

Welcome to the OpenDaylight Handbook!

This handbook provides details on various aspects of OpenDaylight from the user
guides to the developer guides and tries to act as a single point of contact
for all documentation related articles in OpenDaylight. If you would like to
contribute to the Handbook please refer to the Documentation Guide.

Content for OpenDaylight Users

The following content is intended for people who would like to deploy, use, or
just learn more about OpenDaylight.

	Release Notes

	Getting Started Guide

	OpenDaylight User Guide

	OpenDaylight with Openstack Guide

Content for OpenDaylight Developers

The Following content is intended for developers building applications or code
on top of OpenDaylight, but who do not plan to modify OpenDaylight code
itself.

	Developer Guide

	Java API Documentation

Content for OpenDaylight Contributors

The following content is intended for developers who either currently
participate in the development of OpenDaylight or would like to start.

	Gerrit Guide [http://docs.releng.linuxfoundation.org/en/latest/gerrit.html]

	Infrastructure Guide [http://docs.opendaylight.org/projects/releng-builder/en/latest/index.html#odl-infra]

	Integration Testing Guide [http://docs.opendaylight.org/projects/integration-test/en/latest/index.html]

	Integration Packaging Guide [http://docs.opendaylight.org/projects/integration-packaging/en/latest/index.html]

	Documentation Guide

	OpenDaylight Release Process Guide

	Genius Documentation

	Infrautils Documentation

	NetVirt Contributor Guide

	Openflowplugin Documentation

	SFC Documentation

Release Notes

Target Environment

For Execution

The OpenDaylight Karaf container, OSGi bundles, and Java class files
are portable and should run on any Java 7- or Java 8-compliant JVM to
run. Certain projects and certain features of some projects may have
additional requirements. Those are noted in the project-specific
release notes.

Projects and features which have known additional requirements are:

	TCP-MD5 requires 64-bit Linux

	TSDR has extended requirements for external databases

	Persistence has extended requirements for external databases

	SFC requires addition features for certain configurations

	SXP depends on TCP-MD5 on thus requires 64-bit Linux

	SNBI has requirements for Linux and Docker

	OpFlex requires Linux

	DLUX requires a modern web browser to view the UI

	AAA when using federation has additional requirements for external tools

	VTN has components which require Linux

For Development

OpenDaylight is written primarily in Java project and primarily uses
Maven as a build tool Consequently the two main requirements to develop
projects within OpenDaylight are:

	A Java 8-compliant JDK

	Maven 3.1.1 or later

Applications and tools built on top of OpenDaylight using it’s REST
APIs should have no special requirements beyond whatever is needed to
run the application or tool and make the REST calls.

In some places, OpenDaylight makes use of the Xtend language. While
Maven will download the appropriate tools to build this, additional
plugins may be required for IDE support.

The projects with additional requirements for execution typically have
similar or more extensive additional requirements for development. See
the project-specific release notes for details.

Known Issues and Limitations

Other than as noted in project-specific release notes, we know of the
following limitations:

	Migration from prior OpenDaylight releases to Carbon has not been
extensively tested. The per-project release notes include migration and
compatibility information when it is known.

	There are scales beyond which the controller has been unreliable when
collecting flow statistics from OpenFlow switches. In tests, these
issues became apparent when managing thousands of OpenFlow
switches, however this may vary depending on deployment and use cases.

Security Limitations

All OpenDaylight Security Advisories can be found on the Security Advisories
wiki page [https://wiki.opendaylight.org/view/Security:Advisories].

The following Security Advisory is of special note to OpenDaylight Nitrogen
users:

	CVE-2017-1000406 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000406]

Project-specific Release Notes

	AAA

	Application-Layer Traffic Optimization (ALTO)

	BGP LS PCEP

	Bit Indexed Explicit Replication (BIER)

	Cardinal

	Controller

	Data Export/Import

	Integration/Distribution

	Dlux

	DluxApps

	eman

	FaaS - Fabric As A Service

	Groupbasedpolicy (GBP)

	Genius (Generic Network Interface, Utilities & Services)

	Infrautils

	L2Switch

	LISP Flow Mapping

	MD-SAL

	NEtwork MOdeling(NEMO)

	NETCONF

	NetVirt

	Neutron Northbound

	NIC

	OCP-plugin

	ODL Parent

	OF-CONFIG

	OpenFlowPlugin Project

	OpFlex

	OVSDB Project

	PacketCable

	Service Function Chaining

	SNMP Plug-in

	SNMP4SDN

	Scalable-Group Tag eXchange Protocol (SXP)

	Topology Processing Framework

	Table Type Patterns

	Unimgr

	Unified Secure Channel

	Honeycomb Virtual Bridge Domain

	VTN

	YANG Tools

Service Release Notes

	Nitrogen-SR1 Release Notes
	Projects with No Noteworthy Changes

	aaa

	alto

	bgpcep

	bier

	controller

	coe

	daexim

	dlux

	dluxapps

	eman

	faas

	genius

	groupbasedpolicy

	honeycomb/vbd

	infrautils

	integration/distribution

	l2switch

	lispflowmapping

	mdsal

	nemo

	netconf

	netvirt

	neutron

	nic

	of-config

	openflowplugin

	ovsdb

	packetcable

	sfc

	snmp

	snmp4sdn

	sxp

	unimgr

	usc

	vtn

	Nitrogen-SR2 Release Notes
	Projects with No Noteworthy Changes

	aaa

	bgpcep

	controller

	eman

	genius

	integration/distribution

	lispflowmapping

	mdsal

	netconf

	netvirt

	neutron

	openflowplugin

	ovsdb

	yangtools

AAA

Major Features

For each top-level feature, identify the name, url, description, etc. User-facing features are used directly by end users.

odl-aaa-shiro

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob_plain;f=features/shiro/features-aaa-shiro/src/main/features/features.xml;hb=refs/heads/stable/nitrogen

	Feature Description: ODL Shiro-based AAA implementation

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-nitrogen/

odl-aaa-authn

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/main/features/features.xml;hb=refs/heads/stable/nitrogen

	Feature Description: Same as odl-aaa-shiro

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-nitrogen/

odl-aaa-cert

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/main/features/features.xml;hb=refs/heads/stable/nitrogen

	Feature Description: MD-SAL based encrypted certificate management

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-nitrogen/

odl-aaa-cli

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/main/features/features.xml;hb=refs/heads/stable/nitrogen

	Feature Description: Basic karaf CLI commands for interacting with AAA

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-nitrogen/

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the document is under review, provide a link to the change in Gerrit.

	User Guide(s):

	Authentication, Authorization and Accounting (AAA) Services

	Developer Guide(s):

	Authentication, Authorization and Accounting (AAA) Services

Security Considerations

	Do you have any external interfaces other than RESTCONF?

No.

	Other security issues?

N/A.

Quality Assurance

	Link to Sonar Report [https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-sonar/] (54% code coverage)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/aaa/]

Migration

	Bug 7793: shiro.ini is no longer exposed in ODL Nitrogen.

shiro.ini is no longer exposed in ODL Nitrogen. A more robust mechanism is
provided to configure AAA in ODL Nitrogen based on the clustered-app-config
framework. A migration utility is provided and may be run by invoking the
following:

python bin/upgrade/convert-shiro-ini-to-rest-payload <filename>

An XML payload is output to stdout, which can be used as a PUT payload to the
aaa-app-config REST endpoint to maintain configuration from a previous version.
An alternative is to write the resulting payload to the initial application
config:

python bin/upgrade/convert-shiro-ini-to-rest-payload <filename> > etc/opendaylight/datastore/initial/config/aaa-app-config.xml

For Example:

python bin/upgrade/convert-shiro-ini-to-rest-payload etc/shiro.ini > etc/opendaylight/datastore/initial/config/aaa-app-config.xml

Compatibility

	Is this release compatible with the previous release?

Yes.

	Any API changes?

No.

	Any configuration changes?

Some CLI commands were modified for security and ease of use purposes. Nothing else.

Bugs Fixed

	6772 [https://bugs.opendaylight.org/show_bug.cgi?id=6772] When it is known some features have not activated fully, do not return 401

	8717 [https://bugs.opendaylight.org/show_bug.cgi?id=8717] deprecate the existing mdsal AAA datastore impl

	8572 [https://bugs.opendaylight.org/show_bug.cgi?id=8572] remove SecureBlockingQueue which is unused

	8724 [https://bugs.opendaylight.org/show_bug.cgi?id=8724] clean AAA features

Known Issues

	List key known issues with workarounds

	5838 [https://bugs.opendaylight.org/show_bug.cgi?id=5838] token authentication fails intermittently

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?component=General&list_id=78831&product=aaa&resolution=---]

End-of-life

	N/A

Standards

	LDAP, JDBC, ActiveDirectory (less tested)

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/AAA:Nitrogen:Release_Plan]

	Describe any major shifts in release schedule from the release plan

None.

Application-Layer Traffic Optimization (ALTO)

odl-alto-release

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=alto.git;a=blob;f=alto-release-features/features-alto/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: This is a summary feature containing the default
functionalities provided by ALTO project.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/alto/job/alto-csit-1node-setup-all-nitrogen/

Documentation

	User Guide(s):

	ALTO User Guide

	Developer Guide(s):

	ALTO Developer Guide

Security Considerations

Besides RESTCONF, ALTO also uses customized Jetty interfaces because YANG model
is not compatible with formats specified in RFC 7285.

The customized interfaces use port 8080 and are NOT protected by the AAA
project. All resources exposed by customized interfaces are read-only.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=50636] 31.7%

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/alto/job/alto-csit-1node-setup-all-nitrogen/]

	The tests are using the OpenDaylight CSIT infrastructure.

	How extensive was it? Not very extensive since the tests are customized to
test certain functionalities.

	What should be expected to work? The core modules (northbound and
resourcepool) and also some basic components (simple-ird)

	What has not be tested as much? Some basic components (simple-ecs and spce)
and extended components (multicost, incremental update and RSA service).

Migration

Migration with data from Boron isn’t supported.

Compatibility

This release is not compatible with the previous release from the developer’s
point of view because we have changed the namespaces for most YANG models, which
involves both API changes and configuration changes (blueprint configuration
files).

Java projects using the ALTO classes generated by yangtools MUST change the
packages for the classes because of the namespace migration. The incompatibility
can be fixed using regex replacement.

Projects using RESTCONF or the customized ALTO service do not need to migrate.

Since ALTO is migrating services to Blueprint, services depending on ALTO may
also need to migrate to Blueprint instead of using CONFIG subsystem.

Bugs Fixed

	Fixed Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&chfield=%5BBug%20creation%5D&chfieldfrom=2017-05-25&chfieldto=2017-08-14&list_id=84715&product=alto&query_format=advanced&resolution=FIXED]

Known Issues

Parallel query for simple-ecs service can conduct failure.

	Bug 8826 [https://bugs.opendaylight.org/show_bug.cgi?id=8826]

End-of-life

	Nothing deprecated, EOL.

Standards

	ALTO protocols are not compatible with YANG model

	Message types for RFC 7285 have been implemented

	ALTO project provides several basic services in RFC 7285

	Work-in-progress Internet drafts for path-vector, multi-cost, incremental
updates and RSA service are also scheduled but not fully implemented.

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/ALTO:Nitrogen_Release_Plan]

	Major shifts:

	Unable to finish the extensions (path-vector and RSA service)

BGP LS PCEP

Major Features

odl-bgpcep-bgp

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/bgp/features-bgp/src/main/features/features.xml;hb=refs/heads/stable/nitrogen

	Feature Description: OpenDaylight Border Gateway Protocol (BGP) plugin.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/bgpcep-csit-1node-userfeatures-all-nitrogen

odl-bgpcep-bmp

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/bmp/features-bmp/src/main/features/features.xml;hb=refs/heads/stable/nitrogen

	Feature Description: OpenDaylight BGP Monitoring Protocol (BMP) plugin.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/bgpcep-csit-1node-userfeatures-all-nitrogen

odl-bgpcep-pcep

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/pcep/features-pcep/src/main/features/features.xml;hb=refs/heads/stable/nitrogen

	Feature Description: OpenDaylight Path Computation Element Configuration Protocol (PCEP) plugin.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/bgpcep-csit-1node-userfeatures-all-nitrogen

Documentation

	User Guide(s):

	BGP User Guide

	BGP Monitoring Protocol User Guide

	PCEP User Guide

	Developer Guide(s):

	BGP Developer Guide

	BGP Monitoring Protocol Developer Guide

	PCEP Developer Guide

Security Considerations

None Known - all protocol implements the TCP Authentication Option (TCP MD5)

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=10075] (80%)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/bgpcep/]

	User features test [https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-userfeatures-only-nitrogen/]

	PCEP performance and scale tests [https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-periodic-throughpcep-only-nitrogen/]

	BGP Application peer performance and scale tests [https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-periodic-bgp-ingest-only-nitrogen/]

	BGP performance and scale test [https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-periodic-bgp-ingest-mixed-only-nitrogen/]

	BGP clustering [https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-3node-periodic-bgpclustering-only-nitrogen/]

The BGP extensions were tested manually with vendor’s BGP router implementation or other software implementations (exaBGP, bagpipeBGP). Also, they are covered by the unit tests and automated system tests.

	New BGP Openconfig statistics feature requires more testing.

Migration

BGP:

Protocol Configuration

First we get old configuration

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: GET

where example-bmp-monitor old bmp monitor id

Then we insert it

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Topology Configuration

First we get old configuration

URL: /restconf/config/network-topology:network-topology

Method: GET

Then we insert it

URL: /restconf/config/network-topology:network-topology

Method: POST

BMP:

First we get old configuration

URL: /restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/config:module/odl-bmp-impl-cfg:bmp-monitor-impl/example-bmp-monitor

Method: GET

example-bmp-monitor old bmp monitor id

Then we insert it

URL: /restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/config:module/odl-bmp-impl-cfg:bmp-monitor-impl/example-bmp-monitor

Method: PUT

PCEP:

There are no additional steps needed for migration to this release.

Compatibility

	Is this release compatible with the previous release?
Yes

	Any API changes?

	Any configuration changes?
BGP OpenConfig configuration should be used instead of previous BGP CSS configuration.

Bugs Fixed

	List of bugs fixed since the previous release [https://bugs.opendaylight.org/buglist.cgi?columnlist=product%2Ccomponent%2Cassigned_to%2Cbug_severity%2Ccf_issue_type%2Cshort_desc%2Cbug_status%2Cpriority%2Cdeadline%2Ccf_target_milestone&f1=cf_target_milestone&f2=cf_issue_type&known_name=Carbon%3A%20bgpcep&list_id=84608&o1=substring&o2=equals&product=bgpcep&query_based_on=Carbon%3A%20bgpcep&query_format=advanced&resolution=FIXED&v1=nitrogen&v2=Bug]

Known Issues

	BUG-6562 [https://bugs.opendaylight.org/show_bug.cgi?id=6562] Support add-path in base BGP NLRI

End-of-life

	None

Standards

	RFC4271 [https://tools.ietf.org/html/rfc4271] - A Border Gateway Protocol 4 (BGP-4)

	RFC4760 [https://tools.ietf.org/html/rfc4760] - Multiprotocol Extensions for BGP-4

	RFC1997 [https://tools.ietf.org/html/rfc1997] - BGP Communities Attribute

	RFC4360 [https://tools.ietf.org/html/rfc4360] - BGP Extended Communities Attribute

	RFC4486 [https://tools.ietf.org/html/rfc4486] - Subcodes for BGP Cease Notification Message

	RFC5004 [https://tools.ietf.org/html/rfc5004] - Avoid BGP Best Path Transitions from One External to Another

	RFC7752 [https://tools.ietf.org/html/rfc7752] - North-Bound Distribution of Link-State and TE Information using BGP

	RFC5440 [https://tools.ietf.org/html/rfc5440] - Path Computation Element (PCE) Communication Protocol (PCEP)

	RFC5541 [https://tools.ietf.org/html/rfc5541] - Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)

	RFC5455 [https://tools.ietf.org/html/rfc5455] - Diffserv-Aware Class-Type Object for the Path Computation Element Communication Protocol

	RFC5492 [https://tools.ietf.org/html/rfc5492] - Capabilities Advertisement with BGP-4

	RFC5521 [https://tools.ietf.org/html/rfc5521] - Extensions to the Path Computation Element Communication Protocol (PCEP) for Route Exclusions

	RFC5557 [https://tools.ietf.org/html/rfc5557] - Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global Concurrent Optimization

	RFC5575 [https://tools.ietf.org/html/rfc5575] - Flow Specification

	RFC5886 [https://tools.ietf.org/html/rfc5886] - A Set of Monitoring Tools for Path Computation Element (PCE)-Based Architecture

	RFC6286 [https://tools.ietf.org/html/rfc6286] - Autonomous-System-Wide Unique BGP Identifier for BGP-4

	RFC6793 [https://tools.ietf.org/html/rfc6793] - BGP Support for Four-Octet Autonomous System (AS) Number Space

	RFC7311 [https://tools.ietf.org/html/rfc7311] - The Accumulated IGP Metric Attribute for BGP

	RFC7674 [https://tools.ietf.org/html/rfc7674] - Clarification of the Flowspec Redirect Extended Community

	RFC5668 [https://tools.ietf.org/html/rfc5668] - 4-Octet AS Specific BGP Extended Community

	RFC3107 [https://tools.ietf.org/html/rfc3107] - Carrying Label Information in BGP-4

	RFC4364 [https://tools.ietf.org/html/rfc4364] - BGP/MPLS IP Virtual Private Networks (VPNs)

	RFC7432 [https://tools.ietf.org/html/rfc7432] - BGP MPLS-Based Ethernet VPN

	RFC7911 [https://tools.ietf.org/html/rfc7911] - Advertisement of Multiple Paths in BGP

	RFC2918 [https://tools.ietf.org/html/rfc2918] - Route Refresh Capability for BGP-4

	draft-ietf-bess-evpn-overlay [https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-04] - A Network Virtualization Overlay Solution using EVPN

	draft-ietf-bess-evpn-vpws-02 [https://tools.ietf.org/html/draft-ietf-bess-evpn-vpws-02] - VPWS support in EVPN

	draft-ietf-pce-pceps [https://tools.ietf.org/html/draft-ietf-pce-pceps-03] - Secure Transport for PCEP

	draft-gredler-idr-bgp-ls-segment-routing-ext-03 [https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-03] - BGP Link-State extensions for Segment Routing

	draft-ietf-idr-bgpls-segment-routing-epe-05 [https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-05] - Segment Routing Egress Peer Engineering BGP-LS Extensions

	draft-ietf-idr-flow-spec-v6-06 [https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-06] - Dissemination of Flow Specification Rules for IPv6

	draft-ietf-idr-flowspec-redirect-ip-01 [https://tools.ietf.org/html/draft-ietf-idr-flowspec-redirect-ip-01] - BGP Flow-Spec Redirect to IP Action

	Stateful extensions to the Path Computation Element Protocol, December 2013

	draft-ietf-pce-stateful-pce-07 [https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-07] - PCEP Extensions for Stateful PCE

	draft-ietf-pce-pce-initiated-lsp-00 [https://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp-00] - PCEP Extensions for PCE-initiated LSP Setup in a Stateful PCE Model

	Segment routing extension to the Path Computation Element Protocol, October 2014

	draft-ietf-pce-segment-routing-01 [https://tools.ietf.org/html/draft-ietf-pce-segment-routing-01] - PCEP Extension for segment routing

	draft-ietf-pce-lsp-setup-type-01 [https://tools.ietf.org/html/draft-ietf-pce-lsp-setup-type-01] - PCEP Extension for path setup type

	draft-ietf-pce-stateful-sync-optimizations-03 [https://tools.ietf.org/html/draft-ietf-pce-stateful-sync-optimizations-03] - Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE

	draft-sivabalan-pce-binding-label-sid-01 [https://tools.ietf.org/html/draft-sivabalan-pce-binding-label-sid-01] - Carrying Binding Label/Segment-ID in PCE-based Networks

	RFC7854 [https://tools.ietf.org/html/rfc7854] - BGP Monitoring Protocol

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/BGP_LS_PCEP:Nitrogen_Release_Plan]

Bit Indexed Explicit Replication (BIER)

odl-bier-all

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=bier.git;a=blob;f=features/features-bier/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: This is a summary feature containing the default functionalities provided by BIER project.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/bier/job/bier-csit-1node-basic-all-nitrogen/

Documentation

	User Guide(s):

	BIER User Guide

	Developer Guide(s):

	BIER Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	BIER project needs to get topology information via BGP-LS and BIER configuration via NETCONF.

	Other security issues?

	The required security issues are provided in the RESTCONF, NETCONF and BGP-LS projects.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=72693] 76.7%

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/bier/job/bier-csit-1node-basic-all-nitrogen/]

	Testing methodology. How extensive was it? What should be expected to work?
What has not been tested as much?

	There are unit tests and integration test available under folder “test” and system test in CSIT but the NETCONF
interface is not tested and will be completed in next release.

Migration

<<<<<<< HEAD
* Is it possible to migrate from the previous release? If so, how?
=======
* Is it possible migrate from the previous release? If so, how?
>>>>>>> Update bier release-notes for nitrogen

	Migration with data from Carbon to Nitrogen is not supported.

Compatibility

	Is this release compatible with the previous release? Yes.

	Any API changes? Yes. Some BIER-TE APIs have been added and listed as following.

bier/bierman/api/src/main/yang/bier-te-config-api.yang
configure-te-node
configure-te-label
delete-te-babel
delete-te-bsl
delete-te-si
delete-te-bp
* Any configuration changes? Yes. BGP-LS should be used instead of OpenFlow to get topology information.

Bugs Fixed

	None.

Known Issues

	None.

End-of-life

	None.

Standards

	Multicast using Bit Index Explicit Replication [https://datatracker.ietf.org/doc/draft-ietf-bier-architecture]

	YANG Data Model for BIER Protocol [https://datatracker.ietf.org/doc/draft-ietf-bier-bier-yang]

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/BIER:Nitrogen:Release_Plan]

	No major changes.

Cardinal

Major Features

odl-cardinal

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=cardinal.git;a=blob;f=features/odl-cardinal/pom.xml

	Feature Description: This feature installs the odl-cardinal
application which provides OpenDaylight health statistics, Karaf
and Bundle statistics, Openflow/NETCONF specific statistics to
a NMS server via SNMP protocol. And it also provides REST service
to expose these statistics.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: NA

odl-cardinal-api

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=cardinal.git;a=blob;f=features/odl-cardinal-api/pom.xml

	Feature Description: This feature contains the dependencies to
use MDSAL features in CARDINAL.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: NA

odl-cardinal-rest

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=cardinal.git;a=blob;f=features/odl-cardinal-rest/pom.xml

	Feature Description: Implements a South Bound Rest interface to
send configuration to REST-capable switches.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: NA

odl-cardinal-ui

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=cardinal.git;a=blob;f=features/odl-cardinal-ui/pom.xml

	Feature Description: This feature is the CARDINAL User Interface.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: NA

Documentation

	User Guide(s):

	Cardinal: OpenDaylight Monitoring as a Service

	Developer Guide(s):

	Cardinal: OpenDaylight Monitoring as a Service

Security Considerations

	SNMP agent runs on port 161,2001,2003

	Current support is for SNMPv2c (no encryption or authentication)

	Are all interfaces exposed using RESTCONF?

	Cardinal supports two interfaces - SNMP and RESTCONF

	Cardinal REST APIs are RESTCONF (authentication) enabled

	Cardinal SNMP support is through SNMP Agent (SNMPv2c as mentioned above)

	Link to all RESTCONF API

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=66521] (25.8%)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/cardinal/]

	All modules have been unit tested. Integration tests have been performed for
all major features. System tests have been performed on most major features.

Migration

	Is it possible to migrate from the previous release? If so, how?

Yes. Migration to this release involves migrating features to Karaf 4; see
the wiki [https://wiki.opendaylight.org/view/Karaf_4_migration] for details.

Compatibility

	Is this release compatible with the previous release?

No.

	Any API changes?

All Karaf 3 features have been removed in favour of (compatible) Karaf 4 features

Bugs Fixed

None.

Known Issues

No known issues.

End-of-life

	N/A.

Standards

	MIB OIDS were compiled for generating java classes using 3rd party library Open-DMK(mib-gen)

Release Mechanics

	ODL CARDINAL Nitrogen release plan [https://wiki.opendaylight.org/view/Cardinal:_Nitrogen_Release_Plan]

	No major shifts in the release schedule from the release plan

Controller

Major Features

odl-mdsal-broker

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=features/mdsal/odl-mdsal-broker/pom.xml

	Feature Description: Core MD-SAL implementations.

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-verify-3node-clustering/

Documentation

	User Guide(s):

	User Guide

	Developer Guide(s):

	Controller

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	Yes, akka uses port 2550 and by default communicates with unencrypted, unauthenticated messages. Securing akka communication isn’t described here, but those concerned should look at the “Configuring SSL/TLS for Akka Remoting” section at http://doc.akka.io/docs/akka//2.4.17/scala/remoting.html.

	Other security issues?

	No

Quality Assurance

	Link to Sonar Report [https://jenkins.opendaylight.org/releng/view/controller/job/controller-sonar/] (60%)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/controller/]

Migration

	Is it possible to migrate from the previous release? If so, how?

Yes, no specific steps needed unless prior updates to config subsystem modules
were made via the controller-config yang-ext mount in which case the
etc/opendaylight/current/controller.currentconfig.xml file must be manually
edited to remove the following elements corresponding to config yang modules
that were removed:

	Remove the <data-broker> element from the <module> element with
<name> binding-broker-impl

	Remove the <module> element with <name> inmemory-binding-data-broker

	Remove the <service> element with <name> binding-data-broker

	Remove <capability>urn:opendaylight:params:xml:ns:yang:controller:threadpool?module=threadpool&revision=2013-04-09</capability> from <required-capabilities>

Since the config subsystem is deprecated, it is recommended to migrate any custom
configuration additions and/or changes contained in controller.currentconfig.xml
and remove the file.

Compatibility

	Is this release compatible with the previous release?

	Yes

	Any API changes?

	No

	Any configuration changes?

	No

Bugs Fixed

	List of bugs fixed since the previous release

	Bugs Fixed [https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-9&chfieldto=2017-05-25&list_id=78854&product=controller&query_format=advanced&resolution=FIXED]

Known Issues

	List key known issues with workarounds

	None

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&chfieldfrom=2016-08-9&chfieldto=2017-05-25&list_id=78855&product=controller&query_format=advanced]

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this
release

	The XSQL component packaged in odl-mdsal-xsql has been removed.

	The DataProviderService and DataBrokerService APIs and the corresponding
implementations that were previously deprecated after the Hydrogen release
have been removed.

	The following config subsystem yang modules have been removed:

	threadpool

	threadpool-impl-fixed

	threadpool-impl-flexible

	threadpool-impl-scheduled

	threadpool-impl

	The config subsystem is officially deprecated in this release with removal
planned in 2 releases (Flourine). All projects still using the config subsystem
must be converted to use Blueprint.

Standards

	List of standards implemented and to what extent

	None

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Carbon:Release_Plan]

Data Export/Import

Major Features

odl-daexim-all

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=daexim.git;a=blob;f=features/odl-daexim-all/src/main/feature/feature.xml

	Feature Description: This is a wrapper feature which includes all
the sub features provided by daexim project.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/daexim/job/daexim-csit-1node-basic-only-nitrogen/

Documentation

	User Guide(s):

	Data Export/Import User Guide

	Developer Guide(s):

	Data Export/Import Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	No

	Other security issues?

	N/A

Quality Assurance

	Link to Sonar Report <https://sonar.opendaylight.org/overview?id=71877>
Code coverage is 79.3%.

	There are extensive unit-tests in the code.

Migration

	Is it possible to migrate from the previous release? If so, how?

	This is the first release of the project. However, migration
should work across all releases.

Compatibility

	Is this release compatible with the previous release? Yes

	Any API changes? No.

	Any configuration changes? No.

Bugs Fixed

	List of bugs fixed since the previous release

	First release of project

Known Issues

https://bugs.opendaylight.org/buglist.cgi?quicksearch=daexim

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in
this release

	None

Standards

	List of standrads implemented and to what extent

	None

Release Mechanics

	Link to release plan <https://wiki.opendaylight.org/view/Daexim:Nitrogen:Release_Plan>

	Describe any major shifts in release schedule from the release plan

	None

Integration/Distribution

Major Features

odl-integration-all

	Gitweb URL: https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features/singles/odl-integration-all/pom.xml;h=c3df09e8828ff16299d96f82e78b1901de1a60ca;hb=refs/heads/stable/nitrogen

	Description: An aggregate feature grouping all user-facing ODL features
which can be installed together without Karaf becoming unusable or without port conflicts.

	Top Level: Yes.

	User Facing: Yes, but not intended for production use (only for testing purposes).

	Experimental: No.

	CSIT Test: https://jenkins.opendaylight.org/releng/job/distribution-deploy-nitrogen

odl-integration-compatible-with-all

	Gitweb URL: https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features/singles/odl-integration-compatible-with-all/pom.xml;h=5ddd52a15cdc658ed18f4647469666b8c849cf4c;hb=refs/heads/stable/nitrogen

	Description: An aggregate feature grouping all user-facing ODL features
which are not pro-active and which (as a group) should be compatible with most other ODL features.

	Top Level: Yes.

	User Facing: Yes, but not intended for production use (only for testing purposes).

	Experimental: No.

	CSIT Test: https://jenkins.opendaylight.org/releng/job/distribution-csit-1node-userfeatures-all-nitrogen

odl-distribution-version

	Gitweb URL: https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features/singles/odl-distribution-version/pom.xml;h=b504cbeb6889379492d33322f1c5cfa488a207a4;hb=refs/heads/stable/nitrogen

	Description: Allows NETCONF/RESTCONF users to determine the version of ODL they are communicating with.

	Top Level: Yes.

	User Facing: Yes.

	Experimental: No.

	CSIT Test: https://jenkins.opendaylight.org/releng/job/distribution-csit-1node-userfeatures-all-nitrogen

Karaf 4 distribution archive

	Gitweb URL: https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=karaf/pom.xml;h=082fd09a2467e02e4303f8a5ce0bd42b48ad0267;hb=refs/heads/stable/nitrogen

	Description: Zip or tar.gz; when extracted, a self-consistent ODL installation is created.

	Top Level: Yes.

	User Facing: Yes.

	Experimental: No.

	CSIT Test: https://jenkins.opendaylight.org/releng/job/distribution-deploy-nitrogen

Documentation

	Getting Started Guide

	Clustering scripts

	Distribution version

	User Guide:

	Distribution version

	Developer Guide

	Test features

	Distribution version

Security Considerations

	Karaf 4 exposes ssh console on port 8101.
The security basically basically the same as in upstream Karaf of corresponding versions,
except library version overrides implemented in odlparent:karaf-parent.

See Securing the Karaf container

There is Bug 9044 <https://bugs.opendaylight.org/show_bug.cgi?id=9044> which limits
accessibility of karaf console over SSH after restart.

	Sonar Report [https://sonar.opendaylight.org/overview?id=61911] (0%)

	Only 42 lines of java code [https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=tree;f=version/src/main/java/org/opendaylight/yang/gen/v1/urn/opendaylight/params/xml/ns/yang/integration/distribution/version/rev160316;h=517b2d5a2e726b77360389a20ad8cd8b1a0a6a46;hb=refs/heads/stable/nitrogen].

	Test report page [https://wiki.opendaylight.org/view/Integration/Distribution/Nitrogen_Test_Report]

	No additional manual testing was needed.

Migration

	Version feature works exactly the same as in Carbon.
After migration the versions are set to the new default, configurable in runtime or via configfile.
The Carbon configfile would work, but users are strongly advised to consider reporting the migrated versions.

	No upgrade path for other major features.

Compatibility

	Multiple API changes, as Nitrogen is Karaf 4 while Carbon was Karaf 3.

	Even odl-distribution-version depends on different version of Config Subsystem.

	Only cluster configuration scripts remained compatible.

Bugs Fixed

None since Carbon SR1 release.

Known Issues

	ODLPARENT-110 [https://jira.opendaylight.org/browse/ODLPARENT-110]

** Successive feature installation from karaf4 console causes bundles refresh.

* **Workaround:

	Use –no-auto-refresh option in the karaf feature install command.

feature:install --no-auto-refresh odl-netconf-topology

	List all the features you need in the karaf config boot file.

	Install all features at once in console, for example:

feature:install odl-restconf odl-netconf-mdsal odl-mdsal-apidocs odl-clustering-test-app odl-netconf-topology

	ODLPARENT-113 [https://jira.opendaylight.org/browse/ODLPARENT-113]

** The ssh-dss method is used by Karaf SSH console, but no longer supported by clients such as OpenSSH.

* **Workaround:

	Use the bin/client script, which uses karaf:karaf as the default credentials.

	Use this ssh option:

ssh -oHostKeyAlgorithms=+ssh-dss -p 8101 karaf@localhost

** After restart, Karaf is unable to re-use the generated host.key file.

* **Workaround: Delete the etc/host.key file before starting Karaf again.

	ODLPARENT-115 [https://jira.opendaylight.org/browse/ODLPARENT-115]

** Karaf is slow to start processing features after start.

	* **Workaround: Use a wait loop to continue only when OpenDaylight starts restonding correctly

	to requests to the desired northbound interface.
If no OpenDaylight feature is installed, use bin/client in the wait loop
until Karaf SSH console starts responding.

End-of-life

	All APIs and functionalities related to Karaf 3 were removed.
Only Karaf 4 (or higher) will be supported from now on.

Standards

No standard implemented directly (see upstream projects).

Release Mechanics

	Release plan [https://wiki.opendaylight.org/view/Integration/Distribution/Nitrogen_Release_Plan]

	Major shifts in release schedule

	Upstream OpenDaylight projects were slow to controbute their Karaf 4 features and debug them when needed.

	While project deliverables were relatively on time, wiki updates were late,
and documentation and milestone report were extremely late.

Dlux

Major Features

odl-dlux-core

	Feature URL: https://git.opendaylight.org/gerrit/#/c/61762/1/features/odl-dlux-core/pom.xml

	Feature Description: Core DLUX functionality

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

Documentation

	Developer Guide(s):

	Dlux Getting Started [https://wiki.opendaylight.org/view/OpenDaylight_dlux:Getting_started]

Security Considerations

	There are no security issues found.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=72613]

	GUI is tested mostly manually, CSITs are on the way.

Migration

	All applications are moved from Dlux project to DluxApps. Only odl-dlux-core feature remains.

Compatibility

	Release is compatible with previous.

Bugs Fixed

https://bugs.opendaylight.org/buglist.cgi?bug_status=__closed__&content=&no_redirect=1&order=Importance&product=dlux&query_format=specific

Known Issues

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&content=&no_redirect=1&order=Importance&product=dlux&query_format=specific]

End-of-life

	N/A

Standards

	List of standards implemented and to what extent

	N/A

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/OpenDaylight_dlux:Nitrogen_Release_Plan]

DluxApps

Major Features

odl-dluxapps-nodes

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/odl-dluxapps-nodes/pom.xml;h=672a6a317ccfe4b51c8fddd25e3e285b3018581e;hb=3eedd3072f269d652d0ddb664a0b8bf20cf81e6e

	Feature Description: Application displays list of nodes in openflow (flow:1) topology.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

odl-dluxapps-topology

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/odl-dluxapps-topology/pom.xml;h=5796edc2869cc2cf98b92b7c7bc4813848659bf7;hb=3eedd3072f269d652d0ddb664a0b8bf20cf81e6e

	Feature Description: Basic topology application. Displays nodes and links from openflow (flow:1) topology.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

odl-dluxapps-yangman

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/odl-dluxapps-yangman/pom.xml;h=2a743ba9667bf60d144a8cb527a41f5323cd5a29;hb=3eedd3072f269d652d0ddb664a0b8bf20cf81e6e

	Feature Description: GUI for data manipulation in controller. Generates forms based on loaded Yang models.
User can interact with controller without knowledge of Yang models, test them, etc. Replacement of YangUI app.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/dluxapps/job/dluxapps-csit-1node-yangman-only-carbon/

odl-dluxapps-yangui

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/odl-dluxapps-yangui/pom.xml;h=fe56512415f35f145cdd7925812533466182399c;hb=3eedd3072f269d652d0ddb664a0b8bf20cf81e6e

	Feature Description: Previous version of YangUI. Will be removed in next release.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

odl-dluxapps-yangvisualizer

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/odl-dluxapps-yangvisualizer/pom.xml;h=daf31e33454403f8d8f5cc8c3bce4a3938cc4a35;hb=3eedd3072f269d652d0ddb664a0b8bf20cf81e6e

	Feature Description: Topology-like visualization of Yang models loaded in controller.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

Documentation

	Developer Guide(s):

	DluxApps Developer Guide [https://wiki.opendaylight.org/view/DluxApps:DeveloperGuide]

Security Considerations

	There are no security issues found.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=72613]

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/dluxapps/search/?q=dluxapps-csit]

	GUI is tested mostly manually, CSITs are on the way.

Migration

	All applications are moved from Dlux project to DluxApps. Also feature names
changed, so instead odl-dlux-* use odl-dluxapps-*. Everything else works same.

Compatibility

	Release is compatible with previous.

	API changes are in feature names - odl-dlux-* changes to odl-dluxapps-*

Bugs Fixed

https://bugs.opendaylight.org/buglist.cgi?bug_status=__closed__&content=&no_redirect=1&order=Importance&product=dluxapps&query_format=specific

Known Issues

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&content=&no_redirect=1&order=Importance&product=dluxapps&query_format=specific]

End-of-life

	odl-dluxapps-yangui - deprecated

Standards

	List of standrads implemented and to what extent

	N/A

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/DluxApps:Nitrogen_Release_Plan]

	UT coverage is not increased

	Yang Visualized refactor and redesign is not started

eman

Major Features

odl-eman

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=eman.git;a=blob;f=features/features-eman/src/main/features/features.xml;hb=stable/carbon

	Feature Description: This provides a Northbound API to the eman Information Model

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: none

Documentation

	User Guide(s):

	eman User Guide

	Developer Guide(s):

	eman Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

While eman does not expose other external interfaces, it does rely upon the
external interfaces exposed by the SNMP plugin.

	Other security issues?

None

Quality Assurance

	Link to Sonar Report - [https://sonar.opendaylight.org/overview?id=69960]

	Link to CSIT Jobs - No CSIT jobs for this experimental release

	Other manual testing and QA information - Manual testing via RESTCONF and DLUX

	Testing methodology. How extensive was it? What should be expected to work? What hasn’t been tested as much?

Testing has been manual interaction via DLUX using an SNMP simulator as described in eman User Guide.

Migration

	Is it possible to migrate from the previous release? If so, how?

Yes, no changes to API

Compatibility

Yes, compatible with other features and the previous release

Bugs Fixed

	List of bugs fixed since the previous release

None

Known Issues

	List key known issues with workarounds

No known issues

	Link to Open Bugs

No open bugs

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this release

None

Standards

	List of standards implemented and to what extent

	IETF Energy Management (eman) standards. [https://datatracker.ietf.org/wg/eman/charter/]
Only powerMeasurement table is currently implemented.

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/Eman:Nitrogen_Release_Plan]

	Describe any major shifts in release schedule from the release plan

None

FaaS - Fabric As A Service

Major Features

odl-faas-all

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=faas.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This is a top level wrapper feature which includes all the sub features faas offers.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

Documentation

	User Guide(s):

	Fabric As A Service

	Developer Guide(s):

	Fabric As A Service

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	No

	Other security issues?

	N/A

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=58232] (N/A)

	There are unit tests and integration test scripts available under folder “demo” in the faas repo,
these scripts can be manually invoked for testing. These tests only depend on mininet and ovs
which can easily be installed on one VM.

Migration

	Is it possible to migrate from the previous release? If so, how?

	No

Compatibility

	Is this release compatible with the previous release? Yes

	Any API changes? No.

	Any configuration changes? No.

Bugs Fixed

	List of bugs fixed since the previous release

	None

Known Issues

https://bugs.opendaylight.org/buglist.cgi?quicksearch=faas

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this
release

	None

Standards

	List of standrads implemented and to what extent

	None

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/FaaS:Nitrogen_Release_Plan]

	Describe any major shifts in release schedule from the release plan

	None

Groupbasedpolicy (GBP)

Major Features

	GBP UI - Groupbasedpoilicy User Interface

	Neutron Provider - maps neutron configuration to GBP service model

	FaaS Renderer - maps GBP service model to the common abstraction logical network models of the Fabric As A Service

	IOS-XE Renderer - maps GBP service model to IOS-XE based devices

	IOvisor Renderer - maps GBP service model to agents of the IOVisor Linux Foundation project

	Netconf Renderer - maps GBP service model to NETCONF based network elements

	OpenFlow Overlay Renderer - enable network virtualization behavior using OpenFlow

	SXP Distribution Service - enables SGT Exchange Protocol

	VPP Renderer - enable network virtualization behavior for VPP devices

odl-groupbasedpolicy-ofoverlay

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/odl-groupbasedpolicy-ofoverlay/src/main/feature/features.xml;h=cd8aa7f1c4a08cc4d197135674d29806f71a886e;hb=refs/heads/stable/nitrogen

	Feature Description: Feature can be added to the base to enable a Network Virtualization behavior using OpenFlow

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-only-nitrogen/

	CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-only-nitrogen/

odl-groupbasedpolicy-iovisor

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/odl-groupbasedpolicy-iovisor/src/main/feature/features.xml;h=9c3df4b13a08a90d6e9fb0d32adc1eea7520d4af;hb=refs/heads/stable/nitrogen

	Feature Description: This renderer maps GBP service model to agents of the IOVisor Linux Foundation project

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

odl-groupbasedpolicy-neutronmapper

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/odl-groupbasedpolicy-neutronmapper/src/main/feature/features.xml;h=072eb849b39c4399863241818495ad460fb41663;hb=refs/heads/stable/nitrogen

	Feature Description: This renderer maps Neutron northbound configuration to GBP service model

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-nitrogen/

odl-groupbasedpolicy-neutron-and-ofoverlay

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/odl-groupbasedpolicy-neutron-and-ofoverlay/src/main/feature/features.xml;h=57c0b759454d00aa97a18e82b31168b37b74908d;hb=refs/heads/stable/nitrogen

	Feature Description: Neutron and OpenFlow Overlay

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-only-nitrogen/

	CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-only-nitrogen/

	CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-nitrogen/

odl-groupbasedpolicy-vpp

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/odl-groupbasedpolicy-vpp/src/main/feature/features.xml;h=05c6a72e95aa9f51c98f466da77569ffc4d9d012;hb=refs/heads/stable/nitrogen

	Feature Description: This renderer maps GBP service model to VPP devices

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

odl-groupbasedpolicy-neutron-vpp-mapper

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/odl-groupbasedpolicy-neutron-vpp-mapper/src/main/feature/features.xml;h=394dd02b54093f4c8767889c3935cb1c4a18c45a;hb=refs/heads/stable/nitrogen

	Feature Description: Neutron Northbound services for VPP renderer

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-nitrogen/

odl-groupbasedpolicy-ui

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=tree;f=features/odl-groupbasedpolicy-ui;h=af30b7c9fc6d20de755d071b2d2e3da556d7b4a5;hb=refs/heads/stable/nitrogen

	Feature Description: Groupbasedpolicy User Interface

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

odl-groupbasedpolicy-ip-sgt-distribution-service

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/odl-groupbasedpolicy-ip-sgt-distribution-service/src/main/feature/features.xml;h=f421db3463d86751dde6a161466db309bc7e33a7;hb=refs/heads/stable/nitrogen

	Feature Description: SXP Distribution Service

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

odl-groupbasedpolicy-ios-xe

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/odl-groupbasedpolicy-ios-xe/src/main/feature/features.xml;h=b2498a4da528d8f43da84778516ba0677a0fbafe;hb=refs/heads/stable/nitrogen

	Feature Description: This renderer maps GBP service model to IOS-XE devices

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

odl-groupbasedpolicy-sxp-ep-provider

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/odl-groupbasedpolicy-sxp-ep-provider/src/main/feature/features.xml;h=4b3aa65f93776134d75e7c76305ca23300043f98;hb=refs/heads/stable/nitrogen

	Feature Description: SXP integration: Endpoint provider

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

odl-groupbasedpolicy-sxp-ise-adapter

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/odl-groupbasedpolicy-sxp-ise-adapter/src/main/feature/features.xml;h=14559f62741cee2809f92c43a27eb517a5fbef79;hb=refs/heads/stable/nitrogen

	Feature Description: SXP integration: ISE adapter

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

Documentation

	Installation Guide(s):

	Groupbasedpolicy Installation Guide [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)/Installation_guide]

	User Guide(s):

	Group Based Policy User Guide

Security Considerations

	No other external interfaces than RESTCONF

	No known security issues

Quality Assurance

Sonar report (64.2%) [https://sonar.opendaylight.org/overview?id=51201]

Groupbasedpolicy CSIT:

	https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-newton-openstack-nitrogen/

	https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-3node-clustering-all-nitrogen/

Other manual testing and QA information

	GBP devstack demo

	GBP-SFC demo

	VPP demo

Guides about how to run demo can be found on GBP wiki under Demo [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)/Consumability/Demo]

Migration

Migration from previous releases is not supported.

Compatibility

	Is this release compatible with the previous release?

Yes

	Any API changes?

N/A

	Any configuration changes?

N/A

Bugs Fixed

	Fixed Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&chfield=%5BBug%20creation%5D&chfieldfrom=2017-05-25&chfieldto=2017-08-14&list_id=84715&product=groupbasedpolicy&query_format=advanced&resolution=FIXED]

Known Issues

	List key known issues with workarounds

N/A

	Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=CONFIRMED&bug_status=OPEN&bug_status=IN_PROGRESS&chfield=%5BBug%20creation%5D&chfieldfrom=2017-05-25&chfieldto=2017-08-14&list_id=84718&product=groupbasedpolicy&query_format=advanced&resolution=---]

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this release

N/A

Standards

	List of standards implemented and to what extent

N/A

Release Mechanics

	Release plan [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)/Releases/Nitrogen/Release_plan]

	Describe any major shifts in release schedule from the release plan

N/A

Genius (Generic Network Interface, Utilities & Services)

Genius project provides Generic Network Interfaces, Utilities & Services. Any
ODL application can use these to achieve interference-free co-existence with
other applications using Genius. OpendayLight Carbon Genius provides following
modules –

	Interface (logical port) Manager allows bindings/registration of
multiple services to logical ports/interfaces

	Overlay Tunnel Manager creates and maintains overlay tunnels between
configured tunnel endpoints

	Aliveness Monitor provides tunnel/nexthop aliveness monitoring services

	ID Manager generates cluster-wide persistent unique integer IDs

	MD-SAL Utils provides common generic APIs for interaction with MD-SAL

	Resource Manager provides a resource sharing framework for applications
sharing common resources e.g. table-ids, group-ids etc.

	FCAPS Application generates various alarms and counters for the different
genius modules

	FCAPS Framework module collectively fetches all data generated by fcaps
application. Any underlying infrastructure can subscribe for its events to
have a generic overview of the various alarms and counters

Major Features

	Features URL: https://git.opendaylight.org/gerrit/gitweb?p=genius.git;a=blob_plain;f=features/genius-features/pom.xml

odl-genius

	Feature Description: This feature provides all functionalities provided by
genius modules, including interface manager, tunnel manager, resource manager
and ID manager and MDSAL Utils. It includes Genius APIs and implementation.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Tests:
* https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-1node-upstream-all-nitrogen/
* https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-3node-upstream-all-nitrogen/

odl-genius-rest

	Feature Description: This feature includes RESTCONF with ‘odl-genius’
feature.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Tests:
* https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-1node-upstream-all-nitrogen/
* https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-3node-upstream-all-nitrogen/

odl-genius-api

	Feature Description: This feature includes API for all the functionalities
provided by Genius.

	Top Level: No

	User Facing: No

	Experimental: No

	CSIT Tests:
* https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-1node-upstream-all-nitrogen/
* https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-3node-upstream-all-nitrogen/

odl-genius-fcaps-application

	Feature Description: includes genius FCAPS application.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Tests: None

odl-genius-fcaps-framework

	Feature Description: includes genius FCAPS Framework.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Tests: None

New capabilities and enhancements added in Nitrogen

Planned new capability added

	Service Recovery Framework

Enhancements added to project

	Migration to Karaf4

	Bug fixes

Documentation

	Installation Guide(s):

	N/A

	User Guide(s):

	User Guide

	Developer Guide(s):

	Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	No

	Other security issues?

	N/A

Quality Assurance

	Sonar Report [https://sonar.opendaylight.org/overview?id=64114]

	CSIT Jobs [https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-1node-upstream-all-nitrogen//]

	Netvirt CSIT for Genius patches [https://jenkins.opendaylight.org/releng/job/genius-patch-test-netvirt-nitrogen/]

	Netvirt Cluster CSIT for Genius patches [https://jenkins.opendaylight.org/releng/job/genius-patch-test-cluster-netvirt-nitrogen/]

Note

Genius is used extensively in NetVirt, so NetVirt’s CSIT also
provides confidence in genius.

	Other manual testing and QA information

	N/A

	Testing methodology. How extensive was it? What should be expected to work?
What hasn’t been tested as much?

	fcaps_framework and fcaps_application features hasn’t been tested much.

Migration

	Is it possible to migrate from the previous release? If so, how?

	No. OpenDaylight doesn’t support migration natively for applications that
use datastore.

Compatibility

	Is this release compatible with the previous release?

	Functionality is fully backwards compatible.

	Any API changes?

	New API added for service-recovery </submodules/genius/docs/specs/service-recovery> feature

	Any configuration changes?

	No

Bugs Fixed

	List of bugs fixed since the previous release

	Fixed BUGS [https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2017-05-25&chfieldto=2017-08-09&list_id=78466&product=genius&query_format=advanced&resolution=FIXED]

Known Issues

	List key known issues with workarounds

	None

	Open Bugs [https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-9&chfieldto=2017-05-25&list_id=78466&product=genius&query_format=advanced&bug_status=__open__]

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this
release

	N/A

Standards

	List of standards implemented and to what extent

	N/A

Release Mechanics

	Release plan [https://wiki.opendaylight.org/view/Genius:Nitrogen_Release_Plan]

	Describe any major shifts in release schedule from the release plan

	N/A

Infrautils

Major Features

odl-infrautils-all

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=infrautils.git;a=blob;f=common/features/odl-infrautils-all/pom.xml;hb=stable/nitrogen

	Feature Description: This feature exposes all infrautils framework features

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test: covered by Netvirt and Genius CSITs
* https://jenkins.opendaylight.org/releng/view/netvirt-csit/job/netvirt-csit-1node-openstack-ocata-upstream-stateful-nitrogen/
* https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-1node-upstream-all-nitrogen/

Documentation

	User Guide(s):

	Infrautils provides low-level technical framework utilities and therefore has no user guide.

	Developer Guide(s):

	Developer Guide

Security Considerations

	No external interfaces

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=66717]

	Project infrautils provides low-level technical framework utilities
and therefore no CSIT automated system testing is available. However
the same gets covered by the CSIT of users of infrautils (eg : Genius, Netvirt)

Migration

	No additional migration steps needed

Compatibility

	Is this release compatible with the previous release?

	Functionality is fully backwards compatible.

	Any API changes?

	New APIs added for system ready

	New APIs added for jobcoordinator

	Any configuration changes?

	No

Bugs Fixed

	List of bugs fixed since the previous release: [https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&chfield=target_milestone&chfieldto=Now&component=General&f1=cf_target_milestone&f2=cf_target_milestone&f3=cf_target_milestone&f4=cf_target_milestone&f5=cf_target_milestone&j_top=AND_G&list_id=78956&o1=substring&product=infrautils&query_format=advanced&resolution=FIXED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE&resolution=WORKSFORME&v1=Nitrogen]

Known Issues

	There are no currently known issues

End-of-life

	This section is N/A

Standards

	This section is N/A

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/Infrastructure_Utilities:Nitrogen:Release_Plan]

L2Switch

odl-l2switch-switch

	Feature URL: https://github.com/opendaylight/l2switch/blob/stable/carbon/features/features-l2switch/src/main/features/features.xml

	Feature Description: Provides a basic L2 Switch abstraction over multiple switches using OpenFlow

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-switch-all-carbon/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-integration-carbon/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-merge-carbon/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-sonar/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-validate-autorelease-carbon/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-clm-carbon/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-periodic-host-scalability-daily-only-carbon/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-scalability-all-carbon/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-scalability-only-carbon/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-switch-all-carbon/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-switch-only-carbon/

	https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-distribution-check-carbon/

Documentation

	User Guide(s):

	L2 Switch User Guide

	Developer Guide(s):

	L2Switch Developer Guide

Security Considerations

	Are there any known security issues?

None.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=org.opendaylight.l2switch%3Al2switch]

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/l2switch/]

	The tests are using the OpenDaylight CSIT infrastructure.

	How extensive was it? Extensive, covers functionality, scalability tests.

	What should be expected to work? The core modules like Address tracker, Packet handler,
Host tracker, loop removal, simple mininet ping.

	What has not be tested as much? Basic scalablity tests exists today, extensive scalability
could be performed.

Migration

Migration with data from Boron to Carbon is not supported.

Compatibility

This release is compatible with the previous release.

Since l2switch is migrating services to Blueprint, services depending on l2switch
may also need to migrate to Blueprint instead of using CONFIG subsystem.

Bugs Fixed

No bug is fixed in this release.

Known Issues

	Bug 6654 [https://bugs.opendaylight.org/show_bug.cgi?id=6654]

l2switch does not work well when mininet is stopped/started with no delay.

End-of-life

No Changes

Standards

None.

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/L2_Switch:Nitrogen_Release_Plan]

	No major changes.

LISP Flow Mapping

Major Features

odl-lispflowmapping-msmr

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/features-lispflowmapping/src/main/features/features.xml

	Feature Description: This is the core feature that provides the Mapping Services and includes the LISP southbound plugin feature as well.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/lispflowmapping/job/lispflowmapping-csit-1node-msmr-all-carbon/

odl-lispflowmapping-neutron

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/features-lispflowmapping/src/main/features/features.xml

	Feature Description: This feature provides neutron integration.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

odl-lispflowmapping-ui

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/features-lispflowmapping/src/main/features/features.xml

	Feature Description: This feature provides a GUI to access the Mapping Service data.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

Documentation

	
	User Guide(s):

	LISP Flow Mapping User Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	Yes, the southbound plugin

	If so, how are they secure?
* LISP southbound plugin follows LISP RFC6833 [https://tools.ietf.org/html/rfc6833] security guidelines.

	What port numbers do they use?
* Port used: 4342

	Other security issues?
* None

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=31299] (68%)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/lispflowmapping/]

	All modules have been unit tested. Integration tests have been performed for all major features. System tests have been performed on most major features.

	Registering and retrieval of basic mappings have been tested more thoroughly. More complicated mapping policies have gone through less testing.

Migration

	Is it possible to migrate from the previous release? If so, how?

	LISP Flow Mapping service will auto-populate the datastructures from existing MD-SAL data upon service start if the data has already been migrated separately. No automated way for transfering the data is provided in this release.

Compatibility

	Is this release compatible with the previous release?

	Yes

	Any API changes?

	No

	Any configuration changes?

	No

Bugs Fixed

	List of bugs fixed since the previous release:

	6536 [https://bugs.opendaylight.org/show_bug.cgi?id=8679] MappingSystem#getWidestNegativePrefix(Eid) returns incorrect results

	6754 [https://bugs.opendaylight.org/show_bug.cgi?id=9023] Merging of negative prefixes is incorrect

	6759 [https://bugs.opendaylight.org/show_bug.cgi?id=7947] Subscribers from both Northbound and Southbound origin are stored in SimpleMapCache

	6634 [https://bugs.opendaylight.org/show_bug.cgi?id=8469] SMR scheduler task tracking unreliable

	6782 [https://bugs.opendaylight.org/show_bug.cgi?id=8506] RNegative mapping subscriptions on SB take into account NB mappings too

	6925 [https://bugs.opendaylight.org/show_bug.cgi?id=8764] Newly added mapping is removed when it has the same EID prefix as the old one

	7018 [https://bugs.opendaylight.org/show_bug.cgi?id=9037] Negative mapping in SB masking overlapping more specific positive added later to NB

	7035 [https://bugs.opendaylight.org/show_bug.cgi?id=6537] Expired mapping removed from map-cache, not removed from MD-SAL

	6361 [https://bugs.opendaylight.org/show_bug.cgi?id=8503] DAO: Empty sub-tables are not removed

	7293 [https://bugs.opendaylight.org/show_bug.cgi?id=8112] Integration tests: multi-site doesn’t send SMR-invoked Map-Request on SMR

	7586 [https://bugs.opendaylight.org/show_bug.cgi?id=8591] Authentication cannot be properly disabled

	7789 [https://bugs.opendaylight.org/show_bug.cgi?id=8775] Upon negative mapping removal, subscribers should be notified to delete the negative

Known Issues

	Clustering is still an experimental feature and may have some issues particularly related to operational datastore consistency.

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&list_id=78877&order=Importance&product=lispflowmapping&query_format=specific]

End-of-life

	None

Standards

	The LISP implementation module and southbound plugin conforms to the IETF RFC6830 [https://tools.ietf.org/html/rfc6830] and RFC6833 [https://tools.ietf.org/html/rfc6833] , with the following exceptions:

	In Map-Request message, M bit(Map-Reply Record exist in the MapRequest) is processed but any mapping data at the bottom of a Map-Request are discarded.

	LISP LCAFs are limited to only up to one level of recursion, as described in the IETF LISP YANG draft [https://tools.ietf.org/html/draft-ietf-lisp-yang-04].

	No standards exist for the LISP Mapping System northbound API as of this date.

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Nitrogen_Release_Plan]

	No major shifts from the release plan.

MD-SAL

Major Features

odl-mdsal-binding

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=mdsal.git;a=blob;f=common/features/odl-mdsal-binding/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: MDSAL Binding layer, representing mapping of YANG
modeled data to respective Java Objects

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/mdsal/job/mdsal-csit-1node-periodic-bindingv1-only-nitrogen/

odl-mdsal-binding2

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=mdsal.git;a=blob;f=common/features/odl-mdsal-binding2/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: MDSAL Binding v2 layer, representing mapping of YANG
modeled data to respective Java Objects

	Top Level: Yes

	User Facing: No

	Experimental: Yes

Documentation

	Developer Guide(s):

	MDSAL Developer guide

	MDSAL Binding v2 guide [https://github.com/opendaylight/mdsal/blob/stable/nitrogen/docs/src/main/asciidoc/developer/analysis/binding-v2.adoc]

Security Considerations

	MDSAL libraries are designed to be embedded and not to be a stand-alone
application so security concerns need to be addressed by the application
using this library.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=55311]
(61.0% line coverage)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/mdsal/job/mdsal-csit-1node-periodic-bindingv1-only-nitrogen/]

Migration

	no additional steps needed for migration

Compatibility

	Release is compatible with the previous one

	No configuration changes

Bugs Fixed

	Link of fixed bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&chfield=target_milestone&chfieldto=Now&component=General&f1=cf_target_milestone&f2=cf_target_milestone&f3=cf_target_milestone&f4=cf_target_milestone&j_top=AND_G&list_id=78839&o1=substring&product=mdsal&query_format=advanced&resolution=FIXED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE&resolution=WORKSFORME&v1=Nitrogen]
Additionally, all issues fixed in Carbon SR1 and SR2 release trains have been integrated.

Known Issues

	List key known issues with workarounds

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&chfield=target_milestone&chfieldto=Now&component=General&f1=cf_target_milestone&f2=cf_target_milestone&f3=cf_target_milestone&f4=cf_target_milestone&f5=cf_target_milestone&j_top=AND_G&list_id=78842&o1=substring&product=mdsal&query_format=advanced&resolution=---&v1=Nitrogen]

End-of-life

	Users are advised that any API element marked as @deprecated may be removed
in the next release. Users are advised to follow JavaDoc pointers and migrate
to replacement APIs.

	Next release is likely to make incompatible API changes due to changes
in the next yangtools release.

Standards

	relies on processing according to
RFC 6020 [https://tools.ietf.org/html/rfc6020] and
RFC 7950 [https://tools.ietf.org/html/rfc7950].

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/MD-SAL:Nitrogen:Release_Plan]

NEtwork MOdeling(NEMO)

Major Features

	odl nemo rest provides an abstracted intent model whose target is to enable network users/applications to describe their intent in an intuitive way without caring about the underlying physical network.

	nemo engine is the core module of NEMO project, which releases the mapping from intent to physical network. It includes two import process: intent-virtual network(VN) and virtual network-physical network(PN).

	openflow renderer is a sourthbound render to translate the mapping result of VN-PN to flow table in devices supporting for openflow protocol.

	cli render is also a sourthbound render to translate the mapping result of VN-PNinto forwarding table in devices supporting for traditional protocol.

	nemo engine ui is reponsible for showing the status of physical network, intent, generated virtual network and mapping result of VN-PN, which facilitate users to understand better the intent handling process if they want to.

NEMO Engine UI

	Feature Name: odl-nemo-engine-ui

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=nemo.git;a=blob;f=nemo-features/odl-nemo-engine-ui/pom.xml;

	Feature Description: DSL based for the abstraction of network models and conclusion of operation patterns.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/nemo/job/nemo-csit-1node-engine-all-nitrogen/

Documentation

	User Guide(s):

	NEtwork MOdeling (NEMO)

	Developer Guide(s):

	NEtwork MOdeling (NEMO)

Security Considerations

	There are no security issues found.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=53347] 42.8%

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/nemo/job/nemo-csit-1node-engine-all-nitrogen/]

	Manual Tests [https://wiki.opendaylight.org/view/NEMO:System_Test]

	External System Test is done manually, since the sandbox environment could not satisfy NEMO’s requirements.

Migration

	Nothing beyond general OpenDaylight migration requirements.

Compatibility

	Nothing beyond general OpenDaylight compatibility constraints.

Bugs Fixed

	Bug Report [https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&bug_status=VERIFIED&list_id=47710&product=nemo&query_format=advanced&resolution=---]

Known Issues

	For using openflow-renderer, requiring special switch to construct physical network. The install guide is in https://github.com/zhangmroy?tab=repositories. Other virtual switch, such as, ovs, will be support in future OpenDaylight version.

	For using cli-renderer, the physical network should be constructed with HuaWei’s device: NE40E. More devices will be considered in the future OpenDaylight versions.

End-of-life

	Nothing deprecated, EOL.

Standards

	N/A

Release Mechanics

	NEMO Release Plan [https://wiki.opendaylight.org/view/NEMO:Nitrogen:Release_Plan]

	Project was on schedule

NETCONF

Major Features

For each top-level feature, identify the name, url, description, etc.
User-facing features are used directly by end users.

odl-netconf-topology

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/odl-netconf-topology/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: NETCONF southbound plugin single-node, configuration through mdsal

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-userfeatures-all-nitrogen/

odl-netconf-clustered-topology

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/odl-netconf-clustered-topology/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: NETCONF southbound plugin clustered, configuration through mdsal

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-3node-clustering-all-nitrogen/

odl-netconf-console

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/odl-netconf-console/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: NETCONF southbound configuration with karaf cli

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

odl-netconf-mdsal

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf/odl-netconf-mdsal/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: NETCONF server for mdsal

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-userfeatures-all-nitrogen/

odl-restconf

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/restconf/odl-restconf/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: Restconf

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: Tested by any suite that uses Restconf

odl-mdsal-apidocs

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/restconf/odl-mdsal-apidocs/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: MDSal - apidocs

	Top Level: Yes

	User Facing: Yes

	Experimental: No

odl-yanglib

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/yanglib/odl-yanglib/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: Yanglib server

	Top Level: Yes

	User Facing: Yes

	Experimental: No

odl-netconf-callhome-ssh

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/odl-netconf-callhome-ssh/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: Netconf call home

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-callhome-all-nitrogen/

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the
document is under review, provide a link to the change in Gerrit.

	User Guide(s):

	NETCONF User Guide

	Developer Guide(s):

	NETCONF Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

Yes, we have md-sal and css netconf servers. Also server for netconf call-home.

	If so, how are they secure?

NETCONF over SSH

	What port numbers do they use?

Please see https://wiki.opendaylight.org/view/Ports. Netconf call-home uses TCP port 6666

	Other security issues?

None that we are aware of

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=54548] Test coverage percent: 63.3%

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/netconf/]

Migration

	Is it possible to migrate from the previous release? If so, how?

Yes.

Several config subsystem yang modules were removed therefore if prior updates to
config subsystem modules were made via the controller-config loopback mountpoint
then the etc/opendaylight/current/controller.currentconfig.xml file must be manually
edited to remove elements corresponding to the removed config yang modules.
These include the elements from the following XML files under
etc/opendaylight/karaf:

	10-rest-connector.xml

	10-restconf-service.xml

The mechanism of spawning netconf connectors via the controller-config loopback
mountpoint was removed so any previously configured connectors must be migrated to the
config datastore and the elements removed from the controller.currentconfig.xml file.

The netconf yanglib config subsystem module was removed so any configuration change
that was made via the controller-config loopback mountpoint must be migrated to the
config datastore (see the Compatibility section) and must also be removed from the
controller.currentconfig.xml file.

Since the config subsystem is deprecated, it is recommended to migrate any custom
configuration additions and/or changes contained in controller.currentconfig.xml
and remove the file.

Compatibility

	Is this release compatible with the previous release?

Yes

	Any API changes?

No

	Any configuration changes?

	The restconf northbound feature is now started via blueprint instead of the config
subsystem. The corresponding config yang file, opendaylight-rest-connector.yang,
and the 10-rest-connector.xml file installed under etc/opendaylight/karaf have been
removed. The restconf configuration attributes (specifically websocket-port) are
now specified via the etc/org.opendaylight.restconf.cfg file.

	The JSONRestconfService API is no longer advertised via the config subsystem and
the corresponding config yang file, sal-restconf-service.yang, and the
10-restconf-service.xml file installed under etc/opendaylight/karaf have been
removed. The JSONRestconfService must now be obtained directly from the OSGi
service registry (preferably via blueprint).

	The netconf yanglib feature is now now started via blueprint instead of the config
subsystem and is configured using the yanglib:yanglib-config container defined in
yanglib.yang via the config datastore.

Bugs Fixed

	List of bugs fixed since the previous release

https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&bug_status=VERIFIED&chfield=resolution&chfieldfrom=2017-07-12&chfieldto=Now&chfieldvalue=FIXED&list_id=78801&product=netconf&query_format=advanced&resolution=FIXED

Known Issues

	List key known issues with workarounds

None

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&list_id=78793&product=netconf&query_format=advanced&resolution=---]

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this
release

The mechanism of spawning netconf connectors via the config subsystem’s
controller-config loopback mountpoint was deprecated in the previous release and
has been removed.

Standards

	RFC 6241 [https://tools.ietf.org/html/rfc6241] - Network Configuration Protocol (NETCONF)

	RFC 6470 [https://tools.ietf.org/html/rfc6470] - Base Notifications partly supported, netconf-config-change unsupported

	draft-ietf-yang-library-06 [https://tools.ietf.org/html/draft-ietf-netconf-yang-library-06]

	draft-bierman-netconf-restconf-04 [https://tools.ietf.org/html/draft-bierman-netconf-restconf-04]

	RFC 8040 [https://tools.ietf.org/html/rfc8040] - RESTCONF protocol

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/NETCONF:Nitrogen:Release_Plan]

	Describe any major shifts in release schedule from the release plan

No shifts

NetVirt

Major Features

Feature Name

	Feature Name: odl-netvirt-openstack

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netvirt.git;a=blob;f=vpnservice/features/odl-netvirt-openstack/pom.xml;hb=HEAD

	Feature Description: This feature provides a network virtualization solution.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/netvirt-csit/job/netvirt-csit-1node-openstack-ocata-upstream-stateful-carbon/

Documentation

	User Guide(s):

	NetVirt User Guide

	OpenStack with NetVirt

	Developer Guide(s):

	NetVirt Developer Guide

	Contributor Guide(s):

	NetVirt Contributor Guide

Security Considerations

No known issues.

Quality Assurance

	Sonar Report [https://sonar.opendaylight.org/overview?id=64219]

	All CSIT Jobs [https://jenkins.opendaylight.org/releng/view/netvirt-csit]

	Main test jobs [https://jenkins.opendaylight.org/releng/view/netvirt-csit/job/netvirt-csit-1node-openstack-ocata-upstream-stateful-nitrogen/]

Migration

Nothing beyond general migration requirements.

Compatibility

Nothing beyond general compatibility requirements.

Bugs Fixed

	Closed Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&bug_status=VERIFIED&component=General&list_id=78695&order=changeddate%2Cpriority%2Cbug_severity&product=netvirt&query_based_on=&query_format=advanced&resolution=FIXED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE&resolution=WORKSFORME&version=Nitrogen]

Known Issues

	Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&component=General&list_id=78574&order=bugs.bug_severity%2Cbugs.priority&product=netvirt&query_format=advanced&resolution=---]

End-of-life

N/A

Standards

N/A

Release Mechanics

	Release Plan [https://wiki.opendaylight.org/view/NetVirt:Nitrogen:Release_Plan]

	Project was on schedule

Neutron Northbound

Major Features

	YANG model for OpenStack Neutron integration

	REST API for OpenStack Neutron integration which stores necessary
information into Neutron YANG model

	Logger to log activity on Neutron YANG models

	helper library to support for OpenStack service providers

odl-neutron-service

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/odl-neutron-service/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: This is a top level feature to load Neutron
northbound functionality.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: no CSIT tests as test weiver had been requested.
OpenStack CI results can be found from
https://review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-northbound-api

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/odl-neutron-northbound-api/pom.xml;hhb=refs/heads/stable/nitrogen

	Feature Description: This feature provides REST API for
OpenStack Neutron

	Top Level: No

	User Facing: No

	Experimental: No

	CSIT Test: no CSIT tests as test weiver had been requested.
OpenStack CI results can be found from
https://review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-spi

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/odl-neutron-spi/pom.xml;hb=stable/nitrogen

	Feature Description: SPI for Neutron northbound feature

	Top Level: No

	User Facing: No

	Experimental: No

	CSIT Test: no CSIT tests as test weiver had been requested.
OpenStack CI results can be found from
https://review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-transcriber

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/odl-neutron-transcriber/pom.xml;hb=stable/nitrogen

	Feature Description: Data converter from/to REST API to/from
MD-SAL YANG model

	Top Level: No

	User Facing: No

	Experimental: No

	CSIT Test: no CSIT tests as test weiver had been requested.
OpenStack CI results can be found from
https://review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-logger

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/odl-neutron-logger/pom.xml;hb=stable/nitrogen

	Feature Description: Logger on activity on Neutron YANG models

	Top Level: No

	User Facing: No

	Experimental: No

	CSIT Test: no CSIT tests as test weiver had been requested.
OpenStack CI results can be found from
https://review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-hostconfig-ovs

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/odl-neutron-hostconfig-ovs/pom.xml;hb=stable/nitrogen

	Feature Description: Helper library to support hostconfig for
OpenStack service provider with Open vSwitch

	Top Level: No

	User Facing: No

	Experimental: No

	CSIT Test: no CSIT tests as test weiver had been requested.
OpenStack CI results can be found from
https://review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-hostconfig-vpp

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/odl-neutron-hostconfig-vpp/pom.xml;hb=stable/nitrogen

	Feature Description: Helper library to support hostconfig for
OpenStack service provider with VPP

	Top Level: No

	User Facing: No

	Experimental: No

	CSIT Test: no CSIT tests as test weiver had been requested.
OpenStack CI results can be found from
https://review.openstack.org/#/q/project:openstack/networking-odl

Documentation

	User Guide(s):

	Neutron Service User Guide is a guide for cloud admin who
deploys OpenStack with OpenDaylight.

	Developer Guide(s):

	Neutron Northbound is a guide for those who
develops new Neutron Northbound API which OpenStack Neutron talks to.

	Neutron Service Developer Guide is a guide for those who
develops new OpenStack Service Provider like netvirt,
group-based-policy.

Security Considerations

	Do you have any external interfaces other than RESTCONF?

Yes. REST API for OpenStack Neutron.

	If so, how are they secure?
It’s authenticated by AAA.

	What port numbers do they use?
8080 and 8181 by default. 8087 is also used by networking-odl/devstack.

	Other security issues?

None.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=org.opendaylight.neutron%3Aproject-neutron] (78.2%)

	Link to CSIT Jobs N/A

	Other manual testing and QA information

	OpenStack CI results can be found from
https://review.openstack.org/#/q/project:openstack/networking-odl

	failure rate of OpenStack CI
http://grafana.openstack.org/dashboard/db/networking-odl-failure-rate

	Other OpenDaylight projects which provides OpenStack Service
(e.g. netvirt, group-based-policy and vtn etc..) have their own system
tests which also exercise Neutron Norhtbound. Which give coverage.

	Testing methodology. How extensive was it? What should be expected
to work? What hasn’t been tested as much?

	Unit test: coverage 24.9%

	Integration test: coverage 75.8%

	OpenStack CI

Migration

	Is it possible to migrate from the previous release? If so, how?

No as incompatble change was introduced.

Compatibility

	Is this release compatible with the previous release?

Yes.

	Any API changes?

No.

	Any configuration changes?

No.

Bugs Fixed

	List of bugs fixed since the previous release

	Link to Bugs fixed [https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2017-05-25&chfieldto=2017-09-08&list_id=78675&product=neutron&query_format=advanced&resolution=FIXED]

Known Issues

	List key known issues with workarounds

None

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&list_id=78677&order=Importance&product=neutron&query_format=specific]

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this release

N/A

Standards

	List of standrads implemented and to what extent

OpenStack Neutron API [https://developer.openstack.org/api-ref/networking/v2/]
ODL Neutron Northbound REST API is based on OpenStack Neutron API
and OpenStack Neutron implementation. So the two REST APIs are
similar inherently, but different if necessary for technical
reason. The goal of ODL Neutron Northbound project is to help
OpenStack ODL driver for OpenStack Neutron (networking-odl) and ODL
OpenStack Service Provider(netvirt, group-based-policy, and vtn
etc…). Not re-implement OpenStack Neutron API.

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/NeutronNorthbound:Nitrogen_Release_Plan]

	Describe any major shifts in release schedule from the release plan

	Postponed YANG model change to drop tenant-id, make status
operational to Nitrogen cycle

	update supported QoS rules

	TAPaaS

NIC

Major Features

odl-nic-core-mdsal

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-core-mdsal/pom.xml;hb=stable/nitrogen

	Feature Description: This feature contains the dependencies to use MDSAL
features on NIC

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-nitrogen/

odl-nic-intent-common

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-intent-common/pom.xml;hb=stable/nitrogen

	Feature Description: This feature contains the lifecycle management for
Intents, also is used to join two major features ‘intent-statemachine’ and
‘intent-listeners’. This feature enable NIC to work with different renderers
at the same time.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-nitrogen/

Documentation

	User Guide(s):

	Network Intent Composition (NIC) User Guide

	Developer Guide(s):

	Network Intent Composition (NIC) Developer Guide

Additional information can be found at the
NIC wiki page [https://wiki.opendaylight.org/view/Network_Intent_Composition:Main].

Security Considerations

	Do you have any external interfaces other than RESTCONF?

No

	Other security issues?

N/A

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=44164] (33.2% code coverage)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-nitrogen/]

	Other manual testing and QA information

	Testing methodology. How extensive was it? What should be expected to work?
What has not been tested as much?

There are a guide to evaluate manual tests using NIC on our wiki page [https://wiki.opendaylight.org/view/Network_Intent_Composition:Main]

Migration

	Is it possible to migrate from the previous release? If so, how?

Migration with user configuration and state is not supported.

Compatibility

	Is this release compatible with the previous release?

Yes

	Any API changes?

No

	Any configuration changes?

No

Bugs Fixed

	List of bugs fixed since the previous release

Known Issues

	List key known issues with workarounds

For Nitrogen release, NIC contains multiple renderers, where each renderer can be used at the same time
without uninstalling NIC and restarting ODL.

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this or last
release

	odl-nic-renderer-nemo

	odl-nic-renderer-vtn

	odl-nic-core-hazelcast

Standards

	List of standards implemented and to what extent

N/A

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/NIC:Nitrogen:Release_Plan]

	Describe any major shifts in release schedule from the release plan

Capability to use multiple Renderers at the same time.
Capability to support new Intent definitions.
Integration with Intent State Machine.
Integration with BGPCEP project in order to advertise routes using Intents.
Apply OpenFlow rules using OpenFlowPlugin Meters
Integration with Genius project in order to manage the Meter IDs.

OCP-plugin

Major Features

odl-ocpplugin-southbound

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ocpplugin.git;a=blob;f=features/features-ocpplugin/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: Handling of OCP v4.1.1 request/response messages

	Top Level: No

	User Facing: No

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/ocpplugin/job/ocpplugin-csit-1node-get-all-nitrogen

odl-ocpplugin-app-ocp-service

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ocpplugin.git;a=blob;f=features/features-ocpplugin/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: User facing interface and rrh-agent registration and lifecycle management

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/ocpplugin/job/ocpplugin-csit-1node-get-all-nitrogen

Documentation

	User Guide(s):

	OCP Plugin User Guide

	Developer Guide(s):

	OCP Plugin Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	There is no futher secure description on the OCP 4.1.1 spec, it’s out of our design scope, so there is no extenal security interface other than RESTCONF.

	Other security issues?

	No other security issue

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=64810] (60.8%)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/ocpplugin/job/ocpplugin-csit-1node-get-all-nitrogen]

	Other manual testing and QA information

	More detail testing, https://wiki.opendaylight.org/view/OCP_Plugin:Nitrogen_System_Test_Report

Migration

	Is it possible to migrate from the previous release? If so, how?

	Yes, there is no config change and there is not a need to migrate data in the datastore.

Compatibility

	Is this release compatible with the previous release?

	Release is compatible with previous.

	Any API changes?

	N/A

	Any configuration changes?

	N/A

Bugs Fixed

	List of bugs fixed since the previous release

	Fixed BUGS [https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2017-05-25&chfieldto=2017-08-09&list_id=78466&product=ocpplugin&query_format=advanced&resolution=FIXED]

Known Issues

	List key known issues with workarounds

	N/A

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this release

	Migrated from using the CSS to blueprint, deprecated CSS

Standards

	List of standards implemented and to what extent

	OCP(ORI [Open Radio Interface] C&M [Control and Management]) v4.1.1 [http://www.etsi.org/deliver/etsi_gs/ORI/001_099/00202/04.01.01_60/gs_ORI00202v040101p.pdf]

	The ocpplugin poeject extended connection establishment and state machines used on both ends of the connection.

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/OCP_Plugin:Nitrogen:Release_Plan]

	Describe any major shifts in release schedule from the release plan

	N/A

ODL Parent

Major Features

There are no user-visible features.

Documentation

	Developer Guide(s):

	ODL Parent Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

No.

	Other security issues?

No.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=23179] (6.4% coverage)

	There are no CSIT jobs, ODL Parent has a system test waiver

	ODL Parent is tested by all builds, and manually tested by running the basic
Karaf container and verifying the scripts we modify (client in
particular).

	We verify the following:

	start starts the Karaf container.
(in a working state, capable of installing features)

	client can connect to a running Karaf container.

	stop stops a running Karaf container.

Migration

	Is it possible to migrate from the previous release? If so, how?

Yes. Migration to this release involves migrating features to Karaf 4; see
the wiki [https://wiki.opendaylight.org/view/Karaf_4_migration] for details.

Compatibility

	Is this release compatible with the previous release?

No.

	Any API changes?

All Karaf 3 features have been removed in favour of (compatible) Karaf 4 features.

	Any configuration changes?

No. ODL Parent has no user-visible configuration.

Bugs Fixed

	4219: Milestone: Upgrade karaf to 4.0.1 or later [https://bugs.opendaylight.org/show_bug.cgi?id=4219]

	6278: karaf-parent belongs in odlparent [https://bugs.opendaylight.org/show_bug.cgi?id=6278]

	6523: org.osgi.service.blueprint.container.ComponentDefinitionException Caused by: java.lang.RuntimeException at org.objectweb.asm.MethodVisitor.visitParameter [https://bugs.opendaylight.org/show_bug.cgi?id=6523]

	6652: Migrate to karaf-maven-plugin features generation [https://bugs.opendaylight.org/show_bug.cgi?id=6652]

	6709: Migrate dependent projects off opendaylight-karaf-empty [https://bugs.opendaylight.org/show_bug.cgi?id=6709]

	6730: Upgrade shiro to current compatible release [https://bugs.opendaylight.org/show_bug.cgi?id=6730]

	7446: Milestone: upgrade to guava-22 [https://bugs.opendaylight.org/show_bug.cgi?id=7446]

	`7813: karaf: do not package spring<https://bugs.opendaylight.org/show_bug.cgi?id=7813>`_

Known Issues

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&product=odlparent]

End-of-life

	N/A.

Standards

	N/A.

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/ODL_Parent:Nitrogen_Release_Plan]

OF-CONFIG

Major Features

odl-of-config-all

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob;f=features/features-of-config/src/main/features/features.xml;h=86615e2f22ebc8f21b403185d3a600aa2a463588;hb=HEAD

	Feature Description: This is a top level wrapper feature which includes all the sub features of-config offers.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

Documentation

	User Guide(s):

	OF-CONFIG User Guide

	Developer Guide(s):

	OF-CONFIG Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	No. This project indirectly uses the NETCONF project to connect to devices.

	Other security issues?

	N/A

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=org.opendaylight.of-config%3Aofconf] (71.4% code coverage)

	Other manual testing and QA information

	Testing methodology. How extensive was it? What should be expected to work?
What has not been tested as much?

	External System Test is almost done manually. The test has coverd all external APIs of OF-CONFIG and all supplementary options based on OF-CONFIG 1.2.

Migration

	Is it possible to migrate from the previous release? If so, how?

Yes, there are no additional steps for migration.

Compatibility

	Is this release compatible with the previous release? Yes.

	Any API changes? No.

	Any configuration changes? No.

Bugs Fixed

None.

Known Issues

	No known issues.

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this
release

N/A

Standards

	List of standrads implemented and to what extent

	OF-CONFIG 1.2 [https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf]

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/OF-CONFIG:Nitrogen:Release_Plan]

	Describe any major shifts in release schedule from the release plan

N/A

OpenFlowPlugin Project

Major Features

odl-openflowjava-protocol

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowjava/features-openflowjava-aggregator/odl-openflowjava-protocol/pom.xml

	Feature Description: OpenFlow protocol implementation

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-nitrogen/

odl-openflowplugin-app-config-pusher

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-config-pusher/pom.xml

	Feature Description: Pushes node configuration changes to OpenFlow device

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-nitrogen/

odl-openflowplugin-app-forwardingrules-manager

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-forwardingrules-manager/pom.xml

	Feature Description: Sends changes in config datastore to OpenFlow device incrementally. forwardingrules-manager can be replaced with forwardingrules-sync and vice versa.

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-nitrogen/

odl-openflowplugin-app-forwardingrules-sync

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-forwardingrules-sync/pom.xml

	Feature Description: Sends changes in config datastore to OpenFlow devices taking previous state in account and doing diffs between previous and new state. forwardingrules-sync can be replaced with forwardingrules-manager and vice versa.

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-nitrogen/

odl-openflowplugin-app-table-miss-enforcer

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-table-miss-enforcer/pom.xml

	Feature Description: Sends table miss flows to OpenFlow device when it connects

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-nitrogen/

odl-openflowplugin-app-topology

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-topology/pom.xml

	Feature Description: Discovers topology of connected OpenFlow devices

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-nitrogen/

odl-openflowplugin-nxm-extensions

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=extension/features-extension-aggregator/odl-openflowplugin-nxm-extensions/pom.xml

	Feature Description: Support for OpenFlow Nicira Extensions

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/netvirt/job/netvirt-csit-1node-openstack-newton-upstream-stateful-snat-conntrack-nitrogen/

odl-openflowplugin-onf-extensions

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=extension/features-extension-aggregator/odl-openflowplugin-onf-extensions/pom.xml

	Feature Description: Support for Open Networking Foundation Extensions

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: No

odl-openflowplugin-flow-services

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-flow-services/pom.xml

	Feature Description: Wrapper feature for standard applications

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-nitrogen/

odl-openflowplugin-flow-services-rest

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-flow-services-rest/pom.xml

	Feature Description: Wrapper + REST interface

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-nitrogen/

odl-openflowplugin-flow-services-ui

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-flow-services-ui/pom.xml

	Feature Description: Wrapper + REST interface + UI

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-nitrogen/

odl-openflowplugin-nsf-model

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-nsf-model/pom.xml

	Feature Description: OpenFlowPlugin YANG models

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-nitrogen/

odl-openflowplugin-southbound

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-southbound/pom.xml

	Feature Description: Southbound API implementation

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-nitrogen/

	https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-nitrogen/

Documentation

	User Guide(s):

	OpenFlow Plugin Project User Guide

	Developer Guide(s):

	OpenFlow Plugin Project Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF? Yes, OpenFlow devices

	Other security issues?

	Insecure OpenFlowPlugin <–> OpenFlow device connections [https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:_TLS_Support]

	Topology spoofing: non authenticated LLDP packets to detect links between switches which makes it vulnerable to a number of attacks, one of which is topology spoofing The problem is that all controllers we have tested set chassisSubtype value to the MAC address of the local port of the switch, which makes it easy for an adversary to spoof that switch since controllers use that MAC address as a unique identifier of the switch. By intercepting clear LLDP packets containing MAC addresses, a malicious switch can spoof other switches to falsify the controller’s topology graph.

	DoS: an adversary switch could generate LLDP flood resulting in bringing down the openflow network

	DoS attack when the switch rejects to receive packets from the controller [https://wiki.opendaylight.org/view/Security_Advisories#.5BModerate.5D_CVE-2017-1000357_Denial_of_Service_attack_when_the_switch_rejects_to_receive_packets_from_the_controller]

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=org.opendaylight.openflowplugin%3Aopenflowplugin-aggregator] (73.8)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/openflowplugin/]

Migration

	Is it possible to migrate from the previous release? If so, how?

Yes, OpenFlowJava was merged into OpenFlowPlugin, so if project was relying on org.opendaylight.openflowjava dependency, it was moved to org.opendaylight.openflowplugin.openflowjava. Feature odl-openflowjava-protocol is same as before.

Compatibility

	Is this release compatible with the previous release? Yes

	Any API changes? Yes, mastershipChangeServiceManager <https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin-api/src/main/java/org/opendaylight/openflowplugin/api/openflow/mastership/MastershipChangeServiceManager.java> and reconcilliationManager <https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=applications/reconciliation-framework/src/main/java/org/opendaylight/openflowplugin/applications/reconciliation/ReconciliationManager.java> blueprint services was added

	Any configuration changes? Yes, bundle-based-reconcilliation flag was added to configuration file <https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin-blueprint-config/src/main/resources/initial/openflowplugin.cfg#l33>

Bugs Fixed

	List of bugs fixed since the previous release

https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2017-05-25&chfieldto=2017-09-12&list_id=78767&product=openflowplugin&query_format=advanced&resolution=FIXED

Known Issues

	List key known issues with workarounds: None

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_severity=blocker&bug_severity=critical&bug_severity=major&bug_severity=normal&bug_severity=minor&bug_severity=trivial&bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&component=General&list_id=78939&product=openflowplugin&query_format=advanced&resolution=---]

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this release: None

Standards

OpenFlow versions:

	OpenFlow1.3.2 [https://www.openflow.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf]

	OpenFlow1.0.0 [https://www.openflow.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf]

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:Nitrogen_Release_Plan]

OpFlex

Major Features

OpFlex Agent

OpFlex Agent provides support for local enforcement of group-based
policy model synced using the OpFlex protocol using an Open
vSwitch-based bridge. Supported renderer currently works with Cisco
ACI.

libopflex

libopflex provides an implementation of the OpFlex protocol along with
an in-memory managed object database for managing OpFlex data.

genie

Genie provides a modeling language and code generator for producing
data models that work with libopflex. Genie also contains the
group-based policy model that is used by the OpFlex Agent.

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the
document is under review, provide a link to the change in Gerrit.

	Installation Guide(s):

	OpFlex agent-ovs Install Guide

	User Guide(s):

	OpFlex agent-ovs User Guide

	Developer Guide(s):

	OpFlex libopflex Developer Guide

	OpFlex genie Developer Guide

	OpFlex agent-ovs Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	No.

	Other security issues?

	None.

Quality Assurance

	OpFlex projects are tested with extensive unit testing as well as
Cisco-internal automated testing with ACI.

	Unit tests run as part of regular build [https://jenkins.opendaylight.org/releng/view/opflex/job/opflex-merge-nitrogen/26/]

Migration

	Simply install and restart daemons.

Compatibility

OpFlex GBP model and configuration files remain backward compatible.

Changes since previous release

	Advertise external services on their interface with ARP/ND packets
when the interface comes up.

	Always allow ARP and ND packets without contracts

	Improved robustness of agent shutdown and OpenFlow socket
reconnections

	Clean up endpoint-related OpenFlow rules when EPG is removed with
endpoint remaining

Known Issues

	None

End-of-life

	None

Standards

	OpFlex protocol [https://tools.ietf.org/html/draft-smith-opflex-03] (reference implementation)

OVSDB Project

Major Features

odl-ovsdb-southbound-api

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/southbound-features/odl-ovsdb-southbound-api/pom.xml;h=7baad461a78e7dd311516ec03b7dbf7c9a0679aa;hb=refs/heads/stable/nitrogen

	Feature Description: This feature provides the YANG models for northbound users to configure the OVSDB device.
These YANG models are designed based on the OVSDB schema [http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf]. This
feature does not provide the implementation of YANG models. If user/developer prefer to write their own implementation
they can use this feature to load the YANG models in the controller.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-nitrogen/

odl-ovsdb-southbound-impl

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/southbound-features/odl-ovsdb-southbound-impl/pom.xml;h=261a85eacef24c1985a11f60d018816b1f880b10;hb=refs/heads/stable/nitrogen

	Feature Description: This feature is the main feature of the OVSDB Southbound plugin. This plugin handle the OVS
device that supports the OVSDB schema [http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf] and uses the
OVSDB protocol [https://tools.ietf.org/html/rfc7047]. This feature provides the implementation of the defined YANG
models. Developers developing the in-controller application and want to leverage OVSDB for device configuration can
add dependency on this feature and it will load all the required modules.

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-nitrogen/

odl-ovsdb-southbound-impl-rest

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/southbound-features/odl-ovsdb-southbound-impl-rest/pom.xml;h=6a14e3f90fceba595695d69cdab2571e1a306999;hb=refs/heads/stable/nitrogen

	Feature Description: This feature is the wrapper feature that installs the odl-ovsdb-southbound-api &
odl-ovsdb-southbound-impl feature with other required features for restconf access to provide a functional OVSDB
southbound plugin. Users, who want to develop application that manages the OVSDB supported devices but want to runs
the application outside of the OpenDaylight controller must install this feature.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-nitrogen/

odl-ovsdb-hwvtepsouthbound-api

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/hwvtepsouthbound-features/odl-ovsdb-hwvtepsouthbound-api/pom.xml;h=e08f4233a6025da2d84dc1d87b6fb220a187e070;hb=refs/heads/stable/nitrogen

	Feature Description: This feature provides the YANG models for northbound users to configure the device
that supports OVSDB Hardware vTEP schema. These YANG models are designed based on the
OVSDB Hardware vTEP schema [http://openvswitch.org/docs/vtep.5.pdf]. This feature does not provide the
implementation of YANG models. If user/developer prefer to write their own implementation of the defined YANG
model, they can use this feature to install the YANG models in the controller.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: Minimal set of CSIT test is already in place. More work is in progress and will have better functional
coverage in Oxygen release.

	https://jenkins.opendaylight.org/releng/view/Patch-Test/job/ovsdb-patch-test-l2gw-nitrogen/

odl-ovsdb-hwvtepsouthbound

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/hwvtepsouthbound-features/odl-ovsdb-hwvtepsouthbound/pom.xml;h=3bb0d9f0093d83d0a82b3b8edffc0acfc93ee93c;hb=refs/heads/stable/nitrogen

	Feature Description: This feature is the main feature of the OVSDB Hardware vTep Southbound plugin. This plugin
handle the OVS device that supports the OVSDB Hardware vTEP schema [http://openvswitch.org/docs/vtep.5.pdf] and
uses the OVSDB protocol [https://tools.ietf.org/html/rfc7047]. This feature provides the implementation of the
defined YANG models. Developers developing the in-controller application and want to leverage OVSDB Hardware vTEP
plugin for device configuration can add dependency on this feature and it will load all the required modules.

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test: Minimal set of CSIT test is already in place. More work is in progress and will have better functional
coverage in Oxygen release.

	https://jenkins.opendaylight.org/releng/view/Patch-Test/job/ovsdb-patch-test-l2gw-nitrogen/

odl-ovsdb-hwvtepsouthbound-rest

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/hwvtepsouthbound-features/odl-ovsdb-hwvtepsouthbound-rest/pom.xml;h=8691103618cbe430994657016229b23c9b372d9d;hb=refs/heads/stable/nitrogen

	Feature Description: This feature is the wrapper feature that installs the odl-ovsdb-hwvtepsouthbound-api &
odl-ovsdb-hwvtepsouthbound feature with other required features for restconf access to provide a functional OVSDB
Hardware vTEP plugin. Users, who want to develop application that manages the hardware vTEP supported devices but want
to runs the application outside of the OpenDaylight controller must install this feature.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: Minimal set of CSIT test is already in place. More work is in progress and will have better functional
coverage in Oxygen release.

	https://jenkins.opendaylight.org/releng/view/Patch-Test/job/ovsdb-patch-test-l2gw-nitrogen/

odl-ovsdb-library

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=library/features/odl-ovsdb-library/pom.xml;h=58002499237ac290071a89ca5e0b9c9297974400;hb=refs/heads/stable/nitrogen

	Feature Description: Encode/decoder library for OVSDB and Hardware vTEP schema.

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-nitrogen/

	https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-nitrogen/

Documentation

	User Guide(s):

	OVSDB User Guide

	Developer Guide(s):

	OVSDB Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF? Yes, Southbound Connection to OVSDB/Hardware vTEP devices.

	Other security issues?

Plugin’s connection to device is by default unsecured. User need to explicitly enable the TLS support through ovsdb
library configuration file. User can refer to the wiki page
here [https://wiki.opendaylight.org/view/OVSDB_Integration:TLS_Communication] for the instructions.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview/coverage?id=org.opendaylight.ovsdb%3Aovsdb] (57%)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/ovsdb/]

	

	OVSDB southbound plugin is extensively tested through Unit Tests, IT test and system tests. OVSDB southbound plugin
is tested in both single node setup as well as three node cluster setup. Hardware vTEP plugin is currently tested
through (1) Unit testing (2) CSIT Tests (3) NetVirt project L2 Gateway features CSIT tests and (4) Manual Testing.
(3) https://jenkins.opendaylight.org/releng/view/netvirt/job/netvirt-csit-hwvtep-1node-openstack-newton-nodl-v2-upstream-stateful-nitrogen/

Migration

	Is it possible to migrate from the previous release? If so, how?
Yes. User facing features and interfaces are not changed, only enhancements are done.

Compatibility

	Is this release compatible with the previous release? Yes

	Any API changes? No changes in the YANG models from previous release.

	Any configuration changes? No

Bugs Fixed

	List of bugs fixed since the previous release
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2017-05-25&chfieldto=2017-09-10&list_id=78767&product=ovsdb&query_format=advanced&resolution=FIXED

Known Issues

	List key known issues with workarounds
None

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_severity=blocker&bug_severity=critical&bug_severity=major&bug_severity=normal&bug_severity=minor&bug_severity=trivial&bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&list_id=78768&product=ovsdb&query_format=advanced&resolution=---]

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in thisrelease

None

Standards

	Open vSwitch Database Management Protocol [https://tools.ietf.org/html/rfc7047]

	OVSDB Schema [http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf]

	Hardware vTep Schema [http://openvswitch.org/docs/vtep.5.pdf]

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/OpenDaylight_OVSDB:Nitrogen_Release_Plan]

PacketCable

Major Features

odl-packetcable-policy-server

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=blob;f=features-packetcable-policy/features4-packetcable-policy/pom.xml;h=0945b9287711a1ce9a7bd6cc0b457607a3cd6248;hb=refs/heads/stable/nitrogen

	Feature Description: Plugin that provides a PCMM model implementation
based on CMTS structure and COPS protocol. It implements
RFC 2748 <https://tools.ietf.org/html/rfc2748>.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/packetcable/job/packetcable-csit-1node-pcmm-all-nitrogen/

Documentation

	User Guide(s):

	PacketCable User Guide

	Developer Guide(s):

	PacketCable Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF? No.

	The PacketCable project interfaces to southbound devices using the
COPS protocol. Securing communication on this interface is outslide
the scope of this project.

Quality Assurance

	Link to Sonar Report [https://jenkins.opendaylight.org/releng/view/packetcable/job/packetcable-sonar] (Test coverage percent - 53.41%)

	Link to CSIT Job:

	https://jenkins.opendaylight.org/releng/view/packetcable/job/packetcable-csit-1node-pcmm-all-nitrogen/

	Other manual testing and QA information - The CSIT job runs the
PacketCable plugin in a simple cable access controller emulation
environment. The code is manually tested during the development
cycle with an actual (controller).

	Testing methodology. There is substantial unit testing executed in
the project build process; CSIT testing is executed in an “emulated”
cable access network environment. All product APIs are validated
during the development cycle. CSIT testing would benefit from an
upgrade to cover some of the post-Carbon feature additions.

Migration

	Is it possible to migrate from the previous release? Yes
Migration from PacketCable Carbon version to the Nitrogen version is
accomplished by replacement of the PacketCable plugin components.

	Any data stored in COPS models will need to be manually replicated.

	All previous API calls will work with the new release.

Compatibility

	Is this release compatible with the previous release? Yes

	Any API changes? No

	Any configuration changes? No

Bugs Fixed

	List of Bugzilla bugs fixed since the previous release
NONE

	The only functional change for the Nitrogen release of Packetcable
is the upgrade from Karaf3 to Karaf4.

Known Issues

	There are no known issues with the Carbon release of PacketCable

End-of-life

	No PacketCable features or APIs are EOLed, deprecated, or removed
in this release

Standards

	The Packetcable plug-in implements a subset of the provisioning operations
defined in these specifications.

	CableLabs “PacketCable 1.5 Specification: MTA Device Provisioning”
PKT-SP-PROV1.5-I04-090624

	COPS protocol
RFC 2748 <https://tools.ietf.org/html/rfc2748>

Release Mechanics

	Link to Packetcable Nitrogen release plan:
<https://wiki.opendaylight.org/view/PacketCablePCMM:Release_Plan_Nitrogen>

	There were no major shifts in release schedule from the release plan

Service Function Chaining

Major Features

odl-sfc-netconf

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: Provides functionality to communicate with netconf capable Service Functions.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-scf-openflow

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: SFC stand-alone openflow classifier.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-scf-vpp

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: SFC stand-alone vpp classifier.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-openflow-renderer

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: Renderer functionality for OpenFlow capable switches.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfclisp

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: Programs LISP capable switches.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-sb-rest

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: Implements a South Bound Rest interface to send configuration to REST-capable switches.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-ui

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This feature is the SFC User Interface.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-vnfm-tacker

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: Tacker VNF Manager interface.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-ios-xe-renderer

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: Renderer functionality for IO XE switches that use netconf.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-vpp-renderer

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: Renderer functionality for fd.io VPP (Vector Packet Processor) switches that use netconf.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-pot

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This feature implements a Proof of Transit for the Service Functions.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

These features are consumed by the User facing features above

odl-sfc-genius

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This feature implements the Genius utilities created by SFC project.

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-model

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This feature defines and implements the SFC data model as specified here https://datatracker.ietf.org/doc/rfc7665/

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-pot-netconf-renderer

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This feature implements the Netconf rendering for the Proof of Transit for the Service Functions.

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-provider

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This feature provides an easy-to-use interface to the sfc-model.

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-provider-rest

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This feature provides no functionality, and just installs the necessary features for SFC restconf.

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-ovs

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This feature provides functionality for SFC to communicate with OVSDB for SFF configuration.

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-test-consumer

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This feature is used for testing only.

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

Documentation

	User Guide(s):

	Service Function Chaining

	Developer Guide(s):

	Service Function Chaining

Security Considerations

None.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=19574] (57.1%)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/sfc/]

	All modules have been unit tested. Integration tests have been performed for
all major features. System tests have been performed on most major features.

Migration

	Is it possible to migrate from the previous release? If so, how?

No changes were made to the SFC data model in this release, so
no migration from the previous release is needed.

Compatibility

This release of SFC is completely compatible with the previous release.

Bugs Fixed

List of bugs fixed since the previous release

	3712 [https://bugs.opendaylight.org/show_bug.cgi?id=3712] Setting an SF on an SFP hop with an SF type different than the corresponding SFC hop should fail

	7554 [https://bugs.opendaylight.org/show_bug.cgi?id=7554] Update GUI after deprecating nsh-aware in SF and other changes in model

	7555 [https://bugs.opendaylight.org/show_bug.cgi?id=7555] SfcRenderingException for logicalSFF when SFs share a compute node

	7629 [https://bugs.opendaylight.org/show_bug.cgi?id=7629] Karaf 4 migration: provide Karaf 4 sfc features

Known Issues

SFC needs changes in OVS to include the Network Service Headers (NSH) Chaining
encapsulation feature. This patch has been ongoing for quite a while, but has
finally been officially merged in OVS 2.8. ODL will be updated to use this new
version of OVS in the Oxygen release. Until then, SFC will use a branched
version of OVS based on 2.6.1, called the “Yi Yang Patch”,
located here [https://github.com/yyang13/ovs_nsh_patches].
Previous versions of this OVS patch only supported VXLAN-GPE + NSH
encapsulation, but this version supports both ETH + NSH and VXLAN-GPE + ETH + NSH.

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&list_id=78823&order=Importance&product=sfc&query_format=specific]

End-of-life

	None

Standards

	List of standards implemented and to what extent

	IETF SFC RFC [https://datatracker.ietf.org/doc/rfc7665]

	IETF NSH [https://tools.ietf.org/html/draft-ietf-sfc-nsh-07] Only NSH Metadata type 1 is implemented.

	OpenFlow v1.3 [http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf]

Release Mechanics

	ODL SFC Carbon release plan [https://wiki.opendaylight.org/view/Service_Function_Chaining:Nitrogen_Release_Plan]

	No major shifts in the release schedule from the release plan

SNMP Plug-in

Major Features

odl-snmp-plugin

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=snmp.git;a=blob;f=features/features-snmp/src/main/features/features.xml;hb=stable/carbon

	Feature Description: Provides NB API to SB SNMP interface

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test:

	https://jenkins.opendaylight.org/releng/view/snmp/job/snmp-csit-1node-basic-all-nitrogen/

Documentation

	Getting Started:

	SNMP Plugin:Getting Started [https://wiki.opendaylight.org/view/SNMP_Plugin:Getting_Started]

	User Guide:

	SNMP Plugin User Guide

	SNMP Simulator:

	SNMP simulator guide [https://wiki.opendaylight.org/view/SNMP_Plugin:SNMP_Simulator]

Security Considerations

	Do you have any external interfaces other than RESTCONF?

Yes, this plugin provides SNMP endpoints for talking to southbound devices.

	Other security issues?

Securing communication to devices (or not) over SNMP is outside the scope ofthis project and left to users.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=69960] (3.5% code coverage)

	Link to CSIT Jobs:

	https://jenkins.opendaylight.org/releng/view/snmp/job/snmp-csit-1node-basic-all-nitrogen/

	Other manual testing and QA information: None

Migration

	Is it possible to migrate from the previous release? If so, how?

It is possible to seamlessly migrate consumers to this iteration of the plug-in as there has been no functional
change to features. Migration of state data is not defined.

Compatibility

Compatible with the previous release, no functional change to features

Bugs Fixed

	List of bugs fixed since the previous release

None - no functional change to features

Known Issues

	List key known issues with workarounds

No known issues

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?component=General&list_id=29216&product=snmp]

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this release

None

Standards

	List of standards implemented and to what extent

	SNMP [https://www.ietf.org/rfc/rfc1157.txt/]

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/SNMP_Plugin:Nitrogen_Release_Plan]

	Describe any major shifts in release schedule from the release plan

None

SNMP4SDN

Major Features

odl-snmp4sdn-snmp4sdn

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=snmp4sdn.git;a=blob;f=features/odl-snmp4sdn-snmp4sdn/pom.xml;h=eece899425487cf81e81e3d87bff78a2f3d2797c;hb=HEAD

	Feature Description: This feature will install all bundles required for SNMP4SDN Plugin

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: NA

Documentation

	User Guide:

	SNMP4SDN User Guide

	Developer Guide(s):

	SNMP4SDN Developer Guide

Security Considerations

	The interface or configurable resource exposed to users includes RESTCONF API
and the switch list file. Switch list file, which is a plain-text file,
contains security information such as SNMP community.

	SNMP4SDN Plugin configures switches via SNMP protocol, and listens to SNMP
listen port for link-up/down trap. SNMP v2c is used.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=44354] (Test coverage percent NA)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/snmp4sdn/]

	Other manual testing and QA information

	For each function of SNMP4SDN Plugin, use REST API to confirm it’s
availability and correctness. Existing functions includes flow configuration
(such as VLAN and forwarding table) and topology discovery.

Migration

	Is it possible to migrate from the previous release? If so, how?

No

Compatibility

	Is this release compatible with the previous release?

Yes

	Any API changes?

No

	Any configuration changes?

No

Bugs Fixed

	None (no bugs reported since the previous release)

Known Issues

	List key known issues with workarounds

None

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&list_id=78998&order=Importance&product=snmp4sdn&query_format=specific]

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this release

None

Standards

	List of standards implemented and to what extent

None (no standards implemented, and use a third-party library to configure switches in standard SNMP protocol)

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/SNMP4SDN:Release_Plan_Nitrogen]

	No changes in this release

Scalable-Group Tag eXchange Protocol (SXP)

Major Features

odl-sxp-api

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/odl-sxp-api/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: This feature provides models based on
RFC [https://tools.ietf.org/pdf/draft-smith-kandula-sxp-05.pdf].

	Top Level: No

	User Facing: No

	Experimental: Yes

	CSIT Test: N/A

odl-sxp-core

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/odl-sxp-core/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: This feature performs tasks for managing SXP
devices and provides the implementation of
RFC [https://tools.ietf.org/pdf/draft-smith-kandula-sxp-05.pdf].

	Top Level: No

	User Facing: No

	Experimental: Yes

	CSIT Test: N/A

odl-sxp-controller

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/odl-sxp-controller/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: This feature performs tasks regarding managing SXP
devices via RESTCONF.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-basic-all-nitrogen/

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-filtering-all-nitrogen/

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-topology-all-nitrogen/

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-3node-periodic-clustering-all-nitrogen/

odl-sxp-robot

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/odl-sxp-robot/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: This is a sample feature used in CSIT testing.

	Top Level: No

	User Facing: No

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-periodic-performance-all-nitrogen/

odl-sxp-routing

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/odl-sxp-routing/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: This feature that performs managing of SXP devices
in cluster environment.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-3node-periodic-routing-all-nitrogen/

Documentation

	Installation Guide(s):

	Installation Guide [https://wiki.opendaylight.org/view/SXP:Lithium:Installation_Guide]

	User Guide(s):

	SXP User Guide

	Developer Guide(s):

	SXP Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	Yes on port 64999 based on SXP RFC [https://tools.ietf.org/pdf/draft-smith-kandula-sxp-05.pdf] secured by TCP-MD5, optionally also with SSL.

	Other security issues?

	TCP-MD5 security option is now deprecated, and in future will replaced by TCP-AO

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=45270] (80%)

	Link to CSIT Jobs

	CSIT Job basic [https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-basic-all-nitrogen/]

	CSIT Job filtering [https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-filtering-all-nitrogen/]

	CSIT Job topology [https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-topology-all-nitrogen/]

	CSIT Job clustering [https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-3node-periodic-clustering-all-nitrogen/]

	CSIT Job performance [https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-periodic-performance-all-nitrogen/]

	CSIT Job routing [https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-3node-periodic-routing-all-nitrogen/]

	Other manual testing and QA information

	N/A

	Testing methodology. How extensive was it? What should be expected to work?
What hasn’t been tested as much?

	CSIT Test document 1 [https://wiki.opendaylight.org/view/File:SXP_Automated_testing.pdf]

	CSIT Test document 2 [https://wiki.opendaylight.org/view/File:SXP_Automated_testing_filtering.pdf]

	CSIT Test document 3 [https://wiki.opendaylight.org/view/File:SXP_Automated_testing_cluster.pdf]

Migration

	Is it possible to migrate from the previous release? If so, how?

	Yes, no data models were changed that would break the migration.

Compatibility

	Is this release compatible with the previous release?

	Functionality is fully backwards compatible.

	Any API changes?

	N/A

	Any configuration changes?

	feature odl-sxp-route was renamed to odl-sxp-routing

Bugs Fixed

	List of bugs fixed since the previous release

	Fixed BUGS [https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2017-05-25&chfieldto=2017-08-09&list_id=78466&product=sxp&query_format=advanced&resolution=FIXED]

Known Issues

	List key known issues with workarounds

	N/A

	Open Bugs [https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2017-05-25&chfieldto=2017-08-09&list_id=84506&product=sxp&query_format=advanced&bug_status=__open__]

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this release

	N/A

Standards

	List of standards implemented and to what extent

	SXP [https://tools.ietf.org/pdf/draft-smith-kandula-sxp-05.pdf] Fully implemented

Release Mechanics

	Release plan [https://wiki.opendaylight.org/view/SXP:Nitrogen:Release_Plan]

	Describe any major shifts in release schedule from the release plan

	N/A

Topology Processing Framework

Major Features

odl-topoprocessing-framework

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/odl-topoprocessing-framework/pom.xml;h=c1c7b89ddb42af81efbeb5ae444e3179b0a14533;hb=refs/heads/stable/nitrogen

	Feature Description: Topology processing core

	Top Level: No

	User Facing: No

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-nitrogen/

odl-topoprocessing-mlmt

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/odl-topoprocessing-mlmt/pom.xml;h=9fe3d505825f0f06dfcb166708b629d06855ec72;hb=refs/heads/stable/nitrogen

	Feature Description: Multi-Layer and Multi-Technology (MLMT) module

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-nitrogen/

odl-topoprocessing-network-topology

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/odl-topoprocessing-network-topology/pom.xml;h=0de34de8dd99de3ac4b0c0bc5908a1de24a8f7ea;hb=refs/heads/stable/nitrogen

	Feature Description: Support for network-topology model

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-nitrogen/

odl-topoprocessing-inventory

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/odl-topoprocessing-inventory/pom.xml;h=ef8b9c3b1cffc72bf871fd7168799ab797e05e5d;hb=refs/heads/stable/nitrogen

	Feature Description: Support for inventory model

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-nitrogen/

odl-topoprocessing-I2rs

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/odl-topoprocessing-i2rs/pom.xml;h=f6b747cadfebc92d6df58e84ed894ffd390d6768;hb=refs/heads/stable/nitrogen

	Feature Description: Support for i2rs model

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-nitrogen/

odl-topoprocessing-inventory-rendering

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/odl-topoprocessing-inventory-rendering/pom.xml;h=cf278e2429f7ae048eac134a7c7b7f7095d4ba24;hb=refs/heads/stable/nitrogen

	Feature Description: Rendering demo

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-nitrogen/

Documentation

	Developer Guide(s):

	Topology Processing Framework Developer Guide

	Wiki [https://wiki.opendaylight.org/view/Topology_Processing_Framework:Developer_Guide]

Security Considerations

	No external interfaces other then restconf

	No known security issues

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=org.opendaylight.topoprocessing%3Atopoprocessing-aggregator] (80%)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-nitrogen/]

Migration

	Not supported

Compatibility

	Compatible

Bugs Fixed

	Link to fixed bugs [https://bugs.opendaylight.org/buglist.cgi?chfield=bug_status&chfieldto=Now&component=General&f1=bug_status&f2=bug_status&o1=changedafter&o2=changedbefore&product=topoprocessing&query_format=advanced&resolution=FIXED&v1=2017-4-24&v2=2017-9-11]

Known Issues

	Leafs which are children (direct or indirect) of list can’t be used as target fields

	Aggregation of termination points in case of more mappings works only if all underlay topologies are from the same model and only if that model is Network Topology or I2RS

	Aggregation of termination points in combination with aggregation of nodes doesn’t work with inventory model

	Aggregation of termination points in combination with aggregation of nodes in case of more mappings works only if aggregation of termination points is specified on each underlay topology and only if model of all underlay topologies is the same

	Filtration of termination points in case of more filters works only if all underlay topologies are from the same model

	Maximum of one correlation per correlation item (aggregation may not work correctly in case of more correlation with the same correlation item)

	Link aggregation works only if user specify also link computation

MLMT limitations

	The mlmt module provides YANG models as based on:
* network-topology YANG model version 2013-10-21
* TED YANG model version 2013-10-21

	The mlmt module works with underlay topologies based on:
* network-topology YANG model version 2013-10-21
* isis-topology YANG model version 2013-10-21

	The mlmt module does not support underlay topologies based on ospf-topology YANG model 2013-10-21.

End-of-life

	Network Topology model is not supported for overlay topologies

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/Topology_Processing_Framework:NITROGEN_Release_Plan]

Table Type Patterns

Major Features

odl-ttp-model

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=features/features-ttp/src/main/features/features.xml;hb=stable/nitrogen

	Feature Description: Provides a YANG model for describing
ONF TTP 1.0 [https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf]
Table Type Patterns (TTPs) in JSON as well as a database of TTPs and an
augmentation adding supported and active TTPs on OpenFlow nodes.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: None.

TTP CLI Tools

	Feature URL: The Nitrogen executable jar can be found here: https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/ttp/parser/0.5.0-Nitrogen/parser-0.5.0-Nitrogen-jar-with-dependencies.jar

	Feature Description: Provides stand-alone command line tools to validate
and interact with TTPs in XML or JSON.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: None.

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the
document is under review, provide a link to the change in Gerrit.

	User Guide(s):

	TTP CLI Tools User Guide

	Developer Guide(s):

	TTP CLI Tools Developer Guide

	TTP Model Developer Guide

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	No.

	Other security issues?

	None.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=20096] (43.3% Test Coverage)

	No CSIT testing.

	There was minimal manual testing in Nitrogen, but also there were no changes
beyond keeping up-to-date with changes in upstream projects. Unit tests cover
the basics of the model.

Migration

	Is it possible to migrate from the previous release? If so, how?

While it should be possible to export all TTP-related information by doing
RESTCONF GETs and then import it by doing RESTCONF PUTs after the fact, this
has not been tested and isn’t officially supported.

Compatibility

	Is this release compatible with the previous release?

Yes. There have been no code changes except to tolerate changes in upstream
projects.

	Any API changes?

No. No changes in models or APIs.

	Any configuration changes?

No. The TTP project has no configuration.

Bugs Fixed

None fixed.

Known Issues

The TTP YANG model does not match the ONF TTP JSON precisely. Exact details are
documented in the TTP model YANG [https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=ttp-model/src/main/yang/ttp.yang;hb=stable/nitrogen]
file.

Open Bugs [https://bugs.opendaylight.org/buglist.cgi?component=General&list_id=79056&product=ttp&resolution=---]

End-of-life

None.

Standards

ONF TTP 1.0 [https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf]

Release Mechanics

	Nitrogen Table Type Patterns Release Plan [https://wiki.opendaylight.org/view/Table_Type_Patterns/Nitrogen/Release_Plan]

	This was purely a maintenance release, so no changes were planned or happened.

Unimgr

Major Features

odl-unimgr

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=blob;f=features/odl-unimgr/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: MEF Presto core infrastructure.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

odl-unimgr-netvirt

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=blob;f=features/odl-unimgr-netvirt/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: MEF Legato implementation using netvirt.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

odl-unimgr-cisco-xr-driver

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=blob;f=features/odl-unimgr-cisco-xr-driver/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: MEF presto implementation with cisco xr

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

odl-unimgr-ovs-driver

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=blob;f=features/odl-unimgr-ovs-driver/pom.xml;hb=refs/heads/stable/nitrogen

	Feature Description: MEF presto implementation with ovsdb

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

Documentation

	User Guide(s):

	User Network Interface Manager Plug-in (Unimgr) User Guide

	Developer Guide(s):

	User Network Interface Manager Plug-in (Unimgr) Developer Guide

Security Considerations

No known security issues

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview/coverage?id=org.opendaylight.unimgr%3Aunimgr-aggregator] (50.7% code coverage)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/unimgr/job/unimgr-csit-1node-basic-all-nitrogen/]

	Tested Manually all main features.

We have added unit and integration tests for Presto layer. Presto and Legato APIs were tested manually.

Migration

	Is it possible to migrate from the previous release?
No, Current release is backward incompatible.

Compatibility

	Is this release compatible with the previous release?

	Any API changes?

	Any configuration changes?

Presto API replaces with completely new Presto NRP model

Bugs Fixed

	Only Bugs related to current release have been fixed

Known Issues

	No known issues

End-of-life

none

Standards

	MEF PRESTO API [https://wiki.mef.net/display/CESG/LSO+Presto]

	MEF LEGATO API [https://wiki.mef.net/display/CESG/LSO+Legato]

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/Unimgr:Release_Plan_Nitrogen]

Unified Secure Channel

Major Features

	USC Agent provides proxy and agent functionality on top of all standard
protocols supported by the device. It initiates call-home with the controller,
maintains live connections with with the controller, acts as a demuxer/muxer
for packets with the USC header, and authenticates the controller.

	USC Plugin is responsible for communication between the controller and the USC
agent . It responds to call-home with the controller, maintains live
connections with the devices, acts as a muxer/demuxer for packets with the USC
header, and provides support for TLS/DTLS.

	USC Manager handles configurations, high availability, security, monitoring,
and clustering support for USC.

	USC UI is responsible for displaying a graphical user interface representing
the state of USC in the OpenDaylight DLUX UI.

USC Channel UI

	Feature Name: odl-usc-channel-ui

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=usc.git;a=blob;f=usc-features/odl-usc-channel-ui/pom.xml;

	Feature Description: Responsible for communication between the controller
and the USC agent . It responds to call-home with the controller, maintains
live connections with the devices, acts as muxer/demuxer for packets with the
USC header, and provides support for TLS/DTLS.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/usc/job/usc-csit-1node-tcp-all-nitrogen/

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the
document is under review, provide a link to the change in Gerrit.

	User Guide(s):

	Unified Secure Channel

	Developer Guide(s):

	Unified Secure Channel

Security Considerations

	USC uses TLS and DTLS to secure the channels. Asymmetric authentication
handshake when establishing the channels. Mutual authentication achieved with
certificates configured in usc.properties for both the controller and the
device.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=44336]

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/usc/job/usc-csit-1node-tcp-all-nitrogen/]

	Link to Additional Details [https://wiki.opendaylight.org/view/USC:Integration_Test]

	Code is covered by unit and integration tests

	System Tests are performed by CSIT jobs using java test agent.

Migration

	Nothing beyond general OpenDaylight migration requirements.

Compatibility

	Nothing beyond general OpenDaylight compatibility constraints.

Bugs Fixed

	Bug Report [https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&bug_status=VERIFIED&list_id=47710&product=usc&query_format=advanced&resolution=---]

Known Issues

	3402 [https://bugs.opendaylight.org/show_bug.cgi?id=4558] USC features has configuration issues with 3-node cluster environment.

End-of-life

	Nothing deprecated, EOL.

Standards

	N/A

Release Mechanics

	USC Release Plan [https://wiki.opendaylight.org/view/USC:Nitrogen:Release_Plan]

	Project was on schedule

Honeycomb Virtual Bridge Domain

Major Features

odl-vbd

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=honeycomb/vbd.git;a=blob;f=features/odl-vbd/src/main/feature/feature.xml;h=37a666153982e4efa38a37ca0b971be5d5cbdcd6;hb=refs/heads/stable/nitrogen

	Feature Description: This feature provides models to configure Virtual Bridge Domains on VPP.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

odl-vbd-ui

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=honeycomb/vbd.git;a=tree;f=features/odl-vbd-ui;h=a6172d7fb3d2c1930b0a87213b7043f58a711f60;hb=refs/heads/stable/nitrogen

	Feature Description: This feature provides the GUI for VBD.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: N/A

Documentation

	Wiki [https://wiki.opendaylight.org/view/Honeycomb/VBD]

	VBD API [https://wiki.opendaylight.org/view/Honeycomb/VBD/API]

Security Considerations

	N/A

Quality Assurance

	Sonar Report [https://sonar.opendaylight.org/overview?id=68028] (0% - no coverage results available)

	VBD project is tested within FastDataStacks (FDS) [https://wiki.opnfv.org/display/fds/FastDataStacks+Home] testing suite, where severeal automated
tests are performed. More information about FDS testing can be found here:
FDS testing [https://wiki.opnfv.org/display/fds/FDS+Testing] and test
results are available here: FDS test results [http://testresults.opnfv.org/reporting/master/functest/status-apex.html]

	FDS automated tests perform series of functests where the whole stack is
beeing tested (Openstack/ODL (GBP,VBD)/HC/VPP).

Migration

	Please use VPP 17.04 stable.

Compatibility

	Not compatible with previous VPP 17.01 or older stable versions.

Bugs Fixed

	N/A

Known Issues

	Due to yang updates for keeping VPP Rendering compatible with the latest
stable for VPP, 17.04, we are not going to be compatible with previous stable
VPPs. This, on the other hand, comes with a lot of augmentations of features.

End-of-life

	N/A

Standards

	N/A

Release Mechanics

	Release plan [https://wiki.opendaylight.org/view/Honeycomb/VBD/Nitrogen/Release_Plan]

	no major shifts from official release plan

VTN

Major Features

odl-vtn-manager-rest

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=vtn.git;a=blob;f=manager/features/odl-vtn-manager-rest/pom.xml;h=c130771e9dbc0d77dddf9b81a65d1a0c9aab936c;hb=refs/heads/stable/nitrogen#l24

	Feature Description: This is the feature that allows users to use the VTN virtualization, by creating the various components as needed for the network.

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/vtn/job/vtn-csit-1node-manager-all-nitrogen/

odl-vtn-manager-neutron

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=vtn.git;a=blob;f=manager/features/odl-vtn-manager-neutron/pom.xml;h=600411e41a52ddc8ac90e9a3c5c58b73ed774b8c;hb=refs/heads/stable/nitrogen#l24

	Feature Description: This feature provides support for integration with Openstack (L2 API)

	Top Level: Yes

	User Facing: Yes

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/vtn/job/vtn-csit-1node-openstack-newton-neutron-nitrogen/

Documentation

	Installation Guide(s):

	VTN Installation Guide

	User Guide(s):

	VTN User Guide

	Developer Guide(s):

	VTN Developer Guide

	VTN Openstack Developer Guide

Security Considerations

	No Issues.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/dashboard?id=org.opendaylight.vtn%3Adistribution&did=1] (56.2%)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/vtn/]

	CSIT covers most of the options in RESTCONF

	The 3 node deployment has not been tested well.

Migration

	Not Supported.

Compatibility

	No Specific Compatibility issues.

Bugs Fixed

	8761 - VTN coordinator Portmapping fails due to unnecessary hex conversion.

	9024 - VTN Manager Set null to bundle version qualifier if it is empty.

Known Issues

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?component=VTN%20Manager&list_id=78860&product=vtn&resolution=---]

End-of-life

	None

Standards

	None

Release Mechanics

	Link to release plan [https://wiki.opendaylight.org/view/VTN:Nitrogen_Release_Plan]

	There was no deviation from the plan.

YANG Tools

Major Features

Nitrogen release marks the seventh release of YANG Tools components. We have
fixed lot of issues ranging from small annoyances to major reworks.

Major changes delivered in this release are

	Migration to new XML Parser
Bug 5824 [https://bugs.opendaylight.org/show_bug.cgi?id=5824]
Bug 5825 [https://bugs.opendaylight.org/show_bug.cgi?id=5825]

	Fix of new XML parser design flaws
Bug 8675 [https://bugs.opendaylight.org/show_bug.cgi?id=8675]
Bug 8715 [https://bugs.opendaylight.org/show_bug.cgi?id=8715]
Bug 8745 [https://bugs.opendaylight.org/show_bug.cgi?id=8745].

	InMemoryDataTree can be configured to perform full mandatory leaf
validation
Bug 8291 [https://bugs.opendaylight.org/show_bug.cgi?id=8291]

	Deviation statements are properly activated
Bug 8307 [https://bugs.opendaylight.org/show_bug.cgi?id=8307]

	TrieMap implementation
Bug 7464 [https://bugs.opendaylight.org/show_bug.cgi?id=7464]

	Improvements, bug fixing and clean up yang-model-export, yang-parser-impl,
yang-model-api, yang-data-impl, yang-data-api

odl-yangtools-yang-data

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob_plain;f=features/odl-yangtools-yang-data/pom.xml;hb=refs/heads/v1.2.x

	Feature Description: to install YANG Data APIs and implementation.

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test: System test waiver request pending.

odl-yangtools-common

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/odl-yangtools-common/pom.xml;hb=refs/heads/v1.2.x

	Feature Description: to install common concepts and utilities.

	Top Level: Yes

	User Facing: No

	Experimental: Yes

	CSIT Test: System test waiver request pending.

odl-yangtools-yang-parser

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/odl-yangtools-yang-parser/pom.xml;hb=refs/heads/v1.2.x

	Feature Description: to install YANG model APIs and YANG Parser

	Top Level: Yes

	User Facing: No

	Experimental: No

	CSIT Test: https://jenkins.opendaylight.org/releng/view/yangtools/job/yangtools-csit-1node-periodic-system-only-nitrogen/

Documentation

	Developer Guide(s):

	YANG Tools Developer Guide

Security Considerations

	YANG Tools libraries are designed to be embedded and not to be a stand-alone
application so security concerns need to be addressed by the application
using this library.

Quality Assurance

	Link to Sonar Report [https://sonar.opendaylight.org/overview?id=13079]
(Test coverage 75.4%)

	Link to CSIT Jobs [https://jenkins.opendaylight.org/releng/view/yangtools/job/yangtools-csit-1node-periodic-system-only-nitrogen/]

Migration

	It is possible to migrate from the previous release. Aside from adjusting to
the removal of deprecated API elements and changed elements, there are no
additional steps needed for migration to this release.

Compatibility

	Release is compatible with the previous one.

	API changes:

	XmlParserStream.traverse (DOMSource) [https://git.opendaylight.org/gerrit/#/c/60864/5]

	Added UnrecognizedStatement and refactoring of StmtContextUtils [https://git.opendaylight.org/gerrit/#/c/61571/]

	Moving of SubstatementValidator into spi.meta package [https://git.opendaylight.org/gerrit/#/c/61570/]

	EffectiveSchemaContext was moved, users are advised to use
SimpleSchemaContext

	org.opendaylight.yangtools.yang.parser.spi package was adjusted

	No configuration changes.

	Behavior changes:
* concepts.Registration does not allow nulls
* SemVer and the associated Semantic Version is now bound to OpenConfig
* YANG/YIN parser is less forgiving in face of ambiguous constructs

(like ‘mandatory ture’ or ‘status foobar’)

Bugs Fixed

	List of fixed Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_severity=blocker&bug_severity=critical&bug_severity=major&bug_severity=normal&bug_severity=minor&bug_severity=trivial&bug_severity=enhancement&columnlist=product%2Ccomponent%2Cassigned_to%2Cbug_severity%2Ccf_issue_type%2Cshort_desc%2Cbug_status%2Cpriority%2Cdeadline%2Ccf_target_milestone&component=General&f1=cf_target_milestone&known_name=Nitrogen%3A%20Yangtools&list_id=78630&o1=substring&order=bug_id&product=yangtools&query_based_on=Nitrogen%3A%20Yangtools&query_format=advanced&resolution=FIXED&v1=Nitrogen].

Known Issues

	Link to Open Bugs [https://bugs.opendaylight.org/buglist.cgi?bug_severity=blocker&bug_severity=critical&bug_severity=major&bug_severity=normal&bug_severity=minor&bug_severity=trivial&bug_severity=enhancement&columnlist=product%2Ccomponent%2Cassigned_to%2Cbug_severity%2Ccf_issue_type%2Cshort_desc%2Cbug_status%2Cpriority%2Cdeadline%2Ccf_target_milestone&component=General&f1=cf_target_milestone&known_name=Nitrogen%3A%20Yangtools&list_id=78805&o1=substring&product=yangtools&query_based_on=Nitrogen%3A%20Yangtools&query_format=advanced&resolution=---&v1=Nitrogen]

End-of-life

	This release has not introduced any new deprecation of a major feature
or API. However, there are some minor deprecations such as:

	Yang-data-impl XML codec has been deprecated
https://git.opendaylight.org/gerrit/#/c/60558/

	YangParseException has been deprecated
https://git.opendaylight.org/gerrit/#/c/58751/

	Major development is shifting to 2.0.0 version, which is guaranteed to be
API incompatible. Users are advised to eliminate any reliance on @Deprecated
components as soon as possible after adopting this release.
Furthermore, the use of CheckedFuture will be eliminated, hence users should
reduce their reliance on this class.
Next release will also move Optional, Function, Predicate and others
from Guava to their java.util equivalents.

Standards

	YANG and YIN parser processing according to
RFC 6020 [https://tools.ietf.org/html/rfc6020],
RFC 7950 [https://tools.ietf.org/html/rfc7950] and
RFC 8040 [https://tools.ietf.org/html/rfc8040]

	XML parser for YANG-modeled data according to
RFC 6020 [https://tools.ietf.org/html/rfc6020] and
RFC 7950 [https://tools.ietf.org/html/rfc7950].

	JSON parser for YANG-modeled data according to
RFC 7951 [https://tools.ietf.org/html/rfc7951]

Release Mechanics

	Link to the release plan [https://wiki.opendaylight.org/view/Simultaneous_Release:Nitrogen_Release_Plan]

Nitrogen-SR1 Release Notes

This page details changes and bug fixes between the Nitrogen Release
and the Nitrogen Stability Release 1 (Nitrogen-SR1) of OpenDaylight.

Projects with No Noteworthy Changes

	cardinal

	ocpplugin

	topoprocessing

	ttp

	yangtools

aaa

	78fa45e [https://git.opendaylight.org/gerrit/#/q/78fa45e]
AAA-151 [https://jira.opendaylight.org/browse/AAA-151]
: AAA-151: Invalidate claim cache for CLI initiated changes

	4818c31 [https://git.opendaylight.org/gerrit/#/q/4818c31]
: Declare odl-aaa-encryption-service in artifacts

	1c06dca [https://git.opendaylight.org/gerrit/#/q/1c06dca]
: Bump odlparent 2.0.4 to 2.0.5

	8bdc47a [https://git.opendaylight.org/gerrit/#/q/8bdc47a]
AAA-144 [https://jira.opendaylight.org/browse/AAA-144]
: Bug 9040: avoid using dynamicAuthorization for cluster-admin operations

	ce33d9c [https://git.opendaylight.org/gerrit/#/q/ce33d9c]
: Bump versions by x.y.(z+1)

alto

	70804e0 [https://git.opendaylight.org/gerrit/#/q/70804e0]
: Bump odlparent 2.0.4 to 2.0.5

	ba54e2d [https://git.opendaylight.org/gerrit/#/q/ba54e2d]
: Bump versions by x.y.(z+1)

bgpcep

	fe5f547 [https://git.opendaylight.org/gerrit/#/q/fe5f547]
BGPCEP-686 [https://jira.opendaylight.org/browse/BGPCEP-686]
: BUG-9079 Make PCEP session recoverable from exception

	76d764b [https://git.opendaylight.org/gerrit/#/q/76d764b]
: BUG-9192 / BUG-9191

	7f6dea5 [https://git.opendaylight.org/gerrit/#/q/7f6dea5]
: BUG-9218: eliminate duplicate bundles

	97c4803 [https://git.opendaylight.org/gerrit/#/q/97c4803]
BGPCEP-691 [https://jira.opendaylight.org/browse/BGPCEP-691]
: Bug 9205: NPE received while receiving BGP peers

	f75843c [https://git.opendaylight.org/gerrit/#/q/f75843c]
BGPCEP-680 [https://jira.opendaylight.org/browse/BGPCEP-680]
: BUG-8929: NPE during singleton startup

	e2095f8 [https://git.opendaylight.org/gerrit/#/q/e2095f8]
BGPCEP-682 [https://jira.opendaylight.org/browse/BGPCEP-682]
: Bug-8942: Fix DelegatedLspsCount

	43c0193 [https://git.opendaylight.org/gerrit/#/q/43c0193]
BGPCEP-683 [https://jira.opendaylight.org/browse/BGPCEP-683]
: BUG-8987: Print Exception when Css registration fails

	c2d5b09 [https://git.opendaylight.org/gerrit/#/q/c2d5b09]
BGPCEP-652 [https://jira.opendaylight.org/browse/BGPCEP-652]
: BUG-8156 : conflicting listener fix

	1944dec [https://git.opendaylight.org/gerrit/#/q/1944dec]
BGPCEP-652 [https://jira.opendaylight.org/browse/BGPCEP-652]
: BUG-8156 : fixed start of session manager

	3a5a210 [https://git.opendaylight.org/gerrit/#/q/3a5a210]
: Bump odlparent 2.0.4 to 2.0.5

	3f632b2 [https://git.opendaylight.org/gerrit/#/q/3f632b2]
BGPCEP-652 [https://jira.opendaylight.org/browse/BGPCEP-652]
: BUG-8156 : duplicate session up fixed

	2c4a21a [https://git.opendaylight.org/gerrit/#/q/2c4a21a]
: Bump versions by x.y.(z+1)

bier

	4ac680f [https://git.opendaylight.org/gerrit/#/q/4ac680f]
: Cleanup bierapp-bundle dependencies

	cfff0b0 [https://git.opendaylight.org/gerrit/#/q/cfff0b0]
: Rework odl-bier-adapter feature

	6b9970e [https://git.opendaylight.org/gerrit/#/q/6b9970e]
: Bump odlparent 2.0.4 to 2.0.5

	f35ad9b [https://git.opendaylight.org/gerrit/#/q/f35ad9b]
: Do not depend on features-bgp

	f6a468c [https://git.opendaylight.org/gerrit/#/q/f6a468c]
: Bump versions by x.y.(z+1)

controller

	36b453e [https://git.opendaylight.org/gerrit/#/q/36b453e]
CONTROLLER-1771 [https://jira.opendaylight.org/browse/CONTROLLER-1771]
: Bug 9165: Log config subsystem readiness as INFO

	30a5b11 [https://git.opendaylight.org/gerrit/#/q/30a5b11]
: Add debug to pinpoint lastApplied movement

	0b7a749 [https://git.opendaylight.org/gerrit/#/q/0b7a749]
: Lower verbosity in SimpletxDomRead

	3a1a2b3 [https://git.opendaylight.org/gerrit/#/q/3a1a2b3]
CONTROLLER-1713 [https://jira.opendaylight.org/browse/CONTROLLER-1713]
: BUG-8639: always invalidate primary info cache

	4883784 [https://git.opendaylight.org/gerrit/#/q/4883784]
: Bump odlparent 2.0.4 to 2.0.5

	c570de3 [https://git.opendaylight.org/gerrit/#/q/c570de3]
CONTROLLER-1752 [https://jira.opendaylight.org/browse/CONTROLLER-1752]
: Bug 9008: Fix the error of the persisted journal data format

	8fd8a5c [https://git.opendaylight.org/gerrit/#/q/8fd8a5c]
: Add an explicit null data check

	72f3d16 [https://git.opendaylight.org/gerrit/#/q/72f3d16]
: Fix testLeaderAndFollowerEntityOwnersReassignedAfterShutdown failure

	5fdf80c [https://git.opendaylight.org/gerrit/#/q/5fdf80c]
: Fix intermitent testFollowerResyncWith*LeaderRestart failure

	5ebbb1f [https://git.opendaylight.org/gerrit/#/q/5ebbb1f]
: Bump versions by x.y.(z+1)

coe

	dc65935 [https://git.opendaylight.org/gerrit/#/q/dc65935]
: Bump odlparent 2.0.4 to 2.0.5

	cb18425 [https://git.opendaylight.org/gerrit/#/q/cb18425]
: Bump versions by x.y.(z+1)

daexim

	8fceaa3 [https://git.opendaylight.org/gerrit/#/q/8fceaa3]
: Bump odlparent 2.0.4 to 2.0.5

	895adf7 [https://git.opendaylight.org/gerrit/#/q/895adf7]
: Bump versions by x.y.(z+1)

dlux

	1d176a1 [https://git.opendaylight.org/gerrit/#/q/1d176a1]
: Bump odlparent 2.0.4 to 2.0.5

	097139b [https://git.opendaylight.org/gerrit/#/q/097139b]
: Bump versions by x.y.(z+1)

dluxapps

	2b4104b [https://git.opendaylight.org/gerrit/#/q/2b4104b]
: Bump odlparent 2.0.4 to 2.0.5

	1b96094 [https://git.opendaylight.org/gerrit/#/q/1b96094]
: Bump versions by x.y.(z+1)

eman

	0813520 [https://git.opendaylight.org/gerrit/#/q/0813520]
: Bump odlparent 2.0.4 to 2.0.5

	4ef702e [https://git.opendaylight.org/gerrit/#/q/4ef702e]
: Bump versions by x.y.(z+1)

faas

	32832e9 [https://git.opendaylight.org/gerrit/#/q/32832e9]
: Bump odlparent 2.0.4 to 2.0.5

	ac39ca5 [https://git.opendaylight.org/gerrit/#/q/ac39ca5]
: Bump versions by x.y.(z+1)

genius

	c05794e [https://git.opendaylight.org/gerrit/#/q/c05794e]
: Enable bound services update

	3a79ac6 [https://git.opendaylight.org/gerrit/#/q/3a79ac6]
: This patch implements the genius mdsal interface for supporting conntrack ct_mark match (with mask) and action (without mask).

