
LISP Flow Mapping
Release master

OpenDaylight Project

Jun 30, 2022

CONTENTS

1 LISP Flow Mapping User Guide 1

i

ii

CHAPTER

ONE

LISP FLOW MAPPING USER GUIDE

1.1 Overview

1.1.1 Locator/ID Separation Protocol

Locator/ID Separation Protocol (LISP) is a technology that provides a flexible map-and-encap framework that can be
used for overlay network applications such as data center network virtualization and Network Function Virtualization
(NFV).

LISP provides the following name spaces:

• Endpoint Identifiers (EIDs)

• Routing Locators (RLOCs)

In a virtualization environment EIDs can be viewed as virtual address space and RLOCs can be viewed as physical
network address space.

The LISP framework decouples network control plane from the forwarding plane by providing:

• A data plane that specifies how the virtualized network addresses are encapsulated in addresses from the under-
lying physical network.

• A control plane that stores the mapping of the virtual-to-physical address spaces, the associated forwarding
policies and serves this information to the data plane on demand.

Network programmability is achieved by programming forwarding policies such as transparent mobility, service chain-
ing, and traffic engineering in the mapping system; where the data plane elements can fetch these policies on demand
as new flows arrive. This chapter describes the LISP Flow Mapping project in OpenDaylight and how it can be used
to enable advanced SDN and NFV use cases.

LISP data plane Tunnel Routers are available at OpenOverlayRouter.org in the open source community on the following
platforms:

• Linux

• Android

• OpenWRT

For more details and support for LISP data plane software please visit the OOR web site.

1

https://tools.ietf.org/html/rfc6830
https://tools.ietf.org/html/rfc6830#page-6
https://tools.ietf.org/html/rfc6830#section-3
https://www.openoverlayrouter.org/
https://www.openoverlayrouter.org/

LISP Flow Mapping, Release master

1.1.2 LISP Flow Mapping Service

The LISP Flow Mapping service provides LISP Mapping System services. This includes LISP Map-Server and LISP
Map-Resolver services to store and serve mapping data to data plane nodes as well as to OpenDaylight applications.
Mapping data can include mapping of virtual addresses to physical network address where the virtual nodes are reach-
able or hosted at. Mapping data can also include a variety of routing policies including traffic engineering and load
balancing. To leverage this service, OpenDaylight applications and services can use the northbound REST API to
define the mappings and policies in the LISP Mapping Service. Data plane devices capable of LISP control protocol
can leverage this service through a southbound LISP plugin. LISP-enabled devices must be configured to use this
OpenDaylight service as their Map Server and/or Map Resolver.

The southbound LISP plugin supports the LISP control protocol (Map-Register, Map-Request, Map-Reply messages),
and can also be used to register mappings in the OpenDaylight mapping service.

1.2 LISP Flow Mapping Architecture

The following figure shows the various LISP Flow Mapping modules.

Fig. 1: LISP Mapping Service Internal Architecture

A brief description of each module is as follows:

• DAO (Data Access Object): This layer separates the LISP logic from the database, so that we can separate the
map server and map resolver from the specific implementation of the mapping database. Currently we have an
implementation of this layer with an in-memory HashMap, but it can be switched to any other key/value store
and you only need to implement the ILispDAO interface.

• Map Server: This module processes the adding or registration of authentication tokens (keys) and mappings.
For a detailed specification of LISP Map Server, see LISP.

• Map Resolver: This module receives and processes the mapping lookup queries and provides the mappings to
requester. For a detailed specification of LISP Map Server, see LISP.

2 Chapter 1. LISP Flow Mapping User Guide

https://tools.ietf.org/search/rfc6830
https://tools.ietf.org/search/rfc6830

LISP Flow Mapping, Release master

• RPC/RESTCONF: This is the auto-generated RESTCONF-based northbound API. This module enables defin-
ing key-EID associations as well as adding mapping information through the Map Server. Key-EID associations
and mappings can also be queried via this API.

• Neutron: This module implements the OpenDaylight Neutron Service APIs. It provides integration between the
LISP service and the OpenDaylight Neutron service, and thus OpenStack.

• Java API: The API module exposes the Map Server and Map Resolver capabilities via a Java API.

• LISP Proto: This module includes LISP protocol dependent data types and associated processing.

• In Memory DB: This module includes the in memory database implementation of the mapping service.

• LISP Southbound Plugin: This plugin enables data plane devices that support LISP control plane protocol (see
LISP) to register and query mappings to the LISP Flow Mapping via the LISP control plane protocol.

1.3 Configuring LISP Flow Mapping

In order to use the LISP mapping service for registering EID to RLOC mappings from northbound or southbound, keys
have to be defined for the EID prefixes first. Once a key is defined for an EID prefix, it can be used to add mappings for
that EID prefix multiple times. If the service is going to be used to process Map-Register messages from the southbound
LISP plugin, the same key must be used by the data plane device to create the authentication data in the Map-Register
messages for the associated EID prefix.

