
MD-SAL
Release 5.0.7

Jan 16, 2020





Contents

1 Overview 1

2 Basic concepts 3

3 Messaging Patterns 5

4 Table of Contents 7

i



ii



CHAPTER 1

Overview

The Model-Driven Service Adaptation Layer (MD-SAL) is message-bus inspired extensible middleware component
that provides messaging and data storage functionality based on data and interface models defined by application
developers (i.e. user-defined models).

The MD-SAL:

• Defines a common-layer, concepts, data model building blocks and messaging patterns and provides infras-
tructure / framework for applications and inter-application communication.

• Provide common support for user-defined transport and payload formats, including payload serialization and
adaptation (e.g. binary, XML or JSON).

The MD-SAL uses YANG as the modeling language for both interface and data definitions, and provides a messaging
and data-centric runtime for such services based on YANG modeling.

The MD-SAL provides two different API types (flavours):

• MD-SAL Binding: MD-SAL APIs which extensively uses APIs and classes generated from YANG models,
which provides compile-time safety.

• MD-SAL DOM: (Document Object Model) APIs which uses DOM-like representation of data, which makes
them more powerful, but provides less compile-time safety.

Note: Model-driven nature of the MD-SAL and DOM-based APIs allows for behind-the-scene API and payload
type mediation and transformation to facilitate seamless communication between applications - this enables for other
components and applications to provide connectors / expose different set of APIs and derive most of its functional-
ity purely from models, which all existing code can benefit from without modification. For example RESTCONF
Connector is an application built on top of MD-SAL and exposes YANG-modeled application APIs transparently via
HTTP and adds support for XML and JSON payload type.

1



MD-SAL, Release 5.0.7

2 Chapter 1. Overview



CHAPTER 2

Basic concepts

Basic concepts are building blocks which are used by applications, and from which MD-SAL uses to define messaging
patterns and to provide services and behavior based on developer-supplied YANG models.

Data Tree All state-related data are modeled and represented as data tree, with possibility to address any
element / subtree

• Operational Data Tree - Reported state of the system, published by the providers using MD-
SAL. Represents a feedback loop for applications to observe state of the network / system.

• Configuration Data Tree - Intended state of the system or network, populated by consumers,
which expresses their intention.

Instance Identifier Unique identifier of node / subtree in data tree, which provides unambiguous infor-
mation, how to reference and retrieve node / subtree from conceptual data trees.

Notification Asynchronous transient event which may be consumed by subscribers and they may act
upon it.

RPC asynchronous request-reply message pair, when request is triggered by consumer, send to the
provider, which in future replies with reply message.

Note: In MD-SAL terminology, the term ‘RPC’ is used to define the input and output for a pro-
cedure (function) that is to be provided by a provider, and mediated by the MD-SAL, that means it
may not result in remote call.

3



MD-SAL, Release 5.0.7

4 Chapter 2. Basic concepts



CHAPTER 3

Messaging Patterns

MD-SAL provides several messaging patterns using broker derived from basic concepts, which are intended to transfer
YANG modeled data between applications to provide data-centric integration between applications instead of API-
centric integration.

• Unicast communication

– Remote Procedure Calls - unicast between consumer and provider, where consumer sends request mes-
sage to provider, which asynchronously responds with reply message.

• Publish / Subscribe

– Notifications - multicast transient message which is published by provider and is delivered to subscribers.

– Data Change Events - multicast asynchronous event, which is sent by data broker if there is change in
conceptual data tree, and is delivered to subscribers.

• Transactional access to Data Tree

– Transactional reads from conceptual data tree - read-only transactions with isolation from other running
transactions.

– Transactional modification to conceptual data tree - write transactions with isolation from other running
transactions.

– Transaction chaining

5



MD-SAL, Release 5.0.7

6 Chapter 3. Messaging Patterns



7



MD-SAL, Release 5.0.7

CHAPTER 4

Table of Contents

4.1 Architecture

8 Chapter 4. Table of Contents



MD-SAL, Release 5.0.7

4.2 Conceptual Data Tree

4.2.1 Terminology

Data Tree An instantiated logical tree that represents configuration or operational state data of a modeled
problem domain (for example, a controller or a network)

Data Tree Consumer A component acting on data, after this data are introduced into one or more par-
ticular subtrees of a Data Tree.

Data Tree Identifier A unique identifier for a particular subtree of a Data Tree. It is composed of the
logical data store type and the instance identifier of the subtree’s root node. It is represented by a
DOMDataTreeIdentifier.

Data Tree Producer A component responsible for providing data for one or more particular subtrees of
a Data Tree.

Data Tree Shard A component responsible for providing storage or access to a particular subtree of a
Data Tree.

