
MD-SAL
Release 8.0.5

OpenDaylight Project

Sep 25, 2021





CONTENTS

1 Overview 1

2 Basic concepts 3

3 Messaging Patterns 5

4 Table of Contents 7

i



ii



CHAPTER

ONE

OVERVIEW

The Model-Driven Service Adaptation Layer (MD-SAL) is message-bus inspired extensible middleware component
that provides messaging and data storage functionality based on data and interface models defined by application de-
velopers (i.e. user-defined models).

The MD-SAL:

• Defines a common-layer, concepts, data model building blocks and messaging patterns and provides infras-
tructure / framework for applications and inter-application communication.

• Provide common support for user-defined transport and payload formats, including payload serialization and
adaptation (e.g. binary, XML or JSON).

The MD-SAL uses YANG as the modeling language for both interface and data definitions, and provides a messaging
and data-centric runtime for such services based on YANG modeling.

The MD-SAL provides two different API types (flavours):

• MD-SAL Binding: MD-SAL APIs which extensively uses APIs and classes generated from YANG models,
which provides compile-time safety.

• MD-SAL DOM: (Document Object Model) APIs which uses DOM-like representation of data, which makes
them more powerful, but provides less compile-time safety.

Note: Model-driven nature of the MD-SAL and DOM-based APIs allows for behind-the-scene API and payload type
mediation and transformation to facilitate seamless communication between applications - this enables for other com-
ponents and applications to provide connectors / expose different set of APIs and derive most of its functionality purely
from models, which all existing code can benefit from without modification. For example RESTCONF Connector
is an application built on top of MD-SAL and exposes YANG-modeled application APIs transparently via HTTP and
adds support for XML and JSON payload type.

1



MD-SAL, Release 8.0.5

2 Chapter 1. Overview



CHAPTER

TWO

BASIC CONCEPTS

Basic concepts are building blocks which are used by applications, and from which MD-SAL uses to define messaging
patterns and to provide services and behavior based on developer-supplied YANG models.

Data Tree All state-related data are modeled and represented as data tree, with possibility to address any
element / subtree

• Operational Data Tree - Reported state of the system, published by the providers using MD-
SAL. Represents a feedback loop for applications to observe state of the network / system.

• Configuration Data Tree - Intended state of the system or network, populated by consumers,
which expresses their intention.

Instance Identifier Unique identifier of node / subtree in data tree, which provides unambiguous infor-
mation, how to reference and retrieve node / subtree from conceptual data trees.

Notification Asynchronous transient event which may be consumed by subscribers and they may act upon
it.

RPC asynchronous request-reply message pair, when request is triggered by consumer, send to the
provider, which in future replies with reply message.

Note: In MD-SAL terminology, the term ‘RPC’ is used to define the input and output for a procedure
(function) that is to be provided by a provider, and mediated by the MD-SAL, that means it may not
result in remote call.

3



MD-SAL, Release 8.0.5

4 Chapter 2. Basic concepts



CHAPTER

THREE

MESSAGING PATTERNS

MD-SAL provides several messaging patterns using broker derived from basic concepts, which are intended to transfer
YANG modeled data between applications to provide data-centric integration between applications instead of API-
centric integration.

• Unicast communication

– Remote Procedure Calls - unicast between consumer and provider, where consumer sends request mes-
sage to provider, which asynchronously responds with reply message.

• Publish / Subscribe

– Notifications - multicast transient message which is published by provider and is delivered to subscribers.

– Data Change Events - multicast asynchronous event, which is sent by data broker if there is change in
conceptual data tree, and is delivered to subscribers.

• Transactional access to Data Tree

– Transactional reads from conceptual data tree - read-only transactions with isolation from other running
transactions.

– Transactional modification to conceptual data tree - write transactions with isolation from other running
transactions.

– Transaction chaining

5



MD-SAL, Release 8.0.5

6 Chapter 3. Messaging Patterns



7



MD-SAL, Release 8.0.5

CHAPTER

FOUR

TABLE OF CONTENTS

4.1 Architecture

8 Chapter 4. Table of Contents



MD-SAL, Release 8.0.5

4.2 Conceptual Data Tree

4.2.1 Terminology

Data Tree An instantiated logical tree that represents configuration or operational state data of a modeled
problem domain (for example, a controller or a network)

Data Tree Consumer A component acting on data, after this data are introduced into one or more par-
ticular subtrees of a Data Tree.

