to overcome this problem by limiting the number of openflow devices
connecting to the ODL controller, there by reducing the load on the controller. Due to which only configured number of
devices will be able to connect to the ODL controller per minute. The remaining devices which are not able to get the
permit, will be disconnected. The disconnected devices will keep on trying to connect and will be succeeded in
subsequent retries, when they acquire the permit as per rate limiter logic.

Use Cases

	By default device connection rate limiter feature will be disabled. So there will be no effect on the rate at which
openflow devices connect to the ODL controller.

	The property can be uncommented and set to any non-zero positive value in openflowplugin.cfg file, then those many
number of openflow devices are allowed to connect to the ODL controller in a minute.

Proposed Change

	Device connection rate limiter service is created as part of blueprint container initialization for
openflowplugin-impl module.

	Rate limiter service is created using Ratelimiter entity/class of Google’s concurrency framework. ConnectionManager
will be creating rate limiter service and HandshakeManager will be holding the reference to the rate limiter service.

	Based on the value of device-connection-rate-limit-per-min property present in openflowplugin.cfg file, the rate
limiter value is decided. If the value is zero, then the rate limiting functionality will be disabled or else the
functionality will be enabled by allowing specified number of permits per minute.

	At the openflow handshake phase after fetching the device features, if the rate limiter is enabled then an attempt
will be made to acquire a connection permit for the openflow device. If device is able to get the permit, then the
handshake process will be continued or else the device will be rejected to connect to the ODL controller. Then a
disconnection event will be sent to the openflow device. The device will be succeeded to connect in subsequent
retries.

	As device-connection-rate-limit-per-min is a static property, any change in the property value will be effective only
when the ODL controller is started with changed value.

Command Line Interface (CLI)

None.

Other Changes

Pipeline changes

None.

Yang changes

openflow-provider-config.yang file is modified to define the rate limiter property.

openflow-provider-config.yang

leaf device-connection-rate-limit-per-min {
 type uint16;
 default 0;
}

Configuration impact

New property device-connection-rate-limit-per-min added to openflowplugin.cfg file.

openflowplugin.cfg

To limit the number of datapath nodes to be connected to the controller instance
per minute. When the default value of zero is set, then the device connection rate
limiter will be disabled. If it is set to any value, then only those many
number of datapath nodes are allowed to connect to the controller in a minute
#
device-connection-rate-limit-per-min=0

Clustering considerations

The device connection rate limiter service will be per controller basis even if controllers are connected in a clustered
environment.

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

As this feature will control the rate at which the openflow devices connect to the ODL controller, it will improve the
performance of controller by reducing the load in connection request processing during controller/cluster reboot.

Targeted Release

Fluorine.

Alternatives

N.A.

Usage

Features to Install

included with common openflowplugin features.

REST API

None

CLI

None

Implementation

Assignee(s)

	Primary assignee:
	
	Somashekhar Javalagi(somashekhar.manohara.javalagi@ericsson.com)

	Other contributors:
	
	Gobinath Suganthan (gobinath@ericsson.com)

Work Items

N.A.

Dependencies

This doesn’t add any new dependencies.

Testing

	Verifying the number of openflow device connections to the ODL controller without doing any modification to the
openflowplugin.cfg file.

	Verifying the rate at which the openflow devices connecting to the ODL controller in case if the property is having
any non-zero positive value, with many devices trying to connect at the same time.

Unit Tests

None added newly.

Integration Tests

None

CSIT

None

Documentation Impact

References

Table of Contents

	Openflowplugin Event Logging Using Log4j

	Problem Description

	Use Cases

	Proposed Change

	Command Line Interface (CLI)

	Other Changes

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Openflowplugin Event Logging Using Log4j

Openflowplugin Event Logging Reviews [https://git.opendaylight.org/gerrit/#/c/75415/]

Openflowplugin event logger is the feature which is used to log some important events of openflowplugin into a separate
file using log4j.

User should configure log4j appender configuration for openflowplugin event logger in etc/org.ops4j.pax.logging.cfg
file to achieve this.