The etc/custom.properties file in the Karaf distribution allows configuration of several OpenDaylight parameters.
The LISP service has the following properties that can be adjusted:

lisp.smr (default: true)
Enables/disables the Solicit-Map-Request (SMR) functionality. SMR is a method to notify changes in an EID-
to-RLOC mapping to “subscribers”. The LISP service considers all Map-Request’s source RLOC as a subscriber
to the requested EID prefix, and will send an SMR control message to that RLOC if the mapping changes.

lisp.elpPolicy (default: default)
Configures how to build a Map-Reply southbound message from a mapping containing an Explicit Locator Path
(ELP) RLOC. It is used for compatibility with dataplane devices that don’t understand the ELP LCAF format.
The default setting doesn’t alter the mapping, returning all RLOCs unmodified. The both setting adds a new
RLOC to the mapping, with a lower priority than the ELP, that is the next hop in the service chain. To determine
the next hop, it searches the source RLOC of the Map-Request in the ELP, and chooses the next hop, if it exists,
otherwise it chooses the first hop. The replace setting adds a new RLOC using the same algorithm as the both
setting, but using the origin priority of the ELP RLOC, which is removed from the mapping.

lisp.lookupPolicy (default: northboundFirst)
Configures the mapping lookup algorithm. When set to northboundFirst mappings programmed through the
northbound API will take precedence. If no northbound programmed mappings exist, then the mapping service
will return mappings registered through the southbound plugin, if any exists. When set to northboundAndSouth-
bound the mapping programmed by the northbound is returned, updated by the up/down status of these mappings
as reported by the southbound (if existing).

lisp.mappingMerge (default: false)
Configures the merge policy on the southbound registrations through the LISP SB Plugin. When set to false, only
the latest mapping registered through the SB plugin is valid in the southbound mapping database, independent
of which device it came from. When set to true, mappings for the same EID registered by different devices are
merged together and a union of the locators is maintained as the valid mapping for that EID.

1.3. Configuring LISP Flow Mapping 3

https://tools.ietf.org/search/rfc6830
https://tools.ietf.org/html/rfc6830#section-6.6.2

LISP Flow Mapping, Release master

1.4 Textual Conventions for LISP Address Formats

In addition to the more common IPv4, IPv6 and MAC address data types, the LISP control plane supports arbitrary
Address Family Identifiers assigned by IANA, and in addition to those the LISP Canoncal Address Format (LCAF).

The LISP Flow Mapping project in OpenDaylight implements support for many of these different address formats, the
full list being summarized in the following table. While some of the address formats have well defined and widely
used textual representation, many don’t. It became necessary to define a convention to use for text rendering of all
implemented address types in logs, URLs, input fields, etc. The below table lists the supported formats, along with
their AFI number and LCAF type, including the prefix used for disambiguation of potential overlap, and examples
output.

Name AFI LCAF Prefix Text Rendering
No Address 0 • no: No Address Present

IPv4 Prefix 1 • ipv4: 192.0.2.0/24

IPv6 Prefix 2 • ipv6: 2001:db8::/32

MAC Address 16389 • mac: 00:00:5E:00:53:00

Distinguished
Name

17 • dn: stringAsIs

AS Number 18 • as: AS64500

AFI List 16387 1 list: {192.0.2.1,192.0.2.2,2001:db8::1
}

Instance ID 16387 2 • [223] 192.0.2.0/24

Application Data 16387 4 appdata: 192.0.2.1!128!17!80-
81!6667-7000

Explicit Locator
Path

16387 10 elp: {192.0.2.1→192.0.2.2|lps→192.0.
2.3}

Source/Destina
tion Key

16387 12 srcdst: 192.0.2.1/32|192.0.2.2/32

Key/Value Address
Pair

16387 15 kv: 192.0.2.1192.0.2.2

Service Path 16387 N/A sp: 42(3)

Table: LISP Address Formats

Please note that the forward slash character / typically separating IPv4 and IPv6 addresses from the mask length is
transformed into %2f when used in a URL.

4 Chapter 1. LISP Flow Mapping User Guide

https://www.iana.org/assignments/address-family-numbers
https://tools.ietf.org/html/draft-ietf-lisp-lcaf

LISP Flow Mapping, Release master

1.5 Karaf commands

In this section we will discuss two types of Karaf commands: built-in, and LISP specific. Some built-in commands are
quite useful, and are needed for the tutorial, so they will be discussed here. A reference of all LISP specific commands,
added by the LISP Flow Mapping project is also included. They are useful mostly for debugging.

1.5.1 Useful built-in commands

help
Lists all available command, with a short description of each.

help <command_name>
Show detailed help about a specific command.

feature:list [-i]
Show all locally available features in the Karaf container. The -i option lists only features that are currently
installed. It is possible to use | grep to filter the output (for all commands, not just this one).

feature:install <feature_name>
Install feature feature_name.

log:set <level> <class>
Set the log level for class to level. The default log level for all classes is INFO. For debugging, or learning
about LISP internals it is useful to run log:set TRACE org.opendaylight.lispflowmapping right after
Karaf starts up.

log:display
Outputs the log file to the console, and returns control to the user.

log:tail
Continuously shows log output, requires Ctrl+C to return to the console.