Data Tree Identifier A unique identifier for a particular subtree of a Data Tree. It is composed of the
logical data store type and the instance identifier of the subtree’s root node. It is represented by a
DOMDataTreeIdentifier.

Data Tree Producer A component responsible for providing data for one or more particular subtrees of
a Data Tree.

Data Tree Shard A component responsible for providing storage or access to a particular subtree of a
Data Tree.

Shard Layout A longest-prefix mapping between Data Tree Identifiers and Data Tree Shards responsible
for providing access to a data subtree.

4.2.2 Basic Concepts

Data Tree is a Namespace

The concept of a data tree comes from RFC6020. It is is vaguely split into two instances, configuration and operational.
The implicit assumption is that config implies oper, i.e. any configuration data is also a valid operational data. Further
interactions between the two are left undefined and the YANG language is not strictly extensible in the number and
semantics of these instances, leaving a lot to implementation details. An outline of data tree use, which is consistent
with the current MD-SAL design, is described in draft-kwatsen-netmod-opstate.

The OpenDaylight MD-SAL design makes no inherent assumptions about the relationship between the configuration
and operational data tree instances. They are treated as separate entities and they are both fully addressable via the
DOMDataTreeIdentifier objects. It is up to MD-SAL plugins (e.g. protocol plugins or applications) to maintain
this relationship. This reflects the asynchronous nature of applying configuration and also the fact that the intended
configuration data may be subject to translation (such as template configuration instantiation).

Both the configuration and operational namespaces (data trees) are instances of the Conceptual Data Tree. Any data
item in the conceptual data tree is addressed via a YangInstanceIdentifier object, which is a unique, hierarchical,
content-based identifier. All applications use the identifier objects to identify data to MD-SAL services, which in turn
are expected to perform proper namespace management such that logical operation connectivity is maintained.

Identifiers versus Locators

It is important to note that when we talk about Identifiers and Locators, we do not mean URIs and URLs, but rather
URNs and URLs as strictly separate entities. MD-SAL plugins do not have access to locators and it is the job of
MD-SAL services to provide location independence.

The details of how a particular MD-SAL service achieves location independence is currently left up to the service’s
implementation, which leads to the problem of having MD-SAL services cooperate, such as storing data in different
backends (in-memory, SQL, NoSQL, etc.) and providing unified access to all available data. Note that data availability
is subject to capabilities of a particular storage engine and its operational state, which leads to the design decision that
a YangInstanceIdentifier lookup needs to be performed in two steps:

4.2. Conceptual Data Tree 9

https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/draft-kwatsen-netmod-opstate
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier


MD-SAL, Release 8.0.5

1. A longest-prefix match is performed to locate the storage backend instance for that identifier

2. Masked path elements are resolved by the storage engine

Data Tree Shard

A process similar to the first step above is performed today by the Distributed Data Store implementation to split data
into Shards. The concept of a Shard as currently implemented is limited to specifying namespaces, and it does not
allow for pluggable storage engines.

In context of the Conceptual Data Tree, the concept of a Shard is generalized as the shorthand equivalent of a storage
backend instance. A Shard can be attached at any (even wildcard) YangInstanceIdentifier. This contract is ex-
posed via the DOMShardedDataTree, which is an MD-SAL SPI class that implements an YangInstanceIdentifier
-> Shard registry service. This is an omnipresent MD-SAL service, Shard Registry, whose visibility scope is a single
OpenDaylight instance (i.e. a cluster member). Shard Layout refers to the mapping information contained in this
service.

Federation, Replication and High Availability

Support for various multi-node scenarios is a concern outside of core MD-SAL. If a particular scenario requires the
shard layout to be replicated (either fully or partially), it is up to Shard providers to maintain an omnipresent service
on each node, which in turn is responsible for dynamically registering DOMDataTreeShard instances with the Shard
Registry service.

Since the Shard Layout is strictly local to a particular OpenDaylight instance, an OpenDaylight cluster is not strictly
consistent in its mapping of YangInstanceIdentifier to data. When a query for the entire data tree is executed,
the returned result will vary between member instances based on the differences of their Shard Layouts. This allows
each node to project its local operational details, as well as the partitioning of the data set being worked on based on
workload and node availability.