Problem Description

When many log events are available in karaf.log file, it will be difficult for user to quickly find the main events with
respect to openflow southbound connection. And also, as there will be huge amount of karaf logs, there are chances of
log events getting rolled out in karaf.log files. Due to which we may tend to miss some of the events related to
openflowplugin.

Openflowplugin event logger feature is intended to overcome this problem by logging important events of openflowplugin
into a separate file using log4j appender, so that user can quickly refer to these event logs to identify important
events of openflowplugin related to connection, disconnection, reconciliation, port events, errors, failures, etc.

Use Cases

	By default openflowplugin event logging feature will not be enabled without any configuration changes in logging
configuration file.

	User can configure log4j appender for openflowplugin event logger(as mentioned in the configuration section) to
log the important logs of openflowplugin in a separate file at the path mentioned in configuration file.

Proposed Change

	A log4j logger with name OfEventLog will be created and used to log the event at the time of connection,
disconnection, reconciliation, etc.

	By default the event logger logging level is fixed to DEBUG level. Unless there will be a appender configuration
present in logging configuration file, the events will not be in enqueued for logging.

	The openflowplugin event logs will be having a pattern consisting of time stamp of the event, description of event
followed by the datapathId of the switch for which events are related.

	The event logs will be moved to a separate file(data/events/openflow/openflow.log file as per the configuration
mentioned in configuration section) and this can be configured to different path as per the need.

	The file roll over strategy is chosen as to roll events into other file if the current file reaches maximum size(10MB
as per configuration) and the event logs will be overwritten if such 10 files(as per configuration) are completed.

Command Line Interface (CLI)

None.

Other Changes

Pipeline changes

None.

Yang changes

None.

Configuration impact

Below log4j configuration changes should be added in etc/org.ops4j.pax.logging.cfg file for logging openflowplugin
events into a separate file.

org.ops4j.pax.logging.cfg

log4j2.logger.ofp.name = OfEventLog
log4j2.logger.ofp.level = DEBUG
log4j2.logger.ofp.additivity = false
log4j2.logger.ofp.appenderRef.OfEventRollingFile.ref = OfEventRollingFile

log4j2.appender.ofp.type = RollingRandomAccessFile
log4j2.appender.ofp.name = OfEventRollingFile
log4j2.appender.ofp.fileName = \${karaf.data}/events/openflow/openflow.log
log4j2.appender.ofp.filePattern = \${karaf.data}/events/openflow/openflow.log.%i
log4j2.appender.ofp.append = true
log4j2.appender.ofp.layout.type = PatternLayout
log4j2.appender.ofp.layout.pattern = %d{ISO8601} | %m%n
log4j2.appender.ofp.policies.type = Policies
log4j2.appender.ofp.policies.size.type = SizeBasedTriggeringPolicy
log4j2.appender.ofp.policies.size.size = 10MB
log4j2.appender.ofp.strategy.type = DefaultRolloverStrategy
log4j2.appender.ofp.strategy.max = 10
log4j2.appender.ofp.strategy.fileIndex = min

Clustering considerations

The openflowplugin event logger will be configured in the controller and are related to log events only in that
controller. This will not be affecting cluster environment in any way.

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release

Sodium.

Alternatives

N.A.

Usage

Features to Install

included with common openflowplugin features.

REST API

None

CLI

None

Implementation

Assignee(s)

	Primary assignee:
	
	Somashekhar Javalagi(somashekhar.manohara.javalagi@ericsson.com)

	Other contributors:
	
	D Arunprakash (d.arunprakash@ericsson.com)

Work Items

N.A.

Dependencies

This doesn’t add any new dependencies.

Testing

	Verifying the event logs in karaf.log file, when there is no appender configuration added in logger configuration
file.

	Making appender configuration in logger configuration file and verifying the important events of openflowplugin in
the log file specified in configuration.

Unit Tests

None added newly.