	0bdc6f9 [https://git.opendaylight.org/gerrit/#/q/0bdc6f9]
: Replacing DS read with cache read in ShowVlan CLI

	716853f [https://git.opendaylight.org/gerrit/#/q/716853f]
: Ignore newTunnelInterface() test as it is flaky

	59c98f8 [https://git.opendaylight.org/gerrit/#/q/59c98f8]
: Add support for mpls-gre tunnels

	e157a42 [https://git.opendaylight.org/gerrit/#/q/e157a42]
: Bump odlparent 2.0.4 to 2.0.5

	1c03cd1 [https://git.opendaylight.org/gerrit/#/q/1c03cd1]
GENIUS-84 [https://jira.opendaylight.org/browse/GENIUS-84]
: Bug 8938 - Resource-batch manager enhancement

	f4ec27e [https://git.opendaylight.org/gerrit/#/q/f4ec27e]
: Use INFO for logging null DPID

	54ab701 [https://git.opendaylight.org/gerrit/#/q/54ab701]
: bug 7380: Add getIfaceInfoFromConfigDataStore

	ac6a818 [https://git.opendaylight.org/gerrit/#/q/ac6a818]
: Genius CSIT Failure : Missing Mandatory Node Error

	20de66f [https://git.opendaylight.org/gerrit/#/q/20de66f]
: Clean up collections of Futures

	ebcf473 [https://git.opendaylight.org/gerrit/#/q/ebcf473]
: Add gpe option to itm-config.xml

	4f63446 [https://git.opendaylight.org/gerrit/#/q/4f63446]
GENIUS-89 [https://jira.opendaylight.org/browse/GENIUS-89]
: Bug 9099 - Suspected WriteOnlyTransaction leak in interfacemanager

	5298a23 [https://git.opendaylight.org/gerrit/#/q/5298a23]
: Store original iface correctly in ISL worker

	40950ce [https://git.opendaylight.org/gerrit/#/q/40950ce]
: Cleanup

	20e07f4 [https://git.opendaylight.org/gerrit/#/q/20e07f4]
: Cleanup

	143480d [https://git.opendaylight.org/gerrit/#/q/143480d]
: Remove start() method

	a622960 [https://git.opendaylight.org/gerrit/#/q/a622960]
: Bump versions by x.y.(z+1)

groupbasedpolicy

	9d9adaa [https://git.opendaylight.org/gerrit/#/q/9d9adaa]
: Bump odlparent 2.0.4 to 2.0.5

	92941b6 [https://git.opendaylight.org/gerrit/#/q/92941b6]
: Bump versions by x.y.(z+1)

honeycomb/vbd

	22361b9 [https://git.opendaylight.org/gerrit/#/q/22361b9]
: Bump odlparent 2.0.4 to 2.0.5

	d3813a8 [https://git.opendaylight.org/gerrit/#/q/d3813a8]
: Bump versions by x.y.(z+1)

infrautils

	71715ac [https://git.opendaylight.org/gerrit/#/q/71715ac]
: Bump odlparent 2.0.4 to 2.0.5

	8777b96 [https://git.opendaylight.org/gerrit/#/q/8777b96]
: Bump versions by x.y.(z+1)

integration/distribution

	e301870 [https://git.opendaylight.org/gerrit/#/q/e301870]
: Fix mdsal dependency in int/dist

	87c31e0 [https://git.opendaylight.org/gerrit/#/q/87c31e0]
INTDIST-92 [https://jira.opendaylight.org/browse/INTDIST-92]
: Bug 9189: Add missing version feature dependencies

	1dfec4a [https://git.opendaylight.org/gerrit/#/q/1dfec4a]
: Revert “Bug 9307: Split features to avoid incompatiblities”

	5d85bd0 [https://git.opendaylight.org/gerrit/#/q/5d85bd0]
: Bug 9307: Split features to avoid incompatiblities

	ab012b6 [https://git.opendaylight.org/gerrit/#/q/ab012b6]
: Add odl-infrautils-ready to compatible with all

	eed1f25 [https://git.opendaylight.org/gerrit/#/q/eed1f25]
: Move Cardinal features to not compatible

	f38a481 [https://git.opendaylight.org/gerrit/#/q/f38a481]
: Bug 9060: Add odl-mdsal-trace

	0f428f1 [https://git.opendaylight.org/gerrit/#/q/0f428f1]
: Add bier features to K4 distribution

	108e314 [https://git.opendaylight.org/gerrit/#/q/108e314]
: Bump odlparent 2.0.4 to 2.0.5

	0c89576 [https://git.opendaylight.org/gerrit/#/q/0c89576]
: Bump versions by x.y.(z+1)

l2switch

	ab643dd [https://git.opendaylight.org/gerrit/#/q/ab643dd]
: Bump odlparent 2.0.4 to 2.0.5

	444f1c8 [https://git.opendaylight.org/gerrit/#/q/444f1c8]
: Bump versions by x.y.(z+1)

lispflowmapping

	99631c5 [https://git.opendaylight.org/gerrit/#/q/99631c5]
LISPMAP-166 [https://jira.opendaylight.org/browse/LISPMAP-166]
: Bug 9127: Make IT more robust when receiving packets

	92249f9 [https://git.opendaylight.org/gerrit/#/q/92249f9]
: Bump odlparent 2.0.4 to 2.0.5

	d5f6457 [https://git.opendaylight.org/gerrit/#/q/d5f6457]
LISPMAP-169 [https://jira.opendaylight.org/browse/LISPMAP-169]
: Bug 9172: Don’t store subscribers with “No Address” source EID

	3cc8437 [https://git.opendaylight.org/gerrit/#/q/3cc8437]
LISPMAP-164 [https://jira.opendaylight.org/browse/LISPMAP-164]
: Bug 9037: Fix positive overlapping negative

	d5c36eb [https://git.opendaylight.org/gerrit/#/q/d5c36eb]
LISPMAP-151 [https://jira.opendaylight.org/browse/LISPMAP-151]
: Bug 7947: Move subscribers to a separate cache

	5f69849 [https://git.opendaylight.org/gerrit/#/q/5f69849]
LISPMAP-151 [https://jira.opendaylight.org/browse/LISPMAP-151]
: Revert “Bug 7947: Store MappingOrigin in MappingData”

	02cff71 [https://git.opendaylight.org/gerrit/#/q/02cff71]
LISPMAP-163 [https://jira.opendaylight.org/browse/LISPMAP-163]
: Bug 9023: Fix merging of negative prefixes

	991c222 [https://git.opendaylight.org/gerrit/#/q/991c222]
LISPMAP-160 [https://jira.opendaylight.org/browse/LISPMAP-160]
: Bug 8746: Multi-threading improvements

	2e860ec [https://git.opendaylight.org/gerrit/#/q/2e860ec]
: Bump versions by x.y.(z+1)

mdsal

	a6433bb [https://git.opendaylight.org/gerrit/#/q/a6433bb]
: Binding v2 generator - fix getting elements from empty array.

	6ce7a04 [https://git.opendaylight.org/gerrit/#/q/6ce7a04]
MDSAL-291 [https://jira.opendaylight.org/browse/MDSAL-291]
: BUG-9145: rework singleton service group state tracking

	c61a8cc [https://git.opendaylight.org/gerrit/#/q/c61a8cc]
: Fix use of deprecated Futures.addCallback()

	5d8111e [https://git.opendaylight.org/gerrit/#/q/5d8111e]
: Binding v2 Generator - fix dependency yang-ext of mdsal-binding2-test-model - It should depend on yang-ext in binding2 model for using generated codes v2.

	e9c9a0b [https://git.opendaylight.org/gerrit/#/q/e9c9a0b]
: Add yang-ext to model-binding2

	7345aa3 [https://git.opendaylight.org/gerrit/#/q/7345aa3]
: Fix revisions format in tests

	952d570 [https://git.opendaylight.org/gerrit/#/q/952d570]
: Bump odlparent 2.0.4 to 2.0.5

	96a12ed [https://git.opendaylight.org/gerrit/#/q/96a12ed]
: MDSAL Binding 2 Features for Karaf 4

	f1d7abd [https://git.opendaylight.org/gerrit/#/q/f1d7abd]
: Bump versions by x.y.(z+1)

nemo

	21825a7 [https://git.opendaylight.org/gerrit/#/q/21825a7]
: Bump odlparent 2.0.4 to 2.0.5

	92ad34c [https://git.opendaylight.org/gerrit/#/q/92ad34c]
: Bump versions by x.y.(z+1)

netconf

	b5505bd [https://git.opendaylight.org/gerrit/#/q/b5505bd]
SR-1 [https://jira.opendaylight.org/browse/SR-1]
: Extra superfluous edit-config RPC sent - Netconf-482

	1e8350d [https://git.opendaylight.org/gerrit/#/q/1e8350d]
: Transition ListenerAdapter to ClusteredDOMDataTreeListener

	34b91cb [https://git.opendaylight.org/gerrit/#/q/34b91cb]
: Add unit tests for ListenerAdapter

	96914ac [https://git.opendaylight.org/gerrit/#/q/96914ac]
NETCONF-475 [https://jira.opendaylight.org/browse/NETCONF-475]
: Bug 9256: Add websocket server config knob for ip

	6978e89 [https://git.opendaylight.org/gerrit/#/q/6978e89]
NETCONF-465 [https://jira.opendaylight.org/browse/NETCONF-465]
: BUG 9112: NPE in karaf cli when device is still connecting

	5c7ca5c [https://git.opendaylight.org/gerrit/#/q/5c7ca5c]
: Remove aaa version declarations

	ccce725 [https://git.opendaylight.org/gerrit/#/q/ccce725]
: BUG-9218: fix features to not duplicate upstream bundles

	9ae46c7 [https://git.opendaylight.org/gerrit/#/q/9ae46c7]
NETCONF-469 [https://jira.opendaylight.org/browse/NETCONF-469]
: BUG-9132: don’t provide a value for restconf/streams/events

	487cb8a [https://git.opendaylight.org/gerrit/#/q/487cb8a]
: Bump odlparent 2.0.4 to 2.0.5

	1552e67 [https://git.opendaylight.org/gerrit/#/q/1552e67]
: Bump versions by x.y.(z+1)

	7b06550 [https://git.opendaylight.org/gerrit/#/q/7b06550]
: Minor cleanup of blueprint config

	0434081 [https://git.opendaylight.org/gerrit/#/q/0434081]
NETCONF-453 [https://jira.opendaylight.org/browse/NETCONF-453]
: Bug 8989 - Create just one DS for each test-tool’s simulated netconf device

netvirt

	db4080e [https://git.opendaylight.org/gerrit/#/q/db4080e]
: Refactor/cleanup BgpConfigurationManager

	73f2a21 [https://git.opendaylight.org/gerrit/#/q/73f2a21]
NETVIRT-940 [https://jira.opendaylight.org/browse/NETVIRT-940]
: Bug9245: Table=21 related exceptions fixes

	60054d6 [https://git.opendaylight.org/gerrit/#/q/60054d6]
NETVIRT-926 [https://jira.opendaylight.org/browse/NETVIRT-926]
: NETVIRT-926 - Maxpath value should be between 1 to 64 in BGP multipath

	c64a3ce [https://git.opendaylight.org/gerrit/#/q/c64a3ce]
NETVIRT-935 [https://jira.opendaylight.org/browse/NETVIRT-935]
: Bug 9234: CSS programmed wrongly with TOR mac

	3ffe9d5 [https://git.opendaylight.org/gerrit/#/q/3ffe9d5]
: Refactor/cleanup BgpRouter

	460a47f [https://git.opendaylight.org/gerrit/#/q/460a47f]
: Updated to use bind-service update instead of bind and unbind in Acl VPN listener

	eb221c6 [https://git.opendaylight.org/gerrit/#/q/eb221c6]
: Handle usecase when ELAN is null, and ACL service BIND/ADD fails due to NPE

	13aa527 [https://git.opendaylight.org/gerrit/#/q/13aa527]
NETVIRT-929 [https://jira.opendaylight.org/browse/NETVIRT-929]
: BUG 9221: Improve logical SFF handling

	87fa9a0 [https://git.opendaylight.org/gerrit/#/q/87fa9a0]
NETVIRT-928 [https://jira.opendaylight.org/browse/NETVIRT-928]
: BUG 9220: don’t use tun_gpe_np as match field

	4504702 [https://git.opendaylight.org/gerrit/#/q/4504702]
: Use nitrogen version for mdsal-trace

	242f984 [https://git.opendaylight.org/gerrit/#/q/242f984]
: Ignore addElanInterface

	f96ef54 [https://git.opendaylight.org/gerrit/#/q/f96ef54]
NETVIRT-919 [https://jira.opendaylight.org/browse/NETVIRT-919]
: Bug 9181: Code changes for conflicting modifications exceptions of table=19

	2bce3ec [https://git.opendaylight.org/gerrit/#/q/2bce3ec]
NETVIRT-941 [https://jira.opendaylight.org/browse/NETVIRT-941]
: Bug 9246: Conflicting modification from ARP and Router-GW-Mac

	2e2208f [https://git.opendaylight.org/gerrit/#/q/2e2208f]
NETVIRT-843 [https://jira.opendaylight.org/browse/NETVIRT-843]
: Bug 8976 - Upstreaming fixes to master

	fca9cc2 [https://git.opendaylight.org/gerrit/#/q/fca9cc2]
NETVIRT-835 [https://jira.opendaylight.org/browse/NETVIRT-835]
: Bug 8964 - Neutron test neutron.tests.tempest.scenario.test_floatingip.FloatingIpSameNetwork.test_east_west fails

	e34567f [https://git.opendaylight.org/gerrit/#/q/e34567f]
: Test SNAT mostSignificantBit()

	98e9f1c [https://git.opendaylight.org/gerrit/#/q/98e9f1c]
NETVIRT-936 [https://jira.opendaylight.org/browse/NETVIRT-936]
: Bug 9237 - NPE: InternalToExternalPortMapKey

	70214f8 [https://git.opendaylight.org/gerrit/#/q/70214f8]
NETVIRT-931 [https://jira.opendaylight.org/browse/NETVIRT-931]
: Bug 9226: VPN Traffic fails after VM Migration

	0841ecc [https://git.opendaylight.org/gerrit/#/q/0841ecc]
NETVIRT-918 [https://jira.opendaylight.org/browse/NETVIRT-918]
: Bug 9180: Conflicting modification Exception from NAT Module

	e2d4059 [https://git.opendaylight.org/gerrit/#/q/e2d4059]
NETVIRT-437 [https://jira.opendaylight.org/browse/NETVIRT-437]
: BUG 7596 - Update to handle change in Neutron Network external attribute

	5c48a5b [https://git.opendaylight.org/gerrit/#/q/5c48a5b]
: Remove unneeded mdsal and yangtools artifacts

	cfbcd8a [https://git.opendaylight.org/gerrit/#/q/cfbcd8a]
: Remove unneeded pom version values

	877a333 [https://git.opendaylight.org/gerrit/#/q/877a333]
: Undo incorrect code changes made during merge conflict.

	f68d929 [https://git.opendaylight.org/gerrit/#/q/f68d929]
: Bump odlparent 2.0.4 to 2.0.5

	3be0df9 [https://git.opendaylight.org/gerrit/#/q/3be0df9]
NETVIRT-872 [https://jira.opendaylight.org/browse/NETVIRT-872]
: Bug 9066:Use Single Transaction for DNAT Flow Install and Remove

	ee1a7ba [https://git.opendaylight.org/gerrit/#/q/ee1a7ba]
: rm remaining it artifacts

	f8e7310 [https://git.opendaylight.org/gerrit/#/q/f8e7310]
NETVIRT-875 [https://jira.opendaylight.org/browse/NETVIRT-875]
: Bug 9077: Fix of issue that the existing NW communication failure when new NW is created

	78a3153 [https://git.opendaylight.org/gerrit/#/q/78a3153]
: Lower log level for non errors

	56bce23 [https://git.opendaylight.org/gerrit/#/q/56bce23]
NETVIRT-927 [https://jira.opendaylight.org/browse/NETVIRT-927]
: Bug 9209: PNF learned on external networks to skip local FIB Processing

	2235c8d [https://git.opendaylight.org/gerrit/#/q/2235c8d]
: Renamed acl-impl.rst to acl-reflection-on-existing-traffic.rst

	4092336 [https://git.opendaylight.org/gerrit/#/q/4092336]
: sync cleanup

	fc11257 [https://git.opendaylight.org/gerrit/#/q/fc11257]
NETVIRT-923 [https://jira.opendaylight.org/browse/NETVIRT-923]
: bug-9190: NullPointerException at getIsExternal

	31a9df0 [https://git.opendaylight.org/gerrit/#/q/31a9df0]
NETVIRT-853 [https://jira.opendaylight.org/browse/NETVIRT-853]
: Bug 9012 : BGP not connecting to config server

	3f3196e [https://git.opendaylight.org/gerrit/#/q/3f3196e]
: Lower log level for non errors

	d24fc86 [https://git.opendaylight.org/gerrit/#/q/d24fc86]
: Remove explicit default super-constructor calls

	035fe7c [https://git.opendaylight.org/gerrit/#/q/035fe7c]
: Bug9091 : Removing uncessary MD-SAL Read Operation in NAT

	1416915 [https://git.opendaylight.org/gerrit/#/q/1416915]
NETVIRT-829 [https://jira.opendaylight.org/browse/NETVIRT-829]
: Bug 8953 - IllegalArgumentException: vrfEntry is missing mandatory descendant origin

	a1c58b0 [https://git.opendaylight.org/gerrit/#/q/a1c58b0]
: lower log levels for non-errors

	9828258 [https://git.opendaylight.org/gerrit/#/q/9828258]
: ClearBgpCli reads from socket to send/receive from bgpd (some previous commit modifed to read from session parameters)

	3ce3792 [https://git.opendaylight.org/gerrit/#/q/3ce3792]
: bgpmanager: change API of bgpmanager to add VRF IPv4 or IPv6

	84a2457 [https://git.opendaylight.org/gerrit/#/q/84a2457]
: neutronvpn: create ipv4 or ipv6 context

	a0c5703 [https://git.opendaylight.org/gerrit/#/q/a0c5703]
: bgpmanager thrift upgrade to 0.9.3

	d931c60 [https://git.opendaylight.org/gerrit/#/q/d931c60]
NETVIRT-834 [https://jira.opendaylight.org/browse/NETVIRT-834]
: Bug 8963 - Option to configure EVPN address family

	7380ac2 [https://git.opendaylight.org/gerrit/#/q/7380ac2]
NETVIRT-926 [https://jira.opendaylight.org/browse/NETVIRT-926]
: Bug 9196 - Maxpath value should be between 1 to 64 in BGP multipath

	655de2e [https://git.opendaylight.org/gerrit/#/q/655de2e]
NETVIRT-821 [https://jira.opendaylight.org/browse/NETVIRT-821]
: BUG 8930 - delete Op VPN interface when deleting external network

	a928467 [https://git.opendaylight.org/gerrit/#/q/a928467]
: Lower log levels for non error’s

	397ea5d [https://git.opendaylight.org/gerrit/#/q/397ea5d]
: elanmanager: clean up Futures collections

	8a60da7 [https://git.opendaylight.org/gerrit/#/q/8a60da7]
NETVIRT-924 [https://jira.opendaylight.org/browse/NETVIRT-924]
: Bug 9193 - In conntrack SNAT , flows are programmed twice on a router g/w set.

	1ae59879 [https://git.opendaylight.org/gerrit/#/q/1ae59879]
: IfMgr clean-up

	902d44b [https://git.opendaylight.org/gerrit/#/q/902d44b]
: Restrict NeutronvpnUtils.read

	2ed1fcc [https://git.opendaylight.org/gerrit/#/q/2ed1fcc]
NETVIRT-923 [https://jira.opendaylight.org/browse/NETVIRT-923]
: bug-9190: NullPointerException at getIsExternal

	5399653 [https://git.opendaylight.org/gerrit/#/q/5399653]
NETVIRT-838 [https://jira.opendaylight.org/browse/NETVIRT-838]
: BUG 8969 - Fix Exeption when clearing external router GW

	3e15936 [https://git.opendaylight.org/gerrit/#/q/3e15936]
NETVIRT-888 [https://jira.opendaylight.org/browse/NETVIRT-888]
: Bug 9105: close removeElanInterface transaction

	6aebb4c [https://git.opendaylight.org/gerrit/#/q/6aebb4c]
: ElanUtils clean-up: ElanL2GatewayUtils

	0f0ac42 [https://git.opendaylight.org/gerrit/#/q/0f0ac42]
: ElanUtils clean-up: L2GatewayConnectionUtils

	e1dae98 [https://git.opendaylight.org/gerrit/#/q/e1dae98]
: ElanUtils clean-up: remove unnecessary references

	021112d [https://git.opendaylight.org/gerrit/#/q/021112d]
: ElanUtils clean-up: ElanL2Gateway{Multicast,}Utils

	da10b34 [https://git.opendaylight.org/gerrit/#/q/da10b34]
: ElanUtils clean-up: more ElanL2GatewayMulticastUtils

	681fae2 [https://git.opendaylight.org/gerrit/#/q/681fae2]
: ElanUtils clean-up: ElanL2GatewayMulticastUtils

	757d7ed [https://git.opendaylight.org/gerrit/#/q/757d7ed]
: ElanUtils clean-up: make read() static

	cca12c8 [https://git.opendaylight.org/gerrit/#/q/cca12c8]
: aclservice: clean up Futures collections

	d1d1f44 [https://git.opendaylight.org/gerrit/#/q/d1d1f44]
: dhcpservice: clean up Futures collections

	af7eebc [https://git.opendaylight.org/gerrit/#/q/af7eebc]
: coe: clean up Futures collections

	18d2f14 [https://git.opendaylight.org/gerrit/#/q/18d2f14]
: Remove un-used SynchronousEachOperationNewWriteTransaction

	c4b2066 [https://git.opendaylight.org/gerrit/#/q/c4b2066]
NETVIRT-829 [https://jira.opendaylight.org/browse/NETVIRT-829]
: Bug 8953: Fix exceptions raised due to PNF confused with FIP

	5e7933f [https://git.opendaylight.org/gerrit/#/q/5e7933f]
: Remove aggregator from artifactId

	266eacf [https://git.opendaylight.org/gerrit/#/q/266eacf]
: Dualstack support for L3VPN - single router Dual stack

	dab4df4 [https://git.opendaylight.org/gerrit/#/q/dab4df4]
NETVIRT-864 [https://jira.opendaylight.org/browse/NETVIRT-864]
: Bug 9030 - port and port security groups cannot be null

	1967565 [https://git.opendaylight.org/gerrit/#/q/1967565]
NETVIRT-862 [https://jira.opendaylight.org/browse/NETVIRT-862]
: Bug 9026: ACL issue in handling port-create

	8289943 [https://git.opendaylight.org/gerrit/#/q/8289943]
: Add LogCaptureRule to AclServiceTestBase & ElanServiceTest

	3091531 [https://git.opendaylight.org/gerrit/#/q/3091531]
NETVIRT-367 [https://jira.opendaylight.org/browse/NETVIRT-367]
: Bug 7380: service-binding exceptions from ACL

	9d695bb [https://git.opendaylight.org/gerrit/#/q/9d695bb]
: Remove learn mode from aclserivce.

	03381dd [https://git.opendaylight.org/gerrit/#/q/03381dd]
: Remove transparent mode from aclservice.

	61517e6 [https://git.opendaylight.org/gerrit/#/q/61517e6]
: Remove stateless mode from AclService.

	1ad4d08 [https://git.opendaylight.org/gerrit/#/q/1ad4d08]
: Fix wrongly keyed network map in CoeUtils

	9085dc4 [https://git.opendaylight.org/gerrit/#/q/9085dc4]
NETVIRT-829 [https://jira.opendaylight.org/browse/NETVIRT-829]
: Bug 8953 - IllegalArgumentException: vrfEntry is missing mandatory descendant origin.

	22c1ba3 [https://git.opendaylight.org/gerrit/#/q/22c1ba3]
: Remove deprecated CheckedFuture

	92cc55f [https://git.opendaylight.org/gerrit/#/q/92cc55f]
: Minor code cleanup in QoS

	e449ed0 [https://git.opendaylight.org/gerrit/#/q/e449ed0]
: Cleanup

	0ab0ada [https://git.opendaylight.org/gerrit/#/q/0ab0ada]
: L2 Support for Pods

	3ef5a81 [https://git.opendaylight.org/gerrit/#/q/3ef5a81]
NETVIRT-367 [https://jira.opendaylight.org/browse/NETVIRT-367]
: Bug 7380: service-binding exceptions from ACL

	34aec1f [https://git.opendaylight.org/gerrit/#/q/34aec1f]
NETVIRT-789 [https://jira.opendaylight.org/browse/NETVIRT-789]
: Bug 8860 : Populate elantag at time of elanInstance creation

	06f600b [https://git.opendaylight.org/gerrit/#/q/06f600b]
: Spec for Acl change reflection on existing communication

	09c4355 [https://git.opendaylight.org/gerrit/#/q/09c4355]
NETVIRT-835 [https://jira.opendaylight.org/browse/NETVIRT-835]
: Bug 8964 - Neutron test neutron.tests.tempest.scenario.test_floatingip.FloatingIpSameNetwork.test_east_west fails

	80865cb [https://git.opendaylight.org/gerrit/#/q/80865cb]
: Fix exception handling in neutronvpn shell

	95ca2b1 [https://git.opendaylight.org/gerrit/#/q/95ca2b1]
: Bug7380:CSIT FIP ping is getting failed for Ext Flat/VLAN Network

	d93f513 [https://git.opendaylight.org/gerrit/#/q/d93f513]
: Fix cloud-servicechain YANG

	5626383 [https://git.opendaylight.org/gerrit/#/q/5626383]
: Remove unused references to DataChangeListener

	8d62dc2 [https://git.opendaylight.org/gerrit/#/q/8d62dc2]
NETVIRT-899 [https://jira.opendaylight.org/browse/NETVIRT-899]
: Bug 9136 - Suspected ReadOnlyTransaction leak in QosNeutronUtils

	8d7f5a5 [https://git.opendaylight.org/gerrit/#/q/8d7f5a5]
: fix coe nitrogen versions

	38e0946 [https://git.opendaylight.org/gerrit/#/q/38e0946]
NETVIRT-884 [https://jira.opendaylight.org/browse/NETVIRT-884]
: Bug 9100 : tx leak in DhcpExternalTunnelManager

	e0ea63d [https://git.opendaylight.org/gerrit/#/q/e0ea63d]
: Bug9016:Using Single Transaction during NAPT SwitchOver

	51f7268 [https://git.opendaylight.org/gerrit/#/q/51f7268]
: Cluster support for netvirt QoS

	0f285e1 [https://git.opendaylight.org/gerrit/#/q/0f285e1]
NETVIRT-867 [https://jira.opendaylight.org/browse/NETVIRT-867]
: Bug 9035: - NPE at org.opendaylight.netvirt.elan.arp.responder.ArpResponderUtil.getMatchCriteria

	7a0ca73 [https://git.opendaylight.org/gerrit/#/q/7a0ca73]
: Bug:9013 ElanUtils: RPC Call to Get egress actions for interface, OptimisticLockFailedException

	a7f3b65 [https://git.opendaylight.org/gerrit/#/q/a7f3b65]
NETVIRT-879 [https://jira.opendaylight.org/browse/NETVIRT-879]
: Bug 9085 - CSIT Sporadic failures - test_security_groups_basic_ops.TestSecurityGroupsBasicOps.test_cross_tenant_traffic

	39c01c7 [https://git.opendaylight.org/gerrit/#/q/39c01c7]
: Replace size()==0 by isEmpty()

	ac9734f [https://git.opendaylight.org/gerrit/#/q/ac9734f]
: Replace <? extends Object> by <?>

	ce8d9d6 [https://git.opendaylight.org/gerrit/#/q/ce8d9d6]
NETVIRT-49 [https://jira.opendaylight.org/browse/NETVIRT-49]
: Bug 6349: try connecting to qthrift only when configured. - default values are set to invalid host/port. - verify whether port/host configured before connecting

	930d4bb [https://git.opendaylight.org/gerrit/#/q/930d4bb]
NETVIRT-803 [https://jira.opendaylight.org/browse/NETVIRT-803]
: Bug 8882 - With conntrack SNAT communication with PNF fails

	3a0184b [https://git.opendaylight.org/gerrit/#/q/3a0184b]
NETVIRT-885 [https://jira.opendaylight.org/browse/NETVIRT-885]
: Bug 9102 Fix ReadOnlyTransaction leak in NeutronvpnUtils

	484b600 [https://git.opendaylight.org/gerrit/#/q/484b600]
NETVIRT-829 [https://jira.opendaylight.org/browse/NETVIRT-829]
: Bug 8953 - IllegalArgumentException: vrfEntry is missing mandatory descendant origin

	1a80e3e [https://git.opendaylight.org/gerrit/#/q/1a80e3e]
NETVIRT-864 [https://jira.opendaylight.org/browse/NETVIRT-864]
: Bug 9030 - port and port security groups cannot be null

	fc82b17 [https://git.opendaylight.org/gerrit/#/q/fc82b17]
: Bug 9060: Package mdsal trace utility in netvirt Karaf distribution

	c80eb76 [https://git.opendaylight.org/gerrit/#/q/c80eb76]
: Bug 8801 - EVPN remote routes are not pushed to ovs flow table

	ea8b6aa [https://git.opendaylight.org/gerrit/#/q/ea8b6aa]
NETVIRT-829 [https://jira.opendaylight.org/browse/NETVIRT-829]
: Bug 8953 - IllegalArgumentException: vrfEntry is missing mandatory descendant origin

	b8cf946 [https://git.opendaylight.org/gerrit/#/q/b8cf946]
: bgpmanager BgpUtil code clean-up: Make private what can, and rm unused

	cec0cc4 [https://git.opendaylight.org/gerrit/#/q/cec0cc4]
: Bug 9034: bgpmanager BgpUtil rm unused pendingWrTransaction

	bce2347 [https://git.opendaylight.org/gerrit/#/q/bce2347]
NETVIRT-789 [https://jira.opendaylight.org/browse/NETVIRT-789]
: Bug 8860: NPE in getElanTag from SubnetmapChangeListener

	87a9334 [https://git.opendaylight.org/gerrit/#/q/87a9334]
NETVIRT-870 [https://jira.opendaylight.org/browse/NETVIRT-870]
: Bug 9051 - Failed to handle router GW flow in GW-MAC table. DPN id is missing for router-id

	be46ddf [https://git.opendaylight.org/gerrit/#/q/be46ddf]
: Initial Bundle setup for coe renderer

	f59e001 [https://git.opendaylight.org/gerrit/#/q/f59e001]
: Bump versions by x.y.(z+1)

neutron

	3f31de7 [https://git.opendaylight.org/gerrit/#/q/3f31de7]
: BUG-9218: make hostconfig plugins depend on spi

	1e2ee7a [https://git.opendaylight.org/gerrit/#/q/1e2ee7a]
: Bump odlparent 2.0.4 to 2.0.5

	f73d8e5 [https://git.opendaylight.org/gerrit/#/q/f73d8e5]
: Bump versions by x.y.(z+1)

nic

	b518195 [https://git.opendaylight.org/gerrit/#/q/b518195]
: Bump odlparent 2.0.4 to 2.0.5

	b02e175 [https://git.opendaylight.org/gerrit/#/q/b02e175]
: Bump versions by x.y.(z+1)

of-config

	664f48e [https://git.opendaylight.org/gerrit/#/q/664f48e]
: Bump odlparent 2.0.4 to 2.0.5

	48fcc2b [https://git.opendaylight.org/gerrit/#/q/48fcc2b]
: Bump versions by x.y.(z+1)

openflowplugin

	36fcca7 [https://git.opendaylight.org/gerrit/#/q/36fcca7]
OPNFLWPLUG-930 [https://jira.opendaylight.org/browse/OPNFLWPLUG-930]
: OPNFLWPLUG-930 Inconsistent flow IDs between flows in config and operational data stores

	ac07bed [https://git.opendaylight.org/gerrit/#/q/ac07bed]
: Remove deprecated

	450b1a1 [https://git.opendaylight.org/gerrit/#/q/450b1a1]
: Do not use fix custom version in ofp feature

	4d5c7af [https://git.opendaylight.org/gerrit/#/q/4d5c7af]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for impl/device package

	2ab36c6 [https://git.opendaylight.org/gerrit/#/q/2ab36c6]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for impl/connection package and OpenFlowPluginProviderImpl

	e6e6412 [https://git.opendaylight.org/gerrit/#/q/e6e6412]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix codestyle

	739d901 [https://git.opendaylight.org/gerrit/#/q/739d901]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix codestyle

	c02495e [https://git.opendaylight.org/gerrit/#/q/c02495e]
: Cli to display all the connected DPNs

	1168029 [https://git.opendaylight.org/gerrit/#/q/1168029]
: Fix log message

	7cdb645 [https://git.opendaylight.org/gerrit/#/q/7cdb645]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Remove unsupported statistics warning

	172e48f [https://git.opendaylight.org/gerrit/#/q/172e48f]
OPNFLWPLUG-950 [https://jira.opendaylight.org/browse/OPNFLWPLUG-950]
: BUG-9223:Remove hardcoded value of lldp interval

	c4b0b4a [https://git.opendaylight.org/gerrit/#/q/c4b0b4a]
: This patch implements ct-mark support in nicira extensions.

	da11ae9 [https://git.opendaylight.org/gerrit/#/q/da11ae9]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for impl/karaf, lifecycle, common, mastership

	067b512 [https://git.opendaylight.org/gerrit/#/q/067b512]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for util package

	afc011e [https://git.opendaylight.org/gerrit/#/q/afc011e]
: Fix issues related to checkstyle enforcement

	e93494e [https://git.opendaylight.org/gerrit/#/q/e93494e]
: Fix issues related to checkstyle enforcement

	c07d277 [https://git.opendaylight.org/gerrit/#/q/c07d277]
: Fix issues related to checkstyle enforcement

	eb2d654 [https://git.opendaylight.org/gerrit/#/q/eb2d654]
: BUG8607 Fix checkstyle issues

	e1b26b8 [https://git.opendaylight.org/gerrit/#/q/e1b26b8]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for rpc package

	563558a [https://git.opendaylight.org/gerrit/#/q/563558a]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for impl/protocol package

	c2d91ef [https://git.opendaylight.org/gerrit/#/q/c2d91ef]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for services package

	1829a63 [https://git.opendaylight.org/gerrit/#/q/1829a63]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for translator and registry package

	4a724f3 [https://git.opendaylight.org/gerrit/#/q/4a724f3]
: Bump odlparent 2.0.4 to 2.0.5

	8064a4f [https://git.opendaylight.org/gerrit/#/q/8064a4f]
OPNFLWPLUG-948 [https://jira.opendaylight.org/browse/OPNFLWPLUG-948]
: Sort bucket actions

	da13c64 [https://git.opendaylight.org/gerrit/#/q/da13c64]
: Bump versions by x.y.(z+1)

	b14867f [https://git.opendaylight.org/gerrit/#/q/b14867f]
: Fix issues related to checkstyle enforcement

	e6acc16 [https://git.opendaylight.org/gerrit/#/q/e6acc16]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix codestyle

	187291a [https://git.opendaylight.org/gerrit/#/q/187291a]
: Add missing bundle converters

	5e9b83f [https://git.opendaylight.org/gerrit/#/q/5e9b83f]
OPNFLWPLUG-938 [https://jira.opendaylight.org/browse/OPNFLWPLUG-938]
: Do not mark device as connecting when closing it

	b23364d [https://git.opendaylight.org/gerrit/#/q/b23364d]
OPNFLWPLUG-926 [https://jira.opendaylight.org/browse/OPNFLWPLUG-926]
: Redesign statistics context and manager

	ee9c2d0 [https://git.opendaylight.org/gerrit/#/q/ee9c2d0]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for impl/datastore package

	294cce8 [https://git.opendaylight.org/gerrit/#/q/294cce8]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for impl/protocol test package

	1b1888c [https://git.opendaylight.org/gerrit/#/q/1b1888c]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for impl/role package

ovsdb

	512179a [https://git.opendaylight.org/gerrit/#/q/512179a]
OVSDB-396 [https://jira.opendaylight.org/browse/OVSDB-396]
: bug 7599 avoid unnecessary mdsal reads

	cf70b38 [https://git.opendaylight.org/gerrit/#/q/cf70b38]
: bug 8712 vlan bindings update fix

	451e720 [https://git.opendaylight.org/gerrit/#/q/451e720]
OVSDB-421 [https://jira.opendaylight.org/browse/OVSDB-421]
: Bug 8874 - Tunnel_ips of hardware_vtep is cleared when Open vSwitch process restarted in Open vSwitch HWVTEP Emulator

	035e3d9 [https://git.opendaylight.org/gerrit/#/q/035e3d9]
OVSDB-406 [https://jira.opendaylight.org/browse/OVSDB-406]
: bug 8029 added ref counts for physical locators.

	122a37c [https://git.opendaylight.org/gerrit/#/q/122a37c]
OVSDB-429 [https://jira.opendaylight.org/browse/OVSDB-429]
: BUG 9166 - Fix Netvirt L2GW Illegal state exception

	c91ad95 [https://git.opendaylight.org/gerrit/#/q/c91ad95]
: Refactor compareDbVersionToMinVersion

	acd89a1 [https://git.opendaylight.org/gerrit/#/q/acd89a1]
OVSDB-422 [https://jira.opendaylight.org/browse/OVSDB-422]
: Bug 8991 - Add dpdkvhostuserclient interface type to model

	5a7dd9e [https://git.opendaylight.org/gerrit/#/q/5a7dd9e]
: Convert DataChangeListeners to DataTreeChangeListeners

	7fe1aed [https://git.opendaylight.org/gerrit/#/q/7fe1aed]
: Remove explicit default super-constructor calls

	5f6dbf4 [https://git.opendaylight.org/gerrit/#/q/5f6dbf4]
: Bump odlparent 2.0.4 to 2.0.5

	9558f56 [https://git.opendaylight.org/gerrit/#/q/9558f56]
: Bump versions by x.y.(z+1)

packetcable

	bb6a3c5 [https://git.opendaylight.org/gerrit/#/q/bb6a3c5]
: Bump odlparent 2.0.4 to 2.0.5

	e673c9e [https://git.opendaylight.org/gerrit/#/q/e673c9e]
: Bump versions by x.y.(z+1)

sfc

	aafbc35 [https://git.opendaylight.org/gerrit/#/q/aafbc35]
SFC-204 [https://jira.opendaylight.org/browse/SFC-204]
: BUG 9305: Unbind SFC service when removing SFs

	c47795d [https://git.opendaylight.org/gerrit/#/q/c47795d]
: Add SFC shell’s command to show Service Nodes

	6fa05ff [https://git.opendaylight.org/gerrit/#/q/6fa05ff]
: Add an API to handle ServiceNode entities

	aa14e3f [https://git.opendaylight.org/gerrit/#/q/aa14e3f]
: Add SFC shell’s command to show Service Function Types

	f13c04a [https://git.opendaylight.org/gerrit/#/q/f13c04a]
: BUG-9218: Fix odl-sfc-shell dependencies

	b065fa6 [https://git.opendaylight.org/gerrit/#/q/b065fa6]
: Make utility classes final and other minor changes

	39c400e [https://git.opendaylight.org/gerrit/#/q/39c400e]
: Add SFC shell’s command to show Service Function Chains

	8b227b4 [https://git.opendaylight.org/gerrit/#/q/8b227b4]
: Add SFC shell’s command to show Service Function Paths

	83d5063 [https://git.opendaylight.org/gerrit/#/q/83d5063]
: Bump odlparent 2.0.4 to 2.0.5

	42ca744 [https://git.opendaylight.org/gerrit/#/q/42ca744]
: Bump versions by x.y.(z+1)

snmp

	c57a6b0 [https://git.opendaylight.org/gerrit/#/q/c57a6b0]
: Bump odlparent 2.0.4 to 2.0.5

	0014df2 [https://git.opendaylight.org/gerrit/#/q/0014df2]
: Bump versions by x.y.(z+1)

snmp4sdn

	589029c [https://git.opendaylight.org/gerrit/#/q/589029c]
: Bump odlparent 2.0.4 to 2.0.5

	8ced555 [https://git.opendaylight.org/gerrit/#/q/8ced555]
: Bump versions by x.y.(z+1)

sxp

	c02a4b2 [https://git.opendaylight.org/gerrit/#/q/c02a4b2]
SXP-130 [https://jira.opendaylight.org/browse/SXP-130]
: SXP-130 Delete entire node from Operational DS

	252efec [https://git.opendaylight.org/gerrit/#/q/252efec]
SXP-126 [https://jira.opendaylight.org/browse/SXP-126]
: BUG-9255 Fix race conditions in md5update

	6ccebfe [https://git.opendaylight.org/gerrit/#/q/6ccebfe]
: Fix feature dependencies of sxp-api

	f6200f5 [https://git.opendaylight.org/gerrit/#/q/f6200f5]
: Bump odlparent 2.0.4 to 2.0.5

	59636d4 [https://git.opendaylight.org/gerrit/#/q/59636d4]
: Bump versions by x.y.(z+1)

	f8c9fd8 [https://git.opendaylight.org/gerrit/#/q/f8c9fd8]
SXP-125 [https://jira.opendaylight.org/browse/SXP-125]
: BUG-9126 Bump jrobot remote server

	9ec4264 [https://git.opendaylight.org/gerrit/#/q/9ec4264]
SXP-124 [https://jira.opendaylight.org/browse/SXP-124]
: BUG-9062 - generate positive retry times

unimgr

	fa88027 [https://git.opendaylight.org/gerrit/#/q/fa88027]
: Bump odlparent 2.0.4 to 2.0.5

	ef2b85b [https://git.opendaylight.org/gerrit/#/q/ef2b85b]
: Bump versions by x.y.(z+1)

usc

	d1c9e44 [https://git.opendaylight.org/gerrit/#/q/d1c9e44]
: Bump odlparent 2.0.4 to 2.0.5

	aa220fd [https://git.opendaylight.org/gerrit/#/q/aa220fd]
: Bump versions by x.y.(z+1)

vtn

	59c5fc2 [https://git.opendaylight.org/gerrit/#/q/59c5fc2]
VTN-166 [https://jira.opendaylight.org/browse/VTN-166]
: Bug 9224 - Fix for mapping issue of protocol and dscp values

	4d5551e [https://git.opendaylight.org/gerrit/#/q/4d5551e]
VTN-165 [https://jira.opendaylight.org/browse/VTN-165]
: Bug 9208: Fixed UDP L4 match details creation failures

	b570e1e [https://git.opendaylight.org/gerrit/#/q/b570e1e]
VTN-167 [https://jira.opendaylight.org/browse/VTN-167]
: Bug 9225: Upgrade Apache Tomcat for VTN coordinator to 7.0.82.

	46730f7 [https://git.opendaylight.org/gerrit/#/q/46730f7]
VTN-167 [https://jira.opendaylight.org/browse/VTN-167]
: Bug 9225: Upgrade Apache Tomcat for VTN coordinator to 7.0.81.

	a6abc3f [https://git.opendaylight.org/gerrit/#/q/a6abc3f]
: Bump odlparent 2.0.4 to 2.0.5

	f23614f [https://git.opendaylight.org/gerrit/#/q/f23614f]
: Bump versions by x.y.(z+1)

	52dd810 [https://git.opendaylight.org/gerrit/#/q/52dd810]
VTN-164 [https://jira.opendaylight.org/browse/VTN-164]
: Bug 9174: Fix for VTN Coordinator Flowlistentry Creation failure

Nitrogen-SR2 Release Notes

This page details changes and bug fixes between the Nitrogen Stability Release 1 (Nitrogen-SR1)
and the Nitrogen Stability Release 2 (Nitrogen-SR2) of OpenDaylight.

Projects with No Noteworthy Changes

	alto

	bier

	cardinal

	coe

	daexim

	dlux

	dluxapps

	faas

	groupbasedpolicy

	honeycomb/vbd

	infrautils

	l2switch

	nemo

	nic

	ocpplugin

	of-config

	packetcable

	sfc

	snmp

	snmp4sdn

	sxp

	topoprocessing

	ttp

	unimgr

	usc

	vtn

aaa

	2165023 [https://git.opendaylight.org/gerrit/#/q/2165023]
AAA-155 [https://jira.opendaylight.org/browse/AAA-155]
: AAA-155: don’t force non-null input on currentUser cache lookup

	f47e9db [https://git.opendaylight.org/gerrit/#/q/f47e9db]
: auth endpoints should be restricted to admin role by default

bgpcep

	a53fd0a [https://git.opendaylight.org/gerrit/#/q/a53fd0a]
PCEP-739 [https://jira.opendaylight.org/browse/PCEP-739]
: BGPCEP-739: Fix “raced with transaction PingPongTransaction”

	6f8bed9 [https://git.opendaylight.org/gerrit/#/q/6f8bed9]
: Duplicate pax injection timeout

	c46104d [https://git.opendaylight.org/gerrit/#/q/c46104d]
PCEP-748 [https://jira.opendaylight.org/browse/PCEP-748]
: BGPCEP-748: Fix AFI/SAFI

	70b221f [https://git.opendaylight.org/gerrit/#/q/70b221f]
PCEP-724 [https://jira.opendaylight.org/browse/PCEP-724]
: BGPCEP-724 Make BGP Session recoverable

	35c3c8a [https://git.opendaylight.org/gerrit/#/q/35c3c8a]
: Document path-id reserved value

	3a9e9ce [https://git.opendaylight.org/gerrit/#/q/3a9e9ce]
PCEP-672 [https://jira.opendaylight.org/browse/PCEP-672]
: BGPCEP-672: Fix key storage un adj-rib-out

	b4ce9b5 [https://git.opendaylight.org/gerrit/#/q/b4ce9b5]
PCEP-742 [https://jira.opendaylight.org/browse/PCEP-742]
: BGPCEP-742 Fix BGP NPE filter null BGP State

	41ac261 [https://git.opendaylight.org/gerrit/#/q/41ac261]
PCEP-737 [https://jira.opendaylight.org/browse/PCEP-737]
: BGPCEP-737: Implement BMP client reconnection

	78a58c1 [https://git.opendaylight.org/gerrit/#/q/78a58c1]
PCEP-736 [https://jira.opendaylight.org/browse/PCEP-736]
: BGPCEP-736: BMP Testtool retry connection

	c621de8 [https://git.opendaylight.org/gerrit/#/q/c621de8]
: Deprecate interfaces

	105b6c6 [https://git.opendaylight.org/gerrit/#/q/105b6c6]
: BGP Migrate deprecated netty methods

	e4698c5 [https://git.opendaylight.org/gerrit/#/q/e4698c5]
: Move Pcep topology to Pcep Topology aggregator

	61316df [https://git.opendaylight.org/gerrit/#/q/61316df]
: Migrate deprecated netty methods

	ee3bf58 [https://git.opendaylight.org/gerrit/#/q/ee3bf58]
PCEP-728 [https://jira.opendaylight.org/browse/PCEP-728]
: BGPCEP-728: BMP Mock clustering

	ded8ff8 [https://git.opendaylight.org/gerrit/#/q/ded8ff8]
: BUG-726: Move pcep topology tunnel to aggregator

	288177f [https://git.opendaylight.org/gerrit/#/q/288177f]
: Improve CheckUtil testss

	0614495 [https://git.opendaylight.org/gerrit/#/q/0614495]
PCEP-711 [https://jira.opendaylight.org/browse/PCEP-711]
: BGPCEP-711: BMP test tool clustering support

	c9a6e7a [https://git.opendaylight.org/gerrit/#/q/c9a6e7a]
: move bmp to bmp aggregator

	b1bae1b [https://git.opendaylight.org/gerrit/#/q/b1bae1b]
: Fix odlparent reference

	50105ec [https://git.opendaylight.org/gerrit/#/q/50105ec]
PCEP-718 [https://jira.opendaylight.org/browse/PCEP-718]
: BGPCEP-718: Hide InterruptedException

	f7cc785 [https://git.opendaylight.org/gerrit/#/q/f7cc785]
PCEP-706 [https://jira.opendaylight.org/browse/PCEP-706]
: BGPCEP-706: Fix BGP Flowspec NumbericOphrand

controller

	68661ad [https://git.opendaylight.org/gerrit/#/q/68661ad]
: Guards iteration against concurrent modification

	f916c1f [https://git.opendaylight.org/gerrit/#/q/f916c1f]
CONTROLLER-1802 [https://jira.opendaylight.org/browse/CONTROLLER-1802]
: ConcurrentDOMDataBroker LOG debug instead of error

	afc8a38 [https://git.opendaylight.org/gerrit/#/q/afc8a38]
: Remove stax-utils from features

	66b1f42 [https://git.opendaylight.org/gerrit/#/q/66b1f42]
CONTROLLER-1812 [https://jira.opendaylight.org/browse/CONTROLLER-1812]
: Fix infinite loop on cancel transaction

	db09174 [https://git.opendaylight.org/gerrit/#/q/db09174]
MDSAL-298 [https://jira.opendaylight.org/browse/MDSAL-298]
: MDSAL-298: properly handle unkeyed lists

	ed1a96a [https://git.opendaylight.org/gerrit/#/q/ed1a96a]
: Fixup test referring to description statement

	3f36e87 [https://git.opendaylight.org/gerrit/#/q/3f36e87]
: Fix ModificationType.APPEARED mapping

	c9aab02 [https://git.opendaylight.org/gerrit/#/q/c9aab02]
: Fix intermittent RemoteRpcRegistryMXBeanImplTest failures

	fafb6cc [https://git.opendaylight.org/gerrit/#/q/fafb6cc]
: register RemoteRpcRegistryMXBean

	6df49b4 [https://git.opendaylight.org/gerrit/#/q/6df49b4]
: Do not inline javax.annotation

	63415b1 [https://git.opendaylight.org/gerrit/#/q/63415b1]
: Prevent non-voting member from becoming entity owner

	1d0c61f [https://git.opendaylight.org/gerrit/#/q/1d0c61f]
INFRAUTILS-19 [https://jira.opendaylight.org/browse/INFRAUTILS-19]
: Fix io.dropwizard.metrics version

	629b5b3 [https://git.opendaylight.org/gerrit/#/q/629b5b3]
CONTROLLER-1760 [https://jira.opendaylight.org/browse/CONTROLLER-1760]
: Bug 9060: Fix odl-mdsal-trace’s missing mdsaltrace_config.xml

	7a34fa3 [https://git.opendaylight.org/gerrit/#/q/7a34fa3]
CONTROLLER-1760 [https://jira.opendaylight.org/browse/CONTROLLER-1760]
: Bug 9060: Minor mdsaltrace_config.xml /this/will/never/exist

	ca5b7a1 [https://git.opendaylight.org/gerrit/#/q/ca5b7a1]
: Toaster is shardless

	10762da [https://git.opendaylight.org/gerrit/#/q/10762da]
: Correct logging in FrontendClientMetadataBuilder

	d82da41 [https://git.opendaylight.org/gerrit/#/q/d82da41]
: ForwardingDataBroker

	ee36b12 [https://git.opendaylight.org/gerrit/#/q/ee36b12]
: ForwardingRead[Only]/WriteTransaction implementations

eman

	586b709 [https://git.opendaylight.org/gerrit/#/q/586b709]
: remove unused it project

genius

	5630daa [https://git.opendaylight.org/gerrit/#/q/5630daa]
NETVIRT-1009 [https://jira.opendaylight.org/browse/NETVIRT-1009]
: NETVIRT-1009 - Enable genius auto-tz

	3c13863 [https://git.opendaylight.org/gerrit/#/q/3c13863]
: Changed RPC to retrieve Vxlan DC GWY Ext. Tunnels

	3af50cc [https://git.opendaylight.org/gerrit/#/q/3af50cc]
: Handle br-int dpid update for genius auto tunnels

	11e0346 [https://git.opendaylight.org/gerrit/#/q/11e0346]
ENIUS-104 [https://jira.opendaylight.org/browse/ENIUS-104]
: GENIUS-104 Genius auto-tz: use local_ip for TEP IP

	d2a101f [https://git.opendaylight.org/gerrit/#/q/d2a101f]
NETVIRT-659 [https://jira.opendaylight.org/browse/NETVIRT-659]
: Bug 8400 - ACL changes doesn’t affect the existing connections

	46f08eb [https://git.opendaylight.org/gerrit/#/q/46f08eb]
ENIUS-102 [https://jira.opendaylight.org/browse/ENIUS-102]
: GENIUS-102: interface manager: use transaction manager

	e3a50c1 [https://git.opendaylight.org/gerrit/#/q/e3a50c1]
: Bug 8998 - ping to TOR vm fails post vm migration

	3c08713 [https://git.opendaylight.org/gerrit/#/q/3c08713]
NETVIRT-985 [https://jira.opendaylight.org/browse/NETVIRT-985]
: Fix possible transaction leak in ItmInternalTunnelDeleteWorker

	f2c22a4 [https://git.opendaylight.org/gerrit/#/q/f2c22a4]
ENIUS-86 [https://jira.opendaylight.org/browse/ENIUS-86]
: GENIUS-86 : LockManager fixes

	916c28a [https://git.opendaylight.org/gerrit/#/q/916c28a]
NETVIRT-985 [https://jira.opendaylight.org/browse/NETVIRT-985]
: Fix bad transaction leak in ItmInternalTunnelAddWorker

	0b7d468 [https://git.opendaylight.org/gerrit/#/q/0b7d468]
NETVIRT-985 [https://jira.opendaylight.org/browse/NETVIRT-985]
: Add ReadWriteTransaction support

	5fdd8ec [https://git.opendaylight.org/gerrit/#/q/5fdd8ec]
NETVIRT-985 [https://jira.opendaylight.org/browse/NETVIRT-985]
: ManagedTransactionRunner utility to help close transactions

	1427ea2 [https://git.opendaylight.org/gerrit/#/q/1427ea2]
: Log cleanup in InterfaceStateListener

	ae12625 [https://git.opendaylight.org/gerrit/#/q/ae12625]
: Remove unnecessary log in FlowBasedServicesInterfaceStateListener

	5b86cf0 [https://git.opendaylight.org/gerrit/#/q/5b86cf0]
: Remove usage of runOnlyInLeaderNode for InterfaceConfigListener

	107e172 [https://git.opendaylight.org/gerrit/#/q/107e172]
: Ignore flaky testMultithreadedIdAllocationFromReleasedIds() test

	1e6f114 [https://git.opendaylight.org/gerrit/#/q/1e6f114]
: Fix too long service binding INFO logs

	6468ee8 [https://git.opendaylight.org/gerrit/#/q/6468ee8]
: AsyncDataTreeChangeListenerBase Thread with name of subclass

integration/distribution

	167465f [https://git.opendaylight.org/gerrit/#/q/167465f]
: Move all netconf features to not compatible

lispflowmapping

	4d9a7cf [https://git.opendaylight.org/gerrit/#/q/4d9a7cf]
: Increase some of the integration test timers

	9bcff5c [https://git.opendaylight.org/gerrit/#/q/9bcff5c]
LISPMAP-168 [https://jira.opendaylight.org/browse/LISPMAP-168]
: Bug 9171: Fix lookup when first result is expired

	c2c3d42 [https://git.opendaylight.org/gerrit/#/q/c2c3d42]
LISPMAP-165 [https://jira.opendaylight.org/browse/LISPMAP-165]
: Bug 9116: Fix negative mapping handling

	52476fe [https://git.opendaylight.org/gerrit/#/q/52476fe]
LISPMAP-165 [https://jira.opendaylight.org/browse/LISPMAP-165]
: Bug 9116: Move notification logic to MappingSystem

	3daa4ca [https://git.opendaylight.org/gerrit/#/q/3daa4ca]
LISPMAP-165 [https://jira.opendaylight.org/browse/LISPMAP-165]
: Bug 9116: SMR children of a prefix too

	bff533f [https://git.opendaylight.org/gerrit/#/q/bff533f]
LISPMAP-165 [https://jira.opendaylight.org/browse/LISPMAP-165]
: Bug 9116: Add getChildPrefixes() method to caches

	54d5e14 [https://git.opendaylight.org/gerrit/#/q/54d5e14]
LISPMAP-173 [https://jira.opendaylight.org/browse/LISPMAP-173]
: Fix NPE in MappingSystem#removeMapping()

	b2f8759 [https://git.opendaylight.org/gerrit/#/q/b2f8759]
LISPMAP-171 [https://jira.opendaylight.org/browse/LISPMAP-171]
: Bug 9311: Remove expired mappings before printing

mdsal

	13c0d0e [https://git.opendaylight.org/gerrit/#/q/13c0d0e]
CONTROLLER-1812 [https://jira.opendaylight.org/browse/CONTROLLER-1812]
: Fix infinite loop on cancel transaction

	26d2a37 [https://git.opendaylight.org/gerrit/#/q/26d2a37]
: Fix type ordering assumptions

	7e56e93 [https://git.opendaylight.org/gerrit/#/q/7e56e93]
: Cache group replacement pattern

	072b644 [https://git.opendaylight.org/gerrit/#/q/072b644]
: Fix YangTemplate key statement generation

	dd3a876 [https://git.opendaylight.org/gerrit/#/q/dd3a876]
MDSAL-269 [https://jira.opendaylight.org/browse/MDSAL-269]
: MDSAL-269: fix missing identityref union members

	2c0f88f [https://git.opendaylight.org/gerrit/#/q/2c0f88f]
YANGTOOLS-424 [https://jira.opendaylight.org/browse/YANGTOOLS-424]
: Lookup leaf key methods in parents

	076dcd0 [https://git.opendaylight.org/gerrit/#/q/076dcd0]
MDSAL-298 [https://jira.opendaylight.org/browse/MDSAL-298]
: MDSAL-298: properly handle unkeyed lists

	dcd3e44 [https://git.opendaylight.org/gerrit/#/q/dcd3e44]
: Add DataTreeIdentifier.toString()

	bf6e231 [https://git.opendaylight.org/gerrit/#/q/bf6e231]
MDSAL-302 [https://jira.opendaylight.org/browse/MDSAL-302]
: MDSAL-302: make sure uses+augment works in RPCs

	3519f03 [https://git.opendaylight.org/gerrit/#/q/3519f03]
: Share pre-generated non-verbose string

netconf

	554a1d7 [https://git.opendaylight.org/gerrit/#/q/554a1d7]
NETCONF-494 [https://jira.opendaylight.org/browse/NETCONF-494]
: NETCONF-494: use RFC7951 JSON codecs

	ef38783 [https://git.opendaylight.org/gerrit/#/q/ef38783]
: Close nested JSON writers

	07564c1 [https://git.opendaylight.org/gerrit/#/q/07564c1]
NETCONF-506 [https://jira.opendaylight.org/browse/NETCONF-506]
: NETCONF-506: fix YII deserialization in FilterContentValidator

	90de7dd [https://git.opendaylight.org/gerrit/#/q/90de7dd]
NETCONF-505 [https://jira.opendaylight.org/browse/NETCONF-505]
: NETCONF-505: fix decoding of URLs with external leafref

	7244590 [https://git.opendaylight.org/gerrit/#/q/7244590]
: Set schemas to global context

	6fd37e4 [https://git.opendaylight.org/gerrit/#/q/6fd37e4]
: Add missing ‘Path’ annotation in jax-rs implementations for REST services

	1423916 [https://git.opendaylight.org/gerrit/#/q/1423916]
: Manual cherrypicks from oxygen

	92de42e [https://git.opendaylight.org/gerrit/#/q/92de42e]
: Fix KeyPairProvider initialization in NetconfSshServerProvider

	7edd9c6 [https://git.opendaylight.org/gerrit/#/q/7edd9c6]
: Add missing flush() on buffered writer.

netvirt

	c677a25 [https://git.opendaylight.org/gerrit/#/q/c677a25]
NETVIRT-1009 [https://jira.opendaylight.org/browse/NETVIRT-1009]
: NETVIRT-1009 - Disable netvirt dynamic tunnels

	1917820 [https://git.opendaylight.org/gerrit/#/q/1917820]
NETVIRT-970 [https://jira.opendaylight.org/browse/NETVIRT-970]
: NETVIRT-970: IPv6 Cluster Support

	193ee4c [https://git.opendaylight.org/gerrit/#/q/193ee4c]
NETVIRT-984 [https://jira.opendaylight.org/browse/NETVIRT-984]
: NETVIRT-984: Fix of issue that l2gw connection creation failed in L2GW HA environment.

	cf2211f [https://git.opendaylight.org/gerrit/#/q/cf2211f]
NETVIRT-1044 [https://jira.opendaylight.org/browse/NETVIRT-1044]
: NETVIRT-1044 fix for Exception in karaf when delete neutron port

	9091939 [https://git.opendaylight.org/gerrit/#/q/9091939]
: Include AClStatefulTest

	63ea9e7 [https://git.opendaylight.org/gerrit/#/q/63ea9e7]
: Minor: fix two log statements

	551ea3e [https://git.opendaylight.org/gerrit/#/q/551ea3e]
NETVIRT-1030 [https://jira.opendaylight.org/browse/NETVIRT-1030]
: NETVIRT-1030 Unbinding elan service during interface state change

	64c70bc [https://git.opendaylight.org/gerrit/#/q/64c70bc]
NETVIRT-1063 [https://jira.opendaylight.org/browse/NETVIRT-1063]
: NETVIRT-1063 SNAT flows fails to install sporadically(conntrack SNAT)

	89573a3 [https://git.opendaylight.org/gerrit/#/q/89573a3]
NETVIRT-1047 [https://jira.opendaylight.org/browse/NETVIRT-1047]
: NETVIRT-1047 : On vm subnet delete from a router SG flows are not updated with elan id

	216a424 [https://git.opendaylight.org/gerrit/#/q/216a424]
NETVIRT-1065 [https://jira.opendaylight.org/browse/NETVIRT-1065]
: NETVIRT-1065 Handle new bridges

	549f5cc [https://git.opendaylight.org/gerrit/#/q/549f5cc]
NETVIRT-1038 [https://jira.opendaylight.org/browse/NETVIRT-1038]
: NETVIRT-1038 Fix bind logic in policymgr

	411b86c [https://git.opendaylight.org/gerrit/#/q/411b86c]
: Log level and message updated

	8550df5 [https://git.opendaylight.org/gerrit/#/q/8550df5]
NETVIRT-659 [https://jira.opendaylight.org/browse/NETVIRT-659]
: Bug 8400 - ACL changes doesn’t affect the existing connections

	f53dbd9 [https://git.opendaylight.org/gerrit/#/q/f53dbd9]
: Exclude AClStatefulTest

	32d25c7 [https://git.opendaylight.org/gerrit/#/q/32d25c7]
: Disable building policyservice

	a2adc1e [https://git.opendaylight.org/gerrit/#/q/a2adc1e]
NETVIRT-916 [https://jira.opendaylight.org/browse/NETVIRT-916]
: Fix ConflictingModificationAppliedException with 3 retries

	b2dd158 [https://git.opendaylight.org/gerrit/#/q/b2dd158]
NETVIRT-968 [https://jira.opendaylight.org/browse/NETVIRT-968]
: NETVIRT-968 : Conntrack SNAT fails in a cluster setup.

	db733f4 [https://git.opendaylight.org/gerrit/#/q/db733f4]
: Fix broken build due to ipv6service/shell POM version mistake in back-port

	878ffe7 [https://git.opendaylight.org/gerrit/#/q/878ffe7]
NETVIRT-1023 [https://jira.opendaylight.org/browse/NETVIRT-1023]
: NETVIRT-1023 - OptimisticLockFailedException: infrautils.jobcoordinator-impl

	26f34ab [https://git.opendaylight.org/gerrit/#/q/26f34ab]
: Shell Commands to Display Ipv6Service Cache

	b7eca08 [https://git.opendaylight.org/gerrit/#/q/b7eca08]
: FIXUP ipVersionChoice in case of mutiple add of ipversion

	4882af4 [https://git.opendaylight.org/gerrit/#/q/4882af4]
NETVIRT-981 [https://jira.opendaylight.org/browse/NETVIRT-981]
: NETVIRT-981 CSIT Sporadic failures - snat conntrack job failing many tempest scenario tests Changes are made to avoid stale entries when an external network is deleted. https://jira.opendaylight.org/browse/NETVIRT-981

	ee289b5 [https://git.opendaylight.org/gerrit/#/q/ee289b5]
: Net-odl full-sync. Set router ext gw MAC

	704ccc9 [https://git.opendaylight.org/gerrit/#/q/704ccc9]
: Bug9298 : ModifiedNodeDoesNotExistException for FIP

	30010ad [https://git.opendaylight.org/gerrit/#/q/30010ad]
NETVIRT-959 [https://jira.opendaylight.org/browse/NETVIRT-959]
: Bug 9297 : Adjacency doesn’t exist exception fo FIP

	470ddef [https://git.opendaylight.org/gerrit/#/q/470ddef]
NETVIRT-961 [https://jira.opendaylight.org/browse/NETVIRT-961]
: Bug 9299 - In conntrack SNAT Vpn to dpn maps fails to update when a subnet is added/removed

	c93bf15 [https://git.opendaylight.org/gerrit/#/q/c93bf15]
: 21->nat-group flow is not present on OVS after “upgrade”

	9608f13 [https://git.opendaylight.org/gerrit/#/q/9608f13]
NETVIRT-999 [https://jira.opendaylight.org/browse/NETVIRT-999]
: NETVIRT-999 - Interface leak when subnet deleted

	0617051 [https://git.opendaylight.org/gerrit/#/q/0617051]
NETVIRT-985 [https://jira.opendaylight.org/browse/NETVIRT-985]
: Fix bad transaction leak in InterfaceStateChangeListener

	5111565 [https://git.opendaylight.org/gerrit/#/q/5111565]
NETVIRT-1000 [https://jira.opendaylight.org/browse/NETVIRT-1000]
: NETVIRT-1000: protect VpnInterfaceManager::remove

	3fd246f [https://git.opendaylight.org/gerrit/#/q/3fd246f]
NETVIRT-1000 [https://jira.opendaylight.org/browse/NETVIRT-1000]
: NETVIRT-1000: protect VrfEntryListener (partially)

	80b1046 [https://git.opendaylight.org/gerrit/#/q/80b1046]
NETVIRT-1000 [https://jira.opendaylight.org/browse/NETVIRT-1000]
: NETVIRT-1000: protect TunnelEndPointChangeListener

	69860fe [https://git.opendaylight.org/gerrit/#/q/69860fe]
NETVIRT-1000 [https://jira.opendaylight.org/browse/NETVIRT-1000]
: NETVIRT-1000: protect manageRemoteRouteOnDPN

	2ae6695 [https://git.opendaylight.org/gerrit/#/q/2ae6695]
NETVIRT-1000 [https://jira.opendaylight.org/browse/NETVIRT-1000]
: NETVIRT-1000: protect handleNeutronPortUpdated

	092e0c2 [https://git.opendaylight.org/gerrit/#/q/092e0c2]
NETVIRT-1000 [https://jira.opendaylight.org/browse/NETVIRT-1000]
: NETVIRT-1000: protect handleNeutronPortCreated

	acfee9f [https://git.opendaylight.org/gerrit/#/q/acfee9f]
: Unbind and bind DHCP service as part of state.

	b872ab0 [https://git.opendaylight.org/gerrit/#/q/b872ab0]
: Updated two display commands provided by 6wind

	d0d88d9 [https://git.opendaylight.org/gerrit/#/q/d0d88d9]
NETVIRT-989 [https://jira.opendaylight.org/browse/NETVIRT-989]
: BugId: NETVIRT-989 TEP not deleted when subnet is deleted

	f8d983f [https://git.opendaylight.org/gerrit/#/q/f8d983f]
: Updated to call bind/unbind from ACL interface state listener to avoid stale flows during VM migration

	fe23e50 [https://git.opendaylight.org/gerrit/#/q/fe23e50]
: Add .fbExcludeFilterFile to .gitignore

	51ee457 [https://git.opendaylight.org/gerrit/#/q/51ee457]
NETVIRT-937 [https://jira.opendaylight.org/browse/NETVIRT-937]
: NETVIRT-937: Fix NPE in ElanInstanceManager

	53cf346 [https://git.opendaylight.org/gerrit/#/q/53cf346]
NETVIRT-886 [https://jira.opendaylight.org/browse/NETVIRT-886]
: Fix bad transaction leak in StatisticsImpl

	2c7bc8d [https://git.opendaylight.org/gerrit/#/q/2c7bc8d]
NETVIRT-886 [https://jira.opendaylight.org/browse/NETVIRT-886]
: Fix bad transaction leak in NeutronvpnManager

	03355ca [https://git.opendaylight.org/gerrit/#/q/03355ca]
NETVIRT-985 [https://jira.opendaylight.org/browse/NETVIRT-985]
: Fix bad transaction leak in VpnInterfaceManager

neutron

	367cc0d [https://git.opendaylight.org/gerrit/#/q/367cc0d]
: Remove MOXyJsonProvider from resources

openflowplugin

	ea0a150 [https://git.opendaylight.org/gerrit/#/q/ea0a150]
OPNFLWPLUG-974 [https://jira.opendaylight.org/browse/OPNFLWPLUG-974]
: OPNFLWPLUG-974: Message deserialization failed

	be252a0 [https://git.opendaylight.org/gerrit/#/q/be252a0]
OPNFLWPLUG-929 [https://jira.opendaylight.org/browse/OPNFLWPLUG-929]
: OPNFLWPLUG-929 : Remove deprecated guava library

	676d4be [https://git.opendaylight.org/gerrit/#/q/676d4be]
: Fix checkstyle violations in openflow-protocol-impl - part 11

	ad1b857 [https://git.opendaylight.org/gerrit/#/q/ad1b857]
: Fix checkstyle violations in openflow-protocol-impl - part 10

	fd770b4 [https://git.opendaylight.org/gerrit/#/q/fd770b4]
: Fix checkstyle violations in openflow-protocol-impl - part 9

	772a728 [https://git.opendaylight.org/gerrit/#/q/772a728]
: Fix checkstyle violations in openflow-protocol-impl - part 8

	0f2b7cc [https://git.opendaylight.org/gerrit/#/q/0f2b7cc]
: Fix checkstyle violations in openflow-protocol-impl - part 7

	d68d481 [https://git.opendaylight.org/gerrit/#/q/d68d481]
: Fix checkstyle violations in openflow-protocol-impl - part 6

	49064d8 [https://git.opendaylight.org/gerrit/#/q/49064d8]
: Fix checkstyle violations in openflow-protocol-impl - part 5

	46234f4 [https://git.opendaylight.org/gerrit/#/q/46234f4]
: Fix checkstyle violations in openflow-protocol-impl - part 4

	038f182 [https://git.opendaylight.org/gerrit/#/q/038f182]
: Fix checkstyle violations in openflow-protocol-impl - part 3

	fe3bbd6 [https://git.opendaylight.org/gerrit/#/q/fe3bbd6]
: Fix checkstyle violations in openflow-protocol-impl - part 2

	d6b81a6 [https://git.opendaylight.org/gerrit/#/q/d6b81a6]
: Fix checkstyle violations in openflow-protocol-impl - part 1

	1c59df7 [https://git.opendaylight.org/gerrit/#/q/1c59df7]
: Fix checkstyle violations in openflowjava-util

	9a64b11 [https://git.opendaylight.org/gerrit/#/q/9a64b11]
: Fix checkstyle violations in openflow-protocol-api

	bacfd45 [https://git.opendaylight.org/gerrit/#/q/bacfd45]
OPNFLWPLUG-963 [https://jira.opendaylight.org/browse/OPNFLWPLUG-963]
: OPNFLWPLUG-963 : Updating ports delete reason from OFP:

	2c344e9 [https://git.opendaylight.org/gerrit/#/q/2c344e9]
OPNFLWPLUG-929 [https://jira.opendaylight.org/browse/OPNFLWPLUG-929]
: OPNFLWPLUG-929 : Remove deprecated guava library

	6a612a8 [https://git.opendaylight.org/gerrit/#/q/6a612a8]
OPNFLWPLUG-929 [https://jira.opendaylight.org/browse/OPNFLWPLUG-929]
: OPNFLWPLUG-929 : Remove deprecated guava library

	af24eaf [https://git.opendaylight.org/gerrit/#/q/af24eaf]
OPNFLWPLUG-927 [https://jira.opendaylight.org/browse/OPNFLWPLUG-927]
: Remove deprecated EOS services

	4f86148 [https://git.opendaylight.org/gerrit/#/q/4f86148]
OPNFLWPLUG-929 [https://jira.opendaylight.org/browse/OPNFLWPLUG-929]
: OPNFLWPLUG-929 : Remove deprecated guava library in openflowplugin-impl

	e5db15b [https://git.opendaylight.org/gerrit/#/q/e5db15b]
OPNFLWPLUG-929 [https://jira.opendaylight.org/browse/OPNFLWPLUG-929]
: OPNFLWPLUG-929 : Remove deprecated guava library in applications

	af62c04 [https://git.opendaylight.org/gerrit/#/q/af62c04]
OPNFLWPLUG-929 [https://jira.opendaylight.org/browse/OPNFLWPLUG-929]
: OPNFLWPLUG-929 : Remove deprecated guava library

	4d9aab2 [https://git.opendaylight.org/gerrit/#/q/4d9aab2]
OPNFLWPLUG-953 [https://jira.opendaylight.org/browse/OPNFLWPLUG-953]
: OPNFLWPLUG-953: Property change listener for lldp discovery config properties

	a630ddc [https://git.opendaylight.org/gerrit/#/q/a630ddc]
: Minor: Remove 3 un-used private methods found by FindBugs

	4b1c201 [https://git.opendaylight.org/gerrit/#/q/4b1c201]
: Rename addDeleteOperationTotTxChain => addDeleteOperationToTxChain

	6779b39 [https://git.opendaylight.org/gerrit/#/q/6779b39]
: Make HandshakeManagerImpl more thread-safe, as recommended by FindBugs

	e4901a7 [https://git.opendaylight.org/gerrit/#/q/e4901a7]
: Make two classes _static_ inner classes, as recommended by FindBugs

	4e0c2ed [https://git.opendaylight.org/gerrit/#/q/4e0c2ed]
: Suppress FindBugs null analysis warning in FlowDescriptorDtoTest

	ab0c9be [https://git.opendaylight.org/gerrit/#/q/ab0c9be]
: Suppress FindBugs concurrency warning which is wrong

	07ca19c [https://git.opendaylight.org/gerrit/#/q/07ca19c]
: Fix FindBugs null analysis problems due to wrong @Nullable

	fd8972a [https://git.opendaylight.org/gerrit/#/q/fd8972a]
: FindBugs enforcement in module openflowplugin-api/

	c1b6a18 [https://git.opendaylight.org/gerrit/#/q/c1b6a18]
: FindBugs enforcement in module common/

	670f198 [https://git.opendaylight.org/gerrit/#/q/670f198]
: Checkstyle enforcement (and required fixes) in module common/

	ce2f597 [https://git.opendaylight.org/gerrit/#/q/ce2f597]
OPNFLWPLUG-961 [https://jira.opendaylight.org/browse/OPNFLWPLUG-961]
: Fix possible transaction leak in StatisticsGatheringUtils

	06fda59 [https://git.opendaylight.org/gerrit/#/q/06fda59]
: Clean up in module reconciliation-framework

	6f53d9f [https://git.opendaylight.org/gerrit/#/q/6f53d9f]
: Spec: Reconciliation framework

	21e3d4f [https://git.opendaylight.org/gerrit/#/q/21e3d4f]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix codestyle

	7b88d45 [https://git.opendaylight.org/gerrit/#/q/7b88d45]
: Fix issues related to checkstyle enforcement on openflow-impl module

	e737272 [https://git.opendaylight.org/gerrit/#/q/e737272]
: Fix issues related to checkstyle enforcement

	f623c85 [https://git.opendaylight.org/gerrit/#/q/f623c85]
: Checkstyle enforcement.

	3f4c1b9 [https://git.opendaylight.org/gerrit/#/q/3f4c1b9]
: Add Docs for Openflowplugin

	ca1bb12 [https://git.opendaylight.org/gerrit/#/q/ca1bb12]
: Fix checkstyle issues in openflowplugin-impl module

	066e0a9 [https://git.opendaylight.org/gerrit/#/q/066e0a9]
OPNFLWPLUG-931 [https://jira.opendaylight.org/browse/OPNFLWPLUG-931]
: Remove Itemlifecycle

	4b673cf [https://git.opendaylight.org/gerrit/#/q/4b673cf]
OPNFLWPLUG-918 [https://jira.opendaylight.org/browse/OPNFLWPLUG-918]
: Gather statistics in separate thread

	6e85e2c [https://git.opendaylight.org/gerrit/#/q/6e85e2c]
: Fix issues related to checkstyle enforcement

	d87bf30 [https://git.opendaylight.org/gerrit/#/q/d87bf30]
: Cleanup

	23417a3 [https://git.opendaylight.org/gerrit/#/q/23417a3]
OPNFLWPLUG-898 [https://jira.opendaylight.org/browse/OPNFLWPLUG-898]
: Fix checkstyle warnings for statistics package

ovsdb

	7a5c1f1 [https://git.opendaylight.org/gerrit/#/q/7a5c1f1]
OVSDB-440 [https://jira.opendaylight.org/browse/OVSDB-440]
: OVSDB-440: Fixes detecting SSL mode with OVSDB nodes

	dc06cf7 [https://git.opendaylight.org/gerrit/#/q/dc06cf7]
: fix intermittent junit tests failures

	04c8e88 [https://git.opendaylight.org/gerrit/#/q/04c8e88]
OVSDB-435 [https://jira.opendaylight.org/browse/OVSDB-435]
: OVSDB-435: fix transaction leak in BridgeOperationState

	09634e2 [https://git.opendaylight.org/gerrit/#/q/09634e2]
OVSDB-432 [https://jira.opendaylight.org/browse/OVSDB-432]
: OVSDB-432: Add method to restart OVSDB server and limit retry times and timeout

	91e288a [https://git.opendaylight.org/gerrit/#/q/91e288a]
NETVIRT-985 [https://jira.opendaylight.org/browse/NETVIRT-985]
: Fix possible transaction leak in BridgeOperationalState

	d47b537 [https://git.opendaylight.org/gerrit/#/q/d47b537]
OVSDB-425 [https://jira.opendaylight.org/browse/OVSDB-425]
: Fix transaction leak in BridgeConfigReconciliationTask

	33fbf80 [https://git.opendaylight.org/gerrit/#/q/33fbf80]
NETVIRT-985 [https://jira.opendaylight.org/browse/NETVIRT-985]
: Fix transaction leak in OvsdbConnectionManager

	8f01bcd [https://git.opendaylight.org/gerrit/#/q/8f01bcd]
OVSDB-406 [https://jira.opendaylight.org/browse/OVSDB-406]
: bug 8029 handle expired in transit entries

yangtools

	3806c46 [https://git.opendaylight.org/gerrit/#/q/3806c46]
: Fix invalid enum definition error string

	64a3618 [https://git.opendaylight.org/gerrit/#/q/64a3618]
YANGTOOLS-845 [https://jira.opendaylight.org/browse/YANGTOOLS-845]
: Correct double-quoted string whitespace trimming

	94f5aaa [https://git.opendaylight.org/gerrit/#/q/94f5aaa]
: Allow shared JSONNNSWriter use

	dd6442e [https://git.opendaylight.org/gerrit/#/q/dd6442e]
: Handling empty text nodes

	d027a59 [https://git.opendaylight.org/gerrit/#/q/d027a59]
YANGTOOLS-841 [https://jira.opendaylight.org/browse/YANGTOOLS-841]
: YANGTOOLS-841: Fix SchemaContextUtil.findNodeInSchemaContext()

	d0e74b9 [https://git.opendaylight.org/gerrit/#/q/d0e74b9]
YANGTOOLS-766 [https://jira.opendaylight.org/browse/YANGTOOLS-766]
: YANGTOOLS-766: add RFC7951JSONInstanceIdentifierCodec

	c162fb4 [https://git.opendaylight.org/gerrit/#/q/c162fb4]
YANGTOOLS-766 [https://jira.opendaylight.org/browse/YANGTOOLS-766]
: YANGTOOLS-766: introduce JSONCodecFactorySupplier

	e0b9180 [https://git.opendaylight.org/gerrit/#/q/e0b9180]
: Bump odlparent references to 2.0.5

	ae5d241 [https://git.opendaylight.org/gerrit/#/q/ae5d241]
YANGTOOLS-804 [https://jira.opendaylight.org/browse/YANGTOOLS-804]
: BUG 8927: Netconf response payload fails to render in JSON

	47e6079 [https://git.opendaylight.org/gerrit/#/q/47e6079]
: Add bundle packaging for yang-data-transform

Getting Started Guide

	Introduction

	Overview

	Who should use this guide?

	OpenDaylight concepts and tools

	OpenDaylight Karaf Features

	OpenDaylight Experimental Features

	Other features

	API

	Installing OpenDaylight

	Project-Specific Installation Guides

	Common OpenDaylight Features

	Security Considerations

	How to Get Help

Introduction

The OpenDaylight project is an open source platform for Software Defined
Networking (SDN) that uses open protocols to provide centralized, programmatic
control and network device monitoring. Like many other SDN controllers,
OpenDaylight supports OpenFlow, as well as offering ready-to-install network
solutions as part of its platform.

Much as your operating system provides an interface for the devices that
comprise your computer, OpenDaylight provides an interface that allows you to
connect network devices quickly and intelligently for optimal network
performance.

It’s extremely helpful to understand that setting up your networking environment
with OpenDaylight is not a single software installation. While your first
chronological step is to install OpenDaylight, you install additional
functionality packaged as Karaf features to suit your specific needs.

Before walking you through the initial OpenDaylight installation, this guide
presents a fuller picture of OpenDaylight’s framework and functionality so you
understand how to set up your networking environment. The guide then takes you
through the installation process.

What’s different about OpenDaylight

Major distinctions of OpenDaylight’s SDN compared to traditional SDN options are
the following:

	A microservices architecture, in which a “microservice” is a particular
protocol or service that a user wants to enable within their installation of
the OpenDaylight controller, for example:

	A plugin that provides connectivity to devices via the OpenFlow or BGP
protocols

	An L2-Switch or a service such as Authentication, Authorization, and
Accounting (AAA).

	Support for a wide and growing range of network protocols beyond OpenFlow,
including SNMP, NETCONF, OVSDB, BGP, PCEP, LISP, and more.

	Support for developing new functionality comprised of additional networking
protocols and services.

Note

A thorough understanding of the microservices architecture is
important for experienced network developers who want to create new solutions
in OpenDaylight. If you are new to networking and OpenDaylight, you most
likely won’t design solutions, but you should comprehend the microservices
concept to understand how OpenDaylight works and how it differs from other
SDN programs.

What you’ll find in this guide

To set up your environment, you first install OpenDaylight followed by the
Apache Karaf features that offer the functionality you require. The OpenDaylight
Getting Started Guide covers feature descriptions, OpenDaylight installation
procedures, and feature installation.

The Getting Started Guide also includes other helpful information, with the
following organization:

	An overview of OpenDaylight and common use models

	Who should use this guide?

	OpenDaylight concepts and tools

	Explanations of OpenDaylight Apache Karaf features and other features that
extend network functionality

	OpenDaylight system requirements and Release Notes

	OpenDaylight installation instructions

	Feature tables with installation names and compatibility notes

Overview

OpenDaylight performs the following functions:

	Logically centralizes programmatic control of the physical and virtual devices
in your network.

	Controls devices with standard, open protocols.

	Provides higher-level abstractions of its capabilities so experienced network
engineers and developers can create new applications to customize network
setup and administration.

Common use cases for SDN are as follows:

	Centralized network monitoring, management, and orchestration

	Proactive network management and traffic engineering

	Chaining packets through the different VMs, which is known as service
function chaining (SFC). SFC enables Network Functions Virtualization (NFV),
which is a network architecture concept that virtualizes entire classes of
network node functions into building blocks that may connect, or chain
together, to create communication services.

	Cloud - managing both the virtual overlay and the physical underlay beneath
it.

Who should use this guide?

OpenDaylight is for users considering open options in network programming. This
guide provides information for the following types of users:

	Those new to OpenDaylight who want to install it and select the features they
need to run their network environment using only the command line and GUI.
Such users include:

	Students

	Network administrators and engineers.

	Network engineers and network application developers who want to use
OpenDaylight’s REST APIs to manage their network programmatically.

	Network engineers and network application developers who want to write their
own OpenDaylight services and plugins for greater functionality. This group
of users needs a significant level of expertise in the following areas, which
is beyond the scope of this document:

	The YANG modeling language

	The Model-Driven Service Abstraction Layer (MD-SAL)

	Maven build tool

	Management of the shared data store

	How to handle notifications and/or Remote Procedure Calls (RPCs)

	Developers who would like to join the OpenDaylight community and contribute
code upstream. People in this group design offerings such as
applications/services, protocol implementations, and so on, to increase
OpenDaylight functionality for the benefit of all end-users.

Note

If you develop code to build new functionality for OpenDaylight and
push it upstream (not required), it can become part of the OpenDaylight
release. Users can then install the features to implement the solution you’ve
created.

OpenDaylight concepts and tools

In this section we discuss some of the concepts and tools you encounter with
basic use of OpenDaylight. The guide walks you through the installation process
in a subsequent section, but for now familiarize yourself with the information
below.

	To date, OpenDaylight developers have formed more than 50 projects to address
ways to extend network functionality. The projects are a formal structure for
developers from the community to meet, document release plans, code, and
release the functionality they create in an OpenDaylight release.

The typical OpenDaylight user will not join a project team, but you should
know what projects are as we refer to their activities and the functionality
they create. The Karaf features to install that functionality often share the
project team’s name.

	Apache Karaf provides a lightweight runtime to install the Karaf features
you want to implement and is included in the OpenDaylight platform software.
By default, OpenDaylight has no pre-installed features.

	After installing OpenDaylight, you install your selected features using the
Karaf console to expand networking capabilities. In the Karaf feature list
below are the ones you’re most likely to use when creating your network
environment.

As a short example of installing a Karaf feature, OpenDaylight
offers Application Layer Traffic Optimization (ALTO). The Karaf feature to
install ALTO is odl-alto-release. On the Karaf console, the command to
install it is:

feature:install odl-alto-release

	DLUX is a web-based interface that OpenDaylight provides for you to manage
your network. Its Karaf feature installation name is “odl-dlux-core”.

	DLUX draws information from OpenDaylight’s topology and host databases to
display the following information:

	The network

	Flow statistics

	Host locations

	To enable the DLUX UI after installing OpenDaylight, run:

feature:install odl-dlux-core

on the Karaf console.

	Network embedded Experience (NeXt) is a developer toolkit that provides
tools to draw network-centric topology UI elements that offer visualizations
of the following:

	Large complex network topologies

	Aggregated network nodes

	Traffic/path/tunnel/group visualizations

	Different layout algorithms

	Map overlays

	Preset user-friendly interactions

NeXt can work with DLUX to build OpenDaylight applications. Check out the
NeXt_demo [https://www.youtube.com/watch?v=gBsUDu8aucs] for more information on the interface.

	Model-Driven Service Abstraction Layer (MD-SAL) is the OpenDaylight framework
that allows developers to create new Karaf features in the form of services
and protocol drivers and connects them to one another. You can think of the
MD-SAL as having the following two components:

	A shared datastore that maintains the following tree-based structures:

	The Config Datastore, which maintains a representation of the desired
network state.

	The Operational Datastore, which is a representation of the actual
network state based on data from the managed network elements.

	A message bus that provides a way for the various services and protocol
drivers to notify and communicate with one another.

	If you’re interacting with OpenDaylight through DLUX or the REST APIs while
using the the OpenDaylight interfaces, the microservices architecture allows
you to select available services, protocols, and REST APIs.

OpenDaylight Karaf Features

This section provides brief descriptions of the most commonly used Karaf
features developed by OpenDaylight project teams. They are presented in
alphabetical order. OpenDaylight installation instructions and a feature table
that lists installation commands and compatibility follow.

	AAA

	ALTO

	Border Gateway Protocol (including Link-state Distribution (BGP)

	Border Gateway Monitoring Protocol (BMP)

	Control and Provisioning of Wireless Access Points (CAPWAP)

	Controller Shield

	Device Identification and Driver Management (DIDM)

	DLUX

	Fabric as a Service (FaaS)

	Group Based Policy (GBP)

	Internet of Things Data Management (IoTDM)

	Link Aggregation Control Protocol (LACP)

	Location Identifier Separation Protocol (LISP) Flow Mapping Service (LISP)

	NEMO

	NETCONF

	NetIDE

	OVSDB-based Network Virtualization Services

	OpenFlow Configuration Protocol (OF-CONFIG)

	OpenFlow plugin

	Path Computation Element Protocol (PCEP)

	Secure Network Bootstrapping Interface (SNBi)

	Service Function Chaining (SFC)

	SNMP Plugin

	SNMP4SDN

	Source-Group Tag Exchange Protocol (SXP)

	Topology Processing Framework

	Time Series Data Repository (TSDR)

	Unified Secure Channel (USC)

	Virtual Tenant Network (VTN)

AAA

Standards-compliant Authentication, Authorization and Accounting Services.
RESTCONF is the most common consumer of AAA, which installs the AAA features
automatically. AAA provides:

	Support for persistent data stores

	Federation and SSO with OpenStack Keystone

This release of AAA includes experimental support for having the database of users and credentials stored in the cluster-aware MD-SAL datastore.

ALTO

Implements the Application-Layer Traffic Optimization (ALTO) base IETF protocol
to provide network information to applications. It defines abstractions and
services to enable simplified network views and network services to guide
application usage of network resources and includes five services:

	Network Map Service - Provides batch information to ALTO clients in the forms
of ALTO network maps.

	Cost Map Service - Provides costs between defined groupings.

	Filtered Map Service - Allows ALTO clients to query an ALTO server on ALTO
network maps and/or cost maps based on additional parameters.

	Endpoint Property Service - Allows ALTO clients to look up properties for
individual endpoints.

	Endpoint Cost Service - Allows an ALTO server to return costs directly
amongst endpoints.

Border Gateway Protocol (including Link-state Distribution (BGP)

Is a southbound plugin that provides support for Border Gateway Protocol
(including Link-state Distribution) as a source of L3 topology information.

Border Gateway Monitoring Protocol (BMP)

Is a southbound plugin that provides support for BGP Monitoring Protocol as a
monitoring station.

Control and Provisioning of Wireless Access Points (CAPWAP)

Enables OpenDaylight to manage CAPWAP-compliant wireless termination point (WTP)
network devices. Intelligent applications, e.g., radio planning, can be
developed by tapping into the operational states made available via REST APIs of
WTP network devices.

Controller Shield

Creates a repository called the Unified-Security Plugin (USecPlugin) to provide
controller security information to northbound applications, such as the
following:

	Collating the source of different attacks reported in southbound plugins

	Gathering information on suspected controller intrusions and trusted
controllers in the network

Information collected at the plugin may also be used to configure firewalls and create IP blacklists for the network.

Device Identification and Driver Management (DIDM)

Provides device-specific functionality, which means that code enabling a feature
understands the capability and limitations of the device it runs on. For
example, configuring VLANs and adjusting FlowMods are features, and there may be
different implementations for different device types. Device-specific
functionality is implemented as Device Drivers.

DLUX

Web based OpenDaylight user interface that includes:

	An MD-SAL flow viewer

	Network topology visualizer

	A tool box and YANG model that execute queries and visualize the YANG tree

Fabric as a Service (FaaS)

Creates a common abstraction layer on top of a physical network so northbound
APIs or services can be more easily mapped onto the physical network as a
concrete device configuration.

Group Based Policy (GBP)

Defines an application-centric policy model for OpenDaylight that separates
information about application connectivity requirements from information about
the underlying details of the network infrastructure. Provides support for:

	Integration with OpenStack Neutron

	Service Function Chaining

	OFOverlay support for NAT, table offsets

Internet of Things Data Management (IoTDM)

Developing a data-centric middleware to act as a oneM2M [http://www.onem2m.org/]-compliant IoT Data
Broker (IoTDB) and enable authorized applications to retrieve IoT data uploaded
by any device.

Link Aggregation Control Protocol (LACP)

LACP can auto-discover and aggregate multiple links between an
OpenDaylight-controlled network and LACP-enabled endpoints or switches.

Location Identifier Separation Protocol (LISP) Flow Mapping Service (LISP)

LISP (RFC6830) enables separation of Endpoint Identity (EID) from Routing
Location (RLOC) by defining an overlay in the EID space, which is mapped to the
underlying network in the RLOC space.

LISP Mapping Service provides the EID-to-RLOC mapping information, including
forwarding policy (load balancing, traffic engineering, and so on) to LISP
routers for tunneling and forwarding purposes. The LISP Mapping Service can
serve the mapping data to data plane nodes as well as to OpenDaylight
applications.

To leverage this service, a northbound API allows OpenDaylight applications and
services to define the mappings and policies in the LISP Mapping Service. A
southbound LISP plugin enables LISP data plane devices to interact with
OpenDaylight via the LISP protocol.

NEMO

Is a Domain Specific Language (DSL) for the abstraction of network models and
identification of operation patterns. NEMO enables network users/applications to
describe their demands for network resources, services, and logical operations
in an intuitive way that can be explained and executed by a language engine.

NETCONF

Offers four features:

	odl-netconf-mdsal: NETCONF Northbound for MD-SAL and applications

	odl-netconf-connector: NETCONF Southbound plugin - configured through the
configuration subsystem

	odl-netconf-topology: NETCONF Southbound plugin - configured through the
MD-SAL configuration datastore

	odl-restconf: RESTCONF Northbound for MD-SAL and applications

NetIDE

Enables portability and cooperation inside a single network by using a
client/server multi-controller architecture. It provides an interoperability
layer allowing SDN Applications written for other SDN Controllers to run on
OpenDaylight. NetIDE details:

	Architecture follows a client/server model: other SDN controllers represent
clients with OpenDaylight acting as the server.

	OpenFlow v1.0/v1.3 is the only southbound protocol supported in this initial
release. We are planning for other southbound protocols in later releases.

	The developer documentation contains the protocol specifications required for
developing plugins for other client SDN controllers.

	The NetIDE Configuration file contains the configurable elements for the
engine.

OVSDB-based Network Virtualization Services

Several services and plugins in OpenDaylight work together to provide simplified
integration with the OpenStack Neutron framework. These services enable
OpenStack to offload network processing to OpenDaylight while enabling
OpenDaylight to provide enhanced network services to OpenStack.

OVSDB Services are at parity with the Neutron Reference Implementation in
OpenStack, including support for:

	L2/L3

	The OpenDaylight Layer-3 Distributed Virtual Router is fully on par with
what OpenStack offers and now provides completely decentralized Layer 3
routing for OpenStack. ICMP rules for responding on behalf of the L3 router
are fully distributed as well.

	Full support for distributed Layer-2 switching and distributed IPv4 routing
is now available.

	Clustering - Full support for clustering and High Availability (HA) is
available in the this OpenDaylight release. In particular, the OVSDB
southbound plugin supports clustering that any application can use, and the
Openstack network integration with OpenDaylight (through OVSDB Net-Virt) has
full clustering support. While there is no specific limit on cluster size, a
3-node cluster has been tested extensively as part of the release.

	Security Groups - Security Group support is available and implemented using
OpenFlow rules that provide superior functionality and performance over
OpenStack Security Groups, which use IPTables. Security Groups also provide
support for ConnTrack with stateful tracking of existing connections.
Contract-based Security Groups require OVS v2.5 with contract support.

	Hardware Virtual Tunnel End Point (HW-VTEP) - Full HW-VTEP schema support has
been implemented in the OVSDB protocol driver. Support for HW-VTEP via
OpenStack through the OVSDB-NetVirt implementation has not yet been provided
as we wait for full support of Layer-2 Gateway (L2GW) to be implemented within
OpenStack.

	Service Function Chaining

	Open vSwitch southbound support for quality of service and Queue configuration
Load Balancer as service (LBaaS) with Distributed Virtual Router

	Network Virtualization User interface for DLUX

OpenFlow Configuration Protocol (OF-CONFIG)

Provides a process for an Operation Context containing an OpenFlow Switch that uses OF-CONFIG to communicate with an OpenFlow Configuration Point, enabling remote configuration of OpenFlow datapaths.

OpenFlow plugin

Supports connecting to OpenFlow-enabled network devices via the OpenFlow
specification. It currently supports OpenFlow versions 1.0 and 1.3.2.

In addition to support for the core OpenFlow specification, OpenDaylight
also includes preliminary support for the Table Type Patterns and
OF-CONFIG specifications.

Path Computation Element Protocol (PCEP)

Is a southbound plugin that provides support for performing Create, Read,
Update, and Delete (CRUD) operations on Multiprotocol Label Switching (MPLS)
tunnels in the underlying network.

Secure Network Bootstrapping Interface (SNBi)

Leverages manufacturer-installed IEEE 802.1AR certificates to secure initial
communications for a zero-touch approach to bootstrapping using Docker. SNBi
devices and controllers automatically do the following:

	Discover each other, which includes:

	Revealing the physical topology of the network

	Exposing each type of a device

	Assigning the domain for each device

	Get assigned an IP-address

	Establish secure IP connectivity

SNBi creates a basic infrastructure to host, run, and lifecycle-manage multiple
network functions within a network device, including individual network element
services, such as:

	Performance measurement

	Traffic-sniffing functionality

	Traffic transformation functionality

SNBi also provides a Linux side abstraction layer to forward elements as well
as enhancements to feature the abstraction and bootstrapping infrastructure.
You can also use the device type and domain information to initiate controller
federation processes.

Service Function Chaining (SFC)

Provides the ability to define an ordered list of network services (e.g.
firewalls, load balancers) that are then “stitched” together in the network to
create a service chain. SFC provides the chaining logic and APIs necessary for
OpenDaylight to provision a service chain in the network and an end-user
application for defining such chains. It includes:

	YANG models to express service function chains

	SFC receiver for Intent expressions from REST & RPC

	UI for service chain construction

	LISP support

	Function grouping for load balancing

	OpenFlow renderer for Network Service Headers, MPLS, and VLAN

	Southbound REST interface

	IP Tables-based classifier for grouping packets into selected service chains

	Integration with OpenDaylight GBP project

	Integration with OpenDaylight OVSDB NetVirt project

SNMP Plugin

The SNMP southbound plugin allows applications acting as an SNMP Manager to
interact with devices that support an SNMP agent. The SNMP plugin implements a
general SNMP implementation, which differs from the SNMP4SDN as that project
leverages only select SNMP features to implement the specific use case of
making an SNMP-enabled device emulate some features of an OpenFlow-enabled
device.

SNMP4SDN

Provides a southbound SNMP plugin to optimize delivery of SDN controller
benefits to traditional/legacy ethernet switches through the SNMP interface. It
offers support for flow configuration on ACLs and enables flow configuration
via REST API and multi-vendor support.

Source-Group Tag Exchange Protocol (SXP)

Enables creation of a tag that allows you to filter traffic instead of using
protocol-specific information like addresses and ports. Via SXP an external
entity creates the tags, assigns them to traffic appropriately, and publishes
information about the tags to network devices so they can enforce the tags
appropriately.

More specifically, SXP Is an IETF-published control protocol designed to
propagate the binding between an IP address and a source group, which has a
unique source group tag (SGT). Within the SXP protocol, source groups with
common network policies are endpoints connecting to the network. SXP updates
the firewall with SGTs, enabling the firewalls to create topology-independent
Access Control Lists (ACLs) and provide ACL automation.

SXP source groups have the same meaning as endpoint groups in OpenDaylight’s
Group Based Policy (GBP), which is used to manipulate policy groups, so you can
use OpenDaylight GPB with SXP SGTs. The SXP topology-independent policy
definition and automation can be extended through OpenDaylight for other
services and networking devices.

Topology Processing Framework

Provides a framework for simplified aggregation and topology data query to
enable a unified topology view, including multi-protocol, Underlay, and
Overlay resources.

Time Series Data Repository (TSDR)

Creates a framework for collecting, storing, querying, and maintaining time
series data in OpenDaylight. You can leverage various data-driven applications
built on top of TSDR when you install a datastore and at least one collector.

Functionality of TDSR includes:

	Data Query Service - For external data-driven applications to query data from
TSDR through REST APIs

	ElasticSearch - Use external elastic search engine with TSDR integrated support.

	NBI integration with Grafana - Allows visualization of data collected in TSDR
using Grafana

	Data Aggregation Service - Periodically aggregates raw data into larger time granularities

	Data Purging Service - Periodically purges data from TSDR

	Data Collection Framework - Data Collection framework to allow plugging in of
various types of collectors

	HSQL data store - Replacement of H2 data store to remove third party
component dependency from TSDR

	Cassandra data store - Cassandra implementation of TSDR SPIs

	NetFlow data collector - Collect NetFlow data from network elements

	NetFlowV9 - version 9 Netflow collector

	sFlowCollector - Collects sFlow data from network elements

	SNMP Data Collector - Integrates with SNMP plugin to bring SNMP data into TSDR

	Syslog data collector - Collects syslog data from network elements

	Web Activity data collector - Collects ODL RESTCONF queries made to TSDR

TSDR has multiple features to enable the functionality above. To begin,
select one of these data stores:

	odl-tsdr-hsqldb-all

	odl-tsdr-hbase

	odl-tsdr-cassandra

Then select any “collectors” you want to use:

	odl-tsdr-openflow-statistics-collector

	odl-tsdr-netflow-statistics-collector

	odl-tsdr-sflow-statistics-collector

	odl-tsdr-controller-metrics-collector

	odl-tsdr-snmp-data-collector

	odl-tsdr-syslog-collector

	odl-tsdr-restconf-collector

Enable ElasticSearch support:

	odl-tsdr-elasticsearch

See these TSDR_Directions [https://wiki.opendaylight.org/view/Grafana_Integration_with_TSDR_Step-by-Step] for more information.

Unified Secure Channel (USC)

Provides a central server to coordinate encrypted communications between
endpoints. Its client-side agent informs the controller about its encryption
capabilities and can be instructed to encrypt select flows based on business
policies.

A possible use case is encrypting controller-to-controller communications;
however, the framework is very flexible, and client side software is available
for multiple platforms and device types, enabling USC and OpenDaylight to
centralize the coordination of encryption across a wide array of endpoint and
device types.

Virtual Tenant Network (VTN)

Provides multi-tenant virtual network on an SDN controller, allowing you to
define the network with a look and feel of a conventional L2/L3 network. Once
the network is designed on VTN, it automatically maps into the underlying
physical network and is then configured on the individual switch, leveraging
the SDN control protocol.

By defining a logical plane with VTN, you can conceal the complexity of the
underlying network and better manage network resources to reduce network
configuration time and errors.

OpenDaylight Experimental Features

	Network Intent Composition (NIC)

	UNI Manager Plug-in (Unimgr)

	YANG-PUBSUB

Network Intent Composition (NIC)

Offers an interface with an abstraction layer for you to communicate
“intentions,” i.e., what you expect from the network. The Intent model, which
is part of NIC’s core architecture, describes your networking services
requirements and transforms the details of the desired state to OpenDaylight.
NIC has four features:

	odl-nic-core-hazelcast: Provides the following:

	A distributed intent mapping service implemented using hazelcast, which
stores metadata needed to process Intent correctly

	An intent REST API to external applications for Create, Read, Update, and
Delete (CRUD) operations on intents, conflict resolution, and event handling

	odl-nic-core-mdsal: Provides the following:

	A distributed Intent mapping service implemented using MD-SAL, which stores
metadata needed to process Intent correctly

	An Intent rest API to external applications for CRUD operations on Intents,
conflict resolution, and event handling

	odl-nic-console: Provides a Karaf CLI extension for Intent CRUD operations
and mapping service operations

	Four renderers to provide specific implementations to render the Intent:

	Virtual Tenant Network Renderer

	Group Based Policy Renderer

	OpenFlow Renderer

	Network MOdeling Renderer

UNI Manager Plug-in (Unimgr)

Formed to initiate the development of data models and APIs that facilitate
OpenDaylight software applications’ and/or service orchestrators’ ability to
configure and provision connectivity services.

YANG-PUBSUB

An experimental feature Plugin that allows subscriptions to be placed on
targeted subtrees of YANG datastores residing on remote devices. Changes in
YANG objects within the remote subtree can be pushed to OpenDaylight as
specified and don’t require OpenDaylight to make continuous fetch requests.
YANG-PUBSUB is developed as a Java project. Development requires Maven version
3.1.1 or later.

Other features

OpFlex

Provides the OpenDaylight OpFlex Agent , which is a policy agent that works
with Open vSwitch (OVS), to enforce network policy, e.g., from Group-Based
Policy, for locally-attached virtual machines or containers.

Network embedded Experience (NeXt)

Provides a network-centric topology UI that offers visualizations of the
following:

	Large complex network topologies

	Aggregated network nodes

	Traffic/path/tunnel/group visualizations

	Different layout algorithms

	Map overlays

	Preset user-friendly interactions

NeXt can work with DLUX to build OpenDaylight applications. NeXt does not
support Internet Explorer. Check out the NeXt_demo [https://www.youtube.com/watch?v=gBsUDu8aucs] for more information on the
interface.

API

We are in the process of creating automatically generated API documentation for
all of OpenDaylight. The following are links to the preliminary documentation
that you can reference. We will continue to add more API documentation as it
becomes available.

	mdsal [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.mdsal/nitrogen/apidocs/]

	odlparent [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.odlparent/nitrogen/apidocs/index.html]

	yangtools [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.yangtools/nitrogen/apidocs/index.html]

Installing OpenDaylight

You complete the following steps to install your networking environment, with
specific instructions provided in the subsections below.

Before detailing the instructions for these, we address the following:
Java Runtime Environment (JRE) and operating system information
Target environment
Known issues and limitations

Install OpenDaylight

Downloading and installing OpenDaylight

The default distribution can be found on the OpenDaylight software
download page: http://www.opendaylight.org/software/downloads

The Karaf distribution has no features enabled by default. However, all
of the features are available to be installed.

Note

For compatibility reasons, you cannot enable all the features
simultaneously. We try to document known incompatibilities in
the Install the Karaf features section below.

Running the karaf distribution

To run the Karaf distribution:

	Unzip the zip file.

	Navigate to the directory.

	run ./bin/karaf.

For Example:

$ ls distribution-karaf-0.7.x-Nitrogen.zip
distribution-karaf-0.7.x-Nitrogen.zip
$ unzip distribution-karaf-0.7.x-Nitrogen.zip
Archive: distribution-karaf-0.7.x-Nitrogen.zip
 creating: distribution-karaf-0.7.x-Nitrogen/
 creating: distribution-karaf-0.7.x-Nitrogen/configuration/
 creating: distribution-karaf-0.7.x-Nitrogen/data/
 creating: distribution-karaf-0.7.x-Nitrogen/data/tmp/
 creating: distribution-karaf-0.7.x-Nitrogen/deploy/
 creating: distribution-karaf-0.7.x-Nitrogen/etc/
 creating: distribution-karaf-0.7.x-Nitrogen/externalapps/
 ...
 inflating: distribution-karaf-0.7.x-Nitrogen/bin/start.bat
 inflating: distribution-karaf-0.7.x-Nitrogen/bin/status.bat
 inflating: distribution-karaf-0.7.x-Nitrogen/bin/stop.bat
$ cd distribution-karaf-0.7.x-Nitrogen
$./bin/karaf

 ________ ________ .__ .__ .__ __
 _____ \ ______ ____ ____ ______ \ _____ ___.__.\| \| \|__\| ____ \| \|___/ \|_
 / \| ____ _/ __ \ / \ \| \| __ \< \| \|\| \| \| \|/ ___\\| \| \ __\
 / \| \ \|_> > ___/\| \| \\| ` \/ __ ___ \|\| \|_\| / /_/ > Y \ \|
 _______ / __/ ___ >___\| /_______ (____ / ____\|\|____/_____ /\|___\| /__\|
 \/\|__\| \/ \/ \/ \/\/ /_____/ \/

	Press tab for a list of available commands

	Typing [cmd] --help will show help for a specific command.

	Press ctrl-d or type system:shutdown or logout to shutdown OpenDaylight.

Note

Please take a look at the Deployment Recommendations
and following sections under Security Considerations if you’re
planning on running OpenDaylight outside of an isolated test lab
environment.

Install the Karaf features

To install a feature, use the following command, where feature1 is the feature
name listed in the table below:

feature:install <feature1>

You can install multiple features using the following command:

feature:install <feature1> <feature2> ... <featureN-name>

Note

For compatibility reasons, you cannot enable all Karaf features
simultaneously. The table below documents feature installation names and
known incompatibilities.Compatibility values indicate the following:

	all - the feature can be run with other features.

	self+all - the feature can be installed with other features with a value of
all, but may interact badly with other features that have a value of
self+all. Not every combination has been tested.

Uninstalling features

To uninstall a feature, you must shut down OpenDaylight, delete the data
directory, and start OpenDaylight up again.

Important

Uninstalling a feature using the Karaf feature:uninstall command
is not supported and can cause unexpected and undesirable behavior.

Listing available features

To find the complete list of Karaf features, run the following command:

feature:list

To list the installed Karaf features, run the following command:

feature:list -i

Features to implement networking functionality provide release notes, which
you can find in the Project-specific Release Notes section.

Karaf running on Windows 10

Windows 10 cannot be identify by Karaf (equinox).
Issue occurs during installation of karaf features e.g.:

opendaylight-user@root>feature:install odl-restconf
Error executing command: Can't install feature odl-restconf/0.0.0:
Could not start bundle mvn:org.fusesource.leveldbjni/leveldbjni-all/1.8-odl in feature(s) odl-akka-leveldb-0.7: The bundle "org.fusesource.leveldbjni.leveldbjni-all_1.8.0 [300]" could not be resolved. Reason: No match found for native code: META-INF/native/windows32/leveldbjni.dll; processor=x86; osname=Win32, META-INF/native/windows64/leveldbjni.dll; processor=x86-64; osname=Win32, META-INF/native/osx/libleveldbjni.jnilib; processor=x86; osname=macosx, META-INF/native/osx/libleveldbjni.jnilib; processor=x86-64; osname=macosx, META-INF/native/linux32/libleveldbjni.so; processor=x86; osname=Linux, META-INF/native/linux64/libleveldbjni.so; processor=x86-64; osname=Linux, META-INF/native/sunos64/amd64/libleveldbjni.so; processor=x86-64; osname=SunOS, META-INF/native/sunos64/sparcv9/libleveldbjni.so; processor=sparcv9; osname=SunOS

Workaround is to add

org.osgi.framework.os.name = Win32

to the karaf file

etc/system.properties

The workaround and further info are in this thread:
http://stackoverflow.com/questions/35679852/karaf-exception-is-thrown-while-installing-org-fusesource-leveldbjni

Karaf OpenDaylight Features

Karaf OpenDaylight features

	Feature Name

	Feature Description

	Karaf feature name

	Compatibility

	Authentication

	Enables authentication with support for federation using Apache Shiro

	odl-aaa-shiro

	all

	BGP

	Provides support for Border Gateway Protocol (including Link-State
Distribution) as a source of L3 topology information

	odl-bgpcep-bgp

	all

	BMP

	Provides support for BGP Monitoring Protocol as a monitoring station

	odl-bgpcep-bmp

	all

	DIDM

	Device Identification and Driver Management

	odl-didm-all

	all

	Centinel

	Provides interfaces for streaming analytics

	odl-centinel-all

	all

	DLUX

	Provides an intuitive graphical user interface for OpenDaylight

	odl-dluxapps-applications

	all

	Fabric as a Service (Faas)

	Creates a common abstraction layer on top of a physical network so
northbound APIs or services can be more easiliy mapped onto the
physical network as a concrete device configuration

	odl-faas-all

	all

	Group Based Policy

	Enables Endpoint Registry and Policy Repository REST APIs and associated
functionality for Group Based Policy with the default renderer for
OpenFlow renderers

	odl-groupbasedpolicy-ofoverlay

	all

	GBP User Interface

	Enables a web-based user interface for Group Based Policy

	odl-groupbasedpolicyi-ui

	all

	GBP FaaS renderer

	Enables the Fabric as a Service renderer for Group Based Policy

	odl-groupbasedpolicy-faas

	self+all

	GBP Neutron Support

	Provides OpenStack Neutron support using Group Based Policy

	odl-groupbasedpolicy-neutronmapper

	all

	L2 Switch

	Provides L2 (Ethernet) forwarding across connected OpenFlow switches and
support for host tracking

	odl-l2switch-switch-ui

	self+all

	LACP

	Enables support for the Link Aggregation Control Protocol

	odl-lacp-ui

	self+all

	LISP Flow Mapping

	Enables LISP control plane services including the mapping system
services REST API and LISP protocol SB plugin

	odl-lispflowmapping-msmr

	all

	NEMO CLI

	Provides intent mappings and implementation with CLI for legacy devices

	odl-nemo-cli-renderer

	all

	NEMO OpenFlow

	Provides intent mapping and implementation for OpenFlow devices

	odl-nemo-openflow-renderer

	self+all

	NetIDE

	Enables portabilty and cooperation inside a single network by using a
client/server multi-controller architecture

	odl-netide-rest

	all

	NETCONF over SSH

	Provides support to manage NETCONF-enabled devices over SSH

	odl-netconf-connector-ssh

	all

	OF-CONFIG

	Enables remote configuration of OpenFlow datapaths

	odl-of-config-rest

	all

	OVSDB OpenStack Neutron

	OpenStack Network Virtualization using OpenDaylight’s OVSDB support

	odl-ovsdb-openstack

	all

	OVSDB Southbound

	OVSDB MDSAL southbound plugin for Open_vSwitch schema

	odl-ovsdb-southbound-impl-ui

	all

	OVSDB HWVTEP Southbound

	OVSDB MDSAL hwvtep southbound plugin for the hw_vtep schema

	odl-ovsdb-hwvtepsouthbound-ui

	all

	OVSDB NetVirt SFC

	OVSDB NetVirt support for SFC

	odl-ovsdb-sfc-ui

	all

	OpenFlow Flow Programming

	Enables discovery and control of OpenFlow switches and the topoology
between them

	odl-openflowplugin-flow-services-ui

	all

	OpenFlow Table Type Patterns

	Allows OpenFlow Table Type Patterns to be manually associated with
network elements

	odl-ttp-all

	all

	Packetcable PCMM

	Enables flow-based dynamic QoS management of CMTS use in the DOCSIS
infrastructure and a policy server

	odl-packetcable-policy-server

	self+all

	PCEP

	Enables support for PCEP

	odl-bgpcep-pcep

	all

	RESTCONF API Support

	Enables REST API access to the MD-SAL including the data store

	odl-restconf

	all

	SDNinterface

	Provides support for interaction and sharing of state between
(non-clustered) OpenDaylight instances

	odl-sdninterfaceapp-all

	all

	SFC over L2

	Supports implementing Service Function Chaining using Layer 2
forwarding

	odl-sfcofl2

	self+all

	SFC over LISP

	Supports implementing Service Function Chaining using LISP

	odl-sfclisp

	all

	SFC over REST

	Supports implementing Service Function Chaining using REST CRUD
operations on network elements

	odl-sfc-sb-rest

	all

	SFC over VXLAN

	Supports implementing Service Function Chaining using VXLAN tunnels

	odl-sfc-ovs

	self+all

	SNMP Plugin

	Enables monitoring and control of network elements via SNMP

	odl-snmp-plugin

	all

	SNMP4SDN

	Enables OpenFlow-like control of network elements via SNMP

	odl-snmp4sdn-all

	all

	SSSD Federated Authentication

	Enables support for federated authentication using SSSD

	odl-aaa-sssd-plugin

	all

	Secure tag eXchange Protocol (SXP)

	Enables distribution of shared tags to network devices

	odl-sxp-controller

	all

	Time Series Data Repository (TSDR)

	Enables support for collecting, storing and querying time series data.
TSDR supports the following collection data:

	OpenFlow statistics

	NETFLOW statistics

	sFlow statistics

	OpenFlow Controller metrics

	SNMP data

	SysLog data

	RestConf data

TSDR supports the following data stores:

	HSQLDB

	HBase

	Cassandra

TSDR supports the default OpenDaylight RESTCONF and API interfaces and an
ElasticSearch interface for all data stores.

	odl-tsdr-core, odl-tsdr-hsqldb

	all

	TSDR Data Collectors

	TSDR collector features include support for collecting the following
data:

	OpenFlow statistics

	NETFLOW statistics

	sFlow statistics

	OpenFlow Controller metrics

	SNMP data

	SysLog data

	RESTCONF data.

	
	odl-tsdr-openflow-statistics-collector

	odl-tsdr-netflow-statistics-collector

	odl-tsdr-sflow-statistics-collector

	odl-tsdr-controller-metrics-collector

	odl-tsdr-snmp-data-collector

	odl-tsdr-syslog-collector

	odl-tsdr-restconf-collector

	all

	TSDR Data Stores

	TSDR enables support for the following data stores:
* HSQLDB
* HBase
* Cassandra

	
	odl-tsdr-hsqldb

	odl-tsdr-hbase

	odl-tsdr-cassandra

	all

	TSDR Data Query

	TSDR supports the default OpenDaylight RESTCONF and ODL API interfaces
for queries to all data stores. It also supports an integrated ElasticSearch query.

	odl-tsdr-elasticsearch

	all

	Topology Processing Framework

	Enables merged and filtered views of network topologies

	odl-topoprocessing-framework

	all

	Unified Secure Channel (USC)

	Enables support for secure, remote connections to network devices

	odl-usc-channel-ui

	all

	VTN Manager

	Enables Virtual Tenant Network support

	odl-vtn-manager-rest

	self+all

	VTN Manager Neutron

	Enables OpenStack Neutron support of VTN Manager

	odl-vtn-manager-neutron

	self+all

Other OpenDaylight features

Other OpenDaylight features

	Feature Name

	Feature Description

	Karaf feature name

	Compatibility

	OpFlex

	Provides OpFlex agent for Open vSwitch to enforce network policy, such
as GBP, for locally-attached virtual machines or containers

	n/a

	all

	NeXt

	Provides a developer toolkit for designing network-centric topology
user interfaces

	n/a

	all

Experimental OpenDaylight Features

The following functionality is labeled as experimental in this OpenDaylight
release and should be used accordingly. In general, it is not supposed to be
used in production unless its limitations are well understood by those
deploying it.

Other features

	Feature Name

	Feature Description

	Karaf feature name

	Compatibility

	Authorization

	Enables configurable role-based authorization

	odl-aaa-authz

	all

	ALTO

	Enables support for Application-Layer Traffic Optimization

	odl-alto-release

	self+all

	CAPWAP

	Enables control of supported wireless APs

	odl-capwap-ac-rest

	all

	Clustered Authentication

	Enables the use of the MD-SAL clustered data store for the
authentication database

	odl-aaa-authn-mdsal-cluster

	all

	Controller Shield

	Provides controller security information to northbound applications

	odl-usecplugin

	all

	GBP IO Visor Renderer

	Provides support for rendering Group Based Policy to IO Visor

	odl-groupbasedpolicy-iovisor

	all

	Internet of Things Data Management

	Enables support for the oneM2M specification

	odl-iotdm-onem2m

	all

	LISP Flow Mapping OpenStack Network Virtualization

	Experimental support for OpenStack Neutron virtualization

	odl-lispflowmapping-neutron

	self+all

	Network Intent Composition (NIC)

	Provides abstraction layer for communcating network intents (including
a distributed intent mapping service REST API) using either Hazelcast
or the MD-SAL as the backing data store for intents

	odl-nic-core-hazelcast or odl-nic-core-mdsal

	all

	NIC Console

	Provides a Karaf CLI extension for intent CRUD operations and mapping
service operations

	odl-nic-console

	all

	NIC VTN renderer

	Virtual Tenant Network renderer for Network Intent Composition

	odl-nic-renderer-vtn

	self+all

	NIC GBP renderer

	Group Based Policy renderer for Network Intent Composition

	odl-nic-renderer-gbp

	self+all

	NIC OpenFlow renderer

	OpenFlow renderer for Network Intent Composition

	odl-nic-renderer-of

	self+all

	NIC NEMO renderer

	NEtwork MOdeling renderer for Network Intent Composition

	odl-nic-renderer-nemo

	self+all

	OVSDB NetVirt UI

	OVSDB DLUX UI

	odl-ovsdb-ui

	all

	Secure Networking Bootstrap

	Defines a SNBi domain and associated white lists of devices to be
accommodated to the domain

	odl-snbi-all

	self+all

	UNI Manager

	Initiates the development of data models and APIs to facilitate
configuration and provisioning connectivity services for OpenDaylight
applications and services

	odl-unimgr

	all

	YANG PUBSUB

	Allows subscriptions to be placed on targeted subtrees of YANG
datastores residing on remote devices to obviate the need for
OpenDaylight to make continuous fetch requests

	odl-yangpush-rest

	all

Install support for REST APIs

Most components that offer REST APIs will automatically load the RESTCONF API
Support component, but if for whatever reason they seem to be missing, install
the “odl-restconf” feature to activate this support.

Project-Specific Installation Guides

	Centinel Installation Guide

	NetVirt Installation Guide

	OpFlex agent-ovs Install Guide

	TSDR Installation Guide

	VTN Installation Guide

Centinel Installation Guide

This document is for the user to install the artifacts that are needed
for using Centinel functionality in the OpenDaylight by enabling the
default Centinel feature. Centinel is a distributed reliable framework
for collection, aggregation and analysis of streaming data which is
added in this OpenDaylight release.

Overview

The Centinel project aims at providing a distributed, reliable framework
for efficiently collecting, aggregating and sinking streaming data across
Persistence DB and stream analyzers (e.g., Graylog, Elasticsearch,
Spark, Hive). This framework enables SDN applications/services to
receive events from multiple streaming sources
(e.g., Syslog, Thrift, Avro, AMQP, Log4j, HTTP/REST).

In this release, we develop a “Log Service” and plug-in for log analyzer (e.g., Graylog).
The Log service process real time events coming from log analyzer.
Additionally, we provide stream collector (Flume- and Sqoop-based) that collects logs
from OpenDaylight and sinks them to persistence service (integrated with TSDR).
Centinel also includes a RESTCONF interface to inject events to north bound applications
for real-time analytic/network configuration. Further, a Centinel User Interface (web interface)
will be available to operators to enable rules/alerts/dashboard etc.

Pre Requisites for Installing Centinel

	Recent Linux distribution - 64bit/16GB RAM

	Java Virtual Machine 1.7 or above

	Apache Maven 3.1.1 or above

Preparing for Installation

There are some additional pre-requisites for Centinel, which can be done by integrate
Graylog server, Apache Drill, Apache Flume and HBase.

Graylog server2 Installation

	Install MongoDB

	import the MongoDB public GPG key into apt:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10

	Create the MongoDB source list:

echo 'deb http://downloads-distro.mongodb.org/repo/debian-sysvinit dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

	Update your apt package database:

sudo apt-get update

	Install the latest stable version of MongoDB with this command:

sudo apt-get install mongodb-org

	Install Elasticsearch

	Graylog2 v0.20.2 requires Elasticsearch v.0.90.10. Download and install it with these commands:

cd ~; wget https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-0.90.10.deb
sudo dpkg -i elasticsearch-0.90.10.deb

	We need to change the Elasticsearch cluster.name setting. Open the Elasticsearch configuration file:

sudo vi /etc/elasticsearch/elasticsearch.yml

	Find the section that specifies cluster.name. Uncomment it, and replace the default value with graylog2:

cluster.name: graylog2

	Find the line that specifies network.bind_host and uncomment it so it looks like this:

network.bind_host: localhost
script.disable_dynamic: true

	Save and quit. Next, restart Elasticsearch to put our changes into effect:

sudo service elasticsearch restart

	After a few seconds, run the following to test that Elasticsearch is running properly:

curl -XGET 'http://localhost:9200/_cluster/health?pretty=true'

	Install Graylog2 server

	Download the Graylog2 archive to /opt with this command:

cd /opt; sudo wget https://github.com/Graylog2/graylog2-server/releases/download/0.20.2/graylog2-server-0.20.2.tgz

	Then extract the archive:

sudo tar xvf graylog2-server-0.20.2.tgz

	Let’s create a symbolic link to the newly created directory, to simplify the directory name:

sudo ln -s graylog2-server-0.20.2 graylog2-server

	Copy the example configuration file to the proper location, in /etc:

sudo cp /opt/graylog2-server/graylog2.conf.example /etc/graylog2.conf

	Install pwgen, which we will use to generate password secret keys:

sudo apt-get install pwgen

	Now must configure the admin password and secret key. The password secret key is configured in graylog2.conf, by the password_secret parameter. Generate a random key and insert it into the Graylog2 configuration with the following two commands:

SECRET=$(pwgen -s 96 1)
sudo -E sed -i -e 's/password_secret =.*/password_secret = '$SECRET'/' /etc/graylog2.conf

PASSWORD=$(echo -n password | shasum -a 256 | awk '{print $1}')
sudo -E sed -i -e 's/root_password_sha2 =.*/root_password_sha2 = '$PASSWORD'/' /etc/graylog2.conf

	Open the Graylog2 configuration to make a few changes: (sudo vi /etc/graylog2.conf):

rest_transport_uri = http://127.0.0.1:12900/
elasticsearch_shards = 1

	Now let’s install the Graylog2 init script. Copy graylog2ctl to /etc/init.d:

sudo cp /opt/graylog2-server/bin/graylog2ctl /etc/init.d/graylog2

	Update the startup script to put the Graylog2 logs in /var/log and to look for the Graylog2 server JAR file in /opt/graylog2-server by running the two following sed commands:

sudo sed -i -e 's/GRAYLOG2_SERVER_JAR=\${GRAYLOG2_SERVER_JAR:=graylog2-server.jar}/GRAYLOG2_SERVER_JAR=\${GRAYLOG2_SERVER_JAR:=\/opt\/graylog2-server\/graylog2-server.jar}/' /etc/init.d/graylog2
sudo sed -i -e 's/LOG_FILE=\${LOG_FILE:=log\/graylog2-server.log}/LOG_FILE=\${LOG_FILE:=\/var\/log\/graylog2-server.log}/' /etc/init.d/graylog2

	Install the startup script:

sudo update-rc.d graylog2 defaults

	Start the Graylog2 server with the service command:

sudo service graylog2 start

Install Graylog Server using Virtual Machine

	Download the OVA image from link given below and save it to your disk locally:
https://github.com/Graylog2/graylog2-images/tree/master/ova

	Run the OVA in many systems like VMware or VirtualBox.

HBase Installation

	Download hbase-0.98.15-hadoop2.tar.gz

	Unzip the tar file using below command:

tar -xvf hbase-0.98.15-hadoop2.tar.gz

	Create directory using below command:

sudo mkdir /usr/lib/hbase

	Move hbase-0.98.15-hadoop2 to hbase using below command:

mv hbase-0.98.15-hadoop2/usr/lib/hbase/hbase-0.98.15-hadoop2 hbase

	Configuring HBase with java

	Open your hbase/conf/hbase-env.sh and set the path to the java installed in your system:

export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_25

	Set the HBASE_HOME path in bashrc file

	Open bashrc file using this command:

gedit ~/.bashrc

	In bashrc file append the below 2 statements:

export HBASE_HOME=/usr/lib/hbase/hbase-0.98.15-hadoop2

export PATH=$PATH:$HBASE_HOME/bin

	To start HBase issue following commands:

HBASE_PATH$ bin/start-hbase.sh

HBASE_PATH$ bin/hbase shell

	Create centinel table in HBase with stream,alert,dashboard and stringdata as column families using below command:

create 'centinel','stream','alert','dashboard','stringdata'

	To stop HBase issue following command:

HBASE_PATH$ bin/stop-hbase.sh

Apache Flume Installation

	Download apache-flume-1.6.0.tar.gz

	Copy the downloaded file to the directory where you want to install Flume.

	Extract the contents of the apache-flume-1.6.0.tar.gz file using below command. Use sudo if necessary:

tar -xvzf apache-flume-1.6.0.tar.gz

	Starting flume

	Navigate to the Flume installation directory.

	Issue the following command to start flume-ng agent:

./flume-ng agent --conf conf --conf-file multiplecolumn.conf --name a1 -Dflume.root.logger=INFO,console

Apache Drill Installation

	Download apache-drill-1.1.0.tar.gz

	Copy the downloaded file to the directory where you want to install Drill.

	Extract the contents of the apache-drill-1.1.0.tar.gz file using below command:

tar -xvzf apache-drill-1.1.0.tar.gz

	Starting Drill:

	Navigate to the Drill installation directory.

	Issue the following command to launch Drill in embedded mode:

bin/drill-embedded

	Access the Apache Drill UI on link: http://localhost:8047/

	Go to “Storage” tab and enable “HBase” storage plugin.

Deploying plugins

	Use the following command to download git repository of Centinel:

git clone https://git.opendaylight.org/gerrit/p/centinel

	Navigate to the installation directory and build the code using maven by running below command:

mvn clean install

	After building the maven project, a jar file named centinel-SplittingSerializer-0.0.1-SNAPSHOT.jar
will be created in centinel/plugins/centinel-SplittingSerializer/target inside the workspace directory.
Copy and rename this jar file to centinel-SplittingSerializer.jar (as mentioned in configuration file of flume)
and save at location apache-flume-1.6.0-bin/lib inside flume directory.

	After successful build, copy the jar files present at below locations to /opt/graylog/plugin in graylog server(VM):

centinel/plugins/centinel-alertcallback/target/centinel-alertcallback-0.1.0-SNAPSHOT.jar

centinel/plugins/centinel-output/target/centinel-output-0.1.0-SNAPSHOT.jar

	Restart the server after adding plugin using below command:

sudo graylog-ctl restart graylog-server

Configure rsyslog

Make changes to following file:

/etc/rsyslog.conf

	Uncomment $InputTCPServerRun 1514

	Add the following lines:

module(load="imfile" PollingInterval="10") #needs to be done just once
input(type="imfile"
File="<karaf.log>" #location of log file
StateFile="statefile1"
Tag="tag1")
. @@127.0.0.1:1514 # @@used for TCP

	Use the following format and comment the previous one:

$ActionFileDefaultTemplate RSYSLOG_SyslogProtocol23Format

	Use the below command to send Centinel logs to a port:

tail -f <location of log file>/karaf.log|logger

	Restart rsyslog service after making above changes in configuration file:

sudo service rsyslog restart

Install the following feature

Finally, from the Karaf console install the Centinel feature with this command:

feature:install odl-centinel-all

Verifying your Installation

If the feature install was successful you should be able to see the following Centinel commands added:

centinel:list

centinel:purgeAll

Troubleshooting

Check the ../data/log/karaf.log for any exception related to Centinel related features

Upgrading From a Previous Release

Only fresh installation is supported.

Uninstalling Centinel

To uninstall the Centinel functionality, you need to do the following from Karaf console:

feature:uninstall centinel-all

Its recommended to restart the Karaf container after uninstallation of the Centinel functionality.

NetVirt Installation Guide

	NetVirt Design Specifications
	Design Specification Template

	ACLs - ACL Statistics

	ACLs - Remote ACL - Indirection Table to Improve Scale

	ACLs - ACL reflection on existing traffic

	Conntrack Based SNAT

	Cross site connectivity with Federation service

	DHCP Server with Dynamic Allocation Pool

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	ECMP Support for BGP based L3VPN

	Element Counters

	Hairpinning of floating IPs in flat/VLAN provider networks

	IPv6 Data Center to internet connectivity using L3VPN

	IPv6 Inter Data Center connectivity using L3VPN

	IPv6 L3 North-South support for Flat/VLAN based Provider Networks

	L3VPN Dual Stack for VMs

	Listener Dependency Helper, avoids waiting for dependent IID

	Migrate the SFC classifier from the old to the new netvirt

	Netvirt counters

	Policy based path selection for multiple VxLAN tunnels

	QoS Alert

	Quality of Service

	Setup Source-MAC-Address for routed packets to virtual endpoints

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Support of VXLAN based L2 connectivity across Datacenters

	Support of VXLAN based connectivity across Datacenters

	Temporary SMAC Learning

	VLAN provider network enhancement

	VNI based L2 switching, L3 forwarding and NATing

	Neutron Port Allocation For DHCP Service

NetVirt Design Specifications

Starting from Carbon, NetVirt uses an RST format Design Specification document
for all new features. These specifications are a perfect way to understand
various NetVirt features.

Contents:

	Design Specification Template

	ACLs - ACL Statistics

	ACLs - Remote ACL - Indirection Table to Improve Scale

	ACLs - ACL reflection on existing traffic

	Conntrack Based SNAT

	Cross site connectivity with Federation service

	DHCP Server with Dynamic Allocation Pool

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	ECMP Support for BGP based L3VPN

	Element Counters

	Hairpinning of floating IPs in flat/VLAN provider networks

	IPv6 Data Center to internet connectivity using L3VPN

	IPv6 Inter Data Center connectivity using L3VPN

	IPv6 L3 North-South support for Flat/VLAN based Provider Networks

	L3VPN Dual Stack for VMs

	Listener Dependency Helper, avoids waiting for dependent IID

	Migrate the SFC classifier from the old to the new netvirt

	Netvirt counters

	Policy based path selection for multiple VxLAN tunnels

	QoS Alert

	Quality of Service

	Setup Source-MAC-Address for routed packets to virtual endpoints

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Support of VXLAN based L2 connectivity across Datacenters

	Support of VXLAN based connectivity across Datacenters

	Temporary SMAC Learning

	VLAN provider network enhancement

	VNI based L2 switching, L3 forwarding and NATing

	Neutron Port Allocation For DHCP Service

Table of Contents

	Title of the feature

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Title of the feature

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:cool-topic]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

example.yang

 module example {
 namespace "urn:opendaylight:netvirt:example";
 prefix "example";

 import ietf-yang-types {prefix yang; revision-date "2013-07-15";}

 description "An example YANG model.";

 revision 2017-02-14 { description "Initial revision"; }
 }

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

e.g. For most netvirt features this will include OpenStack APIs.

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-netvirt-openstack

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assignee and other contributors.

	Primary assignee:

	<developer-a>, <irc nick>, <email>

	Other contributors:

	<developer-b>, <irc nick>, <email>
<developer-c>, <irc nick>, <email>

Work Items

Break up work into individual items. This should be a checklist on a
Trello card for this feature. Provide the link to the trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc]. This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing projects that depend on Netvirt.

	Following projects currently depend on Netvirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is the impact on documentation for this change? If documentation
changes are needed call out one of the <contributors> who will work with
the Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	ACL Statistics

	Problem description

	Use Cases

	Proposed change

	ACL Changes

	Drop packets statistics support

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL Statistics

https://git.opendaylight.org/gerrit/#/q/topic:acl-stats

This feature is to provide additional operational support for ACL through statistical counters.
ACL rules provide security to VMs by filtering packets in either directions (ingress/egress).
Using OpenFlow statistical counters, ODL will provide additional information on the number of
packets dropped by the ACL rules. This information is made available to the operator “on demand”.