Partial symmetry of the conceptual data tree can still be maintained to the extent that a particular deployment requires.
For example the Shard containing the OpenFlow topology can be configured to be registered on all cluster members,
leading to queries into that topology returning consistent results.

4.2.3 Design

Data Tree Listener

A Data Tree Listener is a data consumer, for example a process that wants to act on data after it has been introduced to
the Conceptual Data Tree.

A Data Tree Listener implements the DOMDataTreeListener interface and registers itself using DOMDataTreeService.

A Data Tree Listener may register for multiple subtrees. Each time it is invoked it will be provided with the current
state of all subtrees that it is registered for.

.DOMDataTreeListener interface signature

public interface DOMDataTreeListener extends EventListener {

void onDataTreeChanged(Collection<DataTreeCandidate> changes, // (1)
Map<DOMDataTreeIdentifier, NormalizedNode<?, ?>> subtrees);

void onDataTreeFailed(Collection<DOMDataTreeListeningException> causes); // (2)
}

10 Chapter 4. Table of Contents

https://github.com/sphinx-doc/sphinx/issues/DOMDataTreeListener.html
https://github.com/sphinx-doc/sphinx/issues/DOMDataTreeService.html


MD-SAL, Release 8.0.5

1. Invoked when the data tree to which the Data Tree Listener is subscribed to changed. changes contains the
collection of changes, subtrees contains the current state of all subtrees to which the listener is registered.

2. Invoked when a subtree listening failure occurs. For example, a failure can be triggered when a connection to an
external subtree source is broken.

Data Tree Producer

A Data Tree Producer represents source of data in system. Data TreeProducer implementations are not required to
implement a specific interface, but use a DOMDataTreeProducer instance to publish data (i.e. to modify the Conceptual
Data Tree).

A Data Tree Producer is exclusively bound to one or more subtrees of the Conceptual Data Tree, i.e. binding a Data
Tree Producer to a subtree prevents other Data Tree Producers from modifying the subtree.

• A failed Data Tree Producer still holds a claim to the namespace to which it is bound (i.e. the exclusive lock of
the subtree) until it is closed.

DOMDataTreeProducer represents a Data Tree Producer context

• allows transactions to be submitted to subtrees specified at creation time

• at any given time there may be a single transaction open.

• once a transaction is submitted, it will proceed to be committed asynchronously.

.DOMDataTreeProducer interface signature

public interface DOMDataTreeProducer extends DOMDataTreeProducerFactory, AutoCloseable {
DOMDataWriteTransaction createTransaction(boolean isolated); // (1)
DOMDataTreeProducer createProducer(Collection<DOMDataTreeIdentifier> subtrees); //␣

→˓(2)
}

1. Allocates a new transaction. All previously allocated transactions must have been either submitted or canceled.
Setting isolated to true disables state compression for this transaction.

2. Creates a sub-producer for the provided subtrees. The parent producer loses the ability to access the specified
paths until the resulting child producer is closed.

Data Tree Shard

• A Data Tree Shard is always bound to either the OPERATIONAL, or the CONFIG space, never to both at the same
time.

• Data Tree Shards may be nested, the parent shard must be aware of sub-shards and execute every request in
context of a self-consistent view of sub-shards liveness. Data requests passing through it must be multiplexed
with sub-shard creations/deletions. In other words, if an application creates a transaction rooted at the parent
Shard and attempts to access data residing in a sub-shard, the parent Shard implementation must coordinate with
the sub-shard implementation to provide the illusion that the data resides in the parent shard. In the case of a
transaction running concurrently with sub-shard creation or deletion, these operations need to execute atomically
with respect to each other, which is to say that the transactions must completely execute as if the sub-shard
creation/deletion occurred before the transaction started or as if the transaction completed before the sub-shard
creation/deletion request was executed. This requirement can also be satisfied by the Shard implementation
preventing transactions from completing. A Shard implementation may choose to abort any open transactions
prior to executing a sub-shard operation.

• Shard Layout is local to an OpenDaylight instance.

4.2. Conceptual Data Tree 11

https://github.com/sphinx-doc/sphinx/issues/DOMDataTreeProducer.html
https://github.com/sphinx-doc/sphinx/issues/DOMDataTreeProducer.html


MD-SAL, Release 8.0.5

• Shard Layout is modified by agents (registering / unregistering Data Tree Shards) in order to make the Data Tree
Shard and the underlaying data available to plugins and applications executing on that particular OpenDaylight
instance.