Integration Tests

None

CSIT

None

Documentation Impact

References

Openflowplugin Test Plans

Contents:

	Bundles Resync

	Testplan Template

Table of Contents

	Bundles-Resync

	Test Setup

	Testbed Topologies

	Hardware Requirements

	Software Requirements

	Test Suite Requirements

	Test Suite Bringup

	Test Suite Cleanup

	Debugging

	Test Cases

	Verify the default reconciliation

	Verify the Bundle based reconciliation by enabling the flag to True

	Verify the Bundle based reconciliation with switch(OVS) restart scenario

	Verify the Bundle based reconciliation by pushing group dependent flow with switch(OVS) restart scenario

	Verify the Bundle Based reconciliation by connecting a new switch(OVS)

	Verify the Bundle based reconciliation by killing the OVS Switch Process

	Implementation

	Assignee(s)

	Work Items

	Links

	References

Bundles-Resync

Test Suite for testing Bundles-Reconciliation functionality.

Test Setup

Test setup consists of ODL and two switches(Openflow nodes) connected
to ODL via OpenflowPlugin Channel (6653).

Testbed Topologies

This suit uses the default topology.

Default Topology

+--------+ +--------+
| BR1 | data | BR2 |
| <-------> |
+---^----+ +----^---+
 | mgmt |
+---v-----------------v---+
| |
| ODL |
| |
| Bundle Resync enabled |
| |
+-------------------------+

Hardware Requirements

N.A.

Software Requirements

OVS 2.6+

Test Suite Requirements

Test Suite Bringup

Following steps are followed at beginning of test suite:

	Bring up ODL with odl-openflowplugin-flow-services-rest installed.

	Add bridge br-int to openflow node

	Connect bridge to OpenFlow using ovs-vsctl set-controller

	Repeat above steps for other openflow nodes

Test Suite Cleanup

Following steps are followed at the end of test suite:

	Delete bridge br-int on openflow node

	Repeat the same for other openflow nodes

Debugging

Following DataStore models are captured at end of each test case:

	config/opendaylight-inventory:nodes

	operational/opendaylight-inventory:nodes

Test Cases

Testcases covered in automation:

	Verify the Bundle based reconciliation with switch(OVS) restart scenario

	Verify the Bundle based reconciliation by pushing group dependent flow with switch(OVS) restart scenario

	Verify the Bundle Based reconciliation by connecting a new switch(OVS)

Verify the default reconciliation

This Verifies the default reconciliation (bundle-based-reconciliation-enabled=false)

Test Steps and Pass Criteria

	Bring up the Controller.

	Set the switch fail mode to Secure.

	Push flow via Rest call and add a flow in the ovs-switch via ovs-ofctl add-flow

	Restart the switch

	Check that the flows pushed via Rest call should be present and the static flow added

	Capture via Wireshark and check that the OFPT_EXP messages are not captured.

	Check in the karaf.log and confirm if EXP messages are not logged

	Flap the management interface of the switch.

	Also ensure that the static flow added would be present.

	Capture via Wireshark and check that the OFPT_EXP messages are not captured.

	Check in the karaf.log and confirm if EXP messages are not logged

	Verify the Test Procedure.

Troubleshooting

N.A.

Verify the Bundle based reconciliation by enabling the flag to True

The Objective of this Testcase is to check the bundle based resync mechanism by enabling the flag

Test Steps and Pass Criteria

	Bring up the Controller.

	Set the bundle-based-reconciliation-enabled=true.

	Check if the flag set event is logged in karaf.log.

	Set the bundle-based-reconciliation-enabled=false.

	Check if the flag set event is logged in karaf.log.

	Verify the Test steps.

Troubleshooting

N.A.

Verify the Bundle based reconciliation with switch(OVS) restart scenario

The Objective of this Testcase to verify bundle based reconciliation with ovs restart scenario.

Test Steps and Pass Criteria

	Bring up the Controller.

	Set the bundle-based-reconciliation-enabled=true.

	Push flow via Rest call and add a flow in the ovs-switch via ovs-ofctl add-flow

	Set the Switch fail-mode set to secure.

	Check if the flag set event is logged in karaf.log.

	Restart the switch

	Check if the Wireshark has the OFPT_EXP messages captured.

	Check for the same messages to be logged in the karaf.log.

	Repeat the same with fail-mode set to stand-alone

	Static flow should not be present in both stand-alone and secure mode as the switch is restarted.

	Verify the Test steps.

Troubleshooting

N.A.

Verify the Bundle based reconciliation by pushing group dependent flow with switch(OVS) restart scenario

The Objective of this Testcase to verify bundle based reconciliation with ovs restart scenario.