1.5.2 LISP specific commands

The available lisp commands can always be obtained by help mappingservice. Currently they are:

mappingservice:addkey
Add the default password password for the IPv4 EID prefix 0.0.0.0/0 (all addresses). This is useful when exper-
imenting with southbound devices, and using the REST interface would be combersome for whatever reason.

mappingservice:mappings
Show the list of all mappings stored in the internal non-persistent data store (the DAO), listing the full data
structure. The output is not human friendly, but can be used for debugging.

1.6 LISP Flow Mapping Karaf Features

LISP Flow Mapping has the following Karaf features that can be installed from the Karaf console:

odl-lispflowmapping-msmr
This includes the core features required to use the LISP Flow Mapping Service such as mapping service and the
LISP southbound plugin.

odl-lispflowmapping-ui
This includes the GUI module for the LISP Mapping Service.

1.5. Karaf commands 5

LISP Flow Mapping, Release master

odl-lispflowmapping-neutron
This is the experimental Neutron provider module for LISP mapping service.

1.7 Tutorials

This section provides a tutorial demonstrating various features in this service. We have included tutorials using two
forwarding platforms:

1. Using Open Overlay Router (OOR)

2. Using FD.io

Both have different approaches to create the overlay but ultimately do the same job. Details of both approaches have
been explained below.

1.7.1 Creating a LISP overlay with OOR

This section provides instructions to set up a LISP network of three nodes (one “client” node and two “server” nodes)
using OOR as data plane LISP nodes and the LISP Flow Mapping project from OpenDaylight as the LISP programmable
mapping system for the LISP network.

Overview

The steps shown below will demonstrate setting up a LISP network between a client and two servers, then performing
a failover between the two “server” nodes.

Prerequisites

• The OpenDaylight Karaf Distribution

• The Postman Chrome App: the most convenient way to follow along this tutorial is to use the Postman
App to edit and send the requests. The project git repository hosts a collection of the requests that are used
in this tutorial in the resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection file.
You can import this file to Postman by clicking Import at the top, choosing Download from link and then
entering the following URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=
resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection;hb=refs/heads/master. Alternatively, you
can save the file on your machine, or if you have the repository checked out, you can import from there. You
will need to create a new Postman Environment and define some variables within: controllerHost set to the
hostname or IP address of the machine running the OpenDaylight instance, and restconfPort to 8181, if you
didn’t modify the default controller settings.

• OOR version 1.0 or later The README.md lists the dependencies needed to build it from source.

• A virtualization platform

6 Chapter 1. LISP Flow Mapping User Guide

https://github.com/OpenOverlayRouter/oor/wiki
https://wiki.fd.io/view/ONE
https://www.opendaylight.org/downloads
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection;hb=refs/heads/master
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection;hb=refs/heads/master

LISP Flow Mapping, Release master

Target Environment

The three LISP data plane nodes and the LISP mapping system are assumed to be running in Linux virtual machines,
which have the eth0 interface in NAT mode to allow outside internet access and eth1 connected to a host-only network,
with the following IP addresses (please adjust configuration files, JSON examples, etc. accordingly if you’re using
another addressing scheme):

Node Node Type IP Address
controller OpenDaylight 192.168.16.11
client OOR 192.168.16.30
server1 OOR 192.168.16.31
server2 OOR 192.168.16.32
service-node OOR 192.168.16.33

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

In LISP terminology client, server1 and server2 are mobile nodes (MN in OOR), controller is a MS/MR and service-
node is a RTR.

1.7. Tutorials 7

LISP Flow Mapping, Release master

Instructions

The below steps use the command line tool cURL to talk to the LISP Flow Mapping RPC REST API. This is so that
you can see the actual request URLs and body content on the page.

1. Install and run the OpenDaylight distribution on the controller VM. Please follow the general OpenDaylight
Installation Guide for this step. Once the OpenDaylight controller is running install the odl-lispflowmapping-
msmr feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It takes quite a while to load and initialize all features and their dependencies. It’s worth running the command
log:tail in the Karaf console to see when the log output is winding down, and continue with the tutorial after
that.

2. Install OOR on the client, server1, server2, and service-node VMs following the installation instructions from
the OOR README file.

3. Configure the OOR installations from the previous step. Take a look at the oor.conf.example to get a general
idea of the structure of the conf file. First, check if the file /etc/oor.conf exists. If the file doesn’t exist,
create the file /etc/oor.conf. Set the EID in /etc/oor.conf file from the IP address space selected for your
virtual/LISP network. In this tutorial the EID of the client is set to 1.1.1.1/32, and that of server1 and server2
to 2.2.2.2/32.

4. Set the RLOC interface to eth1 in each oor.conf file. LISP will determine the RLOC (IP address of the
corresponding VM) based on this interface.

5. Set the Map-Resolver address to the IP address of the controller, and on the client the Map-Server too. On
server1 and server2 remove the Map-Server configuration, so that it doesn’t interfere with the mappings on the
controller, since we’re going to program them manually.

6. Modify the “key” parameter in each oor.conf file to a key/password of your choice (password in this tutorial).

Note: The resources/tutorial/OOR directory in the project git repository has the files used in the tutorial
checked in, so you can just copy the files to /etc/oor.conf on the respective VMs. You will also find the JSON
files referenced below in the same directory.