Registering a Shard with the Conceptual Data Tree

Note: Namespace in this context means a Data Tree Identifier prefix.

1. Claim a namespace - An agent that is registering a shard must prove that it has sufficient rights to modify the
subtree where the shard is going to be attached. A namespace for the shard is claimed by binding a Data Tree
Producer instance to same subtree where the shard will be bound. The Data Tree Producer must not have any
open child producers, and it should not have any outstanding transactions.

2. Create a shard instance - Once a namespace is claimed, the agent creates a shard instance.

3. Attach shard - The agent registers the created shard instance and provides in the reigstration the Data Tree
Producer instance to verify the namespace claim. The newly created Shard is checked for its ability to cooperate
with its parent shard. If the check is successful, the newly created Shard is attached to its parent shard and
recorded in the Shard layout.

4. Remove namespace claim (optional) - If the Shard is providing storage for applications, the agent should close
the Data Tree Producer instance to make the subtree available to applications.

Important: Steps 1, 2 and 3 may fail, and the recovery strategy depends on which step failed and on the failure reason.

4.3 Incremental Backup

4.3.1 Terminology

Source Waits for a Sink to connect. After it does, registers a DTCL and starts sending all changes to the
Sink.

Sink Connects to the Source and asks for changes on a particular path in the datastore(root by default).
All changes received from the Source are applied to the Sink’s datastore.

DTCL Data Tree Change Listener is an object, which is registered on a Node in the datastore andnotified
if said node(or any of its children) is modified.

4.3.2 Concept

Incremental Backup vs Daexim

The concept of Incremental Backup originated from Daexim drawbacks. Importing the whole datastore may take a
while since it triggers all the DTCLs. Therefore using Daexim as a mechanism for backup is problematic, since the
export/import process needs to be executed quite frequently to keep the two sites synchronized.

Incremental Backup simply mirrors the changes made on the primary site to the secondary site one-by-one. All that’s
needed is to have a Source on the primary site, which sends the changes and a Sink on the secondary site which then
applies them. The transport mechanism used is Netty.

12 Chapter 4. Table of Contents



MD-SAL, Release 8.0.5

Replication (works both for LAN and WAN)

Once the Sink is started it tries to connect to the Source’s address and port. Once the connection is established, the
Sink sends a request containing a path in the datastore which needs to be replicated. Source receives this request and
registers DTCL on said path. Any changes the listener receives are then streamed to the Sink. When Sink receives
them he applies them to his datastore.

In case there is a network partition and the connection goes down, the Source unregisters the listener and simply
waits for the Sink to reconnect. When the connection goes UP again and the Sink reconnects, the Source registers
the DTCL again and continues replicating. Therefore even if there were some changes in the Source’s datastore while
the connection was down, when the Sink reconnects and Source registers new DTCL, the current initial state will be
replicated to the Sink. At this point they are synchronized again and the replication can continue without any issue.

• Features

– odl-mdsal-replicate-netty

<dependency>
<groupId>org.opendaylight.mdsal</groupId>
<artifactId>odl-mdsal-replicate-common</artifactId>
<classifier>features</classifier>
<type>xml</type>

</dependency>
<dependency>
<groupId>org.opendaylight.mdsal</groupId>
<artifactId>odl-mdsal-replicate-netty</artifactId>
<classifier>features</classifier>
<type>xml</type>

</dependency>

Configuration and Installation

1. Install the features on the primary and secondary site

feature:install odl-mdsal-replicate-netty odl-mdsal-replicate-common

2. Enable Source (on the primary site)

config:edit org.opendaylight.mdsal.replicate.netty.source
config:property-set enabled true
config:update

All configuration options:

• enabled <true/false>

• listen-port <port> (9999 is used if not set)

• keepalive-interval-seconds <amount> (10 is used if not set)

• max-missed-keepalives <amount> (5 is used if not set)

3. Enable Sink (on the secondary site) In this example the Source is at 172.16.0.2 port 9999

config:edit org.opendaylight.mdsal.replicate.netty.sink
config:property-set enabled true

(continues on next page)

4.3. Incremental Backup 13



MD-SAL, Release 8.0.5

(continued from previous page)

config:property-set source-host 172.16.0.2
config:update

All configuration options:

• enabled <true/false> (127.0.0.1 is used if not set)

• source-host <address> (127.0.0.1 is used if not set)

• source-port <port> (9999 is used if not set)

• reconnect-delay-millis <reconnect-delay> (3000 is used if not set)

• keepalive-interval-seconds <amount> (10 is used if not set)

• max-missed-keepalives <amount> (5 is used if not set)

Switching Primary and Secondary sites

Sites can be switched simply by disabling the configurations and enabling them in the opposite direction.