Test Steps and Pass Criteria

	Bring up the Controller.

	Set the bundle-based-reconciliation-enabled=true.

	Push flow via Rest call and add a flow in the ovs-switch via ovs-ofctl add-flow

	Set the Switch fail-mode set to secure.

	Check if the flag set event is logged in karaf.log.

	Restart the switch

	Check if the Wireshark has the OFPT_EXP messages captured.

	Check for the same messages to be logged in the karaf.log.

	Repeat the same with fail-mode set to stand-alone

	Static flow should not be present in both stand-alone and secure mode as the switch is restarted.

	Verify the Test steps.

Troubleshooting

N.A.

Verify the Bundle Based reconciliation by connecting a new switch(OVS)

The Objective of this Testcase to verify the bundle based reconciliation by connecting a new switch to the controller.

Test Steps and Pass Criteria

	Bring up the Controller.

	Set the bundle-based-reconciliation-enabled=true

	Push group dependent flow via Rest call and add a flow in the ovs-switch via ovs-ofctl add-flow

	Set the Switch fail-mode set to secure.

	Check if the flag set event is logged in karaf.log.

	Check if the pushed flows are there in the OVS.

	Get a new switch connected to the Controller.

	Push flow via Rest call and add a flow in the ovs-switch via ovs-ofctl add-flow to the newly added switch

	Flap the management interface of the new switch.

	Ensure the flows are pushed via bundles to the new switch.

	Flows remain intact in the switch that was already connected.

	Verify the Test Steps

Troubleshooting

N.A.

Verify the Bundle based reconciliation by killing the OVS Switch Process

The Objective of this Testcase to verify the bundle based reconciliation by killing the ovs switch.

Test Steps and Pass Criteria

	Bring up the Controller.

	Set the bundle-based-reconciliation-enabled=true.

	Push flow via Rest call and add a flow in the ovs-switch via ovs-ofctl add-flow

	Set the Switch fail-mode set to secure.

	Check if the flag set event is logged in karaf.log.

	Kill the OVS Switch process

	Check if the Wireshark has the OFPT_EXP messages captured.

	Check for the same messages to be logged in the karaf.log.

	Repeat the same with fail-mode set to stand-alone

	Static flow should not be present in both stand-alone and secure mode.

	Verify the Test Steps

Troubleshooting

N.A.

Implementation

Assignee(s)

	Primary assignee:
	Fathima Thasneem (a.fathima.thasneem@ericsson.com)

	Other contributors:
	N.A.

Work Items

N.A.

Links

	https://git.opendaylight.org/gerrit/#/c/68364/

	Script path test/csit/suites/openflowplugin/Bundlebased_Reconciliation/010_bundle_resync.robot

References

Table of Contents

	Title of Test Suite

	Test Setup

	Testbed Topologies

	Hardware Requirements

	Software Requirements

	Test Suite Requirements

	Test Suite Bringup

	Test Suite Cleanup

	Debugging

	Test Cases

	Test Case 1

	Implementation

	Assignee(s)

	Work Items

	Links

	References

Title of Test Suite

Brief introduction of the Test Suite and feature it is testing. This should include
links to relevant documents and specs.

Note

Name of suite and test cases should map exactly to as they appear in Robot reports.

Test Setup

Brief description of test setup.

Testbed Topologies

Detailed information on testbed topologies, including topology diagrams. Each
should be numbered so it can be referenced by number in Test Cases.

Default Topology

+------------+
| Dummy |
| Topology |
+------------+

Hardware Requirements

Any specific hardware requirements e.g. SRIOV NICs.

Software Requirements

Any specific software and version requirements e.g. Mininet, OVS 2.8 etc. This
should also capture specific versions of OpenDaylight this suit applies to. e.g.
Nitrogen, Nitrogen-SR2 etc. This will be used to determine to which jobs this suite
can/should be added.

Test Suite Requirements

Test Suite Bringup

Initial steps before any tests are run. This should include any cleanup, sanity checks,
configuration etc. that needs to be done before test cases in suite are run. This should
also capture if this suite depends on another suite to do bringup for it.