7. Define a key and EID prefix association in OpenDaylight using the RPC REST API for the client EID (1.1.1.1/32)
to allow registration from the southbound. Since the mappings for the server EID will be configured from the
REST API, no such association is necessary. Run the below command on the controller (or any machine that
can reach controller, by replacing localhost with the IP address of controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/ \
--data @add-key.json

where the content of the add-key.json file is the following:

{
"authentication-key": {

"eid-uri": "ipv4:1.1.1.1/32",
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "1.1.1.1/32"

},
(continues on next page)

8 Chapter 1. LISP Flow Mapping User Guide

https://docs.opendaylight.org/en/latest/getting-started-guide/installing_opendaylight.html
https://docs.opendaylight.org/en/latest/getting-started-guide/installing_opendaylight.html
https://github.com/OpenOverlayRouter/oor/blob/master/README.md
https://github.com/OpenOverlayRouter/oor/blob/master/README.md
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/OOR;hb=refs/heads/master

LISP Flow Mapping, Release master

(continued from previous page)

"mapping-authkey": {
"key-string": "password",
"key-type": 1

}
}

}

8. Verify that the key is added properly by requesting the following URL:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/

The output the above invocation should look like this:

{
"authentication-key":[

{
"eid-uri":"ipv4:1.1.1.1/32",
"eid":{

"ipv4-prefix":"1.1.1.1/32",
"address-type":"ietf-lisp-address-types:ipv4-prefix-afi"

},
"mapping-authkey":{

"key-string":"password"
,"key-type":1

}
}

]
}

9. Run the oor OOR daemon on all VMs:

oor -f /etc/oor.conf

For more information on accessing OOR logs, take a look at OOR README

10. The client OOR node should now register its EID-to-RLOC mapping in OpenDaylight. To verify you can lookup
the corresponding EIDs via the REST API

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
http://localhost:8181/restconf/operational/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:1.1.1.1%2f32/southbound/

An alternative way for retrieving mappings from OpenDaylight using the southbound interface is using the lig
open source tool.

11. Register the EID-to-RLOC mapping of the server EID 2.2.2.2/32 to the controller, pointing to server1 and
server2 with a higher priority for server1

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
--data @mapping.json

1.7. Tutorials 9

https://github.com/OpenOverlayRouter/oor#readme
https://github.com/davidmeyer/lig

LISP Flow Mapping, Release master

where the mapping.json file looks like this:

{
"mapping": {

"eid-uri": "ipv4:2.2.2.2/32",
"origin": "northbound",
"mapping-record": {

"recordTtl": 1440,
"action": "NoAction",
"authoritative": true,
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "2.2.2.2/32"

},
"LocatorRecord": [

{
"locator-id": "server1",
"priority": 1,
"weight": 1,
"multicastPriority": 255,
"multicastWeight": 0,
"localLocator": true,
"rlocProbed": false,
"routed": true,
"rloc": {

"address-type": "ietf-lisp-address-types:ipv4-afi",
"ipv4": "192.168.16.31"

}
},
{

"locator-id": "server2",
"priority": 2,
"weight": 1,
"multicastPriority": 255,
"multicastWeight": 0,
"localLocator": true,
"rlocProbed": false,
"routed": true,
"rloc": {

"address-type": "ietf-lisp-address-types:ipv4-afi",
"ipv4": "192.168.16.32"

}
}

]
}

}
}

Here the priority of the second RLOC (192.168.16.32 - server2) is 2, a higher numeric value than the priority of
192.168.16.31, which is 1. This policy is saying that server1 is preferred to server2 for reaching EID 2.2.2.2/32.
Note that lower priority value has higher preference in LISP.

12. Verify the correct registration of the 2.2.2.2/32 EID:

10 Chapter 1. LISP Flow Mapping User Guide

LISP Flow Mapping, Release master

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/

13. Now the LISP network is up. To verify, log into the client VM and ping the server EID:

ping 2.2.2.2

14. Let’s test fail-over now. Suppose you had a service on server1 which became unavailable, but server1 itself is
still reachable. LISP will not automatically fail over, even if the mapping for 2.2.2.2/32 has two locators, since
both locators are still reachable and uses the one with the higher priority (lowest priority value). To force a
failover, we need to set the priority of server2 to a lower value. Using the file mapping.json above, swap the
priority values between the two locators (lines 14 and 28 in mapping.json) and repeat the request from step 11.
You can also repeat step 12 to see if the mapping is correctly registered. If you leave the ping on, and monitor
the traffic using wireshark, you can see that the ping traffic to 2.2.2.2 will be diverted from the server1 RLOC to
the server2 RLOC.

With the default OpenDaylight configuration the failover should be near instantaneous (we observed 3 lost pings
in the worst case), because of the LISP Solicit-Map-Request (SMR) mechanism that can ask a LISP data plane
element to update its mapping for a certain EID (enabled by default). It is controlled by the lisp.smr variable
in etc/custom.porperties. When enabled, any mapping change from the RPC interface will trigger an SMR
packet to all data plane elements that have requested the mapping in the last 24 hours (this value was chosen
because it’s the default TTL of Cisco IOS xTR mapping registrations). If disabled, ITRs keep their mappings
until the TTL specified in the Map-Reply expires.