Drop statistics will be provided for below cases:

	Packets dropped due to ACL rules

	Packets dropped due to INVALID state. The INVALID state means that the packet can’t be identified
or that it does not have any state. This may be due to several reasons, such as the system
running out of memory or ICMP error messages that do not respond to any known connections.

The packet drop information provided through the statistical counters enable operators to
trouble shoot any misbehavior and take appropriate actions through automated or manual
intervention.

Collection and retrieval of information on the number of packets dropped by the SG rules

	Done for all (VM) ports in which SG is configured

	Flow statistical counters (in OpenFlow) are used for this purpose

	The information in these counters are made available to the operator, on demand, through an API

This feature will only be supported with Stateful ACL mode.

Problem description

With only ACL support, operators would not be able to tell how many packets dropped by ACL rules.
This enhancement planned is about ACL module supporting aforementioned limitation.

Use Cases

Collection and retrieval of information on the number of packets dropped by the ACL rules

	Done for all (VM) ports in which ACL is configured

	The information in these counters are made available to the operator, on demand, through an API

	Service Orchestrator/operator can also specify ports selectively where ACL rules are configured

Proposed change

ACL Changes

Current Stateful ACL implementation has drop flows for all ports combined for a device. This needs
to be modified to have drop flows for each of the OF ports connected to VMs (Neutron Ports).

With the current implementation, drop flows are as below:

cookie=0x6900000, duration=938.964s, table=252, n_packets=0, n_bytes=0, priority=62020,
 ct_state=+inv+trk actions=drop

cookie=0x6900000, duration=938.969s, table=252, n_packets=0, n_bytes=0, priority=50,
 ct_state=+new+trk actions=drop

Now, for supporting Drop packets statistics per port, ACL will be updated to replace above
flows with new DROP flows with lport tag as metadata for each of the VM (Neutron port) being
added to OVS as specified below:

cookie=0x6900001, duration=938.964s, table=252, n_packets=0, n_bytes=0, priority=62015,
 metadata=0x10000000000/0xffffff0000000000, ct_state=+inv+trk actions=drop

cookie=0x6900001, duration=938.969s, table=252, n_packets=0, n_bytes=0, priority=50,
 metadata=0x10000000000/0xffffff0000000000, ct_state=+new+trk actions=drop

Drop flows details explained above are for pipeline egress direction. For ingress side,
similar drop flows would be added with table=41.

Also, new cookie value 0x6900001 would be added with drop flows to identify it uniquely and
priority 62015 would be used with +inv+trk flows to give higher priority for +est and +rel
flows.

Drop packets statistics support

ODL Controller will be updated to provide a new RPC/NB REST API <get-acl-port-statistics> in
ACL module with ACL Flow Stats Request and ACL Flow Stats Response messages. This RPC/API
will retrieve details of dropped packets by Security Group rules for all the neutron ports
specified as part of ACL Flow Stats Request. The retrieved information (instantaneous) received
in the OF reply message is formatted as ACL Flow Stats Response message before sending it as a
response towards the NB.

<get-acl-port-statistics> RPC/API implementation would be triggering
opendaylight-direct-statistics:get-flow-statistics request of OFPlugin towards OVS to get the
flow statistics of ACL tables (ingress / egress) for the required ports.

ACL Flow Stats Request/Response messages are explained in subsequent sections.

Pipeline changes

No changes needed in OF pipeline. But, new flows as specified in above section would be added for
each of the Neutron ports being added.

Yang changes

New yang file will be created with RPC as specified below:

acl-live-statistics.yang

 module acl-live-statistics {
 namespace "urn:opendaylight:netvirt:acl:live:statistics";

 prefix "acl-stats";

 import ietf-interfaces {prefix if;}
 import aclservice {prefix aclservice; revision-date "2016-06-08";}

 description "YANG model describes RPC to retrieve ACL live statistics.";

 revision "2016-11-29" {
 description "Initial revision of ACL live statistics";
 }

 typedef direction {
 type enumeration {
 enum ingress;
 enum egress;
 enum both;
 }
 }

 grouping acl-drop-counts {
 leaf drop-count {
 description "Packets/Bytes dropped by ACL rules";
 type uint64;
 }
 leaf invalid-drop-count {
 description "Packets/Bytes identified as invalid";
 type uint64;
 }
 }

 grouping acl-stats-output {
 description "Output for ACL port statistics";
 list acl-interface-stats {
 key "interface-name";
 leaf interface-name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 list acl-drop-stats {
 max-elements "2";
 min-elements "0";
 leaf direction {
 type identityref {
 base "aclservice:direction-base";
 }
 }
 container packets {
 uses acl-drop-counts;
 }
 container bytes {
 uses acl-drop-counts;
 }
 }
 container error {
 leaf error-message {
 type string;
 }
 }
 }
 }

 grouping acl-stats-input {
 description "Input parameters for ACL port statistics";

 leaf direction {
 type identityref {
 base "aclservice:direction-base";
 }
 mandatory "true";
 }
 leaf-list interface-names {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 max-elements "unbounded";
 min-elements "1";
 }
 }

 rpc get-acl-port-statistics {
 description "Get ACL statistics for given list of ports";

 input {
 uses acl-stats-input;
 }
 output {
 uses acl-stats-output;
 }
 }
 }

Configuration impact

No configuration parameters being added/deprecated for this feature

Clustering considerations

No additional changes required to be done as only one RPC is being supported as part of
this feature.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

N.A.

Targeted Release

Carbon

Alternatives

Dispatcher table (table 17 and table 220) based approach of querying drop packets count was
considered. ie., arriving drop packets count by below rule:

<total packets entered ACL tables> - <total packets entered subsequent service>

This approach was not selected as this only provides total packets dropped count per port by ACL
services and does not provide details of whether it’s dropped by ACL rules or for some other
reasons.

Usage

Features to Install

odl-netvirt-openstack

REST API

Get ACL statistics

Following API gets ACL statistics for given list of ports.

Method: POST

URI: /operations/acl-live-statistics:get-acl-port-statistics

Parameters:

	Parameter

	Type

	Possible Values

	Comments

	“direction”

	Enum

	ingress/egress/both

	Required

	“interface-names”

	Array [UUID String]

	[<UUID String>,<UUID String>,..]

	Required (1,N)

Example:

{
 "input":
 {
 "direction": "both",
 "interface-names": [
 "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "6c53df3a-3456-11e5-a151-feff819cdc9f"
]
 }
}

Possible Responses:

RPC Success:

{
 "output": {
 "acl-port-stats": [
 {
 "interface-name": "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "0",
 "drop-count": "300"
 },
 "packets": {
 "invalid-drop-count": "0",
 "drop-count": "4"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "168",
 "drop-count": "378"
 },
 "packets": {
 "invalid-drop-count": "2",
 "drop-count": "9"
 }
 }]
 },
 {
 "interface-name": "6c53df3a-3456-11e5-a151-feff819cdc9f",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "1064",
 "drop-count": "1992"
 },
 "packets": {
 "invalid-drop-count": "18",
 "drop-count": "23"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "462",
 "drop-count": "476"
 },
 "packets": {
 "invalid-drop-count": "11",
 "drop-count": "6"
 }
 }]
 }]
}

RPC Success (with error for one of the interface):

{
 "output":
 {
 "acl-port-stats": [
 {
 "interface-name": "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "0",
 "drop-count": "300"
 },
 "packets": {
 "invalid-drop-count": "0",
 "drop-count": "4"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "168",
 "drop-count": "378"
 },
 "packets": {
 "invalid-drop-count": "2",
 "drop-count": "9"
 }
 },
 {
 "interface-name": "6c53df3a-3456-11e5-a151-feff819cdc9f",
 "error": {
 "error-message": "Interface not found in datastore."
 }
 }]
 }]
 }
}

Note

Below are error messages for the interface:

	“Interface not found in datastore.”

	“Failed to find device for the interface.”

	“Unable to retrieve drop counts due to error: <<error message>>”

	“Unable to retrieve drop counts as interface is not configured for statistics collection.”

	“Operation not supported for ACL <<Stateless/Transparent/Learn>> mode”

CLI

No CLI being added for this feature

Implementation

Assignee(s)

	Primary assignee:

	<Somashekar Byrappa>

	Other contributors:

	<Shashidhar R>

Work Items

	Adding new drop rules per port (in table 41 and 252)

	Yang changes

	Supporting new RPC

Dependencies

This doesn’t add any new dependencies.

This feature has dependency on below bug reported in OF Plugin:

Bug 7232 - Problem observed with “get-flow-statistics” RPC call [https://bugs.opendaylight.org/show_bug.cgi?id=7232]

Testing

Unit Tests

Following test cases will need to be added/expanded

	Verify ACL STAT RPC with single Neutron port

	Verify ACL STAT RPC with multiple Neutron ports

	Verify ACL STAT RPC with invalid Neutron port

	Verify ACL STAT RPC with mode set to “transparent/learn/stateless”

Also, existing unit tests will be updated to include new drop flows.

Integration Tests

Integration tests will be added, once IT framework is ready

CSIT

Following test cases will need to be added/expanded

	Verify ACL STAT RPC with single Neutron port with different directions (ingress, egress, both)

	Verify ACL STAT RPC with multiple Neutron ports with different
directions (ingress, egress, both)

	Verify ACL STAT RPC with invalid Neutron port

	Verify ACL STAT RPC with combination of valid and invalid Neutron ports

	Verify ACL STAT RPC with combination of Neutron ports with few having port-security-enabled as
true and others having false

Documentation Impact

This will require changes to User Guide. User Guide needs to be updated with details about new RPC
being supported and also about its REST usage.

References

N.A.

Note

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	ACL Remote ACL - Indirection Table to Improve Scale

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL Remote ACL - Indirection Table to Improve Scale

ACL Remote ACL Indirection patches:
https://git.opendaylight.org/gerrit/#/q/topic:remote_acl_indirection

This spec is to enhance the initial implementation of ACL remote ACLs filtering which was released
in Boron. The Boron release added full support for remote ACLs, however the current implementation
does not scale well in terms of flows. The Carbon release will update the implementation to
introduce a new indirection table for ACL rules with remote ACLs, to reduce the number of necessary
flows, in cases where the port is associated with a single ACL. Due to the complication of
supporting multiple ACLs on a single port, the current implementation will stay the same for these
cases.

Problem description

Today, for each logical port, an ACL rule results in a flow in the ACL table (ACL2). When a remote
ACL is configured on this rule, this flow is multiplied for each VM in the remote ACL, resulting in
a very large number of flows.

For example, consider we have:

	100 computes

	50 VMs on each compute (5000 VMs total),

	All VMs are in a SG (SG1)

	This SG has a security rule configured on it with remote SG=SG1
(it is common to set the remote SG as itself, to set rules within the SG).

This would result in 50*5000 = 250,000 flows on each compute, and 25M flows in ODL MDSAL (!).

Use Cases

Neutron configuration of security rules, configured with remote SGs. This optimization will be
relevant only when there is a single security group that is associated with the port. In case
more than one security group is associated with the port - we will fallback to the current
implementation which allows full functionality but with possible flow scaling issues.

Rules with a remote ACL are used to allow certain types of packets only between VMs in certain
security groups. For example, configuring rules with the parent security group also configured
as a remote security group, allows to configure rules applied only for traffic between VMs in
the same security group.

This will be done in the ACL implementation, so any ACL configured with a remote ACL via a different
northbound or REST would also be handled.

Proposed change

This blueprint proposes adding a new indirection table in the ACL service in each direction, which
will attempt to match the “remote” IP address associated with the packet (“dst_ip” in Ingress ACL,
“src_ip” in Egress ACL), and set the ACL ID as defined by the ietf-access-control-list in the
metadata. This match will also include the ELAN ID to handle ports with overlapping IPs.

These flows will be added to the ACL2 table. In addition, for each such ip->SG flow inserted in
ACL2, we will insert a single SG metadata match in ACL3 for each SG rule on the port configured with
this remote SG.

If the IP is associated with multiple SGs - it is impossible to do a 1:1 matching of the SG, so we
will not set the metadata at this time and fallback to the current implementation of matching all
possible IPs in the ACL table - for this ACL2 will have a default flow passing the unmatched packets
to ACL3 with an empty metadata SG_ID write (e.g. 0x0), to prevent potential garbage in the metadata
SG ID.

This means that on transition from a single SG on the port to multiple SG (and back), we would need
to remove/add these flows from ACL2, and insert the correct rules into ACL3.

ACL1 (211/241):

	This is the ACL that has default allow rules - it is left untouched, and usually goes to ACL2.

ACL2 (212/242):

	For each port with a single SG - we will match on the IPs and the ELAN ID (for tenant awareness)
here, and set the SG ID in the metadata, before going to the ACL3 table.

	For any port with multiple SGs (or with no SG) - an empty value (0x0) will be set as the SG ID in
the metadata, to avoid potential garbage in the SG ID, and goto ACL3 table.

ACL3 (213/243):

	For each security rule that doesn’t have a remote SG, we keep the behavior the same: ACL3
matches on rule, and resubmits to dispatcher if there is a match (Allow). The SG ID in the metadata
will not be matched.

	For each security rule that does have a remote SG, we have two options:

	For ports belonging to the remote SG that are associated with a single SG - there will be a
single flow per rule, matching the SG ID from the metadata (in addition to the other rule matches)
and allowing the packet.

	For ports belonging to the remote SG that are associated with multiple SGs - the existing
implementation will stay the same, multiplying the rule with all possible IP matches from the
remote security groups.

Considering the example from the problem description above, the new implementation would result in a
much reduced number of flows:

5000+50 = 5050 flows on each compute, and 505,000 flows in ODL MDSAL.

As noted above, this would require using part of the metadata for writing/matching of an ACL ID. We
would likely require at least 12 bits for this, to support up to 4K SGs, where 16 bits to support up
to 65K would be ideal. If the metadata bits are not available, we can use a register for this
purpose (16 bits).

In addition, the dispatcher will set the ELAN ID in the metadata before entering the ACL services,
to allow tenant aware IP to SG detection, supporting multi-tenants with IP collisions.

Pipeline changes

ACL3 will be added, and the flows in ACL2/ACL3 will be modified as noted above in the proposed change:

	Table

	Match

	Action

	Dispatcher

	metadata=service_id:ACL

	write_metadata:(elan_id=ELAN, service_id=NEXT), goto_table:ACL1

	ACL1 (211/241)

	goto_table:ACL2

	

	ACL2 (212/242)

	metadata=ELAN_ID, ip_src/dst=VM1_IP

	write_metadata:(remote_acl=id), goto_table:ACL3

	ACL2 (212/242)

	metadata=ELAN_ID, ip_src/dst=VM2_IP

	write_metadata:(remote_acl=id), goto_table:ACL3

	…

	
	

	ACL2 (212/242)

	
	goto_table:ACL3

	ACL3 (213/243)

	metadata=lport, <acl_rule>

	resubmit(,DISPATCHER) (X)

	ACL3 (213/243)

	metadata=lport+remote_acl, <acl_rule>

	resubmit(,DISPATCHER) (XX)

	ACL3 (213/243)

	metadata=lport,ip_src/dst=VM1_IP, <acl_rule>

	resubmit(,DISPATCHER) (XXX)

	ACL3 (213/243)

	metadata=lport,ip_src/dst=VM2_IP, <acl_rule>

	resubmit(,DISPATCHER) (XXX)

	…

	
	

(X) These are the regular rules, not configured with any remote SG.

(XX) These are the proposed rules with the optimization - assuming the lport is using a single ACL.

(XXX) These are the remote SG rules in the current implementation, which we will fall back to if the lport has multiple ACLs.

Table Numbering:

Currently the Ingress ACLs use tables 40,41,42 and the Egress ACLs use tables 251,252,253.

Table 43 is already proposed to be taken by SNAT, and table 254 is considered invalid by OVS.
To overcome this and align Ingress/Egress with symmetric numbering, I propose the following change:

	Ingress ACLs: 211, 212, 213, 214

	Egress ACLs: 241, 242, 243, 244

ACL1: INGRESS/EGRESS_ACL_TABLE
ACL2: INGRESS/EGRESS_ACL_REMOTE_ACL_TABLE
ACL3: INGRESS/EGRESS_ACL_FILTER_TABLE

ACL4 is used only for Learn implementation for which an extra table is required.

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

See example in description.
The scale of the flows will be drastically reduced when using remote ACLs.

Targeted Release

Carbon

Alternatives

For fully optimized support in all scenarios for remote SGs, meaning including support for ports
with multiple ACLs on them, we did consider implementing a similar optimization.

However, for this to happen due to OpenFlow limitations we would need to introduce an internal
dispatcher inside the ACL services, meaning we loop the ACL service multiple times, each time
setting a different metadata SG value for the port.

For another approach we could use a bitmask, but this would limit the number of possible SGs to be
the number of bits in the mask, which is much too low for any reasonable use case.

Usage

Any configuration of ACL rules with remote ACLs will receive this optimization if the port is using
a single SG.

Functionality should remain as before in any case.

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 1 for the Neutron CLI command syntax for managing Security
Rules with Remote Security Groups.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other
contributors.

Primary assignee:

	Alon Kochba <alonko@hpe.com>

	Aswin Suryanarayanan <asuryana@redhat.com>

Other contributors:

	?

Work Items

Task list in Carbon Trello [https://trello.com/c/6WBbSSkr/145-acl-remote-acls-indirection-table-to-improve-scale-remote-acl-indirection]

Dependencies

None.

Testing

Unit Tests

Integration Tests

CSIT

We should add tests verifying remote SG configuration functionality.
There should be at least:

	One security rule allowing ICMP traffic between VMs in the same SG.

	One positive test, checking ICMP connectivity works between two VMs using the same SG.

	One negative test, checking ICMP connectivity does not work between two VMs, one using the SG
configured with the rule above, and the other using a separate security group with all directions
allowed.

Documentation Impact

None.

References

	1

	Neutron Security Groups http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

Table of Contents

	ACL - Reflecting the ACL changes on existing traffic

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL - Reflecting the ACL changes on existing traffic

ACL patches:
https://git.opendaylight.org/gerrit/#/q/topic:acl-reflection-on-existing-traffic

This spec describes the new implementation for applying ACL changes on existing traffic.

In current ACL implementation, once a connection had been committed to the connection tracker, the connection would
continue to be allowed, even if the policy defined in the ACL table has changed. This spec will explain the new approach
that ensures ACL policy changes will affect existing connections as well. This approach will
improve the pipeline behaviour in terms of reliable traffic between the VMs.

Problem description

When the traffic between two VMs starts, the first packet will match the actual SG flow, which commits the packets
in connection tracker. It changes the state of the packets to established. Further traffic will match
the global conntrack flow and go through the connection tracker straightly. This will continue until we terminate the
established traffic.

When a rule is removed from the VM, the ACL flow getting removed from the respective tables. But, the already
established traffic is still working, because the connection still exists as ‘committed’ in the conntrack tracker.

For example, consider the below scenario which explains the problem in detail,

	Create a VM and associate the rule which allows ICMP

	Ping the DHCP server from the VM

	Remove the ICMP rule and check the ongoing traffic

When we remove the ICMP rule, the respective ICMP flow getting removed from the respective
table (For egress, table 213 and For Ingress, table 243). But, Since the conntrack flow having high priority than
the SG flow, the packets are matched by the conntrack flow and the live traffic is unaware of the flow removal.

The traffic between the VMs should be reliable and it should be succeeded accordance with SG flow. When a SG rule is
removed from the VM, the packets of ongoing traffic should be dropped.

Use Cases

	The new ACL implementation will affect the below use cases,

	
	VM Creation/Deletion with SG

	SG Rule addition and removal to/from existing SG associated to ports

Proposed change

This spec proposes the fix that requires a new table (210/240) in the existing pipeline.

In this approach, we will use the “ct_mark” flag of connection tracker. The default value of ct_mark is zero.

	ct_mark=0 matches the packet in new state

	ct_mark=1 matches the packet in established state

For every new traffic, the ct_mark value will be zero. When the traffic begins, the first packet of every
new traffic will be matched by the respective SG flow which commits the packets into the connection tracker and
changes the ct_mark value to 1. So, every packets of established traffic will have the ct_mark value as 1.

In conntrack flow, we will have a ct_mark=1 match condition. After first packet committed
to the connection tracker, further packets of established traffic will be matched by the conntrack flow straightly.

	In every SG flow, we will have below changes,

	“table=213/243, priority=3902, ct_state=+trk ,icmp,reg6=0x200/0xfffff00 actions=ct(commit,zone=6001,
exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	The SG flow will match the packets which are in tracked state. It will commit
the packet into the connection tracker. It will change the ct_mark value to 1.

	When a VM having duplicate flows, the removal of one flow should not affect the
existing traffic.

For example, consider a VM having ingress ICMP and Other protocol (ANY) rule. Ping the VM from the DHCP server. Removal of ingress ICMP rule
from the VM should not affect the existing traffic. Because the Other protocol ANY flow will match
the established packets of existing ICMP traffic and should make the communication possible.
To make the communication possible in above specific scenarios, we should match the established
packets in every SG flow. So, We will remove the “+new” check from the ct_state condition of every ACL flow to
recommit the established packets again into the conntrack.

	In conntrack flow,

	“table=213/243, priority=62020,ct_state=-new+est-rel-inv+trk, ct_mark=0x1 actions=resubmit(,17/220)”
“table=213/243, priority=62020,ct_state=-new-est+rel-inv+trk, ct_mark=0x1 actions=resubmit(,17/220)”

	The conntrack flow will match the packet which are in established state.

	For every new traffic, the first packet will be matched by the SG flow, which will change the ct_mark value to 1.
So, further packets will match the conntrack flow straightly.

	In default drop flow of table 213/243,

	“table=213, n_packets=0, n_bytes=0, priority=50, ct_state=+trk ,metadata=0x20000000000/0xfffff0000000000 actions=drop”
“table=243, n_packets=6, n_bytes=588, priority=50, ct_state=+trk ,reg6=0x300/0xfffff00 actions=drop”

	For every VM, we are having a default drop flow to measure the drop statistics of particular VM. So, we will remove
the “+new” state check from the ct_state to measure the drop counts accurately.

Deletion of SG flow will add the below flow with configured hard time out in the table 212/242.

[1] “table=212/242, n_packets=73, n_bytes=7154, priority=40,icmp,reg6=0x200/0xfffff00,ct_mark=1
actions=ct(commit, zone=5500, exec(set_field:0x0->ct_mark)),goto_table:ACL4”

	It will match the ct_mark value with the one and change the ct_mark to zero.

The below tables describes the default hard time out of each protocol as configured in the conntrack.

	Protocol

	Time out (secs)

	ICMP

	30

	TCP

	18000

	UDP

	180

Please refer the Pipeline Changes for table information.

For Egress, Dispatcher table (table 17) will forward the packets to the new table 210 where we will check the source match.
It will forward the packet to 211 to match the destination of the packets. After the destination of the packet verified,
The packets will forward to the table 212. New flow in the table, will match the ct_mark value and forward
the packets to the 213 table.

	Similarly, for Ingress, the packets will be forwarded through,

	Dispatcher table (220) >> New table (240) >> 241 >> 242 >> 243.

In dispatcher flows, we will have the below changes which will change the table 211/241 from the goto_table action to
the new table 210/240.

“table=17, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x900002157f000000/0xfffffffffffffffe, goto_table:210”

“table=220, priority=6,reg6=0x200 actions=load:0x90000200->NXM_NX_REG6[],write_metadata:0x157f000000/0xfffffffffe, goto_table:240”

Deletion of SG rule will add a new flow in the table 212/242 as mentioned above. The first packet after SG got deleted,
will match the above new flow and will change the ct_mark value to zero. So this packet will not match the conntrack
flow and will check the ACL4 table whether it having any other flows to match this packet. If the SG flow found, the packet
will be matched and change the ct_mark value 1.

If we restore the SG rule again, we will delete the added flow [1] from the 212/242 table, so the packets of
existing traffic will match the newly added SG flow in ACL4 table and proceed successfully.

Sample flows to be installed in each scenario,

	SG rule addition

	
	SG flow: [ADD]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk, icmp,
reg6=0x200/0xfffff00 actions=ct(commit,zone=6001, exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	Conntrack flow: [DEFAULT]

	“table=213/243, n_packets=105, n_bytes=10290, priority=62020,ct_state=-new+est-rel-inv+trk, ct_mark=0x1
actions=resubmit(,17/220)”

	SG Rule deletion

	
	SG flow: [DELETE]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk,icmp,reg6=0x200/0xfffff00
actions=ct(commit,zone=6001,exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	New flow: [ADD]

	“table=212/242, n_packets=73, n_bytes=7154, priority=62021, ct_mark=0x1,icmp,reg6=0x200/0xfffff00
actions=ct(commit, exec(set_field:0x0->ct_mark)),goto_table:213/243”

	Rule Restore

	
	SG flow: [ADD]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk, icmp,reg6=0x200/0xfffff00
actions=ct(commit,zone=6001,exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	New flow: [DELETE]

	“table=212/242, n_packets=73, n_bytes=7154, priority=62021,ct_mark=0x1,icmp,reg6=0x200/0xfffff00
actions=ct(commit,exec(set_field:0x0->ct_mark)),goto_table:213/243”

The new tables (210/240) will matches the source and the destination of the packets respectively. So, a default flow will be added in
the table 210/240 with least priority to drop the packets.

“table=210/240, n_packets=1, n_bytes=98, priority=0 actions=drop”

	Flow Sample:

	
Egress flows before the changes,

cookie=0x6900000, duration=30.590s, table=17, n_packets=108, n_bytes=10624, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x9000021389000000/0xfffffffffffffffe,goto_table:211
cookie=0x6900000, duration=30.247s, table=211, n_packets=0, n_bytes=0, priority=61010,ipv6,dl_src=fa:16:3e:93:dc:92,ipv6_src=fe80::f816:3eff:fe93:dc92 actions=ct(table=212,zone=5001)
cookie=0x6900000, duration=30.236s, table=211, n_packets=96, n_bytes=9312, priority=61010,ip,dl_src=fa:16:3e:93:dc:92,nw_src=10.100.5.3 actions=ct(table=212,zone=5001)
cookie=0x6900000, duration=486.527s, table=211, n_packets=2, n_bytes=180, priority=0 actions=drop
cookie=0x6900000, duration=30.157s, table=212, n_packets=0, n_bytes=0, priority=50,ipv6,metadata=0x1389000000/0xffff000000,ipv6_dst=fe80::f816:3eff:fe93:dc92 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=30.152s, table=212, n_packets=0, n_bytes=0, priority=50,ip,metadata=0x1389000000/0xffff000000,nw_dst=10.100.5.3 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=486.527s, table=212, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:212
cookie=0x6900000, duration=486.056s, table=213, n_packets=80, n_bytes=8128, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x6900000, duration=485.948s, table=213, n_packets=0, n_bytes=0, priority=62020,ct_state=-new-est+rel-inv+trk actions=resubmit(,17)
cookie=0x6900001, duration=30.184s, table=213, n_packets=0, n_bytes=0, priority=62015,ct_state=+inv+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop
cookie=0x6900000, duration=30.177s, table=213, n_packets=16, n_bytes=1184, priority=1000,ct_state=+new+trk,ip,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900000, duration=30.168s, table=213, n_packets=0, n_bytes=0, priority=1001,ct_state=+new+trk,ipv6,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900001, duration=30.207s, table=213, n_packets=0, n_bytes=0, priority=50,ct_state=+new+trk,metadata=0x20000000000/0xfffff0000000000 actions=dro

After the changes, flows will be,

cookie=0x6900000, duration=30.590s, table=17, n_packets=108, n_bytes=10624, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x9000021389000000/0xfffffffffffffffe,goto_table:210
cookie=0x6900000, duration=30.247s, table=210, n_packets=0, n_bytes=0, priority=61010,ipv6,dl_src=fa:16:3e:93:dc:92,ipv6_src=fe80::f816:3eff:fe93:dc92 actions=ct(table=211,zone=5001)
cookie=0x6900000, duration=30.236s, table=210, n_packets=96, n_bytes=9312, priority=61010,ip,dl_src=fa:16:3e:93:dc:92,nw_src=10.100.5.3 actions=ct(table=211,zone=5001)
cookie=0x6900000, duration=486.527s, table=210, n_packets=2, n_bytes=180, priority=0 actions=drop
cookie=0x6900000, duration=30.157s, table=211, n_packets=0, n_bytes=0, priority=50,ipv6,metadata=0x1389000000/0xffff000000,ipv6_dst=fe80::f816:3eff:fe93:dc92 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=30.152s, table=211, n_packets=0, n_bytes=0, priority=50,ip,metadata=0x1389000000/0xffff000000,nw_dst=10.100.5.3 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=486.527s, table=211, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:212
cookie=0x6900000, duration=486.527s, table=212, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:213
cookie=0x6900000, duration=486.056s, table=213, n_packets=80, n_bytes=8128, priority=62020,ct_state=-new+est-rel-inv+trk,ct_mark=0x1 actions=resubmit(,17)
cookie=0x6900000, duration=485.948s, table=213, n_packets=0, n_bytes=0, priority=62020,ct_state=-new-est+rel-inv+trk,ct_mark=0x1 actions=resubmit(,17)
cookie=0x6900001, duration=30.184s, table=213, n_packets=0, n_bytes=0, priority=62015,ct_state=+inv+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop
cookie=0x6900000, duration=30.177s, table=213, n_packets=16, n_bytes=1184, priority=1000,ct_state=+trk,ip,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001,exec(set_field:0x1->ct_mark)),resubmit(,17)
cookie=0x6900000, duration=30.168s, table=213, n_packets=0, n_bytes=0, priority=1001,ct_state=+new+trk,ipv6,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900001, duration=30.207s, table=213, n_packets=0, n_bytes=0, priority=50,ct_state=+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop

	New flow will be installed in table 212 when we delete SG rule,

	“cookie=0x6900000, duration=30.177s, table=212, n_packets=16, n_bytes=1184, priority=1000,ct_state=+trk,ip,metadata=0x20000000000/0xfffff0000000000,ct_mark=1,idle_timeout=1800 actions=ct(commit,zone=5001,exec(set_field:0x0->ct_mark)),goto_table:213”

Similarly, the ingress related flows will have the same changes as mentioned above.

Pipeline changes

	The propose changes includes:

	
	New tables 210 and 240

	Re-purposed tables 211, 212, 241, 242

The propose will re-purpose the table 211 and 212 of egress, table 241 and 242 of ingress.

Currently, for egress, we are using the table 211 for source match and 212 for destination match.
In new propose, we will use the new table 210 for source match, table 211 for destination match and table 212 for new
flow installation when we delete the SG flow.

	For Egress, the traffic will use the tables in following order,

	17 >> 210 >> 211 >> 212 >> 213.

Similarly, for ingress, currently we are using the table 241 for destination match and 242 for source match.
In new propose, we will use the new table 240 for destination match, table 241 for source match and table 242 for new
flow installation when we delete the SG flow.

	For Ingress, the traffic will use the tables in following order,

	220 >> 240 >> 241 >> 242 >> 243

flow will be added in table 212/242, and the match condition of ACL4 flows will be modified as noted above in the proposed change:

	Table

	Match

	Action

	Dispatcher

	metadata=service_id:ACL

	write_metadata:(elan_id=ELAN, service_id=NEXT), goto_table:210/240 (ACL1)

	ACL1 (210/240)

	
	goto_table:ACL2

	…

	
	

	ACL2 (211/241)

	
	goto_table:ACL3

	ACL3 (212/242)

	ip,ct_mark=0x1,reg6=0x200/0xfffff00

	(set_field:0x0->ct_mark), goto_table:ACL4

	ACL3 (212/242)

	
	goto_table:ACL4

	ACL4 (213/243)

	ct_state=-new+est-rel-inv+trk,ct_mark=0x1

	resubmit(,DISPATCHER)

	ACL4 (213/243)

	ct_state=+trk,priority=3902,ip,reg6=0x200/0xfffff00

	set_field:0x1>ct_mark, resubmit(,DISPATCHER)

	ACL4 (213/243)

	ct_state=+trk, reg6=0x200/0xfffff00

	drop

	…

	
	

Yang changes

The nicira-action.yang and the openflowplugin-extension-nicira-action.yang needs to be updated
with ct_mark action. The action structure shall be

grouping ofj-nx-action-conntrack-grouping {
 container nx-action-conntrack {
 leaf flags {
 type uint16;
 }
 leaf zone-src {
 type uint32;
 }
 leaf conntrack-zone {
 type uint16;
 }
 leaf recirc-table {
 type uint128;
 }
 leaf experimenter-id {
 type oft:experimenter-id;
 }
 list ct-actions{
 uses ofpact-actions;
 }
 }
 }

The nicira-match.yang and the openflowplugin-extension-nicira-match.yang needs to be updated
with the ct_mark match.

grouping ofj-nxm-nx-match-ct-mark-grouping{
 container ct-mark-values {
 leaf ct-mark {
 type uint32;
 }
 leaf mask {
 type uint32;
 }
 }
 }

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

When we delete the SG rule from the VM, A new flow will be added in the flow table 212 to flip
the value of ct_mark of ongoing traffics. This flow will have a time out based on the protocol as mentioned in the
proposed changes section. The packets of ongoing traffic will be recommitted and will do the set filed of ct_mark until
the flow reaches the time out.

Targeted Release

Carbon

Alternatives

While deleting a SG flow from the flow table, we will add a DROP flow with the highest priority in the ACL4 table.
This DROP flow will drop the packets and it will stop the existing traffic. Similarly, when we restore the
same rule again, we will delete the DROP flow from the ACL4 table which will enable the existing traffic.

But this approach will be effective only if the VM do not have any duplicate flows. With the current ACL
implementation, if we associate two SGs which having similar set of SG rule, netvirt will install the two set of
flows with different priority for the same VM.

As per above approach, if we dissociate any one of SG from the VM, It will add the DROP flow in ACL4 table which
will stops the existing traffic irrespective of there is still another flow available in ACL4, to make the
traffic possible.

Usage

Traffic between VMs will work accordance with the SG flow existence in the flow table.

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 1 for the Neutron CLI command syntax for managing Security
Rules.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assignee and other
contributors.

Primary assignee:

	VinothB <vinothb@hcl.com>

	Balakrishnan Karuppasamy <balakrishnan.ka@hcl.com>

Other contributors:

	?

Work Items

None

Dependencies

None.

Testing

Unit Tests

Integration Tests

CSIT

We should add tests verifying ACL change reflection on existing traffic.
There should be at least:

	One security rule allowing ICMP traffic between VMs in the same SG.

	One positive test, checking ICMP connectivity works between two VMs using the same SG. Delete all the rules from
the SG without disturbing the already established traffic. It should stop the traffic.

	One positive test, checking ICMP connectivity works between two VMs,one using the SG,
configured with the ICMP rule, Delete and restore the ICMP rule immediately. This should stop and resume the ICMP traffic after
restoring the ICMP rule.

	One positive test, checking ICMP connectivity between VMs, using the SG,
configured with ICMP ALL and Other protocol ANY rule. Delete the ICMP rule from the SG, It should not stop the ICMP traffic.

	One negative test, checking ICMP connectivity between two VMs, one using the SG,
configured with the ICMP and TCP rules above, and delete the TCP rule. This should not affect the ICMP traffic.

Documentation Impact

None.

References

	1

	Neutron Security Groups http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

Table of Contents

	Conntrack Based SNAT

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create External Network

	Create Internal Network

	Create Router

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Conntrack Based SNAT

https://git.opendaylight.org/gerrit/#/q/topic:snat_conntrack

The ovs conntrack based SNAT implements Source Network Address Translation using openflow rules by
leveraging ovs-netfilter integration.

Problem description

Today SNAT is done in Opendaylight netvirt using controller punting and thus controller installing
the rules for inbound and outbound NAPT. This causes significant delay as the first packet of all
the new connections needs to go through the controller.The number of flows grows linearly with the
increase in the vms. Also the current implementation does not support ICMP.

The current algorithm for selecting the NAPT switch does not work well with conntrack based SNAT.
For a NAPT switch to remain as designated NAPT switch, it requires at least one port from any of
the subnets present in the router. When such a port cease to exist a new NAPT switch will be
elected. With the controller based implementation the failover is faster as the NAT flows are
reinstalled to the new NAPT switch and should not lead to termination of existing connection.
With the conntrack based approach, the translation will be lost and the newly elected switch will
have to redo the translation. This will lead to connection timeout for TCP like connections. So
the re-election needs to be prevented unless switch is down. Also the current implementation
tends to select the node running the DHCP agent as the designated NAPT switch as the DHCP port is
the first port created for a subnet.

Use Cases

The following use case will be realized by the implementation

External Network Access
The SNAT enables the VM in a tenant network access the external network without using a floating ip. It
uses NAPT for sharing the external ip address across multiple VMs that share the same router
gateway.

Proposed change

The proposed implementation uses linux netfilter framework to do the NAPT (Network Address Port
Translation) and for tracking the connection. The first packet of a traffic will be committed to
the netfilter for translation along with the external ip. The subsequent packets will use the entry
in the netfilter for inbound and outbound translation. The router id will be used as the zone id in
the netfilter. Each zone tracks the connection in its own table. The rest of the implementation for
selecting the designated NAPT switch and non designated switches will remain the same. The pipeline
changes will happen in the designated switch. With this implementation we will be able to do
translation for icmp as well.

The openflow plugin needs to support new set of actions for conntrack based NAPT. This shall be
added in the nicira plugin extension of OpenFlow plugin.

The new implementation will not re-install the existing NAT entries to the new NAPT switch during
fail-over. Also spec does not cover the use case of having multiple external subnets in the same
router.

The HA framework will have a new algorithm to elect the designated NAPT switch. The
new logic will be applicable only if the conntrack mode is selected. The switch selection logic
will also be modified to use round robin logic with weights associated with each switch. It will
not take into account whether a port belonging to a subnet in the router is present in the switch.
The initial weight of all the switches shall be 0 and will be incremented by 1 when the switch is
selected as the designated NAPT. The weights shall be decremented by 1 when the router is deleted.
At any point of time the switch with the lowest weight will be selected as the designated NAPT
switch for a new router. If there are multiple the first one with the lowest weight will be
selected. A pseudo port will be added in the switch which is selected as the designated NAPT
switch. This port will be deleted only when the switch cease to be a designated NAPT switch. This
helps the switch to maintain the remote flows even when there are no ports in the router subnet in
the switch. Only if the switch hosting the designated NAPT switch is down a new NAPT switch will be
elected.

Pipeline changes

The ovs based NAPT flows will replace the controller based NAPT flows. The changes are limited
to the designated switch for the router. Below is the illustration for flat external network.

Outbound NAPT

Table 26 (PSNAT Table) => submits the packet to netfilter to check whether it is an existing
connection. Resubmits the packet back to 46.

Table 46 (NAPT OUTBOUND TABLE) => if it is an established connection, it indicates the
translation is done and the packet is forwarded to table 47 after writing the external network
metadata.

If it is a new connection the connection will be committed to netfilter and this entry will be
used for NAPT. The translated packet will be resubmitted to table 47. The external network
metadata will be written before sending the packet to netfilter.

Table 47 (NAPT FIB TABLE) => The translated packet will be sent to the egress group.

Sample Flows

table=26, priority=5,ip,metadata=0x222e2/0xfffffffe actions=ct(table=46,zone=5003,nat)
table=46, priority=6,ct_state=+snat,ip,metadata=0x222e2/0xfffffffe actions=set_field:0x222e0->metadata,resubmit(,47)
table=46, priority=5,ct_state=+new+trk,ip,metadata=0x222e2/0xfffffffe actions=set_field:0x222e0->metadata,ct(commit,table=47,zone=5003,nat(src=192.168.111.21))
table=47, n_packets=0, n_bytes=0, priority=6,ct_state=+snat,ip,nw_src=192.168.111.21 actions=group:200000

Inbound NAPT

Table 44 (NAPT INBOUND Table)=> submits the packet to netfilter to check for an existing
connection after changing the metadata to that of the internal network. The packet will be
submitted back to table 47.

Table 47 (NAPT FIB TABLE) => The translated packet will be submitted back to table 21.

Sample Flows

table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=192.168.111.21 actions=resubmit(,44)
table=44, priority=10,ip,metadata=0x222e0/0xfffffffe,nw_dst=192.168.111.21 actions=set_field:0x222e2->metadata,ct(table=47,zone=5003,nat)
table=47, priority=5,ct_state=+dnat,ip actions=resubmit(,21)

Yang changes

The nicira-action.yang and the openflowplugin-extension-nicira-action.yang needs to be updated
with nat action. The action structure shall be

typedef nx-action-nat-range-present {
 type enumeration {
 enum NX_NAT_RANGE_IPV4_MIN {
 value 1;
 description "IPV4 minimum value is present";
 }
 enum NX_NAT_RANGE_IPV4_MAX {
 value 2;
 description "IPV4 maximum value is present";
 }
 enum NX_NAT_RANGE_IPV6_MIN {
 value 4;
 description "IPV6 minimum value is present in range";
 }
 enum NX_NAT_RANGE_IPV6_MAX {
 value 8;
 description "IPV6 maximum value is present in range";
 }
 enum NX_NAT_RANGE_PROTO_MIN {
 value 16;
 description "Port minimum value is present in range";
 }
 enum NX_NAT_RANGE_PROTO_MAX {
 value 32;
 description "Port maximum value is present in range";
 }
 }
 }

typedef nx-action-nat-flags {
 type enumeration {
 enum NX_NAT_F_SRC {
 value 1;
 description "Source nat is selected ,Mutually exclusive with NX_NAT_F_DST";
 }
 enum NX_NAT_F_DST {
 value 2;
 description "Destination nat is selected";
 }
 enum NX_NAT_F_PERSISTENT {
 value 4;
 description "Persistent flag is selected";
 }
 enum NX_NAT_F_PROTO_HASH {
 value 8;
 description "Hash mode is selected for port mapping, Mutually exclusive with
 NX_NAT_F_PROTO_RANDOM ";
 }
 enum NX_NAT_F_PROTO_RANDOM {
 value 16;
 description "Port mapping will be randomized";
 }
 }
 }

grouping ofj-nx-action-conntrack-grouping {
 container nx-action-conntrack {
 leaf flags {
 type uint16;
 }
 leaf zone-src {
 type uint32;
 }
 leaf conntrack-zone {
 type uint16;
 }
 leaf recirc-table {
 type uint8;
 }
 leaf experimenter-id {
 type oft:experimenter-id;
 }
 list ct-actions{
 uses ofpact-actions;
 }
 }
 }

grouping ofpact-actions {
 description
 "Actions to be performed with conntrack.";
 choice ofpact-actions {
 case nx-action-nat-case {
 container nx-action-nat {
 leaf flags {
 type uint16;
 }
 leaf range_present {
 type uint16;
 }
 leaf ip-address-min {
 type inet:ip-address;
 }
 leaf ip-address-max {
 type inet:ip-address;
 }
 leaf port-min {
 type uint16;
 }
 leaf port-max {
 type uint16;
 }
 }
 }
 }
}

For the new configuration knob a new yang natservice-config shall be added in NAT service, with the
container for holding the NAT mode configured. It will have two options controller and conntrack,
with controller being the default.

container natservice-config {
 config true;
 leaf nat-mode {
 type enumeration {
 enum "controller";
 enum "conntrack";
 }
 default "controller";
 }
}

Configuration impact

The proposed change requires the NAT service to provide a configuration knob to switch between the
controller based/conntrack based implementation. A new configuration file
netvirt-natservice-config.xml shall be added with default value controller.

<natservice-config xmlns="urn:opendaylight:netvirt:natservice-config">
 <nat-mode>controller</nat-mode>
</natservice-config>

The dynamic update of nat-mode will not be supported. To change the nat-mode the controller cluster
needs to be restarted after changing the nat-mode. On restart the NAT translation lifecycle will be
reset and after the controller comes up in the updated nat-mode, a new set of switches will be
elected as designated NAPT switches and it can be different from the ones that were forwarding
traffic earlier.

Clustering considerations

NA

Other Infra considerations

The implementation requires ovs2.6 with the kernel module installed. OVS currently does not support
SNAT connection tracking for dpdk datapath. It would be supported in some future release.

Security considerations

NA

Scale and Performance Impact

The new SNAT implementation is expected to improve the performance when compared to the existing
one and will reduce the flows in ovs pipeline.

Targeted Release

Carbon

Alternatives

An alternative implementation of X NAPT switches was discussed, which will not be a part of this
document but will be considered as a further enhancement.

Usage

Create External Network

Create an external flat network and subnet

neutron net-create ext1 --router:external --provider:physical_network public --provider:network_type flat
neutron subnet-create --allocation-pool start=<start-ip>,end=<end-ip> --gateway=<gw-ip> --disable-dhcp --name subext1 ext1 <subnet-cidr>

Create Internal Network

Create an internal n/w and subnet

neutron net-create vx-net1 --provider:network_type vxlan
neutron subnet-create vx-net1 <subnet-cidr> --name vx-subnet1

Create Router

Create a router and add an interface to internal n/w. Set the external n/w as the router gateway.

neutron router-create router1
neutron router-interface-add router1 vx-subnet1
neutron router-gateway-set router1 ext1
nova boot --poll --flavor m1.tiny --image $(nova image-list | grep 'uec\s' | awk '{print $2}' | tail -1) --nic net-id=$(neutron net-list | grep -w vx-net1 | awk '{print $2}') vmvx2

Features to Install

odl-netvirt-openstack

REST API

NA

CLI

A new command line, display-napt-switch, will be added to display the current designated NAPT
switch selected for each router. It shall show the below info.

router id | Host Name of designated NAPT switch | Management Ip of the designated NAPT switch

Implementation

Assignee(s)

Aswin Suryanarayanan <asuryana@redhat.com>

Work Items

https://trello.com/c/DMLsrLfq/9-snat-decentralized-ovs-nat-based

	Write a framework which can support multiple modes of NAT implementation.

	Add support in openflow plugin for conntrack nat actions.

	Add support in genius for conntrack nat actions.

	Add a config parameter to select between controller based and conntrack based.

	Add the flow programming for SNAT in netvirt.

	Add the new HA framework.

	Add the command to display the designated NAPT switch.

	Write Unit tests for conntrack based snat.

Dependencies

NA

Testing

Unit Tests

Unit test needs to be added for the new snat mode. It shall use the component tests framework

Integration Tests

Integration tests needs to be added for the conntrack snat flows.

CSIT

Run the CSIT with conntrack based SNAT configured.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

Table of Contents

	Cross site connectivity with federation service

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Cross site connectivity with federation service

https://git.opendaylight.org/gerrit/#/q/topic:federation-plugin

Enabling neutron networks to expand beyond a single OpenStack instance to allow L2 switching and L3 routing
between sites. Sites may be geographically remote or partitioned in a single data center.

Each site is deployed with independent local ODL cluster. The clusters communicate using the federation
infrastructure [2] in order to publish MDSAL events whenever routable entities e.g. VM instances are added/removed
from remote sites.

VxLAN tunnels are used to form the overlay for cross site communication between OpenStack compute nodes.

Problem description

Today, communication between VMs in remote sites is based on BGP control plane and requires DC-GW.
Overlay network between data centers is based on MPLSoverGRE or VxLAN if the DC-GW supports EVPN RT5 [4].
The purpose of this feature is to allow inter-DC communication independent from BGP control plane and DC-GW.

Use Cases

This feature will cover the following use cases:

L2 switching use cases

	L2 Unicast frames exchanged between VMs sharing federated neutron network between OVS datapaths in
remote sites

	L2 Unicast frames exchanged between VM and PNF sharing federated neutron network between OVS and HWVTEP
datapath in remote sites

	L2 Broadcast frames exchanged between VMs sharing federated neutron network between OVS datapaths in
remote sites

	L2 Broadcast frames exchanged between VM and PNF sharing federated neutron network between OVS and HWVTEP
datapath in remote sites

L3 forwarding use cases

	L3 traffic exchanged between VMs sharing federated neutron router between OVS datapaths in
remote sites

Proposed change

For Carbon release, cross-site connectivity will be based on the current HPE downstream federation plugin codebase.
This plugin implements the federation service API [3] to synchronize the following MDSAL subtrees between connected
sites:

	config/ietf-interfaces:interfaces

	config/elan:elan-interfaces

	config/l3vpn:vpn-interfaces

	config/network-topology:network-topology/topology/ovsdb:1

	operational/network-topology:network-topology/topology/ovsdb:1

	config/network-topology:network-topology/topology/hwvtep:1

	operational/network-topology:network-topology/topology/hwvtep:1

	config/opendaylight-inventory:nodes

	operational/opendaylight-inventory:nodes

	config/neutron:neutron/l2gateways

	config/neutron:neutron/l2gatewayConnections

The provisioning of connected networks between remote sites is out of the scope of this spec and described in [6].

Upon receiving a list of shared neutron networks and subnets, the federation plugin will propagate MDSAL entities from
all of the subtrees detailed above to remote sites based on the federation connection definitions.
The federated entities will be transformed to match the target network/subnet/router details in each remote site.

For example, ELAN interface will be federated with elan-instance-name set to the remote site elan-instance-name.
VPN interface will be federated with the remote site vpn-instance-name i.e. router-id and remote subnet-id contained
in the primary VPN interface adjacency.

This would allow remotely federated entities a.k.a shadow entities to be handled the same way local entities are handled
thus shadow entities will appear as if they were local entities in remote sites.
As a result, the following pipeline elements will be added for shadow entities on all compute nodes in each connected
remote site:

	ELAN remote DMAC flow for L2 unicast packets to remote site

	ELAN remote broadcast group buckets for L2 multicast packets to remote site

	FIB remote nexthop flow for L3 packet to remote site

The following limitations exist for the current federation plugin implementation:

	Federated networks use VxLAN network type and the same VNI is used across sites.

	The IP addresses allocated to VM instances in federated subnets do not overlap across sites.

	The neutron-configured VNI will be passed on the wire for inter-DC L2/L3 communication between VxLAN networks.
The implementation is described in [5].

As part of Nitrogen, the federation plugin is planned to go through major redesign. The scope and internals have not
been finalized yet but this spec might be a good opportunity to agree on an alternate solution.

Some initial thoughts:

	For L3 cross site connectivity, it seems that federating the FIB vrf-entry associated with VMs in connected
networks should be sufficient to form remote nexthop connectivity across sites.

	In order to create VxLAN tunnels to remote sites, it may be possible to use the external tunnel concept instead
of creating internal tunnels that are dependent on federation of the OVS topology nodes from remote sites.

	L2 cross site connectivity is the most challenging part for federation of MAC addresses of both VM
instances and PNFs connected to HWVTEP.
If the ELAN model could be enhanced to have remote-mac-entry model containing MAC address, ELAN instance name
and remote TEP ip, it would be possible to federate such entity to remote sites in order to create remote DMAC
flows for cases of remote VM instances and PNFs connected HWVTEP in remote sites.

Pipeline changes

No new pipeline changes are introduced as part of this feature. The pipeline flow between VM instances in
remote sites is similar to the current implementation of cross compute intra-DC traffic since the
realization of remote compute nodes is similar to local ones.

Yang changes

The following new yang models will be introduced as part of the federation plugin API bundle:

Federation Plugin Yang

Marking for each federated entity using shadow-properties augmentation

module federation-plugin {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin";
 prefix "federation-plugin";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import network-topology {
 prefix topo;
 }

 import opendaylight-inventory {
 prefix inv;
 }

 import ietf-interfaces {
 prefix if;
 }

 import elan {
 prefix elan;
 }

 import l3vpn {
 prefix l3vpn;
 }

 import neutronvpn {
 prefix nvpn;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 grouping shadow-properties {
 leaf shadow {
 type boolean;
 description "Represents whether this is a federated entity";
 }
 leaf generation-number {
 type int32;
 description "The current generation number of the federated entity";
 }
 leaf remote-ip {
 type string;
 description "The IP address of the original site of the federated entity";
 }
 }

 augment "/topo:network-topology/topo:topology/topo:node" {
 ext:augment-identifier "topology-node-shadow-properties";
 uses shadow-properties;
 }

 augment "/inv:nodes/inv:node" {
 ext:augment-identifier "inventory-node-shadow-properties";
 uses shadow-properties;
 }

 augment "/if:interfaces/if:interface" {
 ext:augment-identifier "if-shadow-properties";
 uses shadow-properties;
 }

 augment "/elan:elan-interfaces/elan:elan-interface" {
 ext:augment-identifier "elan-shadow-properties";
 uses shadow-properties;
 }

 augment "/l3vpn:vpn-interfaces/l3vpn:vpn-interface" {
 ext:augment-identifier "vpn-shadow-properties";
 uses shadow-properties;
 }
}

Federation Plugin Manager Yang

Management of federated networks and routed RPCs subscription

module federation-plugin-manager {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:manager";
 prefix "federation-plugin-manager";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 identity mgr-context {
 description "Identity for a routed RPC";
 }

 container routed-container {
 list route-key-item {
 key "id";
 leaf id {
 type string;
 }

 ext:context-instance "mgr-context";
 }
 }

 container federated-networks {
 list federated-network {
 key self-net-id;
 uses federated-nets;
 }
 }

 container federation-generations {
 description
 "Federation generation information for a remote site.";
 list remote-site-generation-info {
 max-elements "unbounded";
 min-elements "0";
 key "remote-ip";
 leaf remote-ip {
 mandatory true;
 type string;
 description "Remote site IP address.";
 }
 leaf generation-number {
 type int32;
 description "The current generation number used for the remote site.";
 }
 }
 }

 grouping federated-nets {
 leaf self-net-id {
 type string;
 description "UUID representing the self net";
 }
 leaf self-subnet-id {
 type yang:uuid;
 description "UUID representing the self subnet";
 }
 leaf self-tenant-id {
 type yang:uuid;
 description "UUID representing the self tenant";
 }
 leaf subnet-ip {
 type string;
 description "Specifies the subnet IP in CIDR format";
 }

 list site-network {
 key id;
 leaf id {
 type string;
 description "UUID representing the site ID (from xsite manager)";
 }
 leaf site-ip {
 type string;
 description "Specifies the site IP";
 }
 leaf site-net-id {
 type string;
 description "UUID of the network in the site";
 }
 leaf site-subnet-id {
 type yang:uuid;
 description "UUID of the subnet in the site";
 }
 leaf site-tenant-id {
 type yang:uuid;
 description "UUID of the tenant holding this network in the site";
 }
 }
 }
}

Federation Plugin RPC Yang

FederationPluginRpcService yang definition for update-federated-networks RPC

module federation-plugin-rpc {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:rpc";
 prefix "federation-plugin-rpc";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import federation-plugin-manager {
 prefix federation-plugin-manager;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 rpc update-federated-networks {
 input {
 list federated-networks-in {
 key self-net-id;
 uses federation-plugin-manager:federated-nets;
 description "Contain all federated networks in this site that are still
 connected, a federated network that does not appear will be considered
 disconnected";
 }
 }
 }
}

Federation Plugin routed RPC Yang

Routed RPCs will be used only within the cluster to route connect/disconnect requests to the federation cluster singleton.

module federation-plugin-routed-rpc {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:routed:rpc";
 prefix "federation-plugin-routed-rpc";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import federation-plugin-manager {
 prefix federation-plugin-manager;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 rpc update-federated-networks {
 input {
 leaf route-key-item {
 type instance-identifier;
 ext:context-reference federation-plugin-manager:mgr-context;
 }

 list federated-networks-in {
 key self-net-id;
 uses federation-plugin-manager:federated-nets;
 }
 }
 }
}

Configuration impact

None.

Clustering considerations

The federation plugin will be active only on one of the ODL instances in the cluster. The cluster singleton service
infrastructure will be used in order to register the federation plugin routed RPCs only on the selected ODL instance.

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Features to Install

odl-netvirt-federation

This is a new feature that will load odl-netvirt-openstack and the federation service features.
It will not be installed by default and requires manual startup using karaf feature:install command.

REST API

Connecting neutron networks from remote sites

URL: restconf/operations/federation-plugin-manager:update-federated-networks

Sample JSON data

{
 "input": {
 "federated-networks-in": [
 {
 "self-net-id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7920",
 "self-subnet-id": "93dee7cb-ba25-4318-b60c-19a15f2c079a",
 "subnet-ip": "10.0.123.0/24",
 "site-network": [
 {
 "id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7922",
 "site-ip": "10.0.43.146",
 "site-net-id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7921",
 "site-subnet-id": "93dee7cb-ba25-4318-b60c-19a15f2c079b",
 }
]
 }
]
 }
}

CLI

None.

Implementation

Assignee(s)

	Primary assignee:

	Tali Ben-Meir <tali@hpe.com>

	Other contributors:

	Guy Sela <guy.sela@hpe.com>

Shlomi Alfasi <shlomi.alfasi@hpe.com>

Yair Zinger <yair.zinger@hpe.com>

Work Items

Trello card https://trello.com/c/mgdUO6xx/154-federation-plugin-for-netvirt

Since the code was already implemented in downstream no work items will be defined

Dependencies

This feature will be implemented in 2 new bundles - federation-plugin-api and federation-plugin-impl
the implementation will be dependent on federation-service-api [3] bundle from OpenDaylight federation project.

The new karaf feature odl-netvirt-federation will encapsulate the federation-plugin api and impl bundles
and will be dependant on the followings features:

	federation-with-rabbit from federation project

	odl-netvirt-openstack from netvirt project

Testing

Unit Tests

End-to-end component service will test the federation plugin on top of the federation service.

Integration Tests

None

CSIT

The CSIT infrastructure will be enhanced to support connect/disconnect operations between sites using
update-federated-networks RPC call.

A new federation suite will test L2 and L3 connectivity between remote sites and will be based on the
existing L2/L3 connectivity suites.
CSIT will load sites A,B and C in 1-node/3-node deployment options to run the following tests:

1 Install odl-netvirt-federation feature

	Basic L2 connectivity test within the site

	Basic L3 connectivity test within the site

	L2 connectivity between sites - expected to fail since sites are not connected

	L3 connectivity between sites - expected to fail since sites are not connected

2 Connect sites A,B

	Basic L2 connectivity test within the site

	L2 connectivity test between VMs in sites A,B

	L2 connectivity test between VMs in sites A,C and B,C - expected to fail since sites are not connected

	Basic L3 connectivity test within the site

	L3 connectivity test between VMs in sites A,B

	L3 connectivity test between VMs in sites A,C and B,C - expected to fail since sites are not connected

3 Connect site C to A,B

	L2 connectivity test between VMs in sites A,B B,C and A,C

	L3 connectivity test between VMs in sites A,B B,C and A,C

	Connectivity test between VMs in non-federated networks in sites A,B,C - expected to fail

4 Disconnect site C from A,B

	Repeat the test steps from 2 after C disconnect. Identical results expected.

5 Disconnect sites A,B

	Repeat the test steps from 1 after A,B disconnect. Identical results expected.

6 Federation cluster test

	Repeat test steps 1-5 while rebooting the ODLs between the steps similarly to the existing cluster suite.

Documentation Impact

None.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] Federation project [https://wiki.opendaylight.org/view/Federation:Main]

[3] Federation service API [https://github.com/opendaylight/federation/tree/master/federation-service/api]

[4] Support of VxLAN based connectivity across Datacenters [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/l3vpn-over-vxlan-with-evpn-rt5.html]

[5] VNI based L2 switching, L3 forwarding and NATing [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/vni-based-l2-switching-l3-forwarding-and-NATing.html]

[6] Cross site manager presentation ODL Summit 2016 [https://www.youtube.com/watch?v=wDdP6ONg8wU&list=PL8F5jrwEpGAiRCzJIyboA8Di3_TAjTT-2]

Table of Contents

	DHCP Server Dynamic Allocation Pool

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

DHCP Server Dynamic Allocation Pool

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:dhcp_server_pool]

Extension of the ODL based DHCP server, which add support for dynamic address allocation to end
point users, that are not controlled (known) by OpenStack Neutron. Each DHCP pool can be configured
with additional information such as DNS servers, lease time (not yet), static allocations based on
MAC address, etc.

The feature supports IPv4 only.

Problem description

In a non-neutron northbounds environment e.g. SD-WAN solution (unimgr), there is currently no
dynamic DHCP service for end-points or networks that are connected to OVS. Every DHCP packet that is
received by the controller, the controller finds the neutron port based on the inport of the packet,
extracts the ip which was allocated by neutron for that vm, and replies using that info. If the dhcp
packet is from a non-neutron port, the packet won’t even reach the controller.

Use Cases

a DHCP packet that is received by the odl, from a port that is managed by Netvirt and was configured
using the netvirt API, rather then the neutron API, in a way that there is no pre-allocated IP for
network interfaces behind that port - will be handled by the DHCP dynamic allocation pool that is
configured on the network associated with the receiving OVS port.

Proposed change

We wish to forward to the controller, every dhcp packet coming from a non-neutron port as well (as
long as it is configured to use the controller dhcp). Once a DHCP packet is recieved by the
controller, the controller will check if there is already a pre-allocated address by checking if
packet came from a neutron port. if so, the controller will reply using the information from the
neutron port. Otherwise, the controller will find the allocation pool for the network which the
packet came from and will allocate the next free ip. The operation of each allocation pool will
be managed through the Genius ID Manager service that will support the allocation and release of IP
addresses (ids), persistent mapping across controller restarts and more. Neutron IP allocations will
be added to the relevant pools to avoid allocation of the same addresses.

The allocation pool DHCP server will support:

	DHCP methods: Discover, Request, Release, Decline and Inform (future)

	Allocation of a dynamic or specific (future) available IP address from the pool

	(future) Static IP address allocations

	(future) IP Address Lease Time + Rebinding and Renewal Time

	Classless Static Routes for each pool

	Domain names (future) and DNS for each pool

	(future) Probe an address before allocation

	(future) Relay agents

Pipeline changes

This new rule in table 60 will be responsible for forwarding dhcp packets to the controller:

cookie=0x6800000, duration=121472.576s, table=60, n_packets=1, n_bytes=342, priority=49,udp,tp_src=68,tp_dst=67 actions=CONTROLLER:65535

Yang changes

New YANG model to support the configuration of the DHCP allocation pools and allocations, per
network and subnet.

	Allocation-Pool: configuration of allocation pool parameters like range, gateway and dns servers.

	Allocation-Instance: configuration of static IP address allocation and Neutron pre-allocated addresses, per MAC address.

dhcp_allocation_pool.yang

 container dhcp_allocation_pool {
 config true;
 description "contains DHCP Server dynamic allocations";

 list network {
 key "network-id";
 leaf network-id {
 description "network (elan-instance) id";
 type string;
 }
 list allocation {
 key "subnet";
 leaf subnet {
 description "subnet for the dhcp to allocate ip addresses";
 type inet:ip-prefix;
 }

 list allocation-instance {
 key "mac";
 leaf mac {
 description "requesting mac";
 type yang:phys-address;
 }
 leaf allocated-ip {
 description "allocated ip address";
 type inet:ip-address;
 }
 }
 }
 list allocation-pool {
 key "subnet";
 leaf subnet {
 description "subnet for the dhcp to allocate ip addresses";
 type inet:ip-prefix;
 }
 leaf allocate-from {
 description "low allocation limit";
 type inet:ip-address;
 }
 leaf allocate-to {
 description "high allocation limit";
 type inet:ip-address;
 }
 leaf gateway {
 description "default gateway for dhcp allocation";
 type inet:ip-address;
 }
 leaf-list dns-servers {
 description "dns server list";
 type inet:ip-address;
 }
 list static-routes {
 description "static routes list for dhcp allocation";
 key "destination";
 leaf destination {
 description "destination in CIDR format";
 type inet:ip-prefix;
 }
 leaf nexthop {
 description "router ip address";
 type inet:ip-address;
 }
 }
 }
 }
 }

Configuration impact

The feature is activated in the configuration (disabled by default).

adding dhcp-dynamic-allocation-pool-enabled leaf to dhcpservice-config:

dhcpservice-config.yang

 container dhcpservice-config {
 leaf controller-dhcp-enabled {
 description "Enable the dhcpservice on the controller";
 type boolean;
 default false;
 }

 leaf dhcp-dynamic-allocation-pool-enabled {
 description "Enable dynamic allocation pool on controller dhcpservice";
 type boolean;
 default false;
 }
 }

and netvirt-dhcpservice-config.xml:

<dhcpservice-config xmlns="urn:opendaylight:params:xml:ns:yang:dhcpservice:config">
 <controller-dhcp-enabled>false</controller-dhcp-enabled>
 <dhcp-dynamic-allocation-pool-enabled>false</dhcp-dynamic-allocation-pool-enabled>
</dhcpservice-config>

Clustering considerations

Support clustering.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release

Carbon.

Alternatives

Implement and maintain an external DHCP server.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

Introducing a new REST API for the feature

Dynamic allocation pool

URL: /config/dhcp_allocation_pool:dhcp_allocation_pool/

Sample JSON data

{"dhcp_allocation_pool": {
 "network": [
 {
 "network-id": "d211a14b-e5e9-33af-89f3-9e43a270e0c8",
 "allocation-pool": [
 {
 "subnet": "10.1.1.0/24",
 "dns-servers": [
 "8.8.8.8"
],
 "gateway": "10.1.1.1",
 "allocate-from": "10.1.1.2",
 "allocate-to": "10.1.1.200"
 "static-routes": [
 {
 "destination": "5.8.19.24/16",
 "nexthop": "10.1.1.254"
 }
]
]}]}}

Static address allocation

URL: /config/dhcp_allocation_pool:dhcp_allocation_pool/

Sample JSON data

{"dhcp_allocation_pool": {
 "network": [
 {
 "network-id": "d211a14b-e5e9-33af-89f3-9e43a270e0c8",
 "allocation": [
 {
 "subnet": "10.1.1.0/24",
 "allocation-instance": [
 {
 "mac": "fa:16:3e:9d:c6:f5",
 "allocated-ip": "10.1.1.2"
 }
]}]}]}}

CLI

None.

Implementation

Assignee(s)

	Primary assignee:

	Shai Haim (shai.haim@hpe.com)

	Other contributors:

	Alex Feigin (alex.feigin@hpe.com)

Work Items

Here is the link for the Trello Card:
https://trello.com/c/0mgGyJuV/153-dhcp-server-dynamic-allocation-pool

Dependencies

None.

Testing

Unit Tests

N.A.

Integration Tests

N.A.

CSIT

N.A.

Documentation Impact

??

References

Table of Contents

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	Problem description

	Subnet-Route

	Aliveness monitor

	Use Cases

	Proposed change

	Subnet-route

	Communication between VMs in tenant networks and PNFs in provider networks.

	Communication between VMs and PNFs in different tenant networks.

	ARP messages

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create external network with a subnet

	Create internal networks with subnets

	Create a router instance and connect it to an internal subnet and an external subnet

	Create a router instance and connect to it to two internal subnets

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Discovery of directly connected PNFs in Flat/VLAN provider networks

https://git.opendaylight.org/gerrit/#/q/topic:directly_connected_pnf_discovery

This features enables discovering and directing traffic to Physical Network Functions (PNFs)
in Flat/VLAN provider and tenant networks, by leveraging Subnet-Route feature.

Problem description

PNF is a device which has not been created by Openstack but connected to the hypervisors
L2 broadcast domain and configured with ip from one of the neutron subnets.

Ideally, L2/L3 communication between VM instances and PNFs on flat/VLAN networks
would be routed similarly to inter-VM communication. However, there are two main issues
preventing direct communication to PNFs.

	L3 connectivity of tenant network and VLAN provider network, between VMs and PNFs.
A VM is located in a tenant network, A PNF is located in a provider network (external network).
Both networks are connected via a router.
The only way for VMs to communicate with a PNF is via additional hop which is the external gateway,
instead of directly.

	L3 connectivity between VMs and PNFs in a two diffrent tenant networks,
connected by a router, which is not supported and have two problems.
First, traffic initiated from a VMs towards a PNF is dropped because there isn’t
an appropriate rule in FIB table (table 21) to route that traffic.
Second, in the other direction, PNFs are not able to resolve their default gateway.

We want to leverage the Subnet-Route and Aliveness-Monitor features in order to address
the above issues.

Subnet-Route

Today, Subnet-Route feature enables ODL to route traffic to a destination IP address,
even for ip addresses that have not been statically configured by OpenStack,
in the FIB table.
To achieve that, the FIB table contains a flow that match all IP packets in a given subnet range.
How that works?

	A flow is installed in the FIB table, matching on subnet prefix and vpn-id of the network,
with a goto-instruction directing packets to table 22. There, packets are punted to the controller.

	ODL hold the packets, and initiate an ARP request towards the destination IP.

	Upon receiving ARP reply, ODL installs exact IP match flow in FIB table to direct
all further traffic towards the newly learnt MAC of the destination IP

Current limitations of Subnet-Route feature:

	Works for BGPVPN only

	May cause traffic lost due to “swallowing” the packets punted from table 22.

	Uses the source MAC and source IP from the punted packet.

Aliveness monitor

After ODL learns a mac that is associated with an ip address,
ODL schedule an arp monitor task, with the purpose of verifying that the device is still alive
and responding. This is done by periodically sending arp requests to the device.

Current limitation:
Aliveness monitor was not designed for monitoring devices behind flat/VLAN provider network ports.

Use Cases

	
	L3 connectivity of tenant network and VLAN provider network, between VMs and PNFs.

	
	VMs in a private network, PNFs in external network

	L3 connectivity between VMs and PNFs in a two diffrent tenant networks.

Proposed change

Subnet-route

	Upon OpenStack configuration of a Subnet in a provider network,
a new vrf entry with subnet-route augmentation will be created.

	Upon associataion of neutron router with a subnet in a tenant network,
a new vrf entry with subnet-route augmentation will be created.

	Upon receiving ARP reply, install exact IP match flow in FIB table to direct all
further traffic towards the newly resolved PNF, on all relevant computes nodes,
which will be discussed later

	Packets that had been punted to controller will be resubmitted to the openflow pipeline
after installation of exact match flow.

Communication between VMs in tenant networks and PNFs in provider networks.

In this scenario a VM in a private tenant network wants to communicate with a PNF in the
(external) provider network

	The controller will hold the packets, and initiate an ARP request towards the PNF IP.
an ARP request will have source MAC and IP the router gateway
and will be sent from the NAPT switch.

	ARP packets will be punted from the NAPT switch only.

	Upon receiving ARP reply, install exact IP match flow in FIB table to direct all further
traffic towards the newly resolved PNF, on all compute nodes that are associated
with the external network.

	leveraging Aliveness monitor feature to monitor PNFs.
The controller will send ARP requests from the NAPT switch.

Communication between VMs and PNFs in different tenant networks.

In this scenario a VM and a PNF, in different private networks of the same tenant, wants to communicate.
For each subnet prefix, a designated switch will be chosen to communicate directly with the PNFs
in that subnet prefix. That means sending ARP requests to the PNFs and receiving their traffic.

Note: IP traffic from VM instances will retain the src MAC of the VM instance,
instead of replacing it with the router-interface-mac, in order to prevent MAC momvements
in the underlay switches.
This is a limitation until NetVirt supports a MAC per hypervisor implementation.

	A subnet flow will be installed in the FIB table,
matching the subnet prefix and vpn-id of the router.

	ARP request will have a source MAC and IP of the router interface, and will be sent via the provider port
in the designated switch.

	ARP packets will be punted from the designated switch only.

	Upon receiving an ARP reply, install exact IP match flow in FIB table to direct all
further traffic towards the newly resolved PNF, on all computes related to the router

	ARP responder flow: a new ARP responder flow will be installed in the designated switch
This flow will response for ARP requests from a PNF and the response MAC
will be the router interface MAC. This flow will use the LPort-tag of the provider port.

	Split Horizon protection disabling: traffic from PNFs,
arrives to the primary switch(via a provider port) due to the ARP responder rule described above,
and will need to be directed to the proper compute of the designated VM (via a provider port).
This require disabling the split horizon protection.
In order to protects against infinite loops, the packet TTL will be decreased.

	leveraging Aliveness monitor, the controller will send ARP requests from the designated switch.

ARP messages

ARP messages in the Flat/Vlan provider and tenant networks will be punted from
a designated switch, in order to avoid a performance issue in the controller,
of dealing with broadcast packets that may be received in multiple provider ports.
In external networks this switch is the NAPT switch.

Pipeline changes

First use-case depends on hairpinning spec [2], the flows presented here reflects that dependency.

Egress traffic from VM with floating IP to an unresolved PNF in external network

	Packets in FIB table after translation to FIP, will match on subnet flow
and will be punted to controller from Subnet Route table.
Then, ARP request will be generated and be sent to the PNF.
No flow changes are required in this part.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip
set vpn-id=ext-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=ext-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=ext-subnet-ip =>

Subnet Route table (22): => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.
No other flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip
set vpn-id=ext-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=ext-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=pnf-ip,
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Egress traffic from VM using NAPT to an unresolved PNF in external network

	Ingress-DPN is not the NAPT switch, no changes required.
Traffic will be directed to NAPT switch and directed to the outbound NAPT table straight
from the internal tunnel table

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group output to tunnel port of NAPT switch

	Ingress-DPN is the NAPT switch. Packets in FIB table after translation to NAPT,
will match on subnet flow and will be punted to controller from Subnet Route table.
Then, ARP request will be generated and be sent to the PNF. No flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port
set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB tabl (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=ext-subnet-ip =>

Subnet Route table (22) => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.
No other changes required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: vpn-id=router-id TBD set vpn-id=external-net-id =>

NAPT PFIB table (47) match: vpn-id=external-net-id =>

FIB table (21) match: vpn-id=ext-network-id, dst-ip=pnf-ip
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Egress traffic from VM in private network to an unresolved PNF in another private network

	Packet from a VM is punted to the controller, no flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id dst-ip=subnet-ip =>

Subnet Route table (22): => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id dst-ip=pnf-ip
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Ingress traffic to VM in private network from a PNF in another private network

	New flow in table 19, to distinguish our new use-case,
in which we want to decrease the TTL of the packet

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: lport-tag=provider-port, vpn-id=router-id, dst-mac=router-interface-mac,
set split-horizon-bit = 0, decrease-ttl =>

FIB table (21) match: vpn-id=router-id dst-ip=vm-ip
set dst-mac=vm-mac reg6=provider-lport-tag =>

Egress table (220) output to provider port

Yang changes

In odl-l3vpn module, adjacency-list grouping will be enhanced with the following field

 grouping adjacency-list {
 list adjacency {
 key "ip_address";
 ...
 leaf phys-network-func {
 type boolean;
 default false;
 description "Value of True indicates this is an adjacency of a device in a provider network";
 }
 }
}

An adjacency that is added as a result of a PNF discovery, is a primary adjacency with
an empty next-hop-ip list. This is not enough to distinguish PNF at all times.
This new field will help us identify this use-case in a more robust way.

Configuration impact

A configuration mode will be available to turn this feature ON/OFF.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

All traffic of PNFs in each subnet-prefix sends their traffic to a designated switch.

Targeted Release

Carbon

Alternatives

None

Usage

Create external network with a subnet

neutron net-create public-net -- --router:external --is-default --provider:network_type=flat
--provider:physical_network=physnet1
neutron subnet-create --ip_version 4 --gateway 10.64.0.1 --name public-subnet1 <public-net-uuid> 10.64.0.0/16
-- --enable_dhcp=False

Create internal networks with subnets

neutron net-create private-net1
neutron subnet-create --ip_version 4 --gateway 10.0.123.1 --name private-subnet1 <private-net1-uuid>
10.0.123.0/24
neutron net-create private-net2
neutron subnet-create --ip_version 4 --gateway 10.0.124.1 --name private-subnet2 <private-net2-uuid>
10.0.124.0/24

Create a router instance and connect it to an internal subnet and an external subnet

This will allow communication with PNFs in provider network

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> <router1-uuid> <public-net-uuid>

Create a router instance and connect to it to two internal subnets

This will allow East/West communication between VMs and PNFs

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-interface-add <router1-uuid> <private-subnet2-uuid>

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Tomer Pearl <tomer.pearl@hpe.com>

	Other contributors:

	Yakir Dorani <yakir.dorani@hpe.com>

Work Items

	Configure subnet-route flows upon ext-net configuration / router association

	Solve traffic lost issues of punted packets from table 22

	Enable aliveness monitoring on external interfaces.

	Add ARP responder flow for L3-PNF

	Add ARP packet-in from primary switch only

	Disable split-horizon and enable TTL decrease for L3-PNF

Dependencies

This feature depends on hairpinning feature [2]

Testing

Unit Tests

Unit tests will be added for the new functionality

Integration Tests

CSIT

Will need to see if a PNF could be simulated in CSIT

Documentation Impact

References

[1] https://docs.google.com/presentation/d/1ByvEQXUtIyH-H7Bin6OBJNrHjOv-3hpHYzU6Sf6hDbA/edit#slide=id.g11657174d1_0_31
[2] http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/hairpinning-flat-vlan.html

Table of Contents

	ECMP Support for BGP based L3VPN

	Problem description

	Use Cases

	High-Level Components:

	Proposed change

	Pipeline changes

	Local FIB entry/Nexthop Group programming:

	Remote FIB entry/Nexthop Group programming:

	YANG changes

	L3VPN YANG changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	ECMP forwarding through multiple Compute Node and VMs

	ECMP forwarding for dispersed VMs

	ECMP forwarding for co-located VMs

	ECMP forwarding through two DC-Gateways

	ECMP for Intra-DC L3VPN communication

	ECMP Path decision based on Internal/External Tunnel Monitoring

	GRE tunnel state handling

	VxLAN tunnel state handling

	Assumptions

	Reboot Scenarios

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ECMP Support for BGP based L3VPN

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn_ecmp

This Feature is needed for load balancing of traffic in a cloud and also
redundancy of paths for resiliency in cloud.

Problem description

The current L3VPN implementation for BGP VPN doesn’t support load balancing
behavior for external routes through multiple DC-GWs and reaching starting
route behind Nova VMs through multiple compute nodes.

This spec provides implementation details about providing traffic load
balancing using ECMP for L3 routing and forwarding. The load balancing of
traffic can be across virtual machines with each connected to the different
compute nodes, DC-Gateways. ECMP also enables fast failover of traffic
The ECMP forwarding is required for both inter-DC and intra-DC data traffic
types. For inter-DC traffic, spraying from DC-GW to compute nodes & VMs for
the traffic entering DC and spraying from compute node to DC-GWs for the
traffic exiting DC is needed. For intra-DC traffic, spraying of traffic
within DC across multiple compute nodes & VMs is needed. There should be
tunnel monitoring (e.g. GRE-KA or BFD) logic implemented to monitor DC-GW
/compute node GRE tunnels which helps to determine available ECMP paths to
forward the traffic.

Use Cases

	ECMP forwarding of traffic entering a DC (i.e. Spraying of
DC-GW -> OVS traffic across multiple Compute Nodes & VMs).
In this case, DC-GW can load balance the traffic if a static route can be reachable
through multiple NOVA VMs (say VM1 and VM2 connected on different compute nodes)
running some networking application (example: vRouter).

	ECMP forwarding of traffic exiting a DC (i.e. Spraying of
OVS -> DC-GW traffic across multiple DC Gateways).
In this case, a Compute Node can LB the traffic if external route can be
reachable from multiple DC-GWs.

	ECMP forwarding of intra-DC traffic (i.e. Spraying of traffic within DC
across multiple Compute Nodes & VMs)
This is similar to UC1, but load balancing behavior is applied on remote Compute
Node for intra-DC communication.

	OVS -> DC-GW tunnel status based ECMP for inter and intra-DC traffic.
Tunnel status based on monitoring (BFD) is considered in ECMP path set determination.

High-Level Components:

The following components of the Openstack - ODL solution need to be enhanced to provide
ECMP support:

	OpenStack Neutron BGPVPN Driver (for supporting multiple RDs)

	OpenDaylight Controller (NetVirt VpnService)

We will review enhancements that will be made to each of the above components in following
sections.

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager and VPN Interface Manager)

	FIB Manager

Pipeline changes

Local FIB entry/Nexthop Group programming:

A static route (example: 100.0.0.0/24) reachable through two VMs connected
with same compute node.

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>Local VM Group=>Table 220

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=100.0.0.0/24 actions=write_actions(group:150002)
group_id=150002,type=select,bucket=weight:50,actions=group:150001,bucket=weight:50,actions=group:150000
group_id=150001,type=all,bucket=actions=set_field:fa:16:3e:34:ff:58->eth_dst,load:0x200->NXM_NX_REG6[],resubmit(,220)
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:eb:61:39->eth_dst,load:0x100->NXM_NX_REG6[],resubmit(,220)

Remote FIB entry/Nexthop Group programming:

	A static route (example: 10.0.0.1/32) reachable through two VMs connected with
different compute node.

on remote compute node,

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>VxLAN port

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=10.0.0.1 actions=set_field:0xEF->tun_id, group:150003
group_id=150003,type=select,bucket=weight:50,actions=output:1,bucket=weight:50,actions=output:2

on local compute node,

Here, From LB group, packets flow through local VM and VxLAN port

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>Local VM Group=>Table 220

………………………………………………………………………………=> VxLAN port

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=10.0.0.1 actions=group:150003
group_id=150003,type=select,bucket=weight:50,group=150001,bucket=weight:50,actions=set_field:0xEF->tun_id, output:2
group_id=150001,type=all,bucket=actions=set_field:fa:16:3e:34:ff:58->eth_dst,load:0x200->NXM_NX_REG6[],resubmit(,220)

	An external route (example: 20.0.0.1/32) reachable through two DC-GWs.

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>GRE port

cookie=0x8000003, duration=13.044s, table=21, n_packets=0, n_bytes=0,priority=42,ip,metadata=0x222ec/0xfffffffe,nw_dst=20.0.0.1 actions=load:0x64->NXM_NX_REG0[0..19],load:0xc8->NXM_NX_REG1[0..19],group:150111
group_id=150111,type=select,bucket=weight:50,actions=push_mpls:0x8847, move:NXM_NX_REG0[0..19]->OXM_OF_MPLS_LABEL[],output:3, bucket=weight:50,actions=push_mpls:0x8847,move:NXM_NX_REG1[0..19]->OXM_OF_MPLS_LABEL[],output:4

YANG changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang and odl-fib.yang
to support ECMP functionality.

L3VPN YANG changes

route-distinguisher type is changed from leaf to leaf-list in vpn-af-config grouping in l3vpn.yang.

l3vpn.yang

 grouping vpn-af-config {
 description "A set of configuration parameters that is applicable to both IPv4 and
 IPv6 address family for a VPN instance .";

 leaf-list route-distinguisher {
 description "The route-distinguisher command configures a route distinguisher (RD)
 for the IPv4 or IPv6 address family of a VPN instance.
 Format is ASN:nn or IP-address:nn.";
 config "true";
 type string{
 length "3..21";
 }
 }
 }

ODL-L3VPN YANG changes

	Add vrf-id (RD) in adjacency list in odl-l3vpn.yang.

odl-l3vpn.yang

 grouping adjacency-list {
 list adjacency{
 key "ip_address";
 leaf-list next-hop-ip-list { type string; }
 leaf ip_address {type string;}
 leaf primary-adjacency {
 type boolean;
 default false;
 description "Value of True indicates this is a primary adjacency";
 }

 leaf label { type uint32; config "false"; } /*optional*/
 leaf mac_address {type string;} /*optional*/
 leaf vrf-id {type string;}
 }
 }

	vpn-to-extraroute have to be updated with multiple RDs (vrf-id) when extra route from VMs
connected with different compute node and when connected on same compute node, just use
same RD and update nexthop-ip-list with new VM IP address like below.

odl-l3vpn.yang

 container vpn-to-extraroutes {
 config false;
 list vpn-extraroutes {
 key "vpn-name";
 leaf vpn-name {
 type uint32;
 }

 list extra-routes {
 key "vrf-id";
 leaf vrf-id {
 description "The vrf-id command configures a route distinguisher (RD) for the IPv4
 or IPv6 address family of a VPN instance or vpn instance name for
 internal vpn case.";
 type string;
 }

 list route-paths {
 key "prefix";
 leaf prefix {type string;}
 leaf-list nexthop-ip-list {
 type string;
 }
 }
 }
 }
 }

	To manage RDs for extra with multiple next hops, the following YANG
model is required to advertise (or) withdraw the extra routes with
unique NLRI accordingly.

odl-l3vpn.yang

 container extraroute-routedistinguishers-map {
 config true;
 list extraroute-routedistingueshers {
 key "vpnid";
 leaf vpnid {
 type uint32;
 }

 list dest-prefixes {
 key "dest-prefix";
 leaf dest-prefix {
 type string;
 mandatory true;
 }

 leaf-list route-distinguishers {
 type string;
 }
 }
 }
 }

ODL-FIB YANG changes

	When Quagga BGP announces route with multiple paths, then it is ODL responsibility
to program Fib entries in all compute nodes where VPN instance blueprint is present,
so that traffic can be load balanced between these two DC gateways. It requires
changes in existing odl-fib.yang model (like below) to support multiple
routes for same destination IP prefix.

odl-fib.yang

 grouping vrfEntries {
 list vrfEntry {
 key "destPrefix";
 leaf destPrefix {
 type string;
 mandatory true;
 }

 leaf origin {
 type string;
 mandatory true;
 }

 list route-paths {
 key "nexthop-address";
 leaf nexthop-address {
 type string;
 mandatory true;
 }

 leaf label {
 type uint32;
 }
 }
 }
 }

	New YANG model to update load balancing next hop group buckets according
to VxLAN/GRE tunnel status [Note that these changes are required only if
watch_port in group bucket is not working based on tunnel port liveness
monitoring affected by the BFD status]. When one of the VxLAN/GRE tunnel
is going down, then retrieve nexthop-key from dpid-l3vpn-lb-nexthops by
providing tep-device-ids from src-info and dst-info of StateTunnelList
while handling its update DCN. After retrieving next hop key, fetch
target-device-id list from l3vpn-lb-nexthops and reprogram
VxLAN/GRE load balancing group in each remote Compute Node based
on tunnel state between source and destination Compute Node. Similarly,
when tunnel comes up, then logic have to be rerun to add its
bucket back into Load balancing group.

odl-fib.yang

 container l3vpn-lb-nexthops {
 config false;
 list nexthops {
 key "nexthop-key";
 leaf group-id { type string; }
 leaf nexhop-key { type string; }
 leaf-list target-device-id { type string;
 //dpId or ip-address }
 }
 }

 container dpid-l3vpn-lb-nexthops {
 config false;
 list dpn-lb-nexthops {
 key "src-dp-id dst-device-id";
 leaf src-dp-id { type uint64; }
 leaf dst-device-id { type string;
 //dpId or ip-address }
 leaf-list nexthop-keys { type string; }
 }
 }

ECMP forwarding through multiple Compute Node and VMs

In some cases, extra route can be added which can have reachability through
multiple Nova VMs. These VMs can be either connected on same compute node
(or) different Compute Nodes. When VMs are in different compute nodes, DC-GW
should learn all the route paths such that ECMP behavior can be applied for
these multi path routes. When VMs are co-located in same compute node, DC-GW
will not perform ECMP and compute node performs traffic splitting instead.

ECMP forwarding for dispersed VMs

When configured extra route are reached through nova VMs which are connected
with different compute node, then it is ODL responsibility to advertise these
multiple route paths (but with same MPLS label) to Quagga BGP which in turn
sends these routes into DC-GW. But DC-GW replaces the existing route with a new
route received from the peer if the NLRI (prefix) is same in the two routes.

This is true even when multipath is enabled on the DC-GW and it is as per standard
BGP RFC 4271, Section 9 UPDATE Message Handling. Hence the route is lost in DC-GW
even before path computation for multipath is applied.This scenario is solved by
adding multiple route distinguisher (RDs) for the vpn instance and let ODL uses
the list of RDs to advertise the same prefix with different BGP NHs. Multiple RDs
will be supported only for BGP VPNs.

ECMP forwarding for co-located VMs

When extra routes on VM interfaces are connected with same compute node, LFIB/FIB
and Terminating service table flow entries should be programmed so that traffic can
be load balanced between local VMs. This can be done by creating load balancing next
hop group for each vpn-to-extraroute (if nexthop-ip-list size is greater than 1) with
buckets pointing to the actual VMs next hop group on source Compute Node. Even for the
co-located VMs, VPN interface manager should assign separate RDs for each adjacency of
same dest IP prefix and let route can be advertised again to Quagga BGP with same next
hop (TEP IP address). This will enable DC-Gateway to realize ECMP behavior when an IP
prefix can be reachable through multiple co located VMs on one Compute Node and an
another VM connected on different Compute Node.

To create load balancing next hop group, the dest IP prefix is used as the key to
generate group id. When any of next hop is removed, then adjust load balancing nexthop
group so that traffic can be sent through active next hops.

ECMP forwarding through two DC-Gateways

The current ITM implementation provides support for creating multiple GRE tunnels for
the provided list of DC-GW IP addresses from compute node. This should help in creating
corresponding load balancing group whenever Quagga BGP is advertising two routes on same
IP prefix pointing to multiple DC GWs. The group id of this load balancing group can be
derived from sorted order of DC GW TEP IP addresses with the following format dc_gw_tep_ip
_address_1: dc_gw_tep_ip_address_2. This will be useful when multiple external IP prefixes
share the same next hops. The load balancing next hop group buckets is programmed according
to sorted remote end point DC-Gateway IP address. The support of action move:NXM_NX_REG0(1)
-> MPLS label is not supported in ODL openflowplugin. It has to be implemented. Since there
are two DC gateways present for the data center, it is possible that multiple equal cost
routes are supplied to ODL by Quagga BGP like Fig 2. The current Quagga BGP doesn’t have
multipath support and it will be done. When Quagga BGP announces route with multiple
paths, then it is ODL responsibility to program Fib entries in all compute nodes where
VPN instance blueprint is present, so that traffic can be load balanced between these
two DC gateways. It requires changes in existing odl-fib.yang model (like below) to
support multiple routes for same destination IP prefix.

BGPManager should be able to create vrf entry for the advertised IP prefix with multiple
route paths. VrfEntryListener listens to DCN on these vrf entries and program Fib entries
(21) based on number route paths available for given IP prefix. For the given (external)
destination IP prefix, if there is only one route path exists, use the existing approach
to program FIB table flow entry matches on (vpnid, ipv4_dst) and actions with push MPLS
label and output to gre tunnel port. For the given (external) destination IP prefix, if
there are two route paths exist, then retrieve next hop ip address from routes list in
the same sorted order (i.e. using same logic which is used to create buckets for load
balancing next hop group for DC- Gateway IP addresses), then program FIB table flow entry
with an instruction like Fig 3. It should have two set field actions where first action sets
MPLS label to NX_REG0 for first sorted DC-GW IP address and second action sets MPLS label
to NX_REG1 for the second sorted DC-GW IP address. When more than two DC Gateways are used,
then more number of NXM Registries have to be used to push appropriate MPLS label before
sending it to next hop group. It needs operational DS container to have mapping between DC
Gateway IP address and NXM_REG. When one of the route is withdrawn for the IP prefix, then
modify the FIB table flow entry with with push MPLS label and output to the available
gre tunnel port.

ECMP for Intra-DC L3VPN communication

ECMP within data center is required to load balance the data traffic when extra route can
be reached through multiple next hops (i.e. Nova VMs) when these are connected with different
compute nodes. It mainly deals with how Compute Nodes can spray the traffic when dest IP prefix
can be reached through two or more VMs (next hops) which are connected with multiple compute
nodes.

When there are multiple RDs (if VPN is of type BGP VPN) assigned to VPN instance so that VPN
engine can be advertise IP route with different RDs to achieve ECMP behavior in DC-GW as
mentioned before. But for intra-DC, this doesn’t make any more sense since it’s all about
programming remote FIB entries on computes nodes to achieve data traffic
spray behavior.

Irrespective of RDs, when multiple next hops (which are from different Compute Nodes) are
present for the extra-route adjacency, then FIB Manager has to create load balancing next
hop group in remote compute node with buckets pointing with targeted Compute Node VxLAN
tunnel ports.

To allocate group id for this load balancing next hop, the same destination IP prefix is
used as the group key. The remote FIB table flow should point to this next hop group after
writing prefix label into tunnel_id. The bucket weight of remote next hop is adjusted
according to number of VMs associated to given extra route and on which compute node
the VMs are connected. For example, two compute node having one VM each, then bucket
weight is 50 each. One compute node having two VMs and another compute node having one
VM, then bucket weight is 66 and 34 each. The hop-count property in vrfEntry data store
helps to decide what is the bucket weight for each bucket.

ECMP Path decision based on Internal/External Tunnel Monitoring

ODL will use GRE-KA or BFD protocol to implement monitoring of GRE external tunnels.
This implementation detail is out of scope in this document. Based on the tunnel state,
GRE Load Balancing Group is adjusted accordingly as mentioned like below.

GRE tunnel state handling

As soon as GRE tunnel interface is created in ODL, interface manager uses alivenessmonitor
to monitor the GRE tunnels for its liveness using GRE Keep-alive protocol. When tunnel state
changes, it has to handled accordingly to adjust above load balancing group so that data
traffic is sent to only active DC-GW tunnel. This can be done with listening to update
StateTunnelList DCN.

When one GRE tunnel is operationally going down, then retrieve the corresponding bucket
from the load balancing group and delete it.
When GRE tunnel comes up again, then add bucket back into load balancing group and
reprogram it.

When both GRE tunnels are going down, then just recreate load balancing group with empty.
Withdraw the routes from that particular DC-GW.
With the above implementation, there is no need of modifying Fib entries for GRE tunnel
state changes.

But when BGP Quagga withdrawing one of the route for external IP prefix, then reprogram
FIB flow entry (21) by directly pointing to output=<gre_port> after pushing MPLS label.

VxLAN tunnel state handling

Similarly, when VxLAN tunnel state changes, the Load Balancing Groups in Compute Nodes have
to be updated accordingly so that traffic can flow through active VxLAN tunnels. It can be
done by having config mapping between target data-path-id to next hop group Ids
and vice versa.

For both GRE and VxLAN tunnel monitoring, L3VPN has to implement the following YANG model
to update load balancing next hop group buckets according to tunnel status.

When one of the VxLAN/GRE tunnel is going down, then retrieve nexthop-key from
dpid-l3vpn-lb-nexthops by providing tep-device-ids from src-info and dst-info of
StateTunnelList while handling its update DCN.

After retrieving next hop key, fetch target-device-id list from l3vpn-lb-nexthops
and reprogram VxLAN/GRE load balancing group in each remote Compute Node based on
tunnel state between source and destination Compute Node. Similarly, when tunnel
comes up, then logic have to be rerun to add its bucket back into
Load balancing group.

Assumptions

The support for action move:NXM_NX_REG0(1) -> MPLS label is already available
in Compute Node.

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Implementation

Assignee(s)

	Primary assignee(s):

	
	Manu B <manu.b@ericsson.com>

	Kency Kurian <kency.kurian@ericsson.com>

	Gobinath <gobinath@ericsson.com>

	P Govinda Rajulu <p.govinda.rajulu@ericsson.com>

	Other contributors:

	
	Periyasamy Palanisamy <periyasamy.palanisamy@ericsson.com>

Work Items

The Trello cards have already been raised for this feature
under l3vpn_ecmp.

Link for the Trello Card: https://trello.com/c/8E3LWIkq/121-ecmp-support-for-bgp-based-l3vpn-l3vpn-ecmp

Dependencies

Quagga BGP multipath support and APIs. This is needed to support when two DC-GW advertises
routes for same external prefix with different route labels
GRE tunnel monitoring. This is need to implement ECMP forwarding based on MPLSoGRE tunnel state.
Support for action move:NXM_NX_REG0(1) -> MPLS label in ODL openflowplugin

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

	https://docs.google.com/document/d/1KRxrIGCLCBuz2D8f8IhU2I84VrM5EMa1Y7Scjb6qEKw

Table of Contents

	Element Counters

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Element Counters

https://git.opendaylight.org/gerrit/#/q/element-counters

This feature depends on the Netvirt statistics feature.

This feature enables collecting statistics on filtered traffic passed from/to a network element. For example: traffic outgoing/incoming from a specific IP, tcp traffic, udp traffic, incoming/outgoing traffic only.

Problem description

Collecting statistics on filtered traffic sent to/from a VM is currently not possible.

Use Cases

	Tracking East/West communication between local VMs.

	Tracking East/West communication between VMs that are located in different compute nodes.

	Tracking communication between a local VM and an IP located in an external network.

	Tracking TCP/UDP traffic sent from/to a VM.

	Tracking dropped packets between 2 VMs.

Proposed change

The Netvirt Statistics Plugin will receive requests regarding element filtered counters.
A new service will be implemented (“CounterService”), and will be associated with the relevant interfaces (either ingress side, egress sides or both of them).

	Ingress traffic: The service will be the first one in the pipeline after the Ingress ACL service.

	Egress traffic: The service will be the last one after the Egress ACL service.

	The input for counters request regarding VM A, and incoming and outgoing traffic from VM B, will be VM A interface uuid and VM B IP.

	The input can also include other filters like TCP only traffic, UDP only traffic, incoming/outgoing traffic.

	In order to track dropped traffic between VM A and VM B, the feature should be activated on both VMS (either in the same compute node or in different compute nodes). service binding will be done on both VMs relevant interfaces.

	If the counters request involves an external IP, service binding will be done only on the VM interface.

	Adding/Removing the “CounterService” should be dynamic and triggered by requesting element counters.

The Statistics Plugin will use OpenFlow flow statistic requests for these new rules,
allowing it to gather statistics regarding the traffic between the 2 elements.
It will be responsible to validate and filter the counters results.

Pipeline changes

Two new tables will be used: table 219 for outgoing traffic from the VM, and table 249 for incoming traffic from the VM.
In both ingress and egress pipelines, the counter service will be just after the appropriate ACL service.
The default rule will resubmit traffic to the appropriate dispatcher table.

Assuming we want statistics on VM A traffic, received or sent from VM B.

VM A Outgoing Traffic (vm interface)

In table 219 traffic will be matched against dst-ip and lport tag.

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: dst-ip=vmB-ip, lport-tag=vmA-interface, actions: resubmit to table 17 =>

VM A Incoming Traffic (vm interface)

In table 249 traffic will be matched against src-ip and lport tag.

Egress dispatcher table (220): match: lport-tag=vmA-interface, actions: go to table 249 =>

Egress counters table (249): match: lport-tag=vmA-interface, src-ip=vmB-ip, actions: resubmit to table 220 =>

Assuming we want statistics on VM A incoming TCP traffic.

VM A Outgoing Traffic (vm interface)

Egress dispatcher table (220): match: lport-tag=vmA-interface, actions: go to table 249 =>

Egress counters table (249): match: lport-tag=vmA-interface, tcp, actions: resubmit to table 220 =>

Assuming we want statistics on VM A outgoing UDP traffic.

VM A Incoming traffic (vm interface)

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: lport-tag=vmA-interface, udp, actions: resubmit to table 17 =>

Assuming we want statistics on all traffic sent to VM A port.

VM A Incoming traffic (vm interface)

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: lport-tag=vmA-interface, actions: resubmit to table 17 =>

Yang changes

Netvirt Statistics module will be enhanced with the following RPC:

grouping result {
 list counterResult {
 key id;
 leaf id {
 type string;
 }
 list groups {
 key name;
 leaf name {
 type string;
 }
 list counters {
 key name;
 leaf name {
 type string;
 }
 leaf value {
 type uint64;
 }
 }
 }
 }
}

grouping filters {
 leaf-list groupFilters {
 type string;
 }
 leaf-list counterFilter {
 type string;
 }
}

grouping elementRequestData {
 container filters {
 container tcpFilter {
 leaf on {
 type boolean;
 }
 leaf srcPort {
 type int32;
 default -1;
 }
 leaf dstPort {
 type int32;
 default -1;
 }
 }

 container udpFilter {
 leaf on {
 type boolean;
 }
 leaf dstPort {
 type int32;
 default -1;
 }
 leaf srcPort {
 type int32;
 default -1;
 }
 }

 container ipFilter {
 leaf ip {
 type string;
 default "";
 }
 }
 }
}

container elementCountersRequestConfig {
 list counterRequests {
 key "requestId";
 leaf requestId {
 type string;
 }
 leaf lportTag {
 type int32;
 }
 leaf dpn {
 type uint64;
 }
 leaf portId {
 type string;
 }
 leaf trafficDirection {
 type string;
 }
 uses elementRequestData;
 }
}

rpc acquireElementCountersRequestHandler {
 input {
 leaf portId {
 type string;
 }
 container incomingTraffic {
 uses elementRequestData;
 }
 container outgoingTraffic {
 uses elementRequestData;
 }
 uses filters;
 }
 output {
 leaf incomingTrafficHandler {
 type string;
 }
 leaf outcoingTrafficHandler {
 type string;
 }
 }
}

rpc releaseElementCountersRequestHandler {
 input {
 leaf handler {
 type string;
 }
 }
 output {
 }
}

rpc getElementCountersByHandler {
 input {
 leaf handler {
 type string;
 }
 }
 output {
 uses result;
 }
}

Configuration impact

The described above YANG model will be saved in the data store.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Since adding the new service is done by a request (as well as removing it), not all packets will be sent to the new tables described above.

Targeted Release

Carbon

Alternatives

None

Usage

	Create router, network, 2 VMS, VXLAN tunnel.

	Connect to each one of the VMs and send ping to the other VM.

	Use REST to get the statistics.

Run the following to get interface ids:

http://10.0.77.135:8181/restconf/operational/ietf-interfaces:interfaces-state/

Choose VM B interface and use the following REST in order to get the statistics:
Assuming VM A IP = 1.1.1.1, VM B IP = 2.2.2.2

Acquire counter request handler:

10.0.77.135:8181/restconf/operations/statistics-plugin:acquireElementCountersRequestHandler, {"input":{"portId":"4073b4fe-a3d5-47c0-b37d-4fb9db4be9b1", "incomingTraffic":{"filters":{"ipFilter":{"ip":"1.1.3.9"}}}}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Release handler:

10.0.77.135:8181/restconf/operations/statistics-plugin:releaseElementCountersRequestHandler, input={"input":{"handler":"1"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Get counters:

10.0.77.135:8181/restconf/operations/statistics-plugin:getElementCountersByHandler, input={"input":{"handler":"1"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Example counters output:

 {
"output": {
 "counterResult": [
 {
 "id": "SOME UNIQUE ID",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 298000000
 },
 {
 "name": "durationSecondCount",
 "value": 10369
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesTransmittedCount",
 "value": 648
 },
 {
 "name": "bytesReceivedCount",
 "value": 0
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsTransmittedCount",
 "value": 8
 },
 {
 "name": "packetsReceivedCount",
 "value": 0
 }
]
 }
]
 }
]
}

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Guy Regev <guy.regev@hpe.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/88MnwGwb/129-element-to-element-counters

	Add new service in Genius.

	Implement new rules installation.

	Update Netvirt Statistics module to support the new counters request.

Dependencies

None

Testing

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Netvirt statistics feature: https://git.opendaylight.org/gerrit/#/c/50164/8

Table of Contents

	Hairpinning of floating IPs in flat/VLAN provider networks

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create external network with two subnets

	Create internal networks with subnets

	Create two router instances and connect each router to one internal subnet and one external subnet

	Create router instance connected to both external subnets and the remaining internal subnets

	Create floating ips from both subnets

	Create 2 VM instance in each subnet and associate with floating ips

	Connectivity tests

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Hairpinning of floating IPs in flat/VLAN provider networks

https://git.opendaylight.org/gerrit/#/q/topic:hairpinning

This feature enables VM instances connected to the same router to communicate with each other using their
floating ip addresses directly without traversing via the external gateway.

Problem description

Local and East/West communication between VMs using floating ips for flat/VLAN provider types is not
handled internally by the pipeline currently. As a result, this type of traffic is mistakenly classified
as North/South and routed to the external network gateway.

Today, SNATted traffic to flat/VLAN network is routed directly to the external gateway after traversing
the SNAT/outbound NAPT pipeline using OF group per external network subnet.
The group itself sets the destination mac as the mac address of the external gw associated with the floating ip/
router gw and output to the provider network port via the egress table.
This workflow would be changed to align with the VxLAN provider type and direct SNATted traffic back to the FIB
where the destination can then resolved to be floating ip on local or remote compute node.

Use Cases

	Local and East/West communication between VMs co-located on the same compute node using associated floating ip.

	Local and East/West communication between VMs located on different compute nodes using associated floating ip.

Proposed change

	The vpn-id used for classification of floating ips and router gateway external addresses in flat/VLAN
provider networks is based on the external network id. It will be changed to reflect the subnet id
associated with the floating ip/router gateway. This will allow traffic from the SNAT/outbound NAPT
table to be resubmitted back to the FIB while preserving the subnet id.

	Each floating ip already has VRF entry in the fib table. The vpn-id of this entry will also be based
on the subnet id of the floating ip instead of the external network id. If the VM associated with the
floating ip is located on remote compute node, the traffic will be routed to the remote compute based
on the provider network of the subnet from which the floating ip was allocated e.g. if the private
network is VxLAN and the external network is VLAN provider, traffic to floating ip on remote compute
node will be routed to the provider port associated with the VLAN provider and not the tunnel
associated with the VxLAN provider.

	In the FIB table of the egress node, the destination mac will be replaced with the mac address
of the floating ip in case of routing to remote compute node. This will allow traffic from flat/VLAN
provider enter the L3 pipeline for DNAT of the floating ip.

	Default flow will be added to the FIB table for each external subnet-id. If no floating ip match
was found in the FIB table for the subnet id, the traffic will be sent to the group of the external
subnet. Each group entry will perform the following:
(a) replace the destination mac address to the external gateway mac address
(b) send the traffic to the provider network via the egress table.

	Ingress traffic from flat/VLAN provider network is bounded to L3VPN service using vpn-id of the
external network id. To allow traffic classification based on subnet id for floating ips and router
gateway ips, the GW MAC table will replace the vpn-id of the external network with
the vpn-id of the subnet id of the floating ip. For ingress traffic to router gateway mac, the vpn-id
of the correct subnet will be deterined at the FIB table based on the router gateway fixed ip.

	A new model will be introduced to contain the new vpn/subnet associations - odl-nat:subnets-networks.
This model will be filled only for external flat/VLAN provider networks and will take precedence over
odl-nat:external-networks model for selection of vpn-id. BGPVPN use cases won’t be affected by these
changes as this model will not be applicable for these scenarios.

Pipeline changes

Egress traffic from VM with floating IP to the internet

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ip

	Packets from SNAT table resubmitted back to the FIB rather than straight to the external network subnet-id group.
In the FIB table it should be matched against a new flow with lower priority than any other flow containing
dst-ip match. Traffic will be redirected based on the vpn-id of the floating ip subnet to the external network
subnet-id group.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip set vpn-id=fip-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id =>

Subnet-id group: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

Ingress traffic from the internet to VM with floating IP

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=floating-ip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=fip =>

Pre DNAT table (25) match: dst-ip=fip set vpn-id=router-id,dst-ip=vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm-ip =>

Local Next-Hop group: set dst-mac=vm-mac, reg6=vm-lport-tag =>

Egress table (220) output to VM port

Egress traffic from VM with no associated floating IP to the internet - NAPT switch

	For Outbound NAPT, NAPT PFIB and FIB tables the vpn-id will be based on the subnet-id of the router gateway

	Packets from NAPT PFIB table resubmitted back to the FIB rather than straight to the external network subnet-id group.
In the FIB table it should be matched against a new flow with lower priority than any other flow containing
dst-ip match. Traffic will be redirected based on the vpn-id of the router gateway subnet to the external network
subnet-id group.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB table (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=router-gw-subnet-id =>

Subnet-id group: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

Ingress traffic from the internet to VM with no associated floating IP - NAPT switch

	For FIB table the vpn-id will be based on the subnet-id of the router gateway

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match vpn-id=ext-net-id,dst-mac=router-gw mac =>

FIB table (21) match: vpn-id=ext-net-id,dst-ip=router-gw set vpn-id=router-gw-subnet-id =>

Inbound NAPT table (44) match: dst-ip=router-gw,port=ext-port set dst-ip=vm-ip,vpn-id=router-id,port=int-port =>

PFIB table (47) match: vpn-id=router-id =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm-ip =>

Local Next-Hop group: set dst-mac=vm-mac,reg6=vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - VM traffic to floating ip on the same compute node

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ips

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=src-vm-ip set vpn-id=fip-subnet-id,src-ip=src-fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=src-fip set src-mac=src-fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,reg6=dst-vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - VM traffic to floating ip on remote compute node

VM originating the traffic (Ingress DPN):

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ip

	The destination mac is updated by the FIB table to be the floating ip mac. Traffic is sent to the egress DPN over
the port of the flat/VLAN provider network.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=src-vm-ip set vpn-id=fip-subnet-id,src-ip=src-fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=src-fip set src-mac=src-fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip set dst-mac=dst-fip-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

VM receiving the traffic (Egress DPN):

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=dst-fip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,lport-tag=dst-vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - traffic from VM with no associated floating IP to floating ip on remote compute node

VM originating the traffic (Ingress DPN) is non-NAPT switch:

	No flow changes required. Traffic will be directed to NAPT switch and directed to the outbound NAPT table straight
from the internal tunnel table

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group output to tunnel port of NAPT switch =>

VM originating the traffic (Ingress DPN) is the NAPT switch:

	For Outbound NAPT, NAPT PFIB, Pre DNAT, DNAT and FIB tables the vpn-id will be based on the common subnet-id of the
router gateway and the floating-ip.

	Packets from NAPT PFIB table resubmitted back to the FIB where they will be matched against the destnation floating ip.

	The destination mac is updated by the FIB table to be the floating ip mac. Traffic is sent to the egress DPN over
the port of the flat/VLAN provider network.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB table (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=router-gw-subnet-id dst-ip=dst-fip set dst-mac=dst-fip-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

VM receiving the traffic (Egress DPN):

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=dst-fip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,lport-tag=dst-vm-lport-tag =>

Egress table (220) output to VM port

Yang changes

odl-nat module will be enhanced with the following container

container external-subnets {
 list subnets {
 key id;
 leaf id {
 type yang:uuid;
 }
 leaf vpnid {
 type yang:uuid;
 }
 leaf-list router-ids {
 type yang:uuid;
 }
 leaf external-network-id {
 type yang:uuid;
 }
 }
}

This model will be filled out only for flat/VLAN external network provider types.
If this model is missing, vpn-id will be taken from odl-nat:external-networks model
to maintain compatibility with BGPVPN models.

odl-nat:ext-routers container will be enhanced with the list of the external subnet-ids
associated with the router.

container ext-routers {
 list routers {
 key router-name;
 leaf router-name {
 type string;
 }
 ...

 leaf-list external-subnet-id {
 type yang:uuid; }
 }
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Create external network with two subnets

neutron net-create public-net -- --router:external --is-default --provider:network_type=flat
--provider:physical_network=physnet1
neutron subnet-create --ip_version 4 --gateway 10.64.0.1 --name public-subnet1 <public-net-uuid> 10.64.0.0/16
-- --enable_dhcp=False
neutron subnet-create --ip_version 4 --gateway 10.65.0.1 --name public-subnet2 <public-net-uuid> 10.65.0.0/16
-- --enable_dhcp=False

Create internal networks with subnets

neutron net-create private-net1
neutron subnet-create --ip_version 4 --gateway 10.0.123.1 --name private-subnet1 <private-net1-uuid>
10.0.123.0/24
neutron net-create private-net2
neutron subnet-create --ip_version 4 --gateway 10.0.124.1 --name private-subnet2 <private-net2-uuid>
10.0.124.0/24
neutron net-create private-net3
neutron subnet-create --ip_version 4 --gateway 10.0.125.1 --name private-subnet3 <private-net3-uuid>
10.0.125.0/24
neutron net-create private-net4
neutron subnet-create --ip_version 4 --gateway 10.0.126.1 --name private-subnet4 <private-net4-uuid>
10.0.126.0/24

Create two router instances and connect each router to one internal subnet and one external subnet

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> <router1-uuid> <public-net-uuid>
neutron router-create router2
neutron router-interface-add <router2-uuid> <private-subnet2-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet2-uuid> <router2-uuid> <public-net-uuid>

Create router instance connected to both external subnets and the remaining internal subnets

neutron router-create router3
neutron router-interface-add <router3-uuid> <private-subnet3-uuid>
neutron router-interface-add <router3-uuid> <private-subnet4-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> --fixed-ip subnet_id=<public-subnet2-uuid>
<router3-uuid> <public-net-uuid>

Create floating ips from both subnets

neutron floatingip-create --subnet <public-subnet1-uuid> public-net
neutron floatingip-create --subnet <public-subnet1-uuid> public-net
neutron floatingip-create --subnet <public-subnet2-uuid> public-net

Create 2 VM instance in each subnet and associate with floating ips

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net1-uuid> VM1
nova floating-ip-associate VM1 <fip1-public-subnet1>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net1-uuid> VM2
nova floating-ip-associate VM2 <fip2-public-subnet1>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net2-uuid> VM3
nova floating-ip-associate VM3 <fip1-public-subnet2>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net2-uuid> VM4
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net3-uuid> VM5
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net4-uuid> VM6

Connectivity tests

	Connect to the internet from all VMs. VM1 and VM2 will route traffic through external gateway 10.64.0.1
VM3 and VM4 route traffic through external gateway 10.65.0.1.

	Connect to the internet from VM5 and VM6. Each connection will be routed to different external gateway
with the corresponding subnet router-gateway ip.

	Hairpinning when source VM is associated with floating ip - ping between VM1 and VM2 using their floating ips.

	Hairpinning when source VM is not associated with floating ip - ping from VM4 to VM3 using floating ip.
Since VM4 has no associated floating ip a NAPT entry will be allocated using the router-gateway ip.

Features to Install

odl-netvirt-openstack

REST API

N/A

CLI

N/A

Implementation

Assignee(s)

	Primary assignee:

	Yair Zinger <yair.zinger@hpe.com>

	Other contributors:

	Tali Ben-Meir <tali@hpe.com>

Work Items

https://trello.com/c/uDcQw95v/104-pipeline-changes-fip-w-multiple-subnets-in-ext-net-hairpinning

	Add external-subnets model

	Add vpn-instances for external flat/VLAN sunbets

	Change pipeline to prefer vpn-id from external-subnets over vpn-id from external-networks

	Add write metadata to GW MAC table for floating ip/router gw mac addresses

	Add default subnet-id match in FIB table to external subnet group entry

	
	Changes in remote next-hop flow for floating ip in FIB table

	
	Set destination mac to floating ip mac

	Set egress actions to provider port of the network attached to the floating ip subnet

	Resubmit SNAT + Outbound NAPT flows to FIB table

Dependencies

None

Testing

Unit Tests

Integration Tests

CSIT

	Hairpinning between VMs in the same subnet

	Hairpinning between VMs in different subnets connected to the same router

	Hairpinning with NAPT - source VM is not associated with floating ip

	Traffic to external network with multiple subnets

Documentation Impact

None

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

Table of Contents

	IPv6 DC-Internet L3 North-South connectivity using L3VPN provider network types.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Fib Manager changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 DC-Internet L3 North-South connectivity using L3VPN provider network types.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-l3vpn-internet

In this specification we will be discussing the high level design of
IPv6 Datacenter to Internet North-South connectivity support in OpenDaylight
using L3VPN provider network type use-case.

Problem description

Provide IPv6 connectivity to virtual machines located in different subnets
spread over multiple sites or Data center can be achieved through use of
Globally Unique Addresses and capacity to update enough routing tables to
forge a path between the two. Even if IPv6 is made to interconnect hosts
without the help of any NAT mechanisms, routing with the best efficienty
(shortest path) or policy (route weight, commercial relationships) must
be configured using only few parameters, automatically updating routes
for each VM spawned in new network.

Keep in mind that key aspects of L3VPN connectivity is Route Targets and
VPN-IPv6 address family.
Assuming an operator can configure data center gateways with a
Route Distinguisher dedicated to Internet connectivity and a set of imported
Route Targets, each time a virtual machine is spawned within a data center subnet
associated with that Route Distinguisher, it will trigger the send of a BGP UPDATE
message containing MP-BGP attributes required for reaching the VM outside the
datacenter. In the same manner, adding extra-route or declaring subnetworks will
trigger the same.
Such behavior can be achieved by configuring a neutron router an internet public
VPN address. For the following of the document, we focus to GUA/128 addresses that
are advertised, when one VM start. Indeed, most of the requirements are dealing with
VM access to internet.

Only IPv6 Globally Unique Address (eg /128) are advertised, this is not a scaling
architecture since it implies as much routes to process as the number of spawned
VMs, but with such BGP routing information base, DCGW can select the Compute Node
to which a packet coming from the WAN should be forwarded to.

The following covers the case where a VM connects to a host located in the internet,
and the destination ip address of packets is not part of the list of advertised
prefixes (see spec [6]).

Following schema could help :

 OVS A flow:
 IP dst not in advertised list
 VPN configuration explained in use case chapter
 +-----------------+
 | +-------------+ |
 +---+ |VM1 | |
 BGP table | | | Subnet A::2 | |
 Prefix Subnet A::2 |OVS| +-------------+ |
+-------+ Label L2 | A | +-------------+ |
| | Next Hop OVS A | | |VM2 | |
| Host | +-+-+ | Subnet B::2 | |
+---+---+ +-------+ | | +-------------+ |
 | | | | +-----------------+
 | | +-----------------+
 +--Internet-----+ DCGW |
 | +-----------------+ +-----------------+
 | | | | +-------------+ |
 +-------+ +-+-+ |VM3 | |
 | | | Subnet A::3 | |
 |OVS| +-------------+ |
 | B | +-------------+ |
 | | |VM4 | |
 +---+ | Subnet B::2 | |
 | +-------------+ |
 +-----------------+

Use Cases

Datacenter IPv6 external connectivity to/from Internet for VMs spawned on tenant
networks.

There are several techniques for VPNs to access the Internet. Those methods are
described in [8], on section 11.
Also a note describes in [8] the different techniques that could be applied to
the DC-GW case. Note that not all solutions are compliant with the RFC. Also,
we make the hypothesis of using GUA.

The method that will be described more in detail below is the option 2. Option 2
is external network connectivity option 2 from [8]). That method implies 2 VPNs.
One VPN will be dedicated to Internet access, and will contain the Internet Routes,
but also the VPNs routes. The Internet VPN can also contain default route to a gateway.
Having a separated VPN brings some advantages:
- the VPN that do not need to get Internet access get the private characteristic

of VPNs.

	using a VPN internet, instead of default forwarding table is enabling
flexibility, since it coud permit creating more than one internet VPN.
As consequence, it could permit applying different rules (different gateway
for example).

Having 2 VPNs implies the following for one packet going from VPN to the internet.
The FIB table will be used for that. If the packet’s destination address does no
match any route in the first VPN, then it may be matched against the internet VPN
forwarding table.
Reversely, in order for traffic to flow natively in the opposite direction, some
of the routes from the VPN will be exported to the internet VPN.

Configuration steps in a datacenter:

	Configure ODL and Devstack networking-odl for BGP VPN.

	Create a tenant network with IPv6 subnet using GUA prefix or an

admin-created-shared-ipv6-subnet-pool.
- This tenant network is connected to an external network where the DCGW is

connected. Separation between both networks is done by DPN located on compute
nodes. The subnet on this external network is using the same tenant as an IPv4
subnet used for MPLS over GRE tunnels endpoints between DCGW and DPN on
Compute nodes. Configure one GRE tunnel between DPN on compute node and DCGW.

	Create a Neutron Router and connect its ports to all internal subnets

	Create a transport zone to declare that a tunneling method is planned to reach an external IP:

the IPv6 interface of the DC-GW

	The neutron router subnetworks will be associated to two L3 BGPVPN instance.

The step create the L3VPN instances and associate the instances to the router.
Especially, two VPN instances will be created, one for the VPN, and one for the
internetVPN.

	operations:neutronvpn:createL3VPN (“route-distinguisher” = “vpn1”

	“import-RT” = [“vpn1”,”internetvpn”]
“export-RT” = [“vpn1”,”internetvpn”])

	operations:neutronvpn:createL3VPN (“route-distinguisher” = “internetvpn”

	“import-RT” = “internetvpn”
“export-RT” = “internetvpn”)

	The DC-GW configuration will also include 2 BGP VPN instances.
Below is a configuration from QBGP using vty command interface.

vrf rd “internetvpn”
vrf rt both “internetvpn”
vrf rd “vpn1”
vrf rt both “vpn1” “internetvpn”

	Spawn VM and bind its network interface to a subnet, L3 connectivty between

VM in datacenter and a host on WAN must be successful.
More precisely, a route belonging to VPN1 will be associated to VM GUA.
and will be sent to remote DC-GW. DC-GW will import the entry to both “vpn1” and “internetvpn”
so that the route will be known on both vpns.
Reversely, because DC-GW knows internet routes in “internetvpn”, those routes will be sent to
QBGP. ODL will get those internet routes, only in the “internetvpn” vpn.
For example, when a VM will try to reach a remote, a first lookup will be done in “vpn1” FIB
table. If none is found, a second lookup will be found in the “internetvpn” FIB table. The
second lookup should be successfull, thus trigerring the encapsulation of packet to the DC-GW.

	When the data centers is set up, there are 2 use cases:

	
	Traffic from Local DPN to DC-Gateway

	Traffic from DC-Gateway to Local DPN

The use cases are slightly different from [6], on the Tx side.

Proposed change

Similar as with [6], plus a specific processing on Tx side.
An additionnal processing in DPN is required. When a packet is received by a
neutron router associated with L3VPN, with destination mac address is the subnet
gateway mac address, and the destination ip is not in the FIB (default gateway)
of local DPN, then the packet should do a second lookup in the second VPN configured.
So that the packet can enter the L3VPN netvirt pipeline.
The MPLS label pushed on the IPv6 packet is the one configured to provide access
to Internet at DCGW level.

Pipeline changes

No pipeline changes, compared with [6]. However, FIB Manager will be modified so as to
implement the fallback mechanism. The FIB tables of the import-RTs VPNs from the default
VPN created will be parsed. In our case, a match will be found in the “internetVPN”
FIB table. If not match is found, the drop rule will be applied.

Regarding the pipeline changes, we can use the same BGPVPNv4 pipeline
(Tables Dispatcher (17), DMAC (19), LFIB (20), L3FIB (21), and NextHop Group
tables) and enhance those tables to support IPv6 North-South communication
through MPLS/GRE.
For understanding, the pipeline is written below: l3vpn-id is the ID associated to the initial VPN,
while l3vpn-internet-id is the ID associated to the internet VPN.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

When a packet is coming from DC-Gateway, the label will help finding out the associated VPN. The first one is l3vpn-id.

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

When a packet is going out from a dedicated VM, the l3vpn-id attached to that subnetwork will be used.
Theorically, in L3 FIB, there will be no match for dst IP with this l3vpn-id.
However, because ODL know the relationship between both VPNs, then the dst IP will be attached
with the first l3vpn-id.

However, since the gateway IP for inter-DC and external access is the same, the same MPLS label will be used for both VPNs.

Classifier Table (0) =>

Lport Dispatcher Table (17) ``match: LportTag l3vpn service: set vpn-id=l3vpn-id` =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=internet-l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=<alternate-ip> set tun-id=mpls_label output to MPLSoGRE tunnel port =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Fib Manager changes

Ingress traffic from internet to VM

The FIB Manager is being configured with 2 entries for different RDs : l3vpn-id and internetvpn-id.
The LFIB will be matched first.
In our case, label NH and prefix are the same, whereas we have 2 VPN instances.
So, proposed change is to prevent LFIB from adding entries if a label is already registered for that compute node.

Egress traffic from VM to internet

The FIB Manager is being configured with the internet routes on one RD only : internetvpn-id.
As packets that are emitted from the VM with vpn=l3vpn-id, the internet route will not be matched in l3vpn, if implementation remains as it is.
In FIB Manager, solution is the following:
- The internetvpn is not attached to any local subnetwork.
so, any eligible VPNs are looked up in the list of VPN instances.
for each VPN instance, for each RD, if an imported RT matches the internetvpnID, then a new rule will be appended.

Yang changes

None

Configuration impact

The configuration will require to create 2 VPN instances.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

The number of entries will be duplicated, compared with [6].
This is the cost in order to keep some VPNs private, and others kind of public.
Another impact is the double lookup that may result, when emitting a packet.
This is due to the fact that the whole fib should be parsed to fallback
to the next VPN, in order to make an other search, so that the packet can enter
in the L3VPN flow.

Targeted Release

Carbon

Alternatives

None

Usage

	Configure MPLS/GRE tunnel endpoint on DCGW connected to public-net network

	Configure neutron networking-odl plugin

	Configure BGP speaker in charge of retrieving prefixes for/from data center
gateway in ODL through the set of vpnservice.bgpspeaker.host.name in
etc/custom.properties. No REST API can configure that parameter.
Use config/ebgp:bgp REST api to start BGP stack and configure VRF, address
family and neighboring. In our case, as example, following values will be used:

	rd=”100:2” # internet VPN
- import-rts=”100:2”
- export-rts=”100:2”

	rd=”100:1” # vpn1
- import-rts=”100:1 100:2”
- export-rts=”100:1 100:2”

POST config/ebgp:bgp
{
 "ebgp:as-id": {
 "ebgp:stalepath-time": "360",
 "ebgp:router-id": "<ip-bgp-stack>",
 "ebgp:announce-fbit": "true",
 "ebgp:local-as": "<as>"
 },
 "ebgp:neighbors": [
 {
 "ebgp:remote-as": "<as>",
 "ebgp:address-families": [
 {
 "ebgp:afi": "2",
 "ebgp:peer-ip": "<neighbor-ip-address>",
 "ebgp:safi": "128"
 }
],
 "ebgp:address": "<neighbor-ip-address>"
 }
],
}

* Configure BGP speaker on DCGW to exchange prefixes with ODL BGP stack. Since
 DCGW should be a vendor solution, the configuration of such equipment is out of
 the scope of this specification.

	Create an internal tenant network with an IPv6 (or dual-stack) subnet.

neutron net-create private-net
neutron subnet-create --name ipv6-int-subnet --ip-version 6
--ipv6-ra-mode slaac --ipv6-address-mode slaac private-net 2001:db8:0:2::/64

	Use neutronvpn:createL3VPN REST api to create L3VPN

POST /restconf/operations/neutronvpn:createL3VPN

{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid_1",
 "name":"internetvpn",
 "route-distinguisher": [100:2],
 "export-RT": [100:2],
 "import-RT": [100:2],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

POST /restconf/operations/neutronvpn:createL3VPN

{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid_2",
 "name":"vpn1",
 "route-distinguisher": [100:1],
 "export-RT": [100:1, 100:2],
 "import-RT": [100:1, 100:2],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

	Associate L3VPN To Network

POST /restconf/operations/neutronvpn:associateNetworks

{
 "input":{
 "vpn-id":"vpnid_uuid_1",
 "network-id":"network_uuid"
 }
}

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net> VM1

	Dump ODL BGP FIB

GET /restconf/config/odl-fib:fibEntries

{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid_1>
 },
 {
 "routeDistinguisher": <rd_vpn1>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
 {
 "routeDistinguisher": <rd-uuid_2>
 },
 {
 "routeDistinguisher": <rd_vpninternet>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Julien Courtat <julien.courtat@6wind.com>

	Other contributors:

	Noel de Prandieres <prandieres@6wind.com>
Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>
Philippe Guibert <philippe.guibert@6wind.com>

Work Items

	Validate proposed setup so that each VM entry is duplicated in 2 VPN instances

	Implement FIB-Manager fallback mechanism for output packets

Dependencies

[6]

Testing

Unit Tests

Unit tests related to fallback mechanism when setting up 2 VPN instances configured
as above.

Integration Tests

TBD

CSIT

CSIT provided for the BGPVPNv6 versions will be enhanced to also support
connectivity to Internet.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] IPv6 Distributed Router for Flat/VLAN based Provider Networks. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-distributed-router]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

[6] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN. [https://git.opendaylight.org/gerrit/#/c/50359]

[7] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/c/49909/]

[8] External Network connectivity in IPv6 networks. [https://drive.google.com/file/d/0BxAspfn9mEi8OEtvVFpsZXo0ZlE/view]

[9] BGP/MPLS IP Virtual Private Networks (VPNs) [https://tools.ietf.org/html/rfc4364#section-11]

Table of Contents

	IPv6 Inter-DC L3 North-South connectivity using L3VPN provider network types.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 Inter-DC L3 North-South connectivity using L3VPN provider network types.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-interdc-l3vpn

In this specification we will be discussing the high level design of
IPv6 Inter-Datacenter North-South connectivity support in OpenDaylight
using L3VPN provider network type use-case.

Problem description

Provide IPv6 connectivity to virtual machines located in different subnets
spread over multiple sites or Data center can be achieved through use of
Globally Unique Addresses and capacity to update enough routing tables to
forge a path between the two. Even if IPv6 is made to interconnect hosts
without the help of any NAT mechanisms, routing with the best efficienty
(shortest path) or policy (route weight, commercial relationships) must
be configured using only few parameters, automatically updating routes
for each VM spawned in new network.

Keep in mind that key aspects of L3VPN connectivity is Route Targets and
VPN-IPv6 address family.
Assuming an operator can configure both data center gateways with same
Route Distinguisher or set of imported Route Targets, each time a virtual
machine is spawned within a new subnet, it will trigger the send of a BGP UPDATE
message containing MP-BGP attributes required for reaching the VM.
Such behavior can be achieved by configuring a neutron router a default gateway.

Only IPv6 Globally Unique Address (eg /128) are advertised, this is not a scaling
architecture since it implies as much routes to process as the number of spawned
VMs, but with such BGP routing information base, DCGW can select the Compute Node
to which a packet coming from the WAN should be forwarded to.

Following schema could help :

+-----------------+ +-----------------+
+-------------+		+-------------+						
	VM1	+---+ +---+	VM1					
	Subnet C::4			BGP table			Subnet A::2	
+-------------+	OVS	Prefix Subnet A::2	OVS	+-------------+				
+-------------+	A	Label L1	A	+-------------+				
	VM2			Next Hop OVS A			VM2	
	Subnet D::4	+-+-+ +-+-+	Subnet B::2					
+-------------+		+------+ +-------+		+-------------+				
+-----------------+ | | | | | | +-----------------+
 +-----+ | | +--------+
 | DCGW +--WAN--+ DCGW |
+-----------------+ +-----+ | | +--------+ +-----------------+
+-------------+								+-------------+
	VM3	+-+-+ +------+ +-------+ +-+-+	VM3					
	Subnet C::5						Subnet A::3	
+-------------+	OVS		OVS	+-------------+				
+-------------+	B		B	+-------------+				
	VM4						VM4	
	Subnet D::5	+---+ +---+	Subnet B::3					
+-------------+		+-------------+						
+-----------------+ +-----------------+

BGP protocol and its MP-BGP extension would do the job as long as all BGP
speakers are capable of processing UPDATE messages containing VPN-IPv6 address
family, which AFI value is 2 and SAFI is 128. It is not required that BGP
speakers peers using IPv6 LLA or GUA, IPv4 will be used to peer speakers
together.

Opendaylight is already able to support the VPN-IPv4 address family (AFI=1,
SAFI=128), and this blueprint focuses on specific requirements to VPN-IPv6.

One big question concerns the underlying transport IP version used with MPLS/GRE
tunnels established between Data center Gateway (DCGW), and compute nodes
(CNs). There is one MPLS/GRE tunnel setup from DCGW to each Compute Node involved
in the L3VPN topology. Please note that this spec doesn’t covers the case of
VxLAN tunnels between DCGW and Compute Nodes.

According to RFC 4659 §3.2.1, the encoding of the nexthop attribute in
MP-BGP UPDATE message differs if the tunneling transport version required is
IPv4 or IPv6. In this blueprint spec, the assumption of transport IP version of
IPv4 is prefered. This implies that any nexthop set for a prefix in FIB will be
IPv4.

Within BGP RIB table, for each L3VPN entry, the nexthop and label are key
elements for creating MPLS/GRE tunnel endpoints, and the prefix is used for
programming netvirt pipeline. When a VM is spawned, the prefix advertised by BGP
is 128 bits long and the nexthop carried along within UPDATE message is the ip
address of the DPN interface used for DCGW connection.
Since DCGW can be proprietary device, it may not support MPLS/GRE tunnel endpoint
setup according to its internal BGP table. A static configuration of such tunnel
endpoint may be required.

Use Cases

Inter Datacenter IPv6 external connectivity for VMs spawned on tenant networks,
routes exchanged between BGP speakers using same Route Distinguisher.

Steps in both data centers :

	Configure ODL and Devstack networking-odl for BGP VPN.

	Create a tenant network with IPv6 subnet using GUA prefix or an
admin-created-shared-ipv6-subnet-pool.

	This tenant network is separated to an external network where the DCGW is
connected. Separation between both networks is done by DPN located on compute
nodes. The subnet on this external network is using the same tenant as an IPv4
subnet used for MPLS over GRE tunnels endpoints between DCGW and DPN on
Compute nodes. Configure one GRE tunnel between DPN on compute node and
DCGW.

	Create a Neutron Router and connect its ports to all internal subnets that
will belong to the same L3 BGPVPN identified by a Route Distinguisher.

	Start BGP stack managed by ODL, possibly on same host as ODL.

	Create L3VPN instance.

	Associate the Router with the L3VPN instance.

	Spawn VM on the tenant network, L3 connectivity between VMs located on
different datacenter sharing same Route Distinguisher must be successful.

When both data centers are set up, there are 2 use cases per data center:

	Traffic from DC-Gateway to Local DPN (VMS on compute node)

	Traffic from Local DPN to DC-Gateway

Proposed change

ODL Controller would program the necessary pipeline flows to support IPv6
North South communication through MPLS/GRE tunnels out of compute node.

BGP manager would be updated to process BGP RIB when entries are IPv6 prefixes.

FIB manager would be updated to take into acount IPv6 prefixes.

Thrift interface between ODL and BGP implementation (Quagga BGP) must be
enhanced to support new AFI=2. Thrift interface will still carry IPv4 Nexthops,
and it will be the Quagga duty to transform this IPv4 Nexthop address into an
IPv4-mapped IPv6 address in every NLRI fields. Here is the new api proposed :

enum af_afi {
 AFI_IP = 1,
 AFI_IPV6 = 2,
}
i32 pushRoute(1:string prefix, 2:string nexthop, 3:string rd, 4:i32 label,
 5:af_afi afi)
i32 withdrawRoute(1:string prefix, 2:string rd, 3:af_afi afi)
oneway void onUpdatePushRoute(1:string rd, 2:string prefix,
 3:i32 prefixlen, 4:string nexthop,
 5:i32 label, 6:af_afi afi)
oneway void onUpdateWithdrawRoute(1:string rd, 2:string prefix,
 3:i32 prefixlen, 4:string nexthop,
 5:af_afi afi)
Routes getRoutes(1:i32 optype, 2:i32 winSize, 3:af_afi afi)

BGP implementation (Quagga BGP) announcing (AFI=2,SAFI=128) capability as well
as processing UPDATE messages with such address family. Note that the required
changes in Quagga is not part of the design task covered by this blueprint.

Pipeline changes

Regarding the pipeline changes, we can use the same BGPVPNv4 pipeline
(Tables Dispatcher (17), DMAC (19), LFIB (20), L3FIB (21), and NextHop Group
tables) and enhance those tables to support IPv6 North-South communication
through MPLS/GRE.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Please note that vpn-subnet-gateway-mac-address stands for MAC address of
the neutron port of the internal subnet gateway router.

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) match: LportTag l3vpn service: set vpn-id=l3vpn-id =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Please note that router-internal-interface-mac stands for MAC address of
the neutron port of the internal subnet gateway router.

Yang changes

Changes will be needed in ebgp.yang to start supporting IPv6 networks
advertisements.

A new leaf afi will be added to container networks

ebgp.yang

list networks {
 key "rd prefix-len";

 leaf rd {
 type string;
 }

 leaf prefix-len {
 type string;
 }

 leaf afi {
 type uint32;
 mandatory "false";
 }

 leaf nexthop {
 type inet:ipv4-address;
 mandatory "false";
 }

 leaf label {
 type uint32;
 mandatory "false";
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Impact on scaling inside datacenter essentially grow with the number of VM
connected to subnets associated with the L3VPN.
Since Globally Unique Address are used and there is no NAT involved in the
datapath, it implies prefixes advertised are all /128.
At the end, it means that every prefix advertised will have its entry
in BGP RIB of all ODL controllers and DCGW involved in L3VPN (ie all bgp aware
equipment will handle all prefixes advertised wihtin a Route Distinguisher).