Example deployment

Running one ODL instance locally and one in Docker

1. Run local ODL

karaf-distribution/bin/karaf

Karaf Terminal - Start features

• features-mdsal - core MDSAL features

• odl-mdsal-replicate-netty - netty replicator

• odl-restconf-nb-bierman02 - we’ll be using Postman to access datastore

• odl-netconf-clustered-topolog - we will change data of some netconf devices

feature:install features-mdsal odl-mdsal-replicate-netty odl-restconf-nb-
→˓bierman02 odl-netconf-clustered-topolog

Start Source

config:edit org.opendaylight.mdsal.replicate.netty.source
config:property-set enabled true
config:update

2. Run Dockerized Karaf distribution

To get access to Karaf Terminal running in Docker you can use:

docker exec -ti $(docker ps -a -q --filter ancestor=<NAME-OF-THE-DOCKER-
→˓IMAGE>) /karaf-distribution/bin/karaf

Start features in the Docker’s Karaf Terminal

14 Chapter 4. Table of Contents



MD-SAL, Release 8.0.5

feature:install features-mdsal odl-mdsal-replicate-netty odl-restconf-nb-
→˓bierman02 odl-netconf-clustered-topolog

Start Sink - Let’s say the Docker runs at 172.17.0.2 meaning it will find the local Source is at 172.17.0.1

config:edit org.opendaylight.mdsal.replicate.netty.sink
config:property-set enabled true
config:property-set source-host 172.17.0.1
config:update

3. Run Postman and try modifying the Source’s datastore

Put data to the local datastore:

• Header

PUT http://localhost:8181/restconf/config/network-topology:network-
→˓topology/topology/topology-netconf/node/new-netconf-device

• Body

<node xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<node-id>new-netconf-device</node-id>
<host xmlns="urn:opendaylight:netconf-node-topology">127.0.0.1</host>
<port xmlns="urn:opendaylight:netconf-node-topology">16777</port>
<username xmlns="urn:opendaylight:netconf-node-topology">admin</

→˓username>
<password xmlns="urn:opendaylight:netconf-node-topology">admin</

→˓password>
<tcp-only xmlns="urn:opendaylight:netconf-node-topology">false</tcp-

→˓only>
<reconnect-on-changed-schema xmlns="urn:opendaylight:netconf-node-

→˓topology">false</reconnect-on-changed-schema>
<connection-timeout-millis xmlns="urn:opendaylight:netconf-node-

→˓topology">20000</connection-timeout-millis>
<max-connection-attempts xmlns="urn:opendaylight:netconf-node-topology

→˓">0</max-connection-attempts>
<between-attempts-timeout-millis xmlns="urn:opendaylight:netconf-node-

→˓topology">2000</between-attempts-timeout-millis>
<sleep-factor xmlns="urn:opendaylight:netconf-node-topology">1.5</

→˓sleep-factor>
<keepalive-delay xmlns="urn:opendaylight:netconf-node-topology">120</

→˓keepalive-delay>
</node>

Get the data locally

• Header

GET http://localhost:8181/restconf/config/network-topology:network-
→˓topology/

Get the data from the Docker. The change should be present there.

• Header

4.3. Incremental Backup 15



MD-SAL, Release 8.0.5

GET http://172.17.0.2:8181/restconf/config/network-topology:network-
→˓topology/

4.4 MD-SAL Binding Query Language User Guide

4.4.1 Feature Overview

Query language based API for work with YANG based models. MD-SAL component provides a binding query language
to interact with the underlying data store. This API provides an easy and type-safe mechanism for retrieving and
processing data from generated DOM based on queries. On the DOM layer the expression can be transmitted, and
it gives the possibility to move the execution to the storage backend. This can reduce app/backend interchange data.
This API is a part of the MD-SAL component and can be found inside the org.opendaylight.mdsal.binding.api.query
package.