15. To add a service chain into the path from the client to the server, we can use an Explicit Locator Path, specifying
the service-node as the first hop and server1 (or server2) as the second hop. The following will achieve that:

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
--data @elp.json

where the elp.json file is as follows:

{
"mapping": {

"eid-uri": "ipv4:2.2.2.2/32",
"origin": "northbound",
"mapping-record": {

"recordTtl": 1440,
"action": "NoAction",
"authoritative": true,
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "2.2.2.2/32"

},
"LocatorRecord": [

{
"locator-id": "ELP",
"priority": 1,
"weight": 1,
"multicastPriority": 255,
"multicastWeight": 0,

(continues on next page)

1.7. Tutorials 11

https://tools.ietf.org/html/rfc6830#section-6.6.2

LISP Flow Mapping, Release master

(continued from previous page)

"localLocator": true,
"rlocProbed": false,
"routed": true,
"rloc": {

"address-type": "ietf-lisp-address-types:explicit-locator-
→˓path-lcaf",

"explicit-locator-path": {
"hop": [

{
"hop-id": "service-node",
"address": "192.168.16.33",
"lrs-bits": "strict"

},
{

"hop-id": "server1",
"address": "192.168.16.31",
"lrs-bits": "strict"

}
]

}
}

}
]

}
}

}

After the mapping for 2.2.2.2/32 is updated with the above, the ICMP traffic from client to server1 will flow
through the service-node. You can confirm this in the OOR logs, or by sniffing the traffic on either the service-
node or server1. Note that service chains are unidirectional, so unless another ELP mapping is added for the
return traffic, packets will go from server1 to client directly.

16. Suppose the service-node is actually a firewall, and traffic is diverted there to support access control lists (ACLs).
In this tutorial that can be emulated by using iptables firewall rules in the service-node VM. To deny traffic
on the service chain defined above, the following rule can be added:

iptables -A OUTPUT --dst 192.168.16.31 -j DROP

The ping from the client should now have stopped.

In this case the ACL is done on the destination RLOC. There is an effort underway in the OOR community to
allow filtering on EIDs, which is the more logical place to apply ACLs.

17. To delete the rule and restore connectivity on the service chain, delete the ACL by issuing the following command:

iptables -D OUTPUT --dst 192.168.16.31 -j DROP

which should restore connectivity.

12 Chapter 1. LISP Flow Mapping User Guide

LISP Flow Mapping, Release master

1.7.2 Creating a simple LISP overlay with FD.io

In this section, we use the Overlay Network Engine (ONE) project in FD.io to facilitate fully scripted setup and testing of
a LISP/VXLAN-GPE network. Overlay Network Engine (ONE) is a FD.io project that enables programmable dynamic
software defined overlays. Details about this project can be found in ONE wiki.

The steps shown below will demonstrate setting up a LISP network between a client and a server using VPP. We
demonstrate how to use VPP lite to build a IP4 LISP overlay on an Ubuntu host using namespaces and af_packet
interfaces. All configuration files used in the tutorials can be found here.

Prerequisites

• The OpenDaylight Karaf Distribution

• The Postman Chrome App: Please follow the instructions and import postman collection from the follow-
ing URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=resources/tutorial/FD_io/
lfm_vpp.postman_collection.json;hb=refs/heads/master.

• Vagrant (optional): Download it from Vagrant website and follow the setup instructions.

Target Environment

Unlike the case with OOR, we use network namespace functionality of Linux to create the overlay in this case. The
following table contains ip addresses of nodes in the overlay topology used in the tutorial. Our objective will be to
create this topology and be able to ping from client to server through an intermediary hop, service node, which is
a rtr node providing the service of re-encapsulation. So, all the packets from client to server will be through this
service node.

Node Node Type IP Address
controller OpenDaylight 6.0.3.100
client VPP 6.0.2.2
server VPP 6.0.4.4
service node VPP 6.0.3.3

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

Instructions

Follow the instructions below sequentially.

1. Pull the VPP code anonymously using:

git clone https://gerrit.fd.io/r/vpp

2. Then, use the vagrant file from repository to build virtual machine with proper environment.

cd vpp/build-root/vagrant/
vagrant up
vagrant ssh

1.7. Tutorials 13

https://fd.io/
https://wiki.fd.io/view/ONE
https://gerrit.fd.io/r/gitweb?p=one.git;a=tree;f=tutorial
https://www.opendaylight.org/downloads
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=resources/tutorial/FD_io/lfm_vpp.postman_collection.json;hb=refs/heads/master
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=resources/tutorial/FD_io/lfm_vpp.postman_collection.json;hb=refs/heads/master
https://www.vagrantup.com/downloads.html

LISP Flow Mapping, Release master

3. In case there is any error from vagrant up, try vargant ssh. if it works, no worries. If it still doesn’t work,
you can try any Ubuntu virtual machine. Or sometimes there is an issue with the Vagrant properly copying the
VPP repo code from the host VM after the first installation. In that case /vpp doesn’t exist. In both cases, follow
the instructions from below.