Shard Layout A longest-prefix mapping between Data Tree Identifiers and Data Tree Shards responsible
for providing access to a data subtree.

4.2.2 Basic Concepts

Data Tree is a Namespace

The concept of a data tree comes from RFC6020. It is is vaguely split into two instances, configuration and operational.
The implicit assumption is that config implies oper, i.e. any configuration data is also a valid operational data. Further
interactions between the two are left undefined and the YANG language is not strictly extensible in the number and
semantics of these instances, leaving a lot to implementation details. An outline of data tree use, which is consistent
with the current MD-SAL design, is described in draft-kwatsen-netmod-opstate.

The OpenDaylight MD-SAL design makes no inherent assumptions about the relationship between the configuration
and operational data tree instances. They are treated as separate entities and they are both fully addressable via the
DOMDataTreeIdentifier objects. It is up to MD-SAL plugins (e.g. protocol plugins or applications) to maintain
this relationship. This reflects the asynchronous nature of applying configuration and also the fact that the intended
configuration data may be subject to translation (such as template configuration instantiation).

Both the configuration and operational namespaces (data trees) are instances of the Conceptual Data Tree. Any data
item in the conceptual data tree is addressed via a YangInstanceIdentifier object, which is a unique, hierar-
chical, content-based identifier. All applications use the identifier objects to identify data to MD-SAL services, which
in turn are expected to perform proper namespace management such that logical operation connectivity is maintained.

Identifiers versus Locators

It is important to note that when we talk about Identifiers and Locators, we do not mean URIs and URLs, but rather
URNs and URLs as strictly separate entities. MD-SAL plugins do not have access to locators and it is the job of
MD-SAL services to provide location independence.

The details of how a particular MD-SAL service achieves location independence is currently left up to the service’s
implementation, which leads to the problem of having MD-SAL services cooperate, such as storing data in different
backends (in-memory, SQL, NoSQL, etc.) and providing unified access to all available data. Note that data availability
is subject to capabilities of a particular storage engine and its operational state, which leads to the design decision that
a YangInstanceIdentifier lookup needs to be performed in two steps:

4.2. Conceptual Data Tree 9

https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/draft-kwatsen-netmod-opstate
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier


MD-SAL, Release 5.0.7

1. A longest-prefix match is performed to locate the storage backend instance for that identifier

2. Masked path elements are resolved by the storage engine

Data Tree Shard

A process similar to the first step above is performed today by the Distributed Data Store implementation to split data
into Shards. The concept of a Shard as currently implemented is limited to specifying namespaces, and it does not
allow for pluggable storage engines.

In context of the Conceptual Data Tree, the concept of a Shard is generalized as the shorthand equivalent of
a storage backend instance. A Shard can be attached at any (even wildcard) YangInstanceIdentifier.
This contract is exposed via the DOMShardedDataTree, which is an MD-SAL SPI class that implements an
YangInstanceIdentifier -> Shard registry service. This is an omnipresent MD-SAL service, Shard Reg-
istry, whose visibility scope is a single OpenDaylight instance (i.e. a cluster member). Shard Layout refers to the
mapping information contained in this service.

Federation, Replication and High Availability

Support for various multi-node scenarios is a concern outside of core MD-SAL. If a particular scenario requires the
shard layout to be replicated (either fully or partially), it is up to Shard providers to maintain an omnipresent service on
each node, which in turn is responsible for dynamically registering DOMDataTreeShard instances with the Shard
Registry service.

Since the Shard Layout is strictly local to a particular OpenDaylight instance, an OpenDaylight cluster is not strictly
consistent in its mapping of YangInstanceIdentifier to data. When a query for the entire data tree is executed,
the returned result will vary between member instances based on the differences of their Shard Layouts. This allows
each node to project its local operational details, as well as the partitioning of the data set being worked on based on
workload and node availability.

Partial symmetry of the conceptual data tree can still be maintained to the extent that a particular deployment requires.
For example the Shard containing the OpenFlow topology can be configured to be registered on all cluster members,
leading to queries into that topology returning consistent results.

4.2.3 Design

Data Tree Listener

A Data Tree Listener is a data consumer, for example a process that wants to act on data after it has been introduced
to the Conceptual Data Tree.

A Data Tree Listener implements the DOMDataTreeListener interface and registers itself using DOMDataTreeService.

A Data Tree Listener may register for multiple subtrees. Each time it is invoked it will be provided with the current
state of all subtrees that it is registered for.