Test Suite Cleanup

Final steps after all tests in suite are done. This should include any cleanup, sanity checks,
configuration etc. that needs to be done once all test cases in suite are done.

Debugging

Capture any debugging information that is captured at start of suite and end of suite.

Test Cases

This section should capture high level details about all the test cases part of the suite.
Individual test cases should be subsections in the order they should be executed.

Test Case 1

Give a brief description of the test case including topology used if multiple specified
in Testbed Topologies.

Test Steps and Pass Criteria

Step by step procedure of what is done as part of this test.

	Step 1

	Pass Criteria 1

	Pass Criteria 2

	Step 2

	Pass Criteria 1

	Pass Criteria 2

Troubleshooting

Any test specific information captured. Specifically mention if it is captured always,
pass only or fail only.

Implementation

Assignee(s)

Who is contributing test cases? In case of multiple authors, designate a
primary assignee and other contributors. Primary assignee is also expected to
be maintainer once test code is in.

	Primary assignee:
	<developer-a>

	Other contributors:
	<developer-b>
<developer-c>

Work Items

Break up work into individual items. For most cases it would be just writing tests
but in some cases will include changes to images, infra etc.

Links

	Link to implementation patche(s) in CSIT

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Index

 _images/odl-ofp-session-establishment.jpg
OpenFlowjava

Connection Manager

RPC Manager RPC Broker

| 1: onSwitchConnected()() gy
M L1 new() >| Connection Context
1.1.1: OFPT HELLOQ
'k f 7777777777 i
,,,,,,,,,,,,, |
2: OFPT_HELLOQ)
i L
2.1: OFPT_FEATURES REQUEST()
e e T
3: OFPT_FATURES REPLY() N
o TTETET e
4: deviceConnected() I
» i 4.1: newTransactionChain() ;
3 > <<create>>
<<create>> . |fTansactionChain |k ———____________________ AW
4.3: OFPMP_DESC()() el
Het bescoo 1L e I U
,,,,,,,,,,,,,,,,,,,,,,,, e st s s s s |
4.2.1: createDeviceFegt{iresForOF <sufix>()
4.2.1.1: OFPMP| TABLE() f z
7 e e [
M b/ currently suffix is
At this point we x 5 -
continue processing We fopen éh‘s a3 -13
notifications coming neeaed Lo giscover
it Sta?cho(kzjebc‘ts onthe
swicigepe oo Sk £ || e (o
puting them nto the meter features, port <
i description). Sending
Imultiple requests in
e do ot ot paralelisanopton. | |]
| |
5. OFPT_MULTIPART REPLY() |
5.1: callback() ‘ |
T » 1 5.1.1: onDeviceCtxLevelUp(deviceContex) P
as needed to <<create>>
clscoven oy L __5LLlinew _ _ _ 5] stats Context
objects on the switch
(groups, meters,
flows etc.) | S
Y . i o 5.1.1.2: sendMessage(requestContext, msg)
\ sehiiMessage!
5.1.1.2.1.1: ofp_aggredjaté stats request() T 7777777777 1
|
a0 0 Hh—_— >
emsmsmsmsne pem s ns s s s s e s s s e e e e B R R R e
6: ofp_aggregate stits reply()
P 6.1: onMeEsage() > |
e e e e e e e] 1 6.1.1: onMessage() | Nl
! 6.1.1.1: put()
6.1.1.2: stateSynchronized() !
|
|
|
|
6.1.1.2.1: onDeviceContextLelelUp(deviceContext) <<create>>
; RPC Context
} 6.1.1.2.1)1.1: register()
| | A A | R | o S—— gl
D‘ 6.1.1.2.12 or\Dev\ceConte><tLeve\Up(de‘v\ceContext) | Eemmm—————
. T
|
| PSR T | e ———— T .
6.1.1.2(2: inftiaiSubmitTransaction()
| bi
e
6.1.1.2.3: commit) T
.
6.1.1.2.3.1: submit(J]
T
j
h
i i S S S S S T '
U | !
|
| T)
e e T | | !
e e e e S e S S T I I I
Ll | | | [At this point the
‘ | | | switch s fully
| | controlled, stats
| | | | | manager polls
| | | | | statistics and users
| | | | can request things
| | i | | via RPCs
|
| | | | |