4.4.2 Query structure

• QueryExpression - Built sequence-based expression. QueryExpression is similar to an SQL query expression.
While SQL operates on tables and rows, QueryExpression operates on a subtree. Creates by QueryFactory.

• QueryExecutor - Interface to execute query expression and retrieve execution result.

• QueryResult - Result execution of QueryExpression by QueryExecutor.

Query result will contain Objects which can be represented using the next methods:

• stream - Returns sequential Stream of values from the query result.

• parallelStream - Returns parallel Stream of values from the query result.

• getValues - Returns List of generic Objects from the query result.

• getItems - Returns List of Items(Object and InstanceIdentifier) from query result.

4.4.3 Query Usage

A QueryExpression is built up of three items, which specify what to search, looking for something matching a predicate.
This is similar in structure to being an SQL query: FROM what SELECT something WHERE predicate.

Query execution workflow:

Query Factory -> Root Path -> Query Builder -> (Extract child node -> Matcher) -> build

• Query Factory - Primary entry point for creating Query.

• Root Path - Specify Subtree root path for start from the query. This corresponds to the what part of a query. Just
as with SQL tables, this path has to point to at most one item.

• Query Builder - Intermediate builder stage, which allows providing a specification of the query. On query com-
pleted call _build_ method finalize the creation of simple query.

• Extract child node - Add a child path component to the query specification of what needs to be extracted. This
constitutes an intermediate step of specifying the something part of what needs to be found.

• Matcher - Specify a matching pattern for request using Leaf’s getter method and appropriate matcher. This
constitutes the predicate part of the query. Every candidate has to match pattern for the request.

Child node can be specified in the next ways:

16 Chapter 4. Table of Contents



MD-SAL, Release 8.0.5

• using child container class;

• using an exact match in a keyed list using List and Key types;

• using child case class and child class;

Leaf’s value can be retrieved passing method reference from container type.

Query engine supports Empty, string, int8, int16, int32, int64, uint8, uint16, uint32, uint64, Identity, TypeObject leaf’s
value types. Appropriate MatchBuilder pattern applied according to leaf’s value type.

4.4.4 Examples

Create a simple executor:

QueryExecutor executor = SimpleQueryExecutor.builder(CODEC)
.add(new FooBuilder()

.setSystem(BindingMap.of(
new SystemBuilder().setName("SystemOne").setAlarms(BindingMap.of(

new AlarmsBuilder()
.setId(Uint64.ZERO)
.setCritical(Empty.getInstance())
.setAffectedUsers(BindingMap.of()).build(),

new AlarmsBuilder()
.setId(Uint64.ONE)
.setAffectedUsers(BindingMap.of()).build()))

.build(),
new SystemBuilder().setName("SystemTwo").setAlarms(BindingMap.of(

new AlarmsBuilder()
.setId(Uint64.ZERO)
.setCritical(Empty.getInstance())
.setAffectedUsers(BindingMap.of(
)).build())).build()))

.build())
.build();

Create query expression and execute it using executor above:

QueryExpression<System> query = new DefaultQueryFactory(CODEC).
→˓querySubtree(InstanceIdentifier.create(Foo.class))

.extractChild(System.class)

.matching()

.leaf(System::getName).contains("One")

.build();
final QueryResult result = executor.executeQuery(query);
List items = result.getItems();

This expression will retrieve System node with name containing “One” from DOM tree.

QueryExpression<Alarms> query
= new DefaultQueryFactory(CODEC).querySubtree(InstanceIdentifier.create(Foo.class))

.extractChild(System.class)

.extractChild(Alarms.class)

.matching()

.leaf(Alarms::getId).valueEquals(Uint64.ZERO)
(continues on next page)

4.4. MD-SAL Binding Query Language User Guide 17



MD-SAL, Release 8.0.5

(continued from previous page)

.build();
final QueryResult result = executor.executeQuery(query);
List items = result.getItems();

The result of this query expression will be a list of two items - Alarms with Id of ZERO.

4.5 MD-SAL Binding Query Language Developer Guide

Note: Reading this section is likely useful as it contains an overview of MD-SAL Binding query language in Open-
Daylight and a how-to use it for retrieving data from data storage.

4.5.1 Retrieving data from storage

MD-SAL has two ways (operations) of retrieving data from storage: read-like and query-like operations.