1. Clone the code in / directory. So, the codes will be in /vpp.

2. Run the following commands:

cd /vpp/build-root
make distclean
./bootstrap.sh
make V=0 PLATFORM=vpp TAG=vpp install-deb
sudo dpkg -i /vpp/build-root/*.deb

Alternative and more detailed build instructions can be found in VPP’s wiki

4. By now, you should have a Ubuntu VM with VPP repository in /vpp with sudo access. Now, we need VPP Lite
build. The following commands builds VPP Lite.

cd /vpp
export PLATFORM=vpp_lite
make build

Successful build create the binary in /vpp/build-root/install-vpp_lite_debug-native/vpp/bin

5. Install bridge-utils and ethtool if needed by using following commands:

sudo apt-get install bridge-utils ethtool

6. Now, install and run OpenDaylight on the VM. Please follow the general OpenDaylight Installation Guide for
this step. Before running OpenDaylight, we need to change the configuration for RTR to work. Update etc/
custom.properties with the lisp.elpPolicy to be replace.

lisp.elpPolicy = replace

14 Chapter 1. LISP Flow Mapping User Guide

https://wiki.fd.io/view/VPP/Build,_install,_and_test_images
https://docs.opendaylight.org/en/latest/getting-started-guide/installing_opendaylight.html

LISP Flow Mapping, Release master

Then, run OpenDaylight. For details regarding configuring LISP Flow Mapping, please take a look at Configuring
LISP Flow Mapping. Once the OpenDaylight controller is running install the odl-lispflowmapping-msmr feature
from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It may take quite a while to load and initialize all features and their dependencies. It’s worth running the command
log:tail in the Karaf console to see when the log output is winding down, and continue with the tutorial after
that.

7. For setting up VPP, get the files from resources/tutorial/FD_io folder of the lispflowmapping repo. The
files can also be found here. Copy the vpp1.config, vpp2.config and rtr.config files in /etc/vpp/lite/.

8. In this example, VPP doesn’t make any southbound map registers to OpenDaylight. So, we add the mappings
directly from northbound. For that, we need to add the mappings to OpenDaylight via RESTCONF API.

Register EID-to-RLOC mapping of the Client EID 6.0.2.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:6.0.2.0%2f24/northbound/ \
--data @epl1.json

Content of epl1.json:

{
"mapping": {

"eid-uri": "ipv4:6.0.2.0/24",
"origin": "northbound",
"mapping-record": {

"recordTtl": 1440,
"action": "NoAction",
"authoritative": true,
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "6.0.2.0/24"

},
"LocatorRecord": [

{
"locator-id": "ELP",
"priority": 1,
"weight": 1,
"multicastPriority": 255,
"multicastWeight": 0,
"localLocator": true,
"rlocProbed": false,
"routed": false,
"rloc": {

"address-type": "ietf-lisp-address-types:explicit-locator-
→˓path-lcaf",

"explicit-locator-path": {
"hop": [

{
"hop-id": "Hop 1",
"address": "6.0.3.3",

(continues on next page)

1.7. Tutorials 15

https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/master

LISP Flow Mapping, Release master

(continued from previous page)

"lrs-bits": "lookup rloc-probe strict"
},
{

"hop-id": "Hop 2",
"address": "6.0.3.1",
"lrs-bits": "lookup strict"

}
]

}
}

}
]

}
}

}

Similarly add EID-to-RLOC mapping of the Server EID 6.0.4.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:6.0.4.0%2f24/northbound/ \
--data @epl2.json

Content of elp2.json:

{
"mapping": {

"eid-uri": "ipv4:6.0.4.0/24",
"origin": "northbound",
"mapping-record": {

"recordTtl": 1440,
"action": "NoAction",
"authoritative": true,
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "6.0.4.0/24"

},
"LocatorRecord": [

{
"locator-id": "ELP",
"priority": 1,
"weight": 1,
"multicastPriority": 255,
"multicastWeight": 0,
"localLocator": true,
"rlocProbed": false,
"routed": false,
"rloc": {

"address-type": "ietf-lisp-address-types:explicit-locator-
→˓path-lcaf",

"explicit-locator-path": {
"hop": [

(continues on next page)

16 Chapter 1. LISP Flow Mapping User Guide

LISP Flow Mapping, Release master

(continued from previous page)

{
"hop-id": "Hop 1",
"address": "6.0.3.3",
"lrs-bits": "lookup rloc-probe strict"

},
{

"hop-id": "Hop 2",
"address": "6.0.3.2",
"lrs-bits": "lookup strict"

}
]

}
}

}
]

}
}

}

The JSON files regarding these can be found in here. Even though there is no southbound registration for mapping
to OpenDaylight, using northbound policy we can specify mappings, when Client requests for the Server eid,
Client gets a reply from OpenDaylight.

9. Assuming all files have been created and OpenDaylight has been configured as explained above, execute the host
script you’ve created or the topology_setup.sh script from here.

10. If all goes well, you can now test connectivity between the namespaces with:

sudo ip netns exec vpp-ns1 ping 6.0.4.4

11. Traffic and control plane message exchanges can be checked with a wireshark listening on the odl interface.

12.
Important: Delete the topology by running the topology_setup.sh with clean argument.

sudo ./topology_setup.sh clean

1.7. Tutorials 17

https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/master
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/master

LISP Flow Mapping, Release master

1.7.3 Creating a LISP overlay with Cisco IOS-XE

This section describes how to create a simple LISP overlay using the Cisco IOS-XE network operating system as the
data plane software running on the Cisco CSR 1000v Series Cloud Services Router.