_images/plugin_arch.png
----> Data Change Notification
—> Data Store Write
—> RPCs/Notifications
OpenFlow 1.0/1.3

SN

Topology Statistics Qpenfiow Jave Forwarding NETCONE
Manager Manager OF Plugin Rules Manager RESTCONF

A A A A A A

. — I

OF Topology

SAL

Controller

_static/minus.png

_static/plus.png

_static/file.png

_static/logo.png

_images/odl-ofp-feature-tree.png
odaperdlom plugin-alli

od-operfiom plugin-

edbopenfon uginflom series i

[——

. S
- edboperfionpluginfom-seriesdi

[——

-
adboperfionpusin-apporfgpusherds

odboperfionplugn-app bl-mis-enforr

[——

-

adbopenflonplugin-tmodebi

v
adlaiaal s ———y

[r—

_images/odl-ofp-handshake.png
act handshake J

HELLO
message

received

i [false]

hag version D! P
[false]

lastReceived\Version
eceivedVersion

commaNyversion

lastPpefoseMersion
<ceivedVerghon

[falge]

Ifalfe] ttrde)
Ifaife]

BposecdVRgsion ==
remgreVgréion

get features |<

_images/Library_lifecycle.png
SwitchConnectionProvider

[configure(Collection <ConnectionConfiguration>) |

setSwitchConnectionHandler()

i
E

—
Tcp Handlerw

—

] accept() - false
7] accept() - true

TLS Detector

3 e TLS Handler
"{8] onSwitchConnected(ConnectionFacade)
R e OF Frame Decoder

OF Version Detector
OF Decoder
OF Encoder
Delegating Inbound Handler

[9] set system, message
and connectionReady listener

N

Connection Adapter

_images/odl-ofp-add-flow.png
sdl User RPC request (sucess))

OpenFlowjava

Statistics Context

Device Context

Callback

T
|
2 comm\tEnt‘ry()

2.1: onMessage(OFPT BARRIER REPLY)

4: createCallback()

r<

<<OFPMP_FLOW>>
7: onMessage()

<<success>>
5: setResult()

6: notification()

Request context SalFlowService RPC Broker User

T T T T
| | | |
| | | 3: invokeRPC() : future |
Il 1 1.1: addFlow() : future

reateRequestContext() | | . _ 5

————————— >

N

_images/odl-ofp-ofplugin-debug-stats.png
Java Monitoring & Management Console

Connection Window _Help

eo0eo pid: 96118 org.apache karaf.main.Main
Overview | Memory | Threads | Classes | VM Summary b=
» [ZMimplementation ‘Operation invocation
» {1 com.sun.management RS etege
» (2 connector
> @java.lang MBeanOperationinfo
> @javanio Name Value
> @java.uiiogging Operation:
» [org.apache aries.blueprint Name makeMsgStatistics
» & org.apache.karaf Description makeMsgstatistics
» [org.eclipse.equinox.region.domain impact UNKNOWN
v org.opendaylight controller RewmType Java.lang.String
» @ ConfigRegistry
» [DOMDataBroker
» [inMemonyConfigbatastore
» [InMemoryOperationalDatastore
» [Module
» @ NetconfNotificationProvider
v (8 RuntimeBean
¥ 8 msg-spy-service-impl L
¥ @ msg-spy-service-impl
> Atributes
Descriptor
Name Value
Operation:
openType javax management openmbean SimpleType(nam
> [shutdown originalType Java.langString