Read-like operation

The method read of ReadTransaction interface.

<T extends DataObject> FluentFuture<Optional<T>> read(LogicalDatastoreType store,␣
→˓InstanceIdentifier<T> path);

The method reads data from the provided logical data store located at the provided path. If the target is a subtree, then
the whole subtree is read (and will be accessible from the returned DataObject). So we are getting DataObject which
we need to process in code for getting relevant data:

FluentFuture<Optional<Foo>> future;
try (ReadTransaction rtx = getDataBroker().newReadOnlyTransaction()) {

future = rtx.read(LogicalDatastoreType.CONFIGURATION, InstanceIdentifier.create(Foo.
→˓class));
}
Foo haystack = future.get().orElseThrow();
Object result = null;
for (System system : haystack.nonnullSystem().values()) {

if (needle.equals(system.getAlias())) {
result = system;
break;

}
}

Note: The structure of the Foo container is here.

18 Chapter 4. Table of Contents

https://github.com/opendaylight/mdsal/blob/master/binding/mdsal-binding-test-model/src/main/yang/mdsal-query.yang


MD-SAL, Release 8.0.5

Query-like operation

The method execute of QueryReadTransaction interface.

<T extends DataObject> FluentFuture<QueryResult<T>> execute(LogicalDatastoreType store,␣
→˓QueryExpression<T> query);

The method executes a query on the provided logical data store for getting relevant data. So we are getting result which
we need for future business logic processing. Before running the method execute we need to prepare a query with the
match predicates. For example, we want to find in Foo container the System with alias target-needle:

String needle = "target-needle";
QueryExpression<System> query = factory.querySubtree(InstanceIdentifier.create(Foo.
→˓class))

.extractChild(System.class)
.matching()

.leaf(System::getAlias).valueEquals(needle)
.build();

The method querySubtree creates a new DescendantQueryBuilder for a specified root path. It’s intermediate query
builder stage, which allows the specification of the query result type to be built up via extractChild(Class) and ex-
tractChild(Class, Class) methods. They used to specify which object type to select from the root path. Once com-
pleted, use either build() to create a simple query, or matching() to transition to specify predicates. There is a bunch
of overloaded methods leaf which based on the type of arguments returns specific match builders:

• ValueMatchBuilder methods:

ValueMatch<T> nonNull();
ValueMatch<T> isNull();
ValueMatch<T> valueEquals(V value);

• ComparableMatchBuilder extends ValueMatchBuilder and adds methods:

ValueMatch<T> lessThan(V value);
ValueMatch<T> lessThanOrEqual(V value);
ValueMatch<T> greaterThan(V value);
ValueMatch<T> greaterThanOrEqual(V value);

• StringMatchBuilder extends ValueMatchBuilder and adds methods:

ValueMatch<T> startsWith(String str);
ValueMatch<T> endsWith(String str);
ValueMatch<T> contains(String str);
ValueMatch<T> matchesPattern(Pattern pattern);

After creation of query, we can use it in the method execute of QueryReadTransaction interface:

4.5. MD-SAL Binding Query Language Developer Guide 19



MD-SAL, Release 8.0.5

FluentFuture<QueryResult<System>> future;
try (ReadTransaction rtx = getDataBroker().newReadOnlyTransaction()) {

future = ((QueryReadTransaction) rtx).execute(LogicalDatastoreType.CONFIGURATION,␣
→˓query);
}
QueryResult<System> result = future.get();

20 Chapter 4. Table of Contents


	Overview
	Basic concepts
	Messaging Patterns
	Table of Contents
	Architecture
	Conceptual Data Tree
	Terminology
	Basic Concepts
	Data Tree is a Namespace
	Identifiers versus Locators
	Data Tree Shard
	Federation, Replication and High Availability

	Design
	Data Tree Listener
	Data Tree Producer
	Data Tree Shard
	Registering a Shard with the Conceptual Data Tree


	Incremental Backup
	Terminology
	Concept
	Incremental Backup vs Daexim
	Replication (works both for LAN and WAN)
	Configuration and Installation
	Switching Primary and Secondary sites
	Example deployment


	MD-SAL Binding Query Language User Guide
	Feature Overview
	Query structure
	Query Usage
	Examples

	MD-SAL Binding Query Language Developer Guide
	Retrieving data from storage
	Read-like operation
	Query-like operation