Prerequisites

• The OpenDaylight Karaf Distribution**

• CSR1Kv image with Cisco IOS-XE version 03.13.00.S or later; the instructions have been tested on version
03.15.00.S.

• A virtualization platform supported by CSR1Kv images (VMware ESXi, Citrix XenServer, KVM, and Mi-
crosoft Hyper-V).

Target Environment

The CSR1Kv images are configured with one management interface (GigabitEthernet1), and another interface
(GigabitEthernet2) connected to a host-only network on the virtualization platform, while the LISP mapping system
is assumed to be running in a Linux virtual machine, which has the eth0 interface in NAT mode to allow outside internet
access and eth1 connected to the host-only network, with the following IP addresses (please adjust configuration files,
JSON examples, etc. accordingly if you’re using another addressing scheme):

Node Node Type IP Address
controller OpenDaylight 192.168.16.11
client CSR1Kv 192.168.16.30
server CSR1Kv 192.168.16.31

Table: Nodes in the tutorial

The scenario and EID allocation is the same as the OOR scenario, except that there is no server2 and service-node
(for now).

Before this tutorial can be followed, basic connectivity between the Linux VM and the CSRs should work on the
host-only network.

Instructions

The below steps use the command line tool cURL to talk to the LISP Flow Mapping RPC REST API. This is so that
you can see the actual request URLs and body content on the page. The easy way is to just use Postman.

1. Install and run the OpenDaylight distribution on the controller VM. Please follow the general OpenDaylight
Installation Guide for this step. Once the OpenDaylight controller is running install the odl-lispflowmapping-
msmr feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It takes quite a while to load and initialize all features and their dependencies. It’s worth running the command
log:tail in the Karaf console to see when the log output is winding down, and continue with the tutorial after
that.

2. Create the client and server VMs following the installation instructions from the CSR1Kv Configuration Guide.

18 Chapter 1. LISP Flow Mapping User Guide

https://www.cisco.com/c/en/us/support/routers/cloud-services-router-1000v/model.html
https://www.opendaylight.org/downloads
https://www.cisco.com/c/en/us/support/routers/cloud-services-router-1000v/model.html
https://docs.opendaylight.org/en/latest/getting-started-guide/installing_opendaylight.html
https://docs.opendaylight.org/en/latest/getting-started-guide/installing_opendaylight.html
https://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/configuration/b_CSR1000v_Configuration_Guide.html

LISP Flow Mapping, Release master

3. Define a key and EID prefix association in OpenDaylight using the RPC REST API for the client and server
EIDs (1.1.1.1/32 and 2.2.2.2/32 respectively) to allow registration from the southbound. Run the below com-
mand on the controller (or any machine that can reach controller, by replacing localhost with the IP address of
controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/ \
--data @add-key.json

where the content of the add-key.json file is the following:

{
"authentication-key": {

"eid-uri": "ipv4:1.1.1.1/32",
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "1.1.1.1/32"

},
"mapping-authkey": {

"key-string": "password",
"key-type": 1

}
}

}

The same should be done for 2.2.2.2/32 too.

4. Verify that the key is added properly by requesting the following URL:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/

The output the above invocation should look like this:

{
"authentication-key":[

{
"eid-uri":"ipv4:1.1.1.1/32",
"eid":{

"ipv4-prefix":"1.1.1.1/32",
"address-type":"ietf-lisp-address-types:ipv4-prefix-afi"

},
"mapping-authkey":{

"key-string":"password"
,"key-type":1

}
}

]
}

5. Configure the CSR installations from the previous step. The EID needs to be configured on a loopback interface
(except when the CSR is used as a router not a simple client like in this tutorial and the EID is assigned to a real
interface).

1.7. Tutorials 19

LISP Flow Mapping, Release master

interface Loopback0
ip address 1.1.1.1 255.255.255.255

6. The LISP specific configuration goes to a router lisp section in the configuration. A locator-set defines
the list of locators with their priorities and weights, either statically, or better yet, as an interface name:

locator-set rloc-network
IPv4-interface GigabitEthernet2 priority 1 weight 1
exit

7. To make sure a Map-Request is using the above defined rloc-network locator set, the following configuration
is used:

map-request itr-rlocs rloc-network

8. Each Instance ID needs its own configuration. For the default Instance ID of 0, the following configuration is
needed for a besic setup:

eid-table default instance-id 0
database-mapping 1.1.1.1/32 locator-set rloc-network
map-cache 0.0.0.0/0 map-request
no ipv4 map-cache-persistent
ipv4 itr map-resolver 192.168.16.11
ipv4 itr
ipv4 etr map-server 192.168.16.11 key password
ipv4 etr
exit

database-mapping defines the EID prefix the router will register in the mapping system and which locator set
it will use (rloc-network in this case, which was defined in step 6).

The next line creates a static map-cache entry for the whole IPv4 EID space, causing a Map-Request to be
triggered for every destination (that is not directly connected on some interface).