» [serviceReference
» [osgi.compendium
» [osgi.core

nav.xhtml

 Table of Contents

 		
 Openflowplugin Documentation

 		
 Openflowplugin User Guides

 		
 Architecture

 		
 Overview

 		
 Goals

 		
 High Level Architecture

 		
 Security

 		
 Protocol Coverage

 		
 Installation

 		
 Typical User features

 		
 Typical Test features

 		
 Operation

 		
 Overview

 		
 OpenFlow Topology

 		
 OpenFlow Statistics

 		
 OpenFlow Programming

 		
 Flow ID match function

 		
 OpenFlow clustering

 		
 Verifying the EOS owner and candidates by using RESTCONF

 		
 Configuring the OpenFlow Plugin

 		
 Configuring OpenFlow TLS

 		
 Troubleshooting

 		
 Flow examples

 		
 Overview

 		
 Match Examples

 		
 Actions

 		
 Openflowplugin Developer Guides

 		
 Plugin Guide

 		
 Event Sequences

 		
 Description of OpenFlow Plugin Modules

 		
 Internal message statistics API

 		
 Application: Forwarding Rules Synchronizer

 		
 Service: SalFlatBatchService

 		
 Cluster singleton approach in plugin

 		
 Yang models and API

 		
 Karaf feature tree

 		
 Wiring up notifications

 		
 Message Order Preservation

 		
 Library Guide

 		
 Introduction

 		
 Features Overview

 		
 odl-openflowjava-protocol Architecture

 		
 odl-openflowjava-stats Feature

 		
 Key APIs and Interfaces

 		
 Installation

 		
 Configuration

 		
 Architecture

 		
 Library’s lifecycle

 		
 Statistics collection

 		
 TLS Support

 		
 Extensibility

 		
 Openflowplugin Design Specifications

 		
 Reconciliation Framework

 		
 Problem description

 		
 Proposed change

 		
 Implementation Details

 		
 Command Line Interface (CLI)

 		
 Other Changes

 		
 Usage

 		
 Implementation

 		
 Dependencies

 		
 Testing

 		
 Documentation Impact

 		
 References

 		
 Group Command OFPGC_ADD_OR_MOD support

 		
 Problem description

 		
 Usage

 		
 Implementation

 		
 Dependencies

 		
 Testing

 		
 Documentation Impact

 		
 References

 		
 Openflow Bundle Reconciliation

 		
 Problem description

 		
 Usage

 		
 Implementation

 		
 Dependencies

 		
 Testing

 		
 Documentation Impact

 		
 References

 		
 Southbound CLI

 		
 Problem description

 		
 Southbound CLI

 		
 Usage

 		
 Implementation

 		
 Dependencies

 		
 Testing

 		
 Documentation Impact

 		
 References

 		
 Reconciliation CLI and Alarm

 		
 Problem description

 		
 Reconciliation

 		
 Reconciliation Alarm

 		
 Usage

 		
 Implementation

 		
 Dependencies

 		
 Testing

 		
 Documentation Impact

 		
 References

 		
 Arbitrator Reconciliation using OpenFlow bundle

 		
 Problem description

 		
 Usage

 		
 Implementation

 		
 Dependencies

 		
 Testing

 		
 Documentation Impact

 		
 References

 		
 Device Connection Rate Limiter

 		
 Problem Description

 		
 Proposed Change

 		
 Command Line Interface (CLI)

 		
 Other Changes

 		
 Usage

 		
 Implementation

 		
 Dependencies

 		
 Testing

 		
 Documentation Impact

 		
 References

 		
 Openflowplugin Event Logging Using Log4j

 		
 Problem Description

 		
 Proposed Change

 		
 Command Line Interface (CLI)

 		
 Other Changes

 		
 Usage

 		
 Implementation

 		
 Dependencies

 		
 Testing

 		
 Documentation Impact

 		
 References

 		
 Openflowplugin Test Plans

 		
 Bundles Resync

 		
 Test Setup

 		
 Test Suite Requirements

 		
 Test Cases

 		
 Implementation

 		
 References

 		
 Testplan Template

 		
 Test Setup

 		
 Test Suite Requirements

 		
 Test Cases

 		
 Implementation

 		
 References

_images/800px-Extensibility.png
s e
¢ e MiegiterCusomDeserlizrtey, imph |

(OrDeserazer & ===
eends [lvolue]
Headereserilizer| "
s can
msgVersion
value

_images/800px-Extensibility2.png
SwitchComnectionProvider

registerCustomSerialzerty.

Headerserialzer

)

msgVersion

msgType

msgType2

_images/500px-UdpChannelPipeline.png
Connection Adapter

Pipeline
components

InboundHandler

inbound & Outbound

OutboundHandler

UDP Handler
Switch Conn. Provider