This may imply BGP table with very high number of entries. This also implies a
high number of entries in ODL routing table and equivalent number of flows
inserted in OVS, since prefix advertised add matching ip destination in OVS
tables.

This fact also impact the scaling of the BGP speaker implementation (Quagga
BGP) with many thousands of BGPVPNv4 and BGPVPNv6 prefixes (as much as number
of spawned VMs) with best path selection algorithm on route updates, graceful
restart procedure, and multipath.

Targeted Release

Carbon

Alternatives

None

Usage

	Configure MPLS/GRE tunnel endpoint on DCGW connected to public-net network

	Configure neutron networking-odl plugin

	Configure BGP speaker in charge of retrieving prefixes for/from data center
gateway in ODL through the set of vpnservice.bgpspeaker.host.name in
etc/custom.properties. No REST API can configure that parameter.
Use config/ebgp:bgp REST api to start BGP stack and configure VRF, address
family and neighboring

POST config/ebgp:bgp
{
 "ebgp:as-id": {
 "ebgp:stalepath-time": "360",
 "ebgp:router-id": "<ip-bgp-stack>",
 "ebgp:announce-fbit": "true",
 "ebgp:local-as": "<as>"
 },
 "ebgp:vrfs": [
 {
 "ebgp:export-rts": [
 "<export-rts>"
],
 "ebgp:rd": "<RD>",
 "ebgp:import-rts": [
 "<import-rts>"
]
 }
],
 "ebgp:neighbors": [
 {
 "ebgp:remote-as": "<as>",
 "ebgp:address-families": [
 {
 "ebgp:afi": "2",
 "ebgp:peer-ip": "<neighbor-ip-address>",
 "ebgp:safi": "128"
 }
],
 "ebgp:address": "<neighbor-ip-address>"
 }
],
}

	Configure BGP speaker on DCGW to exchange prefixes with ODL BGP stack. Since
DCGW should be a vendor solution, the configuration of such equipment is out of
the scope of this specification.

	Create an internal tenant network with an IPv6 (or dual-stack) subnet and
connect ports.

neutron net-create private-net
neutron subnet-create private-net 2001:db8:0:2::/64 --name ipv6-int-subnet
--ip-version 6 --ipv6-ra-mode slaac --ipv6-address-mode slaac
neutron port-create private-net --name port1_private1

	Create a router and associate it to internal subnets.

neutron router-create router1
neutron router-interface-add router1 ipv6-int-subnet

	Use neutronvpn:createL3VPN REST api to create L3VPN

POST /restconf/operations/neutronvpn:createL3VPN
{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid",
 "name":"vpn1",
 "route-distinguisher": [100:1],
 "export-RT": [100:1],
 "import-RT": [100:1],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

	Associate L3VPN To Routers

POST /restconf/operations/neutronvpn:associateRouter
{
 "input":{
 "vpn-id":"vpnid_uuid",
 "router-id":["router_uuid"]
 }
}

	Create MPLSoGRE tunnel between DPN and DCGW

POST /restconf/operations/itm-rpc:add-external-tunnel-endpoint
{
 "itm-rpc:input": {
 "itm-rpc:destination-ip": "dcgw_ip",
 "itm-rpc:tunnel-type": "odl-interface:tunnel-type-mpls-over-gre"
 }
}

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> \
 --nic net-id=port1_private1_uuid VM1

	Dump ODL BGP FIB

GET /restconf/config/odl-fib:fibEntries
{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid>
 },
 {
 "routeDistinguisher": <rd>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

A new option --afi will be added to command odl:bgp-network:

opendaylight-user@root>
odl:bgp-network --prefix 2001:db8::1/128 --rd 100:1 --nexthop 192.168.0.2
 --label 700 --afi 2 add/del

Implementation

Assignee(s)

	Primary assignee:

	Julien Courtat <julien.courtat@6wind.com>

	Other contributors:

	Noel de Prandieres <prandieres@6wind.com>
Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>
Philippe Guibert <philippe.guibert@6wind.com>

Work Items

	Implement necessary APIs to allocate a transport over IPv6 requirement
configuration for a given Route Target as the primary key.

	Support of BGPVPNv6 prefixes within MD-SAL. Enhance RIB-manager to support
routes learned from other bgp speakers, [un]set static routes.

	BGP speaker implementation, Quagga BGP, to support BGPVPN6 prefixes exchanges
with other BGP speakers (interoperability), and thrift interface updates.

	Program necessary pipeline flows to support IPv6 to MPLS/GRE (IPv4) communication.

Dependencies

Quagga from 6WIND is publicly available at the following url

	https://github.com/6WIND/quagga

	https://github.com/6WIND/zrpcd

Testing

Unit Tests

Unit tests provided for the BGPVPNv4 versions will be enhanced to also support
BGPVPNv6. No additional unit tests will be proposed.

Integration Tests

TBD

CSIT

CSIT provided for the BGPVPNv4 versions will be enhanced to also support
BGPVPNv6. No additional CSIT will be proposed.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	IPv6 L3 North-South support for Flat/VLAN Provider Networks.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 L3 North-South support for Flat/VLAN Provider Networks.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south

In this specification we will be discussing the high level design of
IPv6 North-South support in OpenDaylight for VLAN/FLAT provider network
use-case.

Problem description

OpenDaylight currently supports IPv6 IPAM (IP Address Management) and a fully
distributed east-west router. IPv6 external connectivity is not yet supported.
This SPEC captures the implementation details of IPv6 external connectivity for
VLAN/FLAT provider network use-cases.

We have a separate SPEC [3] that captures external connectivity for L3VPN use-case.

The expectation in OpenStack is that Tenant IPv6 subnets are created with Globally
Unique Addresses (GUA) that are routable by the external physical IPv6 gateway in
the datacenter for external connectivity. So, there is no concept of NAT or
Floating-IPs for IPv6 addresses in Neutron. An IPv6 router is hence expected to do
a plain forwarding.

Initially, we would like to pursue a Centralized IPv6 router (CVR) use-case and
look into a fully distributed router via a future spec. One of the main reasons
for pursuing the CVR over DVR is that OpenStack Neutron creates only a single
router gateway port (i.e., port with device owner as network:router_gateway)
when the router is associated with the external network. When implementing
a distributed router, we cannot use the same router gateway port MAC address
from multiple Compute nodes as it could create issues in the underlying physical
switches. In order to implement a fully distributed router, we would ideally
require a router-gateway-port per compute node. We will be addressing the
distributed router in a future spec taking into consideration both IPv4 and IPv6
use-cases.

Use Cases

IPv6 external connectivity (north-south) for VMs spawned on tenant networks,
when the external network is of type FLAT/VLAN based.

Steps:

	Create a tenant network with IPv6 subnet using GUA/ULA prefix or an
admin-created-shared-ipv6-subnet-pool.

	Create an external network of type FLAT/VLAN with an IPv6 subnet where the
gateway_ip points to the Link Local Address (LLA) of external/physical IPv6
gateway.

	Create a Neutron Router and associate it with the internal subnets and external
network.

	Spawn VMs on the tenant network.

 +------------------+
 | |
 | +------->Internet
 | External IPv6 |
 | Gateway |
 | |
 | |
 +------------------+
 |LLA of IPv6 GW
 |
 | Flat/VLAN External Network: 2001:db8:0:1::/64
 +--+
 | | |
 | | |
 | ---+
 | | Internal Tenant N/W | | | |
router-gw-port| | | | | |
 +------------------------+ +-------------------------+ +-------------------------+
+--------------------+										
	Virtual IPv6 Router									
	using OVS Flows									
+--------------------+										
+--------------------+		+---------------------+		+---------------------+						
	VM1				VM2				VM3	
	Tenant IPv6 Subnet									
	2001:db8:0:2::10/64				2001:db8:0:2::20/64				2001:db8:0:2::30/64	
+--------------------+		+---------------------+		+---------------------+						
 +------------------------+ +-------------------------+ +-------------------------+
 Compute Node-1 designated Compute Node-2 Compute Node-3
 as NAPT Switch for router1

Proposed change

ODL Controller would implement the following.

	Program the necessary pipeline flows to support IPv6 forwarding

	Support Neighbor Discovery for Router Gateway port-ips on the external network.
i.e., When the upstream/external IPv6 Gateway does a Neighbor Solicitation for the
router-gateway-ip, ODL-Controller/ipv6service would respond with a Neighbor Advertisement
providing the target link layer address.

	Enhance IPv6Service to learn the MAC-address of external-subnet-gateway-ip by framing
the necessary Neighbor Solicitation messages and parsing the corresponding response.
The APIs in IPv6Service would be triggered from Gateway MAC resolver code and the
information obtained will be used while programming the ProviderNetworkGroup entries.

The implementation would be aligned with the existing IPv4 SNAT support we have
in Netvirt. ODL controller would designate one of the compute nodes (also referred
as NAPT Switch), one per router, to act as an IPv6/IPv4-SNAT router, from where the
tenant traffic is routed to the external network. External traffic from VMs hosted
on the NAPT switch is forwarded directly, whereas traffic from VMs hosted on other
compute nodes would have to do an extra hop to NAPT switch before hitting the
external network. If a router has both IPv4 and IPv6 subnets, the same NAPT Switch
for the router will be used for IPv4-SNAT and IPV6 external-packet forwarding.

Pipeline changes

Flows on NAPT Switch for Egress traffic from VM to the internet

Classifier Table (0) =>

LPORT_DISPATCHER_TABLE (17) l3vpn service: set: vpn-id=router-id =>

L3_GW_MAC_TABLE (19) priority=20, match: vpn-id=router-id, dst-mac=router-internal-interface-mac =>

L3_FIB_TABLE (21) priority=10, match: ipv6, vpn-id=router-id, default-route-flow =>

PSNAT_TABLE (26) priority=5, match: ipv6, vpn-id=router-id, unknown-sip =>

OUTBOUND_NAPT_TABLE (46) priority=10, match: ipv6, vpn-id=router-id, ip-src=vm-ip set: src-mac=external-router-gateway-mac-address, vpn-id=external-net-id, =>

NAPT_PFIB_TABLE (47) priority=6, match: ipv6, vpn-id=external-net-id, src-ip=vm-ip =>

ProviderNetworkGroup: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

EGRESS_LPORT_DISPATCHER_TABLE (220) output to provider network

Flows on NAPT Switch for Ingress traffic from internet to VM

Classifier Table (0) =>

LPORT_DISPATCHER_TABLE (17) l3vpn service: set: vpn-id=ext-net-id =>

L3_GW_MAC_TABLE (19) priority=20, match: vpn-id=ext-net-id, dst-mac=router-gateway-mac =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=ext-net-id, dst-ip=vm-ip =>

INBOUND_NAPT_TABLE (44) priority=10, match: ipv6, vpn-id=ext-net-id, dst-ip=vm-ip set: vpn-id=router-id =>

NAPT_PFIB_TABLE (47) priority=5, match: ipv6, vpn-id=router-id set: in_port=0 =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=router-id, dst-ip=vm-ip =>

Local Next-Hop group: set: src-mac=router-intf-mac, dst-mac=vm-mac,reg6=vm-lport-tag =>

Egress table (220) output to VM port

Flows for VMs hosted on Compute node that is not acting as an NAPT Switch

Same egress pipeline flows as above until L3_FIB_TABLE (21).

PSNAT_TABLE (26) priority=5, match: ipv6, vpn-id=router-id set: tun_id=<tunnel-id> =>

TunnelOutputGroup: output to tunnel-port =>

OnNAPTSwitch (for Egress Traffic from VM)

INTERNAL_TUNNEL_TABLE (36): priority=10, match: ipv6, tun_id=<tunnel-id-set-on-compute-node> set: vpn-id=router-id, goto_table:46

Rest of the flows are common.

OnNAPTSwitch (for Ingress Traffic from Internet to VM)

Same flows in ingress pipeline shown above until NAPT_PFIB_TABLE (47) =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=router-id, dst-ip=vm-ip set: tun_id=<tunnel-id>, dst-mac=vm-mac, output: <tunnel-port> =>

Yang changes

IPv6Service would implement the following YANG model.

module ipv6-ndutil {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:ipv6service:ipv6util";
 prefix "ipv6-ndutil";

 import ietf-interfaces {
 prefix if;
 }

 import ietf-inet-types {
 prefix inet; revision-date 2013-07-15;
 }

 import ietf-yang-types {
 prefix yang;
 }

 revision "2017-02-10" {
 description "IPv6 Neighbor Discovery Util module";
 }

 grouping interfaces {
 list interface-address {
 key interface;
 leaf interface {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf src-ip-address {
 type inet:ipv6-address;
 }
 leaf src-mac-address {
 type yang:phys-address;
 }
 }
 }

 rpc send-neighbor-solicitation {
 input {
 leaf target-ip-address {
 type inet:ipv6-address;
 }
 uses interfaces;
 }
 }
}

neighbor-solicitation-packet container in neighbor-discovery.yang would be enhanced
with Source Link Layer optional header.

container neighbor-solicitation-packet {
 uses ethernet-header;
 uses ipv6-header;
 uses icmp6-header;
 leaf reserved {
 type uint32;
 }
 leaf target-ip-address {
 type inet:ipv6-address;
 }
 leaf option-type {
 type uint8;
 }
 leaf source-addr-length {
 type uint8;
 }
 leaf source-ll-address {
 type yang:mac-address;
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

Scale and Performance Impact

	In the proposed implementation, we have to configure a static route
on the external IPv6 Gateway with next-hop as the router-gateway-ip.
In a future patch, we would enhance the implementation to use BGP for
advertising the necessary routes.

	When the external IPv6 Gateway wants to contact the tenant VMs, it
forwards all the traffic to the router-gateway-port on the designated
NAPT Switch. To know the target-link-layer address of the router-gw-port,
the external IPv6 Gateway would send out a Neighbor Solicitation for the
router-gateway-port-ip. This request would be punted to the Controller
and ipv6service would respond with the corresponding Neighbor Advertisement.
In large deployments this can become a bottleneck.
Note: Currently, OpenFlow does not have support to auto-respond to Neighbor
Solicitation packets like IPv4 ARP. When the corresponding support is added
in OpenFlow, we would program the necessary ovs flows to auto-respond to
the Neighbor Soliciation requests for router-gateway-ports.

Targeted Release

Carbon

Alternatives

An alternate solution is to implement a fully distributed IPv6 router and
would be pursued in a future SPEC.

Usage

	Create an external FLAT/VLAN network with an IPv6 (or dual-stack) subnet.

neutron net-create public-net -- --router:external --is-default
--provider:network_type=flat --provider:physical_network=public

neutron subnet-create --ip_version 6 --name ipv6-public-subnet
--gateway <LLA-of-external-ipv6-gateway> <public-net-uuid> 2001:db8:0:1::/64

	Create an internal tenant network with an IPv6 (or dual-stack) subnet.

neutron net-create private-net
neutron subnet-create --name ipv6-int-subnet --ip-version 6
--ipv6-ra-mode slaac --ipv6-address-mode slaac private-net 2001:db8:0:2::/64

	Create a router and associate the external and internal subnets.
Explicitly specify the fixed_ip of router-gateway-port, as it would help us
when manually configuring the downstream route on the external IPv6 Gateway.

neutron router-create router1
neutron router-gateway-set --fixed-ip subnet_id=<ipv6-public-subnet-id>,ip_address=2001:db8:0:10 router1 public-net
neutron router-interface-add router1 ipv6-int-subnet

	Manually configure a downstream route in the external IPv6 gateway
for the IPv6 subnet “2001:db8:0:2::/64” with next hop address as the
router-gateway-ip.

Example (on Linux host acting as an external IPv6 gateway):
ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:10

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net> VM1

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Sridhar Gaddam <sgaddam@redhat.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/cqjOFmow/147-ipv6-centralized-router-l3-north-south-support-for-flat-vlan-provider-networks

	Program necessary pipeline flows to support IPv6 North-South communication.

	Enhance ipv6service to send out Neighbor Solicitation requests
for the external/physical IPv6 gateway-ip and parse the response.

	Support controller based Neighbor Advertisement for router-gateway-ports
on the external network.

	Implement Unit and Integration tests to validate the use-case.

Dependencies

None

Testing

Unit Tests

Necessary Unit tests would be added to validate the use-case.

Integration Tests

Necessary Integration tests would be added to validate the use-case.

CSIT

We shall explore the possibility to validate this use-case in CSIT.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/50359/]

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Dual Stack VM support in OpenDaylight

	Problem description

	Setup Presentation

	Known Limitations

	Use Cases

	Inter DC Access

	External Internet Connectivity

	Proposed changes

	Pipeline changes

	Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

	Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

	Configuration impact

	ECMP impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Dual Stack VM support in OpenDaylight

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn-dual-stack-vms

In this specification we will introduce a support of basic L3 forwarding for
dualstack VMs connectivity over L3 in NetVirt. Dualstack VM is a virtual machine
that has at least two IP addresses with different ethertypes: IPv4 address and
IPv6 address.

In addition to this, the specification ensures initial support of dualstack VMs
inside L3 BGPVPN. L3 forwarding for dualstack VMs connectivity inside L3 BGPVPN
will be provided for the following variations of L3 BGPVPN:

	L3 BGPVPN constructed purely using networks;

	L3 BGPVPN constructed purely using a router;

	L3 BGPVPN constructed using multiple networks and a router.

Problem description

As a dualstack VM, we assume a VM which has one Neutron Port, i.e. one VNIC,
that inherits two IPs addresses with different ethertypes: one IPv4 address and
one IPv6 address. We also will use in this document a term singlestack VM to
describe a VM, which VNIC possesses either IPv4 or IPv6 address, but not both
simultaneously.

So, dualstack VM has two IP addresses with different ethertypes. This could be
achieved by two ways:

1. VM was initially created with one VNIC, i.e. one Neutron Port from network
with IPv4 subnet. Second VNIC, corresponded to a Neutron Port from another
network with IPv6 subnet, was added to this machine after its creation.

2. VM has one Neutron Port from a network, which contains 2 subnets: IPv4 subnet
and IPv6 subnet.

OpenDaylight has already provided a support for the first way, so this use-case
is not in the scope of the specification. For the second way the specification
doesn’t intend to cover a use-case when, Neutron Port will possess several IPv4
and several IPv6 addresses. More specifically this specification covers only the
use-case, when Neutron Port has only one IPv4 and one IPv6 address.

Since there are more and more services that use IPv6 by default, support of
dualstack VMs is important. Usage of IPv6 GUA addresses has increased during the
last couple years. Administrators want to deploy services, which will be
accessible from traditional IPv4 infrastructures and from new IPv6 networks as
well.

Dualstack VM should be able to connect to other VMs, be they are of IPv4 (or)
IPv6 ethertypes.
So in this document we can handle following use cases:

	Intra DC, Inter-Subnet basic L3 Forwarding support for dualstack VMs;

	Intra DC, Inter-Subnet L3 Forwarding support for dualstack VMs within L3 BGPVPN.

Current L3 BGPVPN allocation scheme picks up only the first IP address of
dualstack VM Neutron Port. That means that the L3 BGPVPN allocation scheme will
not apply both IPv4 and IPv6 network configurations for a port. For example, if
the first allocated IP address is IPv4 address, then L3 BGPVPN allocation scheme
will only apply to IPv4 network configuration. The second IPv6 address will be
ignored.

Separate VPN connectivity for singlestack VMs within IPv4 subnetworks and within
IPv6 subnetworks is already achieved by using distinct L3 BGPVPN instances. What
we want is to support a case, when the same L3 BGPVPN instance will handle both
IPV4 and IPv6 VM connectivity.

Regarding the problem description above, we would propose to implement in
OpenDaylight two following solutions, applying to two setups

	two-router setup solution

One router belongs to IPv4 subnetwork, another one belongs to IPv6 subnetwork.
This setup brings flexibility to manage access to external networks. More
specifically, by having two routers, where one is holding IPv4 subnet and
another is holding IPv6 subnet, customer can tear-down access to external
network for IPv4 subnet ONLY or for IPv6 subnet ONLY by doing a
router-gateway-clear on a respective router.

Now this kind of orchestration step entail us to put a Single VPN Interface
(representing the VNIC of DualStack VM) in two different Internal-VPNs, where
each VPN represents one of the routers. To achive this we will use L3 BGPVPN
concept. We will extend existing L3 BGPVPN instance implementation to give it an
ability to be associated with two routers. As consequence, IPv4 and IPv6
subnetworks, added as ports in associated routers and, hence, IPv4 and IPv6 FIB
entries, would be gathered in one L3 BGPVPN instance.

L3 BGPVPN concept is the easiest solution to federate two routers in a single L3
BGPVPN entity. From the orchestration point of view and from the networking
point of view, there is no any reason to provide IPv4 L3VPN and IPv6 L3VPN
access separately for dualstack VMs. It makes sense to have the same L3 BGPVPN
entity that can handle both IPv4 and IPv6 subnetworks.

The external network connectivity using L3 BGPVPN is not in scope of this
specification. Please, find more details about this in [6]. Right now, this
configuration will be useful for inter-subnet and intra-dc routing.

	dualstack-router setup solution

The router with 2 ports (one port for IPv4 subnet and another one for IPv6
subnet) is attached to a L3 BGPVPN instance.

The external network connectivity using L3 BGPVPN is not in the scope of this
specification.

Setup Presentation

Following drawing could help :

+---------------------+
| +-----------------+ |
| |VM1 | +---+
	Subnet C::4/64		
	Subnet a.b.c.1/i		
+-----------------+	OVS		
+-----------------+	A		
	VM2		
	Subnet C::5/64		
	Subnet a.b.c.2/i	+-+-+	
+-----------------+		+------+	
+---------------------+ | | |
 | +-MPLSoGRE tunnel for IPv4/IPv6-+ |
 | | |
 Vxlan | |
 Tunnel | |
 | | DCGW +--WAN--
+---------------------+ +-MPLSoGRE tunnel for IPv4/IPV6-+ |
| +-----------------+ | | | |
| |VM3 | +-+-+ +------+
	Subnet C::6/64		
	Subnet a.b.c.3/i		
+-----------------+	OVS		
+-----------------+	B		
	VM4		
	Subnet C::7/64		
	Subnet a.b.c.4/i	+---+	
+-----------------+			
+---------------------+

	We identify there 2 subnets:

	
	IPv4 subnet: a.b.c.x/i

	IPv6 subnet: C::x/64

Each VM will receive IPs from these two defined subnets.

Following schemes stand for conceptual representation of used neutron
configurations for each proposed solution.

setup 1: two singlestack routers, associated with one BGPVPN
 ("two-router" solution)

 +---------------+
 | Network N3 |
 +---------------+
 +-----+ +---------------+ | Subnet C IPv4 |
 | VM1 |-----| Network N | +---------------+
 +-----+ +--| | |
 | +---------------+ +---------------+
 | | Subnet A IPv4 |----| Router 1 |-----+
 | +---------------+ +---------------+ |
 | | Subnet B IPv6 | | | +--------+
 | +---------------+ +---------------+ | | | | |
 | | | Subnet E IPv4 | |---+ BGPVPN |
 | | +---------------+ | | |
 | | | Network N2 | | +--------+
 | | +---------------+ |
 | +---------------+ |
 | | Router 2 |--------------------------+
 +-----+ | +---------------+
 | VM2 |--+ |
 +-----+ +---------------+
 | Subnet D IPv6 |
 +---------------+
 | Network N1 |
 +---------------+

Network N gathers 2 subnetworks, subnet A IPv4 and subnet B IPv6. This makes
possible to create Neutron Ports, which will have 2 IP addresses and whose
attributes will inherit information (extraroutes, etc) from these 2 subnets A
and B.

Router1 and Router2 are connected to Subnet A and Subnet B respectively and will
be attached to a same L3 BGPVPN instance. Routers 1 and 2 can also have other
ports, but they always should stay singlestack routers, otherwise this
configuration will not be still supported. See the chapter “Configuration
impact” for more details.

setup 2: one dualstack router associated with one BGPVPN
 ("dualstack-router" solution)

 +-----+ +---------------+
 | VM1 |-----| Network N |
 +-----+ +--| |
 | +---------------+ +----------+ +--------+
 | | Subnet A IPv4 |---------| | | |
 | +---------------+ | Router 1 |---+ BGPVPN |
 | | Subnet B IPv6 |---------| | | |
 | +---------------+ +----------+ +--------+
 +-----+ |
 | VM2 |--+
 +-----+

Network N gathers 2 subnetworks, subnet A IPv4 and subnet B IPv6. This makes
possible to create Neutron Ports, which will have 2 IP addresses and whose
attributes will inherit information (extraroutes, etc) from these 2 subnets A
and B.

Router 1 is connected to Subnet A and Subnet B, and it will be attached to a L3
BGPVPN instance X. Other subnets can be added to Router 1, but this
configurations will not be still supported. See the chapter “Configuration
impact” for more details.

setup 3: networks associated with one BGPVPN

 +-----+ +------------------+ +--------+
 | VM1 |-----| Network N1 |------| BGPVPN |
 +-----+ +--| | | |
 | +------------------+ +--------+
 | | Subnet A IPv4 (1)| |
 +-----+ | +------------------+ |
 | VM2 |--+ | Subnet B IPv6 (2)| |
 +-----+ +------------------+ |
 |
 |
 +-----+ +------------------+ |
 | VM3 |-----+ Network N2 |----------+
 +-----+ | |
 +------------------+
 | Subnet C IPv4 (3)|
 +------------------+
 | Subnet D IPv6 (4)|
 +------------------+

Network N1 gathers 2 subnets, subnet A with IPv4 ethertype and subnet B with
IPv6 ethertype. When Neutron Port was created in the network N1, it has 1 IPv4
address and 1 IPv6 address. If user lately will add others subnets to the
Network N1 and will create the second Neutron Port, anyway the second VPN port,
constructed for a new Neutron Port will keep only IP addresses from subnets (1)
and (2). So valid network configuration in this case is a network with only 2
subnets: IPv4 and IPv6. See the chapter “Configuration impact” for more details.
Second dualstack network N2 can be added to the same L3 BGPVPN instance.

It is valid for all schemes: in dependency of chosen ODL configuration, either
ODL, or Neutron Dhcp Agent will provide IPv4 addresses for launched VMs. Please
note, that currently DHCPv6 is supported only by Neutron Dhcp Agent. ODL
provides only SLAAC GUA IPv6 address allocation for VMs launched in IPv6 private
subnets attached to a Neutron router.

It is to be noted that today, setup 3 can not be executed for VPNv6 with the above
allocation scheme previously illustrated. Indeed, only a neutron router is able to
send router advertisements, which is the corner stone for DHCPv6 allocation. Either
IPv6 fixed IPs will have to be used for this setup, or an extra enhancement for providing
router advertisements for such a configuration will have to be done. The setup 3 will be
revisited in future.

Known Limitations

Currently, from Openstack-based Opendaylight Bgpvpn driver point-of-view, there
is a check, where it does not allow more than one router to be associated to a
single L3 BGPVPN. This was done in Openstack, because actually entire ODL
modeling and enforcement supported only one router per L3 BGPVPN by design.

From Netvirt point of view, there are some limitations as well:

	We can not associate VPN port with both IPv4 and IPv6 Neutron Port addresses
at the same time. Currently, any first Neutron Port IP address is using to
create a VPN interface. If a Neutron Port possesses multiple IP Addresses,
regardless of ethertype, this port might not work properly with ODL.

	It is not possible to associate a single L3 BGPVPN instance with two different
routers.

Use Cases

There is no change in the use cases described in [6] and [7], except that the
single L3 BGPVPN instance serves both IPv4 and IPv6 subnets.

Inter DC Access

	two-router solution

IPv4 subnet Subnet A is added as a port in Router 1, IPv6 subnet Subnet B is
added as a port in Router 2. The same L3 BGPVPN instance will be associated with
both Router 1 and Router 2.

The L3 BGPVPN instance will distinguish ethertype of router ports and will
create appropriate FIB entries associated to its own VPN entry, so IPv4 and IPv6
enries will be gathered in the same L3 BGPVPN.

	dualstack-router solution

IPv4 subnet Subnet A is added as a port in Router 1, IPv6 subnet Subnet B is
added as a port in Router 1 as well. L3 BGPVPN instance will be associated with
Router 1.

The L3 BGPVPN instance will distinguish ethertype of routers ports and will
create appropriate FIB entries associated to its own VPN entry as well.
Appropriate BGP VRF context for IPv4 or IPv6 subnets will be also created.

External Internet Connectivity

External Internet Connectivity is not in the scope of this specification.

Proposed changes

All changes we can split in two main parts.

	Distinguish IPv4 and IPv6 VRF tables with the same RD/iRT/eRT

1.1 Changes in neutronvpn

To support a pair of IPv4 and IPv6 prefixes for each launched dualstack VM we
need to obtain information about subnets, where dualstack VM was spawned and
information about extraroutes, enabled for these subnets. Obtained information
will be stored in vmAdj and erAdjList objects respectively. These objects are
attributes of created for new dualstack VM VPN interface. Created VPN port
instance will be stored as part of already existed L3 BGPVPN node instance in
MDSAL DataStore.

When we update L3 BGPVPN instance node (associate/dissociated router or
network), we need to provide information about ethertype of new
attached/detached subnets, hence, Neutron Ports. New argument flags ipv4On
and ipv6On will be introduced for that in NeutronvpnManager function
API, called to update current L3 BGPVPN instance (updateVpnInstanceNode()
method). UpdateVpnInstanceNode() method is also called, when we create a new
L3 BGPVPN instance. So, to provide appropriate values for ipv4On, ipv6On
flags we need to parse subnets list. Then in dependency of these flags values we
will set either Ipv4Family attribute for the new L3 BGPVPN instance or
Ipv6Family attribute, or both attributes. Ipv4Family, Ipv6Family
attributes allow to create ipv4 or/and ipv6 VRF context for underlayed
vpnmanager and bgpmanager APIs.

1.2. Changes in vpnmanager

When L3 BGPVPN instance is created or updated, VRF tables must be created for
QBGP as well. What we want, is to introduce separate VRF tables, created
according to IPv4Family/IPv6Family VPN attributes, i.e. we want to
distinguish IPv4 and IPv6 VRF tables, because this will bring flexibility in
QBGP. For example, if QBGP receives an entry IPv6 MPLSVPN on a router, which is
expecting to receive only IPv4 entries, this entry will be ignored. The same for
IPv4 MPLSVPN entries respectively.

So, for creating VrfEntry objects, we need to provide information about L3
BGPVPN instance ethertype (Ipv4Family/Ipv6Family attribute), route
distinguishers list, route imports list and route exports lists
(RD/iRT/eRT). RD/iRT/eRT lists will be simply obtained from subnetworks,
attached to the chosen L3 BGPVPN. Presence of IPv4Family, IPv6Family in
VPN will be translated in following VpnInstanceListener class attributes:
afiIpv4, afiIpv6, safiMplsVpn, safiEvpn, which will be passed to
addVrf() and deleteVrf() bgpmanager methods for creating/deleting either
IPv4 VrfEntry or IPv6 VrfEntry objects.

RD/iRT/eRT lists will be the same for both IPv4 VrfEntry and IPv6
VrfEntry in case, when IPv4 and IPv6 subnetworks are attached to the same L3
BGPVPN instance.

1.3 Changes in bgpmanager

In bgpmanager we need to change signatures of addVrf() and deleteVrf()
methods, which will trigger signature changes of underlying API methods
addVrf() and delVrf() from BgpConfigurationManager class.

This allows BgpConfigurationManager class to create needed IPv4 VrfEntry and
IPv6 VrfEntry objects with appropriate AFI and SAFI values and finally
pass this appropriate AFI and SAFI values to BgpRouter.

BgpRouter represents client interface for thrift API and will create needed
IPv4 and IPv6 VRF tables in QBGP.

1.4 Changes in yang model

To support new attributes AFI and SAFI in bgpmanager classes, it should
be added in ebgp.yang model:

list address-families {
 key "afi safi";
 leaf afi {
 type uint32;
 mandatory "true";
 }
 leaf safi {
 type uint32;
 mandatory "true";
 }
}

1.5 Changes in QBGP thrift interface

To support separate IPv4 and IPv6 VRF tables in QBGP we need to change
signatures of underlying methods addvrf() and delvrf() in thrift API as
well. They must include the address family and subsequent address families
informations:

enum af_afi {
 AFI_IP = 1,
 AFI_IPV6 = 2,
}

i32 addVrf(1:layer_type l_type, 2:string rd, 3:list<string> irts, 4:list<string> erts,
 5:af_afi afi, 6:af_safi afi),
i32 delVrf(1:string rd, 2:af_afi afi, 3:af_safi safi)

	Support of two routers, attached to the same L3 BGPVPN

2.1 Changes in neutronvpn

two-router solution assumes, that all methods, which are using to create,
update, delete VPN interface or/and VPN instance must be adapted to a case, when
we have a list of subnetworks and/or list of router IDs to attach. Due to this,
appropriate changes need to be done in nvpnManager method APIs.

To support two-router solution properly, we also should check, that we do
not try to associate to L2 BGPVPN a router, that was already associated to that
VPN instance. Attached to L3 BGPVPN router list must contain maximum 2 router
IDs. Routers, which IDs are in the list must be only singlestack routers. More
information about supported router configurations is available below in chapter
“Configuration Impact”.

For each created in dualstack network Neutron Port we take only the last
received IPv4 address and the last received IPv6 address. So we also limit a
length of subnets list, which could be attached to a L3 BGPVPN instance, to two
elements. (More detailed information about supported network configurations is
available below in chapter “Configuration Impact”.) Two corresponding
Subnetmap objects will be created in NeutronPortChangeListener class for
attached subnets. A list with created subnetmaps will be passed as argument,
when createVpnInterface method will be called.

2.2 Changes in vpnmanager

VpnMap structure must be changed to support a list with router IDs. This
change triggers modifications in all methods, which retry router ID from
VpnMap object.

VpnInterfaceManager structure must be also changed, to support a list of VPN
instance name. So all methods, which gives VPN router ID from VpnInterfaceManager
should be modified as well.

As consequence, in operDS, a VpnInterfaceOpDataEntry structure is created, inherited
from VpnInterface in configDS. While the latter structure has a list of VPN instance
name, the former will be instantiated in operDS as many times as there are VPN instances.
The services that were handling VPNInterface in operDS, will be changed to handle
VPNInterfaceOpDataEntry. That structure will be indexed by InterfaceName and by VPNName.
The services include natservice, fibmanager, vpnmanager, cloud service chain.

Also, an augment structure will be done for VPNInterfaceOpDataEntry to contain the list
of operational adjacencies. As for VpnInterfaceOpDataEntry, the new AdjacenciesOp
structure will replace Adjacencies that are in operDS. Similarly, the services will be
modified for that.

Also, VPNInterfaceOpDataEntry will contain a VPNInterfaceState that stands for the
state of the VPN Interface. Code change will be done to reflect the state of the interface.
For instance, if VPNInstance is not ready, associated VPNInterfaceOpDataEntries will have
the state changed to INACTIVE. Reversely, the state will be changed to ACTIVE.

2.3 Changes in yang model

To provide change in VpnMap and in VpnInterfaceManager structures, described
above, we need to modify following yang files.

2.3.1 neutronvpn.yang

	Currently, container vpnMap holds one router-id for each L3 BGPVPN instance ID. A
change consists in replacing one router-id leaf by a leaf-list of router-ids.
Obviously, no more than two router-ids will be used.

	Container vpnMaps is used internally for describing a L3 BGPVPN. Change router-id
leaf by router-ids leaf-list in this container is also necessary.

--- a/vpnservice/neutronvpn/neutronvpn-api/src/main/yang/neutronvpn.yang
+++ b/vpnservice/neutronvpn/neutronvpn-api/src/main/yang/neutronvpn.yang
@@ -1,4 +1,3 @@
-
module neutronvpn {

namespace "urn:opendaylight:netvirt:neutronvpn";
@@ -120,7 +119,7 @@ module neutronvpn {
Format is ASN:nn or IP-address:nn.";
}

- leaf router-id {
+ leaf-list router-ids {
 type yang:uuid;
 description "UUID router list";
 }
@@ -173,7 +172,7 @@ module neutronvpn {
description "The UUID of the tenant that will own the subnet.";
}

- leaf router-id {
+ leaf-list router_ids {
 type yang:uuid;
 description "UUID router list";
 }

2.3.2 l3vpn.yang

	Currently, list vpn-interface holds a leaf vpn-instance-name, which is a
container for VPN router ID. A change consists in replacing leaf
vpn-instance-name by a leaf-list of VPN router IDs, because L3 BGPVPN instance can
be associated with two routers.
Obviously, no more than two VPN router-IDs will be stored in leaf-list
vpn-instance-name.

--- a/vpnservice/vpnmanager/vpnmanager-api/src/main/yang/l3vpn.yang
+++ b/vpnservice/vpnmanager/vpnmanager-api/src/main/yang/l3vpn.yang
 @@ -795,21 +795,21 @@

 list vpn-interface {
 key "name";
 max-elements "unbounded";
 min-elements "0";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
- leaf vpn-instance-name {
+ leaf-list vpn-instance-name {
 type string {
 length "1..40";
 }
 }
 leaf dpn-id {
 type uint64;
 }
 leaf scheduled-for-remove {
 type boolean;
 }

2.3.3 odl-l3vpn.yang

 augment "/odl-l3vpn:vpn-interface-op-data/odl-l3vpn:vpn-interface-op-data-entry" {
 ext:augment-identifier "adjacencies-op";
 uses adjacency-list;
 }

 container vpn-interface-op-data {
 config false;
 list vpn-interface-op-data-entry {
 key "name vpn-instance-name";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf vpn-instance-name {
 type string {
 length "1..40";
 }
 }
 max-elements "unbounded";
 min-elements "0";
 leaf dpn-id {
 type uint64;
 }
 leaf scheduled-for-remove {
 type boolean;
 }
 leaf router-interface {
 type boolean;
 }
 leaf vpn-interface-state {
 description
 "This flag indicates the state of this interface in the VPN identified by vpn-name.
 ACTIVE state indicates that this vpn-interface is currently associated to vpn-name
 available as one of the keys.
 INACTIVE state indicates that this vpn-interface has already been dis-associated
 from vpn-name available as one of the keys.";

 type enumeration {
 enum active {
 value "0";
 description
 "Active state";
 }
 enum inactive {
 value "1";
 description
 "Inactive state";
 }
 }
 default "active";
 }
 }
}

Pipeline changes

There is no change in the pipeline, regarding the changes already done in [6]
and [7].

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

The DC-GW has the information, that permits to detect an underlay destination IP
and MPLS label for a packet coming from the Internet or from anotherr DC-GW.

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) match: LportTag l3vpn service: set vpn-id=l3vpn-id =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ipv4-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ipv6-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Please, note that router-internal-interface-mac stands for MAC address of
the internal subnet gateway router port.

Configuration impact

	Limitations for router configurations

	1.1 Maximum number of singlestack routers that can be associated to a

	L3BGPVPN is limited to 2. Maximum number of dualstack routers that can be
associated with a BGPVPN is limited to 1.

	1.2 If a L3 BGPVPN has already associated with a one singlestack router and we

	try to associate this VPN instance again with a dualstack router, exception will
not be raised. But this configuration will not be valid.

	1.3 If a singlestack router is already associated to a L3 BGPVPN instance, and

	it has more than one port and we try to add a port to this router with another
ethertype, i.e. we try to make this router dualstack, exception will not be
raised. But this configuration will not be valid and supported.

	1.4 When a different ethertype port is added to a singlestack router, which already

	has only one port and which is already associated to a L3 BGPVPN instance,
singlestack router in this case becomes dualstack router with only two ports.
This router configuration is allowed by current specification.

	Limitations for subnetworks configurations

	2.1 Maximum numbers of different ethertype subnetworks associated to a one L3

	BGPVPN instance is limited to two. If a network contains more than two different
ethertype subnetworks, exception won’t be raised, but this configuration isn’t
supported.

	2.2 When we associate a network with a L3 BGPVPN instance, we do not care if

	subnetworks from this network are ports in some routers and these routers were
associated with other VPNs. This configuration is not considered as supported as
well.

	Limitations for number of IP addresses for a Neutron Port

The specification only targets dual-stack networks, that is to say with 1 IPv4 address and
one IPv6 address only.
For other cases, that is to say, adding subnetworks IPv4 or IPv6, will lead to undefined or
untested use cases. The multiple subnets test case would be handled in a future spec.

ECMP impact

ECMP - Equal Cost multiple path.

ECMP feature is currently provided for Neutron BGPVPN networks and described in
the specification [10]. 3 cases have been cornered to use ECMP feature for
BGPVPN usability.

	ECMP of traffic from DC-GW to OVS (inter-DC case)

	ECMP of traffic from OVS to DC-GW (inter-DC case)

	ECMP of traffic from OVS to OVS (intra-DC case)

In each case, traffic begins either at DC-GW or OVS node. Then it is sprayed to
end either at OVS node or DC-GW.

ECMP feature for Neutron BGPVPN networks was successfully (OK) tested with IPv4
L3 BGPVPN and IPv6 L3 BGPVPN (OK). the dual stack VM connectivity should embrace
ECMP

We’ve included this chapter to remind, that code changes for supporting
dualstack VMs should be tested against ECMP scenario as well.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Assume, that in the same provider network we have OpenStack installed with 1
controller and 2 compute nodes, DC-GW node and OpenDaylight node.

	create private tenant networks and subnetworks

	create Network N;

	declare Subnet A IPv4 for Network N;

	declare Subnet B IPv6 for Network N;

	create two ports in Network N;

	each port will inherit a dual IP configuration.

	create routers

	two-router solution
+ create two routers A and B, each router will be respectively connected to

IPv4 and IPv6 subnets;

	add subnet A as a port to router A;

	add subnet B as a port to router B.

	dualstack-router solution
+ create router A;
+ add subnet A as a port to router A;
+ add subnet B as a port to router A.

	Create MPLSoGRE tunnel between DPN and DCGW

POST /restconf/operations/itm-rpc:add-external-tunnel-endpoint
{
 "itm-rpc:input": {
 "itm-rpc:destination-ip": "dcgw_ip",
 "itm-rpc:tunnel-type": "odl-interface:tunnel-type-mpls-over-gre"
 }
}

	create the DC-GW VPN settings

	Create a L3 BGPVPN context. This context will have the same settings as in
[7].In dualstack case both IPv4 and IPv6 prefixes will be injected in the same
L3 BGPVPN.

	create the ODL L3 BGPVPN settings

	Create a BGP context. This step permits to start QBGP module depicted in [8]
and [9]. ODL has an API, that permits interfacing with that external software.
The BGP creation context handles the following:

	start of BGP protocol;

	declaration of remote BGP neighbor with the AFI/SAFI affinities. In our
case, VPNv4 and VPNv6 address families will be used.

	Create a L3 BGPVPN, this L3 BGPVPN will have a name and will contain VRF
settings.

	associate created L3 BGPVPN to router

	two-router solution: associate routers A and B with a created L3 BGPVPN;

	dualstack-router solution: associate router A with a created L3 BGPVPN.

	Spawn a VM in a created tenant network:

The VM will possess IPv4 and IPv6 addresses from subnets A and B.

	Observation: dump ODL BGP FIB entries

At ODL node, we can dump ODL BGP FIB entries and we should see entries for
both IPv4 and IPv6 subnets prefixes:

GET /restconf/config/odl-fib:fibEntries
{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid>
 },
 {
 "routeDistinguisher": <rd>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

A new option --afi and --safi will be added to command odl:bgp-vrf:

odl:bgp-vrf --rd <> --import-rt <> --export-rt <> --afi <1|2> --safi <value> add|del

Implementation

Assignee(s)

	Primary assignee:

	Philippe Guibert <philippe.guibert@6wind.com>

	Other contributors:

	
	Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>

	Noel de Prandieres <prandieres@6wind.com>

Work Items

	QBGP Changes

	BGPManager changes

	VPNManager changes

	NeutronVpn changes

Dependencies

Quagga from 6WIND is available at the following urls:

	https://github.com/6WIND/quagga

	https://github.com/6WIND/zrpcd

Testing

Unit Tests

Some L3 BGPVPN testing may have be done.
Complementary specification for other tests will be done.

Integration Tests

TBD

CSIT

Basically, IPv4 and IPv6 vpnservice functionality have to be validated by
regression tests with a single BGPVRF.

CSIT specific testing will be done to check dualstack VMs connectivity with
network configurations for two-router and dualstack-router solutions.

Two-router solution test suite:

	Create 2 Neutron Networks NET_1_2RT and NET_2_2RT.

	1.1 Query ODL restconf API to check that both Neutron Network objects were

	successfully created in ODL.

1.2 Update NET_1_2RT with a new description attribute.

	In each Neutron Network create one Subnet IPv4 and one Subnet IPv6:
SUBNET_V4_1_2RT, SUBNET_V6_1_2RT, SUBNET_V4_2_2RT, SUBNET_V6_2_2RT,
respectively.

	2.1 Query ODL restconf API to check that all Subnetwork objects were

	successfully created in ODL.

2.2 Update SUBNET_V4_2RT, SUBNET_V6_2RT with a new description attribute.

	Create 2 Routers: ROUTER_1 and ROUTER_2.

	3.1 Query ODL restconf API to check that all Router objects were successfully

	created in ODL.

	Add SUBNET_V4_1_2RT, SUBNET_V4_2_2RT to ROUTER_1 and SUBNET_V6_1_2RT,
SUBNET_V6_2_2RT to ROUTER_2.

	Create 2 security-groups: SG6_2RT and SG4_2RT. Add appropriate rules to allow
IPv6 and IPv4 traffic from/to created subnets, respectively.

	In network NET_1_2RT create Neutron Ports: PORT_11_2RT, PORT_12_2RT, attached
with security groups SG6_2RT and SG4_2RT; in network NET_2_2RT: PORT_21_2RT,
PORT_22_2RT, attached with security groups SG6_2RT and SG4_2RT.

	6.1 Query ODL restconf API to check, that all Neutron Port objects were

	successfully created in ODL.

6.2 Update Name attribute of PORT_11_2RT.

	Use each created Neutron Port to launch a VM with it, so we should have 4 VM
instances: VM_11_2RT, VM_12_2RT, VM_21_2RT, VM_22_2RT.

	7.1 Connect to NET_1_2RT and NET_2_2RT dhcp-namespaces, check that subnet

	routes were successfully propagated.

7.2 Check that all VMs have: one IPv4 address and one IPv6 addresses.

	Check IPv4 and IPv6 VMs connectivity within NET_1_2RT and NET_2_2RT.

	Check IPv4 and IPv6 VMs connectivity across NET_1_2RT and NET_2_2RT with
ROUTER_1 and ROUTER_2.

9.1 Check that FIB entries were created for spawned Neutron Ports.

	9.2 Check that all needed tables (19, 17, 81, 21) are presented in OVS

	pipelines and VMs IPs, gateways MAC and IP addresses are taken in account.

	Connect to VM_11_2RT and VM_21_2RT and add extraroutes to other IPv4 and
IPv6 subnets.

	10.1 Check other IPv4 and IPv6 subnets reachability from VM_11_2RT and

	VM_21_2RT.

	Delete created extraroutes.

	Delete and recreate extraroutes and check its reachability again.

	Create L3VPN and check with ODL REST API, that it was successfully created.

	Associate ROUTER_1 and ROUTER_2 with created L3VPN and check the presence of
router IDs in VPN instance with ODL REST API.

	Check IPv4 and IPv6 connectivity accross NET_1_2RT and NET_2_2RT with
associated to L3VPN routers.

	15.1 Check with ODL REST API, that VMs IP addresses are presented in VPN

	interfaces entries.

15.2 Verify OVS pipelines at compute nodes.

	15.3 Check the presence of VMs IP addresses in vrfTables objects with

	ODL REST API query.

	Dissociate L3VPN from ROUTER_1 and ROUTER_2.

	Delete ROUTER_1 and ROUTER_2 and its interfaces from L3VPN.

	Try to delete router with NonExistentRouter name.

	Associate L3VPN to NET_1_2RT.

	Dissociate L3VPN from NET_1_2RT.

	Delete L3VPN.

	Create multiple L3VPN.

	Delete multiple L3VPN.

Documentation Impact

Necessary documentation would be added if needed.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

[6] Spec to support IPv6 DC to Internet L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/54050/]

[7] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/50359/]

[8] Zebra Remote Procedure Call [https://github.com/6WIND/zrpcd/]

[9] Quagga BGP protocol [https://github.com/6WIND/zrpcd/]

Listener Dependency Helper

https://git.opendaylight.org/gerrit/#/q/topic:ListenerDepedencyHelper

Listener Dependency Helper makes “Data Store Listeners” independent from dependency
resolution.

Problem description

When a DataStore-Listener is fired with config add/update/delete event, as
part of listener processing it may try to read the other data store objects,
at times those datastore objects are not yet populated. In this scenario,
listener event processing has to be delayed (or) discarded, as the required
information is NOT entirely available. Later when the dependant data objects
are available, this listener event will not be triggered again by DataStore.

This results in some events not getting processed resulting in possible
data-path, bgp control and data plane failures.

Example: VpnInterface add() callback triggered by MD-SAL on vpnInterface
add. While processing add() callback, the corresponding vpnInstance is
expected to be present in MD-SAL operational DS; which means that vpnInstance
creation is complete (updating the vpn-targets in Operational DS and BGP).

Information: vpnInstance Config-DS listener thread has to process vpnInstance
creation and update vpnInstance in operational DS. vpnInstance creation
listener callback is handled by different listener thread.

Use Cases

Use Case 1: VPNInterfaces may get triggered before VPNInstance Creation.

Current implementation: Delay based waits for handling VPNInterfaces that may
get triggered before VPNInstance Creation(waitForVpnInstance()).

Use Case 2: VPNManager to handle successful deletion of VPN which has a
large number of BGP Routes (internal/external):

Current implementation: Delay-based logic on VPNInstance delete in
VPNManager (waitForOpRemoval()).

Use Case 3: VpnSubnetRouteHandler that may get triggered before VPNInstance
Creation.

Current implementation: Delay based waits in VpnSubnetRouteHandler which may
get triggered before VPNInstance Creation(waitForVpnInstance()).

Use Case 4: VPN Swaps (Internal to External and vice-versa)

Current implementation: Currently we support max of 100 VM’s for swap
(VpnInterfaceUpdateTimerTask, waitForFibToRemoveVpnPrefix()).

Proposed change

During Listener event call-back (AsyncDataTreeChangeListenerBase) from
DataStore, check for pending events in “Listener-Dependent-Queue” with
same InstanceIdentifier to avoid re-ordering.

Generic Queue Event Format:

key : Instance Identifier
eventType : Type of event (ADD/UPDATE/DELETE)
oldData : Data before modification (for Update event);
newData : Newly populated data
queuedTime : at which the event is queued to LDH.
lastProcessedTime : latest time at which dependency list verified
expiryTime : beyond which processing for event is useless
waitBetweenDependencyCheckTime : wait time between each dependency check
dependentIIDs : list of dependent InstanceIdentifiers
retryCount : max retries allowed.
databroker : data broker.
deferTimerBased : flag to choose between (timer/listener based).

For Use Case - 1: deferTimerBased shall be set to TRUE (as per the specification).

During processing of events (either directly from DataStore or from
“Listener-Dependent-Queue”), if there any dependent objects are yet to
populated; queue them to “Listener-Dependent-Queue”.

Expectations from Listener: Listener will push the callable instance to
“Listener-Dependent-Queue” if it cannot proceed with processing of the
event due to dependent objects/InstanceIdentifier and list of dependent IID’s.

There are two approaches the Listener Dependency check can be verified.

approach-1 Get the list of dependent-IID’s, query DataStore/Cache for

depenedency resolution at regular intervals using “timer-task-pool”. Once
all the dependent IID’s are resolved, call respective listener for
processing.

LDH-task-pool : pool of threads which query for dependency resolution READ
ONLY operation in DataStore. These threads are part of LDH common for all
listeners.

hasDependencyResolved(<InstanceIdentifier iid, Boolean shouldDataExist,
DataStoreType DSType> List), this shall return either Null list (or) the list
which has dependencies yet to be resolved. In case Listener has local-cache
implemented for set of dependencies, it can look at cache and identify. This
api will be called from LDH-task-pool of thread(s).

instanceIdentifier is the MD-SAL key value which need to be verified for
existence/non-existence of data.
Boolean shouldDataExist: shall be TRUE, if the Listener expects to have the
information exists in MD-SAL; False otherwise.

approach-2 Register Listener for wild-card path of IID’s.

When a Listener gets queued to “”Listener-Dependent-Queue”, LDH shall register
itself as Listener for the dependent IID’s (using wild-card-path/parent-node).
Once the listener gets fired, identify the dependent listeners waiting for the
Data. Once the dependent Listener is identified, if the dependent-IID list is
NULL. Trigger listener for processing the event.
LDH-task-pool shall unregister itself from wild-card-path/parent-node once there
are no dependent listeners on child-nodes.

Re-Ordering

The following scenario, when re-ordering can happen and avoidance of the same:

	Example: Key1 and Value1 are present in MD-SAL Data Store under Tree1, SubTree1

	(for say). Update-Listener for Key1 is dependent on Dependency1.

Key1 received UPDATE event (UPDATE-1) with value=x, at the time of processing
UPDATE-1, dependency is not available. So Listener Queued ‘UPDATE-1’ event to
“UnProcessed-EventQueue”.
same key1 received UPDATE event (UPDATE-2) with value=y, at the time of
processing UPDATE-2, dependency is available (Dependency1 is resolved), so it
goes and processes the event and updates value of Key1 to y.

	After WaitTime, event Key1, UPDATE-1 is de-queued from “UnProcessed-EventQueue”

	and put for processing in Lister. Listener processes it and updates the Key1
value to x. (which is incorrect, happened due to re-ordering of events).

To avoid reordering of events within listener, every listener call back shall
peek into “UnProcessed-EventQueue” to identify if there exists a pending event
with same key value; if so, either suppress (or)
queue the event. Below are event ordering expected from MD-SAL and respective
actions:

what to consider before processing the event to avoid re-ordering of events:

	Current Event| Queued Event| Action

	ADD | ADD | NOT EXPECTED

	ADD | REMOVE | QUEUE THE EVENT

	ADD | UPDATE | NOT EXPECTED

	UPDATE | ADD | QUEUE EVENT

	UPDATE | UPDATE | QUEUE EVENT

	UPDATE | REMOVE | NOT EXPECTED

	REMOVE | ADD | SUPPRESS BOTH

	REMOVE | UPDATE | EXECUTE REMOVE SUPPRESS UPDATE

	REMOVE | REMOVE | NOT EXPECTED

Pipeline changes

none

Yang changes

none

Configuration impact

none

Clustering considerations

In the two approaches mentioned:
1 - Timer: polling MD-SAL for dependency resolution may incur in more
number of reads.

2 - RegisterListener: RegisterListener may some impact at the time of
registering listener after which a notification message to cluser nodes.

Predined List of Listeners

perational/odl-l3vpn:vpn-instance-op-data/vpn-instance-op-data-entry/*
operational/odl-l3vpn:vpn-instance-op-data/vpn-instance-op-data-entry/

vpn-id/vpn-to-dpn-list/*

config/l3vpn:vpn-instances/*

Other Infra considerations

Security considerations

none

Scale and Performance Impact

this infra, shall improve scaling of application without having to wait for
dependent data store gets populated.
Performance shall remain intact.

Targeted Release

Alternatives

	use polling/wait mechanisms

Features to Install

REST API

CLI

CLI will be added for debugging purpose.

Implementation

Assignee(s)

Primary assignee:
Siva Kumar Perumalla (sivakumar.perumalla@ericsson.com)

Other contributors:
Suneelu Verma K.

Work Items

Dependencies

Testing

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Acronyms

IID: InstanceIdentifier

Table of Contents

	New SFC Classifier

	Terminology

	Problem description

	Use Cases

	Proposed change

	Integration with Genius

	Classifier and SFC Genius Services

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

New SFC Classifier

https://git.opendaylight.org/gerrit/#/q/topic:new-sfc-classifier

The current SFC Netvirt classifier only exists in the old Netvirt.
This blueprint explains how to migrate the old Netvirt classifier
to a new Netvirt classifier.

Terminology

	NSH - Network Service Headers, used as Service Chaining encapsulation. NSH RFC Draft [1]

	NSI - Network Service Index, a field in the NSH header used to indicate the next hop

	NSP - Network Service Path, a field in the NSH header used to indicate the service chain

	RSP - Rendered Service Path, a service chain.

	SFC - Service Function Chaining. SFC RFC [2] ODL SFC Wiki [3].

	SF - Service Function

	SFF - Service Function Forwarder

	VXGPE - VXLAN GPE (Generic Protocol Encapsulation)
Used as transport for NSH. VXGPE uses the same header format as traditional
VXLAN, but adds a Next Protocol field to indicate NSH will be the next header.
Traditional VXLAN implicitly expects the next header to be ethernet. VXGPE RFC
Draft [4].

Problem description

In the Boron release, an SFC classifier was implemented, but in the
old Netvirt. This blueprint intends to explain how to migrate the
old Netvirt classifier to a new Netvirt classifier, which includes
integrating the classifier and SFC with Genius.

The classifier is an integral part of Service Function Chaining (SFC).
The classifier maps client/tenant traffic to a service chain by matching
the packets using an ACL, and once matched, the classifier encapsulates
the packets using some sort of Service Chaining encapsulation. Currently,
the only supported Service Chaining encapsulation is NSH using VXGPE as
the transport. Very soon (possibly in the Carbon release) Vxlan will be
added as another encapsulation/transport, in which case NSH is not used.
The transport and encapsulation information to be used for the service
chain is obtained by querying the Rendered Service Path (RSP) specified
in the ACL action.

The transport and encapsulation used between the classifier and the SFF,
and also between SFFs will be VXGPE+NSH. The transport and encapsulation
used between the SFF and the SF will be Ethernet+NSH.

The following image details the packet headers used for Service Chaining
encapsulation with VXGPE+NSH.

[image: VXGPE+NSH and Eth+NSH packet headers]

Diagram source [5].

The problem was originally discussed using the slides in this link [12]
as a guideline. These slides are only intended for reference, and are not
to be used for implementation.

Use Cases

The main use case addressed by adding an SFC classifier to Netvirt
is to integrate SFC with Netvirt, thus allowing for Service Chaining
to be used in an OpenStack virtual deployment, such as the OPNFV
SFC project [6].

SFC works with both OVS and VPP virtual switches, and its even possible
to have a hybrid setup whereby Netvirt is hosted on OVS and SFC is hosted
on VPP switches. This blueprint only addresses the use of SFC with NetVirt
and OVS.

As mentioned previously, currently SFC works with VXGPE+NSH and Eth+NSH
transport/encapsulation, and soon SFC will work with VXLAN as the transport and
encapsulation. The first version of this implementation will focus on VXGPE+NSH
and Eth+NSH. In the future, when VXLAN is implemented in SFC, VXLAN can be added
to the Netvirt SFC classifier. Changes in the transport and encapsulation
used for service chains will have no affect on the Netvirt ACL model, since
the transport and encapsulation information is obtained via the RSP specified
in the RSP.

Proposed change

The existing old Netvirt SFC code can be found here:

	netvirt/openstack/net-virt-sfc/{api,impl}

Once the new Netvirt SFC classifier is implemented and working, the old
Netvirt SFC classifier code will be left in place for at least one release
cycle.

The new Netvirt SFC code base will be located here:

	netvirt/vpnservice/sfc/classifier/{api,impl}

The new Netvirt SFC classifier implementation will be new code. This
implementation is not to be confused with the existing Netvirt aclservice,
which is implemented for Security Groups. More details about the Genius
integration can be found in the following section, but the Netvirt SFC
classifier will be in a new Genius classifier service. The SFC
implementation is already integrated with Genius and is managed via
the Genius SFC service.

Integration with Genius

Genius [7], [8] is an OpenDaylight project that provides generic
infrastructure services to other OpenDaylight projects. New Netvirt makes
use of Genius and the new Netvirt classifier will also make use of Genius
services. Among these services, the interface manager, tunnel manager
and service binding services are of special relevance for the new
Netvirt classifier.

Genius interface manager handles an overlay of logical interfaces on
top of the data plane physical ports. Based on these logical interfaces,
different services/applications may be bound to them with certain
priority ensuring that there is no interference between them. Avoiding
interference between services/applications is called Application Coexistence
in Genius terminology. Typically, the effect of an application binding to
a logical interface is that downstream traffic from that interface will be
handed off to that application pipeline. Each application is then responsible
to either perform a termination action with the packet (i.e output or drop
action) or to return the packet back to Genius so that another application
can handle the packet. There is a predefined set of types of services that
can bind, and Classifier is one of them.

For OpenStack environments, Netvirt registers Neutron ports as logical
interfaces in the Genius interface manager. Classifying traffic for a
client/tenant ultimately relies on classifying traffic downstream from
their corresponding Neutron ports. As such, the Netvirt classifier will
bind on these interfaces as a newly defined Genius Classifier service
through the Genius interface manager. It was considered integrating the
Netvirt classifier with the existing Netvirt security groups, but the idea
was discarded due to the possible conflicts and other complications this
could cause.

Netvirt also keeps track of the physical location of these Neutron
ports in the data plane and updates the corresponding Genius logical
interface with this information. Services integrated with Genius may
consume this information to be aware of the physical location of a
logical interface in the data plane and it’s changes when a VM migrates
from one location to another. New Netvirt classifier will install the
classification rules based on the data plane location of the client/tenant
Neutron ports whose traffic is to be classified. On VM migration, the
classifier has to remove or modify the corresponding classification rules
accounting for this location change, which can be a physical node
change or a physical port change.

The classifier is responsible for forwarding packets to the first
service function forwarder (SFF) in the chain. This SFF may or may
not be on the same compute host as the classifier. If the classifier
and SFF are located on the same compute host, then the encapsulated
packet is sent to the SFF via the Genius Dispatcher and OpenFlow
pipelines. The packets can be forwarded to the SFF locally via the
ingress or egress classifier, and it will most likely be performed
by the egress classifier, but this decision will be determined at
implementation time.

In scenarios where the first SFF is on a different compute host than
the client node, the encapsulated packet needs to be forwarded to that
SFF through a tunnel port. Tunnels are handled by the Genius tunnel
manager (ITM) with an entity called transport zone: all nodes in a
transport zone will be connected through a tunnel mesh. Thus the
netvirt classifier needs to ensure that the classifier and the SFF
are included in a transport zone. The transport type is also specified
at the transport zone level and for NSH it needs to be VXGPE. The
classifier needs to make sure that this transport zone is handled
for location changes of client VMs. Likewise, SFC needs to make sure
the transport zone is handled for SF location changes.

The afore-mentioned Genius ITM is different than the tunnels currently
used by Netvirt. SFC uses VXGPE tunnels, and requests they be created
via the Genius ITM.

Classifier and SFC Genius Services

There will be 2 new Genius services created in Netvirt for the new
Netvirt SFC classifier, namely an “Ingress SFC Classifier” and an
“Egress SFC Classifier”. There will also be a Genius service for
the SFC SFF functionality that has already been created in the SFC
project.

The priorites of the services will be as follows:

Ingress Dispatcher:

	SFC - P1

	IngressACL - P2

	Ingress SFC Classifier - P3

	IPv6, IPv4, L2 - P4…

Egress Dispatcher:

	EgressACL - P1

	Egress SFC Classifier - P2

The Ingress SFC classifier will bind on all the Neutron VM ports of
the Neutron Network configured in the ACL. All packets received from
these Neutron ports will be sent to the Ingress SFC classifier via the
Genius Ingress Dispatcher, and will be subjected to ACL matching.
If there is no match, then the packets will be returned to the Genius
dispatcher so they can be sent down the rest of the Netvirt pipeline.
If there is an ACL match, then the classifier will encapsulate NSH,
set the NSP and NSI accordingly, initialize C1 and C2 to 0, and send
the packet down the rest of the pipeline. Since the SFC service (SFF)
will most likely not be bound to this same Neutron port, the packet
wont be processed by the SFF on the ingress pipeline. If the classifier
and first SFF are in the same node, when the packet is processed by
the egress SFC classifier, it will be resubmitted back to the Ingress SFC
service (SFC SFF) for SFC processing. If not, the packet will be sent to
the first SFF.

The Ingress SFC service (SFF) will bind on the Neutron ports for the Service
Functions and on the VXGPE ports. The Ingress SFC service will receive
packets from these Neutron and VXGPE ports, and also those that have
been resubmitted from the Egress SFC Classifier. It may be possible that
packets received from the SFs are not NSH encapsulated, so any packets
received by the Ingress SFC service that are not NSH encapsulated will
not be processed and will be sent back to the Ingress Dispatcher. For
the NSH packets that are received, the Ingress SFC service will calculate
the Next-Hop and modify either the VXGPE header if the next hop is a
different SFF, or modify the Ethernet encapsulation header if the next
hop is an SF on this same SFF. Once NSH packets are processed by the
Ingress SFC service, they will be sent to the Egress Dispatcher.

The Egress SFC classifier service is the final phase of what the Ingress
SFC classifier service started when an ACL match happens. The packet needed
to go down the rest of the pipeline so the original packet destination
can be calculated. The Egress SFC classifier will take the information
prepared by the rest of the Netvirt pipeline and store the TunIPv4Dst and
VNID of the destination compute host in C1 and C2 respectively. If the
packet is not NSH encapsulated, then it will be sent back to the Egress
Dispatcher. If the packet does have NSH encapsulation, then if C1/C2 is
0, then the fields will be populated as explained above. If the C1/C2
fields are already set, the packet will be sent out to either the Next
Hop SF or SFF.

At the last hop SFF, when the packet egresses the Service Chain, the
SFF will pop the NSH encapsulation and use the NSH C1 and C2 fields to
tunnel the packet to its destination compute host. If the destination
compute host is the same as the last hop SFF, then the packet will be
sent down the rest of the Netvirt pipeline so it can be sent to its
destination VM on this compute host. When the destination is local,
then the inport will probably have to be adjusted.

An example of how the last hop SFF routing works, imagine the following
diagram where packet from the Src VM would go from br-int1 to br-int3 to
reach the Dst VM when there is no service chaining employed. When the
packets from the Src VM are subjected to service chaining, the pipeline
in br-int1 need to calculate the the final destination is br-int3, and
the appropriate information needs to be set in the NSH C1/C2 fields.
Then the SFC SFF on br-int2, upon chain egress will use C1/C2 to send
the packets to br-int3 so they can ultimately reach the Dst VM.

 +----+
 | SF |
 +--+-+
 Route with SFC |
 C1/C2 has tunnel +-------+-----+
 info to br-int3 | |
 +------------>| br-int2 |----+
+-----+ | | SFF | | +-----+
| Src | | +-------------+ | | Dst |
| VM | | | | VM |
+--+--+ | | +--+--+
 | | v |
 | +-----+-------+ +-------------+ |
 +------>| | | |<-+
 | br-int1 +----------------->| br-int3 |
 | | Original route | |
 +-------------+ with no SFC +-------------+

Pipeline changes

The existing Netvirt pipeline will not change as a result of adding the
new classifier, other than the fact that the Ingress SFC classifier and
Egress SFC classifier Genius Services will be added, which will change
the Genius Service priorities as explained previously. The Genius
pipelines can be found here [10].

Ingress Classifier Flows:

The following flows are an approximation of what the Ingress Classifier
service pipeline will look like. Notice there are 2 tables defined as
follows:

	
	table 100: Ingress Classifier Filter table.

	
	Only allows Non-NSH packets to proceed in the classifier

	
	table 101: Ingress Classifier ACL table.

	
	Performs the ACL classification, and sends packets to Ingress Dispatcher

The final table numbers may change depending on how they are assigned
by Genius.

 // Pkt has NSH, send back to Ingress Dispatcher
cookie=0xf005ball00000101 table=100, n_packets=11, n_bytes=918,
 priority=550,nsp=42 actions=resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

 // Pkt does NOT have NSH, send to GENIUS_INGRESS_DISPATCHER_TABLE
cookie=0xf005ball00000102 table=100, n_packets=11, n_bytes=918,
 priority=5 actions=goto_table:GENIUS_INGRESS_DISPATCHER_TABLE

 // ACL match: if TCP port=80
 // Action: encapsulate NSH and set NSH NSP, NSI, C1, C2, first SFF
 // IP in Reg0, and send back to Ingress Dispatcher to be sent down
 // the Netvirt pipeline. The in_port in the match is derived from
 // the Neutron Network specified in the ACL match and identifies
 // the tenant/Neutron Network the packet originates from
cookie=0xf005ball00000103, table=101, n_packets=11, n_bytes=918,
 tcp,tp_dst=80, in_port=10
 actions=push_nsh,
 load:0x1->NXM_NX_NSH_MDTYPE[],
 load:0x0->NXM_NX_NSH_C1[],
 load:0x0->NXM_NX_NSH_C2[],
 load:0x2a->NXM_NX_NSP[0..23],
 load:0xff->NXM_NX_NSI[],
 load:0x0a00010b->NXM_NX_REG0[],
 resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

Egress Classifier Flows:

The following flows are an approximation of what the Egress Classifier
service pipeline will look like. Notice there are 3 tables defined as
follows:

	
	table 221: Egress Classifier Filter table.

	
	Only allows NSH packets to proceed in the egress classifier

	
	table 222: Egress Classifier NextHop table.

	
	Set C1/C2 accordingly

	
	table 223: Egress Classifier TransportEgress table.

	
	Final egress processing and egress packets

	Determines if the packet should go to a local or remote SFF

The final table numbers may change depending on how they are assigned
by Genius.

 // If pkt has NSH, goto table 222 for more processing
cookie=0x14 table=221, n_packets=11, n_bytes=918,
 priority=260,md_type=1
 actions=goto_table:222

 // Pkt does not have NSH, send back to Egress Dispatcher
cookie=0x14 table=110, n_packets=0, n_bytes=0,
 priority=250
 actions=resubmit(,GENIUS_EGRESS_DISPATCHER_TABLE)

 // Pkt has NSH, if NSH C1/C2 = 0, Set C1/C2 and overwrite TunIpv4Dst
 // with SFF IP (Reg0) and send to table 223 for egress
cookie=0x14 table=222, n_packets=11, n_bytes=918,
 priority=260,nshc1=0,nshc2=0
 actions=load:NXM_NX_TUN_IPV4_DST[]->NXM_NX_NSH_C1[],
 load:NXM_NX_TUN_ID[]->NXM_NX_NSH_C2[],
 load:NXM_NX_REG0[]->NXM_NX_TUN_IPV4_DST[]
 goto_table:223

 // Pkt has NSH, but NSH C1/C2 aleady set,
 // send to table 223 for egress
cookie=0x14 table=222, n_packets=11, n_bytes=918,
 priority=250
 actions=goto_table:223

 // Checks if the first SFF (IP stored in reg0) is on this node,
 // if so resubmit to SFC SFF service
cookie=0x14 table=223, n_packets=0, n_bytes=0,
 priority=260,nsp=42,reg0=0x0a00010b
 actions=resubmit(, SFF_TRANSPORT_INGRESS_TABLE)

cookie=0x14 table=223, n_packets=0, n_bytes=0,
 priority=250,nsp=42
 actions=outport:6

Ingress SFC Service (SFF) Flows:

The following flows are an approximation of what the Ingress SFC
service (SFF) pipeline will look like. Notice there are 3 tables
defined as follows:

	
	table 83: SFF TransportIngress table.

	
	Only allows NSH packets to proceed into the SFF

	tables 84 and 85 are not used for NSH

	
	table 86: SFF NextHop table.

	
	Set the destination of the next SF

	
	table 87: SFF TransportEgress table.

	
	Prepare the packet for egress

The final table numbers may change depending on how they are assigned
by Genius.

 // Pkt has NSH, send to table 86 for further processing
cookie=0x14 table=83, n_packets=11, n_bytes=918,
 priority=250,nsp=42
 actions=goto_table:86
 // Pkt does NOT have NSH, send back to Ingress Dispatcher
cookie=0x14 table=83, n_packets=0, n_bytes=0,
 priority=5
 actions=resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

 // Table not used for NSH, shown for completeness
cookie=0x14 table=84, n_packets=0, n_bytes=0,
 priority=250
 actions=goto_table:86

 // Table not used for NSH, shown for completeness
cookie=0x14 table=85, n_packets=0, n_bytes=0,
 priority=250
 actions=goto_table:86

 // Match on specific NSH NSI/NSP, Encapsulate outer Ethernet
 // transport. Send to table 87 for further processing.
cookie=0x14 table=86, n_packets=11, n_bytes=918,
 priority=550,nsi=255,nsp=42
 actions=load:0xb00000c->NXM_NX_TUN_IPV4_DST[],
 goto_table:87
 // The rest of the packets are sent to
 // table 87 for further processing
cookie=0x14 table=86, n_packets=8, n_bytes=836,
 priority=5
 actions=goto_table:87

 // Match on specific NSH NSI/NSP, C1/C2 set
 // prepare pkt for egress, send to Egress Dispatcher
cookie=0xba5eba1100000101 table=87, n_packets=11, n_bytes=918,
 priority=650,nsi=255,nsp=42
 actions=move:NXM_NX_NSH_MDTYPE[]->NXM_NX_NSH_MDTYPE[],
 move:NXM_NX_NSH_NP[]->NXM_NX_NSH_NP[],
 move:NXM_NX_TUN_ID[0..31]->NXM_NX_TUN_ID[0..31],
 load:0x4->NXM_NX_TUN_GPE_NP[],
 resubmit(,GENIUS_EGRESS_DISPATCHER_TABLE)

Yang changes

The api YANGs used for the classifier build on the ietf acl models from
the mdsal models.

Multiple options can be taken, depending on the desired functionality.
Depending on the option chosen, YANG changes might be required.

Assuming no YANG changes, SFC classification will be performed on all VMs
in the same neutron-network - this attribute is already present in the
YANG model. This is the proposed route, since it hits a sweet-spot
in the trade-off between functionality and risk.

If classifying the traffic from specific interfaces is desired, then the
YANG model would need to be updated, possibly by adding a list of interfaces
on which to classify.

Configuration impact

None

Clustering considerations

None

Other Infra considerations

Since SFC uses NSH, and the new Netvirt Classifier will need to add NSH
encapsulation, a version of OVS that supports NSH must be used. NSH has not
been officially accepted into the OVS project, so a branched version of OVS is
used. Details about the branched version of OVS can be found here [9].

Security considerations

None

Scale and Performance Impact

None

Targeted Release

This change is targeted for the ODL Carbon release.

Alternatives

None

Usage

The new Netvirt Classifier will be configured via the REST JSON configuration
mentioned in the REST API section below.

Features to Install

The existing old Netvirt SFC classifier is implemented in the following Karaf
feature:

odl-ovsdb-sfc

When the new Netvirt SFC classifier is implemented, the previous Karaf feature
will no longer be needed, and the following will be used:

odl-netvirt-sfc

REST API

The classifier REST API wont change from the old to the new Netvirt. The
following example is how the old Netvirt classifier is configured.

Defined in netvirt/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang

An ACL is created which specifies the matching criteria and the action,
which is to send the packets to an SFC RSP. Notice the “network-uuid” is
set. This is for binding the Netvirt classifier service to a logical port.
The procedure will be to query Genius for all the logical ports in that
network uuid, and bind the Netvirt classifier service to each of them.

If the RSP has not been created yet, then the classification can not
be created, since there wont be any information available about the
RSP. In this case, the ACL information will be buffered, and there
will be a separate listener for RSPs. When the referenced RSP is
created, then the classifier processing will continue.

URL: /restconf/config/ietf-access-control-list:access-lists/

{
 "access-lists": {
 "acl": [
 {
 "acl-name": "ACL1",
 "acl-type": "ietf-access-control-list:ipv4-acl",
 "access-list-entries": {
 "ace": [
 {
 "rule-name": "ACE1",
 "actions": {
 "netvirt-sfc-acl:rsp-name": "RSP1"
 },
 "matches": {
 "network-uuid" : "eccb57ae-5a2e-467f-823e-45d7bb2a6a9a",
 "source-ipv4-network": "192.168.2.0/24",
 "protocol": "6",
 "source-port-range": {
 "lower-port": 0
 },
 "destination-port-range": {
 "lower-port": 80
 }
 }
 }
]
 }
 }]}}

CLI

None.

Implementation

Assignee(s)

Primary assignee:

	<brady.allen.johnson@ericsson.com>

Other contributors:

	<brady.allen.johnson@ericsson.com>

	<david.suarez.fuentes@ericsson.com

	<jaime.camaano.ruiz@ericsson.com>

	<miguel.duarte.de.mora.barroso@ericsson.com>

Work Items

Simple scenario:

	Augment the provisioned ACL with the ‘neutron-network’ augmentation - [11]

	From the neutron-network, get a list of neutron-ports - the interfaces
connecting the VMs to that particular neutron-network. For each interface, do
as follows:

	Extract the DPN-ID of the node hosting the VM having that neutron-port

	Extract the DPN-ID of the node hosting the first SF of the RSP

	The forwarding logic to implement depends on the co-location of the client’s
VM with the first SF in the chain.

	When the VMs are co-located (i.e. located in the same host), the output
actions are to forward the packet to the first table of the SFC pipeline.

	When the VMs are not co-located (i.e. hosted on different nodes) it
is necessary to:

	Use genius RPCs to get the interface connecting 2 DPN-IDs. This will
return the tunnel endpoint connecting the compute nodes.

	Use genius RPCs to get the list of actions to reach the tunnel
endpoint.

Enabling VM mobility:

	Handle first SF mobility

Listen to RSP updates, where the only relevant
migration is when the first SF moves to another node (different DPN-IDs).
In this scenario, we delete the flows from the old node, and install the
newly calculated flows in the new one. This happens for each node having
an interface to classify attached to the provisioned neutron-network.

	Handle client VM mobility

Listen to client’s InterfaceState changes,
re-evaluating the Forwarding logic, since the tunnel interface used to reach
the target DPN-ID is different. This means the action list to implement it,
will also be different. The interfaces to listen to will be ones attached to
the provisioned neutron-network.

	Must keep all the nodes having interfaces to classify (i.e. nodes
having neutron-ports attached to the neutron-network) and the first SF host
node within the same transport zone. By listening to InterfaceState changes
of clients within the neutron-network & the first SF neutron ports, the
transport zone rendering can be redone.

TODO: is there a better way to identify when the transport zone
needs to be updated?

Dependencies

No dependency changes will be introduced by this change.

Testing

Unit Tests

Unit tests for the new Netvirt classifier will be modeled on the existing
old Netvirt classifier unit tests, and tests will be removed and/or added
appropriately.

Integration Tests

The existing old Netvirt Classifier Integration tests will need to be
migrated to use the new Netvirt classifier.

CSIT

The existing Netvirt CSIT tests for the old classifier will need to be
migrated to use the new Netvirt classifier.

Documentation Impact

User Guide documentation will be added by one of the following contributors:

	<brady.allen.johnson@ericsson.com>

	<david.suarez.fuentes@ericsson.com

	<jaime.camaano.ruiz@ericsson.com>

	<miguel.duarte.de.mora.barroso@ericsson.com>

References

[1] https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/

[2] https://datatracker.ietf.org/doc/rfc7665/

[3] https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

[4] https://datatracker.ietf.org/doc/draft-ietf-nvo3-vxlan-gpe/

[5] https://docs.google.com/presentation/d/1kBY5PKPETEtRA4KRQ-GvVUSLbJoojPsmJlvpKyfZ5dU/edit?usp=sharing

[6] https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home

[7] http://docs.opendaylight.org/en/stable-boron/user-guide/genius-user-guide.html

[8] https://wiki.opendaylight.org/view/Genius:Design_doc

[9] https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#Building_Open_vSwitch_with_VxLAN-GPE_and_NSH_support

[10] http://docs.opendaylight.org/en/latest/submodules/genius/docs/pipeline.html

[11] https://github.com/opendaylight/netvirt/blob/master/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang

[12] https://docs.google.com/presentation/d/1gN8GnpVGwku4mp1on7EBZiE41RI7lZ-FFmFS2QlUTKk/edit?usp=sharing

Table of Contents

	Netvirt Statistics

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Netvirt Statistics

https://git.opendaylight.org/gerrit/#/q/topic:netvirt-counters

The feature enables getting statistics on ports and switches.

Problem description

Being able to ask for statistics, given as input Netvirt identifiers.
It will enable filtering the results and having aggregated result.
In a later stage, it will be also used to get element to element counters.
Examples for possible filters: RX only, TX only, port + VLAN counters…

Use Cases

	Getting port counters, given its interface id (ietf interface name).

	Getting node counters, given its node id.

Port counters can be useful also to get statistics on traffic going into tunnels
when requesting it from the tunnel endpoint port.
In addition, there will also be support in aggregated results. For example:
Getting the total number of transmitted packets from a given switch.

Proposed change

Adding a new bundle named “statistics-plugin” to Netvirt.
This bundle will be responsible for converting the Netvirt unique identifiers into OpenFlow ones,
and will get the relevant statistics by using OpenFlowPlugin capabilities.
It will also be responsible of validating and filtering the results.
It will be able to provide a wide range of aggregated results in the future.

Work flow description: Once a port statistics request is received, it is translated to a port statistics request from openflow plugin. Once the transaction is received, the data is validated and translated to a user friendly data. The user will be notified if a timeout occurs.
In case of a request for aggregated counters, the user will receive a single counter result divided to groups (such as “bits”, “packets”…). The counters in each group will be the sum of all of the matching counters for all ports.
Neither one of the counter request nor the counter response will not be stored in the configuration database. Moreover, requests are not periodic and they are on demand only.

Pipeline changes

None

Yang changes

The new plugin introduced will have the following models:

 grouping result {
 list counterResult {
 key id;
 leaf id {
 type string;
 }
 list groups {
 key name;
 leaf name {
 type string;
 }
 list counters {
 key name;
 leaf name {
 type string;
 }
 leaf value {
 type uint64;
 }
 }
 }
 }
}

grouping filters {
 leaf-list groupFilters {
 type string;
 }
 leaf-list counterFilter {
 type string;
 }
}

rpc getNodeConnectorCounters {
 input {
 leaf portId {
 type string;
 }
 uses filters;
 }
 output {
 uses result;
 }
}

rpc getNodeCounters {
 input {
 leaf nodeId {
 type uint64;
 }
 }
 output {
 uses result;
 }
}

rpc getNodeAggregatedCounters {
 input {
 leaf nodeId {
 type uint64;
 }
 uses filters;
 }
 output {
 uses result;
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

Getting the statistics from OpenFlow flows: it would be possible to target the appropriate rules in ingress/egress tables, and count the hits on these flows. The reason we decided to work with ports instead is because we don’t want to be dependent on flow structure changes.

Usage

	Create router, network, VMS, VXLAN tunnel.

	Connect to one of the VMs, send ping ping to the other VM.

	Use REST to get the statistics.

Port statistics:

http://10.0.77.135:8181/restconf/operational/ietf-interfaces:interfaces-state/

Choose a port id and use the following REST in order to get the statistics:

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeConnectorCounters, input={"input":{"portId":"b99a7352-1847-4185-ba24-9ecb4c1793d9"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Node statistics:

http://10.0.77.135:8181/restconf/config/odl-interface-meta:bridge-interface-info/

Choose a node dpId and use the following REST in order to get the statistics:

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeCounters, input=
 {"input": { "portId": "b99a7352-1847-4185-ba24-9ecb4c1793d9","groups": [{ "name": "byte*",
 "counters": [{
 "name": "rec*",
 }, {
 "name": "transmitted*",
 }]
 }]
 }},
headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeAggregatedCounters, input=
 {"input": { "portId": "b99a7352-1847-4185-ba24-9ecb4c1793d9","groups": [{ "name": "byte*",
 "counters": [{
 "name": "rec*",
 }, {
 "name": "transmitted*",
 }]
 }]
 }},
headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Example for a filtered request:

10.0.77.135:8181/restconf/operations/statistics-plugin:getPortCounters, input={"input": {"portId":"b99a7352-1847-4185-ba24-9ecb4c1793d9"} }, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

An example for node connector counters result:

 {
 "output": {
 "counterResult": [
 {
 "id": "openflow:194097926788804:5",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 471000000
 },
 {
 "name": "durationSecondCount",
 "value": 693554
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 1455
 },
 {
 "name": "bytesTransmittedCount",
 "value": 14151299
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 9
 },
 {
 "name": "packetsTransmittedCount",
 "value": 9
 }
]
 }
]
 }
]
 }
}

An example for node counters result:

 {
 "output": {
 "counterResult": [
 {
 "id": "openflow:194097926788804:3",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 43000000
 },
 {
 "name": "durationSecondCount",
 "value": 694674
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 648
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:2",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 882000000
 },
 {
 "name": "durationSecondCount",
 "value": 698578
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 648
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:1",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 978000000
 },
 {
 "name": "durationSecondCount",
 "value": 698627
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 6896336558
 },
 {
 "name": "bytesTransmittedCount",
 "value": 161078765
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 35644913
 },
 {
 "name": "packetsTransmittedCount",
 "value": 35644913
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:LOCAL",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 339000000
 },
 {
 "name": "durationSecondCount",
 "value": 698628
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 0
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:5",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 787000000
 },
 {
 "name": "durationSecondCount",
 "value": 693545
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 1455
 },
 {
 "name": "bytesTransmittedCount",
 "value": 14151073
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 9
 },
 {
 "name": "packetsTransmittedCount",
 "value": 9
 }
]
 }
]
 }
]
 }
}

Features to Install

odl-netvirt-openflowplugin-genius-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Guy Regev <guy.regev@hpe.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/ZdoLQWoV/126-netvirt-statistics

	Support port counters.

	Support node counters.

	Support aggregated results.

	Support filters on results.

Dependencies

	Genius

	OpenFlow Plugin

	Infrautils

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Policy based path selection for multiple VxLAN tunnels

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Policy based path selection for multiple VxLAN tunnels

https://git.opendaylight.org/gerrit/#/q/topic:policy-based-path-selection

The purpose of this feature is to allow selection of primary and backup VxLAN tunnels for different types of VxLAN
encapsulated traffic between a pair of OVS nodes based on some predefined policy.

Egress traffic can be classified using different characteristics e.g. 5-tuple, ingress port+VLAN, service-name
to determine the best available path when multiple VxLAN endpoints are configured for the same destination.

Problem description

Today, netvirt is not able to classify traffic and route it over different tunnel endpoints based on a set of
predefined characteristics. This is an essential infrastructure for applications on top of netvirt
offering premium and personalized services.

Use Cases

	Forwarding of VxLAN traffic between hypervisors with multiple physical/logical ports.

Proposed change

The current implementation of transport-zone creation generates vtep elements based on the local_ip
definition in the other-config column of the Open_vSwitch schema where the local_ip value represents
the tunnel interface ip.
This feature will introduce a new other-config property local_ips.
local_ips will express the association between multiple tunnel ip addresses and multiple underlay networks using the following format:

local_ips=<tun1-ip>:<underlay1-net>,<tun2-ip>:<underlay2-net>,..,<tunN-ip>:<underlayN-net>

Upon transport-zone creation, if the local_ips configuration is present, full tunnel mesh will be created between
all TEP ips in the same underlay network considering the existing transport-zone optimizations i.e. tunnels will be created
only between compute nodes with at least one spawned VM in the same VxLAN network or between networks connected to
the same router if at least one of the networks is VxLAN-based.

Note that configuration of multiple tunnel IPs for the same DPN in the same underlay network is not a supported
as part of this feature and requires further enhancements in both ITM and the transport-zone model.

The underlay networks are logical entities that will be used to distigush between multiple uplinks for routing of egress
VxLAN traffic. They have no relation to Openstack and neutron networks definition.
A new yang module is introduced to model the association between different types of OVS egress VxLAN traffic and the
selected underlay network paths to output the traffic.

Policy-based path selection will be defined as a new egress tunnel service and depends on tunnel service binding
functionality detailed in [3].

The policy service will be bounded only for tunnels of type logical tunnel group defined in [2].

The service will classify different types of traffic based on a predefined set of policy rules to find the best
available path to route each type of traffic. The policy model will be agnostic to the specific topology details
including DPN ids, tunnel interface and logical interface names. The only reference from the policy model
to the list of preferred paths is made using underlay network-ids described earlier in this document.

Each policy references an ordered set of policy-routes. Each policy-route can be a basic-route
referencing single underlay-network or route-group composed of multiple underlay networks.
This set will get translated in each DPN to OF fast-failover group. The content of the buckets in each DPN depends
on the existing underlay networks configured as part of the local_ips in the specific DPN.

The order of the buckets in the fast-failover group depends on the order of the underlay networks in the policy-routes model.
policy-routes with similar set of routes in different order will be translated to different groups.

Each bucket in the fast-failover group can either reference a single tunnel or an additional OF select group
depending on the type of policy route as detailed in the following table:

	Policy route type

	Bucket actions

	OF Watch type

	Basic route

	load reg6(tun-lport)
resubmit(220)

	watch_port(tun-port)

	Route group

	goto_group(select-grp)

	watch_group(select-grp)

This OF select group does not have the same content as the select groups defined in [2] and the content of its’
buckets is based on the defined route-group elements and weights.

Logical tunnel will be bounded to the policy service if and only if there is at least one policy-route referencing
one or more of the underlay networks in the logical group.

This service will take precedence over the default weighted LB service defined in [2] for logical tunnel group interfaces.

Policy-based path selection and weighted LB service pipeline example:

cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,reg6=0x500
actions=load:0xe000500->NXM_NX_REG6[],write_metadata:0xe000500000000000/0xffffffff00000000,goto_table:230
cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,reg6=0xe000500
actions=load:0xf000500->NXM_NX_REG6[],write_metadata:0xf000500000000000/0xffffffff00000000,group:800002
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x600 actions=output:3
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x700 actions=output:4
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x800 actions=output:5
cookie=0x9000007, duration=0.546s, table=230, n_packets=0, n_bytes=0,priority=7,ip,
metadata=0x222e0/0xfffffffe,nw_dst=10.0.123.2,tp_dst=8080 actions=write_metadata:0x200/0xfffffffe,goto_table:231
cookie=0x9000008, duration=0.546s, table=230, n_packets=0, n_bytes=0,priority=0,resubmit(,220)
cookie=0x7000007, duration=0.546s, table=231, n_packets=0, n_bytes=0,priority=7,metadata=0x500000000200/0xfffff00fffffffe,
actions=group:800000
cookie=0x9000008, duration=0.546s, table=231, n_packets=0, n_bytes=0,priority=0,resubmit(,220)
group_id=800000,type=ff,
bucket=weight:0,watch_group=800001,actions=group=800001,
bucket=weight:0,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
group_id=800001,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:50,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
group_id=800002,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)

Each bucket in the fast-failover group will set the watch_port or watch_group property to monitor the
liveness of the OF port in case of basic-route and underlay group in case of route-group.
This will allow the OVS to route egress traffic only to the first live bucket in each fast-failover group.

The policy model rules will be based on IETF ACL data model [4]. The following enhancements are proposed for
this model to support policy-based path selection:

	
	Name

	Attributes

	Description

	OF implementation

	ACE matches

	ingress-interface

	name

	Policy match based on the
ingress port and optionally
the VLAN id

	Match lport-tag
metadata bits

	vlan-id

	service

	service-type

	Policy match based on the
service-name of L2VPN/L3VPN
e.g. ELAN name/VPN instance
name

	Match service/vrf-id
metadata bits depending
on the service-type

	service-name

	ACE actions

	set
policy-classifier

	policy-classifier

	Set ingress/egress classifier
that can be later used for
policy routing etc.
Only the egress classifier
will be used in this feature

	Set policy classifier
in the metadata service
bits

	direction

To enable matching on previous services in the pipeline e.g. L2/L3VPN, the egress service binding for tunnel interfaces
will be changed to preserve the metadata of preceding services rather than override it as done in the current
implementation.

Each policy-classifier will be associated with policy-route. The same route can be shared by multiple classifiers.

The policy service will also maintain counters on number of policy rules assigned to underlay network per dpn
in the operational DS.

Pipeline changes

	The following new tables will be added to support the policy-based path selection service:

	Table Name

	Matches

	Actions

	Policy classifier table (230)

	ACE matches

	ACE policy actions:
set policy-classifier

	Policy routing table (231)

	match
policy-classifier

	set FF group-id

	Each Access List Entry (ACE) composed of standard and/or policy matches and policy actions will be translated
to a flow in the policy classifier table.

Each policy-classifier name will be allocated with id from a new pool - POLICY_SERVICE_POOL.
Once a policy classifier has been determined for a given ACE match, the classifier-id will be set in the service
bits of the metadata.

	Classified traffic will be sent from the policy classifier table to the policy routing table where the classifier-id
will be matched to select the preferred tunnel using OF fast-failover group. Multiple classifiers can point to a
single group.

	The default flow in the policy tables will resubmit traffic with no predefined policy/set of routes back to the
egress dispatcher table in order to continue processing in the next bounded egress service.

	For all the examples below it is assumed that a logical tunnel group was configured for both ingress and egress DPNs.
The logical tunnel group is composed of { tun1, tun2, tun3 } and bound to a policy service.

Traffic between VMs on the same DPN

No pipeline changes required

L3 traffic between VMs on different DPNs

VM originating the traffic (Ingress DPN):

	Remote next hop group in the FIB table references the logical tunnel group.

	Policy service on the logical group selects the egress interface by classifying the traffic e.g. based on
destination ip and port.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm2-ip set dst-mac=vm2-mac tun-id=vm2-label reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: vpn-id=router-id,dst-ip=vm2-ip,dst-tcp-port=8080 set egress-classifier=clf1 =>

Egress policy indirection table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf1 =>

Logical tunnel tun1 FF group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tun1

VM receiving the traffic (Ingress DPN):

	No pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vm2-label =>

Local Next-Hop group: set dst-mac=vm2-mac,reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

SNAT traffic from non-NAPT switch

VM originating the traffic is non-NAPT switch:

	NAPT group references the logical tunnel group.

	Policy service on the logical group selects the egress interface by classifying the traffic based on
the L3VPN service id.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group set tun-id=router-id reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: vpn-id=router-id set egress-classifier=clf2 =>

Policy routing table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf2 =>

Logical tunnel tun2 FF group set reg6=tun2-lport-tag =>

Egress table (220) match: reg6=tun2-lport-tag output to tun2

Traffic from NAPT switch punted to controller:

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=router-id =>

Outbound NAPT table (46) set vpn-id=router-id, punt-to-controller

L2 unicast traffic between VMs in different DPNs

VM originating the traffic (Ingress DPN):

	ELAN DMAC table references the logical tunnel group

	Policy service on the logical group selects the egress interface by classifying the traffic based on
the ingress port.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set tun-id=vm2-lport-tag reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: lport-tag=vm1-lport-tag set egress-classifier=clf3 =>

Policy routing table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf3 =>

Logical tunnel tun1 FF group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tun1

VM receiving the traffic (Ingress DPN):

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

L2 multicast traffic between VMs in different DPNs with undefined policy

VM originating the traffic (Ingress DPN):

	ELAN broadcast group references the logical tunnel group.

	Policy service on the logical group has no classification for this type of traffic. Fallback to the default
logical tunnel service - weighted LB [2].

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) =>

ELAN DMAC table (52) match: elan-tag=vxlan-net-tag =>

ELAN BC group goto_group=elan-local-group, set tun-id=vxlan-net-tag reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag set reg6=default-egress-service&logical-tun-lport-tag =>

Policy classifier table (230) =>

Egress table (220) match: reg6=default-egress-service&logical-tun-lport-tag =>

Logical tunnel LB select group set reg6=tun2-lport-tag =>

Egress table (220) match: reg6=tun2-lport-tag output to tun2

VM receiving the traffic (Ingress DPN):

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vxlan-net-tag =>

ELAN local BC group set tun-id=vm2-lport-tag =>

ELAN filter equal table (55) match: tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

Yang changes

The following yang modules will be added to support policy-based routing:

Policy Service Yang

policy-service.yang define policy profiles and add augmentations on top of
ietf-access-control-list:access-lists to apply policy classifications on access control entries.

module policy-service {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:policy";
 prefix "policy";

 import ietf-interfaces { prefix if; }

 import ietf-access-control-list { prefix ietf-acl; }

 import aclservice { prefix acl; }

 import yang-ext { prefix ext; }

 import opendaylight-l2-types { prefix ethertype; revision-date "2013-08-27"; }

 description
 "Policy Service module";

 revision "2017-02-07" {
 description
 "Initial revision";
 }

 identity policy-acl {
 base ietf-acl:acl-base;
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches" {
 ext:augment-identifier "ingress-interface";
 leaf name {
 type if:interface-ref;
 }

 leaf vlan-id {
 type ethertype:vlan-id;
 }
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches" {
 ext:augment-identifier "service";
 leaf service-type {
 type identityref {
 base service-type-base;
 }
 }

 leaf service-name {
 type string;
 }
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:actions" {
 ext:augment-identifier "set-policy-classifier";
 leaf policy-classifier {
 type leafref {
 path "/policy-profiles/policy-profile/policy-classifier";
 }
 }

 leaf direction {
 type identityref {
 base acl:direction-base;
 }
 }
 }

 container underlay-networks {
 list underlay-network {
 key "network-name";
 leaf network-name {
 type string;
 }

 leaf network-access-type {
 type identityref {
 base access-network-base;
 }
 }

 leaf bandwidth {
 type uint64;
 description "Maximum bandwidth. Units in byte per second";
 }

 list dpn-to-interface {
 config false;
 key "dp-id";
 leaf dp-id {
 type uint64;
 }

 list tunnel-interface {
 key "interface-name";
 leaf interface-name {
 type string;
 }
 }
 }

 list policy-profile {
 config false;
 key "policy-classifier";
 leaf policy-classifier {
 type string;
 }
 }
 }
 }

 container underlay-network-groups {
 list underlay-network-group {
 key "group-name";
 leaf group-name {
 type string;
 }

 list underlay-network {
 key "network-name";
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }

 leaf weight {
 type uint16;
 default 1;
 }
 }

 leaf bandwidth {
 type uint64;
 description "Maximum bandwidth of the group. Units in byte per second";
 }
 }
 }

 container policy-profiles {
 list policy-profile {
 key "policy-classifier";
 leaf policy-classifier {
 type string;
 }

 list policy-route {
 key "route-name";
 leaf route-name {
 type string;
 }

 choice route {
 case basic-route {
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }
 }

 case route-group {
 leaf group-name {
 type leafref {
 path "/underlay-network-groups/underlay-network-group/group-name";
 }
 }
 }
 }
 }

 list policy-acl-rule {
 config false;
 key "acl-name";
 leaf acl-name {
 type leafref {
 path "/ietf-acl:access-lists/ietf-acl:acl/ietf-acl:acl-name";
 }
 }

 list ace-rule {
 key "rule-name";
 leaf rule-name {
 type leafref {
 path "/ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:rule-name";
 }
 }
 }
 }
 }
 }

 container policy-route-counters {
 config false;

 list underlay-network-counters {
 key "network-name";
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }

 list dpn-counters {
 key "dp-id";
 leaf dp-id {
 type uint64;
 }

 leaf counter {
 type uint32;
 }
 }

 list path-counters {
 key "source-dp-id destination-dp-id";
 leaf source-dp-id {
 type uint64;
 }

 leaf destination-dp-id {
 type uint64;
 }

 leaf counter {
 type uint32;
 }
 }
 }
 }

 identity service-type-base {
 description "Base identity for service type";
 }

 identity l3vpn-service-type {
 base service-type-base;
 }

 identity l2vpn-service-type {
 base service-type-base;
 }

 identity access-network-base {
 description "Base identity for access network type";
 }

 identity mpls-access-network {
 base access-network-base;
 }

 identity docsis-access-network {
 base access-network-base;
 }

 identity pon-access-network {
 base access-network-base;
 }

 identity dsl-access-network {
 base access-network-base;
 }

 identity umts-access-network {
 base access-network-base;
 }

 identity lte-access-network {
 base access-network-base;
 }
}

Policy service tree view

module: policy-service
 +--rw underlay-networks
 | +--rw underlay-network* [network-name]
 | +--rw network-name string
 | +--rw network-access-type? identityref
 | +--rw bandwidth? uint64
 | +--ro dpn-to-interface* [dp-id]
 | | +--ro dp-id uint64
 | | +--ro tunnel-interface*
 | | +--ro interface-name? string
 | +--ro policy-profile* [policy-classifier]
 | +--ro policy-classifier string
 +--rw underlay-network-groups
 | +--rw underlay-network-group* [group-name]
 | +--rw group-name string
 | +--rw underlay-network* [network-name]
 | | +--rw network-name -> /underlay-networks/underlay-network/network-name
 | | +--rw weight? uint16
 | +--rw bandwidth? uint64
 +--rw policy-profiles
 | +--rw policy-profile* [policy-classifier]
 | +--rw policy-classifier string
 | +--rw policy-route* [route-name]
 | | +--rw route-name string
 | | +--rw (route)?
 | | +--:(basic-route)
 | | | +--rw network-name? -> /underlay-networks/underlay-network/network-name
 | | +--:(route-group)
 | | +--rw group-name? -> /underlay-network-groups/underlay-network-group/group-name
 | +--ro policy-acl-rule* [acl-name]
 | +--ro acl-name -> /ietf-acl:access-lists/acl/acl-name
 | +--ro ace-rule* [rule-name]
 | +--ro rule-name -> /ietf-acl:access-lists/acl/access-list-entries/ace/rule-name
 +--ro policy-route-counters
 +--ro underlay-network-counters* [network-name]
 +--ro network-name -> /underlay-networks/underlay-network/network-name
 +--ro dpn-counters* [dp-id]
 | +--ro dp-id uint64
 | +--ro counter? uint32
 +--ro path-counters* [source-dp-id destination-dp-id]
 +--ro source-dp-id uint64
 +--ro destination-dp-id uint64
 +--ro counter? uint32
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches:
 +--rw name? if:interface-ref
 +--rw vlan-id? ethertype:vlan-id
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches:
 +--rw service-type? identityref
 +--rw service-name? string
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:actions:
 +--rw policy-classifier? -> /policy-profiles/policy-profile/policy-classifier
 +--rw direction? identityref

Configuration impact

This feature introduces a new other_config parameter local_ips to support multiple ip:network
associations as detailed above.
Compatibility with the current local_ip parameter will be maintained but if both are present, local_ips
would take presedence over local_ip.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Features to Install

odl-netvirt-openstack

REST API

Sample JSON data

Create policy rule

URL: restconf/config/ietf-access-control-list:access-lists

The following REST will create rule to classify all http traffic to ports 8080-8181 from specific vpn-id

{
 "access-lists": {
 "acl": [
 {
 "acl-type": "policy-service:policy-acl",
 "acl-name": "http-policy",
 "access-list-entries": {
 "ace": [
 {
 "rule-name": "http-ports",
 "matches": {
 "protocol": 6,
 "destination-port-range": {
 "lower-port": 8080,
 "upper-port": 8181
 },
 "policy-service:service-type": "l3vpn",
 "policy-service:service-name": "71f7eb47-59bc-4760-8150-e5e408d2ba10"
 },
 "actions": {
 "policy-service:policy-classifier" : "classifier1",
 "policy-service:direction" : "egress"
 }
 }
]
 }
 }
]
 }
 }
 }

Create underlay networks

URL: restconf/config/policy-service:underlay-networks

The following REST will create multiple underlay networks with different access types

{
 "underlay-networks": {
 "underlay-network": [
 {
 "network-name": "MPLS",
 "network-access-type": "policy-service:mpls-access-network"
 },
 {
 "network-name": "DLS1",
 "network-access-type": "policy-service:dsl-access-network"
 },
 {
 "network-name": "DSL2",
 "network-access-type": "policy-service:dsl-access-network"
 }
]
 }
}

Create underlay group

URL: restconf/config/policy-service:underlay-network-groups

The following REST will create group for the DSL underlay networks

{
 "underlay-network-groups": {
 "underlay-network-group": [
 {
 "group-name": "DSL",
 "underlay-network": [
 {
 "network-name": "DSL1",
 "weight": 75
 },
 {
 "network-name": "DSL2",
 "weight": 25
 }
]
 }
]
 }
}

Create policy profile

URL: restconf/config/policy-service:policy-profiles

The following REST will create profile for classifier1 with multiple policy-routes

{
 "policy-profiles": {
 "policy-profile": [
 {
 "policy-classifier": "classifier1",
 "policy-route": [
 {
 "route-name": "primary",
 "network-name": "MPLS"
 },
 {
 "route-name": "backup",
 "group-name": "DSL"
 }
]
 }
]
 }
}

CLI

None

Implementation

Assignee(s)

	Primary assignee:

	Tali Ben-Meir <tali@hpe.com>

	Other contributors:

	Yair Zinger <yair.zinger@hpe.com>

Work Items

Trello card: https://trello.com/c/Uk3yrjUG/25-multiple-vxlan-endpoints-for-compute

	Transport-zone creation for multiple tunnels based on underlay network definitions

	Extract ACL flow programming to common location so it can be used by the policy service

	Create policy OF groups based on underlay network/group definitions

	Create policy classifier table based on ACL rules

	Create policy routing table

	Bind policy service to logical tunnels

	Maintain policy-route-counters per dpn/dpn-path

Dependencies

None

Testing

Unit Tests

Integration Tests

The test plan defined for CSIT below could be reused for integration tests.

CSIT

Adding multiple ports to the CSIT setups is challenging due to rackspace limitations.
As a result, the test plan defined for this feature uses white-box methodology and not verifying actual traffic was
sent over the tunnels.

Policy routing with single tunnel per access network type

	Set local_ips to contain tep ips for networks underlay1 and underlay2

	Each underlay network will be defined with different access-network-type

	Create the following policy profiles

	Profile1: policy-classifier=clf1, policy-routes=underlay1, underlay2

	Profile2: policy-classifier=clf2, policy-routes=underlay2, underlay1

	Create the following policy rules

	Policy rule 1: dst_ip=vm2_ip,dst_port=8080 set_policy_classifier=clf1

	Policy rule 2: src_ip=vm1_ip set_policy_classifier=clf2

	Policy rule 3: service-type=l2vpn service-name=elan-name set_policy_classifier=clf1

	Policy rule 4: service-type=l3vpn service-name=router-name set_policy_classifier=clf2

	Policy rule 5: ingress-port=vm3_port set_policy_classifier=clf1

	Policy rule 6: ingress-port=vm4_port vlan=vlan-id set_policy_classifier=clf2

	Verify policy service flows/groups for all policy rules

	Verify flows/groups removal after the profiles were deleted

Policy routing with multiple tunnels per access network type

	Set local_ips to contain tep ips for networks underlay1..``underlay4``

	underlay1, underlay2 and underlay3, underlay4 are from the same access-network-type

	Create the following policy profiles where each route can be either group or basic route

	Profile1: policy-classifier=clf1, policy-routes={underlay1, underlay2}, {underlay3,underlay4}

	Profile2: policy-classifier=clf2, policy-routes={underlay3,underlay4}, {underlay1, underlay2}

	Profile3: policy-classifier=clf3, policy-routes=underlay1, {underlay3,underlay4}

	Profile4: policy-classifier=clf4, policy-routes={underlay1, underlay2}, underlay3

	Profile5: policy-classifier=clf5, policy-routes={underlay1, underlay2}

	Profile6: policy-classifier=clf6, policy-routes=underlay4

	Create the following policy rules

	Policy rule 1: dst_ip=vm2_ip,dst_port=8080 set_policy_classifier=clf1

	Policy rule 2: src_ip=vm1_ip set_policy_classifier=clf2

	Policy rule 3: service-type=l2vpn service-name=elan-name set_policy_classifier=clf3

	Policy rule 4: service-type=l3vpn service-name=router-name set_policy_classifier=clf4

	Policy rule 5: ingress-port=vm3_port set_policy_classifier=clf5

	Policy rule 6: ingress-port=vm4_port vlan=vlan-id set_policy_classifier=clf6

	Verify policy service flows/groups for all policy rules

	Verify flows/groups removal after the profiles were deleted

Documentation Impact

Netvirt documentation needs to be updated with description and examples of policy service configuration

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] Load balancing and high availability of multiple VxLAN tunnels [https://git.opendaylight.org/gerrit/#/c/50779]

[3] Service Binding On Tunnels [https://git.opendaylight.org/gerrit/#/c/51270]

[4] Network Access Control List (ACL) YANG Data Model [https://tools.ietf.org/html/draft-ietf-netmod-acl-model-09]

Table of Contents

	Support for QoS Alert

	Problem description

	Use Cases

	Proposed change

	Log file format

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support for QoS Alert

https://git.opendaylight.org/gerrit/#/q/topic:qos-alert

This feature adds support to monitor the per port packet drop counts when QoS rate limit rule is
applied.

Problem description

If QoS bandwidth policy is applied on a neutron port, all packets exceeding the rate limit are
dropped by the switch. This spec proposes a new service to monitor the packet drop ratio and log
the alert message if packet drop ratio is greater than the configured threshold value.

Use Cases

Periodically monitor the port statistics of neutron ports having bandwidth limit rule and log an
alert message in a log file if packet drop ratio cross the threshold value. Log file can be
analyzed offline later to check the health/diagnostics of the network.

Proposed change

Proposed new service will use the RPC
/operations/opendaylight-direct-statistics:get-node-connector-statistics provided by
openflowplugin to retrieve port statistics directly from switch by polling at regular interval.
Polling interval is configurable with default value of 2 minutes.

Port packet drop ratio is calculated using delta of two port statistics counters
rx_dropped and rx_received between the sample interval.

packet drop ratio = 100 * (rx_dropped / (rx_received + rx_dropped))

An message is logged if packet drop ratio is greater than the configured threshold value.

Existing logging framework log4j shall be used to log the alert messages in the log file.
A new appender qosalertmsg shall be added in org.ops4j.pax.logging.cfg to define the
logging properties.

Log file format

2017-01-17 01:17:49,550 Packet drop threshold hit for qos policy qospolicy1 with qos-id qos-2dbf02f6-dcd1-4c13-90ee-6f727e21fe8d for port port-3afde68d-1103-4b8a-a38d-9cae631f7d67 on network network-563f9610-dd91-4524-ae23-8ec3c32f328e rx_received 4831 rx_dropped 4969
2017-01-17 01:17:49,550 Packet drop threshold hit for qos policy qospolicy2 with qos-id qos-cb7e5f67-2552-4d49-b534-0ce90ebc8d97 for port port-09d3a437-f4a4-43eb-8655-85df8bbe4793 on network network-389532a1-2b48-4ba9-9bcd-c1705d9e28f9 rx_received 3021 rx_dropped 4768
2017-01-17 01:19:49,339 Packet drop threshold hit for qos policy qospolicy1 with qos-id qos-2dbf02f6-dcd1-4c13-90ee-6f727e21fe8d for port port-3afde68d-1103-4b8a-a38d-9cae631f7d67 on network network-563f9610-dd91-4524-ae23-8ec3c32f328e rx_received 3837 rx_dropped 3961
2017-01-17 01:19:49,339 Packet drop threshold hit for qos policy qospolicy2 with qos-id qos-cb7e5f67-2552-4d49-b534-0ce90ebc8d97 for port port-09d3a437-f4a4-43eb-8655-85df8bbe4793 on network network-389532a1-2b48-4ba9-9bcd-c1705d9e28f9 rx_received 2424 rx_dropped 2766

Pipeline changes

None.

Yang changes

A new yang file shall be created for qos-alert configuration as specified below:

qos-alert-config.yang

module qosalert-config {

 yang-version 1;
 namespace "urn:opendaylight:params:xml:ns:yang:netvirt:qosalert:config";
 prefix "qosalert";

 revision "2017-01-03" {
 description "Initial revision of qosalert model";
 }

 description "This YANG module defines QoS alert configuration.";

 container qosalert-config {

 config true;

 leaf qos-alert-enabled {
 description "QoS alert enable-disable config knob";
 type boolean;
 default false;
 }

 leaf qos-drop-packet-threshold {
 description "QoS Packet drop threshold config. Specified as % of rx packets";
 type uint8 {
 range "1..100";
 }
 default 5;
 }

 leaf qos-alert-poll-interval {
 description "Polling interval in minutes";
 type uint16 {
 range "1..3600";
 }
 default 2;
 }

 }
}

Configuration impact

Following new parameters shall be made available as configuration. Initial or default configuration
is specified in netvirt-qosservice-config.xml

	Sl No.

	configuration

	Description

	
	

	qos-alert-enabled

	configuration parameter to enable/disable the alerts

	
	

	qos-drop-packet-threshold

	Drop percentage threshold configuration.

	
	

	qos-alert-poll-interval

	Polling interval in minutes

Logging properties like log file name, location, size and maximum number of backup files are
configured in file org.ops4j.pax.logging.cfg

Clustering considerations

In cluster setup, only one instance of qosalert service shall poll for port statistics.
Entity owner service (EOS) shall be used to determine the owner of service.

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

QoS Alert Service minimizes scale and performance impact by following:

	Proposed service uses the direct-statistics RPC instead of OpenflowPlugin statistics-manager. This
is lightweight because only node-connector statistics are queried instead of all statistics.

	Polling frequency is quite slow. Default polling interval is two minutes and minimum allowed
value is 1 minute.

Targeted Release

Carbon.

Alternatives

N.A.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

Put Qos Alert Config

Following API puts Qos Alert Config.

Method: POST

URI: /config/qosalert-config:qosalert-config

Parameters:

	Parameter

	Type

	Value range

	Comments

	qos-alert-enabled

	Boolean

	true/false

	Optional (default false)

	qos-drop-packet-threshold

	Uint16

	1..100

	Optional (default 5)

	qos-alert-poll-interval

	Uint16

	1..65535

	Optional time interval in minute(s) (default 2)

Example:
.. code-block:: json

	{

	
“input”:
{

“qos-alert-enabled”: true,

“qos-drop-packet-threshold”: 35,

“qos-alert-poll-interval”: 5

}

}

CLI

Following new karaf CLIs are added

qos:enable-qos-alert <true|false>

qos:drop-packet-threshold <threshold value in %>

qos:alert-poll-interval <polling interval in minutes>

Implementation

Assignee(s)

	Primary assignee:

	
	Arun Sharma (arun.e.sharma@ericsson.com)

	Other contributors:

	
	Ravi Sundareswaran (ravi.sundareswaran@ericsson.com)

	Mukta Rani (mukta.rani@tcs.com)

Work Items

Trello Link <https://trello.com/c/780v28Yw/148-netvirt-qos-alert>

	Adding new yang file and listener.

	Adding new log4j appender in odlparent org.ops4j.pax.logging.cfg file.

	Retrieval of port statistics data using the openflowplugin RPC.

	Logging alert message into the log file.

	UT and CSIT

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

Unit Tests

Standard UTs will be added.

Integration Tests

N.A.

CSIT

Following new CSIT tests shall be added

	Verify that alerts are generated if drop packets percentage is more than the configured threshold
value.

	Verify that alerts are not generated if drop packets percentage is less than threshold value.

	Verify that alerts are not generated when qos-alert-enabled if false irrespective of drop
packet percentage.

Documentation Impact

This will require changes to User Guide.

User Guide will need to add information on how qosalert service can
be used.

References

[1] Neutron QoS [http://docs.openstack.org/developer/neutron/devref/quality_of_service.html]

[2] Spec for NetVirt QoS [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/qos.html]

[3] Openflowplugin port statistics [https://github.com/opendaylight/openflowplugin/blob/master/model/model-flow-statistics/src/main/yang/opendaylight-direct-statistics.yang]

Table of Contents

	Neutron Quality of Service API Enhancements for NetVirt

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Neutron Quality of Service API Enhancements for NetVirt

QoS patches: https://git.opendaylight.org/gerrit/#/q/topic:qos

The Carbon release will enhance the initial implementation of Neutron
QoS API 1 support for NetVirt which was released in Boron. The
Boron released added support for Neutron QoS policies and the
Egress bandwidth rate limiting rule. The Carbon release will update the
QoS feature set of NetVirt by providing support for the DSCP Marking
rule and QoS Rule capability reporting.

Problem description

It is important to be able to configure QoS attributes of workloads on
virtual networks. The Neutron QoS API provides a method for defining
QoS policies and associated rules which can be applied to Neutron Ports
and Networks. These rules include:

	Egress Bandwidth Rate Limiting

	DSCP Marking

(Note that for the Neutron API, the direction of traffic flow (ingress, egress)
is from the perspective of the OpenStack instance.)

As a Neutron provider for ODL, NetVirt will provide the ability to report
back to Neutron its QoS rule capabilties and provide the ability to
configure and manage the supported QoS rules on supported backends
(e.g. OVS, …). The key changes in the Carbon release will be the
addition of support for the DSCP Marking rule.

Use Cases

Neutron QoS API support, including:

	Egress rate limiting -
Drop traffic that exceeeds the specified rate parameters for a
Neutron Port or Network.

	DSCP Marking -
Set the DSCP field for IP packets arriving from Neutron Ports
or Networks.

	Reporting of QoS capabilities -
Report to Neutron which QoS Rules are supported.

Proposed change

To handle DSCP marking, listener support will be added to the
neutronvpn service to respond to changes in DSCP Marking
Rules in QoS Policies in the Neutron Northbound QoS models 2 3 .

To implement DSCP marking support, a new ingress (from vswitch
perspective) QoS Service is defined in Genius. When DSCP Marking rule
changes are detected, a rule in a new OpenFlow table for
QoS DSCP marking rules will be updated.

The QoS service will be bound to an interface when a DSCP Marking
rule is added and removed when the DSCP Marking rule is deleted.
The QoS service follows the DHCP service and precedes the IPV6
service in the sequence of Genius ingress services.

Some use cases for DSCP marking require that the DSCP mark set on the inner packet
be replicated to the DSCP marking in the outer packet. Therefore, for packets egressing out
of OVS through vxlan/gre tunnels the option to copy the DSCP bits from the inner IP header
to the outer IP header is needed.
Marking of the inner header is done via OpenFlow rules configured on the corresponding Neutron port
as described above. For cases where the outer tunnel header should have a copy of the inner
header DSCP marking, the tos option on the tunnel interface in OVSDB must be configured
to the value inherit.
The setting of the tos option is done with a configurable parameter defined in the ITM module.
By default the tos option is set to 0 as specified in the OVSDB specification 4 .

On the creation of new tunnels, the tos field will be set to either the user provided value
or to the default value, which may be controlled via configuration. This will result in
the tunnel-options field in the IFM (Interface Manager) to be set which will in turn cause
the options field for the tunnel interface on the OVSDB node to be configured.

To implement QoS rule capability reporting back towards Neutron, code will
be added to the neutronvpn service to populate the operational qos-rule-types
list in the Neutron Northbound Qos model 3 with a list of the supported
QoS rules - which will be the bandwidth limit rule and DSCP marking rule for
the Carbon release.

Pipeline changes

A new QoS DSCP table is added to support the new QoS Service:

	Table

	Match

	Action

	QoS DSCP [90]

	Ethtype == IPv4 or IPv6 AND LPort tag

	Mark packet with DSCP value

Yang changes

A new leaf option-tunnel-tos is added to tunnel-end-points in itm-state.yang and to
vteps in itm.yang.

itm-state.yang

list tunnel-end-points {
 ordered-by user;
 key "portname VLAN-ID ip-address tunnel-type";

 leaf portname {
 type string;
 }
 leaf VLAN-ID {
 type uint16;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 leaf subnet-mask {
 type inet:ip-prefix;
 }
 leaf gw-ip-address {
 type inet:ip-address;
 }
 list tz-membership {
 key "zone-name";
 leaf zone-name {
 type string;
 }
 }
 leaf interface-name {
 type string;
 }
 leaf tunnel-type {
 type identityref {
 base odlif:tunnel-type-base;
 }
 }
 leaf option-of-tunnel {
 description "Use flow based tunnels for remote-ip";
 type boolean;
 default false;
 }
 leaf option-tunnel-tos {
 description "Value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 }
}

itm.yang

list vteps {
 key "dpn-id portname";
 leaf dpn-id {
 type uint64;
 }
 leaf portname {
 type string;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 leaf option-of-tunnel {
 description "Use flow based tunnels for remote-ip";
 type boolean;
 default false;
 }
 leaf option-tunnel-tos {
 description "Value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 }
}

A configurable parameter default-tunnel-tos is added to itm-config.yang which
defines the default ToS value to be applied to tunnel ports.

itm-config.yang

container itm-config {
 config true;

 leaf default-tunnel-tos {
 description "Default value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 default 0;
 }
}

Configuration impact

A configurable parameter default-tunnel-tos is added to
genius-itm-config.xml which specifies the default ToS to
use on a tunnel if it is not specified by the user when a
tunnel is created. This value may be set to inherit for
some DSCP Marking use cases.

genius-itm-config.xml

<itm-config xmlns="urn:opendaylight:genius:itm:config">
 <default-tunnel-tos>0</default-tunnel-tos>
</itm-config>

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

Additional OpenFlow packets will be generated to configure DSCP marking rules in response
to QoS Policy changes coming from Neutron.

Targeted Release

Carbon

Alternatives

Use of OpenFlow meters was desired, but the OpenvSwitch datapath implementation
does not support meters (although the OpenvSwitch OpenFlow protocol implementation
does support meters).

Usage

The user will use the QoS support by enabling and configuring the
QoS extension driver for networking-odl. This will allow QoS Policies and
Rules to be configured for Neuetron Ports and Networks using Neutron.

Perform the following configuration steps:

	In neutron.conf enable the QoS service by appending qos to
the service_plugins configuration:

/etc/neutron/neutron.conf

service_plugins = odl-router, qos

	Add the QoS notification driver to the neutron.conf file as follows:

/etc/neutron/neutron.conf

[qos]
notification_drivers = odl-qos

	Enable the QoS extension driver for the core ML2 plugin.
In file ml2.conf.ini append qos to extension_drivers

/etc/neutron/plugins/ml2/ml2.conf.ini

[ml2]
extensions_drivers = port_security,qos

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 5 for the Neutron CLI command syntax
for managing QoS policies and rules for Neutron networks and ports.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assigne and other contributors.

Primary assignee:

	Poovizhi Pugazh <poovizhi.p@ericsson.com>

Other contributors:

	Ravindra Nath Thakur <ravindra.nath.thakur@ericsson.com>

	Eric Multanen <eric.w.multanen@intel.com>

	Praveen Mala <praveen.mala@intel.com> (including CSIT)

Work Items

Task list in Carbon Trello: https://trello.com/c/bLE2n2B1/14-qos

Dependencies

Genius project - Code 6 to support QoS Service needs to be added.

Neutron Northbound - provides the Neutron QoS models for policies and rules (already done).

	Following projects currently depend on NetVirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

Documentation to describe use of Neutron QoS support with NetVirt
will be added.

OpenFlow pipeline documentation updated to show QoS service table.

References

http://specs.openstack.org/openstack/neutron-specs/specs/newton/ml2-qos-with-dscp.html

ODL gerrit adding QoS models to Neutron Northbound: https://git.opendaylight.org/gerrit/#/c/37165/

	1

	Neutron QoS http://docs.openstack.org/developer/neutron/devref/quality_of_service.html

	2

	Neutron Northbound QoS Model Extensions https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos-ext.yang

	3

	Neutron Northbound QoS Model https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos.yang

	4

	OVSDB Schema http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

	5

	Neutron CLI Reference http://docs.openstack.org/cli-reference/neutron.html#neutron-qos-available-rule-types

	6

	Genius code supporting QoS service https://git.opendaylight.org/gerrit/#/c/49084/

Table of Contents

	Setup Source-MAC-Address for routed packets destined to virtual endpoints

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Setup Source-MAC-Address for routed packets destined to virtual endpoints

https://git.opendaylight.org/gerrit/#/q/topic:SMAC_virt_endpoints

All L3 Routed packets destined to virtual endpoints in the datacenter managed by ODL
do not carry a proper source-mac address in such frames put out to virtual endpoints.

This spec makes sure a proper source-mac is updated in the packet at the point where the
packet is delivered to the VM, regardless of the tenant network type. On the actual datapath,
there will be no change in the source mac-addresses and packets continue to use the same
mechanism that is used today.

Addressing the datapath requires unique MAC allocation per OVS Datapath, so that it can be
used as the source MAC for all distributively routed packets of an ODL enabled cloud. It
would be handled in some future spec.

Problem description

Today all L3 Routed packets destined to virtual endpoints in the datacenter either

	Incorrectly carry the source mac-address of the originator (regardless of which network the originator is in)

	Incorrectly carry sometimes the reserved source mac address of 00:00:00:00:00:00

This spec is intended to setup a source-mac-address in the frame of L3 Routed packets just before
such frames are directed into the virtual endpoints themselves. This enables use-cases where certain
virtual endpoints which are VNFs in the datacenter that are source-mac conscious (or mandate that src-mac
in frames be valid) can become functional on their instantiation in an OpenDaylight enabled cloud.

Use Cases

	Intra-Datacenter L3 forwarded packets within a hypervisor.

	Intra-Datacenter L3 forwarded packets over Internal VXLAN Tunnels between two hypervisors in the datacenter.

	Inter-Datacenter L3 forwarded packets :

	Destined to VMs associated floating IP over External VLAN Provider Networks.

	Destined to VMs associated floating IP over External MPLSOverGRE Tunnels.

	SNAT traffic from VMs over External MPLSOverGRE Tunnels.

	SNAT traffic from VMS over External VLAN Provider Networks.

Proposed change

All the L3 Forwarded traffic today reaches the VM via a LocalNextHopGroup managed by
the VPN Engine (including FIBManager).

Currently the LocalNextHopGroup sets-up the destination MAC Address of the VM and forwards the traffic
to EGRESS_LPORT_DISPATCHER_TABLE (Table 220). In that LocalNextHopGroup we will additionally setup
source-mac-address for the frame. There are two cases to decide what source-mac-address should go
into the frame:

	If the VM is on a subnet (on a network) for which a subnet gatewayip port exists, then the
source-mac address of that subnet gateway port will be setup as the frame’s source-mac
inside the LocalNextHop group.This is typical of the case when a subnet is added to a router,
as the router interface port created by neutron will be representing the subnet’s gateway-ip address.

	If the VM is on a subnet (on a network), for which there is no subnet gatewayip port but that network
is part of a BGPVPN , then the source-mac address would be that of the connected mac-address of the
VM itself. The connected mac-address is nothing but the mac-address on the ovs-datapath for the VMs
tapxxx/vhuxxx port on that hypervisor itself.

The implementation also applies to Extra-Routes (on a router) and Discovered Routes as they both use the
LocalNextHopGroup in their last mile to send packets into their Nexthop VM.

We need to note that when a network is already part of a BGPVPN, adding a subnet on such a network to
a router is disallowed currently by NeutronVPN. And so the need to swap the mac-addresses inside
the LocalNextHopGroup to reflect the subnet gatewayip port here does not arise.

For all the use-cases listed in the USE-CASES section above, proper source mac address will be filled-up
in the frame before it enters the virtual endpoint.

Pipeline changes

There are no pipeline changes.

The only change is in the NextHopGroup created by VPN Engine (i.e., VRFEntryListener). In the NextHopGroup we
will additionally fill up the ethernet source mac address field with proper mac-address as outlined in the
‘Proposed change’ section.

Currently the LocalNextHopGroup is used in the following tables of VPN Pipeline:

	L3_LFIB_TABLE (Table 20) - Lands all routed packets from MPLSOverGRE tunnel into the virtual endpoint.

	INTERNAL_TUNNEL_TABLE (Table 36) - Lands all routed packets on Internal VXLAN Tunnel within the DC into the
virtual end point.

	L3_FIB_TABLE (Table 21) - Lands all routed packets within a specific hypervisor into the virtual endpoint.

cookie=0x8000002, duration=50.676s, table=20, n_packets=0, n_bytes=0, priority=10,mpls,mpls_label=70006 actions=write_actions(pop_mpls:0x0800,group:150000)
cookie=0x8000003, duration=50.676s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222f2/0xfffffffe,nw_dst=10.1.1.3 actions=write_actions(group:150000)
cookie=0x9011176, duration=50.676s, table=36, n_packets=0, n_bytes=0, priority=5,tun_id=0x11176 actions=write_actions(group:150000)

NEXTHOP GROUP:
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:01:1a:40->eth_src,set_field:fa:16:3e:8b:c5:51->eth_dst,load:0x300->NXM_NX_REG6[],resubmit(,220)

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None

Targeted Release

Carbon/Boron

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Primary assignee:

	Achuth Maniyedath (achuth.m@altencalsoftlabs.com)

Other contributors:

	Karthik Prasad (karthik.p@altencalsoftlabs.com)

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

https://trello.com/c/IfAmnFFr/110-add-source-macs-in-frames-for-l3-routed-packets-before-such-frames-get-to-the-virtual-endpoint

	Determine the smac address to be used for L3 packets forwarded to VMs.

	Update the LocalNextHopGroup table with proper ethernet source-mac parameter.

Dependencies

No new dependencies.

Testing

Verify the Source-MAC-Address setting on frames forwarded to Virtual endpoints in following cases.

Intra-Datacenter traffic to VMs (Intra/Inter subnet).

	VM to VM traffic within a hypervisor.

	VM to VM traffic across hypervisor over Internal VXLAN tunnel.

Inter-Datacenter traffic to/from VMs.

	External access to VMs using Floating IPs on MPLSOverGRE tunnels.

	External access to VMs using Floating IPs over VLAN provider networks.

	External access from VMs using SNAT over VLAN provider networks.

	External access from VMs using SNAT on MPLSOverGRE tunnels.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

	Validate that router-interface src-mac is available on received frames within the VM when that VM is on a router-arm.

	Validate that connected-mac as src-mac available on received frames within the VM when that VM is on a network-driven L3 BGPVPN.

Documentation Impact

N/A

References

N/A

Table of Contents

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	API changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Internal

	External

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support for TCP MD5 Signature Option configuration of Quagga BGP

https://git.opendaylight.org/gerrit/#/q/topic:qbgp-tcp-md5-signature-option

This functionality adds support to odl-netvirt-impl feature to configure the TCP MD5 Signature Option
[RFC2385] password in Quagga BGPs [QBGP].

Problem description

Quagga [QBGP] supports TCP MD5 Signature Option [RFC2385] in BGP traffic but current odl-netvirt-impl feature
implementation lacks support to configure the required passwords.

Use Cases

UC1: Protect (Quagga [QBGP]) BGP and DC gateway BGP interface using
TCP MD5 Signature Option [RFC2385].

Proposed change

The following components need to be enhanced:

	BGP Manager

Pipeline changes

No pipeline changes.

API changes

Changes will be needed in ebgp.yang, and qbgp.thrift.

YANG changes

A new optional leaf with the TCP MD5 Signature Option [RFC2385] password is added (by means of a
choice) to list neighbors.

ebgp.yang additions

typedef tcp-md5-signature-password-type {
 type string {
 length 1..80;
 } // subtype string
 description
 "The shared secret used by TCP MD5 Signature Option. The length is
 limited to 80 chars because A) it is identified by the RFC as current
 practice and B) it is the maximum length accepted by Quagga
 implementation.";
 reference "RFC 2385";
} // typedef tcp-md5-signature-password-type

grouping tcp-security-option-grouping {
 description "TCP security options.";
 choice tcp-security-option {
 description "The tcp security option in use, if any.";

 case tcp-md5-signature-option {
 description "The connection uses TCP MD5 Signature Option.";
 reference "RFC 2385";
 leaf tcp-md5-signature-password {
 type tcp-md5-signature-password-type;
 description "The shared secret used to sign the packets.";
 } // leaf tcp-md5-signature-password
 } // case tcp-md5-signature-option

 } // choice tcp-security-option
} // grouping tcp-security-option-grouping

ebgp.yang modifications

 list neighbors {
 key "address";
 leaf address {
 type inet:ipv4-address;
 mandatory "true";
 }
 leaf remote-as {
 type uint32;
 mandatory "true";
 }
 + use tcp-security-option-grouping;

Thrift changes

A new function setPeerSecret is added to the service BgpConfigurator.

qbgp.thrift modifications

--- a/vpnservice/bgpmanager/bgpmanager-impl/src/main/java/org/opendaylight/netvirt/bgpmanager/thrift/idl/qbgp.thrift
+++ b/vpnservice/bgpmanager/bgpmanager-impl/src/main/java/org/opendaylight/netvirt/bgpmanager/thrift/idl/qbgp.thrift
@@ -31,6 +31,8 @@ const i32 GET_RTS_NEXT = 1
 * ERR_NOT_ITER when GET_RTS_NEXT is called without
 * initializing with GET_RTS_INIT
 * ERR_PARAM when there is an issue with params
+ * ERR_NOT_SUPPORTED when the server does not support
+ * the operation.
 */

 const i32 BGP_ERR_FAILED = 1
@@ -38,6 +40,7 @@ const i32 BGP_ERR_ACTIVE = 10
 const i32 BGP_ERR_INACTIVE = 11
 const i32 BGP_ERR_NOT_ITER = 15
 const i32 BGP_ERR_PARAM = 100
+const i32 BGP_ERR_NOT_SUPPORTED = 200

 // these are the supported afi-safi combinations
 enum af_afi {
@@ -122,6 +125,33 @@ service BgpConfigurator {
 6:i32 stalepathTime, 7:bool announceFlush),
 i32 stopBgp(1:i64 asNumber),
 i32 createPeer(1:string ipAddress, 2:i64 asNumber),
+
+ /* 'setPeerSecret' sets the shared secret needed to protect the peer
+ * connection using TCP MD5 Signature Option (see rfc 2385).
+ *
+ * Params:
+ *
+ * 'ipAddress' is the peer (neighbour) address. Mandatory.
+ *
+ * 'rfc2385_sharedSecret' is the secret. Mandatory. Length must be
+ * greater than zero.
+ *
+ * Return codes:
+ *
+ * 0 on success.
+ *
+ * BGP_ERR_FAILED if 'ipAddress' is missing or unknown.
+ *
+ * BGP_ERR_PARAM if 'rfc2385_sharedSecret' is missing or invalid (e.g.
+ * it is too short or too long).
+ *
+ * BGP_ERR_INACTIVE when there is no session.
+ *
+ * BGP_ERR_NOT_SUPPORTED when TCP MD5 Signature Option is not supported
+ * (e.g. the underlying TCP stack does not support it)
+ *
+ */
+ i32 setPeerSecret(1:string ipAddress, 2:string rfc2385_sharedSecret),
 i32 deletePeer(1:string ipAddress)
 i32 addVrf(1:layer_type l_type, 2:string rd, 3:list<string> irts, 4:list<string> erts),
 i32 delVrf(1:string rd),

An old server (i.e. using a previous version of qbgp.thrift) will return
a TApplicationException with type UNKNOWN_METHOD. See
[TBaseProcessor].

Configuration impact

No configuration parameters deprecated.

New optional leaf tcp-md5-signature-password does not impact existing
deployments.

The recommended AAA configuration (See Security considerations) may impact
existing deployments.

Clustering considerations

NA

Other Infra considerations

Signature mismatch

On signature mismatch TCP MD5 Signature Option [RFC2385] (page 2) specifies the following
behaviour:

RFC 2385 page 2

Upon receiving a signed segment, the receiver must validate it by
calculating its own digest from the same data (using its own key) and
comparing the two digest. A failing comparison must result in the
segment being dropped and must not produce any response back to the
sender. Logging the failure is probably advisable.

A BGP will be unable to connect with a neighbor with a wrong password because
the TCP SYN,ACK will be dropped. The neighbor state will bounce between
“Active” and “Connect” while it retries.

Security considerations

tcp-md5-signature-password is stored in clear in the datastore. This is
a limitation of the proposed change.

Because tcp-md5-signature-password is stored in clear the REST access to
neighbors list should be restricted. See the following AAA
configuration examples:

etc/shiro.ini example

#
DISCOURAGED since Carbon
#
/config/ebgp:bgp/neighbors/** = authBasic, roles[admin]

AAA MDSALDynamicAuthorizationFilter example

{ "aaa:policies":
 { "aaa:policies": [
 { "aaa:resource": "/restconf/config/ebgp:bgp/neighbors/**",
 "aaa:permissions": [
 { "aaa:role": "admin",
 "aaa:actions": ["get","post","put","patch","delete"]
 }]
 }]
 }
}

If BgpConfigurator thrift service is not secured then
tcp-md5-signature-password goes clear on the wire.