LISP routers save their map cache to a fie which is used to restore previous state on reboot. To avoid confusion due
to state restored from a previous run, no ipv4 map-cache-persistent can be used to disable this behavior
for non-production testing environments.

A map-resolver is then defined, where Map-Requests will be directed to for mapping lookups, and then a
map-server association with a shared secret key.

9. Here’s the full configuration that needs to be pasted into the configuration of the client to follow this tutorial:

interface Loopback0
ip address 1.1.1.1 255.255.255.255
!
router lisp
locator-set rloc-network
IPv4-interface GigabitEthernet2 priority 1 weight 1
exit
!
map-request itr-rlocs rloc-network
eid-table default instance-id 0
database-mapping 1.1.1.1/32 locator-set rloc-network
map-cache 0.0.0.0/0 map-request

(continues on next page)

20 Chapter 1. LISP Flow Mapping User Guide

LISP Flow Mapping, Release master

(continued from previous page)

no ipv4 map-cache-persistent
ipv4 itr map-resolver 192.168.16.11
ipv4 itr
ipv4 etr map-server 192.168.16.11 key password
ipv4 etr
exit
!
exit

Configuring the server is done by replacing 1.1.1.1 with 2.2.2.2 in the above configuration snippet.

10. The CSR nodes should now register their EID-to-RLOC mappings to OpenDaylight. To verify, the corresponding
EIDs can be looked up via the REST API:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
http://localhost:8181/restconf/operational/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:1.1.1.1%2f32/southbound/

An alternative way for retrieving mappings from OpenDaylight using the southbound interface is using the lig
open source tool.

Yet another different way is to use the OpenDaylight mappingservice CLI, and type the following at the Karaf
prompt:

mappingservice:mappings

This needs the odl-lispflowmapping-mappingservice-shell feature to be loaded. The output is intended for de-
bugging purposes and shows the full Java objects stored in the map-cache.

11. Now the LISP network is up. It can be verified by pinging the server EID from the client CSR EID:

ping 2.2.2.2 source 1.1.1.1

1.8 LISP Flow Mapping Support

For support the lispflowmapping project can be reached by emailing the developer mailing list: lispflowmapping-
dev@lists.opendaylight.org or on the #opendaylight-lispflowmapping IRC channel on irc.freenode.net.

Additional information is also available on the Lisp Flow Mapping wiki

1.9 Clustering in LISP Flow Mapping

Documentation regarding setting up a 3-node OpenDaylight cluster is described at following odl wiki page.

To turn on clustering in LISP Flow Mapping it is necessary:

• run script deploy.py script. This script is in integration-test project placed at tools/clustering/cluster-
deployer/deploy.py. A whole deploy.py command can looks like:

{path_to_integration_test_project}/tools/clustering/cluster-deployer/deploy.py
–distribution {path_to_distribution_in_zip_format}

1.8. LISP Flow Mapping Support 21

https://github.com/davidmeyer/lig
mailto:lispflowmapping-dev@lists.opendaylight.org
mailto:lispflowmapping-dev@lists.opendaylight.org
https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Main
https://wiki.opendaylight.org/view/Running_and_testing_an_OpenDaylight_Cluster#Three-node_cluster
https://git.opendaylight.org/gerrit/gitweb?p=integration/test.git;a=tree

LISP Flow Mapping, Release master

–rootdir {dir_at_remote_host_where_copy_odl_distribution}
–hosts {ip1},{ip2},{ip3}
–clean
–template lispflowmapping
–rf 3
–user {user_name_of_remote_hosts}
–password {password_to_remote_hosts}

Running this script will cause that specified distribution to be deployed to remote hosts specified through their IP
adresses with using credentials (user and password). The distribution will be copied to specified rootdir. As part of
the deployment, a template which contains a set of controller files which are different from standard ones. In this
case it is specified in
{path_to_integration_test_project}/tools/clustering/cluster-deployer/lispflowmapping directory.
Lispflowmapping templates are part of integration-test project. There are 5 template files:

• akka.conf.template

• jolokia.xml.template

• module-shards.conf.template

• modules.conf.template

• org.apache.karaf.features.cfg.template

After copying the distribution, it is unzipped and started on all of specified hosts in cluster aware manner.

1.9.1 Remarks

It is necessary to have:

• unzip program installed on all of the host

• set all remote hosts /etc/sudoers files to not requiretty (should only matter on debian hosts)

22 Chapter 1. LISP Flow Mapping User Guide

	LISP Flow Mapping User Guide
	Overview
	Locator/ID Separation Protocol
	LISP Flow Mapping Service

	LISP Flow Mapping Architecture
	Configuring LISP Flow Mapping
	Textual Conventions for LISP Address Formats
	Karaf commands
	Useful built-in commands
	LISP specific commands

	LISP Flow Mapping Karaf Features
	Tutorials
	Creating a LISP overlay with OOR
	Overview
	Prerequisites
	Target Environment
	Instructions

	Creating a simple LISP overlay with FD.io
	Prerequisites
	Target Environment
	Instructions

	Creating a LISP overlay with Cisco IOS-XE
	Prerequisites
	Target Environment
	Instructions

	LISP Flow Mapping Support
	Clustering in LISP Flow Mapping
	Remarks