.DOMDataTreeListener interface signature

public interface DOMDataTreeListener extends EventListener {

void onDataTreeChanged(Collection<DataTreeCandidate> changes, // (1)
Map<DOMDataTreeIdentifier, NormalizedNode<?, ?>> subtrees);

void onDataTreeFailed(Collection<DOMDataTreeListeningException> causes); // (2)
}

10 Chapter 4. Table of Contents

https://github.com/sphinx-doc/sphinx/issues/DOMDataTreeListener.html
https://github.com/sphinx-doc/sphinx/issues/DOMDataTreeService.html


MD-SAL, Release 5.0.7

1. Invoked when the data tree to which the Data Tree Listener is subscribed to changed. changes contains the
collection of changes, subtrees contains the current state of all subtrees to which the listener is registered.

2. Invoked when a subtree listening failure occurs. For example, a failure can be triggered when a connection to
an external subtree source is broken.

Data Tree Producer

A Data Tree Producer represents source of data in system. Data TreeProducer implementations are not required to im-
plement a specific interface, but use a DOMDataTreeProducer instance to publish data (i.e. to modify the Conceptual
Data Tree).

A Data Tree Producer is exclusively bound to one or more subtrees of the Conceptual Data Tree, i.e. binding a Data
Tree Producer to a subtree prevents other Data Tree Producers from modifying the subtree.

• A failed Data Tree Producer still holds a claim to the namespace to which it is bound (i.e. the exclusive lock of
the subtree) until it is closed.

DOMDataTreeProducer represents a Data Tree Producer context

• allows transactions to be submitted to subtrees specified at creation time

• at any given time there may be a single transaction open.

• once a transaction is submitted, it will proceed to be committed asynchronously.

.DOMDataTreeProducer interface signature

public interface DOMDataTreeProducer extends DOMDataTreeProducerFactory,
→˓AutoCloseable {

DOMDataWriteTransaction createTransaction(boolean isolated); // (1)
DOMDataTreeProducer createProducer(Collection<DOMDataTreeIdentifier> subtrees); //

→˓ (2)
}

1. Allocates a new transaction. All previously allocated transactions must have been either submitted or canceled.
Setting isolated to true disables state compression for this transaction.

2. Creates a sub-producer for the provided subtrees. The parent producer loses the ability to access the specified
paths until the resulting child producer is closed.

Data Tree Shard

• A Data Tree Shard is always bound to either the OPERATIONAL, or the CONFIG space, never to both at the
same time.

• Data Tree Shards may be nested, the parent shard must be aware of sub-shards and execute every request in
context of a self-consistent view of sub-shards liveness. Data requests passing through it must be multiplexed
with sub-shard creations/deletions. In other words, if an application creates a transaction rooted at the parent
Shard and attempts to access data residing in a sub-shard, the parent Shard implementation must coordinate with
the sub-shard implementation to provide the illusion that the data resides in the parent shard. In the case of a
transaction running concurrently with sub-shard creation or deletion, these operations need to execute atomically
with respect to each other, which is to say that the transactions must completely execute as if the sub-shard
creation/deletion occurred before the transaction started or as if the transaction completed before the sub-shard
creation/deletion request was executed. This requirement can also be satisfied by the Shard implementation
preventing transactions from completing. A Shard implementation may choose to abort any open transactions
prior to executing a sub-shard operation.

• Shard Layout is local to an OpenDaylight instance.

4.2. Conceptual Data Tree 11

https://github.com/sphinx-doc/sphinx/issues/DOMDataTreeProducer.html
https://github.com/sphinx-doc/sphinx/issues/DOMDataTreeProducer.html


MD-SAL, Release 5.0.7

• Shard Layout is modified by agents (registering / unregistering Data Tree Shards) in order to make the Data Tree
Shard and the underlaying data available to plugins and applications executing on that particular OpenDaylight
instance.

Registering a Shard with the Conceptual Data Tree

Note: Namespace in this context means a Data Tree Identifier prefix.

1. Claim a namespace - An agent that is registering a shard must prove that it has sufficient rights to modify the
subtree where the shard is going to be attached. A namespace for the shard is claimed by binding a Data Tree
Producer instance to same subtree where the shard will be bound. The Data Tree Producer must not have any
open child producers, and it should not have any outstanding transactions.

2. Create a shard instance - Once a namespace is claimed, the agent creates a shard instance.

3. Attach shard - The agent registers the created shard instance and provides in the reigstration the Data Tree
Producer instance to verify the namespace claim. The newly created Shard is checked for its ability to cooperate
with its parent shard. If the check is successful, the newly created Shard is attached to its parent shard and
recorded in the Shard layout.

4. Remove namespace claim (optional) - If the Shard is providing storage for applications, the agent should close
the Data Tree Producer instance to make the subtree available to applications.

Important: Steps 1, 2 and 3 may fail, and the recovery strategy depends on which step failed and on the failure
reason.

12 Chapter 4. Table of Contents


	Overview
	Basic concepts
	Messaging Patterns
	Table of Contents