Quagga [QBGP] (up to version 1.0) keeps the password in memory in clear.
The password can be retrieved through Quagga’s configuration interface.

Scale and Performance Impact

Negligible scale or performance impacts.

	datastore: A bounded (<=80) string per configured neighbor.

	Traffic (thrift BgpConfigurator service): A bounded (<=80) string field
per neighbor addition operation.

Targeted Release

Carbon

Alternatives

Three alternatives have been considered in order to avoid storing the plain
password in datastore: RPC, post-update, and transparent encryption.
They are briefly described below.

The best alternative is transparent encryption, but in Carbon time-frame
is not feasible.

The post-update alternative does not actually solve the limitation.

The RPC alternative is feasible in Carbon time-frame but, given that
currently BgpConfigurator thrift service is not secured, to add an RPC
does not pull its weight.

RPC encryption

A new RPC add-neighbor(address, as-number[, tcp-md5-signature-password])
is in charge of create neighbors elements.
The password is salted and encrypted with aaa-encryption-service.
Both the salt and the encrypted password are stored in the neighbors
element.

Post-update encryption

The neighbors element contains both a plain-password leaf and a
encrypted-password-with-salt leaf.
The listener BgpConfigurationManager.NeighborsReactor is in charge of
encrypt and remove the plain-password leaf when it is present (and the
encrypted one is not).

This alternative does not really solve the limitation because during a
brief period the password is stored in plain.

Transparent encryption

A plain value is provided in REST write operations but it is automagically
encrypted before it reaches MD-SAL.
Read operations never decrypts the encrypted values.

This alternative impacts at least aaa, yangtools, and netconf
projects. It can not possibly be done in Carbon.

Usage

Features to Install

odl-netvirt-openstack

REST API

The RESTful API for neighbors creation
(/restconf/config/ebgp:bgp/neighbors/{address}) will be enhanced to
accept an additional tcp-md5-signature-password attribute:

{ "neighbors": {
 "address": "192.168.50.2",
 "remote-as": "2791",
 "tcp-md5-signature-password": "password"
}}

CLI

A new option --tcp-md5-password will be added to commands
odl:configure-bgp and odl:bgp-nbr.

opendaylight-user@root> odl:configure-bgp -op add-neighbor --ip 192.168.50.2 --as-num 2791 --tcp-md5-password password
opendaylight-user@root> odl:bgp-nbr --ip-address 192.168.50.2 --as-number 2791 --tcp-md5-password password add

Implementation

Assignee(s)

	Primary assignee:

	Jose-Santos Pulido, JoseSantos, jose.santos.pulido.garcia@ericsson.com

	Other contributors:

	TBD

Work Items

	https://trello.com/c/87MAFjRf

	Spec

	ebgp.yang

	BgpConfigurator thrift service (both idl and client)

	BgpConfigurationManager.NeighborsReactor

	ConfigureBgpCli

Dependencies

Internal

No internal dependencies are added or removed.

External

To enable TCP MD5 Signature Option [RFC2385] in a BGP the following conditions need to be
met:

	BgpConfigurator thrift service provider (e.g. Zebra Remote Procedure
Call [ZRPC]) must support the new function setPeerSecret.

	BGP’s TCP stack must support TCP MD5 Signature Option (e.g. in linux the kernel option
CONFIG_TCP_MD5SIG must be set).

Testing

Unit Tests

Currently bgpmanager has no unit tests related to configuration.

Integration Tests

Currently bgpmanager has no integration tests.

CSIT

Currently there is no CSIT test exercising bgpmanager.

Documentation Impact

Currently there is no documentation related to bgpmanager.

References

	QBGP(1,2,3,4)

	Quagga Routing Suite [http://www.nongnu.org/quagga]

	RFC2385(1,2,3,4,5,6)

	IETF RFC 2385: Protection of BGP Sessions via the TCP MD5 Signature Option [https://tools.ietf.org/html/rfc2385]

	TBaseProcessor

	thrift java library’s TBaseProcessor.process [https://github.com/apache/thrift/blob/0.9.1/lib/java/src/org/apache/thrift/TBaseProcessor.java#L25-L41]

	ZRPC

	Zebra Remote Procedure Call [https://github.com/6WIND/zrpcd/]

Table of Contents

	Support of VXLAN based L2 connectivity across Datacenters

	Problem description

	In scope

	Out of scope

	Use Cases

	Datacenter access from another Datacenter over WAN via respective DC-Gateways (L2 DCI)

	Proposed change

	Pipeline changes

	INTRA DC

	Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

	Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	INTER DC

	Intra subnet Traffic from DC-Gateway to Local DPN

	Intra subnet Traffic from Local DPN to DC-Gateway

	Inter subnet Traffic from Local DPN to DC-Gateway (Symmetric IRB)

	Inter subnet Traffic from DC-Gateway to Local DPN (Symmetric IRB)

	Inter subnet Traffic from Local DPN to DC-Gateway (ASymmetric IRB)

	Intra subnet Traffic from DC-Gateway to Local DPN (ASymmetric IRB)

	ARP Pipeline changes

	Local DPN: VMs on the same subnet, same DPN

	Intra Subnet, Local DPN: VMs on the same subnet, on remote DC

	Yang changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	NEUTRONVPN YANG changes

	ELAN YANG changes

	Solution considerations

	Proposed change in Openstack Neutron BGPVPN Driver

	Proposed change in BGP Quagga Stack

	Proposed change in OpenDaylight-specific features

	Reboot Scenarios

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support of VXLAN based L2 connectivity across Datacenters

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT2

Enable realization of L2 connectivity over VXLAN tunnels using L2 BGPVPNs,
internally taking advantage of EVPN as the BGP Control Plane mechanism.

Problem description

OpenDaylight NetVirt service today supports L3VPN connectivity over VXLAN tunnels.
L2DCI communication is not possible so far.

This spec attempts to enhance the BGPVPN service in NetVirt to
embrace inter-DC L2 connectivity over external VXLAN tunnels.

In scope

The scope primarily includes providing ability to support intra-subnet
connectivity across DataCenters over VXLAN tunnels using BGP EVPN with type L2.

When we mention that we are using EVPN BGP Control plane, this
spec proposes using the RouteType 2 as the primary
means to provision the control plane to enable inter-DC connectivity
over external VXLAN tunnels.

With this inplace we will be able to support the following.

	Intra-subnet connectivity across dataCenters over VXLAN tunnels.

The following are already supported as part of the other spec(RT5)
and will continue to function.

	Intra-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity across dataCenters over VXLAN tunnels.

Out of scope

Use Cases

The following high level use-cases will be realized by the implementation of this Spec.

Datacenter access from another Datacenter over WAN via respective DC-Gateways (L2 DCI)

This use-case involves providing intra-subnet connectivity between two DataCenters.
Tenant VMs in one datacenter will be able to communicate with tenant VMs on the other
datacenter provided they are part of the same BGP EVPN and they are on same subnets.

The dataplane between the tenant VMs themselves and between the tenant VMs
towards the DC-Gateway will be over VXLAN Tunnels.

The dataplane between the DC-Gateway to its other WAN-based BGP Peers is
transparent to this spec. It is usually MPLS-based EPVPN.

The BGP Control plane between the ODL Controller and the DC-Gateway will be
via EVPN RouteType 2 as defined in EVPN_RT2.

The control plane between the DC-Gateway and it other BGP Peers in the WAN
is transparent to this spec, but can be EVPN IP-MPLS.

In this use-case:

	We will have only a single DCGW for WAN connectivity

	MAC IP prefix exchange between ODL controller and DC-GW (iBGP) using EVPN RT2

	WAN control plane may use EVPN IP-MPLS for route exchange.

	On the DC-Gateway, the VRF instance will be configured with two sets of import/export targets. One set of import/export route targets belong to EVPN inside DataCenter (realized using EVPN RT2) and the second set of import/export route target belongs to WAN control plane.

	EVPN single homing to be used in all RT2 exchanges inside the DataCenter i.e., ESI=0 for all prefixes sent from DataCenter to the DC-Gateway.

Proposed change

The following components of an Openstack-ODL-based solution need to be enhanced to provide
intra-subnet and inter-subnet connectivity across DCs using EVPN MAC IP Advertisement
(Route Type 2) mechanism (refer EVPN_RT2):

	Openstack Neutron BGPVPN Driver

	OpenDaylight Controller (NetVirt)

	BGP Quagga Stack to support EVPN with RouteType 2 NLRI

	DC-Gateway BGP Neighbour that supports EVPN with RouteType 2 NLRI

The changes required in Openstack Neutron BGPVPN Driver and BGP Quagga Stack
are captured in the Solution considerations section down below.

Pipeline changes

INTRA DC

Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

There are no explicit pipeline changes for this use-case.

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

INTER DC

Intra subnet Traffic from DC-Gateway to Local DPN

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L2VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (24) => match tunnel-id=l2vni, set elan-tag

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set reg6=vm-lport-tag =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

Intra subnet Traffic from Local DPN to DC-Gateway

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=external-vm-mac set tun-id=vxlan-net-tag group=next-hop-group

Next Hop Group bucket0 :set reg6=tunnel-lport-tag bucket1 :set reg6=tunnel2-lport-tag

Egress table (220) match: reg6=tunnel2-lport-tag output to tunnel2

Inter subnet Traffic from Local DPN to DC-Gateway (Symmetric IRB)

Classifier Table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set tun-id=l3vni output to nexthopgroup =>

NextHopGroup: set-eth-dst router-gw-vm, reg6=tunnel-lport-tag =>

Lport Egress Table (220) Output to tunnel port

Inter subnet Traffic from DC-Gateway to Local DPN (Symmetric IRB)

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (23) => match tunnel-id=l3vni, set l3vpn-id =>

L3 Gateway MAC Table (19) => match dst-mac=vpn-subnet-gateway-mac-address =>

FIB table (21) match: l3vpn-tag=l3vpn-id,dst-ip=vm2-ip set reg6=vm-lport-tag goto=local-nexthop-group =>

local nexthop group set dst-mac=vm2-mac table=220 =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

Inter subnet Traffic from Local DPN to DC-Gateway (ASymmetric IRB)

Classifier Table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set tun-id=l2vni output to nexthopgroup =>

NextHopGroup: set-eth-dst dst-vm-mac, reg6=tunnel-lport-tag =>

Lport Egress Table (220) Output to tunnel port

Intra subnet Traffic from DC-Gateway to Local DPN (ASymmetric IRB)

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L2VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (24) => match tunnel-id=l2vni, set elan-tag

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set reg6=vm-lport-tag =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

ARP Pipeline changes

Local DPN: VMs on the same subnet, same DPN

a. Introducing a new Table aka ELAN_ARP_SERVICE_TABLE (Table 81).
This table will be the first table in elan pipeline.

Classifier table (0) =>

Dispatcher table (17) elan service: set elan-id=vxlan-net-tag =>

Arp Service table (81) => match: arp-op=req, dst-ip=vm-ip, ela-id=vxlan-net-tag inline arp reply

Intra Subnet, Local DPN: VMs on the same subnet, on remote DC

Classifier table (0) =>

Dispatcher table (17) elan service: set elan-id=vxlan-net-tag =>

Arp Service table (81) => match: arp-op=req, dst-ip=vm-ip, ela-id=vxlan-net-tag inline arp reply

Yang changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang , odl-fib.yang and
neutronvpn.yang to start supporting EVPN functionality.

ODL-L3VPN YANG changes

A new container evpn-rd-to-networks is added
This holds the rd to networks mapping
This will be useful to extract in which elan the received RT2 route can be injected into.

odl-l3vpn.yang

 container evpn-rd-to-networks {
 config false;
 description "Holds the networks to which given evpn is attached to";
 list evpn-rd-to-network {
 key rd;
 leaf rd {
 type string;
 }
 list evpn-networks {
 key network-id;
 leaf network-id {
 type string;
 }
 }
 }
 }

ODL-FIB YANG changes

A new field macVrfEntries is added to the container fibEntries
This holds the RT2 routes received for the given rd

odl-fib.yang

 grouping vrfEntryBase {
 list vrfEntry{
 key "destPrefix";
 leaf destPrefix {
 type string;
 mandatory true;
 }
 leaf origin {
 type string;
 mandatory true;
 }
 leaf encap-type {
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 }
 default "mplsgre";
 }
 leaf l3vni {
 type uint32;
 }
 list route-paths {
 key "nexthop-address";
 leaf nexthop-address {
 type string;
 }
 leaf label {
 type uint32;
 }
 leaf gateway_mac_address {
 type string;
 }
 }
 }
 }

 grouping vrfEntries{
 list vrfEntry{
 key "destPrefix";
 uses vrfEntryBase;
 }
 }

 grouping macVrfEntries{
 list MacVrfEntry {
 key "mac_address";
 uses vrfEntryBase;
 leaf l2vni {
 type uint32;
 }
 }
 }

container fibEntries {
 config true;
 list vrfTables {
 key "routeDistinguisher";
 leaf routeDistinguisher {type string;}
 uses vrfEntries;
 uses macVrfEntries;//new field
 }
 container ipv4Table{
 uses ipv4Entries;
 }
 }

NEUTRONVPN YANG changes

A new rpc createEVPN is added
Existing rpc associateNetworks is reused to attach a network to EVPN assuming
uuid of L3VPN and EVPN does not collide with each other.

neutronvpn.yang

 rpc createEVPN {
 description "Create one or more EVPN(s)";
 input {
 list evpn {
 uses evpn-instance;
 }
 }
 output {
 leaf-list response {
 type string;
 description "Status response for createVPN RPC";
 }
 }
 }

 rpc deleteEVPN{
 description "delete EVPNs for specified Id list";
 input {
 leaf-list id {
 type yang:uuid;
 description "evpn-id";
 }
 }
 output {
 leaf-list response {
 type string;
 description "Status response for deleteEVPN RPC";
 }
 }
 }

 grouping evpn-instance {

 leaf id {
 mandatory "true";
 type yang:uuid;
 description "evpn-id";
 }

 leaf name {
 type string;
 description "EVPN name";
 }

 leaf tenant-id {
 type yang:uuid;
 description "The UUID of the tenant that will own the subnet.";
 }

 leaf-list route-distinguisher {
 type string;
 description
 "configures a route distinguisher (RD) for the EVPN instance.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf-list import-RT {
 type string;
 description
 "configures a list of import route target.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf-list export-RT{
 type string;
 description
 "configures a list of export route targets.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf l2vni {
 type uint32;
 }
 }

ELAN YANG changes

Existing container elan-instances is augmented with evpn information.

A new list external-teps is added to elan container.
This captures the broadcast domain of the given network/elan.
When the first RT2 route is received from the dc gw,
it’s tep ip is added to the elan to which this RT2 route belongs to.

elan.yang

 augment "/elan:elan-instances/elan:elan-instance" {
 ext:augment-identifier "evpn";
 leaf evpn-name {
 type string;
 }
 leaf l3vpn-name {
 type string;
 }
 }

 container elan-instances {
 list elan-instance {
 key "elan-instance-name";
 leaf elan-instance-name {
 type string;
 }
 //omitted other existing fields
 list external-teps {
 key tep-ip;
 leaf tep-ip {
 type inet:ip-address;
 }
 }
 }
 }

 container elan-interfaces {
 list elan-interface {
 key "name";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf elan-instance-name {
 mandatory true;
 type string;
 }
 list static-mac-entries {
 key "mac";
 leaf mac {
 type yang:phys-address;
 }
 leaf prefix {//new field
 mandatory false;
 type inet:ip-address;
 }
 }
 }
 }

 grouping forwarding-entries {
 list mac-entry {
 key "mac-address";
 leaf mac-address {
 type yang:phys-address;
 }
 leaf interface {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf controllerLearnedForwardingEntryTimestamp {
 type uint64;
 }
 leaf isStaticAddress {
 type boolean;
 }
 leaf prefix {//new field
 mandatory false;
 type inet:ip-address;
 }
 }
 }

Solution considerations

Proposed change in Openstack Neutron BGPVPN Driver

The Openstack Neutron BGPVPN’s ODL driver in Newton release is changed (mitaka release), so that
it is able to relay the configured L2 BGPVPNs, to the OpenDaylight Controller.

The Newton changes for the BGPVPN Driver has merged and is here:
https://review.openstack.org/#/c/370547/

Proposed change in BGP Quagga Stack

The BGP Quagga Stack is a component that interfaces with ODL Controller to enable ODL Controller itself
to become a BGP Peer. This BGP Quagga Stack need to be enhanced so that it is able to embrace EVPN
with Route Type 5 on the following two interfaces:

	Thrift Interface where ODL pushes routes to BGP Quagga Stack

	Route exchanges from BGP Quagga Stack to other BGP Neighbors (including DC-GW).

Proposed change in OpenDaylight-specific features

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager)

	ELAN Manager

	FIB Manager

	BGP Manager

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Configuration impact

The following parameters have been initially made available as configurable for EVPN. These
configurations can be made via the RESTful interface:

1.Multi-homing-mode – For multi-homing use cases where redundant DCGWs are used ODL can be configured with ‘none’, ‘all-active’ or ‘single-active’ multi-homing mode. Default will be ‘none’.

2.IRB-mode – Depending upon the support on DCGW, ODL can be configured with either ‘Symmetric’ or ‘Asymmetric’ IRB mode. Default is ‘Symmetric’.

There is another important parameter though it won’t be configurable:

MAC Address Prefix for EVPN – This MAC Address prefix represents the MAC Address prefix that will be hardcoded and that MACAddress will be used as the gateway mac address if it is not supplied from Openstack. This will usually be the case when networks are associated to an L3VPN with no gateway port yet configured in Openstack for such networks.

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

A new rpc is added to create and delete evpn:

{'input': {
 'evpn': [
 {'name': 'EVPN1',
 'export-RT': ['50:2'],
 'route-distinguisher': ['50:2'],
 'import-RT': ['50:2'],
 'id': '4ae8cd92-48ca-49b5-94e1-b2921a260007',
 ‘l2vni’: ‘200’,
 'tenant-id': 'a565b3ed854247f795c0840b0481c699'
}]}}

There is no change in the REST API for associating networks to the EVPN.

On the Openstack-side configuration, the vni_ranges configured in Openstack Neutron ml2_conf.ini
should not overlap with the L3VNI provided in the ODL RESTful API.
In an inter-DC case, where both the DCs are managed by two different Openstack Controller
Instances, the workflow will be to do the following:

	Configure the DC-GW2 facing OSC2 (Openstack) and DC-GW1 facing OSC1 with the same BGP configuration parameters.

	On first Openstack Controller (OSC1) create an L3VPN1 with RD1 and L3VNI1

	On first Openstack Controller (OSC1) create an EVPN1 with RD2 and L2VNI1

	Create a network Net1 and Associate that Network Net1 to L3VPN1

	Create a network Net1 and Associate that Network Net1 to EVPN1

	On second Openstack Controller (OSC2) create an L3VPN2 with RD1 with L3VNI1

	On second Openstack Controller (OSC2) create an EVPN2 with RD2 with L2VNI1

	Create a network Net2 on OSC2 with same cidr as the first one with a different allocation pool and associate that Network Net2 to L3VPN2.

	Associate that Network Net2 to EVPN2.

	Spin-off VM1 on Net1 in OSC1.

	Spin-off VM2 on Net2 in OSC2.

	Now VM1 and VM2 should be able to communicate.

Implementation

Assignee(s)

	Primary assignee:

	Vyshakh Krishnan C H <vyshakh.krishnan.c.h@ericsson.com>

Yugandhar Reddy Kaku <yugandhar.reddy.kaku@ericsson.com>

Riyazahmed D Talikoti <riyazahmed.d.talikoti@ericsson.com>

	Other contributors:

	K.V Suneelu Verma <k.v.suneelu.verma@ericsson.com>

Work Items

Trello card details https://trello.com/c/PysPZscm/150-evpn-evpn-rt2.

Dependencies

Requires a DC-GW that is supporting EVPN RT2 on BGP Control plane.

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

[1] EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

[2] Network Virtualization using EVPN [https://www.ietf.org/id/draft-ietf-bess-evpn-overlay-07.txt]

[3] Integrated Routing and Bridging in EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-inter-subnet-forwarding-04]

[4] VXLAN DCI using EVPN [https://tools.ietf.org/html/draft-boutros-bess-vxlan-evpn-02]

[5] BGP MPLS-Based Ethernet VPN [https://tools.ietf.org/html/rfc7432]

[6] Trello card details [https://trello.com/c/PysPZscm/150-evpn-evpn-rt2]

Table of Contents

	Support of VXLAN based connectivity across Datacenters

	Problem description

	In scope

	Out of scope

	Use Cases

	DataCenter access from a WAN-client via DC-Gateway (Single Homing)

	Datacenter access from another Datacenter over WAN via respective DC-Gateways (L3 DCI)

	Proposed change

	Pipeline changes

	INTRA DC

	Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

	Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	Inter Subnet, Remote DPN: VMs on two different DPNs, both VMs on different subnet, but same VPN

	INTER DC

	Intra Subnet

	Inter Subnet

	SNAT pipeline (Access to External Network Access over VXLAN)

	DNAT pipeline (Access from External Network over VXLAN)

	Yang changes

	L3VPN YANG changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	NEUTRONVPN YANG changes

	Solution considerations

	Proposed change in Openstack Neutron BGPVPN Driver

	Proposed change in BGP Quagga Stack

	Proposed change in OpenDaylight-specific features

	Import Export RT support for EVPN

	SubnetRoute support on EVPN

	NAT Service support for EVPN

	ARP request/response and MIP handling Support for EVPN

	Tunnel state handling Support

	InterVPNLink support for EVPN

	Supporting VLAN Aware VMs (Trunk and SubPorts)

	VM Mobility with RT5

	Reboot Scenarios

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support of VXLAN based connectivity across Datacenters

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT5

Enable realization of L3 connectivity over VXLAN tunnels using L3 BGPVPNs,
internally taking advantage of EVPN as the BGP Control Plane mechanism.

Problem description

OpenDaylight NetVirt service today supports VLAN-based,
VXLAN-based connectivity and MPLSOverGRE-based overlays.

In this VXLAN-based underlay is supported only for traffic
within the DataCenter. For all the traffic that need to
go via the DC-Gateway the only supported underlay is MPLSOverGRE.

Though there is a way to provision an external VXLAN tunnel
via the ITM service in Genius, the BGPVPN service in
NetVirt does not have the ability to take advantage of such
a tunnel to provide inter-DC connectivity.

This spec attempts to enhance the BGPVPN service (runs on
top of the current L3 Forwarding service) in NetVirt to
embrace inter-DC L3 connectivity over external VXLAN tunnels.

In scope

The scope primarily includes providing ability to support Inter-subnet
connectivity across DataCenters over VXLAN tunnels by modeling a
new type of L3VPN which will realize this connectivity using
EVPN BGP Control plane semantics.

When we mention that we are using EVPN BGP Control plane, this
spec proposes using the RouteType 5 explained in EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] as the primary
means to provision the control plane en enable inter-DC connectivity
over external VXLAN tunnels.

This new type of L3VPN will also inclusively support:

	Intra-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity within a DataCenter over VXLAN tunnels.

Out of scope

	Does not cover providing VXLAN connectivity between hypervisors (with OVS Datapath) and Top-Of-Rack switches that might be positioned within such DataCenters.

	Does not cover providing intra-subnet connectivity across DCs.

Both the points above will be covered by another spec that will be Phase 2 of realizing intra-subnet inter-DC connectivity.

Use Cases

The following high level use-cases will be realized by the implementation of this Spec.

DataCenter access from a WAN-client via DC-Gateway (Single Homing)

This use case involves communication within the DataCenter by tenant VMs and also
communication between the tenant VMs to a remote WAN-based client via DC-Gateway.
The dataplane between the tenant VMs themselves and between the tenant VMs
towards the DC-Gateway will be over VXLAN Tunnels.

The dataplane between the DC-Gateway to its other WAN-based BGP Peers is
transparent to this spec. It is usually MPLS-based IPVPN.

The BGP Control plane between the ODL Controller and the DC-Gateway will be
via EVPN RouteType 5 as defined in EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03].

The control plane between the DC-Gateway and it other BGP Peers in the WAN
is transparent to this spec, but can be IP-MPLS.

In this use-case:

	We will have only a single DCGW for WAN connectivity

	IP prefix exchange between ODL controller and DC-GW (iBGP) using EVPN RT5

	WAN control plane will use L3VPN IP-MPLS route exchange.

	On the DC-Gateway, the VRF instance will be configured with two sets of import/export targets. One set of import/export route targets belong to L3VPN inside DataCenter (realized using EVPN RT5) and the second set of import/export route target belongs to WAN control plane.

	EVPN single homing to be used in all RT5 exchanges inside the DataCenter i.e., ESI=0 for all prefixes sent from DataCenter to the DC-Gateway.

	Inter AS option B is used at DCGW, route regeneration at DCGW

Datacenter access from another Datacenter over WAN via respective DC-Gateways (L3 DCI)

This use-case involves providing inter-subnet connectivity between two DataCenters.
Tenant VMs in one datacenter will be able to communicate with tenant VMs on the other
datacenter provided they are part of the same L3VPN and they are on different subnets.

Both the Datacenters can be managed by different ODL Controllers, but the L3VPN configured on
both ODL Controllers will use identical RDs and RTs.

Proposed change

The following components of an Openstack-ODL-based solution need to be enhanced to provide
intra-subnet and inter-subnet connectivity across DCs using EVPN IP Prefix Advertisement
(Route Type 5) mechanism (refer EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]):

	Openstack Neutron BGPVPN Driver

	OpenDaylight Controller (NetVirt)

	BGP Quagga Stack to support EVPN with RouteType 5 NLRI

	DC-Gateway BGP Neighbour that supports EVPN with RouteType 5 NLRI

The changes required in Openstack Neutron BGPVPN Driver and BGP Quagga Stack
are captured in the Solution considerations section down below.

Pipeline changes

For both the use-cases above, we have put together the required pipeline changes here.
For ease of understanding, we have made subsections that talk about Intra-DC
traffic and Inter-DC traffic.

INTRA DC

Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) tablemiss: goto_table=17 =>

Lport Dispatcher Table (17) elan service: set elan-id=elan-tag =>

ELAN Source MAC Table (50) match: elan-id=elan-tag, src-mac=source-vm-mac =>

ELAN Destination MAC Table (51) match: elan-id=elan-tag, dst-mac=dst-vm-mac set output to port-of-dst-vm

Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

VM sourcing the traffic (Ingress DPN)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) l3vpn service: tablemiss: goto_table=17 =>

Lport Dispatcher Table (17) elan service: set elan-id=elan-tag =>

ELAN Source MAC Table (50) match: elan-id=elan-tag, src-mac=source-vm-mac =>

ELAN Destination MAC Table (51) match: elan-id=elan-tag, dst-mac=dst-vm-mac set tun-id=dst-vm-lport-tag, output to vxlan-tun-port

VM receiving the traffic (Egress DPN)

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=lport-tag set reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000000, table=0, priority=4,in_port=1 actions=write_metadata:0x10000000000/0xffffff0000000001,goto_table:17
cookie=0x8000001, table=17, priority=5,metadata=0x5000010000000000/0xffffff0000000000 actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, table=19, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=de:ad:be:ef:00:01 actions=goto_table:21
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)

Inter Subnet, Remote DPN: VMs on two different DPNs, both VMs on different subnet, but same VPN

For this use-case there is a change in the remote flow rule to L3 Forward the traffic to the remote VM.
The flow-rule will use the LPortTag as the vxlan-tunnel-id, in addition to setting the destination mac address of the
remote destination vm.

VM sourcing the traffic (Ingress DPN)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set eth-dst-mac=dst-vm-mac, tun-id=dst-vm-lport-tag, output to vxlan-tun-port

cookie=0x8000000, table=0, priority=4,in_port=1 actions=write_metadata:0x10000000000/0xffffff0000000001,goto_table:17
cookie=0x8000001, table=17, priority=5,metadata=0x5000010000000000/0xffffff0000000000 actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, table=19, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=de:ad:be:ef:00:01 actions=goto_table:21
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

As you can notice 0x2 set in the above flow-rule as tunnel-id is the LPortTag assigned to VM holding IP Address 10.0.0.3.

VM receiving the traffic (Egress DPN)

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=lport-tag set reg6=lport-tag-dst-vm =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000001, table=0, priority=5,in_port=2 actions=write_metadata:0x40000000001/0xfffff0000000001,goto_table:36
cookie=0x9000001, table=36, priority=5,tun_id=0x2 actions=load:0x400->NXM_NX_REG6[],resubmit(,220)

As you notice, 0x2 tunnel-id match in the above flow-rule in INTERNAL_TUNNEL_TABLE (Table 36), is the LPortTag assigned
to VM holding IP Address 10.0.0.3.

INTER DC

Intra Subnet

Not supported in this Phase

Inter Subnet

For this use-case we are doing a couple of pipeline changes:

a. Introducing a new Table aka L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (Table 23).
L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (Table 23) - This table is a new table in the L3VPN pipeline and will be
responsible only to process VXLAN packets coming from External VXLAN tunnels.

The packets coming from External VXLAN Tunnels (note: not Internal VXLAN Tunnels), would be directly punted
to this new table from the CLASSIFIER TABLE (Table 0) itself. Today when multiple services bind to a
tunnel port on GENIUS, the service with highest priority binds directly to Table 0 entry for the tunnel port.
So such a service should make sure to provide a fallback to Dispatcher Table so that subsequent service interested
in that tunnel traffic would be given the chance.

The new table L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE will have flows to match on VXLAN
VNIs that are L3VNIs. On a match, their action is to fill the metadata with the VPNID, so that further
tables in the L3VPN pipeline would be able to continue and operate with the VPNID metadata seamlessly.
After filling the metadata, the packets are resubmitted from this new table to the L3_GW_MAC_TABLE (Table 19).
The TableMiss in L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE will resubmit the packet to LPORT_DISPATCHER_TABLE to enable
next service if any to process the packet ingressing from the external VXLAN tunnel.

b. For all packets going from VMs within the DC, towards the external gateway device via the External VXLAN Tunnel,
we are setting the VXLAN Tunnel ID to the L3VNI value of VPNInstance to which the VM belongs to.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=l3vni set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000001, table=0, priority=5,in_port=9 actions=write_metadata:0x70000000001/0x1fffff0000000001,goto_table:23
cookie=0x8000001, table=19, priority=20,metadata=0x222e0/0xffffffff,dl_dst=de:ad:be:ef:00:06 actions=goto_table:21
cookie=0x8000001, table=23, priority=5,tun_id=0x16 actions= write_metadata:0x222e0/0xfffffffe,resubmit(19)
cookie=0x8000001, table=23, priority=0,resubmit(17)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

In the above flow rules, Table 23 is the new L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE. The in_port=9 reprsents an
external VXLAN Tunnel port.

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set eth-dst-mac=dst-mac-address, tun-id=l3vni, output to ext-vxlan-tun-port

cookie=0x7000001, table=0, priority=5,in_port=8, actions=write_metadata:0x60000000001/0x1fffff0000000001,goto_table:17
cookie=0x7000001, table=17, priority=5,metadata=0x60000000001/0x1fffff0000000001 actions=goto_table:19
cookie=0x7000001, table=19, priority=20,metadata=0x222e0/0xffffffff,dl_dst=de:ad:be:ef:00:06 actions=goto_table:21
cookie=0x7000001, table=23, priority=5,tun_id=0x16 actions= write_metadata:0x222e0/0xfffffffe,resubmit(19)
cookie=0x7000001, table=23, priority=0,resubmit(17)
cookie=0x7000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x7000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

SNAT pipeline (Access to External Network Access over VXLAN)

SNAT Traffic from Local DPN to External IP (assuming this DPN is NAPT Switch)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-entity-ip set eth-dst=external-entity-mac tun-id=external-l3vni, output to ext-vxlan-tun-port

SNAT Reverse Traffic from External IP to Local DPN (assuming this DPN is NAPT Switch)

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, dst-mac=external-router-gateway-mac-address =>

Inbound NAPT Table (44) match: vpn-id=external-vpn-id nw-dst=router-gateway-ip port=ext-port set vpn-id=l3vpn-id, dst-ip=vm-ip

NAPT PFIB Table (47) match: vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

DNAT pipeline (Access from External Network over VXLAN)

DNAT Traffic from External IP to Local DPN

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, eth-dst=floating-ip-dst-vm-mac-address =>

PDNAT Table (25) match: nw-dst=floating-ip,eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

DNAT Reverse Traffic from Local DPN to External IP

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-floating-ip set eth-dst=external-mac-address tun-id=external-l3vni, output to ext-vxlan-tun-port

DNAT to DNAT Traffic (Intra DC)

	FIP VM to FIP VM on Different Hypervisor

DPN1:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst=floating-ip-dst-vm-mac-address tun-id=external-l3vni, output to vxlan-tun-port

DPN2:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id= external-l3vni =>

PDNAT Table (25) match: nw-dst=floating-ip eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

In the above flow rules INTERNAL_TUNNEL_TABLE (table=36) will take the packet to the PDNAT_TABLE
(table 25) for an exact match with floating-ip and floating-ip-dst-vm-mac-address in PDNAT_TABLE.

In case of a successful floating-ip and floating-ip-dst-vm-mac-address match, PDNAT_TABLE will set IP destination as VM IP and VPN ID as internal l3 VPN ID then it will pointing to DNAT_TABLE (table=27)

In case of no match, the packet will be redirected to the SNAT pipeline towards the
INBOUND_NAPT_TABLE (table=44). This is the use-case where DPN2 also acts as
the NAPT DPN.

In summary, on an given NAPT switch, if both DNAT and SNAT are configured, the incoming traffic
will first be sent to the PDNAT_TABLE and if there is no FIP and FIP Mac match found, then it will be
forwarded to INBOUND_NAPT_TABLE for SNAT translation.
As part of the response, the external-l3vni will be used as tun_id to reach floating
IP VM on DPN1.

	FIP VM to FIP VM on same Hypervisor

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst= floating-ip-dst-vm-mac-address =>

PDNAT Table (25) match: nw-dst=floating-ip eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

SNAT to DNAT Traffic (Intra DC)

SNAT Hypervisor:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst=floating-ip-dst-vm-mac-address tun-id=external-l3vni, output to vxlan-tun-port

DNAT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id= external-l3vni =>

PDNAT Table (25) ``match: nw-dst=floating-ip eth-dst= floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id``=>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Non-NAPT to NAPT Forward Traffic (Intra DC)

Non-NAPT Hypervisor:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id set tun-id=router-lport-tag,group =>

group: output to NAPT vxlan-tun-port

NAPT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=router-lport-tag =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-entity-ip set eth-dst=external-entity-mac tun-id=external-l3vni, output to ext-vxlan-tun-port

For forwarding the traffic from Non-NAPT to NAPT DPN the tun-id will be setting with “router-lport-tag” which will be carved out per router.

NAPT to Non-NAPT Reverse Traffic (Intra DC)

NAPT Hypervisor:

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, dst-mac=external-router-gateway-mac-address =>

Inbound NAPT Table (44) match: vpn-id=external-vpn-id nw-dst=router-gateway-ip port=ext-port set vpn-id=l3vpn-id, dst-ip=vm-ip =>

NAPT PFIB Table (47) match: vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set eth-dst-mac=dst-vm-mac, tun-id=dst-vm-lport-tag, output to vxlan-tun-port

Non-NAPT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=dst-vm-lport-tag =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

More details of the NAT pipeline changes are in the NAT Service section of this spec.

Yang changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang , odl-fib.yang and
neutronvpn.yang to start supporting EVPN functionality.

L3VPN YANG changes

A new leaf l3vni and a new leaf type will be added to container vpn-instances

l3vpn.yang

 leaf type {
 description
 "The type of the VPN Instance.
 ipvpn indicates it is an L3VPN.
 evpn indicates it is EVPN”;

 type enumeration {
 enum ipvpn {
 value "0";
 description “L3VPN";
 }
 enum evpn {
 value "1";
 description "EVPN";
 }
 }
 default "ipvpn";
 }

 leaf l3vni {
 description
 "The L3 VNI to use for this L3VPN Instance.
 If this attribute is non-zero, it indicates
 this L3VPN will do L3Forwarding over VXLAN.
 If this value is non-zero, and the type field is ‘l2’,
 it is an error.
 If this value is zero, and the type field is ‘l3’, it is
 the legacy L3VPN that will do L3Forwarding
 with MPLSoverGRE.
 If this value is zero, and the type field is ‘l2’, it
 is an EVPN that will provide L2 Connectivity with
 Openstack supplied VNI”.

 type uint24;
 mandatory false;
 }

 The **type** value comes from Openstack BGPVPN ODL Driver based on what type of BGPVPN is
 orchestrated by the tenant. That same **type** value must be retrieved and stored into
 VPNInstance model above maintained by NeutronvpnManager.

ODL-L3VPN YANG changes

A new leaf l3vni and a new leaf type will be added to container vpn-instance-op-data

odl-l3vpn.yang

leaf type {
 description
 "The type of the VPN Instance.
 ipvpn indicates it is an L3VPN.
 evpn indicates it is EVPN”;

 type enumeration {
 enum ipvpn {
 value "0";
 description “L3VPN";
 }
 enum evpn {
 value "1";
 description "EVPN";
 }
 }
 default "ipvpn";
}

leaf l3vni {
 description
 "The L3 VNI to use for this L3VPN Instance.
 If this attribute is non-zero, it indicates
 this L3VPN will do L3Forwarding over VXLAN.
 If this value is non-zero, and the type field is ‘l2’,
 it is an error.
 If this value is zero, and the type field is ‘l3’, it is
 the legacy L3VPN that will do L3Forwarding
 with MPLSoverGRE.
 If this value is zero, and the type field is ‘l2’, it
 is an EVPN that will provide L2 Connectivity with
 Openstack supplied VNI”.

 type uint24;
 mandatory false;
}

For every interface in the cloud that is part of an L3VPN which has an L3VNI setup, we should
extract that L3VNI from the config VPNInstance and use that to both program the flows as well
as advertise to BGP Neighbour using RouteType 5 BGP Route exchange.
Fundamentally, what we are accomplishing is L3 Connectivity over VXLAN tunnels by using the
EVPN RT5 mechanism.

ODL-FIB YANG changes

Few new leafs like mac_address , gateway_mac_address , l2vni, l3vni and a leaf encap-type will
be added to container fibEntries

odl-fib.yang

leaf encap-type {
 description
 "This flag indicates how to interpret the existing label field.
 A value of mpls indicates that the label will continue to
 be considered as an MPLS Label.
 A value of vxlan indicates that vni should be used to
 advertise to bgp.
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 }
 default "mplsgre";
}

leaf mac_address {
 type string;
 mandatory false;
}

leaf l3vni {
 type uint24;
 mandatory false;
}

leaf l2vni {
 type uint24;
 mandatory false;
}

leaf gateway_mac_address {
 type string;
 mandatory false;
}
Augment:parent_rd {
 type string;
 mandatory false;
}

The encaptype indicates whether an MPLSOverGre or VXLAN encapsulation should be used
for this route. If the encapType is MPLSOverGre then the usual label field will carry
the MPLS Label to be used in datapath for traffic to/from this VRFEntry IP prefix.

If the encaptype is VXLAN, the VRFEntry implicitly refers that this route is reachable
via a VXLAN tunnel. The L3VNI will carry the VRF VNI and there will also be an L2VNI which
represents the VNI of the network to which the VRFEntry belongs to.

Based on whether Symmetric IRB (or) Asymmetric IRB is configured to be used by the CSC
(see section on Configuration Impact below). If Symmetric IRB is configured, then the L3VNI
should be used to program the flows rules. If Asymmetric IRB is configured, then L2VNI should
be used in the flow rules.

The mac_address field must be filled for every route in an EVPN. This mac_address field
will be used for support intra-DC communication for both inter-subnet and intra-subnet routing.

The gateway_mac_address must always be filled for every route in an EVPN.[AKMA7] [NV8]
This gateway_mac_address will be used for all packet exchanges between DC-GW and the
DPN in the DC to support L3 based forwarding with Symmetric IRB.

NEUTRONVPN YANG changes

One new leaf l3vni will be added to container grouping vpn-instance

odl-fib.yang

leaf l3vni {
 type uint32;
 mandatory false;
}

Solution considerations

Proposed change in Openstack Neutron BGPVPN Driver

The Openstack Neutron BGPVPN’s ODL driver in Newton release needs to be changed, so that
it is able to relay the configured L2 BGPVPNs, to the OpenDaylight Controller.
As of Mitaka release, only L3 BGPVPNs configured in Openstack are being relayed to the
OpenDaylight Controller. So in addition to addressing the ODL BGPVPN Driver changes in
Newton, we will provide a Mitaka based patch that will integrate into Openstack.

The Newton changes for the BGPVPN Driver has merged and is here:
https://review.openstack.org/#/c/370547/

Proposed change in BGP Quagga Stack

The BGP Quagga Stack is a component that interfaces with ODL Controller to enable ODL Controller itself
to become a BGP Peer. This BGP Quagga Stack need to be enhanced so that it is able to embrace EVPN
with Route Type 5 on the following two interfaces:

	Thrift Interface where ODL pushes routes to BGP Quagga Stack

	Route exchanges from BGP Quagga Stack to other BGP Neighbors (including DC-GW).

Proposed change in OpenDaylight-specific features

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager and VPN Interface Manager)

	FIB Manager

	BGP Manager

	VPN SubnetRoute Handler

	NAT Service

Import Export RT support for EVPN

Currently Import/Export logic for L3VPN uses a LabelRouteInfo structure to build information
about imported prefixes using MPLS Label as the key. However, this structure cannot be used
for EVPN as the L3VNI will be applicable for an entire EVPN Instance instead of the MPLS Label.
In lieu of LabelRouteInfo, we will maintain an IPPrefixInfo keyed structure that can be used
for facilitating Import/Export of VRFEntries across both EVPNs and L3VPNs.

odl-fib.yang

list ipprefix-info {

 key "prefix, parent-rd"
 leaf prefix {
 type string;
 }

 leaf parent-rd {
 type string;
 }

 leaf label {
 type uint32;
 }

 leaf dpn-id {
 type uint64;
 }

 leaf-list next-hop-ip-list {
 type string;
 }

 leaf-list vpn-instance-list {
 type string;
 }

 leaf parent-vpnid {
 type uint32;
 }

 leaf vpn-interface-name {
 type string;
 }

 leaf elan-tag {
 type uint32;
 }

 leaf is-subnet-route {
 type boolean;
 }

 leaf encap-type {
 description
 "This flag indicates how to interpret the existing label field.
 A value of mpls indicates that the l3label should be considered as an MPLS
 Label.
 A value of vxlan indicates that l3label should be considered as an VNI.
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 default "mplsgre";
 }
 }

 leaf l3vni {
 type uint24;
 mandatory false;
 }

 leaf l2vni {
 type uint24;
 mandatory false;
 }

 leaf gateway_mac_address {
 type string;
 mandatory false;
 }
}

SubnetRoute support on EVPN

The subnetRoute feature will continue to be supported on EVPN and we will use RT5 to publish
subnetRoute entries with either the router-interface-mac-address if available (or) if not
available use the pre-defined hardcoded MAC Address described in section Configuration Impact.
For both ExtraRoutes and MIPs (invisible IPs) discovered via subnetroute, we will continue
to use RT5 to publish those prefixes.[AKMA9] [NV10]
On the dataplane, VXLAN packets from the DC-GW will carry the MAC Address of the gateway-ip
for the subnet in the inner DMAC.

NAT Service support for EVPN

However, since external network NAT should continue to be supported on VXLAN, making NAT
service work on L3VPNs that use VXLAN as the tunnel type becomes imperative.

Existing SNAT/DNAT design assumed internetVpn to be using mplsogre as the connectivity
from external network towards DCGW. This needs to be changed such that it can handle even
EVPN case with VXLAN connectivity as well.

As of the implementation required for this specification, the workflow will be to create
InternetVPN with and associate a single external network to that is of VXLAN Provider Type.
The Internet VPN itself will be an L3VPN that will be created via the ODL RESTful API and
during creation an L3VNI parameter will be supplied to enable this L3VPN to operate on a
VXLAN dataplane. The L3VNI provided to the Internet VPN can be different from the VXLAN
segmentation ID associated to the external network.

However, it will be a more viable use-case in the community if we mandate in our workflow
that both the L3VNI configured for Internet VPN and the VXLAN segmentation id of the
associated external network to the Internet VPN be the same.
NAT service can use vpninstance-op-data model to classify the DCGW connectivity for internetVpn.

For the Pipeline changes for NAT Service, please refer to ‘Pipeline changes’ section.

SNAT to start using Router Gateway MAC, in translated entry in table 46 (Outbound SNAT table)
and in table 19 (L3_GW_MAC_Table). Presently Router gateway mac is already stored in odl-nat model
in External Routers.

DNAT to start using Floating MAC, in table 28 (SNAT table) and in table 19 (L3_GW_MAC Table).
Change in pipeline mainly reverse traffic for SNAT and DNAT so that when packet arrives from DCGW,
it goes to 0->38->17->19 and based on Vni and MAC matching, take it back to SNAT or DNAT pipelines.

Also final Fib Entry pointing to DCGW in forward direction also needs modification where we should
start using VXLAN’s vni, FloatingIPMAC (incase of DNAT) and ExternalGwMacAddress(incase of SNAT)
and finally encapsulation type as VXLAN.

For SNAT advertise to BGP happens during external network association to Vpn and during High
availability scenarios where you need to re-advertise the NAPT switch. For DNAT we need to
advertise when floating IP is associated to the VM.
For both SNAT and DNAT this IS mandates that we do only RT5 based advertisement. That RT5
advertisement must carry the external gateway mac address assigned for the respective Router
for SNAT case while for DNAT case the RT5 will carry the floating-ip-mac address.

ARP request/response and MIP handling Support for EVPN

Will not support ARP across DCs, as we donot support intra-subnet inter-DC scenarios.

	For intra-subnet intra-DC scenarios, the ARPs will be serviced by existing ELAN pipeline.

	For inter-subnet intra-DC scenarios, the ARPs will be processed by ARP Responder implementation that is already pursued in Carbon.

	For inter-subnet inter-DC scenarios, ARP requests won’t be generated by DC-GW. Instead the DC-GW will use ‘gateway mac’ extended attribute MAC Address information and put that directly into DSTMAC field of Inner MAC Header by the DC-GW for all packets sent to VMs within the DC.

	As quoted, intra-subnet inter-DC scenario is not a supported use-case as per this Implementation Spec.

Tunnel state handling Support

We have to handle both the internal and external tunnel events for L3VPN (with L3VNI) the same way
it is handled for current L3VPN.

InterVPNLink support for EVPN

Not supported as this is not a requirement for this Spec.

Supporting VLAN Aware VMs (Trunk and SubPorts)

Not supported as this is not a requirement for this Spec.

VM Mobility with RT5

We will continue to support cold migration of VMs across hypervisors across L3VPNs as supported
already in current ODL Carbon Release.

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Configuration impact

The following parameters have been initially made available as configurable for EVPN. These
configurations can be made via the RESTful interface:

1.Multi-homing-mode – For multi-homing use cases where redundant DCGWs are used ODL can be configured with ‘none’, ‘all-active’ or ‘single-active’ multi-homing mode. Default will be ‘none’.

2.IRB-mode – Depending upon the support on DCGW, ODL can be configured with either ‘Symmetric’ or ‘Asymmetric’ IRB mode. Default is ‘Symmetric’.

There is another important parameter though it won’t be configurable:

MAC Address Prefix for EVPN – This MAC Address prefix represents the MAC Address prefix that will be hardcoded and that MACAddress will be used as the gateway mac address if it is not supplied from Openstack. This will usually be the case when networks are associated to an L3VPN with no gateway port yet configured in Openstack for such networks.

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

The creational RESTful API for the L3VPN will be enhanced to accept
the L3VNI as an additional attribute as in the below request format:

{'input': {
 'l3vpn': [
 {'name': 'L3VPN2',
 'export-RT': ['50:2'],
 'route-distinguisher': ['50:2'],
 'import-RT': ['50:2'],
 'id': '4ae8cd92-48ca-49b5-94e1-b2921a260007',
 ‘l3vni’: ‘200’,
 'tenant-id': 'a565b3ed854247f795c0840b0481c699'
}]}}

There is no change in the REST API for associating networks, associating routers (or) deleting
the L3VPN.

On the Openstack-side configuration, the vni_ranges configured in Openstack Neutron ml2_conf.ini
should not overlap with the L3VNI provided in the ODL RESTful API.
In an inter-DC case, where both the DCs are managed by two different Openstack Controller
Instances, the workflow will be to do the following:

	Configure the DC-GW2 facing OSC2 and DC-GW1 facing OSC1 with the same BGP configuration parameters.

	On first Openstack Controller (OSC1) create an L3VPN1 with RD1 and L3VNI1

	Create a network Net1 and Associate that Network Net1 to L3VPN1

	On second Openstack Controller (OSC2) create an L3VPN2 with RD1 with L3VNI2

	Create a network Net2 on OSC2 and associate that Network Net2 to L3VPN2.

	Spin-off VM1 on Net1 in OSC1.

	Spin-off VM2 on Net2 in OSC2.

	Now VM1 and VM2 should be able to communicate.

Implementation

Assignee(s)

	Primary assignee:

	Kiran N Upadhyaya (kiran.n.upadhyaya@ericsson.com)

Sumanth MS (sumanth.ms@ericsson.com)

Basavaraju Chickmath (basavaraju.chickmath@ericsson.com)

	Other contributors:

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

The Trello cards have already been raised for this feature
under the EVPN_RT5.

Here is the link for the Trello Card:
https://trello.com/c/Tfpr3ezF/33-evpn-evpn-rt5

New tasks into this will be added to cover Java UT and
CSIT.

Dependencies

Requires a DC-GW that is supporting EVPN RT5 on BGP Control plane.

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

User Guide will need to add information on how OpenDaylight can
be used to deploy L3 BGPVPNs and enable communication across
datacenters between virtual endpoints in such L3 BGPVPN.

Developer Guide will capture the ODL L3VPN API changes to enable
management of an L3VPN that can use VXLAN overlay to enable
communication across datacenters.

References

[1] EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

[2] Network Virtualization using EVPN [https://www.ietf.org/id/draft-ietf-bess-evpn-overlay-07.txt]

[3] Integrated Routing and Bridging in EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-inter-subnet-forwarding-04]

[4] VXLAN DCI using EVPN [https://tools.ietf.org/html/draft-boutros-bess-vxlan-evpn-02]

[5] BGP MPLS-Based Ethernet VPN [https://tools.ietf.org/html/rfc7432]

	http://docs.opendaylight.org/en/latest/documentation.html

	https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

Temporary Source MAC Learning

https://git.opendaylight.org/gerrit/#/q/topic:temp-smac-learning

Temporary source MAC learning introduces two new tables to the ELAN service, for OVS-based source MAC learning using a learn action,
to reduce a large scale of packets punted to the controller for an unlearned source MAC.

Problem description

Currently any packet originating from an unknown source MAC address is punted to the controller from the ELAN service (L2 SMAC table 50).

This behavior continues for each packet from this source MAC until ODL properly processes this packet and adds an explicit source MAC rule to this table.

During the time that is required to punt a packet, process it by the ODL and create an appropriate flow, it is not necessary to punt any other packet from this source MAC, as it causes an unnecessary load.

Use Cases

Any L2 traffic from unknown source MACs passing through the ELAN service.

Proposed change

A preliminary logic will be added prior to the SMAC learning table,
that will use OpenFlow learn action to add a temporary rule for each
source MAC after the first packet is punted.

Pipeline changes

Two new tables will be introduced to the ELAN service:

Table 48 for resubmitting to tables 49 and 50 (trick required to use the learned flows, similar to the ACL implementation).

Table 49 for setting a register value to mark that this SMAC was already punted to the ODL for learning. The flows in this table will be generated automatically by OVS.

Table 50 will be modified, with a new flow, which has a lower priority than the existing known SMAC flows but a higher priority than the default flow. This flow passes packets marked with the register directly to the DMAC table 51 without punting to the controller, as it is already being processed. In addition, the default flow that punts packets to the controller, will also have a new learn action, temporarily adding a flow matching this source MAC to table 49.

Example of flows after change:

cookie=0x8040000, duration=1575.755s, table=17, n_packets=7865, n_bytes=1451576, priority=6,metadata=0x6000020000000000/0xffffff0000000000 actions=write_metadata:0x7000021389000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=1129.530s, table=48, n_packets=4149, n_bytes=729778, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x8600000, duration=6.875s, table=49, n_packets=0, n_bytes=0, hard_timeout=60, priority=0,dl_src=fa:16:3e:2f:73:61 actions=load:0x1->NXM_NX_REG4[0..7]
cookie=0x8051389, duration=7.078s, table=50, n_packets=0, n_bytes=0, priority=20,metadata=0x21389000000/0xfffffffff000000,dl_src=fa:16:3e:2f:73:61 actions=goto_table:51
cookie=0x8050000, duration=440.925s, table=50, n_packets=49, n_bytes=8030, priority=10,reg4=0x1 actions=goto_table:51
cookie=0x8050000, duration=124.209s, table=50, n_packets=68, n_bytes=15193, priority=0 actions=CONTROLLER:65535,learn(table=49,hard_timeout=60,priority=0,cookie=0x8600000,NXM_OF_ETH_SRC[],load:0x1->NXM_NX_REG4[0..7]),goto_table:51

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

This change should substantially reduce the packet in load from SMAC learning, resulting in a reduced load of the ODL in high performance traffic scenarios.

Targeted Release

Due to scale and performance criticality, and the low risk of this feature, suggest to target this functionality for Boron.

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other contributors.

	Primary assignee:

	Olga Schukin (olga.schukin@hpe.com)

	Other contributors:

	Alon Kochba (alonko@hpe.com)

Work Items

N/A.

Dependencies

No new dependencies.
Learn action is already in use in netvirt pipeline and has been available in OVS since early versions. However this is a non-standard OpenFlow feature.

Testing

Existing source MAC learning functionality should be verified.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

N/A.

Documentation Impact

Pipeline documentation should be updated accordingly to reflect the changes to the ELAN service.

Table of Contents

	Enhancement to VLAN Provider Network Support

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Enhancement to VLAN Provider Network Support

https://git.opendaylight.org/gerrit/#/q/topic:vlan-provider-network

This feature aims to enhance the support for VLAN provider networks that are not of type
external.As part of this enhancement, ELAN pipeline processing for the network will be
done on the switch only if there is at least one VM port in the network on the switch.
The behavior of VLAN provider networks of type external and flat networks will remain
unchanged as of now. The optimization for external network is out of scope of this spec
and will be handled as part of future releases.

Problem description

Current ODL implementation supports all configured VLAN segments corresponding to VLAN
provider networks on a particular patch port on all Open vSwitch which are part of the
network. This could have adverse performance impacts because every provider patch port
will receive and processes broadcast traffic for all configured VLAN segments even in
cases when the switch doesn’t have a VM port in the network. Furthermore, for unknown
SMACs it leads to unnecessary punts from ELAN pipeline to controller for source MAC
learning from all the switches.

Use Cases

L2 forwarding between OVS switches using provider type VLAN over L2 segment of the
underlay fabric

Proposed change

Instead of creating the VLAN member interface on the patch port at the time of network
creation, VLAN member interface creation will be deferred until a VM port comes up in the
switch in the VLAN provider network. Switch pipeline will not process broadcast traffic on
this switch in a VLAN provider network until VM port is added to the network. This will be
applicable to VLAN provider network without external router attribute set.

Elan service binding will also be done at the time of VLAN member interface
creation. Since many neutron ports on same switch can belong to a single VLAN provider
network, the flow rule should be created only once when first VM comes up and should be
deleted when there are no more neutron ports in the switch for the VLAN provider network.

Pipeline changes

None.

Yang changes

elan:elan-instances container will be enhanced with information whether an external
router is attached to VLAN provider network.

elan.yang

container elan-instances {
 description
 "elan instances configuration parameters. Elan instances support both the VLAN and VNI based elans.";

 list elan-instance {
 max-elements "unbounded";
 min-elements "0";
 key "elan-instance-name";
 description
 "Specifies the name of the elan instance. It is a string of 1 to 31
 case-sensitive characters.";
 leaf elan-instance-name {
 type string;
 description "The name of the elan-instance.";
 }
 ...

 leaf external {
 description "indicates whether the network has external router attached to it";
 type boolean;
 default "false";
 }
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

Performance will improve because of the following:

	Switch will drop packets if it doesn’t have a VM port in the VLAN on which packet is
received.

	Unnecessary punts to the controller from ELAN pipeline for source mac learning will be
prevented.

Targeted Release

Carbon.

Alternatives

N.A.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	
	Ravindra Nath Thakur (ravindra.nath.thakur@ericsson.com)

	Naveen Kumar Verma (naveen.kumar.verma@ericsson.com)

	Other contributors:

	
	Ravi Sundareswaran (ravi.sundareswaran@ericsson.com)

Work Items

N.A.

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

This feature will not require any change in User Guide.

References

[1] https://trello.com/c/A6Km6J3D/110-flat-and-vlan-network-type

Table of Contents

	VNI based L2 switching, L3 forwarding and NATing

	Problem description

	In Scope

	Out of Scope

	Use Cases

	L2 switching use cases

	L3 forwarding use cases

	NAT use cases

	Proposed change

	Pipeline changes

	L2 Switching

	Unicast

	Within hypervisor

	Across hypervisors

	Broadcast

	Across hypervisors

	L3 Forwarding

	Between VMs on a single OVS

	Between VMs on two different OVS

	VM sourcing the traffic (Ingress OVS)

	VM receiving the traffic (Egress OVS)

	NAT Service

	Inter DC

	SNAT

	DNAT

	Intra DC

	DNAT to DNAT

	SNAT to DNAT

	YANG changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release(s)

	Known Limitations

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

VNI based L2 switching, L3 forwarding and NATing

https://git.opendaylight.org/gerrit/#/q/topic:vni-based-l2-l3-nat

Important: All gerrit links raised for this feature will have topic name as vni-based-l2-l3-nat

This feature attempts to realize the use of VxLAN VNI (Virtual Network Identifier) for VxLAN
tenant traffic flowing on the cloud data-network. This is applicable to L2 switching, L3
forwarding and NATing for all VxLAN based provider networks. In doing so, it eliminates the
presence of LPort tags, ELAN tags and MPLS labels on the wire and instead, replaces
them with VNIs supplied by the tenant’s OpenStack.

This will be selectively done for the use-cases covered by this spec and hence, its
implementation won’t completely remove the usage of the above entities. The usage of LPort tags
and ELAN tags within an OVS datapath (not on the wire) of the hypervisor will be retained, as
eliminating it completely is a large redesign and can be pursued incrementally later.

This spec is the first step in the direction of enforcing datapath semantics that uses tenant
supplied VNI values on VxLAN Type networks created by tenants in OpenStack Neutron.

Note: The existing L3 BGPVPN control-path and data-path semantics will continue to use L3
labels on the wire as well as inside the OVS datapaths of the hypervisor to realize both intra-dc
and inter-dc connectivity.

Problem description

OpenDaylight NetVirt service today supports the following types of networks:

	Flat

	VLAN

	VxLAN

	GRE

Amongst these, VxLAN-based overlay is supported only for traffic within the DataCenter. External
network accesses over the DC-Gateway are supported via VLAN or GRE type external networks.
For rest of the traffic over the DC-Gateway, the only supported overlay is GRE.

Today, for VxLAN enabled networks by the tenant, the labels are generated by L3 forwarding service
and used. Such labels are re-used for inter-DC use-cases with BGPVPN as well. This does not honor
and is not in accordance with the datapath semantics from an orchestration point of view.

This spec attempts to change the datapath semantics by enforcing the VNIs (unique for every VxLAN
enabled network in the cloud) as dictated by the tenant’s OpenStack configuration for L2
switching, L3 forwarding and NATing.

This implementation will remove the reliance on using the following (on the wire) within the
DataCenter:

	Labels for L3 forwarding

	LPort tags for L2 switching

More specifically, the traffic from source VM will be routed in source OVS by the L3VPN / ELAN
pipeline. After that, the packet will travel as a switched packet in the VxLAN underlay within the
DC, containing the VNI in the VxLAN header instead of MPLS label / LPort tag. In the destination
OVS, the packet will be collected and sent to the destination VM through the existing ELAN
pipeline.

In the nodes themselves, the LPort tag will continue to be used when pushing the packet from
ELAN / L3VPN pipeline towards the VM as ACLService continues to use LPort tags.

Simiarly ELAN tags will continue to be used for handling L2 broadcast packets:

	locally generated in the OVS datapath

	remotely received from another OVS datapath via internal VxLAN tunnels

LPort tag uses 8 bits and ELAN tag uses 21 bits in the metadata. The existing use of both in the
metadata will remain unaffected.

In Scope

Since VNIs are provisioned only for VxLAN based underlays, this feature has in its scope the
use-cases pertaining to intra-DC connectivity over internal VxLAN tunnels only.

On the cloud data network wire, all the VxLAN traffic for basic L2 switching within a VxLAN
network and L3 forwarding across VxLAN-type networks using routers will use tenant supplied VNI
values for such VXLAN networks.

Inter-DC connectivity over external VxLAN tunnels is covered by the EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec.

Out of Scope

	Complete removal of use of LPort tags everywhere in ODL: Use of LPort tags within the OVS
Datapath of a hypervisor, for streaming traffic to the right virtual endpoint on that hypervisor
(note: not on the wire) will be retained

	Complete removal of use of ELAN tags everywhere in ODL: Use of ELAN tags within the OVS
Datapath to handle local/remote L2 broadcasts (note: not on the wire) will be retained

	Complete removal of use of MPLS labels everywhere in ODL: Use of MPLS labels for
realizing an L3 BGPVPN (regardless of type of networks put into such BGPVPN that may include
networks of type VxLAN) both on the wire and within the OVS Datapaths will be retained.

	Addressing or testing IPv6 use-cases

	Intra DC NAT usecase where no explicit Internet VPN is created for VxLAN based external provider
networks: Detailed further in Intra DC subsection in NAT section below.

Complete removal of use of LPort tags, ELAN tags and MPLS labels for VxLAN-type
networks has large scale design/pipeline implications and thus need to be attempted as future
initiatives via respective specs.

Use Cases

This feature involves amendments/testing pertaining to the following:

L2 switching use cases

	L2 Unicast frames exchanged within an OVS datapath

	L2 Unicast frames exchanged over OVS datapaths that are on different hypervisors

	L2 Broadcast frames transmitted within an OVS datapath

	L2 Broadcast frames received from remote OVS datapaths

L3 forwarding use cases

	Router realized using VNIs for networks attached to a new router (with network having
pre-created VMs)

	Router realized using VNIs for networks attached to a new router (with new VMs booted later on
the network)

	Router updated with one or more extra route(s) to an existing VM.

	Router updated to remove previously added one/more extra routes.

NAT use cases

The provider network types for external networks supported today are:

	External VLAN Provider Networks (transparent Internet VPN)

	External Flat Networks (transparent Internet VPN)

	Tenant-orchestrated Internet VPN of type GRE (actually MPLSOverGRE)

Following are the SNAT/DNAT use-cases applicable to the network types listed above:

	SNAT functionality.

	DNAT functionality.

	DNAT to DNAT functionality (Intra DC)

	FIP VM to FIP VM on same hypervisor

	FIP VM to FIP VM on different hypervisors

	SNAT to DNAT functionality (Intra DC)

	Non-FIP VM to FIP VM on the same NAPT hypervisor

	Non-FIP VM to FIP VM on the same hypervisor, but NAPT on different hypervisor

	Non-FIP VM to FIP VM on different hypervisors (with NAPT on FIP VM hypervisor)

	Non-FIP VM to FIP VM on different hypervisors (with NAPT on Non-FIP VM hypervisor)

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronVPN Manager

	ELAN Manager

	VPN Engine (VPN Manager, VPN Interface Manager and VPN Subnet Route Handler)

	FIB Manager

	NAT Service

Pipeline changes

L2 Switching

Unicast

Within hypervisor

There are no explicit pipeline changes for this use-case.

Across hypervisors

	Ingress OVS

Instead of setting the destination LPort tag, destination network VNI will be set in the
tun_id field in L2_DMAC_FILTER_TABLE (table 51) while egressing the packet on the tunnel
port.

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=65.484s, table=0, n_packets=23, n_bytes=2016, priority=4,in_port=6actions=write_metadata:0x30000000000/0xffffff0000000001,goto_table:17
cookie=0x6900000, duration=63.106s, table=17, n_packets=23, n_bytes=2016, priority=1,metadata=0x30000000000/0xffffff0000000000 actions=write_metadata:0x2000030000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=64.135s, table=40, n_packets=4, n_bytes=392, priority=61010,ip,dl_src=fa:16:3e:86:59:fd,nw_src=12.1.0.4 actions=ct(table=41,zone=5002)
cookie=0x6900000, duration=5112.542s, table=41, n_packets=21, n_bytes=2058, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x8040000, duration=62.125s, table=17, n_packets=15, n_bytes=854, priority=6,metadata=0x6000030000000000/0xffffff0000000000 actions=write_metadata:0x700003138a000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=5113.124s, table=48, n_packets=24, n_bytes=3044, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x805138a, duration=62.163s, table=50, n_packets=15, n_bytes=854, priority=20,metadata=0x3138a000000/0xfffffffff000000,dl_src=fa:16:3e:86:59:fd actions=goto_table:51
cookie=0x803138a, duration=62.163s, table=51, n_packets=6, n_bytes=476, priority=20,metadata=0x138a000000/0xffff000000,dl_dst=fa:16:3e:31:fb:91 actions=set_field:**0x710**->tun_id,output:1

	Egress OVS

On the egress OVS, for the packets coming in via the internal VxLAN tunnel (OVS - OVS),
INTERNAL_TUNNEL_TABLE currently matches on destination LPort tag for unicast packets. Since
the incoming packets will now contain the network VNI in the VxLAN header, the
INTERNAL_TUNNEL_TABLE will match on this VNI, set the ELAN tag in the metadata and forward
the packet to L2_DMAC_FILTER_TABLE so as to reach the destination VM via the ELAN pipeline.

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=5136.996s, table=0, n_packets=12601, n_bytes=899766, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=1145.594s, table=36, n_packets=15, n_bytes=476, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x803138a, duration=62.163s, table=51, n_packets=9, n_bytes=576, priority=20,metadata=0x138a000001/0xffff000000,dl_dst=fa:16:3e:86:59:fd actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

Broadcast

Across hypervisors

The ARP broadcast by the VM will be a (local + remote) broadcast.

For the local broadcast on the VM’s OVS itself, the packet will continue to get flooded to all the
VM ports by setting the destination LPort tag in the local broadcast group. Hence, there are no
explicit pipeline changes for when a packet is transmitted within the source OVS via a local
broadcast.

The changes in pipeline for the remote broadcast are illustrated below:

	Ingress OVS

Instead of setting the ELAN tag, network VNI will be set in the tun_id field as part of
bucket actions in remote broadcast group while egressing the packet on the tunnel port.

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=65.484s, table=0, n_packets=23, n_bytes=2016, priority=4,in_port=6actions=write_metadata:0x30000000000/0xffffff0000000001,goto_table:17
cookie=0x6900000, duration=63.106s, table=17, n_packets=23, n_bytes=2016, priority=1,metadata=0x30000000000/0xffffff0000000000 actions=write_metadata:0x2000030000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=64.135s, table=40, n_packets=4, n_bytes=392, priority=61010,ip,dl_src=fa:16:3e:86:59:fd,nw_src=12.1.0.4 actions=ct(table=41,zone=5002)
cookie=0x6900000, duration=5112.542s, table=41, n_packets=21, n_bytes=2058, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x8040000, duration=62.125s, table=17, n_packets=15, n_bytes=854, priority=6,metadata=0x6000030000000000/0xffffff0000000000 actions=write_metadata:0x700003138a000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=5113.124s, table=48, n_packets=24, n_bytes=3044, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x805138a, duration=62.163s, table=50, n_packets=15, n_bytes=854, priority=20,metadata=0x3138a000000/0xfffffffff000000,dl_src=fa:16:3e:86:59:fd actions=goto_table:51
cookie=0x8030000, duration=5112.911s, table=51, n_packets=18, n_bytes=2568, priority=0 actions=goto_table:52
cookie=0x870138a, duration=62.163s, table=52, n_packets=9, n_bytes=378, priority=5,metadata=0x138a000000/0xffff000001 actions=write_actions(group:210004)

group_id=210004,type=all,bucket=actions=group:210003,bucket=actions=set_field:**0x710**->tun_id,output:1

	Egress OVS

On the egress OVS, for the packets coming in via the internal VxLAN tunnel (OVS - OVS),
INTERNAL_TUNNEL_TABLE currently matches on ELAN tag for broadcast packets. Since the
incoming packets will now contain the network VNI in the VxLAN header, the
INTERNAL_TUNNEL_TABLE will match on this VNI, set the ELAN tag in the metadata and forward
the packet to L2_DMAC_FILTER_TABLE to be broadcasted via the local broadcast groups
traversing the ELAN pipeline.

The TUNNEL_INGRESS_BIT being set in the CLASSIFIER_TABLE (table 0) ensures that the
packet is always sent to the local broadcast group only and hence, remains within the OVS. This
is necessary to avoid switching loop back to the source OVS.

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=5136.996s, table=0, n_packets=12601, n_bytes=899766, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=1145.594s, table=36, n_packets=15, n_bytes=476, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x8030000, duration=5137.609s, table=51, n_packets=9, n_bytes=1293, priority=0 actions=goto_table:52
cookie=0x870138a, duration=1145.592s, table=52, n_packets=0, n_bytes=0, priority=5,metadata=0x138a000001/0xffff000001 actions=apply_actions(group:210003)

group_id=210003,type=all,bucket=actions=set_field:0x4->tun_id,resubmit(,55)

cookie=0x8800004, duration=1145.594s, table=55, n_packets=9, n_bytes=378, priority=9,tun_id=0x4,actions=load:0x400->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

The ARP response will be a unicast packet, and as indicated above, for unicast packets, there
are no explicit pipeline changes.

L3 Forwarding

Between VMs on a single OVS

There are no explicit pipeline changes for this use-case.
The destination LPort tag will continue to be set in the nexthop group since when
The EGRESS_DISPATCHER_TABLE sends the packet to EGRESS_ACL_TABLE, it is used by the ACL
service.

Between VMs on two different OVS

L3 forwarding between VMs on two different hypervisors is asymmetric forwarding since the traffic
is routed in the source OVS datapath while it is switched over the wire and then all the way to
the destination VM on the destination OVS datapath.

VM sourcing the traffic (Ingress OVS)

L3_FIB_TABLE will set the destination network VNI in the tun_id field instead of the MPLS
label.

CLASSIFIER_TABLE => DISPATCHER_TABLE => INGRESS_ACL_TABLE =>
DISPATCHER_TABLE => L3_GW_MAC_TABLE =>
L3_FIB_TABLE (set destination MAC, **set tunnel-ID as destination network VNI**)
=> Output to tunnel port

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=128.140s, table=0, n_packets=25, n_bytes=2716, priority=4,in_port=5 actions=write_metadata:0x50000000000/0xffffff0000000001,goto_table:17
cookie=0x8000000, duration=4876.599s, table=17, n_packets=0, n_bytes=0, priority=0,metadata=0x5000000000000000/0xf000000000000000 actions=write_metadata:0x6000000000000000/0xf000000000000000,goto_table:80
cookie=0x1030000, duration=4876.563s, table=80, n_packets=0, n_bytes=0, priority=0 actions=resubmit(,17)
cookie=0x6900000, duration=123.870s, table=17, n_packets=25, n_bytes=2716, priority=1,metadata=0x50000000000/0xffffff0000000000 actions=write_metadata:0x2000050000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=126.056s, table=40, n_packets=15, n_bytes=1470, priority=61010,ip,dl_src=fa:16:3e:63:ea:0c,nw_src=10.1.0.4 actions=ct(table=41,zone=5001)
cookie=0x6900000, duration=4877.057s, table=41, n_packets=17, n_bytes=1666, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x6800001, duration=123.485s, table=17, n_packets=28, n_bytes=3584, priority=2,metadata=0x2000050000000000/0xffffff0000000000 actions=write_metadata:0x5000050000000000/0xfffffffffffffffe,goto_table:60
cookie=0x6800000, duration=3566.900s, table=60, n_packets=24, n_bytes=2184, priority=0 actions=resubmit(,17)
cookie=0x8000001, duration=123.456s, table=17, n_packets=17, n_bytes=1554, priority=5,metadata=0x5000050000000000/0xffffff0000000000 actions=write_metadata:0x60000500000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, duration=124.815s, table=19, n_packets=15, n_bytes=1470, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=fa:16:3e:51:da:ee actions=goto_table:21
cookie=0x8000003, duration=125.568s, table=21, n_packets=9, n_bytes=882, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=12.1.0.3 actions=**set_field:0x710->tun_id**,set_field:fa:16:3e:31:fb:91->eth_dst,output:1

VM receiving the traffic (Egress OVS)

On the egress OVS, for the packets coming in via the VxLAN tunnel, INTERNAL_TUNNEL_TABLE
currently matches on MPLS label and sends it to the nexthop group to be taken to the destination
VM via EGRESS_ACL_TABLE.
Since the incoming packets will now contain network VNI in the VxLAN header, the INTERNAL_TUNNEL_TABLE
will match on the VNI, set the ELAN tag in the metadata and forward the packet to
L2_DMAC_FILTER_TABLE, from where it will be taken to the destination VM via the ELAN pipeline.

CLASSIFIER_TABLE => INTERNAL_TUNNEL_TABLE (Match on network VNI, set ELAN tag in the metadata)
=> L2_DMAC_FILTER_TABLE (Match on destination MAC) => EGRESS_DISPATCHER_TABLE
=> EGRESS_ACL_TABLE => Output to destination VM port

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=4918.647s, table=0, n_packets=12292, n_bytes=877616, priority=5,in_port=1actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=927.245s, table=36, n_packets=8234, n_bytes=52679, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x803138a, duration=62.163s, table=51, n_packets=9, n_bytes=576, priority=20,metadata=0x138a000001/0xffff000000,dl_dst=fa:16:3e:86:59:fd actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

NAT Service

For NAT, we need VNIs to be used in two scenarios:

	When packet is forwarded from non-NAPT to NAPT hypervisor (VNI per router)

	Between hypervisors (intra DC) over Internet VPN (VNI per Internet VPN)

Hence, a pool titled opendaylight-vni-ranges, non-overlapping with the OpenStack Neutron
vni_ranges configuration, needs to be configured by the OpenDaylight Controller Administrator.

This opendaylight-vni-ranges pool will be used to carve out a unique VNI per router to be then
used in the datapath for traffic forwarding from non-NAPT to NAPT switch for this router.

Similarly, for MPLSOverGRE based external networks, the opendaylight-vni-ranges pool will be
used to carve out a unique VNI per Internet VPN (GRE-provider-type) to be then used in the
datapath for traffic forwarding for SNAT-to-DNAT and DNAT-to-DNAT cases within the
DataCenter. Only one external network can be associated to Internet VPN today and this spec
doesn’t attempt to address that limitation.

A NeutronVPN configuration API will be exposed to the administrator to configure the lower and
higher limit for this pool.
If the administrator doesn’t configure this explicitly, then the pool will be created with default
values of lower limit set to 70000 and upper limit set to 100000, during the first NAT session
configuration.

FIB Manager changes: For external network of type GRE, it is required to use
Internet VPN VNI for intra-DC communication, but we still require MPLS labels to reach
SNAT/DNAT VMs from external entities via MPLSOverGRE. Hence, we will make use of the l3vni
attribute added to fibEntries container as part of EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec. NAT will populate both
label and l3vni values for fibEntries created for floating-ips and external-fixed-ips with
external network of type GRE. This l3vni value will be used while programming remote FIB flow
entries (on all the switches which are part of the same VRF). But still, MPLS label will be used
to advertise prefixes and in L3_LFIB_TABLE taking the packet to INBOUND_NAPT_TABLE and
PDNAT_TABLE.

For SNAT/DNAT use-cases, we have following provider network types for External Networks:

	VLAN - not VNI based

	Flat - not VNI based

	VxLAN - VNI based (covered by the EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec)

	GRE - not VNI based (will continue to use MPLS labels)

Inter DC

SNAT

	From a VM on a NAPT switch to reach Internet, and reverse traffic reaching back to the VM

There are no explicit pipeline changes.

	From a VM on a non-NAPT switch to reach Internet, and reverse traffic reaching back to the VM

On the non-NAPT switch, PSNAT_TABLE (table 26) will be set with tun_id field as
Router Based VNI allocated from the pool and send to group to reach NAPT switch.

On the NAPT switch, INTERNAL_TUNNEL_TABLE (table 36) will match on the tun_id field
which will be Router Based VNI and send the packet to OUTBOUND_NAPT_TABLE (table 46) for
SNAT Translation and to be taken to Internet.

	Non-NAPT switch

cookie=0x8000006, duration=2797.179s, table=26, n_packets=47, n_bytes=3196, priority=5,ip,metadata=0x23a50/0xfffffffe actions=**set_field:0x710->tun_id**,group:202501

group_id=202501,type=all,bucket=actions=output:1

	NAPT switch

cookie=0x8000001, duration=4918.647s, table=0, n_packets=12292, n_bytes=877616, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=927.245s, table=36, n_packets=8234, n_bytes=52679, priority=10,ip,**tun_id=0x710**,actions=write_metadata:0x23a50/0xfffffffe,goto_table:46

As part of the response from NAPT switch, the packet will be taken to the Non-NAPT switch
after SNAT reverse translation using destination VMs Network VNI.

DNAT

There is no NAT specific explicit pipeline change for DNAT traffic to DC-gateway.

Intra DC

	VLAN Provider External Networks: VNI is not applicable on the external VLAN Provider network.
However, the Router VNI will be used for datapath traffic from non-NAPT switch to NAPT-switch
over the internal VxLAN tunnel.

	VxLAN Provider External Networks:

	Explicit creation of Internet VPN: An L3VNI, mandatorily falling within the
opendaylight-vni-ranges, will be provided by the Cloud admin (or tenant). This VNI will be
used uniformly for all packet transfer over the VxLAN wire for this Internet VPN (uniformly
meaning all the traffic on Internal or External VXLAN Tunnel, except the non-NAPT to NAPT
communication). This usecase is covered by EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec

	No explicit creation of Internet VPN: A transparent Internet VPN having UUID same as that
of the corresponding external network UUID is created implicitly and the VNI configured for
this external network should be used on the VxLAN wire. This usecase is out of scope from
the perspective of this spec, and the same is indicated in Out of Scope section.

	GRE Provider External Networks: Internet VPN VNI will be carved per Internet VPN using
opendaylight-vni-ranges to be used on the wire.

DNAT to DNAT

	FIP VM to FIP VM on different hypervisors

After DNAT translation on the first hypervisor DNAT-OVS-1, the traffic will be sent to the
L3_FIB_TABLE (table=21) in order to reach the floating IP VM on the second hypervisor
DNAT-OVS-2. Here, the tun_id action field will be set as the INTERNET VPN VNI value.

	DNAT-OVS-1

cookie=0x8000003, duration=518.567s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222e8/0xfffffffe,nw_dst=172.160.0.200 actions=**set_field:0x11178->tun_id**,output:9

	DNAT-OVS-2

cookie=0x9011177, duration=411685.075s, table=36, n_packets=2, n_bytes=196, priority=**6**,**tun_id=0x11178**actions=resubmit(,25)
cookie=0x9011179, duration=478573.171s, table=36, n_packets=2, n_bytes=140, priority=5,**tun_id=0x11178**,actions=goto_table:44

cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ip,nw_dst=172.160.0.100,**eth_dst=fa:16:3e:e6:e3:c6** actions=set_field:10.0.0.5->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27
cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ipactions=goto_table:44

First, the INTERNAL_TUNNEL_TABLE (table=36) will take the packet to the PDNAT_TABLE
(table 25) for an exact FIP match in PDNAT_TABLE.

	In case of a successful FIP match, PDNAT_TABLE will further match on floating IP MAC.
This is done as a security prerogative since in DNAT usecases, the packet can land to the
hypervisor directly from the external world. Hence, better to have a second match criteria.

	In case of no match, the packet will be redirected to the SNAT pipeline towards the
INBOUND_NAPT_TABLE (table=44). This is the use-case where DNAT-OVS-2 also acts as
the NAPT switch.

In summary, on an given NAPT switch, if both DNAT and SNAT are configured, the incoming traffic
will first be sent to the PDNAT_TABLE and if there is no FIP match found, then it will be
forwarded to INBOUND_NAPT_TABLE for SNAT translation.

As part of the response, the Internet VPN VNI will be used as tun_id to reach floating
IP VM on DNAT-OVS-1.

	FIP VM to FIP VM on same hypervisor

The pipeline changes will be similar as are for different hypervisors, the only difference being
that INTERNAL_TUNNEL_TABLE will never be hit in this case.

SNAT to DNAT

	Non-FIP VM to FIP VM on different hypervisors (with NAPT elected as the FIP VM hypervisor)

The packet will be sent to the NAPT hypervisor from non-FIP VM (for SNAT translation) using
Router VNI (similar to as described in SNAT section). As part of the response from the
NAPT switch after SNAT reverse translation, the packet is forwarded to non-FIP VM using
destination VM’s Network VNI.

	Non-FIP VM to FIP VM on the same NAPT hypervisor

There are no explicit pipeline changes for this use-case.

	Non-FIP VM to FIP VM on the same hypervisor, but a different hypervisor elected as NAPT switch

	NAPT hypervisor

The packet will be sent to the NAPT hypervisor from non-FIP VM (for SNAT translation) using
Router VNI (similar to as described in SNAT section). On the NAPT switch, the
INTERNAL_TUNNEL_TABLE will match on the Router VNI in the tun_id field and send the
packet to OUTBOUND_NAPT_TABLE for SNAT translation (similar to as described in SNAT
section).

cookie=0x8000005, duration=5073.829s, table=36, n_packets=61, n_bytes=4610, priority=10,ip,**tun_id=0x11170**,actions=write_metadata:0x222e0/0xfffffffe,goto_table:46

The packet will later be sent back to the FIP VM hypervisor from L3_FIB_TABLE with tun_id
field set as the Internet VPN VNI.

cookie=0x8000003, duration=518.567s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222e8/0xfffffffe,nw_dst=172.160.0.200 actions=**set_field:0x11178->tun_id**,output:9

	FIP VM hypervisor

On reaching the FIP VM Hypervisor, the packet will be sent for DNAT translation. The
INTERNAL_TUNNEL_TABLE will match on the Internet VPN VNI in the tun_id field and
send the packet to PDNAT_TABLE.

cookie=0x9011177, duration=411685.075s, table=36, n_packets=2, n_bytes=196, priority=**6**,**tun_id=0x11178**,actions=resubmit(,25)
cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ip,nw_dst=172.160.0.100,**eth_dst=fa:16:3e:e6:e3:c6** actions=set_field:10.0.0.5->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27

Upon FIP VM response, DNAT reverse translation happens and traffic is sent back to the NAPT
switch for SNAT translation. The L3_FIB_TABLE will be set with Internet VPN VNI in the
tun_id field.

cookie=0x8000003, duration=95.300s, table=21, n_packets=2, n_bytes=140, priority=42,ip,metadata=0x222ea/0xfffffffe,nw_dst=172.160.0.3 actions=**set_field:0x11178->tun_id**,output:5

	NAPT hypervisor

On NAPT hypervisor, the INTERNAL_TUNNEL_TABLE will match on the Internet VPN VNI in
the tun_id field and send the packet to `` INBOUND_NAPT_TABLE`` for SNAT reverse
translation (external fixed IP to VM IP). The packet will then be sent back to the non-FIP VM
using destination VM’s Network VNI.

	Non-FIP VM to FIP VM on different hypervisors (with NAPT elected as the non-FIP VM hypervisor)

After SNAT Translation, Internet VPN VNI will be used to reach FIP VM. On FIP VM hypervisor,
the INTERNAL_TUNNEL_TABLE will take the packet to the PDNAT_TABLE to match on
Internet VPN VNI in the tun_id field for DNAT translation.

Upon response from FIP, DNAT reverse translation happens and uses Internet VPN VNI to reach
back to the non-FIP VM.

YANG changes

	opendaylight-vni-ranges and enforce-openstack-semantics leaf elements will be added to
neutronvpn-config container in neutronvpn-config.yang:

	opendaylight-vni-ranges will be introduced to accept inputs for the VNI range pool from
the configurator via the corresponding exposed REST API. In case this is not defined, the
default value defined in netvirt-neutronvpn-config.xml will be used to create this pool.

	enforce-openstack-semantics will be introduced to have the flexibility to enable
or disable OpenStack semantics in the dataplane for this feature. It will be defaulted to
true, meaning these semantics will be enforced by default. In case it is set to false, the
dataplane will continue to be programmed with LPort tags / ELAN tags for switching and with
labels for routing use-cases. Once this feature gets stabilized and the semantics are in place
to use VNIs on the wire for BGPVPN based forwarding too, this config can be permanently
removed if deemed fit.

neutronvpn-config.yang

container neutronvpn-config {
 config true;
 ...
 ...
 leaf opendaylight-vni-ranges {
 type string;
 default "70000:99999";
 }
 leaf enforce-openstack-semantics {
 type boolean;
 default true;
 }
}

	Provider network-type and provider segmentation-ID need to be propagated to FIB Manager to manipulate
flows based on the same. Hence:

	A new grouping network-attributes will be introduced in neutronvpn.yang to hold
network type and segmentation ID. This grouping will replace the leaf-node
network-id in subnetmaps MD-SAL configuration datastore:

neutronvpn.yang

grouping network-attributes {
 leaf network-id {
 type yang:uuid;
 description "UUID representing the network";
 }
 leaf network-type {
 type enumeration {
 enum "FLAT";
 enum "VLAN";
 enum "VXLAN";
 enum "GRE";
 }
 }
 leaf segmentation-id {
 type uint32;
 description "Optional. Isolated segment on the physical network.
 If segment-type is vlan, this ID is a vlan identifier.
 If segment-type is vxlan, this ID is a vni.
 If segment-type is flat/gre, this ID is set to 0";
 }
}

container subnetmaps {
 ...
 ...
 uses network-attributes;
}

	These attributes will be propagated upon addition of a router-interface or addition of a
subnet to a BGPVPN to VPN Manager module via the subnet-added-to-vpn notification
modelled in neutronvpn.yang. Hence, the following node will be added:

neutronvpn.yang

notification subnet-added-to-vpn {
 description "new subnet added to vpn";
 ...
 ...
 uses network-attributes;
}

	VpnSubnetRouteHandler will act on these notifications and store these attributes in
subnet-op-data MD-SAL operational datastore as described below. FIB Manager will get to
retrieve the subnetID from the primary adjacency of the concerned VPN interface. This
subnetID will be used as the key to retrieve network-attributes from subnet-op-data
datastore.

odl-l3vpn.yang

import neutronvpn {
 prefix nvpn;
 revision-date "2015-06-02";
}

container subnet-op-data {
 ...
 ...
 uses nvpn:network-attributes;
}

	subnetID and nat-prefix leaf elements will be added to prefix-to-interface
container in odl-l3vpn.yang:

	For NAT use-cases where the VRF entry is not always associated with a VPN interface (eg. for
NAT entries such as floating IP and router-gateway-IPs for external VLAN / flat networks),
subnetID leaf element will be added to make it possible to retrieve the
network-attributes.

	To distinguish a non-NAT prefix from a NAT prefix, nat-prefix leaf element will be
added. This is a boolean attribute indicating whether the prefix is a NAT prefix (meaning a
floating IP, or an external-fixed-ip of a router-gateway). The VRFEntry corresponding to
the NAT prefix entries here may carry both the MPLS label and the Internet VPN VNI.
For SNAT-to-DNAT within the datacenter, where the Internet VPN contains an MPLSOverGRE
based external network, this VRF entry will publish the MPLS label to BGP while the
Internet VPN VNI (also known as L3VNI) will be used to carry intra-DC traffic on
the external segment within the datacenter.

odl-l3vpn.yang

container prefix-to-interface {
 config false;
 list vpn-ids {
 key vpn-id;
 leaf vpn-id {type uint32;}
 list prefixes {
 key ip_address;
 ...
 ...
 leaf subnet-id {
 type yang:uuid;
 }
 leaf nat-prefix {
 type boolean;
 default false;
 }
 }
 }
}

Configuration impact

	We have to make sure that we do not accept configuration of VxLAN type provider networks without
the segmentation-ID available in them since we are using it to represent the VNI on the wire
and in the flows/groups.

Clustering considerations

No specific additional clustering considerations to be adhered to.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release(s)

Carbon.

Known Limitations

None.

Alternatives

N.A.

Usage

Features to Install

odl-netvirt-openstack

REST API

No new changes to the existing REST APIs.

CLI

No new CLI is being added.

Implementation

Assignee(s)

	Primary assignee:

	Abhinav Gupta <abhinav.gupta@ericsson.com>
Vivekanandan Narasimhan <n.vivekanandan@ericsson.com>

	Other contributors:

	Chetan Arakere Gowdru <chetan.arakere@altencalsoftlabs.com>
Karthikeyan Krishnan <karthikeyan.k@altencalsoftlabs.com>
Yugandhar Sarraju <yugandhar.s@altencalsoftlabs.com>

Work Items

Trello card: https://trello.com/c/PfARbEmU/84-enforce-vni-on-the-wire-for-l2-switching-l3-forwarding-and-nating-on-vxlan-overlay-networks

	Code changes to alter the pipeline and e2e testing of the use-cases mentioned.

	Add Documentation

Dependencies

This doesn’t add any new dependencies.

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

No new testcases to be added, existing ones should continue to succeed.

Documentation Impact

This will require changes to the Developer Guide.

Developer Guide needs to capture how this feature modifies the existing Netvirt L3 forwarding
service implementation.

References

	http://docs.opendaylight.org/en/latest/documentation.html

	https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

	EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

Table of Contents

	Neutron Port Allocation For DHCP Service

	Problem description

	Problem - 1: L2 Deployment with 3PP gateway

	Problem - 2: Designated DHCP for SR-IOV VMs via HWVTEP

	High-Level Components:

	Proposed change

	ODL Driver Changes:

	Pipeline changes

	ARP Changes for DHCP port

	Assumptions

	Reboot Scenarios

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	CSIT

	Documentation Impact

	References

Neutron Port Allocation For DHCP Service

https://git.opendaylight.org/gerrit/#/q/topic:neutron_port_dhcp

This feature will enable the Neutron DHCP proxy service within controller
to reserve and use a Neutron port per subnet for communication with
Neutron endpoints.

Problem description

The DHCP service currently assumes availability of the subnet gateway IP address
and its mac address for its DHCP proxy service, which may or may not be available
to the controller. This can lead to service unavailability.

Problem - 1: L2 Deployment with 3PP gateway

There can be deployment scenario in which L2 network is created with no distributed
Router/VPN functionality. This deployment can have a separate gateway for the network
such as a 3PP LB VM, which acts as a TCP termination point and this LB VM is
configured with a default gateway IP. It means all inter-subnet traffic is terminated
on this VM which takes the responsibility of forwarding the traffic.

But the current DHCP proxy service in controller hijacks gateway IP address for
serving DHCP discover/request messages. If the LB is up, this can continue to work,
DHCP broadcasts will get hijacked by the ODL, and responses
sent as PKT_OUTs with SIP = GW IP.

However, if the LB is down, and the VM ARPs for the same IP as part of a DHCP renew
workflow, the ARP resolution can fail, due to which renew request will not be
generated. This can cause the DHCP lease to lapse.

Problem - 2: Designated DHCP for SR-IOV VMs via HWVTEP

In this Deployment scenario, L2 network is created with no distributed Router/VPN
functionality, and HWVTEP for SR-IOV VMs. DHCP flood requests from SR-IOV VMs
(DHCP discover, request during bootup), are flooded by the HWVTEP on the ELAN,
and punted to the controller by designated vswitch. DHCP offers are sent as unicast
responses from Controller, which are forwarded by the HWVTEP to the VM. DHCP renews
can be unicast requests, which the HWVTEP may forward to an external Gateway VM (3PP
LB VM) as unicast packets. Designated vswitch will never receive these pkts, and thus
not be able to punt them to the controller, so renews will fail.

High-Level Components:

The following components of the Openstack - ODL solution need to be enhanced to provide
port allocation for DHCP service.

	Openstack ODL Mechanism Driver

	OpenDaylight Controller (NetVirt VpnService/DHCP Service/Elan Service)

We will review enhancements that will be made to each of the above components in following
sections.

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	Neutron VPN module

	DHCP module

	ELAN and L3VPN modules

OpenDaylight controller needs to preserve a Neutron port for every subnet so that DHCP proxy
service can be enabled in Openstack deployment. The Neutron port’s device owner property is
set to network:dhcp and uses this port for all outgoing DHCP messages. Since this port gets
a distinct IP address and MAC address from the subnet, both problem-1 and problem-2 will be
solved.

ODL Driver Changes:

ODL driver will need a config setting when ODL DHCP service is in use, as against when Neutron
DHCP agent is deployed (Community ODL default setting). This needs to be enabled for ODL deployment

ODL driver will insert an async call in subnet create/update workflow in POST_COMMIT for subnets
with DHCP set to ‘enabled’, with a port create request, with device owner set to network:dhcp,
and device ID set to controller hostname/IP (from ml2_conf.ini file)

ODL driver will insert an async call in subnet delete, and DHCP ‘disable’ workflow to ensure
the allocated port is deleted

ODL driver needs to ensure at any time no more than a single port is allocated per subnet
for these requirements

Pipeline changes

For example, If a VM interface is having 30.0.0.1/de:ad:be:ef:00:05 as its Gateway (or) Router
Interface IP/MAC address and its subnet DHCP neutron port is created with IP/MAC address
30.0.0.4/de:ad:be:ef:00:04. The ELAN pipeline is changed like below.

LPort Dispatcher Table (17)=>ELAN ARP Check Table(43) => ARP Responder Group (5000) => ARP Responder Table (81) => Egress dispatcher Table(220)

cookie=0x8040000, duration=627.038s, table=17, n_packets=0, n_bytes=0, priority=6, metadata=0xc019a00000000000/0xffffff0000000000 actions=write_metadata:0xc019a01771000000/0xfffffffffffffffe,goto_table:43
cookie=0x1080000, duration=979.712s, table=43, n_packets=0, n_bytes=0, priority=100,arp,arp_op=1 actions=group:5000
cookie=0x1080000, duration=979.713s, table=43, n_packets=0, n_bytes=0, priority=100,arp,arp_op=2 actions=CONTROLLER:65535,resubmit(,48)
cookie=0x8030000, duration=979.717s, table=43, n_packets=0, n_bytes=0, priority=0 actions=goto_table:48
cookie=0x262219a4, duration=312.151s, table=81, n_packets=0, n_bytes=0, priority=100,arp,metadata=0xc019a000000/0xfffffffff000000,arp_tpa=30.0.0.1,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:de:ad:be:ef:00:05->eth_src,load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xdeadbeef0005->NXM_NX_ARP_SHA[],load:0x1e000001->NXM_OF_ARP_SPA[],load:0->NXM_OF_IN_PORT[],load:0x19a000->NXM_NX_REG6[],resubmit(,220)
cookie=0x262219a4, duration=312.151s, table=81, n_packets=0, n_bytes=0, priority=100,arp,metadata=0xc019a000000/0xfffffffff000000,arp_tpa=30.0.0.4,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:de:ad:be:ef:00:04->eth_src,load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xdeadbeef0004->NXM_NX_ARP_SHA[],load:0x1e000001->NXM_OF_ARP_SPA[],load:0->NXM_OF_IN_PORT[],load:0x19a000->NXM_NX_REG6[],resubmit(,220)

group_id=5000,type=all,bucket=actions=CONTROLLER:65535,bucket=actions=resubmit(,48),bucket=actions=resubmit(,81)

ARP Changes for DHCP port

1. Client VM ARP requests for DHCP server IP need to be answered in L2 as well
as L3 deployment.
2. Create ARP responder table flow entry for DHCP server IP in computes nodes
on which ELAN footprint is available.
3. Currently ARP responder is part of L3VPN pipeline, however no L3 service
may be available in an L2 deployment to leverage the current ARP pipeline,
for DHCP IP ARP responses. To ensure ARP responses are sent in L2 deployment,
ARP processing needs to be migrated to the ELAN pipeline.
4. ELAN service to provide API to other services needing ARP responder entries
including L3VPN service (for router MAC, router-gw MAC and floating IPs,
and EVPN remote MAC entries).
5. ELAN service will be responsible for punting a copy of each ARP packet to the
controller if the source MAC address is not already learned.

Assumptions

Support for providing port allocation for DHCP service is available from
Openstack Pike release.

Reboot Scenarios

	This feature support all the following Reboot Scenarios for EVPN:

	
	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Nitrogen, Carbon

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Implementation

The programming of flow rules in Table 43 and Table 81 is handled in ELAN module and
following APIs are exposed from IElanService so that L3VPN and DHCP modules can
use it to program ARP responder table flow entries for Gateway/Router Interface,
floating IPs and DHCP port.

void addArpResponderEntry(BigIneger dpId, String ingressInterfaceName,
 String ipAddress, String macAddress, Optional<Integer> lportTag);
void removeArpResponderEntry(BigIneger dpId, String ingressInterfaceName,
 String ipAddress, String macAddress, Optional<Integer> lportTag);

A new container is introduced to hold the subnet DHCP port information.

dhcpservice-api.yang

 container subnet-dhcp-port-data {
 config true;
 list subnet-to-dhcp-port {
 key "subnet-id";
 leaf subnet-id {
 type string;
 }
 leaf port-name {
 type string;
 }
 leaf port-fixedip {
 type string;
 }
 leaf port-macaddress {
 type string;
 }
 }
 }

When no DHCP port is available for the subnet we will flag an error to indicate
DHCP service failure for virtual endpoints on such subnets which are dhcp-enabled
in Openstack neutron.

Assignee(s)

	Primary assignee:

	Karthik Prasad <karthik.p@altencalsoftlabs.com>
Achuth Maniyedath <achuth.m@altencalsoftlabs.com>
Vijayalakshmi CN <vijayalakshmi.c@altencalsoftlabs.com>

	Other contributors:

	Dayavanti Gopal Kamath <dayavanti.gopal.kamath@ericsson.com>
Vivekanandan Narasimhan <n.vivekanandan@ericsson.com>
Periyasamy Palanisamy <periyasamy.palanisamy@ericsson.com>

Work Items

Dependencies

Testing

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

	OpenStack Spec - https://review.openstack.org/#/c/453160

OpFlex agent-ovs Install Guide

Required Packages

You’ll need to install the following packages and their dependencies:

	libuv

	openvswitch

	libopflex

	libmodelgbp

	agent-ovs

Packages are available for Red Hat Enterprise Linux 7 and Ubuntu 14.04
LTS. Some of the examples below are specific to RHEL7 but you can run
the equivalent commands for upstart instead of systemd.

Note that many of these steps may be performed automatically if you’re
deploying this along with a larger orchestration system.

Host Networking Configuration

You’ll need to set up your VM host uplink interface. You should
ensure that the MTU of the underlying network is sufficient to handle
tunneled traffic. We will use an example of setting up eth0 as your
uplink interface with a vlan of 4093 used for the networking control
infrastructure and tunnel data plane.

We just need to set the MTU and disable IPv4 and IPv6
autoconfiguration. The MTU needs to be large enough to allow both the
VXLAN header and VLAN tags to pass through without fragmenting for
best performance. We’ll use 1600 bytes which should be sufficient
assuming you are using a default 1500 byte MTU on your virtual machine
traffic. If you already have any NetworkManager connections configured
for your uplink interface find the connection name and proceed to the
next step. Otherwise, create a connection with (be sure to update the
variable UPLINK_IFACE as needed):

UPLINK_IFACE=eth0
nmcli c add type ethernet ifname $UPLINK_IFACE

Now, configure your interface as follows:

CONNECTION_NAME="ethernet-$UPLINK_IFACE"
nmcli connection mod "$CONNECTION_NAME" connection.autoconnect yes \
 ipv4.method link-local \
 ipv6.method ignore \
 802-3-ethernet.mtu 9000 \
 ipv4.routes '224.0.0.0/4 0.0.0.0 2000'

Then bring up the interface with:

nmcli connection up "$CONNECTION_NAME"

Next, create the infrastructure interface using the infrastructure
VLAN (4093 by default). We’ll need to create a vlan subinterface of
your uplink interface, the configure DHCP on that interface. Run the
following commands. Be sure to replace the variable values if needed. If
you’re not using NIC teaming, replace the variable team0 below:

UPLINK_IFACE=team0
INFRA_VLAN=4093
nmcli connection add type vlan ifname $UPLINK_IFACE.$INFRA_VLAN dev $UPLINK_IFACE id $INFRA_VLAN
nmcli connection mod vlan-$UPLINK_IFACE.$INFRA_VLAN \
 ethernet.mtu 1600 ipv4.routes '224.0.0.0/4 0.0.0.0 1000'
sed "s/CLIENT_ID/01:$(ip link show $UPLINK_IFACE | awk '/ether/ {print $2}')/" \
 > /etc/dhcp/dhclient-$UPLINK_IFACE.$INFRA_VLAN.conf <<EOF
send dhcp-client-identifier CLIENT_ID;
request subnet-mask, domain-name, domain-name-servers, host-name;
EOF

Now bring up the new interface with:

nmcli connection up vlan-$UPLINK_IFACE.$INFRA_VLAN

If you were successful, you should be able to see an IP address when you run:

ip addr show dev $UPLINK_IFACE.$INFRA_VLAN

OVS Bridge Configuration

We’ll need to configure an OVS bridge which will handle the traffic
for any virtual machines or containers that are hosted on the VM
host. First, enable the openvswitch service and start it:

systemctl enable openvswitch
ln -s '/usr/lib/systemd/system/openvswitch.service' '/etc/systemd/system/multi-user.target.wants/openvswitch.service'
systemctl start openvswitch
systemctl status openvswitch
openvswitch.service - Open vSwitch
 Loaded: loaded (/usr/lib/systemd/system/openvswitch.service; enabled)
 Active: active (exited) since Fri 2014-12-12 17:20:13 PST; 3s ago
 Process: 3053 ExecStart=/bin/true (code=exited, status=0/SUCCESS)
 Main PID: 3053 (code=exited, status=0/SUCCESS)
Dec 12 17:20:13 ovs-server.cisco.com systemd[1]: Started Open vSwitch.

Next, we can create an OVS bridge (you may wish to use a different
bridge name):

ovs-vsctl add-br br0
ovs-vsctl show
34aa83d7-b918-4e49-bcec-1b521acd1962
 Bridge "br0"
 Port "br0"
 Interface "br0"
 type: internal
 ovs_version: "2.3.90"

Next, we configure a tunnel interface on our new bridge as follows:

ovs-vsctl add-port br0 br0_vxlan0 -- \
 set Interface br0_vxlan0 type=vxlan \
 options:remote_ip=flow options:key=flow options:dst_port=8472
ovs-vsctl show
34aa83d7-b918-4e49-bcec-1b521acd1962
 Bridge "br0"
 Port "br0_vxlan0"
 Interface "br0_vxlan0"
 type: vxlan
 options: {dst_port="8472", key=flow, remote_ip=flow}
 Port "br0"
 Interface "br0"
 type: internal
 ovs_version: "2.3.90"

Open vSwitch is now configured and ready.

Agent Configuration

Before enabling the agent, we’ll need to edit its configuration file,
which is located at “/etc/opflex-agent-ovs/opflex-agent-ovs.conf”.

First, we’ll configure the Opflex protocol parameters. If you’re using
an ACI fabric, you’ll need the OpFlex domain from the ACI
configuration, which is the name of the VMM domain you mapped to the
interface for this hypervisor. Set the “domain” field to this
value. Next, set the “name” field to a hostname or other unique
identifier for the VM host. Finally, set the “peers” list to contain
the fixed static anycast peer address of 10.0.0.30 and port 8009. Here
is an example of a completed section (bold text shows areas you’ll
need to modify):

"opflex": {
 // The globally unique policy domain for this agent.
 "domain": "[CHANGE ME]",

 // The unique name in the policy domain for this agent.
 "name": "[CHANGE ME]",

 // a list of peers to connect to, by hostname and port. One
 // peer, or an anycast pseudo-peer, is sufficient to bootstrap
 // the connection without needing an exhaustive list of all
 // peers.
 "peers": [
 {"hostname": "10.0.0.30", "port": 8009}
],

 "ssl": {
 // SSL mode. Possible values:
 // disabled: communicate without encryption
 // encrypted: encrypt but do not verify peers
 // secure: encrypt and verify peer certificates
 "mode": "encrypted",

 // The path to a directory containing trusted certificate
 // authority public certificates, or a file containing a
 // specific CA certificate.
 "ca-store": "/etc/ssl/certs/"
 }
},

Next, configure the appropriate policy renderer for the ACI
fabric. You’ll want to use a stitched-mode renderer. You’ll need to
configure the bridge name and the uplink interface name. The remote
anycast IP address will need to be obtained from the ACI configuration
console, but unless the configuration is unusual, it will be
10.0.0.32:

// Renderers enforce policy obtained via OpFlex.
"renderers": {
 // Stitched-mode renderer for interoperating with a
 // hardware fabric such as ACI
 "stitched-mode": {
 "ovs-bridge-name": "br0",

 // Set encapsulation type. Must set either vxlan or vlan.
 "encap": {
 // Encapsulate traffic with VXLAN.
 "vxlan" : {
 // The name of the tunnel interface in OVS
 "encap-iface": "br0_vxlan0",

 // The name of the interface whose IP should be used
 // as the source IP in encapsulated traffic.
 "uplink-iface": "eth0.4093",

 // The vlan tag, if any, used on the uplink interface.
 // Set to zero or omit if the uplink is untagged.
 "uplink-vlan": 4093,

 // The IP address used for the destination IP in
 // the encapsulated traffic. This should be an
 // anycast IP address understood by the upstream
 // stitched-mode fabric.
 "remote-ip": "10.0.0.32"
 }
 },
 // Configure forwarding policy
 "forwarding": {
 // Configure the virtual distributed router
 "virtual-router": {
 // Enable virtual distributed router. Set to true
 // to enable or false to disable. Default true.
 "enabled": true,

 // Override MAC address for virtual router.
 // Default is "00:22:bd:f8:19:ff"
 "mac": "00:22:bd:f8:19:ff",

 // Configure IPv6-related settings for the virtual
 // router
 "ipv6" : {
 // Send router advertisement messages in
 // response to router solicitation requests as
 // well as unsolicited advertisements.
 "router-advertisement": true
 }
 },

 // Configure virtual distributed DHCP server
 "virtual-dhcp": {
 // Enable virtual distributed DHCP server. Set to
 // true to enable or false to disable. Default
 // true.
 "enabled": true,

 // Override MAC address for virtual dhcp server.
 // Default is "00:22:bd:f8:19:ff"
 "mac": "00:22:bd:f8:19:ff"
 }
 },

 // Location to store cached IDs for managing flow state
 "flowid-cache-dir": "DEFAULT_FLOWID_CACHE_DIR"
 }
}

Finally, enable the agent service:

systemctl enable agent-ovs
ln -s '/usr/lib/systemd/system/agent-ovs.service' '/etc/systemd/system/multi-user.target.wants/agent-ovs.service'
systemctl start agent-ovs
systemctl status agent-ovs
agent-ovs.service - Opflex OVS Agent
 Loaded: loaded (/usr/lib/systemd/system/agent-ovs.service; enabled)
 Active: active (running) since Mon 2014-12-15 10:03:42 PST; 5min ago
 Main PID: 6062 (agent_ovs)
 CGroup: /system.slice/agent-ovs.service
 └─6062 /usr/bin/agent_ovs

The agent is now running and ready to enforce policy. You can add
endpoints to the local VM hosts using the OpFlex Group-based policy
plugin from OpenStack, or manually.

TSDR Installation Guide

This document is for the user to install the artifacts that are needed
for using Time Series Data Repository (TSDR) functionality in the ODL
Controller by enabling either an HSQLDB, HBase, or Cassandra Data Store.

Overview

The Time Series Data Repository (TSDR) project in OpenDaylight (ODL) creates a framework for collecting, storing, querying, and maintaining time series data in the OpenDaylight SDN controller. Please refer to the User Guide for the detailed description of the functionality of the project and how to use the corresponding features provided in TSDR.

Pre Requisites for Installing TSDR

The software requirements for TSDR HBase Data Store are as follows:

	In the case when the user chooses HBase or Cassandra data store, besides the software that ODL requires, we also require HBase and Cassandra database running in single node deployment scenario.

No additional software is required for the HSQLDB Data Stores.

Preparing for Installation

	When using HBase data store, download HBase from the following website:

http://archive.apache.org/dist/hbase/hbase-0.94.15/

	When using Cassandra data store, download Cassandra from the following website:

http://www.eu.apache.org/dist/cassandra/2.1.10/

	No additional steps are required to install the TSDR HSQL Data Store.

Installing TSDR Data Stores

Installing HSQLDB Data Store

Once OpenDaylight distribution is up, from karaf console install the HSQLDB data store using the following command:

feature:install odl-tsdr-hsqldb-all

This will install hsqldb related dependency features (and can take sometime) as well as OpenFlow statistics collector before returning control to the console.

Installing HBase Data Store

Installing TSDR HBase Data Store contains two steps:

	Installing HBase server, and

	Installing TSDR HBase Data Store features from ODL Karaf console.

In this release, we only support HBase single node running together on the same machine as OpenDaylight. Therefore, follow the steps to download and install HBase server onto the same machine as where OpenDaylight is running:

	Create a folder in Linux operating system for the HBase server. For example, create an hbase directory under /usr/lib:

mkdir /usr/lib/hbase

	Unzip the downloaded HBase server tar file.

Run the following command to unzip the installation package:

tar xvf <hbase-installer-name> /usr/lib/hbase

	Make proper changes in hbase-site.xml

	Under <hbase-install-directory>/conf/, there is a hbase-site.xml. Although it is not recommended, an experienced user with HBase can modify the data directory for hbase server to store the data.

	Modify the value of the property with name “hbase.rootdir” in the file to reflect the desired file directory for storing hbase data.

The following is an example of the file:

<configuration>
 <property>
 <name>hbase.rootdir</name>
 <value>file:///usr/lib/hbase/data</value>
 </property>
 <property>
 <name>hbase.zookeeper.property.dataDir</name>
 <value>/usr/lib/hbase/zookeeper</value>
 </property>
</configuration>

	start hbase server:

cd <hbase-installation-directory>
./start-hbase.sh

	start hbase shell:

cd <hbase-insatllation-directory>
./hbase shell

	start Karaf console

	install hbase data store feature from Karaf console:

feature:install odl-tsdr-hbase

Installing Cassandra Data Store

Installing TSDR Cassandra Data Store contains two steps:

	Installing Cassandra server, and

	Installing TSDR Cassandra Data Store features from ODL Karaf console.

In this release, we only support Cassadra single node running together on the same machine as OpenDaylight. Therefore, follow these steps to download and install Cassandra server onto the same machine as where OpenDaylight is running:

	Install Cassandra (latest stable version) by downloading the zip file and untar the tar ball to cassandra/ directory on the testing machine:

mkdir cassandra
wget http://www.eu.apache.org/dist/cassandra/2.1.10/apache-cassandra-2.1.10-bin.tar.gz[2.1.10 is current stable version, it can vary]
mv apache-cassandra-2.1.10-bin.tar.gz cassandra/
cd cassandra
tar -xvzf apache-cassandra-2.1.10-bin.tar.gz

	Start Cassandra from cassandra directory by running:

./apache-cassandra-2.1.10/bin/cassandra

	Start cassandra shell by running:

./apache-cassandra-2.1.10/bin/cqlsh

	Start Karaf according to the instructions above.

	Install Cassandra data store feature from Karaf console:

feature:install odl-tsdr-cassandra

Verifying your Installation

After the TSDR data store is installed, no matter whether it is HBase data store, Cassandra data store, or HSQLDB data store, the user can verify the installation with the following steps.

	Verify if the following two TSDR commands are available from Karaf console:

tsdr:list
tsdr:purgeAll

	Verify if OpenFlow statistics data can be received successfully:

	Run “feature:install odl-tsdr-openflow-statistics-collector” from Karaf.

	Run mininet to connect to ODL controller. For example, use the following command to start a three node topology:

mn --topo single,3 --controller 'remote,ip=172.17.252.210,port=6653' --switch ovsk,protocols=OpenFlow13

	From Karaf console, the user should be able to retrieve the statistics data of OpenFlow statistics data from the console:

tsdr:list FLOWSTATS

Troubleshooting

Check the ../data/log/karaf.log for any exception related to TSDR features.

Post Installation Configuration

Post Installation Configuration for HSQLDB Data Store

The feature installation takes care of automated configuration of the datasource by installing a file in <install folder>/etc named org.ops4j.datasource-metric.cfg. This contains the default location of <install folder>/tsdr where the HSQLDB datastore files are stored. If you want to change the default location of the datastore files to some other location update the last portion of the url property in the org.ops4j.datasource-metric.cfg and then restart the Karaf container.

Post Installation Configuration for HBase Data Store

Please refer to HBase Data Store User Guide.

Post Installation Configuration for Cassandra Data Store

There is no post configuration for TSDR Cassandra data store.

Upgrading From a Previous Release

The HBase data store was supported in the previous release as well as in this release. However, we do not support data store upgrade for HBase data store.
The user needs to reinstall TSDR and start to collect data in TSDR HBase datastore after the installation.

HSQLDB and Cassandra are new data stores introduced in this release. Therefore, upgrading from previous release does not apply in these two data store scenarios.

Uninstalling TSDR Data Stores

To uninstall TSDR HSQLDB data store

To uninstall the TSDR functionality with the default store, you need to do the following from karaf console:

feature:uninstall odl-tsdr-hsqldb-all
feature:uninstall odl-tsdr-core
feature:uninstall odl-tsdr-hsqldb
feature:uninstall odl-tsdr-openflow-statistics-collector

It is recommended to restart the Karaf container after the uninstallation of the TSDR functionality with the default store.

To uninstall TSDR HBase Data Store

To uninstall the TSDR functionality with the HBase data store,

	Uninstall HBase data store related features from karaf console:

feature:uninstall odl-tsdr-hbase
feature:uninstall odl-tsdr-core

	stop hbase server:

cd <hbase-installation-directory>
./stop-hbase.sh

	remove the file directory that contains the HBase server installation:

rm -r <hbase-installation-directory>

It is recommended to restart the Karaf container after the uninstallation of the TSDR data store.

To uninstall TSDR Cassandra Data Store

To uninstall the TSDR functionality with the Cassandra store,

	uninstall cassandra data store related features following from karaf console:

feature:uninstall odl-tsdr-cassandra
feature:uninstall odl-tsdr-core

	stop cassandra database:

ps auwx | grep cassandra
sudo kill pid

	remove the cassandra installation files:

rm <cassandra-installation-directory>

It is recommended to restart the Karaf container after uninstallation of the TSDR data store.

ElasticSearch

Setting Up the environment

To setup and run the TSDR data store ElasticSearch feature, you need to have
an ElasticSearch node (or a cluster of such nodes) running. You can use a
customized ElasticSearch docker image for this purpose.

Your ElasticSearch (ES) setup must have the “Delete By Query Plugin” installed.
Without this, some of the ES functionality won’t work properly.

Creating a custom ElasticSearch docker image

(You can skip this section if you already have an instance of ElasticSearch running)

Run the following set of commands:

cat << EOF > Dockerfile
FROM elasticsearch:2
RUN /usr/share/elasticsearch/bin/plugin install --batch delete-by-query
EOF

To build the image, run the following command in the directory where the
Dockerfile was created:

docker build . -t elasticsearch-dd

You can check whether the image was properly created by running:

docker images

This should print all your container images including the elasticsearch-dd.

Now we can create and run a container from our image by typing:

docker run -d -p 9200:9200 -p 9300:9300 --name elasticsearch-dd elasticsearch-dd

To see whether the container is running, run the following command:

docker ps

The output should include a row with elasticsearch-dd in the NAMES column.
To check the std out of this container use

docker logs elasticsearch-dd

Running the ElasticSearch feature

Once the features have been installed, you can change some of its properties. For
example, to setup the URL where your ElasticSearch installation runs,
change the serverUrl parameter in tsdr/persistence-elasticsearch/src/main/resources/configuration/initial/:

tsdr-persistence-elasticsearch.properties

All the data are stored into the TSDR index under a type. The metric data are
stored under the metric type and the log data are store under the log type.
You can modify the files in tsdr/persistence-elasticsearch/src/main/resources/configuration/initial/:

tsdr-persistence-elasticsearch_metric_mapping.json
tsdr-persistence-elasticsearch_log_mapping.json

to change or tune the mapping for those types. The changes in those files will be promoted after
the feature is reloaded or the distribution is restarted.

Testing the setup

We can now test whether the setup is correct by downloading and installing mininet,
which we use to send some data to the running ElasticSearch instance.

Installing the necessary features:

start OpenDaylight
feature:install odl-restconf odl-l2switch-switch odl-tsdr-core odl-tsdr-openflow-statistics-collector
feature:install odl-tsdr-elasticsearch

We can check whether the distribution is now listening on port 6653:

netstat -an | grep 6653

Run mininet

sudo mn --topo single,3 --controller 'remote,ip=distro_ip,port=6653' --switch ovsk,protocols=OpenFlow13

where the distro_ip is the IP address of the machine where the OpenDaylight distribution
is running. This command will create three hosts connected to one OpenFlow capable
switch.

We can check if data was stored by ElasticSearch in TSDR by running the
following command:

tsdr:list FLOWTABLESTATS

The output should look similar to the following:

[NID=openflow:1][DC=FLOWTABLESTATS][MN=ActiveFlows][RK=Node:openflow:1,Table:50][TS=1473427383598][3]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,Table:50][TS=1473427383598][12]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketLookup][RK=Node:openflow:1,Table:50][TS=1473427383598][12]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=ActiveFlows][RK=Node:openflow:1,Table:80][TS=1473427383598][3]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,Table:80][TS=1473427383598][17]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,Table:246][TS=1473427383598][19]
...

Or you can query your ElasticSearch instance:

curl -XPOST "http://elasticseach_ip:9200/_search?pretty" -d'{ "from": 0, "size": 10000, "query": { "match_all": {} } }'

The elasticseach_ip is the IP address of the server where the ElasticSearch is running.

Web Activity Collector

The Web Activity Collector records the meaningful REST requests made through the
OpenDaylight RESTCONF interface.

How to test the RESTCONF Collector

	Install some other feature that has a RESTCONF interface, for example. “odl-tsdr-syslog-collector”

	Issue a RESTCONF command that uses either POST,PUT or DELETE.
For example, you could call the register-filter RPC of tsdr-syslog-collector.

	Look up data in TSDR database from Karaf.

tsdr:list RESTCONF

	You should see the request that you have sent, along with its information
(URL, HTTP method, requesting IP address and request body)

	Try to send a GET request, then check again, your request should not be
registered, because the collector does not register GET requests by default.

	Open the file: “etc/tsdr.restconf.collector.cfg”, and add GET to the list of
METHODS_TO_LOG, so that it becomes:

METHODS_TO_LOG=POST,PUT,DELETE,GET

	Try again to issue your GET request, and check if it was recorded this time,
it should be recorder.

	Try manipulating the other properties (PATHS_TO_LOG (which URLs do we want
to log from), REMOTE_ADDRESSES_TO_LOG (which requesting IP addresses do we
want to log from) and CONTENT_TO_LOG (what should be in the request’s body
in order to log it)), and see if the requests are getting logged.

	Try providing invalid properties (unknown methods for the METHODS_TO_LOG
parameter, or the same method repeated multiple times, and invalid regular
expressions for the other parameters), then check karaf’s log using
“log:display”. It should tell you that the value is invalid, and that it
will use the default value instead.

VTN Installation Guide

Overview

OpenDaylight Virtual Tenant Network (VTN) is an application that provides multi-tenant virtual network on an SDN controller.

Conventionally, huge investment in the network systems and operating expenses are needed because the network is configured as a silo for each department and system. Therefore various network appliances must be installed for each tenant and those boxes cannot be shared with others. It is a heavy work to design, implement and operate the entire complex network.

The uniqueness of VTN is a logical abstraction plane. This enables the complete separation of logical plane from physical plane. Users can design and deploy any desired network without knowing the physical network topology or bandwidth restrictions.

VTN allows the users to define the network with a look and feel of conventional L2/L3 network. Once the network is designed on VTN, it will automatically be mapped into underlying physical network, and then configured on the individual switch leverage SDN control protocol. The definition of logical plane makes it possible not only to hide the complexity of the underlying network but also to better manage network resources. It achieves reducing reconfiguration time of network services and minimizing network configuration errors. OpenDaylight Virtual Tenant Network (VTN) is an application that provides multi-tenant virtual network on an SDN controller. It provides API for creating a common virtual network irrespective of the physical network.

It is implemented as two major components

	VTN Manager

	VTN Coordinator

VTN Manager

An OpenDaylight Plugin that interacts with other modules to implement the components of the VTN model. It also provides a REST interface to configure VTN components in OpenDaylight. VTN Manager is implemented as one plugin to the OpenDaylight. This provides a REST interface to create/update/delete VTN components. The user command in VTN Coordinator is translated as REST API to VTN Manager by the OpenDaylight Driver component. In addition to the above mentioned role, it also provides an implementation to the OpenStack L2 Network Functions API.

VTN Coordinator

The VTN Coordinator is an external application that provides a REST interface for an user to use OpenDaylight VTN Virtualization. It interacts with VTN Manager plugin to implement the user configuration. It is also capable of multiple OpenDaylight orchestration. It realizes VTN provisioning in OpenDaylight instances. In the OpenDaylight architecture VTN Coordinator is part of the network application, orchestration and services layer. VTN Coordinator will use the REST interface exposed by the VTN Manger to realize the virtual network using OpenDaylight. It uses OpenDaylight APIs (REST) to construct the virtual network in OpenDaylight instances. It provides REST APIs for northbound VTN applications and supports virtual networks spanning across multiple OpenDaylight by coordinating across OpenDaylight.

Preparing for Installation

VTN Manager

Follow the instructions in Installing OpenDaylight.

VTN Coordinator

	Arrange a physical/virtual server with any one of the supported 64-bit OS environment.

	RHEL 7

	CentOS 7

	Fedora 20 / 21 / 22

	Install these packages:

yum install perl-Digest-SHA uuid libxslt libcurl unixODBC json-c bzip2
rpm -ivh http://yum.postgresql.org/9.3/redhat/rhel-6-x86_64/pgdg-redhat93-9.3-3.noarch.rpm
yum install postgresql93-libs postgresql93 postgresql93-server postgresql93-contrib postgresql93-odbc

Installing VTN

VTN Manager

Install Feature:

feature:install odl-vtn-manager-neutron odl-vtn-manager-rest

Note

The above command will install all features of VTN Manager.
You can install only REST or Neutron also.

VTN Coordinator

	To get the Nitrogen distribution for VTN coordinator download the latest “tar.bz2” file from the below link:

https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/vtn/distribution.vtn-coordinator/6.5.0-Nitrogen/

	Run the below command to extract VTN Coordinator from the tar.bz2 file:

tar –C/ -jxvf distribution.vtn-coordinator-6.5.0-Nitrogen-bin.tar.bz2

This will install VTN Coordinator to /usr/local/vtn directory.
The name of the tar.bz2 file name varies depending on the version. Please give the same tar.bz2 file name which is there in your directory.

	Configuring database for VTN Coordinator:

/usr/local/vtn/sbin/db_setup

	To start the Coordinator:

/usr/local/vtn/bin/vtn_start

Using VTN REST API:

Get the version of VTN REST API using the below command, and make sure the setup is working:

curl --user admin:adminpass -H 'content-type: application/json' -X GET http://<VTN_COORDINATOR_IP_ADDRESS>:8083/vtn-webapi/api_version.json

The response should be like this, but version might differ:

{"api_version":{"version":"V1.2"}}

Verifying your Installation

VTN Manager

	In the karaf prompt, type the below command to ensure that vtn packages are installed:

feature:list | grep vtn

	Run any VTN Manager REST API:

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns

VTN Coordinator

ps –ef | grep unc will list all the vtn apps
Run any REST API for VTN Coordinator version

Uninstalling VTN

VTN Manager

feature:uninstall odl-vtnmanager-all

VTN Coordinator

	Stop VTN:

/usr/local/vtn/bin/vtn_stop

	Remove the usr/local/vtn folder

Common OpenDaylight Features

	OpenDaylight User Interface (DLUX)

	Setting Up Clustering

	Persistence and Backup

	Running XSQL Console Commands and Queries

	OpenDaylight Version

OpenDaylight User Interface (DLUX)

This section introduces you to the OpenDaylight User Experience (DLUX) application.

Getting Started with DLUX

DLUX provides a number of different Karaf features, which you can enable and disable separately. They are:

	odl-dlux-core

	odl-dluxapps-nodes

	odl-dluxapps-topology

	odl-dluxapps-yangui

	odl-dluxapps-yangvisualizer

	odl-dluxapps-yangman

Logging In

To log in to DLUX, after installing the application:

	Open a browser and enter the login URL http://<your-karaf-ip>:8181/index.html in your browser (Chrome is recommended).

	Login to the application with your username and password credentials.

Note

OpenDaylight’s default credentials are admin for both the username and password.

Working with DLUX

After you login to DLUX, if you enable only odl-dlux-core feature, you will see only topology application available in the left pane.

Note

To make sure topology displays all the details, enable the odl-l2switch-switch feature in Karaf.

DLUX has other applications such as node, yang UI and those apps won’t show up, until you enable their features odl-dluxapps-nodes and odl-dluxapps-yangui respectively in the Karaf distribution.

[image: ../../_images/dlux-login.png]
DLUX Modules

Note

If you install your application in dlux, they will also show up on the left hand navigation after browser page refresh.

Viewing Network Statistics

The Nodes module on the left pane enables you to view the network statistics and port information for the switches in the network.

To use the Nodes module:

	Select Nodes on the left pane. The right pane displays atable that lists all the nodes, node connectors and the statistics.

	Enter a node ID in the Search Nodes tab to search by node connectors.

	Click on the Node Connector number to view details such as port ID, port name, number of ports per switch, MAC Address, and so on.

	Click Flows in the Statistics column to view Flow Table Statistics for the particular node like table ID, packet match, active flows and so on.

	Click Node Connectors to view Node Connector Statistics for the particular node ID.

Viewing Network Topology

The Topology tab displays a graphical representation of network topology created.

Note

DLUX does not allow for editing or adding topology information. The topology is generated and edited in other modules, e.g., the OpenFlow plugin. OpenDaylight stores this information in the MD-SAL datastore where DLUX can read and display it.

To view network topology:

	Select Topology on the left pane. You will view the graphical representation on the right pane. In the diagram blue boxes represent the switches, the black represents the hosts available, and lines represents how the switches and hosts are connected.

	Hover your mouse on hosts, links, or switches to view source and destination ports.

	Zoom in and zoom out using mouse scroll to verify topology for larger topologies.

[image: ../../_images/dlux-topology.png]
Topology Module

Interacting with the YANG-based MD-SAL datastore

The Yang UI module enables you to interact with the YANG-based MD-SAL datastore. For more information about YANG and how it interacts with the MD-SAL datastore, see the Controller and YANG Tools section of the OpenDaylight Developer Guide.

[image: ../../_images/dlux-yang-ui-screen.png]
Yang UI

To use Yang UI:

	Select Yang UI on the left pane. The right pane is divided in two parts.

	The top part displays a tree of APIs, subAPIs, and buttons to call possible functions (GET, POST, PUT, and DELETE).

Note

Not every subAPI can call every function. For example, subAPIs in the operational store have GET functionality only.

Inputs can be filled from OpenDaylight when existing data from OpenDaylight is displayed or can be filled by user on the page and sent to OpenDaylight.

Buttons under the API tree are variable. It depends on subAPI specifications. Common buttons are:

	GET to get data from OpenDaylight,

	PUT and POST for sending data to OpenDaylight for saving

	DELETE for sending data to OpenDaylight for deleting.

You must specify the xpath for all these operations. This path is displayed in the same row before buttons and it may include text inputs for specific path element identifiers.

[image: ../../_images/dlux-yang-api-specification.png]
Yang API Specification

	The bottom part of the right pane displays inputs according to the chosen subAPI.

	Lists are handled as a special case. For example, a device can store multiple flows. In this case “flow” is name of the list and every list element is identified by a unique key value. Elements of a list can, in turn, contain other lists.

	In Yang UI, each list element is rendered with the name of the list it belongs to, its key, its value, and a button for removing it from the list.

[image: ../../_images/dlux-yang-sub-api-screen.png]
Yang UI API Specification

	After filling in the relevant inputs, click the Show Preview button under the API tree to display request that will be sent to OpenDaylight.
A pane is displayed on the right side with text of request when some input is filled.

Displaying Topology on the Yang UI

To display topology:

	Select subAPI network-topology <topology revision number> == > operational == > network-topology.

	Get data from OpenDaylight by clicking on the “GET” button.

	Click Display Topology.

[image: ../../_images/dlux-yang-topology.png]
DLUX Yang Topology

Configuring List Elements on the Yang UI

Lists in Yang UI are displayed as trees. To expand or collapse a list, click the arrow before name of the list. To configure list elements in Yang UI:

	To add a new list element with empty inputs use the plus icon-button + that is provided after list name.

	To remove several list elements, use the X button that is provided after every list element.

[image: ../../_images/dlux-yang-list-elements.png]
DLUX List Elements

	In the YANG-based data store all elements of a list must have a unique key. If you try to assign two or more elements the same key, a warning icon ! is displayed near their name buttons.

[image: ../../_images/dlux-yang-list-warning.png]
DLUX List Warnings

	When the list contains at least one list element, after the + icon, there are buttons to select each individual list element. You can choose one of them by clicking on it. In addition, to the right of the list name, there is a button which will display a vertically scrollable pane with all the list elements.

[image: ../../_images/dlux-yang-list-button1.png]
DLUX List Button

Setting Up Clustering

Clustering Overview

Clustering is a mechanism that enables multiple processes and programs to work
together as one entity. For example, when you search for something on
google.com, it may seem like your search request is processed by only one web
server. In reality, your search request is processed by may web servers
connected in a cluster. Similarly, you can have multiple instances of
OpenDaylight working together as one entity.

Advantages of clustering are:

	Scaling: If you have multiple instances of OpenDaylight running, you can
potentially do more work and store more data than you could with only one
instance. You can also break up your data into smaller chunks (shards) and
either distribute that data across the cluster or perform certain operations
on certain members of the cluster.

	High Availability: If you have multiple instances of OpenDaylight running and
one of them crashes, you will still have the other instances working and
available.

	Data Persistence: You will not lose any data stored in OpenDaylight after a
manual restart or a crash.

The following sections describe how to set up clustering on both individual and
multiple OpenDaylight instances.

Multiple Node Clustering

The following sections describe how to set up multiple node clusters in OpenDaylight.

Deployment Considerations

To implement clustering, the deployment considerations are as follows:

	To set up a cluster with multiple nodes, we recommend that you use a minimum
of three machines. You can set up a cluster with just two nodes. However, if
one of the two nodes fail, the cluster will not be operational.

Note

This is because clustering in OpenDaylight requires a majority of the
nodes to be up and one node cannot be a majority of two nodes.

	Every device that belongs to a cluster needs to have an identifier.
OpenDaylight uses the node’s role for this purpose. After you define the
first node’s role as member-1 in the akka.conf file, OpenDaylight uses
member-1 to identify that node.

	Data shards are used to contain all or a certain segment of a OpenDaylight’s
MD-SAL datastore. For example, one shard can contain all the inventory data
while another shard contains all of the topology data.

If you do not specify a module in the modules.conf file and do not specify
a shard in module-shards.conf, then (by default) all the data is placed in
the default shard (which must also be defined in module-shards.conf file).
Each shard has replicas configured. You can specify the details of where the
replicas reside in module-shards.conf file.

	If you have a three node cluster and would like to be able to tolerate any
single node crashing, a replica of every defined data shard must be running
on all three cluster nodes.

Note

This is because OpenDaylight’s clustering implementation requires a
majority of the defined shard replicas to be running in order to
function. If you define data shard replicas on two of the cluster nodes
and one of those nodes goes down, the corresponding data shards will not
function.

	If you have a three node cluster and have defined replicas for a data shard
on each of those nodes, that shard will still function even if only two of
the cluster nodes are running. Note that if one of those remaining two nodes
goes down, the shard will not be operational.

	It is recommended that you have multiple seed nodes configured. After a
cluster member is started, it sends a message to all of its seed nodes.
The cluster member then sends a join command to the first seed node that
responds. If none of its seed nodes reply, the cluster member repeats this
process until it successfully establishes a connection or it is shut down.

	After a node is unreachable, it remains down for configurable period of time
(10 seconds, by default). Once a node goes down, you need to restart it so
that it can rejoin the cluster. Once a restarted node joins a cluster, it
will synchronize with the lead node automatically.

Clustering Scripts

OpenDaylight includes some scripts to help with the clustering configuration.

Note

Scripts are stored in the OpenDaylight distribution/bin folder, and
maintained in the distribution project
repository [https://git.opendaylight.org/gerrit/p/integration/distribution]
in the folder distribution-karaf/src/main/assembly/bin/.

Configure Cluster Script

This script is used to configure the cluster parameters (e.g. akka.conf,
module-shards.conf) on a member of the controller cluster. The user should
restart the node to apply the changes.

Note

The script can be used at any time, even before the controller is started
for the first time.

Usage:

bin/configure_cluster.sh <index> <seed_nodes_list>

	index: Integer within 1..N, where N is the number of seed nodes. This indicates
which controller node (1..N) is configured by the script.

	seed_nodes_list: List of seed nodes (IP address), separated by comma or space.

The IP address at the provided index should belong to the member executing
the script. When running this script on multiple seed nodes, keep the
seed_node_list the same, and vary the index from 1 through N.

Optionally, shards can be configured in a more granular way by modifying the
file “custom_shard_configs.txt” in the same folder as this tool. Please see
that file for more details.

Example:

bin/configure_cluster.sh 2 192.168.0.1 192.168.0.2 192.168.0.3

The above command will configure the member 2 (IP address 192.168.0.2) of a
cluster made of 192.168.0.1 192.168.0.2 192.168.0.3.

Setting Up a Multiple Node Cluster

To run OpenDaylight in a three node cluster, perform the following:

First, determine the three machines that will make up the cluster. After that,
do the following on each machine:

	Copy the OpenDaylight distribution zip file to the machine.

	Unzip the distribution.

	Open the following .conf files:

	configuration/initial/akka.conf

	configuration/initial/module-shards.conf

	In each configuration file, make the following changes:

Find every instance of the following lines and replace _127.0.0.1_ with the
hostname or IP address of the machine on which this file resides and
OpenDaylight will run:

netty.tcp {
 hostname = "127.0.0.1"

Note

The value you need to specify will be different for each node in the
cluster.

	Find the following lines and replace _127.0.0.1_ with the hostname or IP
address of any of the machines that will be part of the cluster:

cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-data@${IP_OF_MEMBER1}:2550",
 <url-to-cluster-member-2>,
 <url-to-cluster-member-3>]

	Find the following section and specify the role for each member node. Here
we assign the first node with the member-1 role, the second node with the
member-2 role, and the third node with the member-3 role:

roles = [
 "member-1"
]

Note

This step should use a different role on each node.

	Open the configuration/initial/module-shards.conf file and update the
replicas so that each shard is replicated to all three nodes:

replicas = [
 "member-1",
 "member-2",
 "member-3"
]

For reference, view a sample config files <<_sample_config_files,below>>.

	Move into the +<karaf-distribution-directory>/bin+ directory.

	Run the following command:

JAVA_MAX_MEM=4G JAVA_MAX_PERM_MEM=512m ./karaf

	Enable clustering by running the following command at the Karaf command line:

feature:install odl-mdsal-clustering

OpenDaylight should now be running in a three node cluster. You can use any of
the three member nodes to access the data residing in the datastore.

Sample Config Files

Sample akka.conf file:

odl-cluster-data {
 bounded-mailbox {
 mailbox-type = "org.opendaylight.controller.cluster.common.actor.MeteredBoundedMailbox"
 mailbox-capacity = 1000
 mailbox-push-timeout-time = 100ms
 }

 metric-capture-enabled = true

 akka {
 loglevel = "DEBUG"
 loggers = ["akka.event.slf4j.Slf4jLogger"]

 actor {

 provider = "akka.cluster.ClusterActorRefProvider"
 serializers {
 java = "akka.serialization.JavaSerializer"
 proto = "akka.remote.serialization.ProtobufSerializer"
 }

 serialization-bindings {
 "com.google.protobuf.Message" = proto

 }
 }
 remote {
 log-remote-lifecycle-events = off
 netty.tcp {
 hostname = "10.194.189.96"
 port = 2550
 maximum-frame-size = 419430400
 send-buffer-size = 52428800
 receive-buffer-size = 52428800
 }
 }

 cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-data@10.194.189.96:2550",
 "akka.tcp://opendaylight-cluster-data@10.194.189.98:2550",
 "akka.tcp://opendaylight-cluster-data@10.194.189.101:2550"]

 auto-down-unreachable-after = 10s

 roles = [
 "member-2"
]

 }
 }
}

odl-cluster-rpc {
 bounded-mailbox {
 mailbox-type = "org.opendaylight.controller.cluster.common.actor.MeteredBoundedMailbox"
 mailbox-capacity = 1000
 mailbox-push-timeout-time = 100ms
 }

 metric-capture-enabled = true

 akka {
 loglevel = "INFO"
 loggers = ["akka.event.slf4j.Slf4jLogger"]

 actor {
 provider = "akka.cluster.ClusterActorRefProvider"

 }
 remote {
 log-remote-lifecycle-events = off
 netty.tcp {
 hostname = "10.194.189.96"
 port = 2551
 }
 }

 cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-rpc@10.194.189.96:2551"]

 auto-down-unreachable-after = 10s
 }
 }
}

Sample module-shards.conf file:

module-shards = [
 {
 name = "default"
 shards = [
 {
 name="default"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "topology"
 shards = [
 {
 name="topology"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "inventory"
 shards = [
 {
 name="inventory"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "toaster"
 shards = [
 {
 name="toaster"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 }
]

Cluster Monitoring

OpenDaylight exposes shard information via MBeans, which can be explored with
JConsole, VisualVM, or other JMX clients, or exposed via a REST API using
Jolokia [https://jolokia.org/features-nb.html], provided by the
odl-jolokia Karaf feature. This is convenient, due to a significant focus
on REST in OpenDaylight.

The basic URI that lists a schema of all available MBeans, but not their
content itself is:

GET /jolokia/list

To read the information about the shards local to the queried OpenDaylight
instance use the following REST calls. For the config datastore:

GET /jolokia/read/org.opendaylight.controller:type=DistributedConfigDatastore,Category=ShardManager,name=shard-manager-config

For the operational datastore:

GET /jolokia/read/org.opendaylight.controller:type=DistributedOperationalDatastore,Category=ShardManager,name=shard-manager-operational

The output contains information on shards present on the node:

{
 "request": {
 "mbean": "org.opendaylight.controller:Category=ShardManager,name=shard-manager-operational,type=DistributedOperationalDatastore",
 "type": "read"
 },
 "value": {
 "LocalShards": [
 "member-1-shard-default-operational",
 "member-1-shard-entity-ownership-operational",
 "member-1-shard-topology-operational",
 "member-1-shard-inventory-operational",
 "member-1-shard-toaster-operational"
],
 "SyncStatus": true,
 "MemberName": "member-1"
 },
 "timestamp": 1483738005,
 "status": 200
}

The exact names from the “LocalShards” lists are needed for further
exploration, as they will be used as part of the URI to look up detailed info
on a particular shard. An example output for the
member-1-shard-default-operational looks like this:

{
 "request": {
 "mbean": "org.opendaylight.controller:Category=Shards,name=member-1-shard-default-operational,type=DistributedOperationalDatastore",
 "type": "read"
 },
 "value": {
 "ReadWriteTransactionCount": 0,
 "SnapshotIndex": 4,
 "InMemoryJournalLogSize": 1,
 "ReplicatedToAllIndex": 4,
 "Leader": "member-1-shard-default-operational",
 "LastIndex": 5,
 "RaftState": "Leader",
 "LastCommittedTransactionTime": "2017-01-06 13:19:00.135",
 "LastApplied": 5,
 "LastLeadershipChangeTime": "2017-01-06 13:18:37.605",
 "LastLogIndex": 5,
 "PeerAddresses": "member-3-shard-default-operational: akka.tcp://opendaylight-cluster-data@192.168.16.3:2550/user/shardmanager-operational/member-3-shard-default-operational, member-2-shard-default-operational: akka.tcp://opendaylight-cluster-data@192.168.16.2:2550/user/shardmanager-operational/member-2-shard-default-operational",
 "WriteOnlyTransactionCount": 0,
 "FollowerInitialSyncStatus": false,
 "FollowerInfo": [
 {
 "timeSinceLastActivity": "00:00:00.320",
 "active": true,
 "matchIndex": 5,
 "voting": true,
 "id": "member-3-shard-default-operational",
 "nextIndex": 6
 },
 {
 "timeSinceLastActivity": "00:00:00.320",
 "active": true,
 "matchIndex": 5,
 "voting": true,
 "id": "member-2-shard-default-operational",
 "nextIndex": 6
 }
],
 "FailedReadTransactionsCount": 0,
 "StatRetrievalTime": "810.5 μs",
 "Voting": true,
 "CurrentTerm": 1,
 "LastTerm": 1,
 "FailedTransactionsCount": 0,
 "PendingTxCommitQueueSize": 0,
 "VotedFor": "member-1-shard-default-operational",
 "SnapshotCaptureInitiated": false,
 "CommittedTransactionsCount": 6,
 "TxCohortCacheSize": 0,
 "PeerVotingStates": "member-3-shard-default-operational: true, member-2-shard-default-operational: true",
 "LastLogTerm": 1,
 "StatRetrievalError": null,
 "CommitIndex": 5,
 "SnapshotTerm": 1,
 "AbortTransactionsCount": 0,
 "ReadOnlyTransactionCount": 0,
 "ShardName": "member-1-shard-default-operational",
 "LeadershipChangeCount": 1,
 "InMemoryJournalDataSize": 450
 },
 "timestamp": 1483740350,
 "status": 200
}

The output helps identifying shard state (leader/follower, voting/non-voting),
peers, follower details if the shard is a leader, and other
statistics/counters.

The Integration team is maintaining a Python based tool [https://github.com/opendaylight/integration-test/tree/master/tools/clustering/cluster-monitor],
that takes advantage of the above MBeans exposed via Jolokia, and the
systemmetrics project offers a DLUX based UI to display the same
information.

Geo-distributed Active/Backup Setup

An OpenDaylight cluster works best when the latency between the nodes is very
small, which practically means they should be in the same datacenter. It is
however desirable to have the possibility to fail over to a different
datacenter, in case all nodes become unreachable. To achieve that, the cluster
can be expanded with nodes in a different datacenter, but in a way that
doesn’t affect latency of the primary nodes. To do that, shards in the backup
nodes must be in “non-voting” state.

The API to manipulate voting states on shards is defined as RPCs in the
cluster-admin.yang [https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/md-sal/sal-cluster-admin-api/src/main/yang/cluster-admin.yang]
file in the controller project, which is well documented. A summary is
provided below.

Note

Unless otherwise indicated, the below POST requests are to be sent to any
single cluster node.

To create an active/backup setup with a 6 node cluster (3 active and 3 backup
nodes in two locations) there is an RPC to set voting states of all shards on
a list of nodes to a given state:

POST /restconf/operations/cluster-admin:change-member-voting-states-for-all-shards

This RPC needs the list of nodes and the desired voting state as input. For
creating the backup nodes, this example input can be used:

{
 "input": {
 "member-voting-state": [
 {
 "member-name": "member-4",
 "voting": false
 },
 {
 "member-name": "member-5",
 "voting": false
 },
 {
 "member-name": "member-6",
 "voting": false
 }
]
 }
}

When an active/backup deployment already exists, with shards on the backup
nodes in non-voting state, all that is needed for a fail-over from the active
“sub-cluster” to backup “sub-cluster” is to flip the voting state of each
shard (on each node, active AND backup). That can be easily achieved with the
following RPC call (no parameters needed):

POST /restconf/operations/cluster-admin:flip-member-voting-states-for-all-shards

If it’s an unplanned outage where the primary voting nodes are down, the
“flip” RPC must be sent to a backup non-voting node. In this case there are no
shard leaders to carry out the voting changes. However there is a special case
whereby if the node that receives the RPC is non-voting and is to be changed
to voting and there’s no leader, it will apply the voting changes locally and
attempt to become the leader. If successful, it persists the voting changes
and replicates them to the remaining nodes.

When the primary site is fixed and you want to fail back to it, care must be
taken when bringing the site back up. Because it was down when the voting
states were flipped on the secondary, its persisted database won’t contain
those changes. If brought back up in that state, the nodes will think they’re
still voting. If the nodes have connectivity to the secondary site, they
should follow the leader in the secondary site and sync with it. However if
this does not happen then the primary site may elect its own leader thereby
partitioning the 2 clusters, which can lead to undesirable results. Therefore
it is recommended to either clean the databases (i.e., journal and
snapshots directory) on the primary nodes before bringing them back up or
restore them from a recent backup of the secondary site (see section
Backing Up and Restoring the Datastore).

If is also possible to gracefully remove a node from a cluster, with the
following RPC:

POST /restconf/operations/cluster-admin:remove-all-shard-replicas

and example input:

{
 "input": {
 "member-name": "member-1"
 }
}

or just one particular shard:

POST /restconf/operations/cluster-admin:remove-shard-replica

with example input:

{
 "input": {
 "shard-name": "default",
 "member-name": "member-2",
 "data-store-type": "config"
 }
}

Now that a (potentially dead/unrecoverable) node was removed, another one can
be added at runtime, without changing the configuration files of the healthy
nodes (requiring reboot):

POST /restconf/operations/cluster-admin:add-replicas-for-all-shards

No input required, but this RPC needs to be sent to the new node, to instruct
it to replicate all shards from the cluster.

Note

While the cluster admin API allows adding and removing shards dynamically,
the module-shard.conf and modules.conf files are still used on
startup to define the initial configuration of shards. Modifications from
the use of the API are not stored to those static files, but to the journal.

Extra Configuration Options

	Name

	Type

	Default

	Description

	max-shard-data-change-executor-queue-size

	uint32 (1..max)

	1000

	The maximum queue size for each shard’s data store data change notification executor.

	max-shard-data-change-executor-pool-size

	uint32 (1..max)

	20

	The maximum thread pool size for each shard’s data store data change notification executor.

	max-shard-data-change-listener-queue-size

	uint32 (1..max)

	1000

	The maximum queue size for each shard’s data store data change listener.

	max-shard-data-store-executor-queue-size

	uint32 (1..max)

	5000

	The maximum queue size for each shard’s data store executor.

	shard-transaction-idle-timeout-in-minutes

	uint32 (1..max)

	10

	The maximum amount of time a shard transaction can be idle without receiving any messages before it self-destructs.

	shard-snapshot-batch-count

	uint32 (1..max)

	20000

	The minimum number of entries to be present in the in-memory journal log before a snapshot is to be taken.

	shard-snapshot-data-threshold-percentage

	uint8 (1..100)

	12

	The percentage of Runtime.totalMemory() used by the in-memory journal log before a snapshot is to be taken

	shard-hearbeat-interval-in-millis

	uint16 (100..max)

	500

	The interval at which a shard will send a heart beat message to its remote shard.

	operation-timeout-in-seconds

	uint16 (5..max)

	5

	The maximum amount of time for akka operations (remote or local) to complete before failing.

	shard-journal-recovery-log-batch-size

	uint32 (1..max)

	5000

	The maximum number of journal log entries to batch on recovery for a shard before committing to the data store.

	shard-transaction-commit-timeout-in-seconds

	uint32 (1..max)

	30

	The maximum amount of time a shard transaction three-phase commit can be idle without receiving the next messages before it aborts the transaction

	shard-transaction-commit-queue-capacity

	uint32 (1..max)

	20000

	The maximum allowed capacity for each shard’s transaction commit queue.

	shard-initialization-timeout-in-seconds

	uint32 (1..max)

	300

	The maximum amount of time to wait for a shard to initialize from persistence on startup before failing an operation (eg transaction create and change listener registration).

	shard-leader-election-timeout-in-seconds

	uint32 (1..max)

	30

	The maximum amount of time to wait for a shard to elect a leader before failing an operation (eg transaction create).

	enable-metric-capture

	boolean

	false

	Enable or disable metric capture.

	bounded-mailbox-capacity

	uint32 (1..max)

	1000

	Max queue size that an actor’s mailbox can reach

	persistent

	boolean

	true

	Enable or disable data persistence

	shard-isolated-leader-check-interval-in-millis

	uint32 (1..max)

	5000

	the interval at which the leader of the shard will check if its majority followers are active and term itself as isolated

These configuration options are included in the etc/org.opendaylight.controller.cluster.datastore.cfg configuration file.

Persistence and Backup

Set Persistence Script

This script is used to enable or disable the config datastore persistence. The
default state is enabled but there are cases where persistence may not be
required or even desired. The user should restart the node to apply the changes.

Note

The script can be used at any time, even before the controller is started
for the first time.

Usage:

bin/set_persistence.sh <on/off>

Example:

bin/set_persistence.sh off

The above command will disable the config datastore persistence.

Backing Up and Restoring the Datastore

The same cluster-admin API described in the cluster guide
for managing shard voting states has an RPC allowing backup of the datastore in a single
node, taking only the file name as a parameter:

POST /restconf/operations/cluster-admin:backup-datastore

RPC input JSON:

{
 "input": {
 "file-path": "/tmp/datastore_backup"
 }
}

Note

This backup can only be restored if the YANG models of the backed-up data
are identical in the backup OpenDaylight instance and restore target
instance.

To restore the backup on the target node the file needs to be placed into the
$KARAF_HOME/clustered-datastore-restore directory, and then the node
restarted. If the directory does not exist (which is quite likely if this is a
first-time restore) it needs to be created. On startup, ODL checks if the
journal and snapshots directories in $KARAF_HOME are empty, and
only then tries to read the contents of the clustered-datastore-restore
directory, if it exists. So for a successful restore, those two directories
should be empty. The backup file name itself does not matter, and the startup
process will delete it after a successful restore.

The backup is node independent, so when restoring a 3 node cluster, it is best
to restore it on each node for consistency. For example, if restoring on one
node only, it can happen that the other two empty nodes form a majority and
the cluster comes up with no data.

Running XSQL Console Commands and Queries

XSQL Overview

XSQL is an XML-based query language that describes simple stored procedures
which parse XML data, query or update database tables, and compose XML output.
XSQL allows you to query tree models like a sequential database. For example,
you could run a query that lists all of the ports configured on a particular
module and their attributes.

The following sections cover the XSQL installation process, supported XSQL
commands, and the way to structure queries.

Installing XSQL

To run commands from the XSQL console, you must first install XSQL on your
system:

	Navigate to the directory in which you unzipped OpenDaylight

	Start Karaf:

./bin/karaf

	Install XSQL:

feature:install odl-mdsal-xsql

XSQL Console Commands

To enter a command in the XSQL console, structure the command as follows:

odl:xsql _<XSQL command>_

The following table describes the commands supported in this OpenDaylight
release.

Supported XSQL Console Commands

	Command

	Description

	r

	Repeats the last command you executed.

	list vtables

	Lists the schema node containers that are currently installed. Whenever an
OpenDaylight module is installed, its YANG model is placed in the schema
context. At that point, the XSQL receives a notification, confirms that the
module’s YANG model resides in the schema context and then maps the model to
XSQL by setting up the necessary vtables and vfields. This command is useful
when you need to determine vtable information for a query.

	list vfields
<vtable name>

	Lists the vfields present in a specific vtable. This command is useful when
you need to determine vfields information for a query.

	jdbc
<ip address>

	When the ODL server is behind a firewall, and the JDBC client cannot connect
to the JDBC server, run this command to start the client as a server and
establish a connection.

	exit

	Closes the console.

	tocsv

	Enables or disables the forwarding of query output as a .csv file.

	filename
<filename>

	Specifies the .tocsv file to which the query data is exported. If you do not
specify a value for this option when the toccsv option is enabled, the
filename for the query data file is generated automatically.

XSQL Queries

You can run a query to extract information that meets the criteria you specify
using the information provided by the list vtables and list vfields
<vtable name> commands. Any query you run should be structured as follows:

select _<vfields you want to search for, separated by a comma and a space>_
from _<vtables you want to search in, separated by a comma and a space>_
where _<criteria>_ ‘*_<criteria operator>_’;*

For example, if you want to search the nodes/node ID field in the
nodes/node-connector table and find every instance of the Hardware-Address
object that contains _BA_ in its text string, enter the following query:

select nodes/node.ID from nodes/node-connector where Hardware-Address like '%BA%';

The following criteria operators are supported:

Supported XSQL Query Criteria Operators

	Criteria Operators

	Description

	=

	Lists results that equal the value you specify.

	!=

	Lists results that do not equal the value you specify.

	like

	Lists results that contain the substring you specify. For
example, if you specify like %BC%, every string that contains
that particular substring is displayed.

	<

	Lists results that are less than the value you specify.

	>

	Lists results that are more than the value you specify.

	and

	Lists results that match both values you specify.

	or

	Lists results that match either of the two values you specify.

	>=

	Lists results that are more than or equal to the value you specify.

	<=

	Lists results that are less than or equal to the value you specify.

	is null

	Lists results for which no value is assigned.

	not null

	Lists results for which any value is assigned.

	skip

	Use this operator to list matching results from a child node,
even if its parent node does not meet the specified criteria.
See the following example for more information.

Example: Skip Criteria Operator

If you are looking at the following structure and want to determine all of the
ports that belong to a YY type module:

	Network Element 1

	Module 1, Type XX

	Module 1.1, Type YY

	Port 1

	Port 2

	Module 2, Type YY

	Port 1

	Port 2

If you specify Module.Type=’YY’ in your query criteria, the ports associated
with module 1.1 will not be returned since its parent module is type XX.
Instead, enter Module.Type=’YY’ or skip Module!=’YY’. This tells XSQL to
disregard any parent module data that does not meet the type YY criteria and
collect results for any matching child modules. In this example, you are
instructing the query to skip module 1 and collect the relevant data from
module 1.1.

OpenDaylight Version

Overview

This feature allows NETCONF/RESTCONF users to determine the version of
OpenDaylight they are communicating with.

Install the Version Feature

Follow these steps to install the version feature:

	Navigate to the directory in which you installed OpenDaylight

	Start Karaf:

./bin/karaf

	Install Version feature:

feature:install odl-distribution-version

Note

For RESTCONF access, it is recommended to install odl-restconf
and odl-netconf-connector-ssh.

Version Feature Usage

Example of RESTCONF request using curl from bash:

$ curl -u 'admin:admin' localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-distribution-version:odl-version/odl-distribution-version

Example response (formatted):

{
 "module": [
 {
 "type": "odl-distribution-version:odl-version",
 "name": "odl-distribution-version",
 "odl-distribution-version:version": "0.5.0-SNAPSHOT"
 }
]
}

Security Considerations

This document discusses the various security issues that might affect
OpenDaylight. The document also lists specific recommendations to
mitigate security risks.

This document also contains information about the corrective steps
you can take if you discover a security issue with
OpenDaylight, and if necessary, contact the Security Response Team,
which is tasked with identifying and resolving security threats.

Overview of OpenDaylight Security

There are many different kinds of security vulnerabilities that could affect
an OpenDaylight deployment, but this guide focuses on those where (a) the
servers, virtual machines or other devices running OpenDaylight have been
properly physically (or virtually in the case of VMs) secured against untrusted
individuals and (b) individuals who have access, either via remote logins or
physically, will not attempt to attack or subvert the deployment intentionally
or otherwise.

While those attack vectors are real, they are out of the scope of this
document.

What remains in scope is attacks launched from a server, virtual machine, or
device other than the one running OpenDaylight where the attack does not have
valid credentials to access the OpenDaylight deployment.

The rest of this document gives specific recommendations for deploying
OpenDaylight in a secure manner, but first we highlight some high-level
security advantages of OpenDaylight.

	Separating the control and management planes from the data plane (both
logically and, in many cases, physically) allows possible security threats to
be forced into a smaller attack surface.

	Having centralized information and network control gives network
administrators more visibility and control over the entire network, enabling
them to make better decisions faster. At the same time,
centralization of network control can be an advantage only if access to that
control is secure.

Note

While both previous advantages improve security, they also make
an OpenDaylight deployment an attractive target for attack making
understanding these security considerations even more important.

	The ability to more rapidly evolve southbound protocols and how they are used
provides more and faster mechanisms to enact appropriate security mitigations
and remediations.

	OpenDaylight is built from OSGi bundles and the Karaf Java container. Both
Karaf and OSGi provide some level of isolation with explicit code boundaries,
package imports, package exports, and other security-related features.

	OpenDaylight has a history of rapidly addressing known vulnerabilities and
a well-defined process for reporting and dealing with them.

OpenDaylight Security Resources

	If you have any security issues, you can send a mail to
security@lists.opendaylight.org.

	For the list of current OpenDaylight security issues that are either being
fixed or resolved, refer to
https://wiki.opendaylight.org/view/Security:Advisories.

	To learn more about the OpenDaylight security issues policies and procedure,
refer to https://wiki.opendaylight.org/view/Security:Main

Deployment Recommendations

We recommend that you follow the deployment guidelines in setting up
OpenDaylight to minimize security threats.

	The default credentials should be changed before deploying OpenDaylight.

	OpenDaylight should be deployed in a private network that cannot be accessed
from the internet.

	Separate the data network (that connects devices using the network) from the
management network (that connects the network devices to OpenDaylight).

Note

Deploying OpenDaylight on a separate, private management network does not
eliminate threats, but only mitigates them. By construction, some
messages must flow from the data network to the management network, e.g.,
OpenFlow packet_in messages, and these create an attack surface even if
it is a small one.

	Implement an authentication policy for devices that connect to both the data
and management network. These are the devices which bridge, likely untrusted,
traffic from the data network to the management network.

Securing OSGi bundles

OSGi is a Java-specific framework that improves the way that Java classes
interact within a single JVM. It provides an enhanced version of the
java.lang.SecurityManager (ConditionalPermissionAdmin) in terms of security.

Java provides a security framework that allows a security policy to grant
permissions, such as reading a file or opening a network connection, to
specific code. The code maybe classes from the jarfile loaded from a specific
URL, or a class signed by a specific key. OSGi builds on the standard Java
security model to add the following features:

	A set of OSGi-specific permission types, such as one that grants the right
to register an OSGi service or get an OSGi service from the service registry.

	The ability to dynamically modify permissions at runtime. This includes the
ability to specify permissions by using code rather than a text configuration
file.

	A flexible predicate-based approach to determining which rules are
applicable to which ProtectionDomain. This approach is much more powerful
than the standard Java security policy which can only grant rights based on a
jarfile URL or class signature. A few standard predicates are provided,
including selecting rules based upon bundle symbolic-name.

	Support for bundle local permissions policies with optional further
constraints such as DENY operations. Most of this functionality is accessed
by using the OSGi ConditionalPermissionAdmin service which is part of the
OSGi core and can be obtained from the OSGi service registry. The
ConditionalPermissionAdmin API replaces the earlier PermissionAdmin API.

For more information, refer to http://www.osgi.org/Main/HomePage.

Securing the Karaf container

Apache Karaf is a OSGi-based runtime platform which provides a lightweight
container for OpenDaylight and applications. Apache Karaf uses
either Apache Felix Framework or Eclipse Equinox OSGi frameworks, and provide
additional features on top of the framework.

Apache Karaf provides a security framework based on Java Authentication and
Authorization Service (JAAS) in compliance with OSGi recommendations,
while providing RBAC (Role-Based Access Control) mechanism for the console and
Java Management Extensions (JMX).

The Apache Karaf security framework is used internally to control the access
to the following components:

	OSGi services

	console commands

	JMX layer

	WebConsole

The remote management capabilities are present in Apache Karaf by default,
however they can be disabled by using various configuration alterations. These
configuration options may be applied to the OpenDaylight Karaf distribution.

Note

Refer to the following list of publications for more information on
implementing security for the Karaf container.

	For role-based JMX administration, refer to
http://karaf.apache.org/manual/latest/users-guide/monitoring.html.

	For remote SSH access configuration, refer to
http://karaf.apache.org/manual/latest/users-guide/remote.html.

	For WebConsole access, refer to
http://karaf.apache.org/manual/latest/users-guide/webconsole.html.

	For Karaf security features, refer to
http://karaf.apache.org/manual/latest/developers-guide/security-framework.html.

Disabling the remote shutdown port

You can lock down your deployment post installation. Set
karaf.shutdown.port=-1 in etc/custom.properties or etc/config.properties to
disable the remote shutdown port.

Securing Southbound Plugins

Many individual southbound plugins provide mechanisms to secure their
communication with network devices. For example, the OpenFlow plugin supports
TLS connections with bi-directional authentication and the NETCONF plugin
supports connecting over SSH. Meanwhile, the Unified Secure Channel plugin
provides a way to form secure, remote connections for supported devices.

When deploying OpenDaylight, you should carefully investigate the secure
mechanisms to connect to devices using the relevant plugins.

Securing OpenDaylight using AAA

AAA stands for Authentication, Authorization, and Accounting. All three of
can help improve the security posture of and OpenDaylight deployment. In this
release, only authentication is fully supported, while authorization is an
experimental feature and accounting remains a work in progress.

The vast majority of OpenDaylight’s northbound APIs (and all RESTCONF APIs) are
protected by AAA by default when installing the +odl-restconf+ feature. In the
cases that APIs are not protected by AAA, this will be noted in the
per-project release notes.

By default, OpenDaylight has only one user account with the username and
password admin. This should be changed before deploying OpenDaylight.

Security Considerations for Clustering

While OpenDaylight clustering provides many benefits including high
availability, scale-out performance, and data durability, it also opens a new
attack surface in the form of the messages exchanged between the various
instances of OpenDaylight in the cluster. In the current OpenDaylight release,
these messages are neither encrypted nor authenticated meaning that anyone with
access to the management network where OpenDaylight exchanges these clustering
messages can forge and/or read the messages. This means that if clustering is
enabled, it is even more important that the management network be kept secure
from any untrusted entities.

How to Get Help

Users and developers can get support from the OpendayLight community through the
mailing lists, IRC and forums.

	Create your question on ServerFault [https://serverfault.com]
or Stackoverflow [https://stackoverflow.com/] with the tag
#opendaylight.

Note

It is important to tag [https://stackoverflow.com/help/tagging]
questions correctly to ensure that the questions reach individuals
subscribed to the tag.

	Mail discuss@lists.opendaylight.org or dev@lists.opendaylight.org.

	Directly mail the PTL as indicated on the specific
projects page [https://wiki.opendaylight.org/view/Project_list].

	IRC: Connect to #opendaylight or #opendaylight-meeting channel on freenode.

	For infrastructure and release engineering queries, mail helpdesk@opendaylight.org.
IRC: Connect to #lf-releng channel on freenode.

OpenDaylight User Guide

Overview

This first part of the user guide covers the basic user operations of
the OpenDaylight Release using the generic base functionality.

	OpenDaylight Controller Overview

	Using the OpenDaylight User Interface (DLUX)

	Setting Up Clustering

	Persistence and Backup

Project-specific User Guides

	ALTO User Guide

	Authentication, Authorization and Accounting (AAA) Services

	BGP User Guide

	BGP Monitoring Protocol User Guide

	BIER User Guide

	CAPWAP User Guide

	Cardinal: OpenDaylight Monitoring as a Service

	Centinel User Guide

	Data Export/Import User Guide

	DIDM User Guide

	Distribution Version reporting

	eman User Guide

	Fabric As A Service

	Genius User Guide

	Group Based Policy User Guide

	L2 Switch User Guide

	Link Aggregation Control Protocol User Guide

	LISP Flow Mapping User Guide

	NEtwork MOdeling (NEMO)

	NETCONF User Guide

	NetIDE User Guide

	NetVirt User Guide

	Neutron Service User Guide

	Network Intent Composition (NIC) User Guide

	OCP Plugin User Guide

	ODL-SDNi User Guide

	OF-CONFIG User Guide

	OpenFlow Plugin Project User Guide

	OpFlex agent-ovs User Guide

	OVSDB User Guide

	PCEP User Guide

	PacketCable User Guide

	Service Function Chaining

	SNMP Plugin User Guide

	SNMP4SDN User Guide

	SXP User Guide

	TSDR User Guide

	TTP CLI Tools User Guide

	User Network Interface Manager Plug-in (Unimgr) User Guide

	Unified Secure Channel

	Virtual Tenant Network (VTN)

OpenDaylight Controller Overview

The OpenDaylight controller is JVM software and can be run from any
operating system and hardware as long as it supports Java. The
controller is an implementation of the Software Defined Network (SDN)
concept and makes use of the following tools:

	Maven: OpenDaylight uses Maven for easier build automation. Maven
uses pom.xml (Project Object Model) to script the dependencies
between bundle and also to describe what bundles to load and start.

	OSGi: This framework is the back-end of OpenDaylight as it allows
dynamically loading bundles and packages JAR files, and binding
bundles together for exchanging information.

	JAVA interfaces: Java interfaces are used for event listening,
specifications, and forming patterns. This is the main way in which
specific bundles implement call-back functions for events and also to
indicate awareness of specific state.

	REST APIs: These are northbound APIs such as topology manager,
host tracker, flow programmer, static routing, and so on.

The controller exposes open northbound APIs which are used by
applications. The OSGi framework and bidirectional REST are supported
for the northbound APIs. The OSGi framework is used for applications
that run in the same address space as the controller while the REST
(web-based) API is used for applications that do not run in the same
address space (or even the same system) as the controller. The business
logic and algorithms reside in the applications. These applications use
the controller to gather network intelligence, run its algorithm to do
analytics, and then orchestrate the new rules throughout the network. On
the southbound, multiple protocols are supported as plugins, e.g.
OpenFlow 1.0, OpenFlow 1.3, BGP-LS, and so on. The OpenDaylight
controller starts with an OpenFlow 1.0 southbound plugin. Other
OpenDaylight contributors begin adding to the controller code. These
modules are linked dynamically into a Service Abstraction Layer
(SAL).

The SAL exposes services to which the modules north of it are written.
The SAL figures out how to fulfill the requested service irrespective of
the underlying protocol used between the controller and the network
devices. This provides investment protection to the applications as
OpenFlow and other protocols evolve over time. For the controller to
control devices in its domain, it needs to know about the devices, their
capabilities, reachability, and so on. This information is stored and
managed by the Topology Manager. The other components like ARP
handler, Host Tracker, Device Manager, and Switch Manager help in
generating the topology database for the Topology Manager.

For a more detailed overview of the OpenDaylight controller, see the
OpenDaylight Developer Guide.

Using the OpenDaylight User Interface (DLUX)

This section introduces you to the OpenDaylight User Experience (DLUX)
application.

Getting Started with DLUX

DLUX provides a number of different Karaf features, which you can enable
and disable separately. They are:

	odl-dlux-core

	odl-dluxapps-nodes

	odl-dluxapps-topology

	odl-dluxapps-yangui

	odl-dluxapps-yangvisualizer

	odl-dluxapps-yangman

Logging In

To log in to DLUX, after installing the application:

	Open a browser and enter the login URL
http://<your-karaf-ip>:8181/index.html
in your browser (Chrome is recommended).

	Login to the application with your username and password credentials.

Note

OpenDaylight’s default credentials are admin for both the username
and password.

Working with DLUX

After you login to DLUX, if you enable only odl-dlux-core feature, you
will see only topology application available in the left pane.

Note

To make sure topology displays all the details, enable the
odl-l2switch-switch feature in Karaf.

DLUX has other applications such as node, yang UI and those apps won’t
show up, until you enable their features odl-dluxapps-nodes and
odl-dluxapps-yangui respectively in the Karaf distribution.

[image: DLUX Modules]
DLUX Modules

Note

If you install your application in dlux, they will also show up on
the left hand navigation after browser page refresh.

Viewing Network Statistics

The Nodes module on the left pane enables you to view the network
statistics and port information for the switches in the network.

To use the Nodes module:

	Select Nodes on the left pane. The right pane displays atable
that lists all the nodes, node connectors and the statistics.

	Enter a node ID in the Search Nodes tab to search by node
connectors.

	Click on the Node Connector number to view details such as port
ID, port name, number of ports per switch, MAC Address, and so on.

	Click Flows in the Statistics column to view Flow Table
Statistics for the particular node like table ID, packet match,
active flows and so on.

	Click Node Connectors to view Node Connector Statistics for the
particular node ID.

Viewing Network Topology

The Topology tab displays a graphical representation of network topology
created.

Note

DLUX does not allow for editing or adding topology information. The
topology is generated and edited in other modules, e.g., the
OpenFlow plugin. OpenDaylight stores this information in the MD-SAL
datastore where DLUX can read and display it.

To view network topology:

	Select Topology on the left pane. You will view the graphical
representation on the right pane. In the diagram blue boxes represent
the switches, the black represents the hosts available, and lines
represents how the switches and hosts are connected.

	Hover your mouse on hosts, links, or switches to view source and
destination ports.

	Zoom in and zoom out using mouse scroll to verify topology for larger
topologies.

[image: Topology Module]
Topology Module

Interacting with the YANG-based MD-SAL datastore

The Yang UI module enables you to interact with the YANG-based
MD-SAL datastore. For more information about YANG and how it interacts
with the MD-SAL datastore, see the Controller and YANG Tools section
of the OpenDaylight Developer Guide.

[image: Yang UI]
Yang UI

To use Yang UI:

	Select Yang UI on the left pane. The right pane is divided in two
parts.

	The top part displays a tree of APIs, subAPIs, and buttons to call
possible functions (GET, POST, PUT, and DELETE).

Note

every subAPI can call every function. For example, subAPIs in
the operational store have GET functionality only.

Inputs can be filled from OpenDaylight when existing data from
OpenDaylight is displayed or can be filled by user on the page and
sent to OpenDaylight.

Buttons under the API tree are variable. It depends on subAPI
specifications. Common buttons are:

	GET to get data from OpenDaylight,

	PUT and POST for sending data to OpenDaylight for saving

	DELETE for sending data to OpenDaylight for deleting.

You must specify the xpath for all these operations. This path is
displayed in the same row before buttons and it may include text
inputs for specific path element identifiers.

[image: Yang API Specification]
Yang API Specification

	The bottom part of the right pane displays inputs according to the
chosen subAPI.

	Lists are handled as a special case. For example, a device can
store multiple flows. In this case “flow” is name of the list and
every list element is identified by a unique key value. Elements
of a list can, in turn, contain other lists.

	In Yang UI, each list element is rendered with the name of the
list it belongs to, its key, its value, and a button for removing
it from the list.

[image: Yang UI API Specification]
Yang UI API Specification

	After filling in the relevant inputs, click the Show Preview
button under the API tree to display request that will be sent to
OpenDaylight. A pane is displayed on the right side with text of
request when some input is filled.

Displaying Topology on the Yang UI

To display topology:

	Select subAPI network-topology <topology revision number> == >
operational == > network-topology.

	Get data from OpenDaylight by clicking on the “GET” button.

	Click Display Topology.

[image: DLUX Yang Topology]
DLUX Yang Topology

Configuring List Elements on the Yang UI

Lists in Yang UI are displayed as trees. To expand or collapse a list,
click the arrow before name of the list. To configure list elements in
Yang UI:

	To add a new list element with empty inputs use the plus icon-button
+ that is provided after list name.

	To remove several list elements, use the X button that is
provided after every list element.

[image: DLUX List Elements]
DLUX List Elements

	In the YANG-based data store all elements of a list must have a
unique key. If you try to assign two or more elements the same key, a
warning icon ! is displayed near their name buttons.

[image: DLUX List Warnings]
DLUX List Warnings

	When the list contains at least one list element, after the +
icon, there are buttons to select each individual list element. You
can choose one of them by clicking on it. In addition, to the right
of the list name, there is a button which will display a vertically
scrollable pane with all the list elements.

[image: DLUX List Button1]
DLUX List Button1

Setting Up Clustering

Clustering Overview

Clustering is a mechanism that enables multiple processes and programs to work
together as one entity. For example, when you search for something on
google.com, it may seem like your search request is processed by only one web
server. In reality, your search request is processed by may web servers
connected in a cluster. Similarly, you can have multiple instances of
OpenDaylight working together as one entity.

Advantages of clustering are:

	Scaling: If you have multiple instances of OpenDaylight running, you can
potentially do more work and store more data than you could with only one
instance. You can also break up your data into smaller chunks (shards) and
either distribute that data across the cluster or perform certain operations
on certain members of the cluster.

	High Availability: If you have multiple instances of OpenDaylight running and
one of them crashes, you will still have the other instances working and
available.

	Data Persistence: You will not lose any data stored in OpenDaylight after a
manual restart or a crash.

The following sections describe how to set up clustering on both individual and
multiple OpenDaylight instances.

Multiple Node Clustering

The following sections describe how to set up multiple node clusters in OpenDaylight.

Deployment Considerations

To implement clustering, the deployment considerations are as follows:

	To set up a cluster with multiple nodes, we recommend that you use a minimum
of three machines. You can set up a cluster with just two nodes. However, if
one of the two nodes fail, the cluster will not be operational.

Note

This is because clustering in OpenDaylight requires a majority of the
nodes to be up and one node cannot be a majority of two nodes.

	Every device that belongs to a cluster needs to have an identifier.
OpenDaylight uses the node’s role for this purpose. After you define the
first node’s role as member-1 in the akka.conf file, OpenDaylight uses
member-1 to identify that node.

	Data shards are used to contain all or a certain segment of a OpenDaylight’s
MD-SAL datastore. For example, one shard can contain all the inventory data
while another shard contains all of the topology data.

If you do not specify a module in the modules.conf file and do not specify
a shard in module-shards.conf, then (by default) all the data is placed in
the default shard (which must also be defined in module-shards.conf file).
Each shard has replicas configured. You can specify the details of where the
replicas reside in module-shards.conf file.

	If you have a three node cluster and would like to be able to tolerate any
single node crashing, a replica of every defined data shard must be running
on all three cluster nodes.

Note

This is because OpenDaylight’s clustering implementation requires a
majority of the defined shard replicas to be running in order to
function. If you define data shard replicas on two of the cluster nodes
and one of those nodes goes down, the corresponding data shards will not
function.

	If you have a three node cluster and have defined replicas for a data shard
on each of those nodes, that shard will still function even if only two of
the cluster nodes are running. Note that if one of those remaining two nodes
goes down, the shard will not be operational.

	It is recommended that you have multiple seed nodes configured. After a
cluster member is started, it sends a message to all of its seed nodes.
The cluster member then sends a join command to the first seed node that
responds. If none of its seed nodes reply, the cluster member repeats this
process until it successfully establishes a connection or it is shut down.

	After a node is unreachable, it remains down for configurable period of time
(10 seconds, by default). Once a node goes down, you need to restart it so
that it can rejoin the cluster. Once a restarted node joins a cluster, it
will synchronize with the lead node automatically.

Clustering Scripts

OpenDaylight includes some scripts to help with the clustering configuration.

Note

Scripts are stored in the OpenDaylight distribution/bin folder, and
maintained in the distribution project
repository [https://git.opendaylight.org/gerrit/p/integration/distribution]
in the folder distribution-karaf/src/main/assembly/bin/.

Configure Cluster Script

This script is used to configure the cluster parameters (e.g. akka.conf,
module-shards.conf) on a member of the controller cluster. The user should
restart the node to apply the changes.

Note

The script can be used at any time, even before the controller is started
for the first time.

Usage:

bin/configure_cluster.sh <index> <seed_nodes_list>

	index: Integer within 1..N, where N is the number of seed nodes. This indicates
which controller node (1..N) is configured by the script.

	seed_nodes_list: List of seed nodes (IP address), separated by comma or space.

The IP address at the provided index should belong to the member executing
the script. When running this script on multiple seed nodes, keep the
seed_node_list the same, and vary the index from 1 through N.

Optionally, shards can be configured in a more granular way by modifying the
file “custom_shard_configs.txt” in the same folder as this tool. Please see
that file for more details.

Example:

bin/configure_cluster.sh 2 192.168.0.1 192.168.0.2 192.168.0.3

The above command will configure the member 2 (IP address 192.168.0.2) of a
cluster made of 192.168.0.1 192.168.0.2 192.168.0.3.

Setting Up a Multiple Node Cluster

To run OpenDaylight in a three node cluster, perform the following:

First, determine the three machines that will make up the cluster. After that,
do the following on each machine:

	Copy the OpenDaylight distribution zip file to the machine.

	Unzip the distribution.

	Open the following .conf files:

	configuration/initial/akka.conf

	configuration/initial/module-shards.conf

	In each configuration file, make the following changes:

Find every instance of the following lines and replace _127.0.0.1_ with the
hostname or IP address of the machine on which this file resides and
OpenDaylight will run:

netty.tcp {
 hostname = "127.0.0.1"

Note

The value you need to specify will be different for each node in the
cluster.

	Find the following lines and replace _127.0.0.1_ with the hostname or IP
address of any of the machines that will be part of the cluster:

cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-data@${IP_OF_MEMBER1}:2550",
 <url-to-cluster-member-2>,
 <url-to-cluster-member-3>]

	Find the following section and specify the role for each member node. Here
we assign the first node with the member-1 role, the second node with the
member-2 role, and the third node with the member-3 role:

roles = [
 "member-1"
]

Note

This step should use a different role on each node.

	Open the configuration/initial/module-shards.conf file and update the
replicas so that each shard is replicated to all three nodes:

replicas = [
 "member-1",
 "member-2",
 "member-3"
]

For reference, view a sample config files <<_sample_config_files,below>>.

	Move into the +<karaf-distribution-directory>/bin+ directory.

	Run the following command:

JAVA_MAX_MEM=4G JAVA_MAX_PERM_MEM=512m ./karaf

	Enable clustering by running the following command at the Karaf command line:

feature:install odl-mdsal-clustering

OpenDaylight should now be running in a three node cluster. You can use any of
the three member nodes to access the data residing in the datastore.

Sample Config Files

Sample akka.conf file:

odl-cluster-data {
 bounded-mailbox {
 mailbox-type = "org.opendaylight.controller.cluster.common.actor.MeteredBoundedMailbox"
 mailbox-capacity = 1000
 mailbox-push-timeout-time = 100ms
 }

 metric-capture-enabled = true

 akka {
 loglevel = "DEBUG"
 loggers = ["akka.event.slf4j.Slf4jLogger"]

 actor {

 provider = "akka.cluster.ClusterActorRefProvider"
 serializers {
 java = "akka.serialization.JavaSerializer"
 proto = "akka.remote.serialization.ProtobufSerializer"
 }

 serialization-bindings {
 "com.google.protobuf.Message" = proto

 }
 }
 remote {
 log-remote-lifecycle-events = off
 netty.tcp {
 hostname = "10.194.189.96"
 port = 2550
 maximum-frame-size = 419430400
 send-buffer-size = 52428800
 receive-buffer-size = 52428800
 }
 }

 cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-data@10.194.189.96:2550",
 "akka.tcp://opendaylight-cluster-data@10.194.189.98:2550",
 "akka.tcp://opendaylight-cluster-data@10.194.189.101:2550"]

 auto-down-unreachable-after = 10s

 roles = [
 "member-2"
]

 }
 }
}

odl-cluster-rpc {
 bounded-mailbox {
 mailbox-type = "org.opendaylight.controller.cluster.common.actor.MeteredBoundedMailbox"
 mailbox-capacity = 1000
 mailbox-push-timeout-time = 100ms
 }

 metric-capture-enabled = true

 akka {
 loglevel = "INFO"
 loggers = ["akka.event.slf4j.Slf4jLogger"]

 actor {
 provider = "akka.cluster.ClusterActorRefProvider"

 }
 remote {
 log-remote-lifecycle-events = off
 netty.tcp {
 hostname = "10.194.189.96"
 port = 2551
 }
 }

 cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-rpc@10.194.189.96:2551"]

 auto-down-unreachable-after = 10s
 }
 }
}

Sample module-shards.conf file:

module-shards = [
 {
 name = "default"
 shards = [
 {
 name="default"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "topology"
 shards = [
 {
 name="topology"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "inventory"
 shards = [
 {
 name="inventory"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "toaster"
 shards = [
 {
 name="toaster"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 }
]

Cluster Monitoring

OpenDaylight exposes shard information via MBeans, which can be explored with
JConsole, VisualVM, or other JMX clients, or exposed via a REST API using
Jolokia [https://jolokia.org/features-nb.html], provided by the
odl-jolokia Karaf feature. This is convenient, due to a significant focus
on REST in OpenDaylight.

The basic URI that lists a schema of all available MBeans, but not their
content itself is:

GET /jolokia/list

To read the information about the shards local to the queried OpenDaylight
instance use the following REST calls. For the config datastore:

GET /jolokia/read/org.opendaylight.controller:type=DistributedConfigDatastore,Category=ShardManager,name=shard-manager-config

For the operational datastore:

GET /jolokia/read/org.opendaylight.controller:type=DistributedOperationalDatastore,Category=ShardManager,name=shard-manager-operational

The output contains information on shards present on the node:

{
 "request": {
 "mbean": "org.opendaylight.controller:Category=ShardManager,name=shard-manager-operational,type=DistributedOperationalDatastore",
 "type": "read"
 },
 "value": {
 "LocalShards": [
 "member-1-shard-default-operational",
 "member-1-shard-entity-ownership-operational",
 "member-1-shard-topology-operational",
 "member-1-shard-inventory-operational",
 "member-1-shard-toaster-operational"
],
 "SyncStatus": true,
 "MemberName": "member-1"
 },
 "timestamp": 1483738005,
 "status": 200
}

The exact names from the “LocalShards” lists are needed for further
exploration, as they will be used as part of the URI to look up detailed info
on a particular shard. An example output for the
member-1-shard-default-operational looks like this:

{
 "request": {
 "mbean": "org.opendaylight.controller:Category=Shards,name=member-1-shard-default-operational,type=DistributedOperationalDatastore",
 "type": "read"
 },
 "value": {
 "ReadWriteTransactionCount": 0,
 "SnapshotIndex": 4,
 "InMemoryJournalLogSize": 1,
 "ReplicatedToAllIndex": 4,
 "Leader": "member-1-shard-default-operational",
 "LastIndex": 5,
 "RaftState": "Leader",
 "LastCommittedTransactionTime": "2017-01-06 13:19:00.135",
 "LastApplied": 5,
 "LastLeadershipChangeTime": "2017-01-06 13:18:37.605",
 "LastLogIndex": 5,
 "PeerAddresses": "member-3-shard-default-operational: akka.tcp://opendaylight-cluster-data@192.168.16.3:2550/user/shardmanager-operational/member-3-shard-default-operational, member-2-shard-default-operational: akka.tcp://opendaylight-cluster-data@192.168.16.2:2550/user/shardmanager-operational/member-2-shard-default-operational",
 "WriteOnlyTransactionCount": 0,
 "FollowerInitialSyncStatus": false,
 "FollowerInfo": [
 {
 "timeSinceLastActivity": "00:00:00.320",
 "active": true,
 "matchIndex": 5,
 "voting": true,
 "id": "member-3-shard-default-operational",
 "nextIndex": 6
 },
 {
 "timeSinceLastActivity": "00:00:00.320",
 "active": true,
 "matchIndex": 5,
 "voting": true,
 "id": "member-2-shard-default-operational",
 "nextIndex": 6
 }
],
 "FailedReadTransactionsCount": 0,
 "StatRetrievalTime": "810.5 μs",
 "Voting": true,
 "CurrentTerm": 1,
 "LastTerm": 1,
 "FailedTransactionsCount": 0,
 "PendingTxCommitQueueSize": 0,
 "VotedFor": "member-1-shard-default-operational",
 "SnapshotCaptureInitiated": false,
 "CommittedTransactionsCount": 6,
 "TxCohortCacheSize": 0,
 "PeerVotingStates": "member-3-shard-default-operational: true, member-2-shard-default-operational: true",
 "LastLogTerm": 1,
 "StatRetrievalError": null,
 "CommitIndex": 5,
 "SnapshotTerm": 1,
 "AbortTransactionsCount": 0,
 "ReadOnlyTransactionCount": 0,
 "ShardName": "member-1-shard-default-operational",
 "LeadershipChangeCount": 1,
 "InMemoryJournalDataSize": 450
 },
 "timestamp": 1483740350,
 "status": 200
}

The output helps identifying shard state (leader/follower, voting/non-voting),
peers, follower details if the shard is a leader, and other
statistics/counters.

The Integration team is maintaining a Python based tool [https://github.com/opendaylight/integration-test/tree/master/tools/clustering/cluster-monitor],
that takes advantage of the above MBeans exposed via Jolokia, and the
systemmetrics project offers a DLUX based UI to display the same
information.

Geo-distributed Active/Backup Setup

An OpenDaylight cluster works best when the latency between the nodes is very
small, which practically means they should be in the same datacenter. It is
however desirable to have the possibility to fail over to a different
datacenter, in case all nodes become unreachable. To achieve that, the cluster
can be expanded with nodes in a different datacenter, but in a way that
doesn’t affect latency of the primary nodes. To do that, shards in the backup
nodes must be in “non-voting” state.

The API to manipulate voting states on shards is defined as RPCs in the
cluster-admin.yang [https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/md-sal/sal-cluster-admin-api/src/main/yang/cluster-admin.yang]
file in the controller project, which is well documented. A summary is
provided below.

Note

Unless otherwise indicated, the below POST requests are to be sent to any
single cluster node.

To create an active/backup setup with a 6 node cluster (3 active and 3 backup
nodes in two locations) there is an RPC to set voting states of all shards on
a list of nodes to a given state:

POST /restconf/operations/cluster-admin:change-member-voting-states-for-all-shards

This RPC needs the list of nodes and the desired voting state as input. For
creating the backup nodes, this example input can be used:

{
 "input": {
 "member-voting-state": [
 {
 "member-name": "member-4",
 "voting": false
 },
 {
 "member-name": "member-5",
 "voting": false
 },
 {
 "member-name": "member-6",
 "voting": false
 }
]
 }
}

When an active/backup deployment already exists, with shards on the backup
nodes in non-voting state, all that is needed for a fail-over from the active
“sub-cluster” to backup “sub-cluster” is to flip the voting state of each
shard (on each node, active AND backup). That can be easily achieved with the
following RPC call (no parameters needed):

POST /restconf/operations/cluster-admin:flip-member-voting-states-for-all-shards

If it’s an unplanned outage where the primary voting nodes are down, the
“flip” RPC must be sent to a backup non-voting node. In this case there are no
shard leaders to carry out the voting changes. However there is a special case
whereby if the node that receives the RPC is non-voting and is to be changed
to voting and there’s no leader, it will apply the voting changes locally and
attempt to become the leader. If successful, it persists the voting changes
and replicates them to the remaining nodes.

When the primary site is fixed and you want to fail back to it, care must be
taken when bringing the site back up. Because it was down when the voting
states were flipped on the secondary, its persisted database won’t contain
those changes. If brought back up in that state, the nodes will think they’re
still voting. If the nodes have connectivity to the secondary site, they
should follow the leader in the secondary site and sync with it. However if
this does not happen then the primary site may elect its own leader thereby
partitioning the 2 clusters, which can lead to undesirable results. Therefore
it is recommended to either clean the databases (i.e., journal and
snapshots directory) on the primary nodes before bringing them back up or
restore them from a recent backup of the secondary site (see section
Backing Up and Restoring the Datastore).

If is also possible to gracefully remove a node from a cluster, with the
following RPC:

POST /restconf/operations/cluster-admin:remove-all-shard-replicas

and example input:

{
 "input": {
 "member-name": "member-1"
 }
}

or just one particular shard:

POST /restconf/operations/cluster-admin:remove-shard-replica

with example input:

{
 "input": {
 "shard-name": "default",
 "member-name": "member-2",
 "data-store-type": "config"
 }
}

Now that a (potentially dead/unrecoverable) node was removed, another one can
be added at runtime, without changing the configuration files of the healthy
nodes (requiring reboot):

POST /restconf/operations/cluster-admin:add-replicas-for-all-shards

No input required, but this RPC needs to be sent to the new node, to instruct
it to replicate all shards from the cluster.

Note

While the cluster admin API allows adding and removing shards dynamically,
the module-shard.conf and modules.conf files are still used on
startup to define the initial configuration of shards. Modifications from
the use of the API are not stored to those static files, but to the journal.

Extra Configuration Options

	Name

	Type

	Default

	Description

	max-shard-data-change-executor-queue-size

	uint32 (1..max)

	1000

	The maximum queue size for each shard’s data store data change notification executor.

	max-shard-data-change-executor-pool-size

	uint32 (1..max)

	20

	The maximum thread pool size for each shard’s data store data change notification executor.

	max-shard-data-change-listener-queue-size

	uint32 (1..max)

	1000

	The maximum queue size for each shard’s data store data change listener.

	max-shard-data-store-executor-queue-size

	uint32 (1..max)

	5000

	The maximum queue size for each shard’s data store executor.

	shard-transaction-idle-timeout-in-minutes

	uint32 (1..max)

	10

	The maximum amount of time a shard transaction can be idle without receiving any messages before it self-destructs.

	shard-snapshot-batch-count

	uint32 (1..max)

	20000

	The minimum number of entries to be present in the in-memory journal log before a snapshot is to be taken.

	shard-snapshot-data-threshold-percentage

	uint8 (1..100)

	12

	The percentage of Runtime.totalMemory() used by the in-memory journal log before a snapshot is to be taken

	shard-hearbeat-interval-in-millis

	uint16 (100..max)

	500

	The interval at which a shard will send a heart beat message to its remote shard.

	operation-timeout-in-seconds

	uint16 (5..max)

	5

	The maximum amount of time for akka operations (remote or local) to complete before failing.

	shard-journal-recovery-log-batch-size

	uint32 (1..max)

	5000

	The maximum number of journal log entries to batch on recovery for a shard before committing to the data store.

	shard-transaction-commit-timeout-in-seconds

	uint32 (1..max)

	30

	The maximum amount of time a shard transaction three-phase commit can be idle without receiving the next messages before it aborts the transaction

	shard-transaction-commit-queue-capacity

	uint32 (1..max)

	20000

	The maximum allowed capacity for each shard’s transaction commit queue.

	shard-initialization-timeout-in-seconds

	uint32 (1..max)

	300

	The maximum amount of time to wait for a shard to initialize from persistence on startup before failing an operation (eg transaction create and change listener registration).

	shard-leader-election-timeout-in-seconds

	uint32 (1..max)

	30

	The maximum amount of time to wait for a shard to elect a leader before failing an operation (eg transaction create).

	enable-metric-capture

	boolean

	false

	Enable or disable metric capture.

	bounded-mailbox-capacity

	uint32 (1..max)

	1000

	Max queue size that an actor’s mailbox can reach

	persistent

	boolean

	true

	Enable or disable data persistence

	shard-isolated-leader-check-interval-in-millis

	uint32 (1..max)

	5000

	the interval at which the leader of the shard will check if its majority followers are active and term itself as isolated

These configuration options are included in the etc/org.opendaylight.controller.cluster.datastore.cfg configuration file.

Persistence and Backup

Set Persistence Script

This script is used to enable or disable the config datastore persistence. The
default state is enabled but there are cases where persistence may not be
required or even desired. The user should restart the node to apply the changes.

Note

The script can be used at any time, even before the controller is started
for the first time.

Usage:

bin/set_persistence.sh <on/off>

Example:

bin/set_persistence.sh off

The above command will disable the config datastore persistence.

Backing Up and Restoring the Datastore

The same cluster-admin API described in the cluster guide
for managing shard voting states has an RPC allowing backup of the datastore in a single
node, taking only the file name as a parameter:

POST /restconf/operations/cluster-admin:backup-datastore

RPC input JSON:

{
 "input": {
 "file-path": "/tmp/datastore_backup"
 }
}

Note

This backup can only be restored if the YANG models of the backed-up data
are identical in the backup OpenDaylight instance and restore target
instance.

To restore the backup on the target node the file needs to be placed into the
$KARAF_HOME/clustered-datastore-restore directory, and then the node
restarted. If the directory does not exist (which is quite likely if this is a
first-time restore) it needs to be created. On startup, ODL checks if the
journal and snapshots directories in $KARAF_HOME are empty, and
only then tries to read the contents of the clustered-datastore-restore
directory, if it exists. So for a successful restore, those two directories
should be empty. The backup file name itself does not matter, and the startup
process will delete it after a successful restore.

The backup is node independent, so when restoring a 3 node cluster, it is best
to restore it on each node for consistency. For example, if restoring on one
node only, it can happen that the other two empty nodes form a majority and
the cluster comes up with no data.

ALTO User Guide

Overview

The ALTO project is aimed to provide support for Application Layer
Traffic Optimization services defined in RFC
7285 [https://tools.ietf.org/html/rfc7285] in OpenDaylight.

This user guide will introduce the three basic services (namely
simple-ird, manual-maps and host-tracker) which are
implemented since the Beryllium release, and give instructions on how to
configure them to provide corresponding ALTO services.

A new feature named simple-pce (Simple Path Computation Engine)
is added into Boron release as an ALTO extension service.

How to Identify ALTO Resources

Each ALTO resource can be uniquely identified by a tuple . For each
resource, a version-tag is used to support historical look-ups.

The formats of resource-id and version-tag are defined in section
10.2 [https://tools.ietf.org/html/rfc7285#section-10.2] and section
10.3 [https://tools.ietf.org/html/rfc7285#section-10.3] respectively.
The context-id is not part of the protocol and we choose the same
format as a universal unique identifier (UUID) which is defined in
RFC 4122 [http://tools.ietf.org/html/rfc4122].

A context is like a namespace for ALTO resources, which eliminates
resource-id collisions. For simplicity, we also provide a default
context with the id 000000000000-0000-0000-0000-00000000.

How to Use Simple IRD

The simple IRD feature provides a simple information resource
directory (IRD) service defined in RFC
7285 [https://tools.ietf.org/html/rfc7285#section-9].

Install the Feature

To enable simple IRD, run the following command in the karaf CLI:

karaf > feature:install odl-alto-simpleird

After the feature is successfully installed, a special context will be
created for all simple IRD resources. The id for this context can be
seen by executing the following command in a terminal:

curl -X GET -u admin:admin http://localhost:8181/restconf/operational/alto-simple-ird:information/

Create a new IRD

To create a new IRD resource, two fields MUST be provided:

	Field instance-id: the resource-id of the IRD resource;

	Field entry-context: the context-id for non-IRD entries managed
by this IRD resource.

Using the following script, one can create an empty IRD resource:

#!/bin/bash
filename: ird-create
INSTANCE_ID=$1
if [$2]; then
 CONTEXT_ID=$2
else
 CONTEXT_ID="00000000-0000-0000-0000-000000000000"
fi
URL="`http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-configuration/"$INSTANCE_ID"/[`http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-configuration/"$INSTANCE_ID"/`]`"
DATA=$(cat template \
 | sed 's/\$1/'$CONTEXT_ID'/g' \
 | sed 's/\$2/'$INSTANCE_ID'/g')
curl -4 -D - -X PUT -u admin:admin \
 -H "Content-Type: application/json" -d "$(echo $DATA)"\
 $URL

For example, the following command will create a new IRD named ird
which can accept entries with the default context-id:

$./ird-create ird 000000000000-0000-0000-0000-00000000

And below is the what the template file looks like:

{
 "ird-instance-configuration": {
 "entry-context": "/alto-resourcepool:context[alto-resourcepool:context-id='$1']",
 "instance-id": "$2"
 }
}

Remove an IRD

To remove an existing IRD (and all the entries in it), one can use the
following command in a terminal:

curl -X DELETE -u admin:admin http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-configuration/$INSTANCE_ID

Add a new entry

There are several ways to add entries to an IRD and in this section we
introduce only the simplest method. Using the following script, one can
add a new entry to the target IRD.

For each new entry, four parameters MUST be provided:

	Parameter ird-id: the resource-id of the target IRD;

	Parameter entry-id: the resource-id of the ALTO service to be
added;

	Parameter context-id: the context-id of the ALTO service to be
added, which MUST be identical to the target IRD’s entry-context;

	Parameter location: either a URI or a relative path to the ALTO
service.

The following script can be used to add one entry to the target IRD,
where the relative path is used:

#!/bin/bash
filename: ird-add-entry
IRD_ID=$1
ENTRY_ID=$2
CONTEXT_ID=$3
BASE_URL=$4
URL="`http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-configuration/"$IRD_ID"/ird-configuration-entry/"$ENTRY_ID"/"
DATA=$(cat template \
 | sed 's/\$1/'$ENTRY_ID'/g' \
 | sed 's/\$2/'$CONTEXT_ID'/g' \
 | sed 's/\$3/'$BASE_URL'/g')
curl -4 -D - -X PUT -u admin:admin \
 -H "Content-Type: application/json" -d "$(echo $DATA)" \
 $URL

For example, the following command will add a new resource named
networkmap, whose context-id is the default context-id and the base
URL is /alto/networkmap, to the IRD named ird:

$./ird-add-entry ird networkmap 000000000000-0000-0000-0000-00000000 /alto/networkmap

And below is the template file:

{
 "ird-configuration-entry": {
 "entry-id": "$1",
 "instance": "/alto-resourcepool:context[alto-resourcepool:context-id='$2']/alto-resourcepool:resource[alto-resourcepool:resource-id='$1']",
 "path": "$3/$1"
 }
}

Remove an entry

To remove an entry from an IRD, one can use the following one-line
command:

curl -X DELETE -u admin:admin http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-configuration/$IRD_ID/ird-configuration-entry/$ENTRY_ID/

How to Use Host-tracker-based ECS

As a real instance of ALTO services, *alto-hosttracker* reads data
from *l2switch* and generates a network map with resource id
hosttracker-network-map and a cost map with resource id
hostracker-cost-map. It can only work with OpenFlow-enabled
networks.

After installing the *odl-alto-hosttracker* feature, the
corresponding network map and cost map will be inserted into the data
store.

Managing Resource with alto-resourcepool

After installing odl-alto-release feature in Karaf,
alto-resourcepool feature will be installed automatically. And you
can manage all resources in ALTO via RESTCONF APIs provided by
alto-resourcepool.

With the example bash script below you can get any resource infomation
in a given context.

#!/bin/bash
RESOURCE_ID=$1
if [$2] ; then
 CONTEXT_ID=$2
else
 CONTEXT_ID="00000000-0000-0000-0000-000000000000"
fi
URL="http://localhost:8181/restconf/operational/alto-resourcepool:context/"$CONTEXT_ID"/alto-resourcepool:resource/"$RESOURCE_ID
curl -X GET -u admin:admin $URL | python -m json.tool | sed -n '/default-tag/p' | sed 's/.*:.*\"\(.*\)\".*/\1/g'

Manual Configuration

Using RESTCONF API

After installing odl-alto-release feature in Karaf, it is possible
to manage network-maps and cost-maps using RESTCONF. Take a look at all
the operations provided by resource-config at the API service page
which can be found at
http://localhost:8181/apidoc/explorer/index.html.

The easiest method to operate network-maps and cost-maps is to modify
data broker via RESTCONF API directly.

Using RPC

The resource-config package also provides a query RPC to config the
resources. You can CREATE, UPDATE and DELETE network-maps and
cost-maps via query RPC.

Simple Path Computation Engine

The simple-pce module provides a simple path computation engine for
ALTO and other projects. It supports basic CRUD (create, read, update,
delete) operations to manage L2 and L3 routing with/without rate
limitation. This module is an independent feature, so you can follow the
instruction below to install it independently.

karaf > feature:install odl-alto-extenstion

Note

The rate limitation meter requires OpenFlow 1.3 support.

Basic Usage with RESTCONF API

You can use the simple path computation engine with RESTCONF API, which
is defined in the YANG model
here [https://git.opendaylight.org/gerrit/gitweb?p=alto.git;a=blob;f=alto-extensions/simple-pce/api/src/main/yang/alto-spce.yang;h=f5bbe6744f7dfba493edd275aa18114e363727ab;hb=refs/heads/stable/boron].

Use Case

Server Selection

One of the key use case for ALTO is server selection. For example, a
client (with IP address 10.0.0.1) sends a data transferring request to
Data Transferring Service (DTS). And there are three data replica
servers (with IP address 10.60.0.1, 10.60.0.2 and 10.60.0.3) which can
response the request. In this case, DTS can send a query request to ALTO
server to make server selection decision.

Following is an example ALTO query:

POST /alto/endpointcost HTTP/1.1
Host: localhost:8080
Content-Type: application/alto-endpointcostparams+json
Accept: application/alto-endpointcost+json,application/alto-error+json
{
 "cost-type": {
 "cost-mode": "ordinal",
 "cost-metric": "hopcount"
 },
 "endpoints": {
 "srcs": ["ipv4:10.0.0.1"],
 "dsts": [
 "ipv4:10.60.0.1",
 "ipv4:10.60.0.2",
 "ipv4:10.60.0.3"
]
 }
}

Authentication, Authorization and Accounting (AAA) Services

Overview

Authentication, Authorization and Accounting (AAA) is a term for a
framework controlling access to resources, enforcing policies to use
those resources and auditing their usage. These processes are the
fundamental building blocks for effective network management and security.

Authentication provides a way of identifying a user, typically by
having the user enter a valid user name and valid password before access
is granted. The process of authentication is based on each user having a unique
set of criteria for gaining access. The AAA framework compares a user’s
authentication credentials with other user credentials stored in a database.
If the credentials match, the user is granted access to the network.
If the credentials don’t match, authentication fails and access is denied.

Authorization is the process of finding out what an authenticated user is
allowed to do within the system, which tasks can do, which API can call, etc.
The authorization process determines whether the user has the authority
to perform such actions.

Accounting is the process of logging the activity of an authenticated user,
for example, the amount of data a user has sent and/or received during a
session, which APIs called, etc.

Terms And Definitions

	AAA

	Authentication, Authorization and Accounting.

	Token

	A claim of access to a group of resources on the controller.

	Domain

	A group of resources, direct or indirect, physical, logical, or
virtual, for the purpose of access control.

	User

	A person who either owns or has access to a resource or group of
resources on the controller.

	Role

	Opaque representation of a set of permissions, which is merely a
unique string as admin or guest.

	Credential

	Proof of identity such as user name and password, OTP, biometrics, or
others.

	Client

	A service or application that requires access to the controller.

	Claim

	A data set of validated assertions regarding a user, e.g. the role,
domain, name, etc.

	Grant

	It is the entity associating a user with his role and domain.

	IdP

	Identity Provider.

	TLS

	Transport Layer Security

	CLI

	Command Line Interface

Security Framework for AAA services

Since Boron release, the OpenDaylight’s AAA services are based on the
Apache Shiro [https://shiro.apache.org/] Java Security Framework. The main
configuration file for AAA is located at “etc/shiro.ini” relative to the
OpenDaylight Karaf home directory.

How to enable AAA

AAA is enabled through installing the odl-aaa-shiro feature. The vast majority
of OpenDaylight’s northbound APIs (and all RESTCONF APIs) are protected by AAA
by default when installing the +odl-restconf+ feature, since the odl-aaa-shiro
is automatically installed as part of them. In the cases that APIs are not
protected by AAA, this will be noted in the per-project release notes.

How to disable AAA

Edit the “etc/shiro.ini” file and replace the following:

/** = authcBasic

with

/** = anon

Then restart the Karaf process.

AAA Realms

AAA plugin utilizes the Shiro Realms to support pluggable authentication &
authorization schemes. There are two parent types of realms:

	AuthenticatingRealm

	Provides no Authorization capability.

	Users authenticated through this type of realm are treated
equally.

	AuthorizingRealm

	AuthorizingRealm is a more sophisticated AuthenticatingRealm,
which provides the additional mechanisms to distinguish users
based on roles.

	Useful for applications in which roles determine allowed
capabilities.

OpenDaylight contains five implementations:

	TokenAuthRealm

	An AuthorizingRealm built to bridge the Shiro-based AAA service
with the h2-based AAA implementation.

	Exposes a RESTful web service to manipulate IdM policy on a
per-node basis. If identical AAA policy is desired across a
cluster, the backing data store must be synchronized using an out
of band method.

	A python script located at “etc/idmtool” is included to help
manipulate data contained in the TokenAuthRealm.

	Enabled out of the box. This is the realm configured by default.

	ODLJndiLdapRealm

	An AuthorizingRealm built to extract identity information from IdM
data contained on an LDAP server.

	Extracts group information from LDAP, which is translated into
OpenDaylight roles.

	Useful when federating against an existing LDAP server, in which
only certain types of users should have certain access privileges.

	Disabled out of the box.

	ODLJndiLdapRealmAuthNOnly

	The same as ODLJndiLdapRealm, except without role extraction.
Thus, all LDAP users have equal authentication and authorization
rights.

	Disabled out of the box.

	ODLActiveDirectoryRealm

	Wraps the generic ActiveDirectoryRealm provided by Shiro. This allows for
enhanced logging as well as isolation of all realms in a single package,
which enables easier import by consuming servlets.

	KeystoneAuthRealm

	This realm authenticates OpenDaylight users against the OpenStack’s
Keystone server.

	Disabled out of the box.

Note

More than one Realm implementation can be specified. Realms are attempted
in order until authentication succeeds or all realm sources are exhausted.
Edit the securityManager.realms = $tokenAuthRealm property in shiro.ini
and add all the realms needed separated by commas.

TokenAuthRealm

How it works

The TokenAuthRealm is the default Authorization Realm deployed in OpenDaylight.
TokenAuthRealm uses a direct authentication mechanism as shown in the following
picture:

[image: TokenAuthRealm direct authentication mechanism]
TokenAuthRealm direct authentication mechanism

A user presents some credentials (e.g., username/password) directly to the
OpenDaylight controller token endpoint /oauth2/token and receives an access
token, which then can be used to access protected resources on the controller.

Configuring TokenAuthRealm

The TokenAuthRealm stores IdM data in an h2 database on each node. Thus,
configuration of a cluster currently requires configuring the desired IdM policy
on each node. There are two supported methods to manipulate the TokenAuthRealm
IdM configuration:

	idmtool configuration tool

	RESTful Web Service configuration

Idmtool

A utility script located at “etc/idmtool” is used to manipulate the
TokenAuthRealm IdM policy. idmtool assumes a single domain, the default one
(sdn), since multiple domains are not supported in the Boron release. General
usage information for idmtool is derived through issuing the following command:

$ python etc/idmtool -h
usage: idmtool [-h] [--target-host TARGET_HOST]
 user
 {list-users,add-user,change-password,delete-user,list-domains,list-roles,add-role,delete-role,add-grant,get-grants,delete-grant}
 ...

positional arguments:
 user username for BSC node
 {list-users,add-user,change-password,delete-user,list-domains,list-roles,add-role,delete-role,add-grant,get-grants,delete-grant}
 sub-command help
 list-users list all users
 add-user add a user
 change-password change a password
 delete-user delete a user
 list-domains list all domains
 list-roles list all roles
 add-role add a role
 delete-role delete a role
 add-grant add a grant
 get-grants get grants for userid on sdn
 delete-grant delete a grant

optional arguments:
 -h, --help show this help message and exit
 --target-host TARGET_HOST
 target host node

Add a user

python etc/idmtool admin add-user newUser
Password:
Enter new password:
Re-enter password:
add_user(admin)

command succeeded!

json:
{
 "description": "",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "newUser",
 "password": "**********",
 "salt": "**********",
 "userid": "newUser@sdn"
}

Note

AAA redacts the password and salt fields for security purposes.

Delete a user

$ python etc/idmtool admin delete-user newUser@sdn
Password:
delete_user(newUser@sdn)

command succeeded!

List all users

$ python etc/idmtool admin list-users
Password:
list_users

command succeeded!

json:
{
 "users": [
 {
 "description": "user user",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "user",
 "password": "**********",
 "salt": "**********",
 "userid": "user@sdn"
 },
 {
 "description": "admin user",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "admin",
 "password": "**********",
 "salt": "**********",
 "userid": "admin@sdn"
 }
]
}

Change a user’s password

$ python etc/idmtool admin change-password admin@sdn
Password:
Enter new password:
Re-enter password:
change_password(admin)

command succeeded!

json:
{
 "description": "admin user",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "admin",
 "password": "**********",
 "salt": "**********",
 "userid": "admin@sdn"
}

Add a role

$ python etc/idmtool admin add-role network-admin
Password:
add_role(network-admin)

command succeeded!

json:
{
 "description": "",
 "domainid": "sdn",
 "name": "network-admin",
 "roleid": "network-admin@sdn"
}

Delete a role

$ python etc/idmtool admin delete-role network-admin@sdn
Password:
delete_role(network-admin@sdn)

command succeeded!

List all roles

$ python etc/idmtool admin list-roles
Password:
list_roles

command succeeded!

json:
{
 "roles": [
 {
 "description": "a role for admins",
 "domainid": "sdn",
 "name": "admin",
 "roleid": "admin@sdn"
 },
 {
 "description": "a role for users",
 "domainid": "sdn",
 "name": "user",
 "roleid": "user@sdn"
 }
]
}

List all domains

$ python etc/idmtool admin list-domains
Password:
list_domains

command succeeded!

json:
{
 "domains": [
 {
 "description": "default odl sdn domain",
 "domainid": "sdn",
 "enabled": true,
 "name": "sdn"
 }
]
}

Add a grant

$ python etc/idmtool admin add-grant user@sdn admin@sdn
Password:
add_grant(userid=user@sdn,roleid=admin@sdn)

command succeeded!

json:
{
 "domainid": "sdn",
 "grantid": "user@sdn@admin@sdn@sdn",
 "roleid": "admin@sdn",
 "userid": "user@sdn"
}

Delete a grant

$ python etc/idmtool admin delete-grant user@sdn admin@sdn
Password:
http://localhost:8181/auth/v1/domains/sdn/users/user@sdn/roles/admin@sdn
delete_grant(userid=user@sdn,roleid=admin@sdn)

command succeeded!

Get grants for a user

python etc/idmtool admin get-grants admin@sdn
Password:
get_grants(admin@sdn)

command succeeded!

json:
{
 "roles": [
 {
 "description": "a role for users",
 "domainid": "sdn",
 "name": "user",
 "roleid": "user@sdn"
 },
 {
 "description": "a role for admins",
 "domainid": "sdn",
 "name": "admin",
 "roleid": "admin@sdn"
 }
]
}

Configuration using the RESTful Web Service

The TokenAuthRealm IdM policy is fully configurable through a RESTful
web service. Full documentation for manipulating AAA IdM data is located
online (https://wiki.opendaylight.org/images/0/00/AAA_Test_Plan.docx),
and a few examples are included in this guide:

Get All Users

curl -u admin:admin http://localhost:8181/auth/v1/users
OUTPUT:
{
 "users": [
 {
 "description": "user user",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "user",
 "password": "**********",
 "salt": "**********",
 "userid": "user@sdn"
 },
 {
 "description": "admin user",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "admin",
 "password": "**********",
 "salt": "**********",
 "userid": "admin@sdn"
 }
]
}

Create a User

curl -u admin:admin -X POST -H "Content-Type: application/json" --data-binary @./user.json http://localhost:8181/auth/v1/users
PAYLOAD:
{
 "name": "ryan",
 "userid": "ryan@sdn",
 "password": "ryan",
 "domainid": "sdn",
 "description": "Ryan's User Account",
 "email": "ryandgoulding@gmail.com"
}

OUTPUT:
{
 "userid":"ryan@sdn",
 "name":"ryan",
 "description":"Ryan's User Account",
 "enabled":true,
 "email":"ryandgoulding@gmail.com",
 "password":"**********",
 "salt":"**********",
 "domainid":"sdn"
}

Create an OAuth2 Token For Admin Scoped to SDN

curl -d 'grant_type=password&username=admin&password=a&scope=sdn' http://localhost:8181/oauth2/token

OUTPUT:
{
 "expires_in":3600,
 "token_type":"Bearer",
 "access_token":"5a615fbc-bcad-3759-95f4-ad97e831c730"
}

Use an OAuth2 Token

curl -H "Authorization: Bearer 5a615fbc-bcad-3759-95f4-ad97e831c730" http://localhost:8181/auth/v1/domains
{
 "domains":
 [
 {
 "domainid":"sdn",
 "name":"sdn”,
 "description":"default odl sdn domain",
 "enabled":true
 }
]
}

Token Store Configuration Parameters

Edit the file “etc/opendaylight/karaf/08-authn-config.xml” and edit the
following: .timeToLive: Configure the maximum time, in milliseconds,
that tokens are to be cached. Default is 360000. Save the file.

ODLJndiLdapRealm

How it works

LDAP integration is provided in order to externalize identity
management. This configuration allows federation with an external LDAP server.
The user’s OpenDaylight role parameters are mapped to corresponding LDAP
attributes as specified by the groupRolesMap. Thus, an LDAP operator can
provision attributes for LDAP users that support different OpenDaylight role
structures.

Configuring ODLJndiLdapRealm

To configure LDAP parameters, modify “etc/shiro.ini”
parameters to include the ODLJndiLdapRealm:

OpenDaylight provides a few LDAP implementations, which are disabled out of the box.
ODLJndiLdapRealm includes authorization functionality based on LDAP elements
extracted through and LDAP search. This requires a bit of knowledge about
how your LDAP system is setup. An example is provided below:
ldapRealm = org.opendaylight.aaa.shiro.realm.ODLJndiLdapRealm
ldapRealm.userDnTemplate = uid={0},ou=People,dc=DOMAIN,dc=TLD
ldapRealm.contextFactory.url = ldap://<URL>:389
ldapRealm.searchBase = dc=DOMAIN,dc=TLD
ldapRealm.ldapAttributeForComparison = objectClass
ldapRealm.groupRolesMap = "Person":"admin"
...
further down in the file...
Stacked realm configuration; realms are round-robbined until authentication succeeds or realm sources are exhausted.
securityManager.realms = $tokenAuthRealm, $ldapRealm

ODLJndiLdapRealmAuthNOnly

How it works

This is useful for setups where all LDAP users are allowed equal access.

Configuring ODLJndiLdapRealmAuthNOnly

Edit the “etc/shiro.ini” file and modify the following:

ldapRealm = org.opendaylight.aaa.shiro.realm.ODLJndiLdapRealm
ldapRealm.userDnTemplate = uid={0},ou=People,dc=DOMAIN,dc=TLD
ldapRealm.contextFactory.url = ldap://<URL>:389
...
further down in the file...
Stacked realm configuration; realms are round-robbined until authentication succeeds or realm sources are exhausted.
securityManager.realms = $tokenAuthRealm, $ldapRealm

KeystoneAuthRealm

How it works

This realm authenticates OpenDaylight users against the OpenStack’s Keystone
server. This realm uses the
Keystone’s Identity API v3 [https://developer.openstack.org/api-ref/identity/v3/]
or later.

[image: KeystoneAuthRealm authentication mechanism]
KeystoneAuthRealm authentication/authorization mechanism

As can shown on the above diagram, once configured, all the RESTCONF APIs calls
will require sending user, password and optionally domain (1). Those
credentials are used to authenticate the call against the Keystone server (2) and,
if the authentication succeeds, the call will proceed to the MDSAL (3). The
credentials must be provisioned in advance within the Keystone Server. The user
and password are mandatory, while the domain is optional, in case it is not
provided within the REST call, the realm will default to (Default),
which is hard-coded. The default domain can be also configured through the
shiro.ini file (see the AAA User Guide).

The protocol between the Controller and the Keystone Server (2) can be either
HTTPS or HTTP. In order to use HTTPS the Keystone Server’s certificate
must be exported and imported on the Controller (see the Certificate Management section).

Configuring KeystoneAuthRealm

Edit the “etc/shiro.ini” file and modify the following:

The KeystoneAuthRealm allows for authentication/authorization against an
OpenStack's Keystone server. It uses the Identity's API v3 or later.
keystoneAuthRealm = org.opendaylight.aaa.shiro.realm.KeystoneAuthRealm
The URL where the Keystone server exposes the Identity's API v3 the URL
can be either HTTP or HTTPS and it is mandatory for this realm.
keystoneAuthRealm.url = https://<host>:<port>
Optional parameter to make the realm verify the certificates in case of HTTPS
#keystoneAuthRealm.sslVerification = true
Optional parameter to set up a default domain for requests using credentials
without domain, uncomment in case you want a different value from the hard-coded
one "Default"
#keystoneAuthRealm.defaultDomain = Default

Once configured the realm, the mandatory fields are the fully quallified name of
the class implementing the realm keystoneAuthRealm and the endpoint where the
Keystone Server is listening keystoneAuthRealm.url.

The optional parameter keystoneAuthRealm.sslVerification specifies whether the
realm has to verify the SSL certificate or not. The optional parameter
keystoneAuthRealm.defaultDomain allows to use a different default domain from
the hard-coded one “Default”.

Authorization Configuration

OpenDaylight supports two authorization engines at present, both of which are
roughly similar in behavior:

	Shiro-Based Authorization

	MDSAL-Based Dynamic Authorization

Note

The preferred mechanism for configuring AAA Authentication is the
MDSAL-Based Dynamic Authorization. Read the following section.

Shiro-Based Static Authorization

OpenDaylight AAA has support for Role Based Access Control (RBAC) based
on the Apache Shiro permissions system. Configuration of the authorization
system is done off-line; authorization currently cannot be configured
after the controller is started. The Authorization provided by this mechanism
is aimed towards supporting coarse-grained security policies, the MDSAL-Based
mechanism allows for a more robust configuration capabilities. Shiro-based
Authorization [http://shiro.apache.org/web.html#Web-%7B%7B%5Curls%5C%7D%7D]
describes how to configure the Authentication feature in detail.

Enable “admin” Role Based Access to the IdMLight RESTful web service

Edit the “etc/shiro.ini” configuration file and add “/auth/v1/**=
authcBasic, roles[admin]” above the line “/** = authcBasic” within the
“urls” section.

/auth/v1/** = authcBasic, roles[admin]
/** = authcBasic

This will restrict the idmlight rest endpoints so that a grant for admin
role must be present for the requesting user.

Note

The ordering of the authorization rules above is important!

MDSAL-Based Dynamic Authorization

The MDSAL-Based Dynamic authorization uses the MDSALDynamicAuthorizationFilter
engine to restrict access to particular URL endpoint patterns. Users may define
a list of policies that are insertion-ordered. Order matters for that list of
policies, since the first matching policy is applied. This choice was made to
emulate behavior of the Shiro-Based Authorization mechanism.

A policy is a key/value pair, where the key is a resource
(i.e., a “URL pattern”) and the value is a list of permissions for the
resource. The following describes the various elements of a policy:

	Resource: the resource is a string URL pattern as outlined by
Apache Shiro. For more information, see http://shiro.apache.org/web.html.

	Description: an optional description of the URL endpoint and why it is
being secured.

	Permissions list: a list of permissions for a particular policy. If more
than one permission exists in the permissions list they are evaluated using
logical “OR”. A permission describes the prerequisites to perform HTTP
operations on a particular endpoint. The following describes the various
elements of a permission:

	Role: the role required to access the target URL endpoint.

	Actions list: a leaf-list of HTTP permissions that are allowed for a
Subject possessing the required role.

This an example on how to limit access to the modules endpoint:

HTTP Operation:
put URL: /restconf/config/aaa:http-authorization/policies

headers: Content-Type: application/json Accept: application/json

body:
 { "aaa:policies":
 { "aaa:policies":
 [{ "aaa:resource": "/restconf/modules/**",
 "aaa:permissions": [{ "aaa:role": "admin",
 "aaa:actions": ["get",
 "post",
 "put",
 "patch",
 "delete"
]
 }
]
 }
]
 }
 }

The above example locks down access to the modules endpoint (and any URLS
available past modules) to the “admin” role. Thus, an attempt from the OOB
admin user will succeed with 2XX HTTP status code, while an attempt from the
OOB user user will fail with HTTP status code 401, as the user user is not
granted the “admin” role.

Accounting Configuration

Accounting is handled through the standard slf4j logging mechanisms used by the
rest of OpenDaylight. Thus, one can control logging verbosity through
manipulating the log levels for individual packages and classes directly through
the Karaf console, JMX, or etc/org.ops4j.pax.logging.cfg. In normal operations,
the default levels exposed do not provide much information about AAA services;
this is due to the fact that logging can severely degrade performance.

All AAA logging is output to the standard karaf.log file. For debugging purposes
(i.e., to enable maximum verbosity), issue the following command:

log:set TRACE org.opendaylight.aaa

Enable Successful/Unsuccessful Authentication Attempts Logging

By default, successful/unsuccessful authentication attempts are NOT logged. This
is due to the fact that logging can severely decrease REST performance.
To enable logging of successful/unsuccessful REST attempts, issue the following
command in Karaf’s console:

log:set DEBUG org.opendaylight.aaa.shiro.filters.AuthenticationListener

It is possible to add custom AuthenticationListener(s) to the Shiro-based
configuration, allowing different ways to listen for successful/unsuccessful
authentication attempts. Custom AuthenticationListener(s) must implement
the org.apache.shiro.authc.AuthenticationListener interface.

Certificate Management

The Certificate Management Service is used to manage the keystores and
certificates at the OpenDaylight distribution to easily provides the TLS
communication.

The Certificate Management Service managing two keystores:

	OpenDaylight Keystore which holds the OpenDaylight distribution
certificate self sign certificate or signed certificate from a root CA based
on generated certificate request.

	Trust Keystore which holds all the network nodes certificates that shall
to communicate with the OpenDaylight distribution through TLS communication.

The Certificate Management Service stores the keystores (OpenDaylight & Trust)
as .jks files under configuration/ssl/ directory. Also the keystores
could be stored at the MD-SAL datastore in case OpenDaylight distribution
running at cluster environment. When the keystores are stored at MD-SAL,
the Certificate Management Service rely on the Encryption-Service to encrypt
the keystore data before storing it to MD-SAL and decrypted at runtime.

How to use the Certificate Management Service to manage the TLS communication

The following are the steps to configure the TLS communication:

1. After starting the distribution, the odl-aaa-cert feature has to get
installed. Use the following command at Karaf CLI to check.

opendaylight-user@root>feature:list -i | grep aaa-cert
odl-aaa-cert | 0.5.0-SNAPSHOT | x | odl-aaa-0.5.0-SNAPSHOT | OpenDaylight :: AAA :: aaa certificate Service

2. The initial configuration of the Certificate Manager Service exists under
the distribution directory etc/opendaylight/datastore/initial/config/aaa-cert-config.xml.

<aaa-cert-service-config xmlns="urn:opendaylight:yang:aaa:cert">
 <use-config>false</use-config>
 <use-mdsal>false</use-mdsal>
 <bundle-name>opendaylight</bundle-name>
 <ctlKeystore>
 <name>ctl.jks</name>
 <alias>controller</alias>
 <store-password/>
 <dname>CN=ODL, OU=Dev, O=LinuxFoundation, L=QC Montreal, C=CA</dname>
 <validity>365</validity>
 <key-alg>RSA</key-alg>
 <sign-alg>SHA1WithRSAEncryption</sign-alg>
 <keysize>1024</keysize>
 <cipher-suites>
 <suite-name />
 </cipher-suites>
 </ctlKeystore>
 <trustKeystore>
 <name>truststore.jks</name>
 <store-password/>
 </trustKeystore>
</aaa-cert-service-config>

Now as it is explained above, the Certificate Manager Service support two mode
of operations; cluster mode and single mode. To use the single mode change the
use-config to true and it is recommended as long as there is no need for
cluster environment. To use the cluster mode change the use-config and
use-mdsal configurations to true and the keystores will be stored and shard
across the cluster nodes within the MD-SAL datastore.

The initial password become randomly generated when the aaa-cert feature is
installed.

The cipher suites can be restricted by changing the <cipher-suites>
configuration, however, the JDK has to be upgraded by installing the Java
Cryptography Extension [http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html]
policy.

<cipher-suites>
 <suite-name>TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384</suite-name>
</cipher-suites>
 <cipher-suites>
<suite-name>TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384</suite-name>
 </cipher-suites>
<cipher-suites>
 <suite-name>TLS_DHE_RSA_WITH_AES_256_GCM_SHA384</suite-name>
</cipher-suites>

	The new configurations will take affect after restarting the distribution.

4. Now to add or get certificate to the OpenDaylight and Trust keystores, the
Certificate Manager Service provides the following RPCs.

a) Set the node certificate that will communicate with OpeDaylight through TLS
connection.
POST /operations/aaa-cert-rpc:setNodeCertifcate
{
 "input": {
 "node-cert": "string",
 "node-alias": "string"
 }
}

b) Get the node certificate based on node alias.
POST /operations/aaa-cert-rpc:getNodeCertifcate
{
 "input": {
 "node-alias": "string"
 }
}

c) Get the OpeDaylight keystore certificate.
POST /operations/aaa-cert-rpc:getODLCertificate
{
 output {
 odl-cert "string"
 }
}

d) Generate a certificate request from the OpeDaylight keystore to be signed
by a CA.
POST /operations/aaa-cert-rpc:getODLCertificateReq
{
 output {
 odl-cert-req "string"
 }
}

e) Set the OpeDaylight certificate, the certificate should be generated
based on a certificate request generated from the ODL keystore otherwise the
certificated will not be added.
POST /operations/aaa-cert-rpc:setODLCertificate
{
 "input": {
 "odl-cert-alias": "string",
 "odl-cert": "string"
 }
}

Note

The Certificate Manager Service RPCs are allowed only to the Role Admin Users
and it could be completely disabled through the shiro.ini config file. Check
the URL section at the shiro.ini.

Encryption Service

The AAA Encryption Service is used to encrypt the OpenDaylight’s users’
passwords and TLS communication certificates. This section shows how to use the
AAA Encryption Service with an OpenDaylight distribution project to encrypt data.

The following are the steps to configure the Encryption Service:

	After starting the distribution, the aaa-encryption-service feature has to
get installed. Use the following command at Karaf CLI to check.

opendaylight-user@root>feature:list -i | grep aaa-encryption-service
odl-aaa-encryption-service | 0.5.0-SNAPSHOT | x | odl-aaa-0.5.0-SNAPSHOT | OpenDaylight :: AAA :: Encryption Service

	The initial configuration of the Encryption Service exists under the
distribution directory etc/opendaylight/datastore/initial/config/aaa-encrypt-service-config.xml

<aaa-encrypt-service-config xmlns="config:aaa:authn:encrypt:service:config">
 <encrypt-key/>
 <encrypt-salt/>
 <encrypt-method>PBKDF2WithHmacSHA1</encrypt-method>
 <encrypt-type>AES</encrypt-type>
 <encrypt-iteration-count>32768</encrypt-iteration-count>
 <encrypt-key-length>128</encrypt-key-length>
 <cipher-transforms>AES/CBC/PKCS5Padding</cipher-transforms>
</aaa-encrypt-service-config>

Note

Both the initial encryption key and encryption salt become randomly generated
when the aaa-encryption-service feature is installed.

	Finally the new configurations will take affect after restarting the
distribution.

Using the AAA Command Line Interface (CLI)

The AAA offers a CLI through the Karaf’s console. This CLI allows the user to
configure and use some of the functionalities provided by AAA.

The AAA CLI exists under the odl-aaa-cli feature. This feature can be
installed by executing the following command.

feature:install odl-aaa-cli

To check that the installation of the feature succeeded type “aaa” and press
tab to see the list of available commands under the aaa scope.

opendaylight-user@root>aaa:
aaa:add-domain aaa:add-grant aaa:add-role aaa:add-user
aaa:change-user-pwd aaa:export-keystores aaa:gen-cert-req aaa:get-cipher-suites
aaa:get-domains aaa:get-node-cert aaa:get-odl-cert aaa:get-roles
aaa:get-tls-protocols aaa:get-users aaa:import-keystores aaa:remove-domain
aaa:remove-grant aaa:remove-role aaa:remove-user

Add a User

The add-user command allows for adding an OpenDaylight user. The following
user parameters can be specified.

aaa:add-user --name <user name>
 --roleName <role>
 --userDescription <user description>
 --email <user email>
 --domainName <domain name>

List available Users

The get-users command list all the available users within the Controller.

aaa:get-users

 user
 admin

Remove a User

The remove-user command allows for removing an OpenDaylight user. The command
needs the user name as parameter.

aaa:remove-user --name <user name>

Change the OpenDaylight user password

The change-user-pwd command allows for changing the OpenDaylight user’s
password. It takes the user name as argument then will ask for the given user
current password.

aaa:change-user-pwd -user admin
 Enter current password:
 Enter new password:
 admin's password has been changed

Add a Role

The add-role command allows for adding a role to the Controller.

aaa:add-role --name <role name>
 --desc <role description>
 --domainName <domain name>

List available Roles

The get-roles command list all the available roles within the controller.

aaa:get-roles

 user
 admin

Remove a Role

The remove-role command allows for removing an OpenDaylight role. The command
needs the role name as parameter. The role will be removed from those users who
have it.

aaa:remove-role --name <role name>

Add a Domain

The add-domain command allows for adding a domain to the Controller.

aaa:add-domain --name <domain name>
 --desc <domain description>

List available Domains

The get-domains command list all the available domains within the controller.
The system asks for the administrator credentials to execute this command.

aaa:get-domains

 sdn

Remove a Domain

The remove-domain command allows for removing an OpenDaylight role. The command
needs the domain name as parameter.

aaa:remove-domain --name <domain name>

Add a Grant

The add-grant command allows for creating a grant for an existing user. The
command returns a grant id for that user.

aaa:add-grant --userName <user name>
 --domainName <domain name>
 --roleName <role name>

Remove a Grant

The remove-grant command allows for removing an OpenDaylight grant. This command
needs the user name, domain and and role as parameters.

aaa:remove-grant --userName <user name>
 --domainName <domain name>
 --roleName <role name>

Generate Certificate Request

Generate certificate request command will generate a certificate request based
on the generated OpenDaylight keystore and print it on the Karaf CLI. The system
asks for the keystore password.

aaa:gen-cert-req

-----BEGIN CERTIFICATE REQUEST-----
MIIBlzCCAQACAQAwWTELMAkGA1UEBhMCQ0ExFDASBgNVBAcMC1FDIE1vbnRyZWFsMRgwFgYDVQQKDA
9MaW51eEZvdW5kYXRpb24xDDAKBgNVBAsMA0RldjEMMAoGA1UEAwwDT0RMMIGfMA0GCSqGSIb3DQEB
AQUAA4GNADCBiQKBgQCCmLW6j+JLYJM5yAMwscw/CHqPnp5elPa1YtQsHKEAvp1I+mLVtHKZeXeteA
kyp6ORxw6KQ515fcDyQVrRJiSM15jUd27UaFq5ku0+qJeG+Qh2btx+cvNSE7/+cgUWWosKz4Aff5F5
FqR62jLUTNzqCvoaTbZaOnLYVq+O2dYyZwIDAQABMA0GCSqGSIb3DQEBBQUAA4GBADhDr4Jm7gVm/o
p861/FShyw1ZZscxOEl2TprJZiTO6sn3sLptQZv8v52Z+Jm5dAgr7L46c97Xfa+0j6Y4LXNb0f88lL
RG8PxGbk6Tqbjqc0WS+U1Ibc/rcPK4HEN/bcYCn+Na1gLBaFXUPg08ozG6MwqFNeS5Z0jz1W0D9/oiao
-----END CERTIFICATE REQUEST-----

Get OpenDaylight Certificate

The get-odl-certificate command will print the OpenDaylight certificate at the
Karaf CLI. The system asks for the keystore password.

aaa:get-odl-cert -storepass <store_password>

-----BEGIN CERTIFICATE-----
MIICKTCCAZKgAwIBAgIEI75RWDANBgkqhkiG9w0BAQUFADBZMQwwCgYDVQQDDANPREwxDDAKBgNVBA
sMA0RldjEYMBYGA1UECgwPTGludXhGb3VuZGF0aW9uMRQwEgYDVQQHDAtRQyBNb250cmVhbDELMAkG
A1UEBhMCQ0EwHhcNMTYxMTMwMTYyNDE3WhcNMTcxMTMwMTYyNDE3WjBZMQwwCgYDVQQDDANPREwxDD
AKBgNVBAsMA0RldjEYMBYGA1UECgwPTGludXhGb3VuZGF0aW9uMRQwEgYDVQQHDAtRQyBNb250cmVh
bDELMAkGA1UEBhMCQ0EwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAIKYtbqP4ktgkznIAzCxzD
8Ieo+enl6U9rVi1CwcoQC+nUj6YtW0cpl5d614CTKno5HHDopDnXl9wPJBWtEmJIzXmNR3btRoWrmS
7T6ol4b5CHZu3H5y81ITv/5yBRZaiwrPgB9/kXkWpHraMtRM3OoK+hpNtlo6cthWr47Z1jJnAgMBAA
EwDQYJKoZIhvcNAQEFBQADgYEAL9DK/P/yEBre3Mg3bICAUAvSvZic+ydDmigWLsY4J3UzKdV2f1jI
s+rQTEgtlHShBf/ed546D49cp3XEzYrcxgILhGXDziCrUK0K1TiYqPTp6FLijjdydGlPpwuMyyV5Y0
iDiRclWuPz2fHbs8WQOWNs6VQ+WaREXtEsEC4qgSo=
-----END CERTIFICATE-----

Get Cipher Suites

The get-cipher-suites command shows the cipher suites supported by the
JVM used by the OpenDaylight controller in TLS communication. For example, here
are the Default Ciphers Suites in JDK 8 [http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#ciphersuites].

aaa:get-cipher-suites

 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

Get TLS Protocols

The get-tls-protocols command shows the TLS protocols supported by the
JVM used by the OpenDaylight controller. For example, the JDK 8 supports the
following TLS protocols: TLSv1.2 (default), TLSv1.1, TLSv1 and SSLv3.

aaa:get-tls-protocols

 TLS_KRB5_WITH_RC4_128_SHA
 TLS_KRB5_WITH_RC4_128_MD5
 TLS_KRB5_WITH_3DES_EDE_CBC_SHA
 TLS_KRB5_WITH_3DES_EDE_CBC_MD5
 TLS_KRB5_WITH_DES_CBC_SHA

Get Node Certificate

The get-node-cert command prints a certificate for a given network node alias.
This command is useful to check if the network node certificate has been added
properly to the truest keystore. It takes the certificate alias as arguments.

aaa:get-node-cert -alias ovs1
-----BEGIN CERTIFICATE-----
MIICKTCCAZKgAwIBAgIEI75RWDANBgkqhkiG9w0BAQUFADBZMQwwCgYDVQQDDANPREwxDDAKBgNVBA
sMA0RldjEYMBYGA1UECgwPTGludXhGb3VuZGF0aW9uMRQwEgYDVQQHDAtRQyBNb250cmVhbDELMAkG
A1UEBhMCQ0EwHhcNMTYxMTMwMTYyNDE3WhcNMTcxMTMwMTYyNDE3WjBZMQwwCgYDVQQDDANPREwxDD
AKBgNVBAsMA0RldjEYMBYGA1UECgwPTGludXhGb3VuZGF0aW9uMRQwEgYDVQQHDAtRQyBNb250cmVh
bDELMAkGA1UEBhMCQ0EwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAIKYtbqP4ktgkznIAzCxzD
8Ieo+enl6U9rVi1CwcoQC+nUj6YtW0cpl5d614CTKno5HHDopDnXl9wPJBWtEmJIzXmNR3btRoWrmS
7T6ol4b5CHZu3H5y81ITv/5yBRZaiwrPgB9/kXkWpHraMtRM3OoK+hpNtlo6cthWr47Z1jJnAgMBAA
EwDQYJKoZIhvcNAQEFBQADgYEAL9DK/P/yEBre3Mg3bICAUAvSvZic+ydDmigWLsY4J3UzKdV2f1jI
s+rQTEgtlHShBf/ed546D49cp3XEzYrcxgILhGXDziCrUK0K1TiYqPTp6FLijjdydGlPpwuMyyV5Y0
iDiRclWuPz2fHbs8WQOWNs6VQ+WaREXtEsEC4qgSo=
-----END CERTIFICATE-----

Export Keystores

The export-keystores command exports the default MD-SAL Keystores to .jks
files in the default directory for keystores (configuration/ssl/).

aaa:export-keystores

 Default directory for keystores is configuration/ssl/

Import Keystores

The import-keystores command imports the default MD-SAL Keystores. The
keystores (odl and trust) should exist under default SSL directory
(configuration/ssl/).

aaa:import-keystores --trustKeystoreName <name of the trust keystore>
 --trustKeystorePwd <password for the trust keystore>
 --odlKeystoreName <name of the ODL keystore>
 --odlKeystorePwd <password for the ODL keystore>
 --odlKeystoreAlias <alias of the ODL keystore>
 --tlsProtocols <list of TLS protocols separated by ','>
 --cipherSuites <list of Cipher suites separated by ','>

Warning

It is strongly recommended to run the history clear command after you execute
all the AAA CLI commands so Karaf logs stay clean from any adversary.

history -c

BGP User Guide

This guide contains information on how to use OpenDaylight Border Gateway Protocol (BGP) plugin.
The user should learn about BGP basic concepts, supported capabilities, configuration and usage.

Contents

	Overview

	Running BGP

	Basic Configuration & Concepts

	IP Unicast Family

	IP Labeled Unicast Family

	IP L3VPN Family

	Link-State Family

	Flow Specification Family

	EVPN Family

	Additional Path

	Route Refresh

	Operational State

	High Availability

	Topology Provider

	Test Tools

	Troubleshooting

Overview

This section provides high-level overview of the Border Gateway Protocol, OpenDaylight implementation and BGP usage in SDN era.

Contents

	Border Gateway Protocol

	BGP in SDN

	OpenDaylight BGP plugin

	List of supported capabilities

Border Gateway Protocol

The Border Gateway Protocol (BGP) is an inter-Autonomous System (AS) routing protocol.
The primary role of the BGP is an exchange of routes among other BGP systems.
The route is an unit of information which pairs destination (IP address prefix) with attributes to the path with the destination.
One of the most interesting attributes is a list of ASes that the route traversed - essential when avoiding loop routing.
Advertised routes are stored in the Routing Information Bases (RIBs). Routes are later used to forward packets, stored in Routing Table for this purpose.
The main advantage of the BGP over other routing protocols is its scalability, thus it has become the standardized Internet routing protocol (Internet is a set of ASes).

BGP in SDN

However BGP evolved long time before SDN was born, it plays a significant role in many SDN use-cases.
Also, continuous evolution of the protocol brings extensions that are very well suited for SDN.
Nowadays, BGP can carry various types of routing information - L3VPN, L2VPN, IP multicast, linkstate, etc.
Here is a brief list of software-based/legacy-network technologies where BGP-based SDN solution get into an action:

	SDN WAN - WAN orchestration and optimization

	SDN router - Turns switch into an Internet router

	Virtual Route Reflector - High-performance server-based BGP Route Reflector

	SDX - A Software Defined Internet Exchange controller

	Large-Scale Data Centers - BGP Data Center Routing, MPLS/SR in DCs, DC interconnection

	DDoS mitigation - Traffic Filtering distribution with BGP

OpenDaylight BGP plugin

The OpenDaylight controller provides an implementation of BGP (RFC 4271) as a south-bound protocol plugin.
The implementation renders all basic BGP speaker capabilities:

	inter/intra-AS peering

	routes advertising

	routes originating

	routes storage

The plugin’s north-bound API (REST/Java) provides to user:

	fully dynamic runtime standardized BGP configuration

	read-only access to all RIBs

	read-write programmable RIBs

	read-only reachability/linkstate topology view

Note

The BGP plugin is NOT a virtual router - does not construct Routing Tables, nor forward traffic.

List of supported capabilities

In addition to the base protocol implementation, the plugin provides many extensions to BGP, all based on IETF standards.

	RFC4271 [https://tools.ietf.org/html/rfc4271] - A Border Gateway Protocol 4 (BGP-4)

	RFC4456 [https://tools.ietf.org/html/rfc4456] - BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP)

	RFC1997 [https://tools.ietf.org/html/rfc1997] - BGP Communities Attribute

	RFC4360 [https://tools.ietf.org/html/rfc4360] - BGP Extended Communities Attribute

	RFC4486 [https://tools.ietf.org/html/rfc4486] - Subcodes for BGP Cease Notification Message

	RFC5492 [https://tools.ietf.org/html/rfc5492] - Capabilities Advertisement with BGP-4

	RFC5004 [https://tools.ietf.org/html/rfc5004] - Avoid BGP Best Path Transitions from One External to Another

	RFC6286 [https://tools.ietf.org/html/rfc6286] - Autonomous-System-Wide Unique BGP Identifier for BGP-4

	RFC6793 [https://tools.ietf.org/html/rfc6793] - BGP Support for Four-Octet Autonomous System (AS) Number Space

	RFC7311 [https://tools.ietf.org/html/rfc7311] - The Accumulated IGP Metric Attribute for BGP

	RFC5668 [https://tools.ietf.org/html/rfc5668] - 4-Octet AS Specific BGP Extended Community

	draft-ietf-idr-link-bandwidth [https://tools.ietf.org/html/draft-ietf-idr-link-bandwidth-06] - BGP Link Bandwidth Extended Community

	draft-ietf-idr-bgp-extended-messages [https://tools.ietf.org/html/draft-ietf-idr-bgp-extended-messages-13] - Extended Message support for BGP

	
	RFC4760 [https://tools.ietf.org/html/rfc4760] - Multiprotocol Extensions for BGP-4

	
	
	RFC7752 [https://tools.ietf.org/html/rfc7752] - North-Bound Distribution of Link-State and TE Information using BGP

	
	draft-gredler-idr-bgp-ls-segment-routing-ext [https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-03] - BGP Link-State extensions for Segment Routing

	draft-ietf-idr-bgpls-segment-routing-epe [https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-05] - Segment Routing Egress Peer Engineering BGP-LS Extensions

	
	RFC5575 [https://tools.ietf.org/html/rfc5575] - Dissemination of Flow Specification Rules

	
	RFC7674 [http://tools.ietf.org/html/rfc7674] - Clarification of the Flowspec Redirect Extended Community

	draft-ietf-idr-flow-spec-v6 [https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-07] - Dissemination of Flow Specification Rules for IPv6

	draft-ietf-idr-flowspec-redirect-ip [https://tools.ietf.org/html/draft-ietf-idr-flowspec-redirect-ip-00] - BGP Flow-Spec Redirect to IP Action

	
	RFC3107 [https://tools.ietf.org/html/rfc3107] - Carrying Label Information in BGP-4

	
	draft-ietf-idr-bgp-prefix-sid [https://tools.ietf.org/html/draft-ietf-idr-bgp-prefix-sid-03] - Segment Routing Prefix SID extensions for BGP

	
	RFC4364 [https://tools.ietf.org/html/rfc4364] - BGP/MPLS IP Virtual Private Networks (VPNs)

	
	RFC4659 [https://tools.ietf.org/html/rfc4659] - BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN

	
	RFC7432 [https://tools.ietf.org/html/rfc7432] - BGP MPLS-Based Ethernet VPN

	
	draft-ietf-bess-evpn-overlay [https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-04] - A Network Virtualization Overlay Solution using EVPN

	draft-ietf-bess-evpn-vpws [https://tools.ietf.org/html/draft-ietf-bess-evpn-vpws-07] - VPWS support in EVPN

	RFC7911 [https://tools.ietf.org/html/rfc7911] - Advertisement of Multiple Paths in BGP

	RFC2918 [https://tools.ietf.org/html/rfc2918] - Route Refresh Capability for BGP-4

Running BGP

This section explains how to install BGP plugin.

	Install BGP feature - odl-bgpcep-bgp.
Also, for sake of this sample, it is required to install RESTCONF.
In the Karaf console, type command:

feature:install odl-restconf odl-bgpcep-bgp

	The BGP plugin contains a default configuration, which is applied after the feature starts up.
One instance of BGP plugin is created (named example-bgp-rib), and its presence can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib

Method: GET

Response Body:

<bgp-rib xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
 <rib>
 <id>example-bgp-rib</id>
 <loc-rib>

 </loc-rib>
 </rib>
</bgp-rib>

Basic Configuration & Concepts

The following section shows how to configure BGP basics, how to verify functionality and presents essential components of the plugin.
Next samples demonstrate the plugin’s runtime configuration capability.
It shows the way to configure the plugin via REST, using standardized OpenConfig BGP APIs.

Contents

	BGP RIB API

	Protocol Configuration

	BGP Server

	BGP Peering

	External peering configuration

	Route reflector configuration

	MD5 authentication configuration

	Simple Routing Policy configuration

	BGP Application Peer and programmable RIB

	Application Peer configuration

	Programmable RIB

	BGP Protocol Configuration Loader

	BGP pipeline

	References

BGP RIB API

This tree illustrates the BGP RIBs organization in datastore.

bgp-rib
 +--ro rib* [id]
 +--ro id rib-id
 +--ro peer* [peer-id]
 | +--ro peer-id peer-id
 | +--ro peer-role peer-role
 | +--ro simple-routing-policy? simple-routing-policy
 | +--ro supported-tables* [afi safi]
 | | +--ro afi identityref
 | | +--ro safi identityref
 | | +--ro send-receive? send-receive
 | +--ro adj-rib-in
 | | +--ro tables* [afi safi]
 | | +--ro afi identityref
 | | +--ro safi identityref
 | | +--ro attributes
 | | | +--ro uptodate? boolean
 | | +--ro (routes)?
 | +--ro effective-rib-in
 | | +--ro tables* [afi safi]
 | | +--ro afi identityref
 | | +--ro safi identityref
 | | +--ro attributes
 | | | +--ro uptodate? boolean
 | | +--ro (routes)?
 | +--ro adj-rib-out
 | +--ro tables* [afi safi]
 | +--ro afi identityref
 | +--ro safi identityref
 | +--ro attributes
 | | +--ro uptodate? boolean
 | +--ro (routes)?
 +--ro loc-rib
 +--ro tables* [afi safi]
 +--ro afi identityref
 +--ro safi identityref
 +--ro attributes
 | +--ro uptodate? boolean
 +--ro (routes)?

Protocol Configuration

As a first step, a new protocol instance needs to be configured.
It is a very basic configuration conforming with RFC4271.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 </global>
 </bgp>
</protocol>

@line 2: The unique protocol instance identifier.

@line 7: BGP Identifier of the speaker.

@line 8: Local autonomous system number of the speaker. Note that, OpenDaylight BGP implementation supports four-octet AS numbers only.

The new instance presence can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	<rib xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
 <id>bgp-example</id>
 <loc-rib>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-routes>
 <attributes>
 <uptodate>true</uptodate>
 </attributes>
 </tables>
 </loc-rib>
</rib>

@line 3: Loc-RIB - Per-protocol instance RIB, which contains the routes that have been selected by local BGP speaker’s decision process.

@line 4: The BGP-4 supports carrying IPv4 prefixes, such routes are stored in ipv4-address-family/unicast-subsequent-address-family table.

BGP Server

BGP uses TCP as its transport protocol, by default listens on port 179. OpenDaylight BGP plugin is configured to listen on port 1790, due to
privileged ports restriction for non-root users.
One of the workarounds is to use port redirection. In case other port is desired to be used instead, we can reconfigure it.

Here is a sample of bgp port listening re-configuration:

URL: /restconf/config/odl-bgp-peer-acceptor-config:bgp-peer-acceptor-config/default

Method: PUT

Content-Type: application/xml

Request Body:

	1
2
3
4
5

	<bgp-peer-acceptor-config xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-peer-acceptor-config">
 <config-name>default</config-name>
 <binding-address>0.0.0.0</binding-address>
 <binding-port>1791</binding-port>
</bgp-peer-acceptor-config>

@line 3: Binding address: By default is 0.0.0.0, so it is not a mandatory field.

@line 4: Binding Port: Port were BGP Server will listen.

BGP Peering

To exchange routing information between two BGP systems (peers), it is required to configure a peering on both BGP speakers first.
This mean that each BGP speaker has a white list of neighbors, representing remote peers, with which the peering is allowed.
The TCP connection is established between two peers and they exchange messages to open and confirm the connection parameters followed by routes exchange.

Here is a sample basic neighbor configuration:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <timers>
 <config>
 <hold-time>90</hold-time>
 <connect-retry>10</connect-retry>
 </config>
 </timers>
 <transport>
 <config>
 <remote-port>179</remote-port>
 <passive-mode>false</passive-mode>
 </config>
 </transport>
 <config>
 <peer-type>INTERNAL</peer-type>
 </config>
 <afi-safis>
 ...
 </afi-safis>
</neighbor>

@line 2: IP address of the remote BGP peer. Also serves as an unique identifier of a neighbor in a list of neighbors.

@line 5: Proposed number of seconds for value of the Hold Timer. Default value is 90.

@line 6: Time interval in seconds between attempts to establish session with the peer. Effective in active mode only. Default value is 30.

@line 11: Remote port number to which the local BGP is connecting. Effective in active mode only. Default value 179.

@line 12: Wait for peers to issue requests to open a BGP session, rather than initiating sessions from the local router. Default value is false.

@line 16: Explicitly designate the peer as internal or external. Default value is INTERNAL.

@line 18: Enable families.

Once the remote peer is connected and it advertised routes to local BGP system, routes are stored in peer’s RIBs.
The RIBs can be checked via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F192.0.2.1

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

	<peer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
 <peer-id>bgp://192.0.2.1</peer-id>
 <supported-tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 </supported-tables>
 <peer-role>ibgp</peer-role>
 <adj-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.10/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.10.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes>
 <uptodate>true</uptodate>
 </attributes>
 </tables>
 </adj-rib-in>
 <effective-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.10/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.10.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes>
 <uptodate>true</uptodate>
 </attributes>
 </tables>
 </effective-rib-in>
 <adj-rib-out>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-routes>
 <attributes></attributes>
 </tables>
 </adj-rib-out>
</peer>

@line 8: Adj-RIB-In - Per-peer RIB, which contains unprocessed routes that has been advertised to local BGP speaker by the remote peer.

@line 13: Here is the reported route with destination 10.0.0.10/32 in Adj-RIB-In.

@line 35: Effective-RIB-In - Per-peer RIB, which contains processed routes as a result of applying inbound policy to Adj-RIB-In routes.

@line 40: Here is the reported route with destination 10.0.0.10/32, same as in Adj-RIB-In, as it was not touched by import policy.

@line 62: Adj-RIB-Out - Per-peer RIB, which contains routes for advertisement to the peer by means of the local speaker’s UPDATE message.

@line 66: The peer’s Adj-RIB-Out is empty as there are no routes to be advertise from local BGP speaker.

Also the same route should appeared in Loc-RIB now:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/ipv4-routes

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	<ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.10/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.10.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
</ipv4-routes>

@line 4: Destination - IPv4 Prefix Address.

@line 6: AS_PATH - mandatory attribute, contains a list of the autonomous system numbers through that routing information has traversed.

@line 8: ORIGIN - mandatory attribute, indicates an origin of the route - ibgp, egp, incomplete.

@line 11: LOCAL_PREF - indicates a degree of preference for external routes, higher value is preferred.

@line 14: NEXT_HOP - mandatory attribute, defines IP address of the router that should be used as the next hop to the destination.

There are much more attributes that may be carried along with the destination:

BGP-4 Path Attributes

	
	MULTI_EXIT_DISC (MED)

	Optional attribute, to be used to discriminate among multiple exit/entry points on external links, lower number is preferred.

<multi-exit-disc>
 <med>0</med>
</multi-exit-disc>

	
	ATOMIC_AGGREGATE

	Indicates whether AS_SET was excluded from AS_PATH due to routes aggregation.

<atomic-aggregate/>

	
	AGGREGATOR

	Optional attribute, contains AS number and IP address of a BGP speaker which performed routes aggregation.

<aggregator>
 <as-number>65000</as-number>
 <network-address>192.0.2.2</network-address>
</aggregator>

	
	Unrecognised

	Optional attribute, used to store optional attributes, unrecognized by a local BGP speaker.

<unrecognized-attributes>
 <partial>true</partial>
 <transitive>true</transitive>
 <type>101</type>
 <value>0101010101010101</value>
</unrecognized-attributes>

Route Reflector Attributes

	
	ORIGINATOR_ID

	Optional attribute, carries BGP Identifier of the originator of the route.

<originator-id>
 <originator>41.41.41.41</originator>
</originator-id>

	
	CLUSTER_LIST

	Optional attribute, contains a list of CLUSTER_ID values representing the path that the route has traversed.

<cluster-id>
 <cluster>40.40.40.40</cluster>
</cluster-id>

	
	Communities

	Optional attribute, may be used for policy routing.

<communities>
 <as-number>65000</as-number>
 <semantics>30740</semantics>
</communities>

Extended Communities

	
	Route Target

	Identifies one or more routers that may receive a route.

<extended-communities>
 <transitive>true</transitive>
 <route-target-ipv4>
 <global-administrator>192.0.2.2</global-administrator>
 <local-administrator>123</local-administrator>
 </route-target-ipv4>
</extended-communities>
<extended-communities>
 <transitive>true</transitive>
 <as-4-route-target-extended-community>
 <as-4-specific-common>
 <as-number>65000</as-number>
 <local-administrator>123</local-administrator>
 </as-4-specific-common>
 </as-4-route-target-extended-community>
</extended-communities>

	
	Route Origin

	Identifies one or more routers that injected a route.

<extended-communities>
 <transitive>true</transitive>
 <route-origin-ipv4>
 <global-administrator>192.0.2.2</global-administrator>
 <local-administrator>123</local-administrator>
 </route-origin-ipv4>
</extended-communities>
<extended-communities>
 <transitive>true</transitive>
 <as-4-route-origin-extended-community>
 <as-4-specific-common>
 <as-number>65000</as-number>
 <local-administrator>123</local-administrator>
 </as-4-origin-common>
 </as-4-route-target-extended-community>
</extended-communities>

	
	Link Bandwidth

	Carries the cost to reach external neighbor.

<extended-communities>
 <transitive>true</transitive>
 <link-bandwidth-extended-community>
 <bandwidth>BH9CQAA=</bandwidth>
 </link-bandwidth-extended-community>
</extended-communities>

	
	AIGP

	Optional attribute, carries accumulated IGP metric.

<aigp>
 <aigp-tlv>
 <metric>120</metric>
 </aigp-tlv>
</aigp>

Note

When the remote peer disconnects, it disappear from operational state of local speaker instance and advertised routes are removed too.

External peering configuration

An example above provided configuration for internal peering only.
Following configuration sample is intended for external peering:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6
7

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.3</neighbor-address>
 <config>
 <peer-type>EXTERNAL</peer-type>
 <peer-as>64999</peer-as>
 </config>
</neighbor>

@line 5: AS number of the remote peer.

Route reflector configuration

The local BGP speaker can be configured with a specific cluster ID.
Following example adds the cluster ID to the existing speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/global/config

Method: PUT

Content-Type: application/xml

Request Body:

	1
2
3
4
5

	<config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 <route-reflector-cluster-id>192.0.2.1</route-reflector-cluster-id>
</config>

	@line 4: Route-reflector cluster id to use when local router is configured as a route reflector.

	The router-id is used as a default value.

Following configuration sample is intended for route reflector client peering:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.4</neighbor-address>
 <config>
 <peer-type>INTERNAL</peer-type>
 </config>
 <route-reflector>
 <config>
 <route-reflector-client>true</route-reflector-client>
 </config>
 </route-reflector>
</neighbor>

@line 8: Configure the neighbor as a route reflector client. Default value is false.

MD5 authentication configuration

The OpenDaylight BGP implementation is supporting TCP MD5 for authentication.
Sample configuration below shows how to set authentication password for a peer:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.5</neighbor-address>
 <config>
 <auth-password>topsecret</auth-password>
 </config>
</neighbor>

@line 4: Configures an MD5 authentication password for use with neighboring devices.

Simple Routing Policy configuration

The OpenDaylight BGP implementation is supporting Simple Routing Policy.
Sample configuration below shows how to set Simple Routing Policy for a peer:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.7</neighbor-address>
 <config>
 <simple-routing-policy>learn-none</simple-routing-policy>
 </config>
</neighbor>

@line 4: Simple Routing Policy:

	learn-none - routes advertised by the peer are not propagated to Effective-RIB-In and Loc-RIB

	announce-none - routes from local Loc-RIB are not advertised to the peer

Note

Existing neighbor configuration can be reconfigured (change configuration parameters) anytime.
As a result, established connection is dropped, peer instance is recreated with a new configuration settings and connection re-established.

Note

The BGP configuration is persisted on OpendDaylight shutdown and restored after the re-start.

BGP Application Peer and programmable RIB

The OpenDaylight BGP implementation also supports routes injection via Application Peer.
Such peer has its own programmable RIB, which can be modified by user.
This concept allows user to originate new routes and advertise them to all connected peers.

Application Peer configuration

Following configuration sample show a way to configure the Application Peer:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>10.25.1.9</neighbor-address>
 <config>
 <peer-group>application-peers</peer-group>
 </config>
</neighbor>

@line 2: IP address is uniquely identifying Application Peer and its programmable RIB. Address is also used in local BGP speaker decision process.

@line 4: Indicates that peer is associated with application-peers group. It serves to distinguish Application Peer’s from regular neighbors.

The Application Peer presence can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F10.25.1.9

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	<peer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
 <peer-id>bgp://10.25.1.9</peer-id>
 <peer-role>internal</peer-role>
 <adj-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-routes>
 <attributes>
 <uptodate>false</uptodate>
 </attributes>
 </tables>
 </adj-rib-in>
 <effective-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-routes>
 <attributes></attributes>
 </tables>
 </effective-rib-in>
</peer>

@line 3: Peer role for Application Peer is internal.

@line 8: Adj-RIB-In is empty, as no routes were originated yet.

Note

There is no Adj-RIB-Out for Application Peer.

Programmable RIB

Next example shows how to inject a route into the programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
</ipv4-route>

Now the injected route appears in Application Peer’s RIBs and in local speaker’s Loc-RIB:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F10.25.1.9

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	<peer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
 <peer-id>bgp://10.25.1.9</peer-id>
 <peer-role>internal</peer-role>
 <adj-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes>
 <uptodate>false</uptodate>
 </attributes>
 </tables>
 </adj-rib-in>
 <effective-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes></attributes>
 </tables>
 </effective-rib-in>
</peer>

@line 9: Injected route is present in Application Peer’s Adj-RIB-In and Effective-RIB-In.

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/ipv4-routes

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	<ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.10/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.10/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.10.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
</ipv4-routes>

@line 2: The injected route is now present in Loc-RIB along with a route (destination 10.0.0.10/32) advertised by remote peer.

This route is also advertised to the remote peer (192.0.2.1), hence route appears in its Adj-RIB-Out:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F192.0.2.1/adj-rib-out/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes

Method: GET

Response Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
</ipv4-route>

The injected route can be modified (i.e. different path attribute):

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes/ipv4-route/10.0.0.11%2F32/0

Method: PUT

Content-Type: application/xml

Request Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>50</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.2</global>
 </ipv4-next-hop>
 </attributes>
</ipv4-route>

The route can be removed from programmable RIB in a following way:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes/ipv4-route/10.0.0.11%2F32/0

Method: DELETE

Also it is possible to remove all routes from a particular table at once:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes/

Method: DELETE

Consequently, route disappears from programmable RIB, Application Peer’s RIBs, Loc-RIB and peer’s Adj-RIB-Out (UPDATE message with prefix withdrawal is send).

Note

Routes stored in programmable RIB are persisted on OpendDaylight shutdown and restored after the re-start.

BGP Protocol Configuration Loader

BGP Protocol Configuration Loader allows user to define static initial configuration for a BGP protocol instance.
This service will detect the creation of new configuration files following the pattern “protocols-*.xml” under the path “etc/opendaylight/bgp”.
Once the file is processed, the defined configuration will be available from the configuration Data Store.

Note

If the BGP instance is already present, no update or configuration will be applied.

When installing BGP an example will be provided and a default configuration loaded.

PATH: etc/opendaylight/bgp/protocols-config.xml

<protocols xmlns="http://openconfig.net/yang/network-instance">
 <protocol>
 <name>example-bgp-rib</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>64496</as>
 <!-- if cluster-id is not present, it's value is the same as bgp-id -->
 <!-- <route-reflector-cluster-id>192.0.2.3</route-reflector-cluster-id> -->
 <!-- <read-only-limit>120</read-only-limit>-->
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <!--Advertise N Paths
 <receive>true</receive>
 <send-max>2</send-max>-->
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV4-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L2VPN-EVPN</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>LINKSTATE</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV4-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV4-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 <neighbors xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <config>
 <peer-type>INTERNAL</peer-type>
 <peer-as>64496</peer-as>
 </config>
 <transport>
 <config>
 <remote-port>179</remote-port>
 <passive-mode>true</passive-mode>
 </config>
 </transport>
 <timers>
 <config>
 <hold-time>180</hold-time>
 <connect-retry>10</connect-retry>
 </config>
 </timers>
 <route-reflector>
 <config>
 <route-reflector-client>false</route-reflector-client>
 </config>
 </route-reflector>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <!--Advertise N Paths
 <receive>true</receive>
 <send-max>0</send-max>-->
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV4-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L2VPN-EVPN</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>LINKSTATE</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV4-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV4-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </neighbor>
 <neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.6</neighbor-address>
 <config>
 <peer-group>application-peers</peer-group>
 </config>
 </neighbor>
 </neighbors>
 </bgp>
 </protocol>
</protocols>

BGP pipeline

[image: BGP pipeline.]
BGP pipeline - routes re-advertisement.

[image: BGP Application Peer pipeline.]
BGP applcaition peer pipeline - routes injection.

References

	A Border Gateway Protocol 4 (BGP-4) [https://tools.ietf.org/html/rfc4271]

	BGP Route Reflection [https://tools.ietf.org/html/rfc4456]

	BGP Communities Attribute [https://tools.ietf.org/html/rfc1997]

	BGP Support for Four-Octet Autonomous System (AS) Number Space [https://tools.ietf.org/html/rfc6793]

	The Accumulated IGP Metric Attribute for BGP [https://tools.ietf.org/html/rfc7311]

	4-Octet AS Specific BGP Extended Community [https://tools.ietf.org/html/rfc5668]

	BGP Link Bandwidth Extended Community [https://tools.ietf.org/html/draft-ietf-idr-link-bandwidth-06]

	Use of BGP for Routing in Large-Scale Data Centers [https://tools.ietf.org/html/rfc7938]

IP Unicast Family

The BGP-4 allows to carry IPv4 specific information only.
The basic BGP Multiprotocol extension brings Unicast Subsequent Address Family (SAFI) - intended to be used for IP unicast forwarding.
The combination of IPv4 and IPv6 Address Family (AF) and Unicast SAFI is essential for Internet routing.
The IPv4 Unicast routes are interchangeable with BGP-4 routes, as they can carry the same type of routing information.

Contents

	Configuration

	BGP Speaker

	BGP Peer

	IP Unicast API

	IPv4 Unicast Route

	IPv6 Unicast Route

	Usage

	IPv4 Unicast

	IPv6 Unicast

	Programming

	IPv4 Unicast

	IPv6 Unicast

	References

Configuration

This section shows a way to enable IPv4 and IPv6 Unicast family in BGP speaker and peer configuration.

BGP Speaker

To enable IPv4 and IPv6 Unicast support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled IPv4 and IPv6 Unicast family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

IP Unicast API

Following trees illustrate the BGP IP Unicast routes structures.

IPv4 Unicast Route

:(ipv4-routes-case)
 +--ro ipv4-routes
 +--ro ipv4-route* [prefix path-id]
 +--ro prefix inet:ipv4-prefix
 +--ro path-id path-id
 +--ro attributes
 +--ro origin
 | +--ro value bgp-t:bgp-origin
 +--ro as-path
 | +--ro segments*
 | +--ro as-sequence* inet:as-number
 | +--ro as-set* inet:as-number
 +--ro (c-next-hop)?
 | +--:(ipv4-next-hop-case)
 | | +--ro ipv4-next-hop
 | | +--ro global? inet:ipv4-address
 | +--:(ipv6-next-hop-case)
 | | +--ro ipv6-next-hop
 | | +--ro global? inet:ipv6-address
 | | +--ro link-local? inet:ipv6-address
 | +--:(empty-next-hop-case)
 | +--ro empty-next-hop? empty
 +--ro multi-exit-disc
 | +--ro med? uint32
 +--ro local-pref
 | +--ro pref? uint32
 +--ro atomic-aggregate!
 +--ro aggregator
 | +--ro as-number? inet:as-number
 | +--ro network-address? inet:ipv4-address
 +--ro communities*
 | +--ro as-number? inet:as-number
 | +--ro semantics? uint16
 +--ro extended-communities*
 | +--ro transitive? boolean
 | +--ro (extended-community)?
 | +--:(as-specific-extended-community-case)
 | | +--ro as-specific-extended-community
 | | +--ro global-administrator? short-as-number
 | | +--ro local-administrator? binary
 | +--:(inet4-specific-extended-community-case)
 | | +--ro inet4-specific-extended-community
 | | +--ro global-administrator? inet:ipv4-address
 | | +--ro local-administrator? binary
 | +--:(opaque-extended-community-case)
 | | +--ro opaque-extended-community
 | | +--ro value? binary
 | +--:(route-target-extended-community-case)
 | | +--ro route-target-extended-community
 | | +--ro global-administrator? short-as-number
 | | +--ro local-administrator? binary
 | +--:(route-origin-extended-community-case)
 | | +--ro route-origin-extended-community
 | | +--ro global-administrator? short-as-number
 | | +--ro local-administrator? binary
 | +--:(route-target-ipv4-case)
 | | +--ro route-target-ipv4
 | | +--ro global-administrator? inet:ipv4-address
 | | +--ro local-administrator? uint16
 | +--:(route-origin-ipv4-case)
 | | +--ro route-origin-ipv4
 | | +--ro global-administrator? inet:ipv4-address
 | | +--ro local-administrator? uint16
 | +--:(link-bandwidth-case)
 | | +--ro link-bandwidth-extended-community
 | | +--ro bandwidth netc:bandwidth
 | +--:(as-4-generic-spec-extended-community-case)
 | | +--ro as-4-generic-spec-extended-community
 | | +--ro as-4-specific-common
 | | +--ro as-number inet:as-number
 | | +--ro local-administrator uint16
 | +--:(as-4-route-target-extended-community-case)
 | | +--ro as-4-route-target-extended-community
 | | +--ro as-4-specific-common
 | | +--ro as-number inet:as-number
 | | +--ro local-administrator uint16
 | +--:(as-4-route-origin-extended-community-case)
 | | +--ro as-4-route-origin-extended-community
 | | +--ro as-4-specific-common
 | | +--ro as-number inet:as-number
 | | +--ro local-administrator uint16
 | +--:(encapsulation-case)
 | +--ro encapsulation-extended-community
 | +--ro tunnel-type encapsulation-tunnel-type
 +--ro originator-id
 | +--ro originator? inet:ipv4-address
 +--ro cluster-id
 | +--ro cluster* bgp-t:cluster-identifier
 +--ro aigp
 | +--ro aigp-tlv
 | +--ro metric? netc:accumulated-igp-metric
 +--ro unrecognized-attributes* [type]
 +--ro partial boolean
 +--ro transitive boolean
 +--ro type uint8
 +--ro value binary

IPv6 Unicast Route

:(ipv6-routes-case)
 +--ro ipv6-routes
 +--ro ipv6-route* [prefix path-id]
 +--ro prefix inet:ipv6-prefix
 +--ro path-id path-id
 +--ro attributes
 ...

Usage

IPv4 Unicast

The IPv4 Unicast table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/ipv4-routes

Method: GET

Response Body:

<ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>193.0.2.1/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.0.0.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
</ipv4-routes>

IPv6 Unicast

The IPv6 Unicast table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/ipv6-routes

Method: GET

Response Body:

<ipv6-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv6-route>
 <path-id>0</path-id>
 <prefix>2a02:b80:0:1::/64</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>200</pref>
 </local-pref>
 <ipv6-next-hop>
 <global>2a02:b80:0:2::1</global>
 </ipv6-next-hop>
 </attributes>
 </ipv6-route>
</ipv6-routes>

Note

IPv4/6 routes mapping to topology nodes is supported by BGP Topology Provider.

Programming

IPv4 Unicast

This examples show how to originate and remove IPv4 route via programmable RIB.
Make sure the Application Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
</ipv4-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes/ipv4-route/10.0.0.11%2F32/0

Method: DELETE

IPv6 Unicast

This examples show how to originate and remove IPv6 route via programmable RIB:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv6-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv6-routes

Method: POST

Content-Type: application/xml

Request Body:

<ipv6-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <prefix>2001:db8:30::3/128</prefix>
 <path-id>0</path-id>
 <attributes>
 <ipv6-next-hop>
 <global>2001:db8:1::6</global>
 </ipv6-next-hop>
 <as-path/>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 </attributes>
</ipv6-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv6-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv6-routes/ipv6-route/2001:db8:30::3%2F128/0

Method: DELETE

References

	Multiprotocol Extensions for BGP-4 [https://tools.ietf.org/html/rfc4760]

IP Labeled Unicast Family

The BGP Labeled Unicast (BGP-LU) Multiprotocol extension is used to distribute a MPLS label that is mapped to a particular route.
It can be used to advertise a MPLS transport path between IGP regions and Autonomous Systems.
Also, BGP-LU can help to solve the Inter-domain traffic-engineering problem and can be deployed in large-scale data centers along with MPLS and Spring.
In addition, IPv6 Labeled Unicast can be used to interconnect IPv6 islands over IPv4/MPLS networks using 6PE.

Contents

	Configuration

	BGP Speaker

	BGP Peer

	IP Labeled Unicast API

	IPv4 Labeled Unicast Route

	IPv6 Labeled Unicast Route

	Usage

	Programming

	IPv4 Labeled

	IPv6 Labeled

	References

Configuration

This section shows a way to enable IPv4 and IPv6 Labeled Unicast family in BGP speaker and peer configuration.

BGP Speaker

To enable IPv4 and IPv6 Labeled Unicast support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled IPv4 and IPv6 Labeled Unicast family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

IP Labeled Unicast API

Following trees illustrate the BGP IP Labeled Unicast routes structures.

IPv4 Labeled Unicast Route

:(labeled-unicast-routes-case)
 +--ro labeled-unicast-routes
 +--ro labeled-unicast-route* [route-key path-id]
 +--ro route-key string
 +--ro label-stack*
 | +--ro label-value? netc:mpls-label
 +--ro prefix? inet:ip-prefix
 +--ro path-id path-id
 +--ro attributes
 ...

IPv6 Labeled Unicast Route

:(labeled-unicast-ipv6-routes-case)
 +--ro labeled-unicast-ipv6-routes
 +--ro labeled-unicast-route* [route-key path-id]
 +--ro route-key string
 +--ro label-stack*
 | +--ro label-value? netc:mpls-label
 +--ro prefix? inet:ip-prefix
 +--ro path-id path-id
 +--ro attributes
 ...

Usage

The IPv4 Labeled Unicast table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/bgp-labeled-unicast:labeled-unicast-routes

Method: GET

Response Body:

<labeled-unicast-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">
 <labeled-unicast-route>
 <path-id>0</path-id>
 <route-key>MAA+gRQAAA==</route-key>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>200.10.0.101</global>
 </ipv4-next-hop>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 </attributes>
 <label-stack>
 <label-value>1000</label-value>
 </label-stack>
 <prefix>20.0.0.0/24</prefix>
 </labeled-unicast-route>
</labeled-unicast-routes>

Programming

IPv4 Labeled

This examples show how to originate and remove IPv4 labeled route via programmable RIB.
Make sure the Application Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/bgp-labeled-unicast:labeled-unicast-routes

Method: POST

Content-Type: application/xml

Request Body:

<labeled-unicast-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">
 <route-key>label1</route-key>
 <prefix>1.1.1.1/32</prefix>
 <path-id>0</path-id>
 <label-stack>
 <label-value>800322</label-value>
 </label-stack>
 <attributes>
 <ipv4-next-hop>
 <global>199.20.160.41</global>
 </ipv4-next-hop>
 <origin>
 <value>igp</value>
 </origin>
 <as-path/>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 </attributes>
</labeled-unicast-route>

In addition, BGP-LU Spring extension allows to attach BGP Prefix SID attribute to the route, in order to signal the BGP-Prefix-SID, where the SR is applied to MPLS dataplane.

<bgp-prefix-sid>
 <bgp-prefix-sid-tlvs>
 <label-index-tlv xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">322</label-index-tlv>
 </bgp-prefix-sid-tlvs>
 <bgp-prefix-sid-tlvs>
 <srgb-value xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">
 <base>800000</base>
 <range>4095</range>
 </srgb-value>
 </bgp-prefix-sid-tlvs>
</bgp-prefix-sid>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/bgp-labeled-unicast:labeled-unicast-routes/bgp-labeled-unicast:labeled-unicast-route/label1/0

Method: DELETE

IPv6 Labeled

This examples show how to originate and remove IPv6 labeled route via programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/bgp-labeled-unicast:labeled-unicast-ipv6-routes

Method: POST

Content-Type: application/xml

Request Body:

<labeled-unicast-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">
 <route-key>label1</route-key>
 <prefix>2001:db8:30::3/128</prefix>
 <path-id>0</path-id>
 <label-stack>
 <label-value>123</label-value>
 </label-stack>
 <attributes>
 <ipv6-next-hop>
 <global>2003:4:5:6::7</global>
 </ipv6-next-hop>
 <origin>
 <value>igp</value>
 </origin>
 <as-path/>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 </attributes>
</labeled-unicast-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/bgp-labeled-unicast:labeled-unicast-ipv6-routes/bgp-labeled-unicast:labeled-unicast-route/label1/0

Method: DELETE

References

	Carrying Label Information in BGP-4 [https://tools.ietf.org/html/rfc3107]

	Segment Routing Prefix SID extensions for BGP [https://tools.ietf.org/html/draft-ietf-idr-bgp-prefix-sid-03]

	Connecting IPv6 Islands over IPv4 MPLS Using IPv6 Provider Edge Routers (6PE) [https://tools.ietf.org/html/rfc4798]

	BGP-Prefix Segment in large-scale data centers [https://tools.ietf.org/html/draft-ietf-spring-segment-routing-msdc-01]

	Egress Peer Engineering using BGP-LU [https://tools.ietf.org/html/draft-gredler-idr-bgplu-epe-06]

IP L3VPN Family

The BGP/MPLS IP Virtual Private Networks (BGP L3VPN) Multiprotocol extension can be used to exchange particular VPN (customer) routes among the provider’s routers attached to that VPN.
Also, routes are distributed to specific VPN remote sites.

Contents

	Configuration

	BGP Speaker

	BGP Peer

	IP L3VPN API

	IPv4 L3VPN Route

	IPv6 L3VPN Route

	Usage

	IPv4 L3VPN

	IPv6 L3VPN

	Programming

	References

Configuration

This section shows a way to enable IPv4 and IPv6 L3VPN family in BGP speaker and peer configuration.

BGP Speaker

To enable IPv4 and IPv6 L3VPN support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV4-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled IPv4 and IPv6 L3VPN family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV4-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

IP L3VPN API

Following trees illustrate the BGP IP L3VPN routes structures.

IPv4 L3VPN Route

:(vpn-ipv4-routes-case)
 +--ro vpn-ipv4-routes
 +--ro vpn-route* [route-key]
 +--ro route-key string
 +--ro label-stack*
 | +--ro label-value? netc:mpls-label
 +--ro prefix? inet:ip-prefix
 +--ro path-id? path-id
 +--ro route-distinguisher? bgp-t:route-distinguisher
 +--ro attributes
 ...

IPv6 L3VPN Route

:(vpn-ipv6-routes-case)
 +--ro vpn-ipv6-routes
 +--ro vpn-route* [route-key]
 +--ro route-key string
 +--ro label-stack*
 | +--ro label-value? netc:mpls-label
 +--ro prefix? inet:ip-prefix
 +--ro path-id? path-id
 +--ro route-distinguisher? bgp-t:route-distinguisher
 +--ro attributes
 ...

Usage

IPv4 L3VPN

The IPv4 L3VPN table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/bgp-vpn-ipv4:vpn-ipv4-routes

Method: GET

Response Body:

<vpn-ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-vpn-ipv4">
 <vpn-route>
 <route-key>cAXdYQABrBAALABlCgIi</route-key>
 <label-stack>
 <label-value>24022</label-value>
 </label-stack>
 <attributes>
 <extended-communities>
 <transitive>true</transitive>
 <route-target-extended-community>
 <global-administrator>65000</global-administrator>
 <local-administrator>AAAAZQ==</local-administrator>
 </route-target-extended-community>
 </extended-communities>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>127.16.0.44</global>
 </ipv4-next-hop>
 </attributes>
 <route-distinguisher>172.16.0.44:101</route-distinguisher>
 <prefix>10.2.34.0/24</prefix>
 </vpn-route>
</vpn-ipv4-routes>

IPv6 L3VPN

The IPv6 L3VPN table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv6-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/bgp-vpn-ipv6:vpn-ipv6-routes

Method: GET

Response Body:

<vpn-ipv6-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-vpn-ipv6">
 <vpn-route>
 <route-key>mAXdcQABrBAALABlKgILgAAAAAE=</route-key>
 <label-stack>
 <label-value>24023</label-value>
 </label-stack>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <extended-communities>
 <route-target-extended-community>
 <global-administrator>65000</global-administrator>
 <local-administrator>AAAAZQ==</local-administrator>
 </route-target-extended-community>
 <transitive>true</transitive>
 </extended-communities>
 <ipv6-next-hop>
 <global>2a02:b80:0:2::1</global>
 </ipv6-next-hop>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 </attributes>
 <route-distinguisher>172.16.0.44:101</route-distinguisher>
 <prefix>2a02:b80:0:1::/64</prefix>
 </vpn-route>
</vpn-ipv6-routes>

Programming

This examples show how to originate and remove IPv4 L3VPN route via programmable RIB.
Make sure the Application Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/bgp-vpn-ipv4:vpn-ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<vpn-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-vpn-ipv4">
 <route-key>vpn1</route-key>
 <label-stack>
 <label-value>123</label-value>
 </label-stack>
 <route-distinguisher>429496729:1</route-distinguisher>
 <prefix>2.2.2.2/32</prefix>
 <attributes>
 <ipv4-next-hop>
 <global>199.20.166.41</global>
 </ipv4-next-hop>
 <as-path/>
 <origin>
 <value>igp</value>
 </origin>
 <extended-communities>
 <route-target-extended-community>
 <global-administrator>65000</global-administrator>
 <local-administrator>AAAAZQ==</local-administrator>
 </route-target-extended-community>
 <transitive>true</transitive>
 </extended-communities>
 </attributes>
</vpn-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/bgp-vpn-ipv4:vpn-ipv4-routes/vpn-route/vpn1

Method: DELETE

References

	BGP/MPLS IP Virtual Private Networks (VPNs) [https://tools.ietf.org/html/rfc4364]

	BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

	BGP/MPLS VPN Virtual PE [https://tools.ietf.org/html/draft-ietf-bess-virtual-pe-00]

Link-State Family

The BGP Link-State (BGP-LS) Multiprotocol extension allows to distribute Link-State and Traffic Engineering (TE) information.
This information is typically distributed by IGP routing protocols with in the network, limiting LSDB or TED visibility to the IGP area.
The BGP-LS-enabled routers are capable to collect such information from networks (multiple IGP areas, inter-AS) and share with external components (i.e. OpenDaylight BGP).
The information is applicable in ALTO servers and PCEs, as both need to gather information about topologies.
In addition, link-state information is extended to carry segment information (Spring).

Contents

	Configuration

	BGP Speaker

	Linkstate path attribute

	BGP Peer

	Link-State Route API

	Usage

	References

Configuration

This section shows a way to enable IPv4 and IPv6 Labeled Unicast family in BGP speaker and peer configuration.

BGP Speaker

To enable BGP-LS support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name>LINKSTATE</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

Linkstate path attribute

IANA allocation for BGP-LS path attribute is TYPE 29.
Some older BGP-LS implementations might still require earliest asigned allocation TYPE 99.
To use TYPE = 99, you need to set value bellow to false.

URL: /restconf/config/bgp-linkstate-app-config:bgp-linkstate-app-config

Method: PUT

Content-Type: application/xml

Request Body:

<bgp-linkstate-app-config xmlns="urn:opendaylight:params:xml:ns:yang:controller:bgp:linkstate-app-config">
 <iana-linkstate-attribute-type>false</iana-linkstate-attribute-type>
</bgp-linkstate-app-config>

BGP Peer

Here is an example for BGP peer configuration with enabled BGP-LS family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name>LINKSTATE</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

Link-State Route API

Following tree illustrate the BGP Link-State route structure.

:(linkstate-routes-case)
 +--ro linkstate-routes
 +--ro linkstate-route* [route-key]
 +--ro route-key binary
 +--ro protocol-id protocol-id
 +--ro identifier identifier
 +--ro (object-type)?
 | +--:(node-case)
 | | +--ro node-descriptors
 | | +--ro as-number? inet:as-number
 | | +--ro area-id? area-identifier
 | | +--ro domain-id? domain-identifier
 | | +--ro (c-router-identifier)?
 | | +--:(isis-node-case)
 | | | +--ro isis-node
 | | | +--ro iso-system-id netc:iso-system-identifier
 | | +--:(isis-pseudonode-case)
 | | | +--ro isis-pseudonode
 | | | +--ro is-is-router-identifier
 | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | +--ro psn uint8
 | | +--:(ospf-node-case)
 | | | +--ro ospf-node
 | | | +--ro ospf-router-id uint32
 | | +--:(ospf-pseudonode-case)
 | | +--ro ospf-pseudonode
 | | +--ro ospf-router-id uint32
 | | +--ro lan-interface ospf-interface-identifier
 | +--:(link-case)
 | | +--ro local-node-descriptors
 | | | +--ro as-number? inet:as-number
 | | | +--ro area-id? area-identifier
 | | | +--ro domain-id? domain-identifier
 | | | +--ro (c-router-identifier)?
 | | | | +--:(isis-node-case)
 | | | | | +--ro isis-node
 | | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | | +--:(isis-pseudonode-case)
 | | | | | +--ro isis-pseudonode
 | | | | | +--ro is-is-router-identifier
 | | | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | | | +--ro psn uint8
 | | | | +--:(ospf-node-case)
 | | | | | +--ro ospf-node
 | | | | | +--ro ospf-router-id uint32
 | | | | +--:(ospf-pseudonode-case)
 | | | | +--ro ospf-pseudonode
 | | | | +--ro ospf-router-id uint32
 | | | | +--ro lan-interface ospf-interface-identifier
 | | | +--ro bgp-router-id? inet:ipv4-address
 | | | +--ro member-asn? inet:as-number
 | | +--ro remote-node-descriptors
 | | | +--ro as-number? inet:as-number
 | | | +--ro area-id? area-identifier
 | | | +--ro domain-id? domain-identifier
 | | | +--ro (c-router-identifier)?
 | | | | +--:(isis-node-case)
 | | | | | +--ro isis-node
 | | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | | +--:(isis-pseudonode-case)
 | | | | | +--ro isis-pseudonode
 | | | | | +--ro is-is-router-identifier
 | | | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | | | +--ro psn uint8
 | | | | +--:(ospf-node-case)
 | | | | | +--ro ospf-node
 | | | | | +--ro ospf-router-id uint32
 | | | | +--:(ospf-pseudonode-case)
 | | | | +--ro ospf-pseudonode
 | | | | +--ro ospf-router-id uint32
 | | | | +--ro lan-interface ospf-interface-identifier
 | | | +--ro bgp-router-id? inet:ipv4-address
 | | | +--ro member-asn? inet:as-number
 | | +--ro link-descriptors
 | | +--ro link-local-identifier? uint32
 | | +--ro link-remote-identifier? uint32
 | | +--ro ipv4-interface-address? ipv4-interface-identifier
 | | +--ro ipv6-interface-address? ipv6-interface-identifier
 | | +--ro ipv4-neighbor-address? ipv4-interface-identifier
 | | +--ro ipv6-neighbor-address? ipv6-interface-identifier
 | | +--ro multi-topology-id? topology-identifier
 | +--:(prefix-case)
 | | +--ro advertising-node-descriptors
 | | | +--ro as-number? inet:as-number
 | | | +--ro area-id? area-identifier
 | | | +--ro domain-id? domain-identifier
 | | | +--ro (c-router-identifier)?
 | | | +--:(isis-node-case)
 | | | | +--ro isis-node
 | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | +--:(isis-pseudonode-case)
 | | | | +--ro isis-pseudonode
 | | | | +--ro is-is-router-identifier
 | | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | | +--ro psn uint8
 | | | +--:(ospf-node-case)
 | | | | +--ro ospf-node
 | | | | +--ro ospf-router-id uint32
 | | | +--:(ospf-pseudonode-case)
 | | | +--ro ospf-pseudonode
 | | | +--ro ospf-router-id uint32
 | | | +--ro lan-interface ospf-interface-identifier
 | | +--ro prefix-descriptors
 | | +--ro multi-topology-id? topology-identifier
 | | +--ro ospf-route-type? ospf-route-type
 | | +--ro ip-reachability-information? inet:ip-prefix
 | +--:(te-lsp-case)
 | +--ro (address-family)?
 | | +--:(ipv4-case)
 | | | +--ro ipv4-tunnel-sender-address inet:ipv4-address
 | | | +--ro ipv4-tunnel-endpoint-address inet:ipv4-address
 | | +--:(ipv6-case)
 | | +--ro ipv6-tunnel-sender-address inet:ipv6-address
 | | +--ro ipv6-tunnel-endpoint-address inet:ipv6-address
 | +--ro tunnel-id? rsvp:tunnel-id
 | +--ro lsp-id? rsvp:lsp-id
 +--ro attributes
 +--ro (link-state-attribute)?
 +--:(node-attributes-case)
 | +--ro node-attributes
 | +--ro topology-identifier* topology-identifier
 | +--ro node-flags? node-flag-bits
 | +--ro isis-area-id* isis-area-identifier
 | +--ro dynamic-hostname? string
 | +--ro ipv4-router-id? ipv4-router-identifier
 | +--ro ipv6-router-id? ipv6-router-identifier
 | +--ro sr-capabilities
 | | +--ro mpls-ipv4? boolean
 | | +--ro mpls-ipv6? boolean
 | | +--ro sr-ipv6? boolean
 | | +--ro range-size? uint32
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro sr-algorithm
 | +--ro algorithms* algorithm
 +--:(link-attributes-case)
 | +--ro link-attributes
 | +--ro local-ipv4-router-id? ipv4-router-identifier
 | +--ro local-ipv6-router-id? ipv6-router-identifier
 | +--ro remote-ipv4-router-id? ipv4-router-identifier
 | +--ro remote-ipv6-router-id? ipv6-router-identifier
 | +--ro mpls-protocol? mpls-protocol-mask
 | +--ro te-metric? netc:te-metric
 | +--ro metric? netc:metric
 | +--ro shared-risk-link-groups* rsvp:srlg-id
 | +--ro link-name? string
 | +--ro max-link-bandwidth? netc:bandwidth
 | +--ro max-reservable-bandwidth? netc:bandwidth
 | +--ro unreserved-bandwidth* [priority]
 | | +--ro priority uint8
 | | +--ro bandwidth? netc:bandwidth
 | +--ro link-protection? link-protection-type
 | +--ro admin-group? administrative-group
 | +--ro sr-adj-ids*
 | | +--ro (flags)?
 | | | +--:(ospf-adj-flags-case)
 | | | | +--ro backup? boolean
 | | | | +--ro set? boolean
 | | | +--:(isis-adj-flags-case)
 | | | +--ro backup? boolean
 | | | +--ro set? boolean
 | | | +--ro address-family? boolean
 | | +--ro weight? weight
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro sr-lan-adj-ids*
 | | +--ro (flags)?
 | | | +--:(ospf-adj-flags-case)
 | | | | +--ro backup? boolean
 | | | | +--ro set? boolean
 | | | +--:(isis-adj-flags-case)
 | | | +--ro backup? boolean
 | | | +--ro set? boolean
 | | | +--ro address-family? boolean
 | | +--ro weight? weight
 | | +--ro iso-system-id? netc:iso-system-identifier
 | | +--ro neighbor-id? inet:ipv4-address
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro peer-node-sid
 | | +--ro weight? weight
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro peer-adj-sid
 | | +--ro weight? weight
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro peer-set-sids*
 | +--ro weight? weight
 | +--ro (sid-label-index)?
 | +--:(local-label-case)
 | | +--ro local-label? netc:mpls-label
 | +--:(ipv6-address-case)
 | | +--ro ipv6-address? inet:ipv6-address
 | +--:(sid-case)
 | +--ro sid? uint32
 +--:(prefix-attributes-case)
 | +--ro prefix-attributes
 | +--ro igp-bits
 | | x--ro up-down? bits
 | | +--ro is-is-up-down? boolean
 | | +--ro ospf-no-unicast? boolean
 | | +--ro ospf-local-address? boolean
 | | +--ro ospf-propagate-nssa? boolean
 | +--ro route-tags* route-tag
 | +--ro extended-tags* extended-route-tag
 | +--ro prefix-metric? netc:igp-metric
 | +--ro ospf-forwarding-address? inet:ip-address
 | +--ro sr-prefix
 | | +--ro (flags)?
 | | | +--:(isis-prefix-flags-case)
 | | | | +--ro no-php? boolean
 | | | | +--ro explicit-null? boolean
 | | | | +--ro readvertisement? boolean
 | | | | +--ro node-sid? boolean
 | | | +--:(ospf-prefix-flags-case)
 | | | +--ro no-php? boolean
 | | | +--ro explicit-null? boolean
 | | | +--ro mapping-server? boolean
 | | +--ro algorithm? algorithm
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro ipv6-sr-prefix
 | | +--ro algorithm? algorithm
 | +--ro sr-range
 | | +--ro inter-area? boolean
 | | +--ro range-size? uint16
 | | +--ro sub-tlvs*
 | | +--ro (range-sub-tlv)?
 | | +--:(binding-sid-tlv-case)
 | | | +--ro weight? weight
 | | | +--ro (flags)?
 | | | | +--:(isis-binding-flags-case)
 | | | | | +--ro address-family? boolean
 | | | | | +--ro mirror-context? boolean
 | | | | | +--ro spread-tlv? boolean
 | | | | | +--ro leaked-from-level-2? boolean
 | | | | | +--ro attached-flag? boolean
 | | | | +--:(ospf-binding-flags-case)
 | | | | +--ro mirroring? boolean
 | | | +--ro binding-sub-tlvs*
 | | | +--ro (binding-sub-tlv)?
 | | | +--:(prefix-sid-case)
 | | | | +--ro (flags)?
 | | | | | +--:(isis-prefix-flags-case)
 | | | | | | +--ro no-php? boolean
 | | | | | | +--ro explicit-null? boolean
 | | | | | | +--ro readvertisement? boolean
 | | | | | | +--ro node-sid? boolean
 | | | | | +--:(ospf-prefix-flags-case)
 | | | | | +--ro no-php? boolean
 | | | | | +--ro explicit-null? boolean
 | | | | | +--ro mapping-server? boolean
 | | | | +--ro algorithm? algorithm
 | | | | +--ro (sid-label-index)?
 | | | | +--:(local-label-case)
 | | | | | +--ro local-label? netc:mpls-label
 | | | | +--:(ipv6-address-case)
 | | | | | +--ro ipv6-address? inet:ipv6-address
 | | | | +--:(sid-case)
 | | | | +--ro sid? uint32
 | | | +--:(ipv6-prefix-sid-case)
 | | | | +--ro algorithm? algorithm
 | | | +--:(sid-label-case)
 | | | | +--ro (sid-label-index)?
 | | | | +--:(local-label-case)
 | | | | | +--ro local-label? netc:mpls-label
 | | | | +--:(ipv6-address-case)
 | | | | | +--ro ipv6-address? inet:ipv6-address
 | | | | +--:(sid-case)
 | | | | +--ro sid? uint32
 | | | +--:(ero-metric-case)
 | | | | +--ro ero-metric? netc:te-metric
 | | | +--:(ipv4-ero-case)
 | | | | +--ro loose? boolean
 | | | | +--ro address inet:ipv4-address
 | | | +--:(ipv6-ero-case)
 | | | | +--ro loose? boolean
 | | | | +--ro address inet:ipv6-address
 | | | +--:(unnumbered-interface-id-ero-case)
 | | | | +--ro loose? boolean
 | | | | +--ro router-id? uint32
 | | | | +--ro interface-id? uint32
 | | | +--:(ipv4-ero-backup-case)
 | | | | +--ro loose? boolean
 | | | | +--ro address inet:ipv4-address
 | | | +--:(ipv6-ero-backup-case)
 | | | | +--ro loose? boolean
 | | | | +--ro address inet:ipv6-address
 | | | +--:(unnumbered-interface-id-backup-ero-case)
 | | | +--ro loose? boolean
 | | | +--ro router-id? uint32
 | | | +--ro interface-id? uint32
 | | +--:(prefix-sid-tlv-case)
 | | | +--ro (flags)?
 | | | | +--:(isis-prefix-flags-case)
 | | | | | +--ro no-php? boolean
 | | | | | +--ro explicit-null? boolean
 | | | | | +--ro readvertisement? boolean
 | | | | | +--ro node-sid? boolean
 | | | | +--:(ospf-prefix-flags-case)
 | | | | +--ro no-php? boolean
 | | | | +--ro explicit-null? boolean
 | | | | +--ro mapping-server? boolean
 | | | +--ro algorithm? algorithm
 | | | +--ro (sid-label-index)?
 | | | +--:(local-label-case)
 | | | | +--ro local-label? netc:mpls-label
 | | | +--:(ipv6-address-case)
 | | | | +--ro ipv6-address? inet:ipv6-address
 | | | +--:(sid-case)
 | | | +--ro sid? uint32
 | | +--:(ipv6-prefix-sid-tlv-case)
 | | | +--ro algorithm? algorithm
 | | +--:(sid-label-tlv-case)
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro sr-binding-sid-labels*
 | +--ro weight? weight
 | +--ro (flags)?
 | | +--:(isis-binding-flags-case)
 | | | +--ro address-family? boolean
 | | | +--ro mirror-context? boolean
 | | | +--ro spread-tlv? boolean
 | | | +--ro leaked-from-level-2? boolean
 | | | +--ro attached-flag? boolean
 | | +--:(ospf-binding-flags-case)
 | | +--ro mirroring? boolean
 | +--ro binding-sub-tlvs*
 | +--ro (binding-sub-tlv)?
 | +--:(prefix-sid-case)
 | | +--ro (flags)?
 | | | +--:(isis-prefix-flags-case)
 | | | | +--ro no-php? boolean
 | | | | +--ro explicit-null? boolean
 | | | | +--ro readvertisement? boolean
 | | | | +--ro node-sid? boolean
 | | | +--:(ospf-prefix-flags-case)
 | | | +--ro no-php? boolean
 | | | +--ro explicit-null? boolean
 | | | +--ro mapping-server? boolean
 | | +--ro algorithm? algorithm
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--:(ipv6-prefix-sid-case)
 | | +--ro algorithm? algorithm
 | +--:(sid-label-case)
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--:(ero-metric-case)
 | | +--ro ero-metric? netc:te-metric
 | +--:(ipv4-ero-case)
 | | +--ro loose? boolean
 | | +--ro address inet:ipv4-address
 | +--:(ipv6-ero-case)
 | | +--ro loose? boolean
 | | +--ro address inet:ipv6-address
 | +--:(unnumbered-interface-id-ero-case)
 | | +--ro loose? boolean
 | | +--ro router-id? uint32
 | | +--ro interface-id? uint32
 | +--:(ipv4-ero-backup-case)
 | | +--ro loose? boolean
 | | +--ro address inet:ipv4-address
 | +--:(ipv6-ero-backup-case)
 | | +--ro loose? boolean
 | | +--ro address inet:ipv6-address
 | +--:(unnumbered-interface-id-backup-ero-case)
 | +--ro loose? boolean
 | +--ro router-id? uint32
 | +--ro interface-id? uint32
 x--:(te-lsp-attributes-case)
 +--ro te-lsp-attributes

Usage

The Link-State table in a instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-linkstate:linkstate-address-family/bgp-linkstate:linkstate-subsequent-address-family/linkstate-routes

Method: GET

Response Body:

<linkstate-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-linkstate">
 ...
</linkstate-routes>

Note

Link-State routes mapping to topology links/nodes/prefixes is supported by BGP Topology Provider.

References

	North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP [https://tools.ietf.org/html/rfc7752]

	BGP Link-State extensions for Segment Routing [https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-03]

	Segment Routing BGP Egress Peer Engineering BGP-LS Extensions [https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-05]

	BGP Link-State Information Distribution Implementation Report [https://tools.ietf.org/html/draft-ietf-idr-ls-distribution-impl-04]

Flow Specification Family

The BGP Flow Specification (BGP-FS) Multiprotocol extension can be used to distribute traffic flow specifications.
For example, the BGP-FS can be used in a case of (distributed) denial-of-service (DDoS) attack mitigation procedures and traffic filtering (BGP/MPLS VPN service, DC).

Contents

	Configuration

	BGP Speaker

	BGP Peer

	Flow Specification API

	IPv4 Flow Specification Route

	IPv6 Flow Specification Route

	Usage

	IPv4 Flow Specification

	IPv6 Flows Specification

	IPv4 L3VPN Flows Specification

	Programming

	IPv4 Flow Specification

	IPv4 L3VPN Flow Specification

	IPv6 Flow Specification

	References

Configuration

This section shows a way to enable BGP-FS family in BGP speaker and peer configuration.

BGP Speaker

To enable BGP-FS support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name>IPV4-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV4-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled BGP-FS family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name>IPV4-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV4-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

Flow Specification API

Following trees illustrate the BGP Flow Specification routes structure.

IPv4 Flow Specification Route

:(flowspec-routes-case)
 +--ro flowspec-routes
 +--ro flowspec-route* [route-key path-id]
 +--ro route-key string
 +--ro flowspec*
 | +--ro (flowspec-type)?
 | +--:(port-case)
 | | +--ro ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(destination-port-case)
 | | +--ro destination-ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(source-port-case)
 | | +--ro source-ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(icmp-type-case)
 | | +--ro types*
 | | +--ro op? numeric-operand
 | | +--ro value? uint8
 | +--:(icmp-code-case)
 | | +--ro codes*
 | | +--ro op? numeric-operand
 | | +--ro value? uint8
 | +--:(tcp-flags-case)
 | | +--ro tcp-flags*
 | | +--ro op? bitmask-operand
 | | +--ro value? uint16
 | +--:(packet-length-case)
 | | +--ro packet-lengths*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(dscp-case)
 | | +--ro dscps*
 | | +--ro op? numeric-operand
 | | +--ro value? dscp
 | +--:(fragment-case)
 | | +--ro fragments*
 | | +--ro op? bitmask-operand
 | | +--ro value? fragment
 | +--:(destination-prefix-case)
 | | +--ro destination-prefix? inet:ipv4-prefix
 | +--:(source-prefix-case)
 | | +--ro source-prefix? inet:ipv4-prefix
 | +--:(protocol-ip-case)
 | +--ro protocol-ips*
 | +--ro op? numeric-operand
 | +--ro value? uint8
 +--ro path-id path-id
 +--ro attributes
 +--ro extended-communities*
 +--ro transitive? boolean
 +--ro (extended-community)?
 +--:(traffic-rate-extended-community-case)
 | +--ro traffic-rate-extended-community
 | +--ro informative-as? bgp-t:short-as-number
 | +--ro local-administrator? netc:bandwidth
 +--:(traffic-action-extended-community-case)
 | +--ro traffic-action-extended-community
 | +--ro sample? boolean
 | +--ro terminal-action? boolean
 +--:(redirect-extended-community-case)
 | +--ro redirect-extended-community
 | +--ro global-administrator? bgp-t:short-as-number
 | +--ro local-administrator? binary
 +--:(traffic-marking-extended-community-case)
 | +--ro traffic-marking-extended-community
 | +--ro global-administrator? dscp
 +--:(redirect-ipv4-extended-community-case)
 | +--ro redirect-ipv4
 | +--ro global-administrator? inet:ipv4-address
 | +--ro local-administrator? uint16
 +--:(redirect-as4-extended-community-case)
 | +--ro redirect-as4
 | +--ro global-administrator? inet:as-number
 | +--ro local-administrator? uint16
 +--:(redirect-ip-nh-extended-community-case)
 +--ro redirect-ip-nh-extended-community
 +--ro next-hop-address? inet:ip-address
 +--ro copy? boolean

IPv6 Flow Specification Route

:(flowspec-ipv6-routes-case)
 +--ro flowspec-ipv6-routes
 +--ro flowspec-route* [route-key path-id]
 +--ro flowspec*
 | +--ro (flowspec-type)?
 | +--:(port-case)
 | | +--ro ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(destination-port-case)
 | | +--ro destination-ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(source-port-case)
 | | +--ro source-ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(icmp-type-case)
 | | +--ro types*
 | | +--ro op? numeric-operand
 | | +--ro value? uint8
 | +--:(icmp-code-case)
 | | +--ro codes*
 | | +--ro op? numeric-operand
 | | +--ro value? uint8
 | +--:(tcp-flags-case)
 | | +--ro tcp-flags*
 | | +--ro op? bitmask-operand
 | | +--ro value? uint16
 | +--:(packet-length-case)
 | | +--ro packet-lengths*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(dscp-case)
 | | +--ro dscps*
 | | +--ro op? numeric-operand
 | | +--ro value? dscp
 | +--:(fragment-case)
 | | +--ro fragments*
 | | +--ro op? bitmask-operand
 | | +--ro value? fragment
 | +--:(destination-ipv6-prefix-case)
 | | +--ro destination-prefix? inet:ipv6-prefix
 | +--:(source-ipv6-prefix-case)
 | | +--ro source-prefix? inet:ipv6-prefix
 | +--:(next-header-case)
 | | +--ro next-headers*
 | | +--ro op? numeric-operand
 | | +--ro value? uint8
 | +--:(flow-label-case)
 | +--ro flow-label*
 | +--ro op? numeric-operand
 | +--ro value? uint32
 +--ro path-id path-id
 +--ro attributes
 +--ro extended-communities*
 +--ro transitive? boolean
 +--ro (extended-community)?
 +--:(traffic-rate-extended-community-case)
 | +--ro traffic-rate-extended-community
 | +--ro informative-as? bgp-t:short-as-number
 | +--ro local-administrator? netc:bandwidth
 +--:(traffic-action-extended-community-case)
 | +--ro traffic-action-extended-community
 | +--ro sample? boolean
 | +--ro terminal-action? boolean
 +--:(redirect-extended-community-case)
 | +--ro redirect-extended-community
 | +--ro global-administrator? bgp-t:short-as-number
 | +--ro local-administrator? binary
 +--:(traffic-marking-extended-community-case)
 | +--ro traffic-marking-extended-community
 | +--ro global-administrator? dscp
 +--:(redirect-ipv6-extended-community-case)
 | +--ro redirect-ipv6
 | +--ro global-administrator? inet:ipv6-address
 | +--ro local-administrator? uint16
 +--:(redirect-as4-extended-community-case)
 | +--ro redirect-as4
 | +--ro global-administrator? inet:as-number
 | +--ro local-administrator? uint16
 +--:(redirect-ip-nh-extended-community-case)
 +--ro redirect-ip-nh-extended-community
 +--ro next-hop-address? inet:ip-address
 +--ro copy? boolean

Usage

The flowspec route represents rules and an action, defined as an extended community.

IPv4 Flow Specification

The IPv4 Flowspec table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-routes

Method: GET

Response Body:

<flowspec-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <flowspec-route>
 <path-id>0</path-id>
 <route-key>all packets to 192.168.0.1/32 AND from 10.0.0.2/32 AND where IP protocol equals to 17 or equals to 6 AND where port equals to 80 or equals to 8080 AND where destination port is greater than 8080 and is less than 8088 or equals to 3128 AND where source port is greater than 1024 </route-key>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 <extended-communities>
 <transitive>true</transitive>
 <redirect-extended-community>
 <local-administrator>AgMWLg==</local-administrator>
 <global-administrator>258</global-administrator>
 </redirect-extended-community>
 </extended-communities>
 </attributes>
 <flowspec>
 <destination-prefix>192.168.0.1/32</destination-prefix>
 </flowspec>
 <flowspec>
 <source-prefix>10.0.0.2/32</source-prefix>
 </flowspec>
 <flowspec>
 <protocol-ips>
 <op>equals</op>
 <value>17</value>
 </protocol-ips>
 <protocol-ips>
 <op>equals end-of-list</op>
 <value>6</value>
 </protocol-ips>
 </flowspec>
 <flowspec>
 <ports>
 <op>equals</op>
 <value>80</value>
 </ports>
 <ports>
 <op>equals end-of-list</op>
 <value>8080</value>
 </ports>
 </flowspec>
 <flowspec>
 <destination-ports>
 <op>greater-than</op>
 <value>8080</value>
 </destination-ports>
 <destination-ports>
 <op>less-than and-bit</op>
 <value>8088</value>
 </destination-ports>
 <destination-ports>
 <op>equals end-of-list</op>
 <value>3128</value>
 </destination-ports>
 </flowspec>
 <flowspec>
 <source-ports>
 <op>end-of-list greater-than</op>
 <value>1024</value>
 </source-ports>
 </flowspec>
 </flowspec-route>
</flowspec-routes>

IPv6 Flows Specification

The IPv6 Flowspec table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv6-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-ipv6-routes

Method: GET

Response Body:

<flowspec-ipv6-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <flowspec-route>
 <path-id>0</path-id>
 <route-key>all packets to 2001:db8:31::/64 AND from 2001:db8:30::/64 AND where next header equals to 17 AND where DSCP equals to 50 AND where flow label equals to 2013 </route-key>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 <extended-communities>
 <transitive>true</transitive>
 <traffic-rate-extended-community>
 <informative-as>0</informative-as>
 <local-administrator>AAAAAA==</local-administrator>
 </traffic-rate-extended-community>
 </extended-communities>
 </attributes>
 <flowspec>
 <destination-prefix>2001:db8:31::/64</destination-prefix>
 </flowspec>
 <flowspec>
 <source-prefix>2001:db8:30::/64</source-prefix>
 </flowspec>
 <flowspec>
 <next-headers>
 <op>equals end-of-list</op>
 <value>17</value>
 </next-headers>
 </flowspec>
 <flowspec>
 <dscps>
 <op>equals end-of-list</op>
 <value>50</value>
 </dscps>
 </flowspec>
 <flowspec>
 <flow-label>
 <op>equals end-of-list</op>
 <value>2013</value>
 </flow-label>
 </flowspec>
 </flowspec-route>
</flowspec-ipv6-routes>

IPv4 L3VPN Flows Specification

The IPv4 L3VPN Flowspec table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-l3vpn-subsequent-address-family/bgp-flowspec:flowspec-l3vpn-ipv4-routes

Method: GET

Response Body:

<flowspec-l3vpn-ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <flowspec-l3vpn-route>
 <path-id>0</path-id>
 <route-key>[l3vpn with route-distinguisher 172.16.0.44:101] all packets from 10.0.0.3/32</route-key>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>5.6.7.8</global>
 </ipv4-next-hop>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 <extended-communities>
 <transitive>true</transitive>
 <redirect-ip-nh-extended-community>
 <copy>false</copy>
 <next-hop-address>0.0.0.0</next-hop-address>
 </redirect-ip-nh-extended-community>
 </extended-communities>
 </attributes>
 <route-distinguisher>172.16.0.44:101</route-distinguisher>
 <flowspec>
 <source-prefix>10.0.0.3/32</source-prefix>
 </flowspec>
 </flowspec-l3vpn-route>
</flowspec-l3vpn-ipv4-routes>

Programming

IPv4 Flow Specification

This examples show how to originate and remove IPv4 fowspec route via programmable RIB.
Make sure the Application Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-routes

Method: POST

Content-Type: application/xml

Request Body:

<flowspec-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <route-key>flow1</route-key>
 <path-id>0</path-id>
 <flowspec>
 <destination-prefix>192.168.0.1/32</destination-prefix>
 </flowspec>
 <flowspec>
 <source-prefix>10.0.0.1/32</source-prefix>
 </flowspec>
 <flowspec>
 <protocol-ips>
 <op>equals end-of-list</op>
 <value>6</value>
 </protocol-ips>
 </flowspec>
 <flowspec>
 <ports>
 <op>equals end-of-list</op>
 <value>80</value>
 </ports>
 </flowspec>
 <flowspec>
 <destination-ports>
 <op>greater-than</op>
 <value>8080</value>
 </destination-ports>
 <destination-ports>
 <op>and-bit less-than end-of-list</op>
 <value>8088</value>
 </destination-ports>
 </flowspec>
 <flowspec>
 <source-ports>
 <op>greater-than end-of-list</op>
 <value>1024</value>
 </source-ports>
 </flowspec>
 <flowspec>
 <types>
 <op>equals end-of-list</op>
 <value>0</value>
 </types>
 </flowspec>
 <flowspec>
 <codes>
 <op>equals end-of-list</op>
 <value>0</value>
 </codes>
 </flowspec>
 <flowspec>
 <tcp-flags>
 <op>match end-of-list</op>
 <value>32</value>
 </tcp-flags>
 </flowspec>
 <flowspec>
 <packet-lengths>
 <op>greater-than</op>
 <value>400</value>
 </packet-lengths>
 <packet-lengths>
 <op>and-bit less-than end-of-list</op>
 <value>500</value>
 </packet-lengths>
 </flowspec>
 <flowspec>
 <dscps>
 <op>equals end-of-list</op>
 <value>20</value>
 </dscps>
 </flowspec>
 <flowspec>
 <fragments>
 <op>match end-of-list</op>
 <value>first</value>
 </fragments>
 </flowspec>
 <attributes>
 <origin>
 <value>igp</value>
 </origin>
 <as-path/>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <extended-communities>

 </extended-communities>
 </attributes>
</flowspec-route>

Extended Communities

	
	Traffic Rate

		1
2
3
4
5
6
7

	<extended-communities>
 <transitive>true</transitive>
 <traffic-rate-extended-community>
 <informative-as>123</informative-as>
 <local-administrator>AAAAAA==</local-administrator>
 </traffic-rate-extended-community>
</extended-communities>

@line 5: A rate in bytes per second, AAAAAA== (0) means traffic discard.

	
	Traffic Action

	<extended-communities>
 <transitive>true</transitive>
 <traffic-action-extended-community>
 <sample>true</sample>
 <terminal-action>false</terminal-action>
 </traffic-action-extended-community>
</extended-communities>

	
	Redirect to VRF AS 2byte format

	<extended-communities>
 <transitive>true</transitive>
 <redirect-extended-community>
 <global-administrator>123</global-administrator>
 <local-administrator>AAAAew==</local-administrator>
 </redirect-extended-community>
</extended-communities>

	
	Redirect to VRF IPv4 format

	<extended-communities>
 <transitive>true</transitive>
 <redirect-ipv4>
 <global-administrator>192.168.0.1</global-administrator>
 <local-administrator>12345</local-administrator>
 </redirect-ipv4>
</extended-communities>

	
	Redirect to VRF AS 4byte format

	<extended-communities>
 <transitive>true</transitive>
 <redirect-as4>
 <global-administrator>64495</global-administrator>
 <local-administrator>12345</local-administrator>
 </redirect-as4>
</extended-communities>

	
	Redirect to IP

	<extended-communities>
 <transitive>true</transitive>
 <redirect-ip-nh-extended-community>
 <copy>false</false>
 </redirect-ip-nh-extended-community>
</extended-communities>

	
	Traffic Marking

	<extended-communities>
 <transitive>true</transitive>
 <traffic-marking-extended-community>
 <global-administrator>20</global-administrator>
 </traffic-marking-extended-community>
</extended-communities>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-routes/bgp-flowspec:flowspec-route/flow1/0

Method: DELETE

IPv4 L3VPN Flow Specification

This examples show how to originate and remove IPv4 L3VPN fowspec route via programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-l3vpn-subsequent-address-family/bgp-flowspec:flowspec-l3vpn-ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<flowspec-l3vpn-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <path-id>0</path-id>
 <route-key>flow-l3vpn</route-key>
 <route-distinguisher>172.16.0.44:101</route-distinguisher>
 <flowspec>
 <source-prefix>10.0.0.3/32</source-prefix>
 </flowspec>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 <extended-communities>
 <transitive>true</transitive>
 <redirect-ipv4>
 <global-administrator>172.16.0.44</global-administrator>
 <local-administrator>102</local-administrator>
 </redirect-ipv4>
 </extended-communities>
 </attributes>
</flowspec-l3vpn-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-l3vpn-subsequent-address-family/bgp-flowspec:flowspec-l3vpn-ipv4-routes/flowspec-l3vpn-route/flow-l3vpn/0

Method: DELETE

IPv6 Flow Specification

This examples show how to originate and remove IPv6 fowspec route via programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv6-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-ipv6-routes

Method: POST

Content-Type: application/xml

Request Body:

<flowspec-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <route-key>flow-v6</route-key>
 <path-id>0</path-id>
 <flowspec>
 <destination-prefix>2001:db8:30::3/128</destination-prefix>
 </flowspec>
 <flowspec>
 <source-prefix>2001:db8:31::3/128</source-prefix>
 </flowspec>
 <flowspec>
 <flow-label>
 <op>equals end-of-list</op>
 <value>1</value>
 </flow-label>
 </flowspec>
 <attributes>
 <extended-communities>
 <transitive>true</transitive>
 <redirect-ipv6>
 <global-administrator>2001:db8:1::6</global-administrator>
 <local-administrator>12345</local-administrator>
 </redirect-ipv6>
 </extended-communities>
 <origin>
 <value>igp</value>
 </origin>
 <as-path/>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 </attributes>
</flowspec-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv6-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-ipv6-routes/bgp-flowspec:flowspec-route/flow-v6/0

Method: DELETE

References

	Dissemination of Flow Specification Rules [https://tools.ietf.org/html/rfc5575]

	Dissemination of Flow Specification Rules for IPv6 [https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-07]

	BGP Flow-Spec Extended Community for Traffic Redirect to IP Next Hop [https://tools.ietf.org/html/draft-ietf-idr-flowspec-redirect-ip-00]

	Clarification of the Flowspec Redirect Extended Community [https://tools.ietf.org/html/rfc7674]

	Revised Validation Procedure for BGP Flow Specifications [https://tools.ietf.org/html/draft-ietf-idr-bgp-flowspec-oid-03]

EVPN Family

The BGP MPLS-Based Ethernet VPN (BGP EVPN) Multiprotocol extension can be used to distribute Ethernet L2VPN service related routes in order to support a concept of MAC routing.
A major use-case for BGP EVPN is data-center interconnection (DCI), where advantage of BGP EVPN are MAC/IP address advertising across MPLS network, Multihoming functionality including Fast Convergence, Split Horizon and Aliasing support, VM (MAC) Mobility, support Multicast and Broadcast traffic.
In addition to MPLS, IP tunnelling encapsulation techniques like VXLAN, NVGRE, MPLSoGRE and others can be used for packet transportation.
Also, Provider Backbone Bridging (PBB) can be combined with EVPN in order to reduce a number of MAC Advertisement routes.

Contents

	Configuration

	BGP Speaker

	BGP Peer

	EVPN Route API

	Usage

	Programming

	References

Configuration

This section shows a way to enable EVPN family in BGP speaker and peer configuration.

BGP Speaker

To enable EVPN support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L2VPN-EVPN</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled EVPN family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L2VPN-EVPN</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

EVPN Route API

Following tree illustrate the BGP EVPN route structure.

:(evpn-routes-case)
 +--ro evpn-routes
 +--ro evpn-route* [route-key]
 +--ro route-key string
 +--ro (evpn-choice)
 | +--:(ethernet-a-d-route-case)
 | | +--ro ethernet-a-d-route
 | | +--ro (esi)
 | | | +--:(arbitrary-case)
 | | | | +--ro arbitrary
 | | | | +--ro arbitrary binary
 | | | +--:(lacp-auto-generated-case)
 | | | | +--ro lacp-auto-generated
 | | | | +--ro ce-lacp-mac-address yang:mac-address
 | | | | +--ro ce-lacp-port-key uint16
 | | | +--:(lan-auto-generated-case)
 | | | | +--ro lan-auto-generated
 | | | | +--ro root-bridge-mac-address yang:mac-address
 | | | | +--ro root-bridge-priority uint16
 | | | +--:(mac-auto-generated-case)
 | | | | +--ro mac-auto-generated
 | | | | +--ro system-mac-address yang:mac-address
 | | | | +--ro local-discriminator uint24
 | | | +--:(router-id-generated-case)
 | | | | +--ro router-id-generated
 | | | | +--ro router-id inet:ipv4-address
 | | | | +--ro local-discriminator uint32
 | | | +--:(as-generated-case)
 | | | +--ro as-generated
 | | | +--ro as inet:as-number
 | | | +--ro local-discriminator uint32
 | | +--ro ethernet-tag-id
 | | | +--ro vlan-id uint32
 | | +--ro mpls-label netc:mpls-label
 | +--:(mac-ip-adv-route-case)
 | | +--ro mac-ip-adv-route
 | | +--ro (esi)
 | | | +--:(arbitrary-case)
 | | | | +--ro arbitrary
 | | | | +--ro arbitrary binary
 | | | +--:(lacp-auto-generated-case)
 | | | | +--ro lacp-auto-generated
 | | | | +--ro ce-lacp-mac-address yang:mac-address
 | | | | +--ro ce-lacp-port-key uint16
 | | | +--:(lan-auto-generated-case)
 | | | | +--ro lan-auto-generated
 | | | | +--ro root-bridge-mac-address yang:mac-address
 | | | | +--ro root-bridge-priority uint16
 | | | +--:(mac-auto-generated-case)
 | | | | +--ro mac-auto-generated
 | | | | +--ro system-mac-address yang:mac-address
 | | | | +--ro local-discriminator uint24
 | | | +--:(router-id-generated-case)
 | | | | +--ro router-id-generated
 | | | | +--ro router-id inet:ipv4-address
 | | | | +--ro local-discriminator uint32
 | | | +--:(as-generated-case)
 | | | +--ro as-generated
 | | | +--ro as inet:as-number
 | | | +--ro local-discriminator uint32
 | | +--ro ethernet-tag-id
 | | | +--ro vlan-id uint32
 | | +--ro mac-address yang:mac-address
 | | +--ro ip-address? inet:ip-address
 | | +--ro mpls-label1 netc:mpls-label
 | | +--ro mpls-label2? netc:mpls-label
 | +--:(inc-multi-ethernet-tag-res-case)
 | | +--ro inc-multi-ethernet-tag-res
 | | +--ro ethernet-tag-id
 | | | +--ro vlan-id uint32
 | | +--ro orig-route-ip? inet:ip-address
 | +--:(es-route-case)
 | +--ro es-route
 | +--ro (esi)
 | | +--:(arbitrary-case)
 | | | +--ro arbitrary
 | | | +--ro arbitrary binary
 | | +--:(lacp-auto-generated-case)
 | | | +--ro lacp-auto-generated
 | | | +--ro ce-lacp-mac-address yang:mac-address
 | | | +--ro ce-lacp-port-key uint16
 | | +--:(lan-auto-generated-case)
 | | | +--ro lan-auto-generated
 | | | +--ro root-bridge-mac-address yang:mac-address
 | | | +--ro root-bridge-priority uint16
 | | +--:(mac-auto-generated-case)
 | | | +--ro mac-auto-generated
 | | | +--ro system-mac-address yang:mac-address
 | | | +--ro local-discriminator uint24
 | | +--:(router-id-generated-case)
 | | | +--ro router-id-generated
 | | | +--ro router-id inet:ipv4-address
 | | | +--ro local-discriminator uint32
 | | +--:(as-generated-case)
 | | +--ro as-generated
 | | +--ro as inet:as-number
 | | +--ro local-discriminator uint32
 | +--ro orig-route-ip inet:ip-address
 +--ro route-distinguisher bgp-t:route-distinguisher
 +--ro attributes
 +--ro extended-communities*
 | +--ro transitive? boolean
 | +--ro (extended-community)?
 | +--:(encapsulation-case)
 | | +--ro encapsulation-extended-community
 | | +--ro tunnel-type encapsulation-tunnel-type
 | +--:(esi-label-extended-community-case)
 | | +--ro esi-label-extended-community
 | | +--ro single-active-mode? boolean
 | | +--ro esi-label netc:mpls-label
 | +--:(es-import-route-extended-community-case)
 | | +--ro es-import-route-extended-community
 | | +--ro es-import yang:mac-address
 | +--:(mac-mobility-extended-community-case)
 | | +--ro mac-mobility-extended-community
 | | +--ro static? boolean
 | | +--ro seq-number uint32
 | +--:(default-gateway-extended-community-case)
 | | +--ro default-gateway-extended-community!
 | +--:(layer-2-attributes-extended-community-case)
 | +--ro layer-2-attributes-extended-community
 | +--ro primary-pe? boolean
 | +--ro backup-pe? boolean
 | +--ro control-word? boolean
 | +--ro l2-mtu uint16
 +--ro pmsi-tunnel!
 +--ro leaf-information-required boolean
 +--ro mpls-label? netc:mpls-label
 +--ro (tunnel-identifier)?
 +--:(rsvp-te-p2mp-lsp)
 | +--ro rsvp-te-p2mp-lps
 | +--ro p2mp-id uint32
 | +--ro tunnel-id uint16
 | +--ro extended-tunnel-id inet:ip-address
 +--:(mldp-p2mp-lsp)
 | +--ro mldp-p2mp-lsp
 | +--ro address-family identityref
 | +--ro root-node-address inet:ip-address
 | +--ro opaque-value*
 | +--ro opaque-type uint8
 | +--ro opaque-extended-type? uint16
 | +--ro opaque yang:hex-string
 +--:(pim-ssm-tree)
 | +--ro pim-ssm-tree
 | +--ro p-address inet:ip-address
 | +--ro p-multicast-group inet:ip-address
 +--:(pim-sm-tree)
 | +--ro pim-sm-tree
 | +--ro p-address inet:ip-address
 | +--ro p-multicast-group inet:ip-address
 +--:(bidir-pim-tree)
 | +--ro bidir-pim-tree
 | +--ro p-address inet:ip-address
 | +--ro p-multicast-group inet:ip-address
 +--:(ingress-replication)
 | +--ro ingress-replication
 | +--ro receiving-endpoint-address? inet:ip-address
 +--:(mldp-mp2mp-lsp)
 +--ro mldp-mp2mp-lsp
 +--ro opaque-type uint8
 +--ro opaque-extended-type? uint16
 +--ro opaque
 ...

Usage

The L2VPN EVPN table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/odl-bgp-evpn:l2vpn-address-family/odl-bgp-evpn:evpn-subsequent-address-family/evpn-routes

Method: GET

Response Body:

<evpn-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-evpn">
 <evpn-route>
 <route-key>AxEAAcCoZAED6AAAAQAgwKhkAQ==</route-key>
 <route-distinguisher>192.168.100.1:1000</route-distinguisher>
 <inc-multi-ethernet-tag-res>
 <ethernet-tag-id>
 <vlan-id>256</vlan-id>
 </ethernet-tag-id>
 <orig-route-ip>192.168.100.1</orig-route-ip>
 </inc-multi-ethernet-tag-res>
 <attributes>
 <ipv4-next-hop>
 <global>172.23.29.104</global>
 </ipv4-next-hop>
 <as-path/>
 <origin>
 <value>igp</value>
 </origin>
 <extended-communities>
 <extended-communities>
 <transitive>true</transitive>
 <route-target-extended-community>
 <global-administrator>65504</global-administrator>
 <local-administrator>AAAD6A==</local-administrator>
 </route-target-extended-community>
 </extended-communities>
 </extended-communities>
 <pmsi-tunnel>
 <leaf-information-required>true</leaf-information-required>
 <mpls-label>20024</mpls-label>
 <ingress-replication>
 <receiving-endpoint-address>192.168.100.1</receiving-endpoint-address>
 </ingress-replication>
 </pmsi-tunnel>
 </attributes>
 </evpn-route>
</evpn-routes>

Programming

This examples show how to originate and remove EVPN routes via programmable RIB.
There are four different types of EVPN routes, and several extended communities.
Routes can be used for variety of use-cases supported by BGP/MPLS EVPN, PBB EVPN and NVO EVPN.
Make sure the Application Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/odl-bgp-evpn:l2vpn-address-family/odl-bgp-evpn:evpn-subsequent-address-family/odl-bgp-evpn:evpn-routes

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	<evpn-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-evpn">
 <route-key>evpn</route-key>
 <route-distinguisher>172.12.123.3:200</route-distinguisher>

 <attributes>
 <ipv4-next-hop>
 <global>199.20.166.41</global>
 </ipv4-next-hop>
 <as-path/>
 <origin>
 <value>igp</value>
 </origin>
 <extended-communities>

 </extended-communities>
 </attributes>
</evpn-route>

@line 3: Route Distinguisher (RD) - set to RD of the MAC-VRF advertising the NLRI, recommended format <IP>:<VLAN_ID>

@line 4: One of the EVPN route must be set here.

@line 14: In some cases, specific extended community presence is required. The route may carry one or more Route Target attributes.

EVPN Routes:

	
	Ethernet AD per ESI

	<ethernet-a-d-route>
 <mpls-label>0</mpls-label>
 <ethernet-tag-id>
 <vlan-id>4294967295</vlan-id>
 </ethernet-tag-id>
 <arbitrary>
 <arbitrary>AAAAAAAAAAAA</arbitrary>
 </arbitrary>
</ethernet-a-d-route>

	
	Ethernet AD per EVI

	<ethernet-a-d-route>
 <mpls-label>24001</mpls-label>
 <ethernet-tag-id>
 <vlan-id>2200</vlan-id>
 </ethernet-tag-id>
 <arbitrary>
 <arbitrary>AAAAAAAAAAAA</arbitrary>
 </arbitrary>
</ethernet-a-d-route>

	
	MAC/IP Advertisement

	<mac-ip-adv-route>
 <arbitrary>
 <arbitrary>AAAAAAAAAAAA</arbitrary>
 </arbitrary>
 <ethernet-tag-id>
 <vlan-id>2100</vlan-id>
 </ethernet-tag-id>
 <mac-address>f2:0c:dd:80:9f:f7</mac-address>
 <ip-address>10.0.1.12</ip-address>
 <mpls-label1>299776</mpls-label1>
</mac-ip-adv-route>

	
	Inclusive Multicast Ethernet Tag

	<inc-multi-ethernet-tag-res>
 <ethernet-tag-id>
 <vlan-id>2100</vlan-id>
 </ethernet-tag-id>
 <orig-route-ip>43.43.43.43</orig-route-ip>
</inc-multi-ethernet-tag-res>

	
	Ethernet Segment

	<es-route>
 <orig-route-ip>43.43.43.43</orig-route-ip>
 <arbitrary>
 <arbitrary>AAAAAAAAAAAA</arbitrary>
 </arbitrary>
</es-route>

EVPN Ethernet Segment Identifier (ESI):

	
	Type 0

	Indicates an arbitrary 9-octet ESI.

<arbitrary>
 <arbitrary>AAAAAAAAAAAA</arbitrary>
</arbitrary>

	
	Type 1

	IEEE 802.1AX LACP is used.

<lacp-auto-generated>
 <ce-lacp-mac-address>f2:0c:dd:80:9f:f7</ce-lacp-mac-address>
 <ce-lacp-port-key>22</ce-lacp-port-key>
</lacp-auto-generated>

	
	Type 2

	Indirectly connected hosts via a bridged LAN.

<lan-auto-generated>
 <root-bridge-mac-address>f2:0c:dd:80:9f:f7</root-bridge-mac-address>
 <root-bridge-priority>20</root-bridge-priority>
</lan-auto-generated>

	
	Type 3

	MAC-based ESI.

<mac-auto-generated>
 <system-mac-address>f2:0c:dd:80:9f:f7</system-mac-address>
 <local-discriminator>2000</local-discriminator>
</mac-auto-generated>

	
	Type 4

	Router-ID ESI

<router-id-generated>
 <router-id>43.43.43.43</router-id>
 <local-discriminator>2000</local-discriminator>
</router-id-generated>

	
	Type 5

	AS-based ESI

<as-generated>
 <as>16843009</as>
 <local-discriminator>2000</local-discriminator>
</as-generated>

Extended Communities:

	
	ESI Label Extended Community

	<extended-communities>
 <transitive>true</transitive>
 <esi-label-extended-community>
 <single-active-mode>false</single-active-mode>
 <esi-label>24001</esi-label>
 </esi-label-extended-community >
</extended-communities>

	
	ES-Import Route Target

	<extended-communities>
 <transitive>true</transitive>
 <es-import-route-extended-community>
 <es-import>f2:0c:dd:80:9f:f7</es-import>
 </es-import-route-extended-community>
</extended-communities>

	
	MAC Mobility Extended Community

	<extended-communities>
 <transitive>true</transitive>
 <mac-mobility-extended-community>
 <static>true</static>
 <seq-number>200</seq-number>
 </mac-mobility-extended-community>
</extended-communities>

	
	Default Gateway Extended Community

	<extended-communities>
 <transitive>true</transitive>
 <default-gateway-extended-community>
 </default-gateway-extended-community>
</extended-communities>

	
	EVPN Layer 2 attributes extended community

	<extended-communities>
 <transitive>false</transitive>
 <layer-2-attributes-extended-community>
 <primary-pe>true</primary-pe>
 <backup-pe>true</backup-pe>
 <control-word >true</control-word>
 <l2-mtu>200</l2-mtu>
 </layer-2-attributes-extended-community>
</extended-communities>

	
	BGP Encapsulation extended community

		1
2
3
4
5
6

	<extended-communities>
 <transitive>false</transitive>
 <encapsulation-extended-community>
 <tunnel-type>vxlan</tunnel-type>
 </encapsulation-extended-community>
</extended-communities>

@line 4: full list of tunnel types [http://www.iana.org/assignments/bgp-parameters/bgp-parameters.xhtml#tunnel-types]

	
	P-Multicast Service Interface Tunnel (PMSI) attribute

	<pmsi-tunnel>
 <leaf-information-required>true</leaf-information-required>
 <mpls-label>20024</mpls-label>
 <ingress-replication>
 <receiving-endpoint-address>172.12.123.3</receiving-endpoint-address>
 </ingress-replication>
</pmsi-tunnel>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/odl-bgp-evpn:l2vpn-address-family/odl-bgp-evpn:evpn-subsequent-address-family/odl-bgp-evpn:evpn-routes/evpn-route/evpn

Method: DELETE

EVPN Routes Usage.

	EVN Route Type

	Extended Communities

	Usage

	Ethernet Auto-discovery

	ESI Label, BGP EncapsulationEVPN Layer 2 attributes

	Fast Convergence, Split Horizon, Aliasing

	MAC/IP Advertisement

	BGP Encapsulation, MAC Mobility, Default Gateway

	MAC address reachability

	Inclusive Multicast Ethernet Tag

	PMSI Tunnel, BGP Encapsulation

	Handling of Multi-destination traffic

	Ethernet Segment

	BGP Encapsulation, ES-Import Route Target

	Designated Forwarder Election

References

	BGP MPLS-Based Ethernet VPN [https://tools.ietf.org/html/rfc7432]

	Provider Backbone Bridging Combined with Ethernet VPN [https://tools.ietf.org/html/rfc7623]

	VPWS support in EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-vpws-07]

	A Network Virtualization Overlay Solution using EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-04]

	Interconnect Solution for EVPN Overlay networks [https://tools.ietf.org/html/draft-ietf-bess-dci-evpn-overlay-04]

	Usage and applicability of BGP MPLS based Ethernet VPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-usage-03]

Additional Path

The ADD-PATH capability allows to advertise multiple paths for the same address prefix.
It can help with optimal routing and routing convergence in a network by providing potential alternate or backup paths.

Contents

	Configuration

	BGP Speaker

	BGP Peer

	Usage

	References

Configuration

This section shows a way to enable ADD-PATH capability in BGP speaker and peer configuration.

Note

The capability is applicable for IP Unicast, IP Labeled Unicast and Flow Specification address families.

BGP Speaker

To enable ADD-PATH capability in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <receive>true</receive>
 <send-max>2</send-max>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

@line 14: Defines path selection strategy: send-max > 1 -> Advertise N Paths or send-max = 0 -> Advertise All Paths

Here is an example for update a specific family with enable ADD-PATH capability

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/global/afi-safis/afi-safi/openconfig-bgp-types:IPV4%2DUNICAST

Method: PUT

Content-Type: application/xml

Request Body:

<afi-safi xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <receive>true</receive>
 <send-max>0</send-max>
</afi-safi>

BGP Peer

Here is an example for BGP peer configuration with enabled ADD-PATH capability.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <receive>true</receive>
 <send-max>0</send-max>
 </afi-safi>
 </afi-safis>
</neighbor>

Note

The path selection strategy is not configurable on per peer basis. The send-max presence indicates a willingness to send ADD-PATH NLRIs to the neighbor.

Here is an example for update specific family BGP peer configuration with enabled ADD-PATH capability.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/afi-safis/afi-safi/openconfig-bgp-types:IPV4%2DUNICAST

Method: PUT

Content-Type: application/xml

Request Body:

<afi-safi xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <receive>true</receive>
 <send-max>0</send-max>
</afi-safi>

Usage

The IPv4 Unicast table with enabled ADD-PATH capability in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/ipv4-routes

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	<ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>1</path-id>
 <prefix>193.0.2.1/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.0.0.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 <ipv4-route>
 <path-id>2</path-id>
 <prefix>193.0.2.1/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.0.0.2</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
</ipv4-routes>

@line 3: The routes with the same destination are distinguished by path-id attribute.

References

	Advertisement of Multiple Paths in BGP [https://tools.ietf.org/html/rfc7911]

	Best Practices for Advertisement of Multiple Paths in IBGP [https://tools.ietf.org/html/draft-ietf-idr-add-paths-guidelines-08]

Route Refresh

The Route Refresh Capability allows to dynamically request a re-advertisement of the Adj-RIB-Out from a BGP peer.
This is useful when the inbound routing policy for a peer changes and all prefixes from a peer must be reexamined against a new policy.

Contents

	Configuration

	Usage

	References

Configuration

The capability is enabled by default, no additional configuration is required.

Usage

To send a Route Refresh request from OpenDaylight BGP speaker instance to its neighbor, invoke RPC:

URL: /restconf/operations/bgp-peer-rpc:route-refresh-request

Method: POST

Content-Type: application/xml

Request Body:

<input xmlns="urn:opendaylight:params:xml:ns:yang:bgp-peer-rpc">
 <afi xmlns:types="urn:opendaylight:params:xml:ns:yang:bgp-types">types:ipv4-address-family</afi>
 <safi xmlns:types="urn:opendaylight:params:xml:ns:yang:bgp-types">types:unicast-subsequent-address-family</safi>
 <peer-ref xmlns:rib="urn:opendaylight:params:xml:ns:yang:bgp-rib">/rib:bgp-rib/rib:rib[rib:id="bgp-example"]/rib:peer[rib:peer-id="bgp://10.25.1.9"]</peer-ref>
</input>

References

	Route Refresh Capability for BGP-4 [https://tools.ietf.org/html/rfc2918]

Operational State

The OpenDaylight BGP implementation provides a set of APIs (described below), that give its operational state refreshed periodically, by default every 5 seconds.
The following APIs describe what is available starting with how to change the default refresh rate.

Contents

	Operational State Configuration

	BGP RIB Operational State

	BGP RIB Families Operational State

	BGP Neighbors Operational State

	BGP Neighbor Operational State

	BGP Neighbor Families Operational State

	BGP Neighbor Family Operational State

	BGP Neighbor Timers Operational State

	BGP Neighbor Transport Operational State

	BGP Neighbor Error Handling Operational State

	BGP Neighbor Graceful Restart Operational State

	BGP Peer Groups Operational State

Operational State Configuration

URL: /restconf/config/bgp-state-config:bgp-state-config

Method: PUT

Content-Type: application/xml

Request Body:

	1
2
3
4

	<bgp-state-config xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <config-name xmlns="urn:opendaylight:params:xml:ns:yang:bgp-state-config">operationalState</config-name>
 <timer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-state-config">1</timer>
</bgp-state-config>

@line 3: Time in seconds between operational state update.

BGP RIB Operational State

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/global/state

Method: GET

Content-Type: application/xml

Response Body:

	1
2
3
4
5
6

	<state xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <as>65000</as>
 <router-id>192.0.2.2</router-id>
 <total-paths>0</total-paths>
 <total-prefixes>0</total-prefixes>
</state>

@line 2: AS number of the remote peer.

@line 3: The unique protocol instance identifier.

@line 4: Total number of Paths installed on RIB (Loc-RIB)

@line 5: Total number of Prefixes installed on RIB (Loc-RIB)

BGP RIB Families Operational State

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/global/afi-safis

Method: GET

Content-Type: application/xml

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	<afi-safis xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <state>
 <total-paths>0</total-paths>
 <total-prefixes>0</total-prefixes>
 </state>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-UNICAST</afi-safi-name>
 <state>
 <total-paths>0</total-paths>
 <total-prefixes>0</total-prefixes>
 </state>
 </afi-safi>

</afi-safis>

@line 3: Family Identifier.

@line 5: Total number of Paths installed on RIB (Loc-RIB) per specific family.

@line 6: Total number of Prefixes installed on RIB (Loc-RIB) per specific family.

BGP Neighbors Operational State

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: GET

Content-Type: application/xml

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	<neighbors xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor>
 <neighbor-address>192.0.2.1</neighbor-address>

 </neighbor>
 <neighbor>
 <neighbor-address>192.0.2.2</neighbor-address>

 </neighbor>
</neighbors>

@line 3: IP address of the remote BGP peer. Also serves as an unique identifier of a neighbor in a list of neighbors.

BGP Neighbor Operational State

Note

Supported Capabilities only provided when session has been established.

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbor/127.0.0.2/state

Method: GET

Content-Type: application/xml

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	<state xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <session-state>ESTABLISHED</session-state>
 <supported-capabilities xmlns:x="http://openconfig.net/yang/bgp-types">x:ASN32</supported-capabilities>
 <supported-capabilities xmlns:x="http://openconfig.net/yang/bgp-types">x:MPBGP</supported-capabilities>
 <messages>
 <sent>
 <UPDATE>0</UPDATE>
 <NOTIFICATION>0</NOTIFICATION>
 </sent>
 <received>
 <UPDATE>4</UPDATE>
 <NOTIFICATION>0</NOTIFICATION>
 </received>
 </messages>
</state>

@line 2: Session status

@line 3-4: BGP capabilities supported (ASN32 / MPBGP / ROUTE_REFRESH / GRACEFUL_RESTART / ADD_PATHS)

@line 7: Total count of Update Messages sent

@line 8: Total count of Notification Messages sent

@line 11: Total count of Update Messages received

@line 12: Total count of Notification Messages received

BGP Neighbor Families Operational State

Note

Graceful Restart not supported yet. Planned for Carbon.

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/afi-safis

Method: GET

Content-Type: application/xml

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	<afi-safis xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <state>
 <active>false</active>
 </state>
 <graceful-restart>
 <state>
 <received>false</received>
 <advertised>false</advertised>
 </state>
 </graceful-restart>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-UNICAST</afi-safi-name>
 <state>
 <active>false</active>
 </state>
 <graceful-restart>
 <state>
 <received>false</received>
 <advertised>false</advertised>
 </state>
 </graceful-restart>
 </afi-safi>
</afi-safis>

@line 3: Family Identifier.

@line 5: True if family is advertized by peer.

@line 7: Graceful Restart Operational State per specific family.

@line 9: True if the peer supports graceful restart.

@line 10: True if we support graceful restart.

BGP Neighbor Family Operational State

Note

Prefixes state is only provided once session is established.

Note

Graceful Restart not supported yet. Planned to be implemented in Carbon.

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/afi-safis/afi-safi/openconfig-bgp-types:IPV4%2DUNICAST

Method: GET

Content-Type: application/xml

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	<afi-safi xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <state>
 <active>true</active>
 <prefixes>
 <installed>3</installed>
 <sent>0</sent>
 <received>3</received>
 </prefixes>
 </state>
 <graceful-restart>
 <state>
 <received>false</received>
 <advertised>false</advertised>
 </state>
 </graceful-restart>
</afi-safi>

@line 2: Family Identifier.

@line 4: True if family is advertized to and by peer.

@line 6: Total count of prefixes advertized by peer and installed (effective-rib-in).

@line 7: Total count of prefixes advertized to peer (adj-rib-out).

@line 8: Total count of prefixes advertized by peer (adj-rib-in).

BGP Neighbor Timers Operational State

Note

State is only provided once session is established.

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/timers

Method: GET

Content-Type: application/xml

Response Body:

	1
2
3
4
5
6

	<timers xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <state>
 <negotiated-hold-time>180</negotiated-hold-time>
 <uptime>1580676</uptime>
 </state>
</timers>

@line 3: The negotiated hold-time for the BGP session in seconds.

@line 4: Session duration since establishment in milliseconds.

BGP Neighbor Transport Operational State

Note

State is only provided once session is established.

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/transport

Method: GET

Content-Type: application/xml

Response Body:

	1
2
3
4
5
6
7

	<transport xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <state>
 <remote-address>127.0.0.2</remote-address>
 <remote-port>44718</remote-port>
 <local-port>1790</local-port>
 </state>
</transport>

@line 3: IP address of the remote BGP peer.

@line 4: Port of the remote BGP peer.

@line 5: Local port.

BGP Neighbor Error Handling Operational State

Note

State is only provided once session is established.

Note

Error handling not supported yet. Planned for Carbon.

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/error-handling

Method: GET

Content-Type: application/xml

Response Body:

	1
2
3
4
5

	<error-handling xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <state>
 <erroneous-update-messages>0</erroneous-update-messages>
 </state>
</error-handling>

@line 3: The number of BGP UPDATE messages for which the treat-as-withdraw mechanism has been applied based on
erroneous message contents

BGP Neighbor Graceful Restart Operational State

Note

Graceful Restart not supported yet. Planned for Carbon.

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/graceful-restart

Method: GET

Content-Type: application/xml

Response Body:

	1
2
3
4
5
6
7

	<graceful-restart xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <state>
 <peer-restart-time>0</peer-restart-time>
 <peer-restarting>false</peer-restarting>
 <local-restarting>false</local-restarting>
 </state>
</graceful-restart>

@line 3: The period of time (advertised by the peer) that the peer expects a restart of a BGP session to take.

@line 4: This flag indicates whether the remote neighbor is currently in the process of restarting, and hence
received routes are currently stale.

@line 5: This flag indicates whether the local neighbor is currently restarting. The flag is unset after all NLRI
have been advertised to the peer, and the End-of-RIB (EOR) marker has been unset.

BGP Peer Groups Operational State

URL: /restconf/operational/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/peer-groups

Method: GET

Content-Type: application/xml

Response Body:

	1
2
3
4
5
6
7
8
9

	<peer-groups>
 <peer-group>
 <peer-group-name>application-peers</peer-group-name>
 <state>
 <total-paths>0</total-paths>
 <total-prefixes>0</total-prefixes>
 </state>
 </peer-group>
</peer-groups>

@line 3: Peer Group Identifier.

@line 5: At this moment the cost for count path under effect-rib-in is to high. Therefore the value is the same as total prefixes.

@line 6: Total Prefixes installed under by peers pertaining to this peer group (effective-rib-in).
This count doesn’t differentiate repeated prefixes.

High Availability

Running OpenDaylight BGP in clustered environment brings an advantage of the plugin’s high availability (HA).
This section illustrates a basic scenario for HA, also presents a configuration for clustered OpenDaylight BGP.

Contents

	Configuration

	Failover scenario

Configuration

Following example shows a configuration for running BGP in clustered environment.

	As the first step, configure (replicated deafult shard and topology shard if needed) and run OpenDaylight in clustered environment, install BGP and RESTCONF.

	On one node (OpenDaylight instance), configure BGP speaker instance and neighbor. In addition, configure BGP topology exporter if required. The configuration is shared across all interconnected cluster nodes, however BGP become active only on one node. Other nodes with configured BGP serves as stand-by backups.

	Remote peer should be configured to accept/initiate connection from/to all OpenDaylight cluster nodes with configured BGP plugin.

	Connect remote peer, let it advertise some routes. Verify routes presence in Loc-RIB and/or BGP topology exporter instance on all nodes of the OpenDaylight cluster.

Warning

Replicating RIBs across the cluster nodes is causing severe scalability issue and overall performance degradation. To avoid this problems, configure BGP RIB module as a separate shard without enabled replication. Change configuration on all nodes as following (configuration/initial):

	
	In modules.conf add a new module:

	{
 name = "bgp_rib"
 namespace = "urn:opendaylight:params:xml:ns:yang:bgp-rib"
 shard-strategy = "module"
}

	
	In module-shards.conf define a new module shard:

	{
 name = "bgp_rib"
 shards = [
 {
 name="bgp_rib"
 replicas = [
 "member-1"
]
 }
]
}

Note: Use correct member name in module shard configuration.

Failover scenario

Following section presents a basic BGP speaker failover scenario on 3-node OpenDaylight cluster setup.

[image: BGP HA setup.]
Once the OpenDaylight BGP is configured, the speaker become active on one of the cluster nodes. Remote peer can establish connection with this BGP instance.
Routes advertised by remote peer are replicated, hence RIBs state on all nodes is the same.

[image: Node went down.]
In a case a cluster node, where BGP instance is running, goes down (unexpected failure, restart), active BGP session is dropped.

[image: BGP recovery.]
Now, one of the stand-by BGP speaker instances become active. Remote peer establishes new connection and advertises routes again.

Topology Provider

This section provides an overview of the BGP topology provider service.
It shows how to configure and use all available BGP topology providers.
Providers are building topology view of BGP routes stored in local BGP speaker’s Loc-RIB.
Output topologies are rendered in a form of standardised IETF network topology model.

Contents

	Inet Reachability Topology

	Configuration

	Usage

	BGP Linkstate Topology

	Configuration

	Usage

	BGP Network Topology Configuration Loader

Inet Reachability Topology

Inet reachability topology exporter offers a mapping service from IPv4/6 routes to network topology nodes.

Configuration

Following example shows how to create a new instance of IPv4 BGP topology exporter:

URL: /restconf/config/network-topology:network-topology

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6
7

	<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>bgp-example-ipv4-topology</topology-id>
 <topology-types>
 <bgp-ipv4-reachability-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-ipv4-reachability-topology>
 </topology-types>
 <rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">bgp-example</rib-id>
</topology>

@line 2: An identifier for a topology.

@line 4: Used to identify type of the topology. In this case BGP IPv4 reachability topology.

@line 6: A name of the local BGP speaker instance.

The topology exporter instance can be removed in a following way:

URL: /restconf/config/network-topology:network-topology/topology/bgp-example-ipv4-topology

Method: DELETE

Following example shows how to create a new instance of IPv6 BGP topology exporter:

URL: /restconf/config/network-topology:network-topology

Method: POST

Content-Type: application/xml

Request Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>bgp-example-ipv6-topology</topology-id>
 <topology-types>
 <bgp-ipv6-reachability-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-ipv6-reachability-topology>
 </topology-types>
 <rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">bgp-example</rib-id>
</topology>

Usage

Operational state of the topology can be verified via REST:

URL: /restconf/operational/network-topology:network-topology/topology/bgp-example-ipv4-topology

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>bgp-example-ipv4-topology</topology-id>
 <server-provided>true</server-provided>
 <topology-types>
 <bgp-ipv4-reachability-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-ipv4-reachability-topology>
 </topology-types>
 <node>
 <node-id>10.10.1.1</node-id>
 <igp-node-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology">
 <prefix>
 <prefix>10.0.0.10/32</prefix>
 </prefix>
 </igp-node-attributes>
 </node>
</topology>

@line 8: The identifier of a node in a topology. Its value is mapped from route’s NEXT_HOP attribute.

@line 11: The IP prefix attribute of the node. Its value is mapped from routes’s destination IP prefix.

BGP Linkstate Topology

BGP linkstate topology exporter offers a mapping service from BGP-LS routes to network topology nodes and links.

Configuration

Following example shows how to create a new instance of linkstate BGP topology exporter:

URL: /restconf/config/network-topology:network-topology

Method: POST

Content-Type: application/xml

Request Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>bgp-example-linkstate-topology</topology-id>
 <topology-types>
 <bgp-linkstate-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-linkstate-topology>
 </topology-types>
 <rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">bgp-example</rib-id>
</topology>

Usage

Operational state of the topology can be verified via REST.
A sample output below represents a two node topology with two unidirectional links interconnecting those nodes.

URL: /restconf/operational/network-topology:network-topology/topology/bgp-example-linkstate-topology

Method: GET

Response Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>bgp-example-linkstate-topology</topology-id>
 <server-provided>true</server-provided>
 <topology-types>
 <bgp-linkstate-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-linkstate-topology>
 </topology-types>
 <node>
 <node-id>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0040</node-id>
 <termination-point>
 <tp-id>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.40</tp-id>
 <igp-termination-point-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology"/>
 </termination-point>
 <igp-node-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology">
 <prefix>
 <prefix>40.40.40.40/32</prefix>
 <metric>10</metric>
 </prefix>
 <prefix>
 <prefix>203.20.160.0/24</prefix>
 <metric>10</metric>
 </prefix>
 <name>node1</name>
 <router-id>40.40.40.40</router-id>
 <isis-node-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-topology">
 <ted>
 <te-router-id-ipv4>40.40.40.40</te-router-id-ipv4>
 </ted>
 <iso>
 <iso-system-id>MDAwMDAwMDAwMDY0</iso-system-id>
 </iso>
 </isis-node-attributes>
 </igp-node-attributes>
 </node>
 <node>
 <node-id>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0039</node-id>
 <termination-point>
 <tp-id>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.39</tp-id>
 <igp-termination-point-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology"/>
 </termination-point>
 <igp-node-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology">
 <prefix>
 <prefix>39.39.39.39/32</prefix>
 <metric>10</metric>
 </prefix>
 <prefix>
 <prefix>203.20.160.0/24</prefix>
 <metric>10</metric>
 </prefix>
 <name>node2</name>
 <router-id>39.39.39.39</router-id>
 <isis-node-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-topology">
 <ted>
 <te-router-id-ipv4>39.39.39.39</te-router-id-ipv4>
 </ted>
 <iso>
 <iso-system-id>MDAwMDAwMDAwMDg3</iso-system-id>
 </iso>
 </isis-node-attributes>
 </igp-node-attributes>
 </node>
 <link>
 <destination>
 <dest-node>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0039</dest-node>
 <dest-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.39</dest-tp>
 </destination>
 <link-id>bgpls://IsisLevel2:1/type=link&local-as=65000&local-domain=673720360&local-router=0000.0000.0040&remote-as=65000&remote-domain=673720360&remote-router=0000.0000.0039&ipv4-iface=203.20.160.40&ipv4-neigh=203.20.160.39</link-id>
 <source>
 <source-node>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0040</source-node>
 <source-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.40</source-tp>
 </source>
 <igp-link-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology">
 <metric>10</metric>
 <isis-link-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-topology">
 <ted>
 <color>0</color>
 <max-link-bandwidth>1250000.0</max-link-bandwidth>
 <max-resv-link-bandwidth>12500.0</max-resv-link-bandwidth>
 <te-default-metric>0</te-default-metric>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>0</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>1</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>2</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>3</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>4</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>5</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>6</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>7</priority>
 </unreserved-bandwidth>
 </ted>
 </isis-link-attributes>
 </igp-link-attributes>
 </link>
 <link>
 <destination>
 <dest-node>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0040</dest-node>
 <dest-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.40</dest-tp>
 </destination>
 <link-id>bgpls://IsisLevel2:1/type=link&local-as=65000&local-domain=673720360&local-router=0000.0000.0039&remote-as=65000&remote-domain=673720360&remote-router=0000.0000.0040&ipv4-iface=203.20.160.39&ipv4-neigh=203.20.160.40</link-id>
 <source>
 <source-node>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0039</source-node>
 <source-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.39</source-tp>
 </source>
 <igp-link-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology">
 <metric>10</metric>
 <isis-link-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-topology">
 <ted>
 <color>0</color>
 <max-link-bandwidth>1250000.0</max-link-bandwidth>
 <max-resv-link-bandwidth>12500.0</max-resv-link-bandwidth>
 <te-default-metric>0</te-default-metric>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>0</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>1</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>2</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>3</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>4</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>5</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>6</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>7</priority>
 </unreserved-bandwidth>
 </ted>
 </isis-link-attributes>
 </igp-link-attributes>
 </link>
</topology>

BGP Network Topology Configuration Loader

BGP Network Topology Configuration Loader allows user to define static initial configuration for a BGP protocol instance.
This service will detect the creation of new configuration files following the pattern “network-topology-*.xml” under the path “etc/opendaylight/bgp”.
Once the file is processed, the defined configuration will be available from the configuration Data Store.

Note

If the BGP topology instance is already present, no update or configuration will be applied.

When installing BGP an example will be provided and a default configuration loaded.

PATH: etc/opendaylight/bgp/network-topology-config.xml

<network-topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology>
 <topology-id>example-ipv4-topology</topology-id>
 <topology-types>
 <bgp-ipv4-reachability-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"/>
 </topology-types>
 <rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">example-bgp-rib</rib-id>
 </topology>
 <topology>
 <topology-id>example-ipv6-topology</topology-id>
 <topology-types>
 <bgp-ipv6-reachability-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"/>
 </topology-types>
 <rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">example-bgp-rib</rib-id>
 </topology>
 <topology>
 <topology-id>example-linkstate-topology</topology-id>
 <topology-types>
 <bgp-linkstate-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"/>
 </topology-types>
 <rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">example-bgp-rib</rib-id>
 </topology>
</network-topology>

Test Tools

BGP test tools serves to test basic BGP functionality, scalability and performance.

Contents

	BGP Test Tool

	Usage

	BGP Application Peer Benchmark

	Configuration

	Inject routes

	Remove routes

BGP Test Tool

The BGP Test Tool is a stand-alone Java application purposed to simulate remote BGP peers, that are capable to advertise sample routes.
This application is not part of the OpenDaylight Karaf distribution, however it can be downloaded from OpenDaylight’s Nexus (use latest release version):

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/bgpcep/bgp-testtool

Usage

The application can be run from command line:

java -jar bgp-testtool-*-executable.jar

with optional input parameters:

-i <BOOLEAN>, --active <BOOLEAN>
 Active initialisation of the connection, by default false.

-ho <N>, --holdtimer <N>
 In seconds, value of the desired holdtimer, by default 90.

-sc <N>, --speakersCount <N>
 Number of simulated BGP speakers, when creating each speaker, uses incremented local-address for binding, by default 0.

-ra <IP_ADDRESS:PORT,...>, --remoteAddress <IP_ADDRESS:PORT,...>
 A list of IP addresses of remote BGP peers, that the tool can accept or initiate connect to that address (based on the mode), by default 192.0.2.2:1790.

-la <IP_ADDRESS:PORT>, --localAddress <IP_ADDRESS:PORT>
 IP address of BGP speakers which the tools simulates, by default 192.0.2.2:0.

-pr <N>, --prefixes <N>
 Number of prefixes to be advertised by each simulated speaker

-mp <BOOLEAN>, --multiPathSupport <BOOLEAN>
 Active ADD-PATH support, by default false.

-as <N>, --as <N>
 Local AS Number, by default 64496.

-ec <EXTENDED_COMMUNITIES>, --extended_communities <EXTENDED_COMMUNITIES>
 Extended communities to be send. Format: x,x,x where x is each extended community from bgp-types.yang, by default empty.

-ll <LOG_LEVEL>, --log_level <LOG_LEVEL>
 Log level for console output, by default INFO.

BGP Application Peer Benchmark

It is a simple OpenDaylight application which is capable to inject and remove specific amount of IPv4 routes.
This application is part of the OpenDaylight Karaf distribution.

Configuration

As a first step install BGP and RESTCONF, then configure Application Peer.
Install odl-bgpcep-bgp-benchmark feature and reconfigure BGP Application Peer Benchmark application as per following:

URL: /restconf/config/odl-bgp-app-peer-benchmark-config:config

Method: PUT

Content-Type: application/xml

Request Body:

	1
2
3

	<odl-bgp-app-peer-benchmark-config xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark-config">
 <app-peer-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark-config">10.25.1.9</app-peer-id>
</odl-bgp-app-peer-benchmark-config>

@line 2: The Application Peer identifier.

Inject routes

Routes injection can be invoked via RPC:

URL: /restconf/operations/odl-bgp-app-peer-benchmark:add-prefix

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6

	<input xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
 <prefix>1.1.1.1/32</prefix>
 <count>100000</count>
 <batchsize>2000</batchsize>
 <nexthop>192.0.2.2</nexthop>
</input>

@line 2: A initial IPv4 prefix carried in route. Value is incremented for following routes.

@line 3: An amount of routes to be added to Application Peer’s programmable RIB.

@line 4: A size of the transaction batch.

@line 5: A NEXT_HOP attribute value used in all injected routes.

Response Body:

	1
2
3
4
5
6
7

	<output xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
 <result>
 <duration>4301</duration>
 <rate>25000</rate>
 <count>100000</count>
 </result>
</output>

@line 3: Request duration in milliseconds.

@line 4: Writes per second rate.

@line 5: An amount of routes added to Application Peer’s programmable RIB.

Remove routes

Routes deletion can be invoked via RPC:

URL: /restconf/operations/odl-bgp-app-peer-benchmark:delete-prefix

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5

	<input xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
 <prefix>1.1.1.1/32</prefix>
 <count>100000</count>
 <batchsize>2000</batchsize>
</input>

@line 2: A initial IPv4 prefix carried in route to be removed. Value is incremented for following routes.

@line 3: An amount of routes to be removed from Application Peer’s programmable RIB.

@line 4: A size of the transaction batch.

Response Body:

<output xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
 <result>
 <duration>1837</duration>
 <rate>54500</rate>
 <count>100000</count>
 </result>
</output>

Troubleshooting

This section offers advices in a case OpenDaylight BGP plugin is not working as expected.

Contents

	BGP is not working…

	Bug reporting

BGP is not working…

	First of all, ensure that all required features are installed, local and remote BGP configuration is correct.

	Check OpenDaylight Karaf logs:

From Karaf console:

log:tail

or open log file: data/log/karaf.log

Possibly, a reason/hint for a cause of the problem can be found there.

	Try to minimise effect of other OpenDaylight features, when searching for a reason of the problem.

	Try to set DEBUG severity level for BGP logger via Karaf console commands, in order to collect more information:

log:set DEBUG org.opendaylight.protocol.bgp

log:set DEBUG org.opendaylight.bgpcep.bgp

Bug reporting

Before you report a bug, check BGPCEP Jira [https://jira.opendaylight.org/browse/BGPCEP-756?jql=project%20%3D%20BGPCEP%20AND%20component%20%3D%20BGP] to ensure same/similar bug is not already filed there.

Write an e-mail to bgpcep-users@lists.opendaylight.org and provide following information:

	State OpenDaylight version

	Describe your use-case and provide as much details related to BGP as possible

	Steps to reproduce

	Attach Karaf log files, optionally packet captures, REST input/output

BGP Monitoring Protocol User Guide

This guide contains information on how to use the OpenDaylight BGP Monitoring Protocol (BMP) plugin.
It covers BMP basic concepts, supported capabilities, configuration and operations.

Contents

	Overview

	Running BMP

	BMP Monitoring Station

	Test tools

	Troubleshooting

Overview

This section provides high-level overview of the BMP plugin, OpenDaylight implementation and BMP usage for SDN.

Contents

	BGP Monitoring Protocol

	BMP in SDN

	OpenDaylight BMP plugin

	List of supported capabilities

BGP Monitoring Protocol

The BGP Monitoring Protocol (BMP) serves to monitor BGP sessions.
The BMP can be used to obtain route view instead of screen scraping.
The BMP provides access to unprocessed routing information (Adj-RIB-In) and processed routes (applied inbound policy) of monitored router’s peer.
In addition, monitored router can provide periodic dump of statistics.

The BMP runs over TCP.
Both monitored router and monitoring station can be configured as active or passive party of the connection.
The passive party listens at particular port.
The router can be monitored by multiple monitoring stations.
BMP messages are sent by monitored router only, monitoring station supposed to collect and process data received over BMP.

[image: BMP]
The BMP overview - Monitoring Station, Monitored Router and Monitored Peers.

BMP in SDN

The main concept of BMP is to monitor BGP sessions - monitoring station is aware of monitored peer’s status, collects statistics and analyzes them in order to provide valuable information for network operators.

Moreover, BMP provides provides peer RIBs visibility, without need to establish BGP sessions.
Unprocessed routes may serve as a source of information for software-driven routing optimization.
In this case, SDN controller, a BMP monitoring station, collects routing information from monitored routers.
The routes are used in subsequent optimization procedures.

OpenDaylight BMP plugin

The OpenDaylight BMP plugin provides monitoring station implementation.
The plugin can establish BMP session with one or more monitored routers in order to collect routing and statistical information.

	Runtime configurable monitoring station

	Read-only routes and statistics view

	Supports various routing information types

[image: BMP plugin]
OpenDaylight BMP plugin overview.

Important

The BMP plugin is not storing historical data, it provides current snapshot only.

List of supported capabilities

The BMP plugin implementation is based on Internet standards:

	RFC7854 [https://tools.ietf.org/html/rfc7854] - BGP Monitoring Protocol (BMP)

Note

The BMP plugin is capable to process various types of routing information (IP Unicast, EVPN, L3VPN, Link-State,…).
Please, see complete list in BGP user guide.

Running BMP

This section explains how to install BMP plugin.

	Install BMP feature - odl-bgpcep-bmp.
Also, for sake of this sample, it is required to install RESTCONF.
In the Karaf console, type command:

feature:install odl-restconf odl-bgpcep-bmp

	The BMP plugin contains a default configuration, which is applied after the feature starts up.
One instance of BMP monitoring station is created (named example-bmp-monitor), and its presence can be verified via REST:

URL: /restconf/config/odl-bmp-monitor-config:odl-bmp-monitors/bmp-monitor-config/example-bmp-monitor

Method: GET

Response Body:

<bmp-monitor-config xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor-config">
 <monitor-id>example-bmp-monitor</monitor-id>
 <server>
 <binding-port>12345</binding-port>
 <binding-address>0.0.0.0</binding-address>
 </server>
</bmp-monitor-config>

BMP Monitoring Station

The following section shows how to configure BMP basics, how to verify functionality and presents essential components of the plugin. Next samples demonstrate the plugin’s runtime configuration capability.

The monitoring station is responsible for received BMP PDUs processing and storage.
The default BMP server is listening at port 12345.

Contents

	Configuration

	Monitoring station configuration

	Active mode configuration

	MD5 authentication configuration

	Collector DB Tree

	Operations

Configuration

This section shows the way to configure the BMP monitoring station via REST API.

Monitoring station configuration

In order to change default’s BMP monitoring station configuration, use following request.

URL: /restconf/config/odl-bmp-monitor-config:odl-bmp-monitors/bmp-monitor-config/example-bmp-monitor

Method: PUT

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6
7

	<bmp-monitor-config xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor-config">
 <monitor-id>example-bmp-monitor</monitor-id>
 <server>
 <binding-port>12345</binding-port>
 <binding-address>0.0.0.0</binding-address>
 </server>
</bmp-monitor-config>

@line 4: binding-port - The BMP server listening port.

@line 5: binding-address - The BMP server biding address.

Note

User may create multiple BMP monitoring station instances at runtime.

Active mode configuration

In order to enable active connection, use following request.

URL: /restconf/config/odl-bmp-monitor-config:odl-bmp-monitors/bmp-monitor-config/example-bmp-monitor

Method: PUT

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	<bmp-monitor-config xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor-config">
 <monitor-id>example-bmp-monitor</monitor-id>
 <server>
 <binding-port>12345</binding-port>
 <binding-address>0.0.0.0</binding-address>
 </server>
 <monitored-router>
 <address>192.0.2.2</address>
 <port>1234</port>
 <active>true</active>
 </monitored-router>
</bmp-monitor-config>

@line 8: address - The monitored router’s IP address.

@line 9: port - The monitored router’s port.

@line 10: active - Active mode set.

Note

User may configure active session establishment for multiple monitored routers.

MD5 authentication configuration

In order to enable active connection, use following request.

URL: /restconf/config/odl-bmp-monitor-config:odl-bmp-monitors/bmp-monitor-config/example-bmp-monitor

Method: PUT

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	<bmp-monitor-config xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor-config">
 <monitor-id>example-bmp-monitor</monitor-id>
 <server>
 <binding-port>12345</binding-port>
 <binding-address>0.0.0.0</binding-address>
 </server>
 <monitored-router>
 <address>192.0.2.2</address>
 <password>changeme</password>
 </monitored-router>
</bmp-monitor-config>

@line 8: address - The monitored router’s IP address.

@line 9: password - The TCP MD5 signature.

Collector DB Tree

module: bmp-monitor
 +--rw bmp-monitor
 +--ro monitor* [monitor-id]
 +--ro monitor-id monitor-id
 +--ro router* [router-id]
 +--ro name? string
 +--ro description? string
 +--ro info? string
 +--ro router-id router-id
 +--ro status? status
 +--ro peer* [peer-id]
 +--ro peer-id rib:peer-id
 +--ro type peer-type
 x--ro distinguisher
 | +--ro distinguisher-type? distinguisher-type
 | +--ro distinguisher? string
 +--ro peer-distinguisher? union
 +--ro address inet:ip-address
 +--ro as inet:as-number
 +--ro bgp-id inet:ipv4-address
 +--ro router-distinguisher? string
 +--ro peer-session
 | +--ro local-address inet:ip-address
 | +--ro local-port inet:port-number
 | +--ro remote-port inet:port-number
 | +--ro sent-open
 | | +--ro version? protocol-version
 | | +--ro my-as-number? uint16
 | | +--ro hold-timer uint16
 | | +--ro bgp-identifier inet:ipv4-address
 | | +--ro bgp-parameters*
 | | +--ro optional-capabilities*
 | | +--ro c-parameters
 | | +--ro as4-bytes-capability
 | | | +--ro as-number? inet:as-number
 | | +--ro bgp-extended-message-capability!
 | | +--ro multiprotocol-capability
 | | | +--ro afi? identityref
 | | | +--ro safi? identityref
 | | +--ro graceful-restart-capability
 | | | +--ro restart-flags bits
 | | | +--ro restart-time uint16
 | | | +--ro tables* [afi safi]
 | | | +--ro afi identityref
 | | | +--ro safi identityref
 | | | +--ro afi-flags bits
 | | +--ro add-path-capability
 | | | +--ro address-families*
 | | | +--ro afi? identityref
 | | | +--ro safi? identityref
 | | | +--ro send-receive? send-receive
 | | +--ro route-refresh-capability!
 | +--ro received-open
 | | +--ro version? protocol-version
 | | +--ro my-as-number? uint16
 | | +--ro hold-timer uint16
 | | +--ro bgp-identifier inet:ipv4-address
 | | +--ro bgp-parameters*
 | | +--ro optional-capabilities*
 | | +--ro c-parameters
 | | +--ro as4-bytes-capability
 | | | +--ro as-number? inet:as-number
 | | +--ro bgp-extended-message-capability!
 | | +--ro multiprotocol-capability
 | | | +--ro afi? identityref
 | | | +--ro safi? identityref
 | | +--ro graceful-restart-capability
 | | | +--ro restart-flags bits
 | | | +--ro restart-time uint16
 | | | +--ro tables* [afi safi]
 | | | +--ro afi identityref
 | | | +--ro safi identityref
 | | | +--ro afi-flags bits
 | | +--ro add-path-capability
 | | | +--ro address-families*
 | | | +--ro afi? identityref
 | | | +--ro safi? identityref
 | | | +--ro send-receive? send-receive
 | | +--ro route-refresh-capability!
 | +--ro information
 | | +--ro string-information*
 | | +--ro string-tlv
 | | +--ro string-info? string
 | +--ro status? status
 | +--ro timestamp-sec? yang:timestamp
 | +--ro timestamp-micro? yang:timestamp
 +--ro stats
 | +--ro rejected-prefixes? yang:counter32
 | +--ro duplicate-prefix-advertisements? yang:counter32
 | +--ro duplicate-withdraws? yang:counter32
 | +--ro invalidated-cluster-list-loop? yang:counter32
 | +--ro invalidated-as-path-loop? yang:counter32
 | +--ro invalidated-originator-id? yang:counter32
 | +--ro invalidated-as-confed-loop? yang:counter32
 | +--ro adj-ribs-in-routes? yang:gauge64
 | +--ro loc-rib-routes? yang:gauge64
 | +--ro per-afi-safi-adj-rib-in-routes
 | | +--ro afi-safi* [afi safi]
 | | +--ro afi identityref
 | | +--ro safi identityref
 | | +--ro count? yang:gauge64
 | +--ro per-afi-safi-loc-rib-routes
 | | +--ro afi-safi* [afi safi]
 | | +--ro afi identityref
 | | +--ro safi identityref
 | | +--ro count? yang:gauge64
 | +--ro updates-treated-as-withdraw? yang:counter32
 | +--ro prefixes-treated-as-withdraw? yang:counter32
 | +--ro duplicate-updates? yang:counter32
 | +--ro timestamp-sec? yang:timestamp
 | +--ro timestamp-micro? yang:timestamp
 +--ro pre-policy-rib
 | +--ro tables* [afi safi]
 | +--ro afi identityref
 | +--ro safi identityref
 | +--ro attributes
 | | +--ro uptodate? boolean
 | +--ro (routes)?
 +--ro post-policy-rib
 | +--ro tables* [afi safi]
 | +--ro afi identityref
 | +--ro safi identityref
 | +--ro attributes
 | | +--ro uptodate? boolean
 | +--ro (routes)?
 +--ro mirrors
 +--ro information? bmp-msg:mirror-information-code
 +--ro timestamp-sec? yang:timestamp
 +--ro timestamp-micro? yang:timestamp

Operations

The BMP plugin offers view of collected routes and statistical information from monitored peers.
To get top-level view of monitoring station:

URL: /restconf/operational/bmp-monitor:bmp-monitor/monitor/example-bmp-monitor

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

	<bmp-monitor xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor">
 <monitor>
 <monitor-id>example-bmp-monitor</monitor-id>
 <router>
 <router-id>10.10.10.10</router-id>
 <name>name</name>
 <description>monitored-router</description>
 <info>monitored router;</info>
 <status>up</status>
 <peer>
 <peer-id>20.20.20.20</peer-id>
 <address>20.20.20.20</address>
 <bgp-id>20.20.20.20</bgp-id>
 <as>65000</as>
 <type>global</type>
 <peer-session>
 <remote-port>1790</remote-port>
 <timestamp-sec>0</timestamp-sec>
 <status>up</status>
 <local-address>10.10.10.10</local-address>
 <local-port>2200</local-port>
 <received-open>
 <hold-timer>180</hold-timer>
 <my-as-number>65000</my-as-number>
 <bgp-identifier>20.20.20.20</bgp-identifier>
 </received-open>
 <sent-open>
 <hold-timer>180</hold-timer>
 <my-as-number>65000</my-as-number>
 <bgp-identifier>65000</bgp-identifier>
 </sent-open>
 </peer-session>
 <pre-policy-rib>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <prefix>10.10.10.0/24</prefix>
 <attributes>
 ...
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes>
 <uptodate>true</uptodate>
 </attributes>
 </tables>
 </pre-policy-rib>
 <post-policy-rib>
 ...
 </post-policy-rib>
 <stats>
 <timestamp-sec>0</timestamp-sec>
 <invalidated-cluster-list-loop>0</invalidated-cluster-list-loop>
 <duplicate-prefix-advertisements>0</duplicate-prefix-advertisements>
 <loc-rib-routes>100</loc-rib-routes>
 <duplicate-withdraws>0</duplicate-withdraws>
 <invalidated-as-confed-loop>0</invalidated-as-confed-loop>
 <adj-ribs-in-routes>10</adj-ribs-in-routes>
 <invalidated-as-path-loop>0</invalidated-as-path-loop>
 <invalidated-originator-id>0</invalidated-originator-id>
 <rejected-prefixes>8</rejected-prefixes>
 </stats>
 </peer>
 </router>
 </monitor>
</bmp-monitor>

@line 3: monitor-id - The BMP monitoring station instance identifier.

@line 5: router-id - The monitored router IP address, serves as an identifier.

@line 11: peer-id - The monitored peer’s BGP identifier, serves a an identifier.

@line 12: address - The IP address of the peer, associated with the TCP session.

@line 13: bgp-id - The BGP Identifier of the peer.

@line 14: as - The Autonomous System number of the peer.

@line 15: type - Identifies type of the peer - Global Instance, RD Instance or Local Instance

@line 17: remote-port - The peer’s port number associated with TCP session.

@line 20: local-address - The IP address of the monitored router associated with the peering TCP session.

@line 21: local-port - The port number of the monitored router associated with the peering TCP session.

@line 22: received-open - The full OPEN message received by monitored router from the peer.

@line 27: sent-open - The full OPEN message send by monitored router to the peer.

@line 33: pre-policy-rib - The Adj-RIB-In that contains unprocessed routing information.

@line 50: post-policy-rib - The Post-Policy Ad-RIB-In that contains routes filtered by inbound policy.

@line 53: stats - Contains various statistics, periodically updated by the router.

	
	To view collected information from particular monitored router:

	URL: /restconf/operational/bmp-monitor:bmp-monitor/monitor/example-bmp-monitor/router/10.10.10.10

	
	To view collected information from particular monitored peer:

	URL: /restconf/operational/bmp-monitor:bmp-monitor/monitor/example-bmp-monitor/router/10.10.10.10/peer/20.20.20.20

Test tools

BMP test tool serves to test basic BMP functionality, scalability and performance.

BMP mock

The BMP mock is a stand-alone Java application purposed to simulate a BMP-enabled router(s) and peers.
The simulator is capable to report dummy routes and statistics.
This application is not part of the OpenDaylight Karaf distribution, however it can be downloaded from OpenDaylight’s Nexus (use latest release version):

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/bgpcep/bgp-bmp-mock

Usage

The application can be run from command line:

java -jar bgp-bmp-mock-*-executable.jar

with optional input parameters:

--local_address <address> (optional, default 127.0.0.1)
 The IPv4 address where BMP mock is bind to.

--remote_address <IP_ADDRESS:PORT,...>, -ra <IP_ADDRESS:PORT,...>
 A list of IP addresses of BMP monitoring station, by default 127.0.0.1:12345

--passive (optional, not present by default)
 This flags enables passive mode for simulated routers.

--routers_count <0..N> (optional, default 1)
 An amount of BMP routers to be connected to the BMP monitoring station.

--peers_count <0..N> (optional, default 0)
 An amount of peers reported by each BMP router.

--pre_policy_routes <0..N> (optional, default 0)
 An amount of "pre-policy" simple IPv4 routes reported by each peer.

--post_policy_routes <0..N> (optional, default 0)
 An amount of "post-policy" simple IPv4 routes reported by each peer.

--log_level <FATAL|ERROR|INFO|DEBUG|TRACE> (optional, default INFO)
 Set logging level for BMP mock.

Troubleshooting

This section offers advices in a case OpenDaylight BMP plugin is not working as expected.

Contents

	BMP is not working…

	Bug reporting

BMP is not working…

	First of all, ensure that all required features are installed, local monitoring station and monitored router/peers configuration is correct.

To list all installed features in OpenDaylight use the following command at the Karaf console:

feature:list -i

	Check OpenDaylight Karaf logs:

From Karaf console:

log:tail

or open log file: data/log/karaf.log

Possibly, a reason/hint for a cause of the problem can be found there.

	Try to minimize effect of other OpenDaylight features, when searching for a reason of the problem.

	Try to set DEBUG severity level for BMP logger via Karaf console commands, in order to collect more information:

log:set DEBUG org.opendaylight.protocol.bmp

Bug reporting

Before you report a bug, check BGPCEP Jira [https://jira.opendaylight.org/projects/BGPCEP/issues/BGPCEP-589?filter=allopenissues] to ensure same/similar bug is not already filed there.

Write an e-mail to bgpcep-users@lists.opendaylight.org and provide following information:

	State OpenDaylight version

	Describe your use-case and provide as much details related to BMP as possible

	Steps to reproduce

	Attach Karaf log files, optionally packet captures, REST input/output

BIER User Guide

Overview

The technology of Bit Index Explicit Replication (BIER) specifies a new
architecture for the forwarding of multicast data packets. It provides
optimal forwarding of multicast data packets through a “multicast domain”.
However, it does not require the use of a protocol for explicitly building
multicast distribution trees, and it does not require intermediate nodes
to maintain any per-flow state. See specific in draft-ietf-bier-architecture-05 [https://datatracker.ietf.org/doc/draft-ietf-bier-architecture/]
and related documents.

The BIER project provides functionality about BIER/BIER-TE topo-mamagement and BIER/BIER-TE
channel-mamagement, and invoking south-bound-interface for device driver.

BIER User-Facing Features

	odl-bier-all

	This feature contains all other features/bundles of BIER project. If you
install it, it provides all functions that the BIER project can support.

	odl-bier-models

	This feature contains all models of BIER project, such as ietf-bier,
ietf-multicast-information and so on.

	odl-bier-bierman

	This feature generates BIER’s topology from network topology, and configuration
of BIER, BIER-TE, etc.

	odl-bier-channel

	This feature provides function about multicast flow information configuration
and deployment in BIER domain.

	odl-bier-service

	This feature provides function which processing the result of BIER bierman and BIER
channel, and invoking south-bound-interface for driver.

	odl-bier-adapter

	This feature provides adapter for different BIER south-bound NETCONF
interfaces, so all BFRs in BIER domain with different NETCONF
configuration interfaces and they can operate normally together.

	odl-bier-driver

	This feature is south-bound NETCONF interface for BIER, it has implemented standard interface
(ietf-bier). If your BFR’s NETCONF interface is Non-standard, you should add your own
interface for driver.

	odl-te-pce

	This feature provides path computation function for BIER-TE.

	odl-bier-app

	This feature provides the interface of BIER management, which contain BIER/BIER-TE manager,
channel manager, topology manager.

How To Start

Preparing for Installation

	Forwarding devices must support the BGP-LS protocol, and already be
configured so that OpenDaylight can discover those devices.

	Forwarding devices must support BIER configuration via NETCONF, which has a
standard IETF YANG model.

	The feature odl-bier-app or third-party App provides the northbound interface
of BIER management for BIER controller.

Installation Feature

Run OpenDaylight and install BIER Service odl-bier-all as below:

feature:install odl-bier-all

For a more detailed overview of the BIER, see the BIER Developer Guide.

CAPWAP User Guide

This document describes how to use the Control And Provisioning of
Wireless Access Points (CAPWAP) feature in OpenDaylight. This document
contains configuration, administration, and management sections for the
feature.

Overview

CAPWAP feature fills the gap OpenDaylight Controller has with respect to
managing CAPWAP compliant wireless termination point (WTP) network
devices present in enterprise networks. Intelligent applications (e.g.
centralized firmware management, radio planning) can be developed by
tapping into the WTP network device’s operational states via REST APIs.

CAPWAP Architecture

The CAPWAP feature is implemented as an MD-SAL based provider module,
which helps discover WTP devices and update their states in MD-SAL
operational datastore.

Scope of CAPWAP Project

In this release, CAPWAP project aims to only detect the WTPs and
store their basic attributes in the operational data store, which is
accessible via REST and JAVA APIs.

Installing CAPWAP

To install CAPWAP, download OpenDaylight and use the Karaf console to
install the following feature:

odl-capwap-ac-rest

Configuring CAPWAP

As of this release, there are no configuration requirements.

Administering or Managing CAPWAP

After installing the odl-capwap-ac-rest feature from the Karaf console,
users can administer and manage CAPWAP from the APIDOCS explorer.

Go to
http://${ipaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the capwap-impl panel. From there, users can execute
various API calls.

Tutorials

Viewing Discovered WTPs

Overview

This tutorial can be used as a walk through to understand the steps for
starting the CAPWAP feature, detecting CAPWAP WTPs, accessing the
operational states of WTPs.

Prerequisites

It is assumed that user has access to at least one hardware/software
based CAPWAP compliant WTP. These devices should be configured with
OpenDaylight controller IP address as a CAPWAP Access Controller (AC)
address. It is also assumed that WTPs and OpenDaylight controller share
the same ethernet broadcast domain.

Instructions

	Run the OpenDaylight distribution and install odl-capwap-ac-rest from
the Karaf console.

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Expand capwap-impl

	Click /operational/capwap-impl:capwap-ac-root/

	Click “Try it out”

	The above step should display list of WTPs discovered using ODL
CAPWAP feature.

Cardinal: OpenDaylight Monitoring as a Service

This section describes how to use the Cardinal feature in OpenDaylight
and contains configuration, administration, and management sections for
the feature.

Overview

Cardinal (OpenDaylight Monitoring as a Service) enables OpenDaylight and
the underlying software defined network to be remotely monitored by
deployed Network Management Systems (NMS) or Analytics suite. In the
Boron release, Cardinal will add:

	OpenDaylight MIB.

	Enable ODL diagnostics/monitoring to be exposed across SNMP (v2c, v3)
and REST north-bound.

	Extend ODL System health, Karaf parameter and feature info, ODL
plugin scalability and network parameters.

	Support autonomous notifications (SNMP Traps).

Cardinal Architecture

The Cardinal architecture can be found at the below link:

https://wiki.opendaylight.org/images/8/89/Cardinal-ODL_Monitoring_as_a_Service_V2.pdf

Configuring Cardinal feature

To start Cardinal feature, start karaf and type the following command:

feature:install odl-cardinal

After this Cardinal should be up and working with SNMP daemon running on
port 161.

Tutorials

Below are tutorials for Cardinal.

Using Cardinal

These tutorials are intended for any user who wants to monitor three
basic component in OpenDaylight

	System Info in which controller is running.

	Karaf Info

	Project Specific Information (Openflow and Netconf devices).

Prerequisites

There is no as such specific prerequisite. Cardinal can work without
installing any third party software. However If one wants to see the
output of a snmpget/snmpwalk on the CLI prompt, than one can install the
SNMP using the below link:

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-an-snmp-daemon-and-client-on-ubuntu-14-04

Using the above command line utility one can get the same result as the
cardinal APIs will give for the snmpget/snmpwalk request.

Target Environment

This tutorial is developed considering the following environment:

controller-Linux(Ubuntu 14.02).

Instructions

Install Cardinal feature

Open karaf and install the cardinal feature using the following command:

feature:install odl-cardinal

Please verify that SNMP daemon is up on port 161 using the following
command on the terminal window of Linux machine:

netstat -anp | grep "161"
netstat -anp | grep "2001"
netstat -anp | grep "2003"

If the grep on the ``snmpd`` port is successful than SNMP daemon is
up and working.

APIs Reference

Please see Developer guide for usage of Cardinal APIs.

CLI commands to do snmpget/walk

One can do snmpget/walk on the ODL-CARDINAL-MIB. Open the linux terminal
and type the below command:

snmpget -v2c -c public localhost Oid_Of_the_mib_variable

Or

snmpget -v2c -c public localhost ODL-CARDINAL-MIB::mib_variable_name

For snmpwalk use the below command:

snmpwalk -v2c -c public localhost SNMPv2-SMI::experimental

For tabular data (netconf devices), snmpwalk use the
below command:

snmpwalk -v2c -c public localhost:2001 SNMPv2-SMI::experimental

For tabular data (openflow devices), snmpwalk use the
below command:

snmpwalk -v2c -c public localhost:2003 SNMPv2-SMI::experimental

Centinel User Guide

The Centinel project aims at providing a distributed, reliable framework
for efficiently collecting, aggregating and sinking streaming data
across Persistence DB and stream analyzers (example: Graylog, Elastic
search, Spark, Hive etc.). This document contains configuration,
administration, management, using sections for the feature.

Overview

In this release of Centinel, this framework enables SDN
applications/services to receive events from multiple streaming sources
(e.g., Syslog, Thrift, Avro, AMQP, Log4j, HTTP/REST) and execute actions
like network configuration/batch processing/real-time analytics. It also
provides a Log Service to assist operators running SDN ecosystem by
installing the feature odl-centinel-all.

With the configurations development of “Log Service” and plug-in for log
analyzer (e.g., Graylog) will take place. Log service will do processing
of real time events coming from log analyzer. Additionally, stream
collector (Flume and Sqoop based) that will collect logs from
OpenDaylight and sink it to persistence service (integrated with TSDR).
Also includes RESTCONF interface to inject events to north bound
applications for real-time analytic/network configuration. Centinel User
Interface (web interface) will be available to operators to enable
rules/alerts/dashboard.

Centinel core features

The core features of the Centinel framework are:

	Stream collector

	Collecting, aggregating and sinking streaming data

	Log Service

	Listen log stream events coming from log analyzer

	Log Service

	Enables user to configure rules (e.g., alerts, diagnostic, health,
dashboard)

	Log Service

	Performs event processing/analytics

	User Interface

	Enable set-rule, search, visualize, alert, diagnostic, dashboard
etc.

	Adaptor

	Log analyzer plug-in to Graylog and a generic data-model to extend
to other stream analyzers (e.g., Logstash)

	REST Service

	Northbound APIs for Log Service and Steam collector framework

	Leverages

	TSDR persistence service, data query, purging and elastic search

Centinel Architecture

The following wiki pages capture the Centinel Model/Architecture

	https://wiki.opendaylight.org/view/Centinel:Main

	https://wiki.opendaylight.org/view/Project_Proposals:Centinel

	https://wiki.opendaylight.org/images/0/09/Centinel-08132015.pdf

Administering or Managing Centinel with default configuration

Prerequisites

	Check whether Graylog is up and running and plugins deployed as
mentioned in installation
guide [https://opendaylight.readthedocs.io/en/stable-boron/getting-started-guide/project-specific-guides/centinel.html].

	Check whether HBase is up and respective tables and column families
as mentioned in installation
guide [https://opendaylight.readthedocs.io/en/stable-boron/getting-started-guide/project-specific-guides/centinel.html]
are created.

	Check if apache flume is up and running.

	Check if apache drill is up and running.

Running Centinel

The following steps should be followed to bring up the controller:

	Download the Centinel OpenDaylight distribution release from below
link: http://www.opendaylight.org/software/downloads

	Run Karaf of the distribution from bin folder

./karaf

	Install the centinel features using below command:

feature:install odl-centinel-all

	Give some time for the centinel to come up.

User Actions

	Log In: User logs into the Centinel with required credentials
using following URL: http://localhost:8181/index.html

	Create Rule:

	Select Centinel sub-tree present in left side and go to Rule tab.

	Create Rule with title and description.

	Configure flow rule on the stream to filter the logs accordingly
for, e.g., bundle_name=org.opendaylight.openflow-plugin

	Set Alarm Condition: Configure alarm condition, e.g.,
message-count-rule such that if 10 messages comes on a stream (e.g.,
The OpenFlow Plugin) in last 1 minute with an alert is generated.

	Subscription: User can subscribe to the rule and alarm condition
by entering the http details or email-id in subscription textfield by
clicking on the subscribe button.

	Create Dashboard: Configure dashboard for stream and alert
widgets. Alarm and Stream count will be updated in corresponding
widget in Dashboard.

	Event Tab: Intercepted Logs, Alarms and Raw Logs in Event Tab
will be displayed by selecting the appropriate radio button. User can
also filter the searched data using SQL query in the search box.

Data Export/Import User Guide

Overview

The Data Export/Import is known as “daexim” (pronounced ‘deck-sim’) for
short. The intended audience are administrators responsible for
operations of OpenDaylight.

Data Export/Import provides an API (via RPCs) to request the bulk
transfer of OpenDaylight system data between its internal data stores
and the local file system. This can be used for scheduling data exports,
checking the status of data being exported, canceling data export jobs,
importing data from files in the file systems, and checking the import
status.

Such export and import of data can be used during system upgrade,
enabling the development of administrative procedures that make
reconfigurations of the base system without concern of internal data
loss.

Data Export produces a models declaration file and one or more data
files. The models declaration file records exactly which YANG models
were loaded (by module name, revision date and namespace). The data
file(s) contain data store data as per the draft-ietf-netmod-yang-json
RFC.

Data Import takes a models declaration file and zero or more data
files. The models declaration file is used to check that the listed
models are loaded before importing any data. Data is imported into each
data store in turn with one transaction executed for each data store,
irrespective of the number of files for that data store, as inter-module
data dependencies may exist. Existing data store data may be cleared
before importing.

Data Export Import Architecture

The daexim feature is a single feature. This feature leverages the
existing infrastructure provided by MD-SAL and yangtools.

Installing the Feature

To install the feature perform the following steps.

karaf > feature:install odl-daexim-all

The interactions with this feature are via Restconf RPCs. The details
are provided in the Tutorials.

Tutorials

The following tutorials provide examples of REST API that are supported
by the Data Export/Import feature. As for all ODL RESTCONF calls, the
following are the common setting for REST calls:

	Headers:
* Content-Type: application/json
* Accept: application/json
* Authentication: admin:admin

	Method: HTTP POST

	<controller-ip> : Host (or IP) where OpenDaylight controller is
running, e.g. localhost

	<restconf-port> : TCP port where RESTCONF has been configured to
listen, e.g. 8181 by default

The files created by export are placed in a subdirectory called
daexim/ in the installation directory of OpenDaylight. Similarly files
to import must be placed in this daexim/ subdirectory.

Scheduling Export

The schedule-export RPC exports the data at a specific time in the
future. The run-at time may be specified as an absolute UTC time or a
relative offset from the server clock. Attempts to schedule an export in
the past times are rejected. Each file has a JSON-encoded object that
contains module data from the corresponding data store. Module data is
not included in the object for any module identified in the exclusion
list. Each file contains at least one empty JSON object.

	URL:

	http://<controller-ip>:<restconf-port>/restconf/operations/data-export-import:schedule-export

Payload:

{
 "input": {
 "data-export-import:run-at": 500
 }
}

Checking Export Status

The status-export RPC checks the status of the exported data. If the
status has the value of initial, an export has not been scheduled. If
the status has the value of scheduled, run-at indicates the time at
which the next export runs. If the status has the value of
in-progress, run-at indicates the time at which the running export
was scheduled to start. A status of tasks indicates activities that
are scheduled and currently being performed. The tasks status serves
as an indicator of progress and success of the activity. If the status
has any other value, run-at indicates the time at which the last
export was scheduled to start; and tasks indicates the activities that
were undertaken. If the status for any node has failed, the
corresponding reason for failure is listed.

	URL:

	http://<controller-ip>:<restconf-port>/restconf/operations/data-export-import:status-export

	Payload:

	No payload

Canceling Scheduled Export

The cancel-export RPC cancels an already scheduled data export
job. To cancel the export, the server stops the tasks that are running
(where possible, immediately), clears any scheduled export time value,
and releases the associated resources. This RPC may be called at any
time, whether an export is in progress, scheduled or not yet
scheduled. The returned result is True when the server has
successfully cleared tasks, the state, and resources. The status is
False on failure to do so. Note that if no export is scheduled or
running, there is no tasks for the server to clear. Therefore, the
return result is True because the server cannot fail.

	URL:

	http://<controller-ip>:<restconf-port>/restconf/operations/data-export-import:cancel-export

	Payload:

	No payload

Import from a file

The immediate-import RPC imports data from files already present in
the file system.

	URL:

	http://<controller-ip>:<restconf-port>/restconf/operations/data-export-import:immediate-import

Payload:

{
 "input" : {
 "check-models" : true,
 "clear-stores" : "all"
 }
}

Status of Import

The status-import RPC checks the last import status. If the status
has the value of initial, an import has not taken place. For all other
values of status, imported-at indicates the time at which the
restoration has taken place. List nodes hold status about the
restoration for each node.

	URL:

	http://<controller-ip>:<restconf-port>/restconf/operations/data-export-import:status-import

	Payload:

	No payload

DIDM User Guide

Overview

The Device Identification and Driver Management (DIDM) project addresses
the need to provide device-specific functionality. Device-specific
functionality is code that performs a feature, and the code is
knowledgeable of the capability and limitations of the device. For
example, configuring VLANs and adjusting FlowMods are features, and
there may be different implementations for different device types.
Device-specific functionality is implemented as Device Drivers. Device
Drivers need to be associated with the devices they can be used with. To
determine this association requires the ability to identify the device
type.

DIDM Architecture

The DIDM project creates the infrastructure to support the following
functions:

	Discovery - Determination that a device exists in the controller
management domain and connectivity to the device can be established.
For devices that support the OpenFlow protocol, the existing
discovery mechanism in OpenDaylight suffices. Devices that do not
support OpenFlow will be discovered through manual means such as the
operator entering device information via GUI or REST API.

	Identification – Determination of the device type.

	Driver Registration – Registration of Device Drivers as routed
RPCs.

	Synchronization – Collection of device information, device
configuration, and link (connection) information.

	Data Models for Common Features – Data models will be defined to
perform common features such as VLAN configuration. For example,
applications can configure a VLAN by writing the VLAN data to the
data store as specified by the common data model.

	RPCs for Common Features – Configuring VLANs and adjusting
FlowMods are example of features. RPCs will be defined that specify
the APIs for these features. Drivers implement features for specific
devices and support the APIs defined by the RPCs. There may be
different Driver implementations for different device types.

Atrium Support

The Atrium implements an open source router that speaks BGP to other
routers, and forwards packets received on one port/vlan to another,
based on the next-hop learnt via BGP peering. A BGP peering application
for the Open Daylight Controller and a new model for flow objective
drivers for switches integrated with the Open Daylight Atrium
distribution was developed for this project. The implementation has the
same level of feature partly that was introduced by the Atrium 2015/A
distribution on the ONOS controller. An overview of the architecture is
available at here
(https://github.com/onfsdn/atrium-docs/wiki/ODL-Based-Atrium-Router-16A).

Atrium stack is implemented in OpenDaylight using Atrium and DIDM
project. Atrium project provides the application implementation for BGP
peering and the DIDM project provides implementation for FlowObjectives.
FlowObjective provides an abstraction layer and present the pipeline
agnostic api to application to consume.

FlowObjective

Flow Objectives describe an SDN application’s objective (or intention)
behind a flow it is sending to a device.

Application communicates the flow installation requirement using Flow
Objectives. DIDM drivers translates the Flow Objectives to device
specific flows as per the device pipeline.

There are three FlowObjectives (already implemented in ONOS controller)
:

	Filtering Objective

	Next Objective

	Forwarding Objective

Installing DIDM

To install DIDM, download OpenDaylight and use the Karaf console to
install the following features:

	odl-openflowplugin-all

	odl-didm-all

odl-didm-all installs the following required features:

	odl-didm-ovs-all

	odl-didm-ovs-impl

	odl-didm-util

	odl-didm-identification

	odl-didm-drivers

	odl-didm-hp-all

Configuring DIDM

This section shows an example configuration steps for installing a
driver (HP 3800 OpenFlow switch driver).

Install DIDM features:

feature:install odl-didm-identification-api
feature:install odl-didm-drivers

In order to identify the device, device driver needs to be installed
first. Identification Manager will be notified when a new device
connects to the controller.

Install HP driver

feature:install odl-didm-hp-all installs the following features

	odl-didm-util

	odl-didm-identification

	odl-didm-drivers

	odl-didm-hp-all

	odl-didm-hp-impl

Now at this point, the driver has written all of the identification
information in to the MD-SAL datastore. The identification manager
should have that information so that it can try to identify the HP 3800
device when it connects to the controller.

Configure the switch and connect it to the controller from the switch
CLI.

Run REST GET command to verify the device details:

http://<CONTROLLER-IP:8181>/restconf/operational/opendaylight-inventory:nodes

Run REST adjust-flow command to adjust flows and push to the device

Flow mod driver for HP 3800 device

This driver adjusts the flows and push the same to the device. This API
takes the flow to be adjusted as input and displays the adjusted flow as
output in the REST output container. Here is the REST API to adjust and
push flows to HP 3800 device:

http://<CONTROLLER-IP:8181>/restconf/operations/openflow-feature:adjust-flow

FlowObjectives API

FlowObjective presents the OpenFlow pipeline agnostic API to Application
to consume. Application communicate their intent behind installation of
flow to Drivers using the FlowObjective. Driver translates the
FlowObjective in device specific flows and uses the OpenFlowPlugin to
install the flows to the device.

Filter Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:filter

Next Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:next

Forward Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:forward

Distribution Version reporting

Overview

This section provides an overview of odl-distribution-version feature.

A remote user of OpenDaylight usually has access to RESTCONF and NETCONF
northbound interfaces, but does not have access to the system
OpenDaylight is running on. OpenDaylight has released multiple versions
including Service Releases, and there are incompatible changes between them.
In order to know which YANG modules to use, which bugs to expect
and which workarounds to apply, such user would need to know the exact version
of at least one OpenDaylight component.

There are indirect ways to deduce such version, but the direct way is enabled
by odl-distribution-version feature. Administrator can specify version strings,
which would be available to users via NETCONF, or via RESTCONF
if OpenDaylight is configured to initiate NETCONF connection
to its config subsystem northbound interface.

By default, users have write access to config subsystem,
so they can add, modify or delete any version strings present there.
Admins can only influence whether the feature is installed, and initial values.

Config subsystem is local only, not cluster aware,
so each member reports versions independently. This is suitable for heterogeneous clusters.

Default config file

Initial version values are set via config file odl-version.xml which is created in
$KARAF_HOME/etc/opendaylight/karaf/ upon installation of odl-distribution-version feature.
If admin wants to use different content, the file with desired content has to be created
there before feature installation happens.

By default, the config file defines two config modules, named odl-distribution-version
and odl-odlparent-version.

RESTCONF usage

Opendaylight config subsystem NETCONF northbound is not made available just by installing
odl-distribution-version, but most other feature installations would enable it.
RESTCONF interfaces are enabled by installing odl-restconf feature,
but that do not allow access to config subsystem by itself.

On single node deployments, installation of odl-netconf-connector-ssh is recommended,
which would configure controller-config device and its MD-SAL mount point.

For cluster deployments, installing odl-netconf-clustered-topology is recommended.
See documentation for clustering on how to create similar devices for each member,
as controller-config name is not unique in that context.

Assuming single node deployment and user located on the same system,
here is an example curl command accessing odl-odlparent-version config module:

curl 127.0.0.1:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-distribution-version:odl-version/odl-odlparent-version

eman User Guide

Overview

The OpenDaylight Energy Management (eman) plugin implements an abstract
Information Model that describes energy measurement and control features
that may be supported by a variety of device types. The eman plugin may
support a number of southbound interfaces to accommodate a set of
protocols, including but not limited to SNMP, NETCONF, IPDR. The plugin
presents a northbound REST API. This framework enables any number of
applications to interoperate with any number of devices in order to
measure and optimize energy usage. The Information Model will be
inherited from the SCTE 216 standard – Adaptive Power Systems Interface
Specification (APSIS) [http://www.scte.org/SCTEDocs/Standards/ANSI_SCTE%20216%202015.pdf],
which in turn inherits definitions within the IETF eman document set [https://datatracker.ietf.org/wg/eman/documents/].

This documentation is directed to those operating the features such as
network administrator, cloud administrator, network engineer, or system
administrators.

	eman is composed of 3 Karaf features:

	
	eman incudes the YANG model and its implementation

	eman-api adds support for REST

	eman-ui adds support for DLUX.

Developers will typically interface with eman-api.

eman Architecture

eman defines a YANG model that represents the IETF energy management
Information Model, and includes RPCs. The implementation of the model
currently supports an SNMP ‘binding’ via interfacing with the
OpenDaylight SNMP module. In the future, other Southbound protocols may
be supported.

Developers my use the eman-api feature to read and write energy
related data and commands to devices that support the IETF eman MIBS.

Besides a set of common controller features eman depends upon the
OpenDaylight SNMP features to be installed.

Configuring eman

eman relies upon the presence of SNMP agents.

The following describes a way to install and configure an SNMP simulator
on localhost.

on macOS, open terminal

	Install snmpsim.:

$ sudo easy_install -n snmpsim

	configure filesystem:

mkdir ~/.snmpsim, then mkdir ~/.snmpsim/data/

	Install moak data. This file is used by pysnmp to provide mock data
for an APSIS agent:

copy eman/sample_code/data/energy-object.snmprec to ~/.snmpsim/data/.

	launch snmp simulator:

$ sudo snmpsimd.py --agent-udpv4-endpoint=127.0.0.1:161
 —process-group=<your group> —process-user=<your user>

	VerifyOpen another terminal window and execute:

$ snmpget -v2c -c energy-object localhost:161 1.3.6.1.2.1.229.0.1.0.

The result should be ‘1’, as defined in your snmprec file

Note

group and user are settings within our local OS.
For Mac users, look at settings/users and groups.
If port 161 is not available, use another unprivileged port such as 1161.

Note

snmpget queries snmpsimd to return a value for the OID 1.3.6.1.2.1.229.0.1.0.
According to the energy-object.snmprec file, the value for that OID is ‘1’.
Try other OIDs, or edit the snmprec file to see your results

Future release may include more flexible and robust means to simulate
a network of energy aware SNMP agents.

Typically, a process may periodically poll a device to acquire power
measurements and repose them into MD-SAL. Subsequently, process may read a
history of power measurements from MD-SAL via the eman operational API.

Fabric As A Service

This document describes, from a user’s or application’s perspective, how
to use the Fabric As A Service (FaaS) feature in OpenDaylight. This
document contains configuration, administration, and management sections
for the FaaS feature.

Overview

Currently network applications and network administrators mostly rely on
lower level interfaces such as CLI, SNMP, OVSDB, NETCONF or OpenFlow to
directly configure individual device for network service provisioning.
In general, those interfaces are:

	Technology oriented, not application oriented.

	Vendor specific

	Individual device oriented, not network oriented.

	Not declarative, complicated and procedure oriented.

To address the gap between application needs and network interface,
there are a few application centric language proposed in OpenDaylight
including Group Based Policy (GBP), Network Intent Composition (NIC),
and NEtwork MOdeling (NEMO) trying to replace traditional southbound
interface to application. Those languages are top-down abstractions and
model application requirements in a more application-oriented way.

After being involved with GBP development for a while, we feel the top
down model still has a quite gap between the model and the underneath
network since the existing interfaces to network devices lack of
abstraction makes it very hard to map high level abstractions to the
physical network. Often the applications built with these low level
interfaces are coupled tightly with underneath technology and make the
application’s architecture monolithic, error prone and hard to maintain.

We think a bottom-up abstraction of network can simplify, reduce the
gap, and make it easy to implement the application centric model.
Moreover in some uses cases, an interface with network service oriented
are still desired for example from network monitoring/troubleshooting
perspective. That’s where the Fabric as a Service comes in.

FaaS Architecture

	Fabric and its controller (Fabric Controller)

	The Fabric object provides an abstraction of a homogeneous network
or portion of the network and also has a built in Fabric controller
which provides management plane and control plane for the fabric.
The fabric controller implements the services required in Fabric
Service and monitor and control the fabric operation.

	Fabric Manager

	Fabric Manager manages all the fabric objects. also Fabric manager
acts as a Unified Fabric Controller which provides inter-connect
fabric control and configuration Also Fabric Manager is FaaS API
service via Which FaaS user level logical network API (the top level
API as mentioned previously) exposed and implemented.

	FaaS render for GBP (Group Based Policy)

	FaaS render for GBP is an application of FaaS and provides the
rendering service between GBP model and logical network model
provided by Fabric Manager.

FaaS RESTCONF API

FaaS Provides two layers API:

	The top layer is a user level logical network API which defines
CRUD services operating on the following abstracted constructs:

	vcontainer - virtual container

	logical Port - a input/out/access point of a logical device

	logical link - connects ports

	logical switch - a layer 2 forwarding device

	logical router - a layer 3 forwarding device

	Subnet

	Rule/ACL

	End Points Registration

	End Points Attachment

Through these constructs, a logical network can be described without
users knowing too much details about the physical network device and
technology, i.e. users’ network services is decoupled from underneath
physical infrastructure. This decoupling brought the benefit that the
users defined service is not locked in with any specific technology or
physical devices. FaaS maps the logical network to the physical network
configuration automatically which in maximum eliminates the manual
provisioning work. As a result, human error is avoided and OPEX for
network operators is massively reduced. Moreover migration from one
technology to another is much easier to do and transparent to users’
services.

	The second layer defines an abstraction layer called Fabric API.
The idea is to abstract network into a topology formed by a
collections of fabric objects other than varies of physical
devices.Each Fabric object provides a collection of unified services.
The top level API enables application developers or users to write
applications to map high level model such as GBP, Intent etc… into a
logical network model, while the lower level gives the application
more control to individual fabric object level. More importantly the
Fabric API is more like SPI (Service Provider API) a fabric provider
or vendor can implement the SPI based on its own Fabric technique
such as TRILL, SPB etc …

This document is focused on the top layer API. For how to use second
level API operation, please refer to FaaS developer guide for more
details.

Note

that for any JSON data or link not described here, please go to
http://${ipaddress}:8181/apidoc/explorer/index.htm
for details or clarification.

Resource Management API

The FaaS Resource Management API provides services to allocate and
reclaim the network resources provided by Fabric object. Those APIs can
be accessed via RESTCONF rendered from YANG in MD-SAL.

	Name: Create virtual container

	virtual container is an collections of resources allocated to a
tenant, for example, a list of physical ports, bandwidth or L2
network or logical routers quantity. etc…

	http://${ipaddress}:8181/restconf/operations/vcontainer-topology:create-vcontainer

	Description: create a given virtual container.

	Name: assign or remove fabric resource to a virtual container

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:add-vfabric-to-ld-node

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:rm-vfabric-to-ld-node

	Name: assign or remove appliance to a virtual container

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:add-appliance-to-ld-node

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:rm-appliance-to-ld-node

	Name: create or remove a child container

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:create-child-ld-node

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:rm-child-ld-node

	RESTCONF path for Virtual Container Datastore query (note:
vcontainer-id equals tenantID for now):

	http://${ipaddress}:8181/restconf/config/network-topology/topology/{vcontainer-id}/vc-topology-attributes/

	http://${ipaddress}:8181/restconf/config/network-topology/topology/{vcontainer-id}/node/{net-node-id}/vc-net-node-attributes

	http://${ipaddress}:8181/restconf/config/network-topology/topology/{vcontainer-id}/node/{ld-node-id}/vc-ld-node-attributes

Installing Fabric As A Service

To install FaaS, download OpenDaylight and use the Karaf console to
install the following feature: odl-restconf odl-faas-all
odl-groupbasedpolicy-faas (if needs to use FaaS to render GBP)

Configuring FaaS

This section gives details about the configuration settings for various
components in FaaS.

The FaaS configuration files for the Karaf distribution are located in
distribution/karaf/target/assembly/etc/faas

	akka.conf

	This file contains configuration related to clustering. Potential
configuration properties can be found on the akka website at
http://doc.akka.io

	fabric-factory.xml

	vxlan-fabric.xml

	vxlan-fabric-ovs-adapter.xml

	Those 3 files are used to initialize fabric module and located
under distribution/karaf/target/assembly/etc/opendaylight/karaf

Managing FaaS

Start opendaylight karaf distribution

	>bin/karaf Then From karaf console,Install features in the
following order:

	>feature:Install odl-restconf

	>feature:install odl-faas-all

	>feature install odl-groupbasedpolicy-faas

After installing features above, users can manage Fabric resource and
FaaS logical network channels from the APIDOCS explorer via RESTCONF

Go to
http://${ipaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the FaaS panel. From there, users can execute
various API calls to test their FaaS deployment such as create virtual
container, create fabric, delete fabric, create/edit logical network
elements.

Tutorials

Below are tutorials for 4 major use cases.

	to create and provision a fabric

	to allocate resource from the fabric to a tenant

	to define a logical network for a tenant. Currently there are two
ways to create a logical network

	Create a GBP (Group Based Policy) profile for a tenant and then
convert it to a logical network via GBP FaaS render Or

	Manually create a logical network via RESTCONF APIs.

	to attach or detach an Endpoint to a logical switch or logical router

Create a fabric

Overview

This tutorial walks users through the process of create a Fabric object

Prerequisites

A set of virtual switches (OVS) have to be registered or discovered by
ODL. Mininet is recommended to create a OVS network. After an OVS
network is created, set up the controller IP pointing to ODL IP address
in each of the OVS. From ODL, a physical topology can be viewed via ODL
DLUX UI or retrieved via RESTCONF API.

Instructions

	Run the OpenDaylight distribution and install odl-faas-all from the
Karaf console.

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Get the network topology after OVS switches are registered in the
controller

	Determine the nodes and links to be included in the to-be-defined
Fabric object.

	Execute create-fabric RESTCONF API with the corresponding JSON data
as required.

Create virtual container for a tenant

The purpose of this tutorial is to allocate network resources to a
tenant

Overview

This tutorial walks users through the process of create a Fabric

Prerequisites

1 or more fabric objects have been created.

Instructions

	Run the OpenDaylight karaf distribution and install odl-faas-all
feature from the Karaf console. >feature:install odl-rest-conf
odl-faas-all odl-mdsal-apidoc

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Execute create-vcontainer with the following restconf API with
corresponding JSON data >
http://${ipaddress}:8181/restconf/operations/vcontainer-topology:create-vcontainer

After a virtual container is created, fabric resource and appliance
resource can be assigned to the container object via the following
RESTConf API.

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:add-vfabric-to-ld-node

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:add-appliance-to-ld-node

Create a logical network

Overview

This tutorial walks users through the process of create a logical
network for a tenant

Prerequisites

a virtual container has been created and assigned to the tenant

Instructions

Currently there are two ways to create a logical network.

	Option 1 is to use logical network RESTConf REST API and directly
create individual network elements and connect them into a network

	Option 2 is to define a GBP model and FaaS can map GBP model
automatically into a logical network. Notes that for option 2, if the
generated network requires some modification, we recommend modify the
GBP model rather than change the network directly due to there is no
synchronization from network back to GBP model in current release.

Manual Provisioning

To create a logical switch

	http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-switches:logical-switches
To create a logical router

	http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-routers:logical-routers
To attach a logical switch to a router

	Step 1: updating/adding a port A on the logical switch
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-switches:logical-switches

	Step 2: updating/adding a port B on the logical router
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-routers:logical-routers

	Step 3; create a link between the port A and B
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-edges:logical-edges

	To add security policies (ACL or SFC) on a port
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:faas-security-rules

	To query the logical network just created
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks

Provision via GBP FaaS Render

	Run the OpenDaylight distribution and install odl-faas-all and GBP
faas render feature from the Karaf console.

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Execute “create GBP model” via GBP REST API. The GBP model then can
be automatically mapped into a logical network.

Attach/detach an end point to a logical device

Overview

This tutorial walks users through the process of registering an End
Point to a logical device either logical switch or router. The purpose
of this API is to inform the FaaS where an endpoint physically attach.
The location information consists of the binding information between
physical port identifier and logical port information. The logical port
is indicated by the endpoint either Layer 2 attribute(MAC address) or
Layer 3 attribute (IP address) and logical network ID (VLAN ID). The
logical network ID is indirectly indicated the tenant ID since it is
mutual exclusive resource allocated to a tenant.

Prerequisites

The logical switch to which those end points are attached has to be
created beforehand. and the identifier of the logical switch is required
for the following RESTCONF calls.

Instructions

	Run the OpenDaylight distribution and install odl-faas-all from the
Karaf console.

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Execute “attach end point ” with the following RESTCONF API and
corresponding JSON data:
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:faas-endpoints-locations

Genius User Guide

Overview

The Genius project provides generic network interfaces, utilities and
services. Any OpenDaylight application can use these to achieve
interference-free co-existence with other applications using Genius.

Modules and Interfaces

In the first phase delivered in OpenDaylight Boron release, Genius
provides following modules —

	Modules providing a common view of network interfaces for different
services

	Interface (logical port) Manager

	Allows bindings/registration of multiple services to logical
ports/interfaces

	Ability to plug in different types of southbound protocol
renderers

	Overlay Tunnel Manager

	Creates and maintains overlay tunnels between configured
Tunnel Endpoints (TEPs)

	Modules providing commonly used functions as shared services to avoid
duplication of code and waste of resources

	Liveness Monitor

	Provides tunnel/nexthop liveness monitoring services

	ID Manager

	Generates persistent unique integer IDs

	MD-SAL Utils

	Provides common generic APIs for interaction with MD-SAL

Interface Manager Operations

Creating interfaces

The YANG file Data Model
odl-interface.yang [https://github.com/opendaylight/genius/blob/master/interfacemanager/interfacemanager-api/src/main/yang/odl-interface.yang]
contains the interface configuration data-model.

You can create interfaces at the MD-SAL Data Node Path
/config/if:interfaces/interface, with the following attributes —

Common attributes

	name — unique interface name, can be any unique string (e.g.,
UUID string)

	type — interface type, currently supported iana-if-type:l2vlan
and iana-if-type:tunnel

	enabled — admin status, possible values true or false

	parent-refs : used to specify references to parent interface/port
feeding to this interface

	datapath-node-identifier — identifier for a fixed/physical dataplane
node, can be physical switch identifier

	parent-interface — can be a physical switch port (in conjunction of
above), virtual switch port (e.g., neutron port) or another interface

	list node-identifier — identifier of the dependant underlying
configuration protocol

	topology-id — can be ovsdb configuration protocol

	node-id — can be hwvtep node-id

Type specific attributes

	when type = l2vlan

	vlan-id — VLAN id for trunk-member l2vlan interfaces

	l2vlan-mode — currently supported ones are transparent,
trunk or trunk-member

	when type = stacked_vlan (Not supported yet)

	stacked-vlan-id — VLAN-Id for additional/second VLAN tag

	when type = tunnel

	tunnel-interface-type — tunnel type, currently supported ones
are:

	tunnel-type-vxlan

	tunnel-type-gre

	tunnel-type-mpls-over-gre

	tunnel-source — tunnel source IP address

	tunnel-destination — tunnel destination IP address

	tunnel-gateway — gateway IP address

	monitor-enabled — tunnel monitoring enable control

	monitor-interval — tunnel monitoring interval in millisiconds

	when type = mpls (Not supported yet)

	list labelStack — list of lables

	num-labels — number of lables configured

Supported REST calls are GET, PUT, DELETE, POST

Creating L2 port interfaces

Interfaces on normal L2 ports (e.g. Neutron tap ports) are created with
type l2vlan and l2vlan-mode as transparent. This type of interface
classifies packets passing through a particular L2 (OpenFlow) port. In
dataplane, packets belonging to this interface are classified by
matching in-port against the of-port-id assigned to the base port as
specified in parent-interface.

URL: /restconf/config/ietf-interfaces:interfaces

Sample JSON data

"interfaces": {
 "interface": [
 {
 "name": "4158408c-942b-487c-9a03-0b603c39d3dd",
 "type": "iana-if-type:l2vlan", <--- interface type 'l2vlan' for normal L2 port
 "odl-interface:l2vlan-mode": "transparent", <--- 'transparent' VLAN port mode allows any (tagged, untagged) ethernet packet
 "odl-interface:parent-interface": "tap4158408c-94", <--- port-name as it appears on southbound interface
 "enabled": true
 }
]
}

Creating VLAN interfaces

A VLAN interface is created as a l2vlan interface in trunk-member
mode, by configuring a VLAN-Id and a particular L2 (vlan trunk)
interface. Parent VLAN trunk interface is created in the same way as the
transparent interface as specified above. A trunk-member interface
defines a flow on a particular L2 port and having a particular VLAN tag.
On ingress, after classification the VLAN tag is popped out and
corresponding unique dataplane-id is associated with the packet, before
delivering the packet to service processing. When a service module
delivers the packet to this interface for egress, it pushes
corresponding VLAN tag and sends the packet out of the parent L2 port.

URL: /restconf/config/ietf-interfaces:interfaces

Sample JSON data

"interfaces": {
 "interface": [
 {
 "name": "4158408c-942b-487c-9a03-0b603c39d3dd:100",
 "type": "iana-if-type:l2vlan",
 "odl-interface:l2vlan-mode": "trunk-member", <--- for 'trunk-member', flow is classified with particular vlan-id on an l2 port
 "odl-interface:parent-interface": "4158408c-942b-487c-9a03-0b603c39d3dd", <--- Parent 'trunk' iterface name
 "odl-interface:vlan-id": "100",
 "enabled": true
 }
]
}

Creating Overlay Tunnel Interfaces

An overlay tunnel interface is created with type tunnel and particular
tunnel-interface-type. Tunnel interfaces are created on a particular
data plane node (virtual switches) with a pair of (local, remote) IP
addresses. Currently supported tunnel interface types are VxLAN, GRE and
MPLSoverGRE.

URL: /restconf/config/ietf-interfaces:interfaces

Sample JSON data

"interfaces": {
 "interface": [
 {
 "name": "MGRE_TUNNEL:1",
 "type": "iana-if-type:tunnel",
 "odl-interface:tunnel-interface-type": "odl-interface:tunnel-type-mpls-over-gre",
 "odl-interface:datapath-node-identifier": 156613701272907,
 "odl-interface:tunnel-source": "11.0.0.43",
 "odl-interface:tunnel-destination": "11.0.0.66",
 "odl-interface:monitor-enabled": false,
 "odl-interface:monitor-interval": 10000,
 "enabled": true
 }
]
}

Binding services on interface

The YANG file
odl-interface-service-bindings.yang [https://github.com/opendaylight/genius/blob/stable/boron/interfacemanager/interfacemanager-api/src/main/yang/odl-interface-service-bindings.yang]
contains the service binding configuration data model.

An application can bind services to a particular interface by
configuring MD-SAL data node at path /config/interface-service-binding.
Binding services on interface allows particular service to pull traffic
arriving on that interface depending upon the service priority.
Service modules can specify openflow-rules to be applied on the packet
belonging to the interface. Usually these rules include sending the
packet to specific service table/pipeline. Service modules are
responsible for sending the packet back (if not consumed) to service
dispatcher table, for next service to process the packet.

URL:/restconf/config/interface-service-bindings:service-bindings/

Sample JSON data

"service-bindings": {
 "services-info": [
 {
 "interface-name": "4152de47-29eb-4e95-8727-2939ac03ef84",
 "bound-services": [
 {
 "service-name": "ELAN",
 "service-type": "interface-service-bindings:service-type-flow-based"
 "service-priority": 3,
 "flow-priority": 5,
 "flow-cookie": 134479872,
 "instruction": [
 {
 "order": 2,
 "go-to-table": {
 "table_id": 50
 }
 },
 {
 "order": 1,
 "write-metadata": {
 "metadata": 83953188864,
 "metadata-mask": 1099494850560
 }
 }
],
 },
 {
 "service-name": "L3VPN",
 "service-type": "interface-service-bindings:service-type-flow-based"
 "service-priority": 2,
 "flow-priority": 10,
 "flow-cookie": 134217729,
 "instruction": [
 {
 "order": 2,
 "go-to-table": {
 "table_id": 21
 }
 },
 {
 "order": 1,
 "write-metadata": {
 "metadata": 100,
 "metadata-mask": 4294967295
 }
 }
],
 }
]
 }
]
}

Interface Manager RPCs

In addition to the above defined configuration interfaces, Interface
Manager also provides several RPCs to access interface operational data
and other helpful information. Interface Manger RPCs are defined in
odl-interface-rpc.yang [https://github.com/opendaylight/genius/blob/stable/boron/interfacemanager/interfacemanager-api/src/main/yang/odl-interface-rpc.yang]

The following RPCs are available —

get-dpid-from-interface

This RPC is used to retrieve dpid/switch hosting the root port from
given interface name.

rpc get-dpid-from-interface {
 description "used to retrieve dpid from interface name";
 input {
 leaf intf-name {
 type string;
 }
 }
 output {
 leaf dpid {
 type uint64;
 }
 }
}

get-port-from-interface

This RPC is used to retrieve south bound port attributes from the
interface name.

rpc get-port-from-interface {
 description "used to retrieve south bound port attributes from the interface name";
 input {
 leaf intf-name {
 type string;
 }
 }
 output {
 leaf dpid {
 type uint64;
 }
 leaf portno {
 type uint32;
 }
 leaf portname {
 type string;
 }
 }
}

get-egress-actions-for-interface

This RPC is used to retrieve group actions to use from interface name.

rpc get-egress-actions-for-interface {
 description "used to retrieve group actions to use from interface name";
 input {
 leaf intf-name {
 type string;
 mandatory true;
 }
 leaf tunnel-key {
 description "It can be VNI for VxLAN tunnel ifaces, Gre Key for GRE tunnels, etc.";
 type uint32;
 mandatory false;
 }
 }
 output {
 uses action:action-list;
 }
}

get-egress-instructions-for-interface

This RPC is used to retrieve flow instructions to use from interface
name.

rpc get-egress-instructions-for-interface {
 description "used to retrieve flow instructions to use from interface name";
 input {
 leaf intf-name {
 type string;
 mandatory true;
 }
 leaf tunnel-key {
 description "It can be VNI for VxLAN tunnel ifaces, Gre Key for GRE tunnels, etc.";
 type uint32;
 mandatory false;
 }
 }
 output {
 uses offlow:instruction-list;
 }
}

get-endpoint-ip-for-dpn

This RPC is used to get the local ip of the tunnel/trunk interface on a
particular DPN (Data Plane Node).

rpc get-endpoint-ip-for-dpn {
 description "to get the local ip of the tunnel/trunk interface";
 input {
 leaf dpid {
 type uint64;
 }
 }
 output {
 leaf-list local-ips {
 type inet:ip-address;
 }
 }
}

get-interface-type

This RPC is used to get the type of the interface (vlan/vxlan or gre).

rpc get-interface-type {
description "to get the type of the interface (vlan/vxlan or gre)";
 input {
 leaf intf-name {
 type string;
 }
 }
 output {
 leaf interface-type {
 type identityref {
 base if:interface-type;
 }
 }
 }
}

get-tunnel-type

This RPC is used to get the type of the tunnel interface(vxlan or gre).

rpc get-tunnel-type {
description "to get the type of the tunnel interface (vxlan or gre)";
 input {
 leaf intf-name {
 type string;
 }
 }
 output {
 leaf tunnel-type {
 type identityref {
 base odlif:tunnel-type-base;
 }
 }
 }
}

get-nodeconnector-id-from-interface

This RPC is used to get node-connector-id associated with an interface.

rpc get-nodeconnector-id-from-interface {
description "to get nodeconnector id associated with an interface";
 input {
 leaf intf-name {
 type string;
 }
 }
 output {
 leaf nodeconnector-id {
 type inv:node-connector-id;
 }
 }
}

get-interface-from-if-index

This RPC is used to get interface associated with an if-index (dataplane
interface id).

rpc get-interface-from-if-index {
 description "to get interface associated with an if-index";
 input {
 leaf if-index {
 type int32;
 }
 }
 output {
 leaf interface-name {
 type string;
 }
 }
 }

create-terminating-service-actions

This RPC is used to create the tunnel termination service table entries.

rpc create-terminating-service-actions {
description "create the ingress terminating service table entries";
 input {
 leaf dpid {
 type uint64;
 }
 leaf tunnel-key {
 type uint64;
 }
 leaf interface-name {
 type string;
 }
 uses offlow:instruction-list;
 }
}

remove-terminating-service-actions

This RPC is used to remove the tunnel termination service table entries.

rpc remove-terminating-service-actions {
description "remove the ingress terminating service table entries";
 input {
 leaf dpid {
 type uint64;
 }
 leaf interface-name {
 type string;
 }
 leaf tunnel-key {
 type uint64;
 }
 }
}

ID Manager

TBD.

Group Based Policy User Guide

Overview

OpenDaylight Group Based Policy allows users to express network
configuration in a declarative versus imperative way.

This is often described as asking for “what you want”, rather than
“how to do it”.

In order to achieve this Group Based Policy (herein referred to as
GBP) is an implementation of an Intent System.

An Intent System:

	is a process around an intent driven data model

	contains no domain specifics

	is capable of addressing multiple semantic definitions of intent

To this end, GBP Policy views an Intent System visually as:

[image: Intent System Process and Policy Surfaces]
Intent System Process and Policy Surfaces

	expressed intent is the entry point into the system.

	operational constraints provide policy for the usage of the
system which modulates how the system is consumed. For instance “All
Financial applications must use a specific encryption standard”.

	capabilities and state are provided by renderers. Renderers
dynamically provide their capabilities to the core model, allowing
the core model to remain non-domain specific.

	governance provides feedback on the delivery of the expressed
intent. i.e. “Did we do what you asked us?”

In summary GBP is about the Automation of Intent.

By thinking of Intent Systems in this way, it enables:

	automation of intent

By focusing on Model. Process. Automation, a consistent policy
resolution process enables for mapping between the expressed
intent and renderers responsible for providing the capabilities of
implementing that intent.

	recursive/intent level-independent behaviour.

Where one person’s concrete is another’s abstract, intent can be
fulfilled through a hierarchical implementation of non-domain
specific policy resolution. Domain specifics are provided by the
renderers, and exposed via the API, at each policy resolution
instance. For example:

	To DNS: The name “www.foo.com” is abstract, and it’s IPv4
address 10.0.0.10 is concrete,

	To an IP stack: 10.0.0.10 is abstract and the MAC
08:05:04:03:02:01 is concrete,

	To an Ethernet switch: The MAC 08:05:04:03:02:01 is abstract,
the resolution to a port in it’s CAM table is concrete,

	To an optical network: The port maybe abstract, yet the optical
wavelength is concrete.

Note

This is a very domain specific analogy, tied to something most
readers will understand. It in no way implies the **GBP* should be
implemented in an OSI type fashion. The premise is that by
implementing a full Intent System, the user is freed from a lot
of the constraints of how the expressed intent is realised.*

It is important to show the overall philosophy of GBP as it sets the
project’s direction.

In this release of OpenDaylight, GBP focused on expressed
intent, refactoring of how renderers consume and publish Subject
Feature Definitions for multi-renderer support.

GBP Base Architecture and Value Proposition

Terminology

In order to explain the fundamental value proposition of GBP, an
illustrated example is given. In order to do that some terminology must
be defined.

The Access Model is the core of the GBP Intent System policy
resolution process.

[image: GBP Access Model Terminology - Endpoints, EndpointGroups, Contract]
GBP Access Model Terminology - Endpoints, EndpointGroups, Contract

[image: GBP Access Model Terminology - Subject, Classifier, Action]
GBP Access Model Terminology - Subject, Classifier, Action

[image: GBP Forwarding Model Terminology - L3 Context, L2 Bridge Context, L2 Flood Context/Domain, Subnet]
GBP Forwarding Model Terminology - L3 Context, L2 Bridge Context, L2
Flood Context/Domain, Subnet

	Endpoints:

Define concrete uniquely identifiable entities. In this release,
examples could be a Docker container, or a Neutron port

	EndpointGroups:

EndpointGroups are sets of endpoints that share a common set of
policies. EndpointGroups can participate in contracts that determine
the kinds of communication that are allowed. EndpointGroups consume
and provide contracts. They also expose both requirements and
capabilities, which are labels that help to determine how contracts
will be applied. An EndpointGroup can specify a parent EndpointGroup
from which it inherits.

	Contracts:

Contracts determine which endpoints can communicate and in what way.
Contracts between pairs of EndpointGroups are selected by the
contract selectors defined by the EndpointGroup. Contracts expose
qualities, which are labels that can help EndpointGroups to select
contracts. Once the contract is selected, contracts have clauses that
can match against requirements and capabilities exposed by
EndpointGroups, as well as any conditions that may be set on
endpoints, in order to activate subjects that can allow specific
kinds of communication. A contract is allowed to specify a parent
contract from which it inherits.

	Subject

Subjects describe some aspect of how two endpoints are allowed to
communicate. Subjects define an ordered list of rules that will match
against the traffic and perform any necessary actions on that
traffic. No communication is allowed unless a subject allows that
communication.

	Clause

Clauses are defined as part of a contract. Clauses determine how a
contract should be applied to particular endpoints and
EndpointGroups. Clauses can match against requirements and
capabilities exposed by EndpointGroups, as well as any conditions
that may be set on endpoints. Matching clauses define some set of
subjects which can be applied to the communication between the pairs
of endpoints.

Architecture and Value Proposition

GBP offers an intent based interface, accessed via the UX,
via the REST API or directly from a domain-specific-language
such as Neutron through a mapping interface.

There are two models in GBP:

	the access (or core) model

	the forwarding model

[image: GBP Access (or Core) Model]
GBP Access (or Core) Model

The classifier and action portions of the model can be thought of as
hooks, with their definition provided by each renderer about its
domain specific capabilities. In GBP for this release, there is one
renderer, the OpenFlow Overlay renderer (OfOverlay).

These hooks are filled with definitions of the types of features the
renderer can provide the subject, and are called
subject-feature-definitions.

This means an expressed intent can be fulfilled by, and across,
multiple renderers simultaneously, without any specific provisioning
from the consumer of GBP.

Since GBP is implemented in OpenDaylight, which is an SDN
controller, it also must address networking. This is done via the
forwarding model, which is domain specific to networking, but could be
applied to many different types of networking.

[image: GBP Forwarding Model]
GBP Forwarding Model

Each endpoint is provisioned with a network-containment. This can be
a:

	subnet

	normal IP stack behaviour, where ARP is performed in subnet, and
for out of subnet, traffic is sent to default gateway.

	a subnet can be a child of any of the below forwarding model
contexts, but typically would be a child of a flood-domain

	L2 flood-domain

	allows flooding behaviour.

	is a n:1 child of a bridge-domain

	can have multiple children

	L2 bridge-domain

	is a layer2 namespace

	is the realm where traffic can be sent at layer 2

	is a n:1 child of a L3 context

	can have multiple children

	L3 context

	is a layer3 namespace

	is the realm where traffic is passed at layer 3

	is a n:1 child of a tenant

	can have multiple children

A simple example of how the access and forwarding models work is as
follows:

[image: GBP Endpoints, EndpointGroups and Contracts]
GBP Endpoints, EndpointGroups and Contracts

In this example, the EPG:webservers is providing the web and
ssh contracts. The EPG:client is consuming those contracts.
EPG:client is providing the any contract, which is consumed by
EPG:webservers.

The direction keyword is always from the perspective of the provider
of the contract. In this case contract web, being provided by
EPG:webservers, with the classifier to match TCP destination port
80, means:

	packets with a TCP destination port of 80

	sent to (in) endpoints in the EPG:webservers

	will be allowed.

[image: GBP Endpoints and the Forwarding Model]
GBP Endpoints and the Forwarding Model

When the forwarding model is considered in the figure above, it can be
seen that even though all endpoints are communicating using a common set
of contracts, their forwarding is contained by the forwarding model
contexts or namespaces. In the example shown, the endpoints associated
with a network-containment that has an ultimate parent of
L3Context:Sales can only communicate with other endpoints within this
L3Context. In this way L3VPN services can be implemented without any
impact to the Intent of the contract.

High-level implementation Architecture

The overall architecture, including Neutron domain
specific mapping, and the OpenFlow Overlay renderer
looks as so:

[image: GBP High Level Architecture]
GBP High Level Architecture

The major benefit of this architecture is that the mapping of the
domain-specific-language is completely separate and independent of the
underlying renderer implementation.

For instance, using the Neutron Mapper, which maps the
Neutron API to the GBP core model, any contract automatically
generated from this mapping can be augmented via the UX to use
Service Function Chaining, a capability not currently
available in OpenStack Neutron.

When another renderer is added, for instance, NetConf, the same policy
can now be leveraged across NetConf devices simultaneously:

[image: GBP High Level Architecture - adding a renderer]
GBP High Level Architecture - adding a renderer

As other domain-specific mappings occur, they too can leverage the same
renderers, as the renderers only need to implement the GBP access
and forwarding models, and the domain-specific mapping need only manage
mapping to the access and forwarding models. For instance:

[image: GBP High Level Architecture - adding a renderer]
GBP High Level Architecture - adding a renderer

In summary, the GBP architecture:

	separates concerns: the Expressed Intent is kept completely separated
from the underlying renderers.

	is cohesive: each part does it’s part and it’s part only

	is scalable: code can be optimised around model
mapping/implementation, and functionality re-used

Policy Resolution

Contract Selection

The first step in policy resolution is to select the contracts that are
in scope.

EndpointGroups participate in contracts either as a provider or as a
consumer of a contract. Each EndpointGroup can participate in many
contracts at the same time, but for each contract it can be in only one
role at a time. In addition, there are two ways for an EndpointGroup to
select a contract: either with either a:

	named selector

Named selectors simply select a specific contract by its contract ID.

	target selector.

Target selectors allow for additional flexibility by matching against
qualities of the contract’s target.

Thus, there are a total of 4 kinds of contract selector:

	provider named selector

Select a contract by contract ID, and participate as a provider.

	provider target selector

Match against a contract’s target with a quality matcher, and
participate as a provider.

	consumer named selector

Select a contract by contract ID, and participate as a consumer.

	consumer target selector

Match against a contract’s target with a quality matcher, and
participate as a consumer.

To determine which contracts are in scope, contracts are found where
either the source EndpointGroup selects a contract as either a provider
or consumer, while the destination EndpointGroup matches against the
same contract in the corresponding role. So if endpoint x in
EndpointGroup X is communicating with endpoint y in EndpointGroup
Y, a contract C is in scope if either X selects C as a provider
and Y selects C as a consumer, or vice versa.

The details of how quality matchers work are described further in
Matchers. Quality matchers provide a flexible mechanism
for contract selection based on labels.

The end result of the contract selection phase can be thought of as a
set of tuples representing selected contract scopes. The fields of the
tuple are:

	Contract ID

	The provider EndpointGroup ID

	The name of the selector in the provider EndpointGroup that was used
to select the contract, called the matching provider selector.

	The consumer EndpointGroup ID

	The name of the selector in the consumer EndpointGroup that was used
to select the contract, called the matching consumer selector.

The result is then stored in the datastore under Resolved Policy.

Subject Selection

The second phase in policy resolution is to determine which subjects are
in scope. The subjects define what kinds of communication are allowed
between endpoints in the EndpointGroups. For each of the selected
contract scopes from the contract selection phase, the subject selection
procedure is applied.

Labels called, capabilities, requirements and conditions are matched
against to bring a Subject into scope. EndpointGroups have
capabilities and requirements, while endpoints have conditions.

Requirements and Capabilities

When acting as a provider, EndpointGroups expose capabilities, which
are labels representing specific pieces of functionality that can be
exposed to other EndpointGroups that may meet functional requirements of
those EndpointGroups.

When acting as a consumer, EndpointGroups expose requirements, which
are labels that represent that the EndpointGroup requires some specific
piece of functionality.

As an example, we might create a capability called “user-database” which
indicates that an EndpointGroup contains endpoints that implement a
database of users.

We might create a requirement also called “user-database” to indicate an
EndpointGroup contains endpoints that will need to communicate with the
endpoints that expose this service.

Note that in this example the requirement and capability have the same
name, but the user need not follow this convention.

The matching provider selector (that was used by the provider
EndpointGroup to select the contract) is examined to determine the
capabilities exposed by the provider EndpointGroup for this contract
scope.

The provider selector will have a list of capabilities either directly
included in the provider selector or inherited from a parent selector or
parent EndpointGroup. (See Inheritance).

Similarly, the matching consumer selector will expose a set of
requirements.

Conditions

Endpoints can have conditions, which are labels representing some
relevant piece of operational state related to the endpoint.

An example of a condition might be “malware-detected,” or
“authentication-succeeded.” Conditions are used to affect how that
particular endpoint can communicate.

To continue with our example, the “malware-detected” condition might
cause an endpoint’s connectivity to be cut off, while
“authentication-succeeded” might open up communication with services
that require an endpoint to be first authenticated and then forward its
authentication credentials.

Clauses

Clauses perform the actual selection of subjects. A clause has lists of
matchers in two categories. In order for a clause to become active, all
lists of matchers must match. A matching clause will select all the
subjects referenced by the clause. Note that an empty list of matchers
counts as a match.

The first category is the consumer matchers, which match against the
consumer EndpointGroup and endpoints. The consumer matchers are:

	Group Idenfication Constraint: Requirement matchers

Matches against requirements in the matching consumer selector.

	Group Identification Constraint: GroupName

Matches against the group name

	Consumer condition matchers

Matches against conditions on endpoints in the consumer EndpointGroup

	Consumer Endpoint Identification Constraint

Label based criteria for matching against endpoints. In this release
this can be used to label endpoints based on IpPrefix.

The second category is the provider matchers, which match against the
provider EndpointGroup and endpoints. The provider matchers are:

	Group Idenfication Constraint: Capability matchers

Matches against capabilities in the matching provider selector.

	Group Identification Constraint: GroupName

Matches against the group name

	Consumer condition matchers

Matches against conditions on endpoints in the provider EndpointGroup

	Consumer Endpoint Identification Constraint

Label based criteria for matching against endpoints. In this release
this can be used to label endpoints based on IpPrefix.

Clauses have a list of subjects that apply when all the matchers in the
clause match. The output of the subject selection phase logically is a
set of subjects that are in scope for any particular pair of endpoints.

Rule Application

Now subjects have been selected that apply to the traffic between a
particular set of endpoints, policy can be applied to allow endpoints to
communicate. The applicable subjects from the previous step will each
contain a set of rules.

Rules consist of a set of classifiers and a set of actions.
Classifiers match against traffic between two endpoints. An example of a
classifier would be something that matches against all TCP traffic on
port 80, or one that matches against HTTP traffic containing a
particular cookie. Actions are specific actions that need to be taken on
the traffic before it reaches its destination. Actions could include
tagging or encapsulating the traffic in some way, redirecting the
traffic, or applying a service function chain.

Rules, subjects, and actions have an order parameter, where a lower
order value means that a particular item will be applied first. All
rules from a particular subject will be applied before the rules of any
other subject, and all actions from a particular rule will be applied
before the actions from another rule. If more than item has the same
order parameter, ties are broken with a lexicographic ordering of their
names, with earlier names having logically lower order.

Matchers

Matchers specify a set of labels (which include requirements,
capabilities, conditions, and qualities) to match against. There are
several kinds of matchers that operate similarly:

	Quality matchers

used in target selectors during the contract selection phase. Quality
matchers provide a more advanced and flexible way to select contracts
compared to a named selector.

	Requirement and capability matchers

used in clauses during the subject selection phase to match against
requirements and capabilities on EndpointGroups

	Condition matchers

used in clauses during the subject selection phase to match against
conditions on endpoints

A matcher is, at its heart, fairly simple. It will contain a list of
label names, along with a match type. The match type can be either:

	“all”

which means the matcher matches when all of its labels match

	“any”

which means the matcher matches when any of its labels match,

	“none”

which means the matcher matches when none of its labels match.

Note a match all matcher can be made by matching against an empty set
of labels with a match type of “all.”

Additionally each label to match can optionally include a relevant name
field. For quality matchers, this is a target name. For capability and
requirement matchers, this is a selector name. If the name field is
specified, then the matcher will only match against targets or selectors
with that name, rather than any targets or selectors.

Inheritance

Some objects in the system include references to parents, from which
they will inherit definitions. The graph of parent references must be
loop free. When resolving names, the resolution system must detect loops
and raise an exception. Objects that are part of these loops may be
considered as though they are not defined at all. Generally, inheritance
works by simply importing the objects in the parent into the child
object. When there are objects with the same name in the child object,
then the child object will override the parent object according to rules
which are specific to the type of object. We’ll next explore the
detailed rules for inheritance for each type of object

EndpointGroups

EndpointGroups will inherit all their selectors from their parent
EndpointGroups. Selectors with the same names as selectors in the parent
EndpointGroups will inherit their behavior as defined below.

Selectors

Selectors include provider named selectors, provider target selectors,
consumer named selectors, and consumer target selectors. Selectors
cannot themselves have parent selectors, but when selectors have the
same name as a selector of the same type in the parent EndpointGroup,
then they will inherit from and override the behavior of the selector in
the parent EndpointGroup.

Named Selectors

Named selectors will add to the set of contract IDs that are selected by
the parent named selector.

Target Selectors

A target selector in the child EndpointGroup with the same name as a
target selector in the parent EndpointGroup will inherit quality
matchers from the parent. If a quality matcher in the child has the same
name as a quality matcher in the parent, then it will inherit as
described below under Matchers.

Contracts

Contracts will inherit all their targets, clauses and subjects from
their parent contracts. When any of these objects have the same name as
in the parent contract, then the behavior will be as defined below.

Targets

Targets cannot themselves have a parent target, but it may inherit from
targets with the same name as the target in a parent contract. Qualities
in the target will be inherited from the parent. If a quality with the
same name is defined in the child, then this does not have any semantic
effect except if the quality has its inclusion-rule parameter set to
“exclude.” In this case, then the label should be ignored for the
purpose of matching against this target.

Subjects

Subjects cannot themselves have a parent subject, but it may inherit
from a subject with the same name as the subject in a parent contract.
The order parameter in the child subject, if present, will override the
order parameter in the parent subject. The rules in the parent subject
will be added to the rules in the child subject. However, the rules will
not override rules of the same name. Instead, all rules in the parent
subject will be considered to run with a higher order than all rules in
the child; that is all rules in the child will run before any rules in
the parent. This has the effect of overriding any rules in the parent
without the potentially-problematic semantics of merging the ordering.

Clauses

Clauses cannot themselves have a parent clause, but it may inherit from
a clause with the same name as the clause in a parent contract. The list
of subject references in the parent clause will be added to the list of
subject references in the child clause. This is just a union operation.
A subject reference that refers to a subject name in the parent contract
might have that name overridden in the child contract. Each of the
matchers in the clause are also inherited by the child clause. Matchers
in the child of the same name and type as a matcher from the parent will
inherit from and override the parent matcher. See below under Matchers
for more information.

Matchers

Matchers include quality matchers, condition matchers, requirement
matchers, and capability matchers. Matchers cannot themselves have
parent matchers, but when there is a matcher of the same name and type
in the parent object, then the matcher in the child object will inherit
and override the behavior of the matcher in the parent object. The match
type, if specified in the child, overrides the value specified in the
parent. Labels are also inherited from the parent object. If there is a
label with the same name in the child object, this does not have any
semantic effect except if the label has its inclusion-rule parameter set
to “exclude.” In this case, then the label should be ignored for the
purpose of matching. Otherwise, the label with the same name will
completely override the label from the parent.

Using the GBP UX interface

Overview

These following components make up this application and are described in
more detail in following sections:

	Basic view

	Governance view

	Policy Expression view

	Wizard view

The GBP UX is access via:

http://<odl controller>:8181/index.html

Basic view

Basic view contains 5 navigation buttons which switch user to the
desired section of application:

	Governance – switch to the Governance view (middle of graphic has the
same function)

	Renderer configuration – switch to the Policy expression view with
Renderers section expanded

	Policy expression – switch to the Policy expression view with Policy
section expanded

	Operational constraints – placeholder for development in next release

[image: Basic view]
Basic view

Governance view

Governance view consists from three columns.

[image: Governance view]
Governance view

Governance view – Basic view – Left column

In the left column is Health section with Exception and Conflict buttons
with no functionality yet. This is a placeholder for development in
further releases.

Governance view – Basic view – Middle column

In the top half of this section is select box with list of tenants for
select. Once the tenant is selected, all sub sections in application
operate and display data with actual selected tenant.

Below the select box are buttons which display Expressed or Delivered
policy of Governance section. In the bottom half of this section is
select box with list of renderers for select. There is currently only
OfOverlay renderer available.

Below the select box is Renderer configuration button, which switch the
app into the Policy expression view with Renderers section expanded for
performing CRUD operations. Renderer state button display Renderer state
view.

Governance view – Basic view – Right column

In the bottom part of the right section of Governance view is Home
button which switch the app to the Basic view.

In the top part is situated navigation menu with four main sections.

Policy expression button expand/collapse sub menu with three main parts
of Policy expression. By clicking on sub menu buttons, user will be
switched into the Policy expressions view with appropriate section
expanded for performing CRUD operations.

Renderer configuration button switches user into the Policy expressions
view.

Governance button expand/collapse sub menu with four main parts of
Governance section. Sub menu buttons of Governance section display
appropriate section of Governance view.

Operational constraints have no functionality yet, and is a placeholder
for development in further releases.

Below the menu is place for view info section which displays info about
actual selected element from the topology (explained below).

Governance view – Expressed policy

In this view are displayed contracts with their consumed and provided
EndpointGroups of actual selected tenant, which can be changed in select
box in the upper left corner.

By single-clicking on any contract or EPG, the data of actual selected
element will be shown in the right column below the menu. A Manage
button launches a display wizard window for managing configuration of
items such as Service Function Chaining.

[image: Expressed policy]
Expressed policy

Governance view – Delivered policy In this view are displayed
subjects with their consumed and provided EndpointGroups of actual
selected tenant, which can be changed in select box in the upper left
corner.

By single-clicking on any subject or EPG, the data of actual selected
element will be shown in the right column below the menu.

By double-click on subject the subject detail view will be displayed
with subject’s rules of actual selected subject, which can be changed in
select box in the upper left corner.

By single-clicking on rule or subject, the data of actual selected
element will be shown in the right column below the menu.

By double-clicking on EPG in Delivered policy view, the EPG detail view
will be displayed with EPG’s endpoints of actual selected EPG, which can
be changed in select box in the upper left corner.

By single-clicking on EPG or endpoint the data of actual selected
element will be shown in the right column below the menu.

[image: Delivered policy]
Delivered policy

[image: Subject detail]
Subject detail

[image: EPG detail]
EPG detail

Governance view – Renderer state

In this part are displayed Subject feature definition data with two main
parts: Action definition and Classifier definition.

By clicking on the down/right arrow in the circle is possible to
expand/hide data of appropriate container or list. Next to the list node
are displayed names of list’s elements where one is always selected and
element’s data are shown (blue line under the name).

By clicking on names of children nodes is possible to select desired
node and node’s data will be displayed.

[image: Renderer state]
Renderer state

Policy expression view

In the left part of this view is placed topology of actual selected
elements with the buttons for switching between types of topology at the
bottom.

Right column of this view contains four parts. At the top of this column
are displayed breadcrumbs with actual position in the application.

Below the breadcrumbs is select box with list of tenants for select. In
the middle part is situated navigation menu, which allows switch to the
desired section for performing CRUD operations.

At the bottom is quick navigation menu with Access Model Wizard button
which display Wizard view, Home button which switch application to the
Basic view and occasionally Back button, which switch application to the
upper section.

Policy expression - Navigation menu

To open Policy expression, select Policy expression from the GBP Home
screen.

In the top of navigation box you can select the tenant from the tenants
list to activate features addicted to selected tenant.

In the right menu, by default, the Policy menu section is expanded.
Subitems of this section are modules for CRUD (creating, reading,
updating and deleting) of tenants, EndpointGroups, contracts, L2/L3
objects.

	Section Renderers contains CRUD forms for Classifiers and Actions.

	Section Endpoints contains CRUD forms for Endpoint and L3 prefix
endpoint.

[image: Navigation menu]
Navigation menu

[image: CRUD operations]
CRUD operations

Policy expression - Types of topology

There are three different types of topology:

	Configured topology - EndpointGroups and contracts between them from
CONFIG datastore

	Operational topology - displays same information but is based on
operational data.

	L2/L3 - displays relationships between L3Contexts, L2 Bridge domains,
L2 Flood domains and Subnets.

[image: L2/L3 Topology]
L2/L3 Topology

[image: Config Topology]
Config Topology

Policy expression - CRUD operations

In this part are described basic flows for viewing, adding, editing and
deleting system elements like tenants, EndpointGroups etc.

Tenants

To edit tenant objects click the Tenants button in the right menu. You
can see the CRUD form containing tenants list and control buttons.

To add new tenant, click the Add button This will display the form for
adding a new tenant. After filling tenant attributes Name and
Description click Save button. Saving of any object can be performed
only if all the object attributes are filled correctly. If some
attribute doesn’t have correct value, exclamation mark with mouse-over
tooltip will be displayed next to the label for the attribute. After
saving of tenant the form will be closed and the tenants list will be
set to default value.

To view an existing tenant, select the tenant from the select box
Tenants list. The view form is read-only and can be closed by clicking
cross mark in the top right of the form.

To edit selected tenant, click the Edit button, which will display the
edit form for selected tenant. After editing the Name and Description of
selected tenant click the Save button to save selected tenant. After
saving of tenant the edit form will be closed and the tenants list will
be set to default value.

To delete tenant select the tenant from the Tenants list and click
Delete button.

To return to the Policy expression click Back button on the bottom of
window.

EndpointGroups

For managing EndpointGroups (EPG) the tenant from the top Tenants list
must be selected.

To add new EPG click Add button and after filling required attributes
click Save button. After adding the EPG you can edit it and assign
Consumer named selector or Provider named selector to it.

To edit EPG click the Edit button after selecting the EPG from Group
list.

To add new Consumer named selector (CNS) click the Add button next to
the Consumer named selectors list. While CNS editing you can set one or
more contracts for current CNS pressing the Plus button and selecting
the contract from the Contracts list. To remove the contract, click on
the cross mark next to the contract. Added CNS can be viewed, edited or
deleted by selecting from the Consumer named selectors list and clicking
the Edit and Delete buttons like with the EPG or tenants.

To add new Provider named selector (PNS) click the Add button next to
the Provider named selectors list. While PNS editing you can set one or
more contracts for current PNS pressing the Plus button and selecting
the contract from the Contracts list. To remove the contract, click on
the cross mark next to the contract. Added PNS can be viewed, edited or
deleted by selecting from the Provider named selectors list and clicking
the Edit and Delete buttons like with the EPG or tenants.

To delete EPG, CNS or PNS select it in selectbox and click the Delete
button next to the selectbox.

Contracts

For managing contracts the tenant from the top Tenants list must be
selected.

To add new Contract click Add button and after filling required fields
click Save button.

After adding the Contract user can edit it by selecting in the Contracts
list and clicking Edit button.

To add new Clause click Add button next to the Clause list while editing
the contract. While editing the Clause after selecting clause from the
Clause list user can assign clause subjects by clicking the Plus button
next to the Clause subjects label. Adding and editing action must be
submitted by pressing Save button. To manage Subjects you can use CRUD
form like with the Clause list.

L2/L3

For managing L2/L3 the tenant from the top Tenants list must be
selected.

To add L3 Context click the Add button next to the L3 Context list
,which will display the form for adding a new L3 Context. After filling
L3 Context attributes click Save button. After saving of L3 Context,
form will be closed and the L3 Context list will be set to default
value.

To view an existing L3 Context, select the L3 Context from the select
box L3 Context list. The view form is read-only and can be closed by
clicking cross mark in the top right of the form.

If user wants to edit selected L3 Context, click the Edit button, which
will display the edit form for selected L3 Context. After editing click
the Save button to save selected L3 Context. After saving of L3 Context,
the edit form will be closed and the L3 Context list will be set to
default value.

To delete L3 Context, select it from the L3 Context list and click
Delete button.

To add L2 Bridge Domain, click the Add button next to the L2 Bridge
Domain list. This will display the form for adding a new L2 Bridge
Domain. After filling L2 Bridge Domain attributes click Save button.
After saving of L2 Bridge Domain, form will be closed and the L2 Bridge
Domain list will be set to default value.

To view an existing L2 Bridge Domain, select the L2 Bridge Domain from
the select box L2 Bridge Domain list. The view form is read-only and can
be closed by clicking cross mark in the top right of the form.

If user wants to edit selected L2 Bridge Domain, click the Edit button,
which will display the edit form for selected L2 Bridge Domain. After
editing click the Save button to save selected L2 Bridge Domain. After
saving of L2 Bridge Domain the edit form will be closed and the L2
Bridge Domain list will be set to default value.

To delete L2 Bridge Domain select it from the L2 Bridge Domain list and
click Delete button.

To add L3 Flood Domain, click the Add button next to the L3 Flood Domain
list. This will display the form for adding a new L3 Flood Domain. After
filling L3 Flood Domain attributes click Save button. After saving of L3
Flood Domain, form will be closed and the L3 Flood Domain list will be
set to default value.

To view an existing L3 Flood Domain, select the L3 Flood Domain from the
select box L3 Flood Domain list. The view form is read-only and can be
closed by clicking cross mark in the top right of the form.

If user wants to edit selected L3 Flood Domain, click the Edit button,
which will display the edit form for selected L3 Flood Domain. After
editing click the Save button to save selected L3 Flood Domain. After
saving of L3 Flood Domain the edit form will be closed and the L3 Flood
Domain list will be set to default value.

To delete L3 Flood Domain select it from the L3 Flood Domain list and
click Delete button.

To add Subnet click the Add button next to the Subnet list. This will
display the form for adding a new Subnet. After filling Subnet
attributes click Save button. After saving of Subnet, form will be
closed and the Subnet list will be set to default value.

To view an existing Subnet, select the Subnet from the select box Subnet
list. The view form is read-only and can be closed by clicking cross
mark in the top right of the form.

If user wants to edit selected Subnet, click the Edit button, which will
display the edit form for selected Subnet. After editing click the Save
button to save selected Subnet. After saving of Subnet the edit form
will be closed and the Subnet list will be set to default value.

To delete Subnet select it from the Subnet list and click Delete button.

Classifiers

To add Classifier, click the Add button next to the Classifier list.
This will display the form for adding a new Classifier. After filling
Classifier attributes click Save button. After saving of Classifier,
form will be closed and the Classifier list will be set to default
value.

To view an existing Classifier, select the Classifier from the select
box Classifier list. The view form is read-only and can be closed by
clicking cross mark in the top right of the form.

If you want to edit selected Classifier, click the Edit button, which
will display the edit form for selected Classifier. After editing click
the Save button to save selected Classifier. After saving of Classifier
the edit form will be closed and the Classifier list will be set to
default value.

To delete Classifier select it from the Classifier list and click Delete
button.

Actions

To add Action, click the Add button next to the Action list. This will
display the form for adding a new Action. After filling Action
attributes click Save button. After saving of Action, form will be
closed and the Action list will be set to default value.

To view an existing Action, select the Action from the select box Action
list. The view form is read-only and can be closed by clicking cross
mark in the top right of the form.

If user wants to edit selected Action, click the Edit button, which will
display the edit form for selected Action. After editing click the Save
button to save selected Action. After saving of Action the edit form
will be closed and the Action list will be set to default value.

To delete Action select it from the Action list and click Delete button.

Endpoint

To add Endpoint, click the Add button next to the Endpoint list. This
will display the form for adding a new Endpoint. To add EndpointGroup
assignment click the Plus button next to the label EndpointGroups. To
add Condition click Plus button next to the label Condition. To add L3
Address click the Plus button next to the L3 Addresses label. After
filling Endpoint attributes click Save button. After saving of Endpoint,
form will be closed and the Endpoint list will be set to default value.

To view an existing Endpoint just, the Endpoint from the select box
Endpoint list. The view form is read-only and can be closed by clicking
cross mark in the top right of the form.

If you want to edit selected Endpoint, click the Edit button, which will
display the edit form for selected Endpoint. After editing click the
Save button to save selected Endpoint. After saving of Endpoint the edit
form will be closed and the Endpoint list will be set to default value.

To delete Endpoint select it from the Endpoint list and click Delete
button.

L3 prefix endpoint

To add L3 prefix endpoint, click the Add button next to the L3 prefix
endpoint list. This will display the form for adding a new Endpoint. To
add EndpointGroup assignment, click the Plus button next to the label
EndpointGroups. To add Condition, click Plus button next to the label
Condition. To add L2 gateway click the Plus button next to the L2
gateways label. To add L3 gateway, click the Plus button next to the L3
gateways label. After filling L3 prefix endpoint attributes click Save
button. After saving of L3 prefix endpoint, form will be closed and the
Endpoint list will be set to default value.

To view an existing L3 prefix endpoint, select the Endpoint from the
select box L3 prefix endpoint list. The view form is read-only and can
be closed by clicking cross mark in the top right of the form.

If you want to edit selected L3 prefix endpoint, click the Edit button,
which will display the edit form for selected L3 prefix endpoint. After
editing click the Save button to save selected L3 prefix endpoint. After
saving of Endpoint the edit form will be closed and the Endpoint list
will be set to default value.

To delete Endpoint select it from the L3 prefix endpoint list and click
Delete button.

Wizard

Wizard provides quick method to send basic data to controller necessary
for basic usage of GBP application. It is useful in the case that there
aren’t any data in controller. In the first tab is form for create
tenant. The second tab is for CRUD operations with contracts and their
sub elements such as subjects, rules, clauses, action refs and
classifier refs. The last tab is for CRUD operations with EndpointGroups
and their CNS and PNS. Created structure of data is possible to send by
clicking on Submit button.

[image: Wizard]
Wizard

Using the GBP API

Please see:

	Using the GBP OpenFlow Overlay (OfOverlay) renderer

	Policy Resolution

	Forwarding Model

	the **GBP** demo and development environments for tips

It is recommended to use either:

	Neutron mapper <gbp-neutron>

	the UX

If the REST API must be used, and the above resources are not
sufficient:

	feature:install odl-dluxapps-yangui

	browse to:
http://<odl-controller>:8181/index.html
and select YangUI from the left menu.

to explore the various GBP REST options

Using OpenStack with GBP

Overview

This section is for Application Developers and Network Administrators
who are looking to integrate Group Based Policy with OpenStack.

To enable the GBP Neutron Mapper feature, at the Karaf console:

feature:install odl-groupbasedpolicy-neutronmapper

Neutron Mapper has the following dependencies that are automatically
loaded:

odl-neutron-service

Neutron Northbound implementing REST API used by OpenStack

odl-groupbasedpolicy-base

Base GBP feature set, such as policy resolution, data model etc.

odl-groupbasedpolicy-ofoverlay

REST calls from OpenStack Neutron are by the Neutron NorthBound project.

GBP provides the implementation of the Neutron V2.0
API [http://developer.openstack.org/api-ref-networking-v2.html].

Features

List of supported Neutron entities:

	Port

	Network

	Standard Internal

	External provider L2/L3 network

	Subnet

	Security-groups

	Routers

	Distributed functionality with local routing per compute

	External gateway access per compute node (dedicated port required)

	Multiple routers per tenant

	FloatingIP NAT

	IPv4/IPv6 support

The mapping of Neutron entities to GBP entities is as follows:

Neutron Port

[image: Neutron Port]
Neutron Port

The Neutron port is mapped to an endpoint.

The current implementation supports one IP address per Neutron port.

An endpoint and L3-endpoint belong to multiple EndpointGroups if the
Neutron port is in multiple Neutron Security Groups.

The key for endpoint is L2-bridge-domain obtained as the parent of
L2-flood-domain representing Neutron network. The MAC address is from
the Neutron port. An L3-endpoint is created based on L3-context (the
parent of the L2-bridge-domain) and IP address of Neutron Port.

Neutron Network

[image: Neutron Network]
Neutron Network

A Neutron network has the following characteristics:

	defines a broadcast domain

	defines a L2 transmission domain

	defines a L2 name space.

To represent this, a Neutron Network is mapped to multiple GBP
entities. The first mapping is to an L2 flood-domain to reflect that the
Neutron network is one flooding or broadcast domain. An L2-bridge-domain
is then associated as the parent of L2 flood-domain. This reflects both
the L2 transmission domain as well as the L2 addressing namespace.

The third mapping is to L3-context, which represents the distinct L3
address space. The L3-context is the parent of L2-bridge-domain.

Neutron Subnet

[image: Neutron Subnet]
Neutron Subnet

Neutron subnet is associated with a Neutron network. The Neutron subnet
is mapped to a GBP subnet where the parent of the subnet is
L2-flood-domain representing the Neutron network.

Neutron Security Group

[image: Neutron Security Group and Rules]
Neutron Security Group and Rules

GBP entity representing Neutron security-group is EndpointGroup.

Infrastructure EndpointGroups

Neutron-mapper automatically creates EndpointGroups to manage key
infrastructure items such as:

	DHCP EndpointGroup - contains endpoints representing Neutron DHCP
ports

	Router EndpointGroup - contains endpoints representing Neutron router
interfaces

	External EndpointGroup - holds L3-endpoints representing Neutron
router gateway ports, also associated with FloatingIP ports.

Neutron Security Group Rules

This is the most involved amongst all the mappings because Neutron
security-group-rules are mapped to contracts with clauses, subjects,
rules, action-refs, classifier-refs, etc. Contracts are used between
EndpointGroups representing Neutron Security Groups. For simplification
it is important to note that Neutron security-group-rules are similar to
a GBP rule containing:

	classifier with direction

	action of allow.

Neutron Routers

[image: Neutron Router]
Neutron Router

Neutron router is represented as a L3-context. This treats a router as a
Layer3 namespace, and hence every network attached to it a part of that
Layer3 namespace.

This allows for multiple routers per tenant with complete isolation.

The mapping of the router to an endpoint represents the router’s
interface or gateway port.

The mapping to an EndpointGroup represents the internal infrastructure
EndpointGroups created by the GBP Neutron Mapper

When a Neutron router interface is attached to a network/subnet, that
network/subnet and its associated endpoints or Neutron Ports are
seamlessly added to the namespace.

Neutron FloatingIP

When associated with a Neutron Port, this leverages the
OfOverlay renderer’s NAT capabilities.

A dedicated external interface on each Nova compute host allows for
disitributed external access. Each Nova instance associated with a
FloatingIP address can access the external network directly without
having to route via the Neutron controller, or having to enable any form
of Neutron distributed routing functionality.

Assuming the gateway provisioned in the Neutron Subnet command for the
external network is reachable, the combination of GBP Neutron Mapper
and OfOverlay renderer will automatically ARP for this
default gateway, requiring no user intervention.

Troubleshooting within GBP

Logging level for the mapping functionality can be set for package
org.opendaylight.groupbasedpolicy.neutron.mapper. An example of enabling
TRACE logging level on Karaf console:

log:set TRACE org.opendaylight.groupbasedpolicy.neutron.mapper

Neutron mapping example

As an example for mapping can be used creation of Neutron network,
subnet and port. When a Neutron network is created 3 GBP entities
are created: l2-flood-domain, l2-bridge-domain, l3-context.

[image: Neutron network mapping]
Neutron network mapping

After an subnet is created in the network mapping looks like this.

[image: Neutron subnet mapping]
Neutron subnet mapping

If an Neutron port is created in the subnet an endpoint and l3-endpoint
are created. The endpoint has key composed from l2-bridge-domain and MAC
address from Neutron port. A key of l3-endpoint is compesed from
l3-context and IP address. The network containment of endpoint and
l3-endpoint points to the subnet.

[image: Neutron port mapping]
Neutron port mapping

Configuring GBP Neutron

No intervention passed initial OpenStack setup is required by the user.

More information about configuration can be found in our DevStack demo
environment on the GBP
wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)].

Administering or Managing GBP Neutron

For consistencies sake, all provisioning should be performed via the
Neutron API. (CLI or Horizon).

The mapped policies can be augmented via the GBP UX, to:

	Enable Service Function Chaining

	Add endpoints from outside of Neutron i.e. VMs/containers not
provisioned in OpenStack

	Augment policies/contracts derived from Security Group Rules

	Overlay additional contracts or groupings

Tutorials

A DevStack demo environment can be found on the GBP
wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)].

GBP Renderer manager

Overview

The GBP Renderer manager is an integral part of GBP base module.
It dispatches information about endpoints’
policy configuration to specific device renderer
by writing a renderer policy configuration into the
registered renderer’s policy store.

Installing and Pre-requisites

Renderer manager is integrated into GBP base module,
so no additional installation is required.

Architecture

Renderer manager gets data notifications about:

	Endoints (base-endpoint.yang)

	EndpointLocations (base-endpoint.yang)

	ResolvedPolicies (resolved-policy.yang)

	Forwarding (forwarding.yang)

Based on data from notifications it creates a configuration task for
specific renderers by writing a renderer policy configuration into the
registered renderer’s policy store.
Configuration is stored to CONF data store as Renderers (renderer.yang).

Configuration is signed with version number which is incremented by every change.
All renderers are supposed to be on the same version. Renderer manager waits
for all renderers to respond with version update in OPER data store.
After a version of every renderer in OPER data store has the same value
as the one in CONF data store,
renderer manager moves to the next configuration with incremented version.

GBP Location manager

Overview

Location manager monitors information about Endpoint Location providers
(see endpoint-location-provider.yang) and manages Endpoint locations in OPER data store accordingly.

Installing and Pre-requisites

Location manager is integrated into GBP base module,
so no additional installation is required.

Architecture

The endpoint-locations container in OPER data store (see base-endpoint.yang)
contains two lists for two types of EP location,
namely address-endpoint-location and containment-endpoint-location.
LocationResolver is a class that processes Location providers in CONF data store
and puts location information to OPER data store.

When a new Location provider is created in CONF data store, its Address EP locations
are being processed first, and their info is stored locally in accordance with processed
Location provider’s priority. Then a location of type “absolute” with the highest priority
is selected for an EP, and is put in OPER data store. If Address EP locations contain
locations of type “relative”, those are put to OPER data store.

If current Location provider contains Containment EP locations of type “relative”,
then those are put to OPER data store.

Similarly, when a Location provider is deleted, information of its locations
is removed from the OPER data store.

Using the GBP OpenFlow Overlay (OfOverlay) renderer

Overview

The OpenFlow Overlay (OfOverlay) feature enables the OpenFlow Overlay
renderer, which creates a network virtualization solution across nodes
that host Open vSwitch software switches.

Installing and Pre-requisites

From the Karaf console in OpenDaylight:

feature:install odl-groupbasedpolicy-ofoverlay

This renderer is designed to work with OpenVSwitch (OVS) 2.1+ (although
2.3 is strongly recommended) and OpenFlow 1.3.

When used in conjunction with the Neutron Mapper feature
no extra OfOverlay specific setup is required.

When this feature is loaded “standalone”, the user is required to
configure infrastructure, such as

	instantiating OVS bridges,

	attaching hosts to the bridges,

	and creating the VXLAN/VXLAN-GPE tunnel ports on the bridges.

The GBP OfOverlay renderer also supports a table offset option, to
offset the pipeline post-table 0. The value of table offset is stored in
the config datastore and it may be rewritten at runtime.

PUT http://{{controllerIp}}:8181/restconf/config/ofoverlay:of-overlay-config
{
 "of-overlay-config": {
 "gbp-ofoverlay-table-offset": 6
 }
}

The default value is set by changing:
<gbp-ofoverlay-table-offset>0</gbp-ofoverlay-table-offset>

in file:
distribution-karaf/target/assembly/etc/opendaylight/karaf/15-groupbasedpolicy-ofoverlay.xml

To avoid overwriting runtime changes, the default value is used only
when the OfOverlay renderer starts and no other value has been written
before.

OpenFlow Overlay Architecture

These are the primary components of GBP. The OfOverlay components
are highlighted in red.

[image: OfOverlay within **GBP**]
OfOverlay within GBP

In terms of the inner components of the GBP OfOverlay renderer:

[image: OfOverlay expanded view:]
OfOverlay expanded view:

OfOverlay Renderer

Launches components below:

Policy Resolver

Policy resolution is completely domain independent, and the OfOverlay
leverages process policy information internally. See Policy Resolution
process.

It listens to inputs to the Tenants configuration datastore, validates
tenant input, then writes this to the Tenants operational datastore.

From there an internal notification is generated to the PolicyManager.

In the next release, this will be moving to a non-renderer specific
location.

Endpoint Manager

The endpoint repository operates in orchestrated mode. This means
the user is responsible for the provisioning of endpoints via:

	UX/GUI

	REST API

Note

When using the Neutron mapper feature, everything is
managed transparently via Neutron.

The Endpoint Manager is responsible for listening to Endpoint repository
updates and notifying the Switch Manager when a valid Endpoint has been
registered.

It also supplies utility functions to the flow pipeline process.

Switch Manager

The Switch Manager is purely a state manager.

Switches are in one of 3 states:

	DISCONNECTED

	PREPARING

	READY

Ready is denoted by a connected switch:

	having a tunnel interface

	having at least one endpoint connected.

In this way GBP is not writing to switches it has no business to.

Preparing simply means the switch has a controller connection but is
missing one of the above complete and necessary conditions

Disconnected means a previously connected switch is no longer
present in the Inventory operational datastore.

[image: OfOverlay Flow Pipeline]
OfOverlay Flow Pipeline

The OfOverlay leverages Nicira registers as follows:

	REG0 = Source EndpointGroup + Tenant ordinal

	REG1 = Source Conditions + Tenant ordinal

	REG2 = Destination EndpointGroup + Tenant ordinal

	REG3 = Destination Conditions + Tenant ordinal

	REG4 = Bridge Domain + Tenant ordinal

	REG5 = Flood Domain + Tenant ordinal

	REG6 = Layer 3 Context + Tenant ordinal

Port Security

Table 0 of the OpenFlow pipeline. Responsible for ensuring that only
valid connections can send packets into the pipeline:

cookie=0x0, <snip> , priority=200,in_port=3 actions=goto_table:2
cookie=0x0, <snip> , priority=200,in_port=1 actions=goto_table:1
cookie=0x0, <snip> , priority=121,arp,in_port=5,dl_src=fa:16:3e:d5:b9:8d,arp_spa=10.1.1.3 actions=goto_table:2
cookie=0x0, <snip> , priority=120,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_src=10.1.1.3 actions=goto_table:2
cookie=0x0, <snip> , priority=115,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_dst=255.255.255.255 actions=goto_table:2
cookie=0x0, <snip> , priority=112,ipv6 actions=drop
cookie=0x0, <snip> , priority=111, ip actions=drop
cookie=0x0, <snip> , priority=110,arp actions=drop
cookie=0x0, <snip> ,in_port=5,dl_src=fa:16:3e:d5:b9:8d actions=goto_table:2
cookie=0x0, <snip> , priority=1 actions=drop

Ingress from tunnel interface, go to Table Source Mapper:

cookie=0x0, <snip> , priority=200,in_port=3 actions=goto_table:2

Ingress from outside, goto Table Ingress NAT Mapper:

cookie=0x0, <snip> , priority=200,in_port=1 actions=goto_table:1

ARP from Endpoint, go to Table Source Mapper:

cookie=0x0, <snip> , priority=121,arp,in_port=5,dl_src=fa:16:3e:d5:b9:8d,arp_spa=10.1.1.3 actions=goto_table:2

IPv4 from Endpoint, go to Table Source Mapper:

cookie=0x0, <snip> , priority=120,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_src=10.1.1.3 actions=goto_table:2

DHCP DORA from Endpoint, go to Table Source Mapper:

cookie=0x0, <snip> , priority=115,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_dst=255.255.255.255 actions=goto_table:2

Series of DROP tables with priority set to capture any non-specific
traffic that should have matched above:

cookie=0x0, <snip> , priority=112,ipv6 actions=drop
cookie=0x0, <snip> , priority=111, ip actions=drop
cookie=0x0, <snip> , priority=110,arp actions=drop

“L2” catch all traffic not identified above:

cookie=0x0, <snip> ,in_port=5,dl_src=fa:16:3e:d5:b9:8d actions=goto_table:2

Drop Flow:

cookie=0x0, <snip> , priority=1 actions=drop

Ingress NAT Mapper

Table offset +1.

ARP responder for external NAT address:

cookie=0x0, <snip> , priority=150,arp,arp_tpa=192.168.111.51,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:fa:16:3e:58:c3:dd->eth_src,load:0x2->NXM_OF_ARP_OP[],move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],load:0xfa163e58c3dd->NXM_NX_ARP_SHA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xc0a86f33->NXM_OF_ARP_SPA[],IN_PORT

Translate from Outside to Inside and perform same functions as
SourceMapper.

cookie=0x0, <snip> , priority=100,ip,nw_dst=192.168.111.51 actions=set_field:10.1.1.2->ip_dst,set_field:fa:16:3e:58:c3:dd->eth_dst,load:0x2->NXM_NX_REG0[],load:0x1->NXM_NX_REG1[],load:0x4->NXM_NX_REG4[],load:0x5->NXM_NX_REG5[],load:0x7->NXM_NX_REG6[],load:0x3->NXM_NX_TUN_ID[0..31],goto_table:3

Source Mapper

Table offset +2.

Determines based on characteristics from the ingress port, which:

	EndpointGroup(s) it belongs to

	Forwarding context

	Tunnel VNID ordinal

Establishes tunnels at valid destination switches for ingress.

Ingress Tunnel established at remote node with VNID Ordinal that maps to
Source EPG, Forwarding Context etc:

cookie=0x0, <snip>, priority=150,tun_id=0xd,in_port=3 actions=load:0xc->NXM_NX_REG0[],load:0xffffff->NXM_NX_REG1[],load:0x4->NXM_NX_REG4[],load:0x5->NXM_NX_REG5[],load:0x7->NXM_NX_REG6[],goto_table:3

Maps endpoint to Source EPG, Forwarding Context based on ingress port,
and MAC:

cookie=0x0, <snip> , priority=100,in_port=5,dl_src=fa:16:3e:b4:b4:b1 actions=load:0xc->NXM_NX_REG0[],load:0x1->NXM_NX_REG1[],load:0x4->NXM_NX_REG4[],load:0x5->NXM_NX_REG5[],load:0x7->NXM_NX_REG6[],load:0xd->NXM_NX_TUN_ID[0..31],goto_table:3

Generic drop:

cookie=0x0, duration=197.622s, table=2, n_packets=0, n_bytes=0, priority=1 actions=drop

Destination Mapper

Table offset +3.

Determines based on characteristics of the endpoint:

	EndpointGroup(s) it belongs to

	Forwarding context

	Tunnel Destination value

Manages routing based on valid ingress nodes ARP’ing for their default
gateway, and matches on either gateway MAC or destination endpoint MAC.

ARP for default gateway for the 10.1.1.0/24 subnet:

cookie=0x0, <snip> , priority=150,arp,reg6=0x7,arp_tpa=10.1.1.1,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:fa:16:3e:28:4c:82->eth_src,load:0x2->NXM_OF_ARP_OP[],move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],load:0xfa163e284c82->NXM_NX_ARP_SHA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xa010101->NXM_OF_ARP_SPA[],IN_PORT

Broadcast traffic destined for GroupTable:

cookie=0x0, <snip> , priority=140,reg5=0x5,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00 actions=load:0x5->NXM_NX_TUN_ID[0..31],group:5

Layer3 destination matching flows, where priority=100+masklength. Since
GBP now support L3Prefix endpoint, we can set default routes etc:

cookie=0x0, <snip>, priority=132,ip,reg6=0x7,dl_dst=fa:16:3e:b4:b4:b1,nw_dst=10.1.1.3 actions=load:0xc->NXM_NX_REG2[],load:0x1->NXM_NX_REG3[],load:0x5->NXM_NX_REG7[],set_field:fa:16:3e:b4:b4:b1->eth_dst,dec_ttl,goto_table:4

Layer2 destination matching flows, designed to be caught only after last
IP flow (lowest priority IP flow is 100):

cookie=0x0, duration=323.203s, table=3, n_packets=4, n_bytes=168, priority=50,reg4=0x4,dl_dst=fa:16:3e:58:c3:dd actions=load:0x2->NXM_NX_REG2[],load:0x1->NXM_NX_REG3[],load:0x2->NXM_NX_REG7[],goto_table:4

General drop flow: cookie=0x0, duration=323.207s, table=3, n_packets=6,
n_bytes=588, priority=1 actions=drop

Policy Enforcer

Table offset +4.

Once the Source and Destination EndpointGroups are assigned, policy is
enforced based on resolved rules.

In the case of Service Function Chaining, the encapsulation
and destination for traffic destined to a chain, is discovered and
enforced.

Policy flow, allowing IP traffic between EndpointGroups:

cookie=0x0, <snip> , priority=64998,ip,reg0=0x8,reg1=0x1,reg2=0xc,reg3=0x1 actions=goto_table:5

Egress NAT Mapper

Table offset +5.

Performs NAT function before Egressing OVS instance to the underlay
network.

Inside to Outside NAT translation before sending to underlay:

cookie=0x0, <snip> , priority=100,ip,reg6=0x7,nw_src=10.1.1.2 actions=set_field:192.168.111.51->ip_src,goto_table:6

External Mapper

Table offset +6.

Manages post-policy enforcement for endpoint specific destination
effects. Specifically for Service Function Chaining, which is
why we can support both symmetric and asymmetric chains and distributed
ingress/egress classification.

Generic allow:

cookie=0x0, <snip>, priority=100 actions=output:NXM_NX_REG7[]

Configuring OpenFlow Overlay via REST

Note

Please see the UX section on how to configure GBP via
the GUI.

Endpoint

POST http://{{controllerIp}}:8181/restconf/operations/endpoint:register-endpoint
{
 "input": {
 "endpoint-group": "<epg0>",
 "endpoint-groups" : ["<epg1>","<epg2>"],
 "network-containment" : "<fowarding-model-context1>",
 "l2-context": "<bridge-domain1>",
 "mac-address": "<mac1>",
 "l3-address": [
 {
 "ip-address": "<ipaddress1>",
 "l3-context": "<l3_context1>"
 }
],
 "*ofoverlay:port-name*": "<ovs port name>",
 "tenant": "<tenant1>"
 }
}

Note

The usage of “port-name” preceded by “ofoverlay”. In OpenDaylight,
base datastore objects can be augmented. In GBP, the base
endpoint model has no renderer specifics, hence can be leveraged
across multiple renderers.

OVS Augmentations to Inventory

PUT http://{{controllerIp}}:8181/restconf/config/opendaylight-inventory:nodes/
{
 "opendaylight-inventory:nodes": {
 "node": [
 {
 "id": "openflow:123456",
 "ofoverlay:tunnel": [
 {
 "tunnel-type": "overlay:tunnel-type-vxlan",
 "ip": "<ip_address_of_ovs>",
 "port": 4789,
 "node-connector-id": "openflow:123456:1"
 }
]
 },
 {
 "id": "openflow:654321",
 "ofoverlay:tunnel": [
 {
 "tunnel-type": "overlay:tunnel-type-vxlan",
 "ip": "<ip_address_of_ovs>",
 "port": 4789,
 "node-connector-id": "openflow:654321:1"
 }
]
 }
]
 }
}

Tenants see Policy Resolution and
Forwarding Model for details:

{
 "policy:tenant": {
 "contract": [
 {
 "clause": [
 {
 "name": "allow-http-clause",
 "subject-refs": [
 "allow-http-subject",
 "allow-icmp-subject"
]
 }
],
 "id": "<id>",
 "subject": [
 {
 "name": "allow-http-subject",
 "rule": [
 {
 "classifier-ref": [
 {
 "direction": "in",
 "name": "http-dest"
 },
 {
 "direction": "out",
 "name": "http-src"
 }
],
 "action-ref": [
 {
 "name": "allow1",
 "order": 0
 }
],
 "name": "allow-http-rule"
 }
]
 },
 {
 "name": "allow-icmp-subject",
 "rule": [
 {
 "classifier-ref": [
 {
 "name": "icmp"
 }
],
 "action-ref": [
 {
 "name": "allow1",
 "order": 0
 }
],
 "name": "allow-icmp-rule"
 }
]
 }
]
 }
],
 "endpoint-group": [
 {
 "consumer-named-selector": [
 {
 "contract": [
 "<id>"
],
 "name": "<name>"
 }
],
 "id": "<id>",
 "provider-named-selector": []
 },
 {
 "consumer-named-selector": [],
 "id": "<id>",
 "provider-named-selector": [
 {
 "contract": [
 "<id>"
],
 "name": "<name>"
 }
]
 }
],
 "id": "<id>",
 "l2-bridge-domain": [
 {
 "id": "<id>",
 "parent": "<id>"
 }
],
 "l2-flood-domain": [
 {
 "id": "<id>",
 "parent": "<id>"
 },
 {
 "id": "<id>",
 "parent": "<id>"
 }
],
 "l3-context": [
 {
 "id": "<id>"
 }
],
 "name": "GBPPOC",
 "subject-feature-instances": {
 "classifier-instance": [
 {
 "classifier-definition-id": "<id>",
 "name": "http-dest",
 "parameter-value": [
 {
 "int-value": "6",
 "name": "proto"
 },
 {
 "int-value": "80",
 "name": "destport"
 }
]
 },
 {
 "classifier-definition-id": "<id>",
 "name": "http-src",
 "parameter-value": [
 {
 "int-value": "6",
 "name": "proto"
 },
 {
 "int-value": "80",
 "name": "sourceport"
 }
]
 },
 {
 "classifier-definition-id": "<id>",
 "name": "icmp",
 "parameter-value": [
 {
 "int-value": "1",
 "name": "proto"
 }
]
 }
],
 "action-instance": [
 {
 "name": "allow1",
 "action-definition-id": "<id>"
 }
]
 },
 "subnet": [
 {
 "id": "<id>",
 "ip-prefix": "<ip_prefix>",
 "parent": "<id>",
 "virtual-router-ip": "<ip address>"
 },
 {
 "id": "<id>",
 "ip-prefix": "<ip prefix>",
 "parent": "<id>",
 "virtual-router-ip": "<ip address>"
 }
]
 }
}

Tutorials

Comprehensive tutorials, along with a demonstration environment
leveraging Vagrant can be found on the GBP
wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)]

Using the GBP eBPF IO Visor Agent renderer

Overview

The IO Visor renderer feature enables container endpoints (e.g. Docker,
LXC) to leverage GBP policies.

The renderer interacts with a IO Visor module from the Linux Foundation
IO Visor project.

Installing and Pre-requisites

From the Karaf console in OpenDaylight:

feature:install odl-groupbasedpolicy-iovisor odl-restconf

Installation details, usage, and other information for the IO Visor GBP
module can be found here: IO Visor github repo for IO
Modules [https://github.com/iovisor/iomodules]

Using the GBP FaaS renderer

Overview

The FaaS renderer feature enables leveraging the FaaS project as a GBP
renderer.

Installing and Pre-requisites

From the Karaf console in OpenDaylight:

feature:install odl-groupbasedpolicy-faas

More information about FaaS can be found here:
https://wiki.opendaylight.org/view/FaaS:GBPIntegration

Using Service Function Chaining (SFC) with GBP Neutron Mapper and OfOverlay

Overview

Please refer to the Service Function Chaining project for specifics on
SFC provisioning and theory.

GBP allows for the use of a chain, by name, in policy.

This takes the form of an action in GBP.

Using the GBP demo and development environment as an
example:

[image: GBP and SFC integration environment]
GBP and SFC integration environment

In the topology above, a symmetrical chain between H35_2 and H36_3
could take path:

H35_2 to sw1 to sff1 to sf1 to sff1 to sff2 to sf2 to sff2 to sw6 to
H36_3

If symmetric chaining was desired, the return path is:

[image: GBP and SFC symmetric chain environment]
GBP and SFC symmetric chain environment

If asymmetric chaining was desired, the return path could be direct, or
an entirely different chain.

[image: GBP and SFC assymmetric chain environment]
GBP and SFC assymmetric chain environment

All these scenarios are supported by the integration.

In the Subject Feature Instance section of the tenant config, we
define the instances of the classifier definitions for ICMP and HTTP:

"subject-feature-instances": {
 "classifier-instance": [
 {
 "name": "icmp",
 "parameter-value": [
 {
 "name": "proto",
 "int-value": 1
 }
]
 },
 {
 "name": "http-dest",
 "parameter-value": [
 {
 "int-value": "6",
 "name": "proto"
 },
 {
 "int-value": "80",
 "name": "destport"
 }
]
 },
 {
 "name": "http-src",
 "parameter-value": [
 {
 "int-value": "6",
 "name": "proto"
 },
 {
 "int-value": "80",
 "name": "sourceport"
 }
]
 }
],

Then the action instances to associate to traffic that matches
classifiers are defined.

Note the SFC chain name must exist in SFC, and is validated against
the datastore once the tenant configuration is entered, before entering
a valid tenant configuration into the operational datastore (which
triggers policy resolution).

 "action-instance": [
 {
 "name": "chain1",
 "parameter-value": [
 {
 "name": "sfc-chain-name",
 "string-value": "SFCGBP"
 }
]
 },
 {
 "name": "allow1",
 }
]
},

When ICMP is matched, allow the traffic:

"contract": [
 {
 "subject": [
 {
 "name": "icmp-subject",
 "rule": [
 {
 "name": "allow-icmp-rule",
 "order" : 0,
 "classifier-ref": [
 {
 "name": "icmp"
 }
],
 "action-ref": [
 {
 "name": "allow1",
 "order": 0
 }
]
 }

]
 },

When HTTP is matched, in to the provider of the contract with a TCP
destination port of 80 (HTTP) or the HTTP request. The chain action is
triggered, and similarly out from the provider for traffic with TCP
source port of 80 (HTTP), or the HTTP response.

{
 "name": "http-subject",
 "rule": [
 {
 "name": "http-chain-rule-in",
 "classifier-ref": [
 {
 "name": "http-dest",
 "direction": "in"
 }
],
 "action-ref": [
 {
 "name": "chain1",
 "order": 0
 }
]
 },
 {
 "name": "http-chain-rule-out",
 "classifier-ref": [
 {
 "name": "http-src",
 "direction": "out"
 }
],
 "action-ref": [
 {
 "name": "chain1",
 "order": 0
 }
]
 }
]
}

To enable asymmetrical chaining, for instance, the user desires that
HTTP requests traverse the chain, but the HTTP response does not, the
HTTP response is set to allow instead of chain:

{
 "name": "http-chain-rule-out",
 "classifier-ref": [
 {
 "name": "http-src",
 "direction": "out"
 }
],
 "action-ref": [
 {
 "name": "allow1",
 "order": 0
 }
]
}

Demo/Development environment

The GBP project for this release has two demo/development environments.

	Docker based GBP and GBP+SFC integration Vagrant environment

	DevStack based GBP+Neutron integration Vagrant environment

Demo @ GBP
wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)/Consumability/Demo]

L2 Switch User Guide

Overview

The L2 Switch project provides Layer2 switch functionality.

L2 Switch Architecture

	Packet Handler

	Decodes the packets coming to the controller and dispatches them
appropriately

	Loop Remover

	Removes loops in the network

	Arp Handler

	Handles the decoded ARP packets

	Address Tracker

	Learns the Addresses (MAC and IP) of entities in the network

	Host Tracker

	Tracks the locations of hosts in the network

	L2 Switch Main

	Installs flows on each switch based on network traffic

Configurable parameters in L2 Switch

The sections below give details about the configuration settings for
the components that can be configured.

The process to change the configuration has been changed with
the introduction of Blueprint in the Boron release. Please
refer to Change configuration in L2 Switch for an
example illustrating how to change the configurations.

Configurable parameters in Loop Remover

	l2switch/loopremover/implementation/src/main/yang/loop-remover-config.yang

	is-install-lldp-flow

	“true” means a flow that sends all LLDP packets to the
controller will be installed on each switch

	“false” means this flow will not be installed

	default value is true

	lldp-flow-table-id

	The LLDP flow will be installed on the specified flow table of
each switch

	This field is only relevant when “is-install-lldp-flow” is set
to “true”

	default value is 0

	lldp-flow-priority

	The LLDP flow will be installed with the specified priority

	This field is only relevant when “is-install-lldp-flow” is set
to “true”

	default value is 100

	lldp-flow-idle-timeout

	The LLDP flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-install-lldp-flow” is set
to “true”

	default value is 0

	lldp-flow-hard-timeout

	The LLDP flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-install-lldp-flow” is set
to “true”

	default value is 0

	graph-refresh-delay

	A graph of the network is maintained and gets updated as
network elements go up/down (i.e. links go up/down and switches
go up/down)

	After a network element going up/down, it waits
graph-refresh-delay seconds before recomputing the graph

	A higher value has the advantage of doing less graph updates,
at the potential cost of losing some packets because the graph
didn’t update immediately.

	A lower value has the advantage of handling network topology
changes quicker, at the cost of doing more computation.

	default value is 1000

Configurable parameters in Arp Handler

	l2switch/arphandler/src/main/yang/arp-handler-config.yang

	is-proactive-flood-mode

	“true” means that flood flows will be installed on each switch.
With this flood flow, each switch will flood a packet that
doesn’t match any other flows.

	Advantage: Fewer packets are sent to the controller because
those packets are flooded to the network.

	Disadvantage: A lot of network traffic is generated.

	“false” means the previously mentioned flood flows will not be
installed. Instead an ARP flow will be installed on each switch
that sends all ARP packets to the controller.

	Advantage: Less network traffic is generated.

	Disadvantage: The controller handles more packets (ARP
requests & replies) and the ARP process takes longer than if
there were flood flows.

	default value is true

	flood-flow-table-id

	The flood flow will be installed on the specified flow table of
each switch

	This field is only relevant when “is-proactive-flood-mode” is
set to “true”

	default value is 0

	flood-flow-priority

	The flood flow will be installed with the specified priority

	This field is only relevant when “is-proactive-flood-mode” is
set to “true”

	default value is 2

	flood-flow-idle-timeout

	The flood flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-proactive-flood-mode” is
set to “true”

	default value is 0

	flood-flow-hard-timeout

	The flood flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-proactive-flood-mode” is
set to “true”

	default value is 0

	arp-flow-table-id

	The ARP flow will be installed on the specified flow table of
each switch

	This field is only relevant when “is-proactive-flood-mode” is
set to “false”

	default value is 0

	arp-flow-priority

	The ARP flow will be installed with the specified priority

	This field is only relevant when “is-proactive-flood-mode” is
set to “false”

	default value is 1

	arp-flow-idle-timeout

	The ARP flow will timeout (removed from the switch) if the flow
doesn’t forward a packet for x seconds

	This field is only relevant when “is-proactive-flood-mode” is
set to “false”

	default value is 0

	arp-flow-hard-timeout

	The ARP flow will timeout (removed from the switch) after
arp-flow-hard-timeout seconds, regardless of how many packets
it is forwarding

	This field is only relevant when “is-proactive-flood-mode” is
set to “false”

	default value is 0

Configurable parameters in Address Tracker

	l2switch/addresstracker/implementation/src/main/yang/address-tracker-config.yang

	timestamp-update-interval

	A last-seen timestamp is associated with each address. This
last-seen timestamp will only be updated after
timestamp-update-interval milliseconds.

	A higher value has the advantage of performing less writes to
the database.

	A lower value has the advantage of knowing how fresh an address
is.

	default value is 600000

	observe-addresses-from

	IP and MAC addresses can be observed/learned from ARP, IPv4,
and IPv6 packets. Set which packets to make these observations
from.

	default value is arp

Configurable parameters in L2 Switch Main

	l2switch/l2switch-main/src/main/yang/l2switch-config.yang

	is-install-dropall-flow

	“true” means a drop-all flow will be installed on each switch,
so the default action will be to drop a packet instead of
sending it to the controller

	“false” means this flow will not be installed

	default value is true

	dropall-flow-table-id

	The dropall flow will be installed on the specified flow table
of each switch

	This field is only relevant when “is-install-dropall-flow” is
set to “true”

	default value is 0

	dropall-flow-priority

	The dropall flow will be installed with the specified priority

	This field is only relevant when “is-install-dropall-flow” is
set to “true”

	default value is 0

	dropall-flow-idle-timeout

	The dropall flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-install-dropall-flow” is
set to “true”

	default value is 0

	dropall-flow-hard-timeout

	The dropall flow will timeout (removed from the switch) after
x seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-install-dropall-flow” is
set to “true”

	default value is 0

	is-learning-only-mode

	“true” means that the L2 Switch will only be learning addresses.
No additional flows to optimize network traffic will be
installed.

	“false” means that the L2 Switch will react to network traffic
and install flows on the switches to optimize traffic.
Currently, MAC-to-MAC flows are installed.

	default value is false

	reactive-flow-table-id

	The reactive flow will be installed on the specified flow table
of each switch

	This field is only relevant when “is-learning-only-mode” is set
to “false”

	default value is 0

	reactive-flow-priority

	The reactive flow will be installed with the specified priority

	This field is only relevant when “is-learning-only-mode” is set
to “false”

	default value is 10

	reactive-flow-idle-timeout

	The reactive flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-learning-only-mode” is set
to “false”

	default value is 600

	reactive-flow-hard-timeout

	The reactive flow will timeout (removed from the switch) after
x seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-learning-only-mode” is set
to “false”

	default value is 300

Change configuration in L2 Switch

Note

For more information on Blueprint in OpenDaylight, see this wiki page [https://wiki.opendaylight.org/view/Using_Blueprint].

The following is an example on how to change the configurations of the L2 Switch components.

Use Case: Change the L2 switch from proactive flood mode to reactive mode.

Option 1: (external xml file)

	Navigate to etc folder under download distribution

	Create following directory structure:

mkdir - p opendaylight/datastore/initial/config

	Create a new xml file corresponding to <yang module name>_<container name>.xml:

vi arp-handler-config_arp-handler-config.xml

	Add following contents to the created file:

<?xml version="1.0" encoding="UTF-8"?>
 <arp-handler-config xmlns="urn:opendaylight:packet:arp-handler-config">
 <is-proactive-flood-mode>false</is-proactive-flood-mode>
</arp-handler-config>

	Restart the controller which injects the configurations.

Option 2: (REST URL)

	Make the following REST call

	URL: http://{{LOCALIP}}:8181/restconf/config/arp-handler-config:arp-handler-config/

	Content-Type: application/json

	Body:

{
 "arp-handler-config":
 {
 "is-proactive-flood-mode":false
 }
}

	Expected Result: 201 Created

	Restart the controller to see updated configurations. With out a restart
new configurations will be merged with old configurations which is not desirable.

Running the L2 Switch

To run the L2 Switch inside the OpenDaylight distribution simply
install the odl-l2switch-switch-ui feature;

feature:install odl-l2switch-switch-ui

Create a network using mininet

sudo mn --controller=remote,ip=<Controller IP> --topo=linear,3 --switch ovsk,protocols=OpenFlow13
sudo mn --controller=remote,ip=127.0.0.1 --topo=linear,3 --switch ovsk,protocols=OpenFlow13

The above command will create a virtual network consisting of 3
switches. Each switch will connect to the controller located at the
specified IP, i.e. 127.0.0.1

sudo mn --controller=remote,ip=127.0.0.1 --mac --topo=linear,3 --switch ovsk,protocols=OpenFlow13

The above command has the “mac” option, which makes it easier to
distinguish between Host MAC addresses and Switch MAC addresses.

Generating network traffic using mininet

h1 ping h2

The above command will cause host1 (h1) to ping host2 (h2)

pingall

pingall will cause each host to ping every other host.

Checking Address Observations

Address Observations are added to the Inventory data tree.

The Address Observations on a Node Connector can be checked through a
browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/node-connector/openflow:1:1

[image: Address Observations]
Address Observations

Checking Hosts

Host information is added to the Topology data tree.

	Host address

	Attachment point (link) to a node/switch

This host information and attachment point information can be checked
through a browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/network-topology:network-topology/topology/flow:1/

[image: Hosts]
Hosts

Checking STP status of each link

STP Status information is added to the Inventory data tree.

	A status of “forwarding” means the link is active and packets are
flowing on it.

	A status of “discarding” means the link is inactive and packets are
not sent over it.

The STP status of a link can be checked through a browser or a REST
Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/node-connector/openflow:1:2

[image: STP status]
STP status

Miscellaneous mininet commands

link s1 s2 down

This will bring the link between switch1 (s1) and switch2 (s2) down

link s1 s2 up

This will bring the link between switch1 (s1) and switch2 (s2) up

link s1 h1 down

This will bring the link between switch1 (s1) and host1 (h1) down

Link Aggregation Control Protocol User Guide

Overview

This section contains information about how to use the LACP plugin
project with OpenDaylight, including configurations.

Link Aggregation Control Protocol Architecture

The LACP Project within OpenDaylight implements Link Aggregation Control
Protocol (LACP) as an MD-SAL service module and will be used to
auto-discover and aggregate multiple links between an OpenDaylight
controlled network and LACP-enabled endpoints or switches. The result is
the creation of a logical channel, which represents the aggregation of
the links. Link aggregation provides link resiliency and bandwidth
aggregation. This implementation adheres to IEEE Ethernet specification
802.3ad [http://www.ieee802.org/3/hssg/public/apr07/frazier_01_0407.pdf].

Configuring Link Aggregation Control Protocol

This feature can be enabled in the Karaf console of the OpenDaylight
Karaf distribution by issuing the following command:

feature:install odl-lacp-ui

Note

	Ensure that legacy (non-OpenFlow) switches are configured with
LACP mode active with a long timeout to allow for the LACP plugin
in OpenDaylight to respond to its messages.

	Flows that want to take advantage of LACP-configured Link
Aggregation Groups (LAGs) must explicitly use a OpenFlow group
table entry created by the LACP plugin. The plugin only creates
group table entries, it does not program any flows on its own.

Administering or Managing Link Aggregation Control Protocol

LACP-discovered network inventory and network statistics can be viewed
using the following REST APIs.

	List of aggregators available for a node:

http://<ControllerIP>:8181/restconf/operational/opendaylight-inventory:nodes/node/<node-id>

Aggregator information will appear within the <lacp-aggregators>
XML tag.

	To view only the information of an aggregator:

http://<ControllerIP>:8181/restconf/operational/opendaylight-inventory:nodes/node/<node-id>/lacp-aggregators/<agg-id>

The group ID associated with the aggregator can be found inside the
<lag-groupid> XML tag.

The group table entry information for the <lag-groupid> added for
the aggregator is also available in the opendaylight-inventory
node database.

	To view physical port information.

http://<ControllerIP>:8181/restconf/operational/opendaylight-inventory:nodes/node/<node-id>/node-connector/<node-connector-id>

Ports that are associated with an aggregator will have the tag
<lacp-agg-ref> updated with valid aggregator information.

Tutorials

The below tutorial demonstrates LACP LAG creation for a sample mininet
topology.

Sample LACP Topology creation on Mininet

sudo mn --controller=remote,ip=<Controller IP> --topo=linear,1 --switch ovsk,protocols=OpenFlow13

The above command will create a virtual network consisting of a switch
and a host. The switch will be connected to the controller.

Once the topology is discovered, verify the presence of a flow entry
with “dl_type” set to “0x8809” to handle LACP packets using the below
ovs-ofctl command:

ovs-ofctl -O OpenFlow13 dump-flows s1
 OFPST_FLOW reply (OF1.3) (xid=0x2):
 cookie=0x300000000000001e, duration=60.067s, table=0, n_packets=0, n_bytes=0, priority=5,dl_dst=01:80:c2:00:00:02,dl_type=0x8809 actions=CONTROLLER:65535

Configure an additional link between the switch (s1) and host (h1) using
the below command on mininet shell to aggregate 2 links:

mininet> py net.addLink(s1, net.get('h1'))
mininet> py s1.attach('s1-eth2')

The LACP module will listen for LACP control packets that are generated
from legacy switch (non-OpenFlow enabled). In our example, host (h1)
will act as a LACP packet generator. In order to generate the LACP
control packets, a bond interface has to be created on the host (h1)
with mode type set to LACP with long-timeout. To configure bond
interface, create a new file bonding.conf under the /etc/modprobe.d/
directory and insert the below lines in this new file:

alias bond0 bonding
options bonding mode=4

Here mode=4 is referred to LACP and the default timeout is set to long.

Enable bond interface and associate both physical interface h1-eth0 &
h1-eth1 as members of the bond interface on host (h1) using the below
commands on the mininet shell:

mininet> py net.get('h1').cmd('modprobe bonding')
mininet> py net.get('h1').cmd('ip link add bond0 type bond')
mininet> py net.get('h1').cmd('ip link set bond0 address <bond-mac-address>')
mininet> py net.get('h1').cmd('ip link set h1-eth0 down')
mininet> py net.get('h1').cmd('ip link set h1-eth0 master bond0')
mininet> py net.get('h1').cmd('ip link set h1-eth1 down')
mininet> py net.get('h1').cmd('ip link set h1-eth1 master bond0')
mininet> py net.get('h1').cmd('ip link set bond0 up')

Once the bond0 interface is up, the host (h1) will send LACP packets to
the switch (s1). The LACP Module will then create a LAG through exchange
of LACP packets between the host (h1) and switch (s1). To view the bond
interface output on the host (h1) side:

mininet> py net.get('h1').cmd('cat /proc/net/bonding/bond0')
Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)
Bonding Mode: IEEE 802.3ad Dynamic link aggregation
Transmit Hash Policy: layer2 (0)
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 0
Down Delay (ms): 0
802.3ad info
LACP rate: slow
Min links: 0
Aggregator selection policy (ad_select): stable
Active Aggregator Info:
 Aggregator ID: 1
 Number of ports: 2
 Actor Key: 33
 Partner Key: 27
 Partner Mac Address: 00:00:00:00:01:01

Slave Interface: h1-eth0
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 00:00:00:00:00:11
Aggregator ID: 1
Slave queue ID: 0

Slave Interface: h1-eth1
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 00:00:00:00:00:12
Aggregator ID: 1
Slave queue ID: 0

A corresponding group table entry would be created on the OpenFlow
switch (s1) with “type” set to “select” to perform the LAG
functionality. To view the group entries:

mininet>ovs-ofctl -O Openflow13 dump-groups s1
OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):
 group_id=60169,type=select,bucket=weight:0,actions=output:1,output:2

To apply the LAG functionality on the switches, the flows should be
configured with action set to GroupId instead of output port. A sample
add-flow configuration with output action set to GroupId:

sudo ovs-ofctl -O Openflow13 add-flow s1 dl_type=0x0806,dl_src=SRC_MAC,dl_dst=DST_MAC,actions=group:60169

LISP Flow Mapping User Guide

Overview

Locator/ID Separation Protocol

Locator/ID Separation Protocol
(LISP) [http://tools.ietf.org/html/rfc6830] is a technology that
provides a flexible map-and-encap framework that can be used for overlay
network applications such as data center network virtualization and
Network Function Virtualization (NFV).

LISP provides the following name spaces:

	Endpoint Identifiers
(EIDs) [http://tools.ietf.org/html/rfc6830#page-6]

	Routing Locators
(RLOCs) [http://tools.ietf.org/html/rfc6830#section-3]

In a virtualization environment EIDs can be viewed as virtual address
space and RLOCs can be viewed as physical network address space.

The LISP framework decouples network control plane from the forwarding
plane by providing:

	A data plane that specifies how the virtualized network addresses are
encapsulated in addresses from the underlying physical network.

	A control plane that stores the mapping of the virtual-to-physical
address spaces, the associated forwarding policies and serves this
information to the data plane on demand.

Network programmability is achieved by programming forwarding policies
such as transparent mobility, service chaining, and traffic engineering
in the mapping system; where the data plane elements can fetch these
policies on demand as new flows arrive. This chapter describes the LISP
Flow Mapping project in OpenDaylight and how it can be used to enable
advanced SDN and NFV use cases.

LISP data plane Tunnel Routers are available at
OpenOverlayRouter.org [http://www.openoverlayrouter.org/] in the open source community on
the following platforms:

	Linux

	Android

	OpenWRT

For more details and support for LISP data plane software please visit
the OOR web site [http://www.openoverlayrouter.org/].

LISP Flow Mapping Service

The LISP Flow Mapping service provides LISP Mapping System services.
This includes LISP Map-Server and LISP Map-Resolver services to store
and serve mapping data to data plane nodes as well as to OpenDaylight
applications. Mapping data can include mapping of virtual addresses to
physical network address where the virtual nodes are reachable or hosted
at. Mapping data can also include a variety of routing policies
including traffic engineering and load balancing. To leverage this
service, OpenDaylight applications and services can use the northbound
REST API to define the mappings and policies in the LISP Mapping
Service. Data plane devices capable of LISP control protocol can
leverage this service through a southbound LISP plugin. LISP-enabled
devices must be configured to use this OpenDaylight service as their Map
Server and/or Map Resolver.

The southbound LISP plugin supports the LISP control protocol
(Map-Register, Map-Request, Map-Reply messages), and can also be used to
register mappings in the OpenDaylight mapping service.

LISP Flow Mapping Architecture

The following figure shows the various LISP Flow Mapping modules.

[image: LISP Mapping Service Internal Architecture]
LISP Mapping Service Internal Architecture

A brief description of each module is as follows:

	DAO (Data Access Object): This layer separates the LISP logic
from the database, so that we can separate the map server and map
resolver from the specific implementation of the mapping database.
Currently we have an implementation of this layer with an in-memory
HashMap, but it can be switched to any other key/value store and you
only need to implement the ILispDAO interface.

	Map Server: This module processes the adding or registration of
authentication tokens (keys) and mappings. For a detailed
specification of LISP Map Server, see
LISP [http://tools.ietf.org/search/rfc6830].

	Map Resolver: This module receives and processes the mapping
lookup queries and provides the mappings to requester. For a detailed
specification of LISP Map Server, see
LISP [http://tools.ietf.org/search/rfc6830].

	RPC/RESTCONF: This is the auto-generated RESTCONF-based
northbound API. This module enables defining key-EID associations as
well as adding mapping information through the Map Server. Key-EID
associations and mappings can also be queried via this API.

	GUI: This module enables adding and querying the mapping service
through a GUI based on ODL DLUX.

	Neutron: This module implements the OpenDaylight Neutron Service
APIs. It provides integration between the LISP service and the
OpenDaylight Neutron service, and thus OpenStack.

	Java API: The API module exposes the Map Server and Map Resolver
capabilities via a Java API.

	LISP Proto: This module includes LISP protocol dependent data
types and associated processing.

	In Memory DB: This module includes the in memory database
implementation of the mapping service.

	LISP Southbound Plugin: This plugin enables data plane devices
that support LISP control plane protocol (see
LISP [http://tools.ietf.org/search/rfc6830]) to register and
query mappings to the LISP Flow Mapping via the LISP control plane
protocol.

Configuring LISP Flow Mapping

In order to use the LISP mapping service for registering EID to RLOC
mappings from northbound or southbound, keys have to be defined for the
EID prefixes first. Once a key is defined for an EID prefix, it can be
used to add mappings for that EID prefix multiple times. If the service
is going to be used to process Map-Register messages from the southbound
LISP plugin, the same key must be used by the data plane device to
create the authentication data in the Map-Register messages for the
associated EID prefix.

The etc/custom.properties file in the Karaf distribution allows
configuration of several OpenDaylight parameters. The LISP service has
the following properties that can be adjusted:

	lisp.smr (default: false)

	Enables/disables the Solicit-Map-Request
(SMR) [http://tools.ietf.org/html/rfc6830#section-6.6.2]
functionality. SMR is a method to notify changes in an EID-to-RLOC
mapping to “subscribers”. The LISP service considers all
Map-Request’s source RLOC as a subscriber to the requested EID
prefix, and will send an SMR control message to that RLOC if the
mapping changes.

	lisp.elpPolicy (default: default)

	Configures how to build a Map-Reply southbound message from a
mapping containing an Explicit Locator Path (ELP) RLOC. It is used
for compatibility with dataplane devices that don’t understand the
ELP LCAF format. The default setting doesn’t alter the mapping,
returning all RLOCs unmodified. The both setting adds a new RLOC
to the mapping, with a lower priority than the ELP, that is the next
hop in the service chain. To determine the next hop, it searches the
source RLOC of the Map-Request in the ELP, and chooses the next hop,
if it exists, otherwise it chooses the first hop. The replace
setting adds a new RLOC using the same algorithm as the both
setting, but using the origin priority of the ELP RLOC, which is
removed from the mapping.

	lisp.lookupPolicy (default: northboundFirst)

	Configures the mapping lookup algorithm. When set to
northboundFirst mappings programmed through the northbound API
will take precedence. If no northbound programmed mappings exist,
then the mapping service will return mappings registered through the
southbound plugin, if any exists. When set to
northboundAndSouthbound the mapping programmed by the northbound
is returned, updated by the up/down status of these mappings as
reported by the southbound (if existing).

	lisp.mappingMerge (default: false)

	Configures the merge policy on the southbound registrations through
the LISP SB Plugin. When set to false, only the latest mapping
registered through the SB plugin is valid in the southbound mapping
database, independent of which device it came from. When set to
true, mappings for the same EID registered by different devices
are merged together and a union of the locators is maintained as the
valid mapping for that EID.

Textual Conventions for LISP Address Formats

In addition to the more common IPv4, IPv6 and MAC address data types,
the LISP control plane supports arbitrary Address Family
Identifiers [http://www.iana.org/assignments/address-family-numbers]
assigned by IANA, and in addition to those the LISP Canoncal Address
Format (LCAF) [https://tools.ietf.org/html/draft-ietf-lisp-lcaf].

The LISP Flow Mapping project in OpenDaylight implements support for
many of these different address formats, the full list being summarized
in the following table. While some of the address formats have well
defined and widely used textual representation, many don’t. It became
necessary to define a convention to use for text rendering of all
implemented address types in logs, URLs, input fields, etc. The below
table lists the supported formats, along with their AFI number and LCAF
type, including the prefix used for disambiguation of potential overlap,
and examples output.

	Name

	AFI

	LCAF

	Prefix

	Text Rendering

	No Address

	0

	
	

	no:

	No Address Present

	IPv4 Prefix

	1

	
	

	ipv4:

	192.0.2.0/24

	IPv6 Prefix

	2

	
	

	ipv6:

	2001:db8::/32

	MAC Address

	16389

	
	

	mac:

	00:00:5E:00:53:00

	Distinguished
Name

	17

	
	

	dn:

	stringAsIs

	AS Number

	18

	
	

	as:

	AS64500

	AFI List

	16387

	1

	list:

	{192.0.2.1,192.0.2.2,2001:db8::1
}

	Instance ID

	16387

	2

	
	

	[223] 192.0.2.0/24

	Application
Data

	16387

	4

	appdata:

	192.0.2.1!128!17!80-81!6667-7000

	Explicit
Locator Path

	16387

	10

	elp:

	{192.0.2.1→192.0.2.2|lps→192.0.
2.3}

	Source/Destina
tion
Key

	16387

	12

	srcdst:

	192.0.2.1/32|192.0.2.2/32

	Key/Value
Address Pair

	16387

	15

	kv:

	192.0.2.1⇒192.0.2.2

	Service Path

	16387

	N/A

	sp:

	42(3)

Table: LISP Address Formats

Please note that the forward slash character / typically separating
IPv4 and IPv6 addresses from the mask length is transformed into %2f
when used in a URL.

Karaf commands

In this section we will discuss two types of Karaf commands: built-in,
and LISP specific. Some built-in commands are quite useful, and are
needed for the tutorial, so they will be discussed here. A reference of
all LISP specific commands, added by the LISP Flow Mapping project is
also included. They are useful mostly for debugging.

Useful built-in commands

	help

	Lists all available command, with a short description of each.

	help <command_name>

	Show detailed help about a specific command.

	feature:list [-i]

	Show all locally available features in the Karaf container. The
-i option lists only features that are currently installed. It
is possible to use | grep to filter the output (for all
commands, not just this one).

	feature:install <feature_name>

	Install feature feature_name.

	log:set <level> <class>

	Set the log level for class to level. The default log level
for all classes is INFO. For debugging, or learning about LISP
internals it is useful to run
log:set TRACE org.opendaylight.lispflowmapping right after Karaf
starts up.

	log:display

	Outputs the log file to the console, and returns control to the
user.

	log:tail

	Continuously shows log output, requires Ctrl+C to return to the
console.

LISP specific commands

The available lisp commands can always be obtained by
help mappingservice. Currently they are:

	mappingservice:addkey

	Add the default password password for the IPv4 EID prefix
0.0.0.0/0 (all addresses). This is useful when experimenting with
southbound devices, and using the REST interface would be combersome
for whatever reason.

	mappingservice:mappings

	Show the list of all mappings stored in the internal non-persistent
data store (the DAO), listing the full data structure. The output is
not human friendly, but can be used for debugging.

LISP Flow Mapping Karaf Features

LISP Flow Mapping has the following Karaf features that can be installed
from the Karaf console:

	odl-lispflowmapping-msmr

	This includes the core features required to use the LISP Flow
Mapping Service such as mapping service and the LISP southbound
plugin.

	odl-lispflowmapping-ui

	This includes the GUI module for the LISP Mapping Service.

	odl-lispflowmapping-neutron

	This is the experimental Neutron provider module for LISP mapping
service.

Tutorials

This section provides a tutorial demonstrating various features in this
service. We have included tutorials using two forwarding platforms:

	Using Open Overlay Router (OOR) [https://github.com/OpenOverlayRouter/oor#overview]

	Using FD.io [https://wiki.fd.io/view/ONE]

Both have different approaches to create the overlay but ultimately do the
same job. Details of both approaches have been explained below.

Creating a LISP overlay with OOR

This section provides instructions to set up a LISP network of three
nodes (one “client” node and two “server” nodes) using OOR as data
plane LISP nodes and the LISP Flow Mapping project from OpenDaylight as
the LISP programmable mapping system for the LISP network.

Overview

The steps shown below will demonstrate setting up a LISP network between
a client and two servers, then performing a failover between the two
“server” nodes.

Prerequisites

	The OpenDaylight Karaf Distribution (download [https://www.opendaylight.org/downloads])

	The Postman Chrome App: the most convenient way to follow along
this tutorial is to use the Postman
App [https://www.getpostman.com/apps]
to edit and send the requests. The project git repository hosts a
collection of the requests that are used in this tutorial in the
resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection
file. You can import this file to Postman by clicking Import at the
top, choosing Download from link and then entering the following
URL:
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection;hb=refs/heads/stable/nitrogen.
Alternatively, you can save the file on your machine, or if you have
the repository checked out, you can import from there. You will need
to create a new Postman Environment and define some variables within:
controllerHost set to the hostname or IP address of the machine
running the OpenDaylight instance, and restconfPort to 8181, if you didn’t
modify the default controller settings.

	OOR version 1.0 or later The README.md lists the dependencies needed
to build it from source.

	A virtualization platform

Target Environment

The three LISP data plane nodes and the LISP mapping system are assumed
to be running in Linux virtual machines, which have the eth0
interface in NAT mode to allow outside internet access and eth1
connected to a host-only network, with the following IP addresses
(please adjust configuration files, JSON examples, etc. accordingly if
you’re using another addressing scheme):

	Node

	Node Type

	IP Address

	controller

	OpenDaylight

	192.168.16.11

	client

	OOR

	192.168.16.30

	server1

	OOR

	192.168.16.31

	server2

	OOR

	192.168.16.32

	service-node

	OOR

	192.168.16.33

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

[image: Network architecture of the tutorial]

In LISP terminology client, server1 and server2 are mobile nodes (MN in OOR),
controller is a MS/MR and service-node is a RTR.

Instructions

The below steps use the command line tool cURL to talk to the LISP Flow
Mapping RPC REST API. This is so that you can see the actual request
URLs and body content on the page.

	Install and run the OpenDaylight distribution on the controller VM.
Please follow the general OpenDaylight Installation Guide
for this step. Once the OpenDaylight controller is running install
the odl-lispflowmapping-msmr feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It takes quite a while to load and initialize all features and their
dependencies. It’s worth running the command log:tail in the
Karaf console to see when the log output is winding down, and
continue with the tutorial after that.

	Install OOR on the client, server1, server2, and
service-node VMs following the installation instructions from
the OOR README
file [https://github.com/OpenOverlayRouter/oor#software-prerequisites].

	Configure the OOR installations from the previous step. Take a look
at the oor.conf.example to get a general idea of the structure
of the conf file. First, check if the file /etc/oor.conf exists.
If the file doesn’t exist, create the file /etc/oor.conf. Set the
EID in /etc/oor.conf file from the IP address space selected
for your virtual/LISP network. In this tutorial the EID of the
client is set to 1.1.1.1/32, and that of server1 and
server2 to 2.2.2.2/32.

	Set the RLOC interface to eth1 in each oor.conf file. LISP
will determine the RLOC (IP address of the corresponding VM) based
on this interface.

	Set the Map-Resolver address to the IP address of the
controller, and on the client the Map-Server too. On
server1 and server2 remove the Map-Server configuration, so
that it doesn’t interfere with the mappings on the controller, since
we’re going to program them manually.

	Modify the “key” parameter in each oor.conf file to a
key/password of your choice (password in this tutorial).

Note

The resources/tutorial/OOR directory in the project git repository
has the files used in the tutorial checked in [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/OOR;hb=refs/heads/stable/nitrogen],
so you can just copy the files to /etc/oor.conf on the respective
VMs. You will also find the JSON files referenced below in the same
directory.

	Define a key and EID prefix association in OpenDaylight using the
RPC REST API for the client EID (1.1.1.1/32) to allow
registration from the southbound. Since the mappings for the server
EID will be configured from the REST API, no such association is
necessary. Run the below command on the controller (or any
machine that can reach controller, by replacing localhost with
the IP address of controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/ \
 --data @add-key.json

where the content of the add-key.json file is the following:

{
 "authentication-key": {
 "eid-uri": "ipv4:1.1.1.1/32",
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "1.1.1.1/32"
 },
 "mapping-authkey": {
 "key-string": "password",
 "key-type": 1
 }
 }
}

	Verify that the key is added properly by requesting the following
URL:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/

The output the above invocation should look like this:

{
 "authentication-key":[
 {
 "eid-uri":"ipv4:1.1.1.1/32",
 "eid":{
 "ipv4-prefix":"1.1.1.1/32",
 "address-type":"ietf-lisp-address-types:ipv4-prefix-afi"
 },
 "mapping-authkey":{
 "key-string":"password"
 ,"key-type":1
 }
 }
]
}

	Run the oor OOR daemon on all VMs:

oor -f /etc/oor.conf

For more information on accessing OOR logs, take a look at
OOR README [https://github.com/OpenOverlayRouter/oor#readme]

	The client OOR node should now register its EID-to-RLOC
mapping in OpenDaylight. To verify you can lookup the corresponding
EIDs via the REST API

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/operational/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:1.1.1.1%2f32/southbound/

An alternative way for retrieving mappings from OpenDaylight using the
southbound interface is using the
lig [https://github.com/davidmeyer/lig] open source tool.

	Register the EID-to-RLOC mapping of the server EID 2.2.2.2/32 to the
controller, pointing to server1 and server2 with a higher
priority for server1

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
 --data @mapping.json

where the mapping.json file looks like this:

{
 "mapping": {
 "eid-uri": "ipv4:2.2.2.2/32",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "2.2.2.2/32"
 },
 "LocatorRecord": [
 {
 "locator-id": "server1",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:ipv4-afi",
 "ipv4": "192.168.16.31"
 }
 },
 {
 "locator-id": "server2",
 "priority": 2,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:ipv4-afi",
 "ipv4": "192.168.16.32"
 }
 }
]
 }
 }
}

Here the priority of the second RLOC (192.168.16.32 - server2)
is 2, a higher numeric value than the priority of 192.168.16.31,
which is 1. This policy is saying that server1 is preferred to
server2 for reaching EID 2.2.2.2/32. Note that lower priority
value has higher preference in LISP.

	Verify the correct registration of the 2.2.2.2/32 EID:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/

	Now the LISP network is up. To verify, log into the client VM
and ping the server EID:

ping 2.2.2.2

	Let’s test fail-over now. Suppose you had a service on server1
which became unavailable, but server1 itself is still reachable.
LISP will not automatically fail over, even if the mapping for
2.2.2.2/32 has two locators, since both locators are still reachable
and uses the one with the higher priority (lowest priority value).
To force a failover, we need to set the priority of server2 to a
lower value. Using the file mapping.json above, swap the priority
values between the two locators (lines 14 and 28 in mapping.json)
and repeat the request from step 11. You can also repeat step 12 to
see if the mapping is correctly registered. If you leave the ping
on, and monitor the traffic using wireshark, you can see that the
ping traffic to 2.2.2.2 will be diverted from the server1 RLOC
to the server2 RLOC.

With the default OpenDaylight configuration the failover should be
near instantaneous (we observed 3 lost pings in the worst case),
because of the LISP Solicit-Map-Request (SMR)
mechanism [http://tools.ietf.org/html/rfc6830#section-6.6.2] that
can ask a LISP data plane element to update its mapping for a
certain EID (enabled by default). It is controlled by the
lisp.smr variable in etc/custom.porperties. When enabled,
any mapping change from the RPC interface will trigger an SMR packet
to all data plane elements that have requested the mapping in the
last 24 hours (this value was chosen because it’s the default TTL of
Cisco IOS xTR mapping registrations). If disabled, ITRs keep their
mappings until the TTL specified in the Map-Reply expires.

	To add a service chain into the path from the client to the server,
we can use an Explicit Locator Path, specifying the service-node
as the first hop and server1 (or server2) as the second hop.
The following will achieve that:

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
 --data @elp.json

where the elp.json file is as follows:

{
 "mapping": {
 "eid-uri": "ipv4:2.2.2.2/32",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "2.2.2.2/32"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "service-node",
 "address": "192.168.16.33",
 "lrs-bits": "strict"
 },
 {
 "hop-id": "server1",
 "address": "192.168.16.31",
 "lrs-bits": "strict"
 }
]
 }
 }
 }
]
 }
 }
}

After the mapping for 2.2.2.2/32 is updated with the above, the ICMP
traffic from client to server1 will flow through the
service-node. You can confirm this in the OOR logs, or by
sniffing the traffic on either the service-node or server1.
Note that service chains are unidirectional, so unless another ELP
mapping is added for the return traffic, packets will go from
server1 to client directly.

	Suppose the service-node is actually a firewall, and traffic is
diverted there to support access control lists (ACLs). In this
tutorial that can be emulated by using iptables firewall rules
in the service-node VM. To deny traffic on the service chain
defined above, the following rule can be added:

iptables -A OUTPUT --dst 192.168.16.31 -j DROP

The ping from the client should now have stopped.

In this case the ACL is done on the destination RLOC. There is an
effort underway in the OOR community to allow filtering on EIDs,
which is the more logical place to apply ACLs.

	To delete the rule and restore connectivity on the service chain,
delete the ACL by issuing the following command:

iptables -D OUTPUT --dst 192.168.16.31 -j DROP

which should restore connectivity.

Creating a simple LISP overlay with FD.io

In this section, we use the Overlay Network Engine (ONE) project in FD.io
to facilitate fully scripted setup and testing of a LISP/VXLAN-GPE network.
Overlay Network Engine (ONE) is a FD.io [https://fd.io/] project that enables programmable
dynamic software defined overlays. Details about this project can be
found in ONE wiki [https://wiki.fd.io/view/ONE].

The steps shown below will demonstrate setting up a LISP network between
a client and a server using VPP. We demonstrate how to use VPP lite to
build a IP4 LISP overlay on an Ubuntu host using namespaces and af_packet
interfaces. All configuration files used in the tutorials can be found
here [https://gerrit.fd.io/r/gitweb?p=one.git;a=tree;f=tutorial].

Prerequisites

	The OpenDaylight Karaf Distribution (download [https://www.opendaylight.org/downloads])

	The Postman Chrome App: Please follow the instructions and import
postman collection from the following URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=resources/tutorial/FD_io/lfm_vpp.postman_collection.json;hb=refs/heads/stable/nitrogen.

	Vagrant (optional): Download it from Vagrant website [https://www.vagrantup.com/downloads.html]
and follow the setup instructions.

Target Environment

Unlike the case with OOR, we use network namespace functionality of Linux
to create the overlay in this case. The following table contains ip addresses
of nodes in the overlay topology used in the tutorial. Our objective will be to
create this topology and be able to ping from client to server through an
intermediary hop, service node, which is a rtr node providing the
service of re-encapsulation. So, all the packets from client to server
will be through this service node.

	Node

	Node Type

	IP Address

	controller

	OpenDaylight

	6.0.3.100

	client

	VPP

	6.0.2.2

	server

	VPP

	6.0.4.4

	service node

	VPP

	6.0.3.3

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

[image: Network architecture of the tutorial for FD.io]

Instructions

Follow the instructions below sequentially.

	Pull the VPP code anonymously using:

git clone https://gerrit.fd.io/r/vpp

	Then, use the vagrant file from repository to build virtual machine
with proper environment.

cd vpp/build-root/vagrant/
vagrant up
vagrant ssh

	In case there is any error from vagrant up, try vargant ssh. if
it works, no worries. If it still doesn’t work, you can try any Ubuntu virtual
machine. Or sometimes there is an issue with the Vagrant properly copying
the VPP repo code from the host VM after the first installation. In that
case /vpp doesn’t exist. In both cases, follow the instructions
from below.

	Clone the code in / directory. So, the codes will be in /vpp.

	
	Run the following commands:

	cd /vpp/build-root
make distclean
./bootstrap.sh
make V=0 PLATFORM=vpp TAG=vpp install-deb
sudo dpkg -i /vpp/build-root/*.deb

Alternative and more detailed build instructions can be found in
VPP’s wiki [https://wiki.fd.io/view/VPP/Build,_install,_and_test_images]

	By now, you should have a Ubuntu VM with VPP repository in /vpp
with sudo access. Now, we need VPP Lite build. The following commands
builds VPP Lite.

cd /vpp
export PLATFORM=vpp_lite
make build

Successful build create the binary in /vpp/build-root/install-vpp_lite_debug-native/vpp/bin

	Install bridge-utils and ethtool if needed by using following commands:

sudo apt-get install bridge-utils ethtool

	Now, install and run OpenDaylight on the VM. Please follow the general
OpenDaylight Installation Guide for this step from Installing OpenDaylight.
Before running OpenDaylight, we need to change the configuration for RTR
to work. Update etc/custom.properties with the lisp.elpPolicy to
be replace.

lisp.elpPolicy = replace

Then, run OpenDaylight. For details regarding configuring LISP
Flow Mapping, please take a look at Configuring LISP Flow Mapping.
Once the OpenDaylight controller is running install the odl-lispflowmapping-msmr
feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It may take quite a while to load and initialize all features and their
dependencies. It’s worth running the command log:tail in the
Karaf console to see when the log output is winding down, and
continue with the tutorial after that.

	For setting up VPP, get the files from resources/tutorial/FD_io
folder of the lispflowmapping repo. The files can also be found here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/nitrogen].
Copy the vpp1.config, vpp2.config and rtr.config files in
/etc/vpp/lite/.

	In this example, VPP doesn’t make any southbound map registers to OpenDaylight.
So, we add the mappings directly from northbound. For that, we need
to add the mappings to OpenDaylight via RESTCONF API.

Register EID-to-RLOC mapping of the Client EID 6.0.2.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:6.0.2.0%2f24/northbound/ \
 --data @epl1.json

Content of epl1.json:

{
 "mapping": {
 "eid-uri": "ipv4:6.0.2.0/24",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "6.0.2.0/24"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": false,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "Hop 1",
 "address": "6.0.3.3",
 "lrs-bits": "lookup rloc-probe strict"
 },
 {
 "hop-id": "Hop 2",
 "address": "6.0.3.1",
 "lrs-bits": "lookup strict"
 }
]
 }
 }
 }
]
 }
 }
}

Similarly add EID-to-RLOC mapping of the Server EID 6.0.4.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:6.0.4.0%2f24/northbound/ \
 --data @epl2.json

Content of elp2.json:

{
 "mapping": {
 "eid-uri": "ipv4:6.0.4.0/24",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "6.0.4.0/24"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": false,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "Hop 1",
 "address": "6.0.3.3",
 "lrs-bits": "lookup rloc-probe strict"
 },
 {
 "hop-id": "Hop 2",
 "address": "6.0.3.2",
 "lrs-bits": "lookup strict"
 }
]
 }
 }
 }
]
 }
 }
}

The JSON files regarding these can be found in here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/nitrogen].
Even though there is no southbound registration for mapping to OpenDaylight, using
northbound policy we can specify mappings, when Client requests for
the Server eid, Client gets a reply from OpenDaylight.

	Assuming all files have been created and OpenDaylight has been configured as
explained above, execute the host script you’ve created or the topology_setup.sh
script from here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/nitrogen].

	If all goes well, you can now test connectivity between the namespaces with:

sudo ip netns exec vpp-ns1 ping 6.0.4.4

	Traffic and control plane message exchanges can be checked with a wireshark
listening on the odl interface.

	
Important

Delete the topology by running the topology_setup.sh with clean argument.

sudo ./topology_setup.sh clean

Creating a LISP overlay with Cisco IOS-XE

This section describes how to create a simple LISP overlay using the Cisco
IOS-XE network operating system as the data plane software running on the
Cisco CSR 1000v Series Cloud Services Router [http://www.cisco.com/c/en/us/support/routers/cloud-services-router-1000v/model.html].

Prerequisites

	The OpenDaylight Karaf Distribution (download [https://www.opendaylight.org/downloads])

	CSR1Kv image with Cisco IOS-XE version 03.13.00.S or later (download [http://www.cisco.com/c/en/us/support/routers/cloud-services-router-1000v/model.html#~tab-downloads];
the instructions have been tested on version 03.15.00.S).

	A virtualization platform supported by CSR1Kv images (VMware ESXi,
Citrix XenServer, KVM, and Microsoft Hyper-V).

Target Environment

The CSR1Kv images are configured with one management interface
(GigabitEthernet1), and another interface (GigabitEthernet2) connected
to a host-only network on the virtualization platform, while the LISP mapping
system is assumed to be running in a Linux virtual machine, which has the
eth0 interface in NAT mode to allow outside internet access and eth1
connected to the host-only network, with the following IP addresses (please
adjust configuration files, JSON examples, etc. accordingly if you’re using
another addressing scheme):

	Node

	Node Type

	IP Address

	controller

	OpenDaylight

	192.168.16.11

	client

	CSR1Kv

	192.168.16.30

	server

	CSR1Kv

	192.168.16.31

Table: Nodes in the tutorial

The scenario and EID allocation is the same as the OOR scenario, except that
there is no server2 and service-node (for now).

Before this tutorial can be followed, basic connectivity between the Linux VM
and the CSRs should work on the host-only network.

Instructions

The below steps use the command line tool cURL to talk to the LISP Flow
Mapping RPC REST API. This is so that you can see the actual request
URLs and body content on the page. The easy way is to just use Postman.

	Install and run the OpenDaylight distribution on the controller VM.
Please follow the general OpenDaylight Installation Guide from
Installing OpenDaylight for this step. Once the OpenDaylight controller is
running install the odl-lispflowmapping-msmr feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It takes quite a while to load and initialize all features and their
dependencies. It’s worth running the command log:tail in the
Karaf console to see when the log output is winding down, and
continue with the tutorial after that.

	Create the client and server VMs following the installation
instructions from the CSR1Kv Configuration Guide [http://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/configuration/b_CSR1000v_Configuration_Guide.html].

	Define a key and EID prefix association in OpenDaylight using the RPC REST
API for the client and server EIDs (1.1.1.1/32 and 2.2.2.2/32
respectively) to allow registration from the southbound. Run the below
command on the controller (or any machine that can reach
controller, by replacing localhost with the IP address of
controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/ \
 --data @add-key.json

where the content of the add-key.json file is the following:

{
 "authentication-key": {
 "eid-uri": "ipv4:1.1.1.1/32",
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "1.1.1.1/32"
 },
 "mapping-authkey": {
 "key-string": "password",
 "key-type": 1
 }
 }
}

The same should be done for 2.2.2.2/32 too.

	Verify that the key is added properly by requesting the following
URL:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/

The output the above invocation should look like this:

{
 "authentication-key":[
 {
 "eid-uri":"ipv4:1.1.1.1/32",
 "eid":{
 "ipv4-prefix":"1.1.1.1/32",
 "address-type":"ietf-lisp-address-types:ipv4-prefix-afi"
 },
 "mapping-authkey":{
 "key-string":"password"
 ,"key-type":1
 }
 }
]
}

	Configure the CSR installations from the previous step. The EID needs to
be configured on a loopback interface (except when the CSR is used as a
router not a simple client like in this tutorial and the EID is assigned
to a real interface).

interface Loopback0
 ip address 1.1.1.1 255.255.255.255

	The LISP specific configuration goes to a router lisp section in the
configuration. A locator-set defines the list of locators with their
priorities and weights, either statically, or better yet, as an interface
name:

locator-set rloc-network
 IPv4-interface GigabitEthernet2 priority 1 weight 1
 exit

	To make sure a Map-Request is using the above defined rloc-network
locator set, the following configuration is used:

map-request itr-rlocs rloc-network

	Each Instance ID needs its own configuration. For the default Instance ID
of 0, the following configuration is needed for a besic setup:

eid-table default instance-id 0
 database-mapping 1.1.1.1/32 locator-set rloc-network
 map-cache 0.0.0.0/0 map-request
 no ipv4 map-cache-persistent
 ipv4 itr map-resolver 192.168.16.11
 ipv4 itr
 ipv4 etr map-server 192.168.16.11 key password
 ipv4 etr
 exit

database-mapping defines the EID prefix the router will register in
the mapping system and which locator set it will use (rloc-network in
this case, which was defined in step 6).

The next line creates a static map-cache entry for the whole IPv4 EID
space, causing a Map-Request to be triggered for every destination (that
is not directly connected on some interface).

LISP routers save their map cache to a fie which is used to restore
previous state on reboot. To avoid confusion due to state restored from a
previous run, no ipv4 map-cache-persistent can be used to disable this
behavior for non-production testing environments.

A map-resolver is then defined, where Map-Requests will be directed to
for mapping lookups, and then a map-server association with a shared
secret key.

	Here’s the full configuration that needs to be pasted into the
configuration of the client to follow this tutorial:

interface Loopback0
 ip address 1.1.1.1 255.255.255.255
!
router lisp
 locator-set rloc-network
 IPv4-interface GigabitEthernet2 priority 1 weight 1
 exit
 !
 map-request itr-rlocs rloc-network
 eid-table default instance-id 0
 database-mapping 1.1.1.1/32 locator-set rloc-network
 map-cache 0.0.0.0/0 map-request
 no ipv4 map-cache-persistent
 ipv4 itr map-resolver 192.168.16.11
 ipv4 itr
 ipv4 etr map-server 192.168.16.11 key password
 ipv4 etr
 exit
 !
 exit

Configuring the server is done by replacing 1.1.1.1 with
2.2.2.2 in the above configuration snippet.

	The CSR nodes should now register their EID-to-RLOC mappings to
OpenDaylight. To verify, the corresponding EIDs can be looked up via the
REST API:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/operational/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:1.1.1.1%2f32/southbound/

An alternative way for retrieving mappings from OpenDaylight using the
southbound interface is using the
lig [https://github.com/davidmeyer/lig] open source tool.

Yet another different way is to use the OpenDaylight mappingservice CLI,
and type the following at the Karaf prompt:

mappingservice:mappings

This needs the odl-lispflowmapping-mappingservice-shell feature to be
loaded. The output is intended for debugging purposes and shows the full
Java objects stored in the map-cache.

	Now the LISP network is up. It can be verified by pinging the server
EID from the client CSR EID:

ping 2.2.2.2 source 1.1.1.1

LISP Flow Mapping Support

For support the lispflowmapping project can be reached by emailing the
developer mailing list: lispflowmapping-dev@lists.opendaylight.org or on
the #opendaylight-lispflowmapping IRC channel on irc.freenode.net.

Additional information is also available on the Lisp Flow Mapping
wiki [https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Main]

Clustering in LISP Flow Mapping

Documentation regarding setting up a 3-node OpenDaylight cluster is
described at following odl wiki
page [https://wiki.opendaylight.org/view/Running_and_testing_an_OpenDaylight_Cluster#Three-node_cluster].

To turn on clustering in LISP Flow Mapping it is necessary:

	run script deploy.py script. This script is in
integration-test [https://git.opendaylight.org/gerrit/integration/test]
project placed at tools/clustering/cluster-deployer/deploy.py. A
whole deploy.py command can looks like:

{path_to_integration_test_project}/tools/clustering/cluster-deployer/deploy.py

–distribution {path_to_distribution_in_zip_format}

–rootdir {dir_at_remote_host_where_copy_odl_distribution}

–hosts {ip1},{ip2},{ip3}

–clean

–template lispflowmapping

–rf 3

–user {user_name_of_remote_hosts}

–password {password_to_remote_hosts}

Running this script will cause that specified distribution to be
deployed to remote hosts specified through their IP adresses with
using credentials (user and password). The distribution will
be copied to specified rootdir. As part of the deployment, a
template which contains a set of controller files which are
different from standard ones. In this case it is specified in

{path_to_integration_test_project}/tools/clustering/cluster-deployer/lispflowmapping
directory.

Lispflowmapping templates are part of integration-test project. There
are 5 template files:

	akka.conf.template

	jolokia.xml.template

	module-shards.conf.template

	modules.conf.template

	org.apache.karaf.features.cfg.template

After copying the distribution, it is unzipped and started on all of
specified hosts in cluster aware manner.

Remarks

It is necessary to have:

	unzip program installed on all of the host

	set all remote hosts /etc/sudoers files to not requiretty (should
only matter on debian hosts)

NEtwork MOdeling (NEMO)

This section describes how to use the NEMO feature in OpenDaylight
and contains contains configuration, administration, and management
sections for the feature.

Overview

With the network becoming more complicated, users and applications must handle
more complex configurations to deploy new services. NEMO project aims to simplify
the usage of network by providing a new intent northbound interface (NBI). Instead
of tons of APIs, users/applications just need to describe their intent without
caring about complex physical devices and implementation means. The intent will
be translated into detailed configurations on the devices in the NEMO engine. A
typical scenario is user just need to assign which nodes to implement an VPN,
without considering which technique is used.

NEMO Engine Architecture

	NEMO API
* The NEMO API provide users the NEMO model, which guides users how to construct the
instance of intent, and how to construct the instance of predefined types.

	NEMO REST
* The NEMO REST provides users REST APIs to access NEMO engine, that is, user could
transmit the intent instance to NEMO engine through basic REST methods.

	NEMO UI
* The NEMO UI provides users a visual interface to deploy service with NEMO model,
and display the state in DLUX UI.

Installing NEMO engine

To install NEMO engine, download OpenDaylight and use the Karaf console
to install the following feature:

odl-nemo-engine-ui

Administering or Managing NEMO Engine

After install features NEMO engine used, user could use NEMO to express his intent
with NEMO UI or REST APIs in apidoc.

Go to http://{controller-ip}:8181/index.html. In this interface, user could go to
NEMO UI, and use the tabs and input box to input intent, and see the state of intent
deployment with the image.

Go to http://{controller-ip}:8181/apidoc/explorer/index.html. In this interface, user
could REST methods “POST”, “PUT”,”GET” and “DELETE” to deploy intent or query the state
of deployment.

Tutorials

Below are tutorials for NEMO Engine.

Using NEMO Engine

The purpose of the tutorial is to describe how to use use UI to deploy intent.

Overview

This tutorial will describe how to use the NEMO UI to check the operated resources, the steps
to deploy service, and the ultimate state.

Prerequisites

To understand the tutorial well, we hope there are a physical or virtual network exist, and
OpenDaylight with NEMO engine must be deployed in one host.

Target Environment

The intent expressed by NEMO model is depended on network resources, so user need to have enough
resources to use, or else, the deployment of intent will fail.

Instructions

	Run the OpenDaylight distribution and install odl-nemo-engine-ui from the Karaf console.

	Go to http://{controller-ip}:8181/index.html, and sign in.

	Go the NEMO UI interface. And Register a new user with user name, password, and tenant.

	Check the existing resources to see if it is consistent with yours.

	Deploy service with NEMO model by the create intent menu.

NETCONF User Guide

Overview

NETCONF is an XML-based protocol used for configuration and monitoring
devices in the network. The base NETCONF protocol is described in
RFC-6241 [http://tools.ietf.org/html/rfc6241].

NETCONF in OpenDaylight:.

OpenDaylight supports the NETCONF protocol as a northbound server as
well as a southbound plugin. It also includes a set of test tools for
simulating NETCONF devices and clients.

Southbound (netconf-connector)

The NETCONF southbound plugin is capable of connecting to remote NETCONF
devices and exposing their configuration/operational datastores, RPCs
and notifications as MD-SAL mount points. These mount points allow
applications and remote users (over RESTCONF) to interact with the
mounted devices.

In terms of RFCs, the connector supports:

	RFC-6241 [http://tools.ietf.org/html/rfc6241]

	RFC-5277 [https://tools.ietf.org/html/rfc5277]

	RFC-6022 [https://tools.ietf.org/html/rfc6022]

	draft-ietf-netconf-yang-library-06 [https://tools.ietf.org/html/draft-ietf-netconf-yang-library-06]

Netconf-connector is fully model-driven (utilizing the YANG modeling
language) so in addition to the above RFCs, it supports any
data/RPC/notifications described by a YANG model that is implemented by
the device.

Tip

NETCONF southbound can be activated by installing
odl-netconf-connector-all Karaf feature.

Netconf-connector configuration

There are 2 ways for configuring netconf-connector: NETCONF or RESTCONF.
This guide focuses on using RESTCONF.

Default configuration

The default configuration contains all the necessary dependencies (file:
01-netconf.xml) and a single instance of netconf-connector (file:
99-netconf-connector.xml) called controller-config which connects
itself to the NETCONF northbound in OpenDaylight in a loopback fashion.
The connector mounts the NETCONF server for config-subsystem in order to
enable RESTCONF protocol for config-subsystem. This RESTCONF still goes
via NETCONF, but using RESTCONF is much more user friendly than using
NETCONF.

Spawning additional netconf-connectors while the controller is running

Preconditions:

	OpenDaylight is running

	In Karaf, you must have the netconf-connector installed (at the Karaf
prompt, type: feature:install odl-netconf-connector-all); the
loopback NETCONF mountpoint will be automatically configured and
activated

	Wait until log displays following entry:
RemoteDevice{controller-config}: NETCONF connector initialized
successfully

To configure a new netconf-connector you need to send following request
to RESTCONF:

POST
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules

Headers:

	Accept application/xml

	Content-Type application/xml

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">prefix:sal-netconf-connector</type>
 <name>new-netconf-device</name>
 <address xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">127.0.0.1</address>
 <port xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">830</port>
 <username xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">admin</username>
 <password xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">admin</password>
 <tcp-only xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">false</tcp-only>
 <event-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:netty">prefix:netty-event-executor</type>
 <name>global-event-executor</name>
 </event-executor>
 <binding-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-registry>
 <dom-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">prefix:dom-broker-osgi-registry</type>
 <name>dom-broker</name>
 </dom-registry>
 <client-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:config:netconf">prefix:netconf-client-dispatcher</type>
 <name>global-netconf-dispatcher</name>
 </client-dispatcher>
 <processing-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:threadpool</type>
 <name>global-netconf-processing-executor</name>
 </processing-executor>
 <keepalive-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:scheduled-threadpool</type>
 <name>global-netconf-ssh-scheduled-executor</name>
 </keepalive-executor>
</module>

This spawns a new netconf-connector which tries to connect to (or mount)
a NETCONF device at 127.0.0.1 and port 830. You can check the
configuration of config-subsystem’s configuration datastore. The new
netconf-connector will now be present there. Just invoke:

GET
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules

The response will contain the module for new-netconf-device.

Right after the new netconf-connector is created, it writes some useful
metadata into the datastore of MD-SAL under the network-topology
subtree. This metadata can be found at:

GET
http://localhost:8181/restconf/operational/network-topology:network-topology/

Information about connection status, device capabilities, etc. can be
found there.

Connecting to a device not supporting NETCONF monitoring

The netconf-connector in OpenDaylight relies on ietf-netconf-monitoring
support when connecting to remote NETCONF device. The
ietf-netconf-monitoring support allows netconf-connector to list and
download all YANG schemas that are used by the device. NETCONF connector
can only communicate with a device if it knows the set of used schemas
(or at least a subset). However, some devices use YANG models internally
but do not support NETCONF monitoring. Netconf-connector can also
communicate with these devices, but you have to side load the necessary
yang models into OpenDaylight’s YANG model cache for netconf-connector.
In general there are 2 situations you might encounter:

1. NETCONF device does not support ietf-netconf-monitoring but it does
list all its YANG models as capabilities in HELLO message

This could be a device that internally uses only ietf-inet-types YANG
model with revision 2010-09-24. In the HELLO message that is sent from
this device there is this capability reported:

urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&revision=2010-09-24

For such devices you only need to put the schema into folder
cache/schema inside your Karaf distribution.

Important

The file with YANG schema for ietf-inet-types has to be called
ietf-inet-types@2010-09-24.yang. It is the required naming format of
the cache.

2. NETCONF device does not support ietf-netconf-monitoring and it does
NOT list its YANG models as capabilities in HELLO message

Compared to device that lists its YANG models in HELLO message, in this
case there would be no capability with ietf-inet-types in the HELLO
message. This type of device basically provides no information about the
YANG schemas it uses so its up to the user of OpenDaylight to properly
configure netconf-connector for this device.

Netconf-connector has an optional configuration attribute called
yang-module-capabilities and this attribute can contain a list of “YANG
module based” capabilities. So by setting this configuration attribute,
it is possible to override the “yang-module-based” capabilities reported
in HELLO message of the device. To do this, we need to modify the
configuration of netconf-connector by adding this XML (It needs to be
added next to the address, port, username etc. configuration elements):

<yang-module-capabilities xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <capability xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&revision=2010-09-24
 </capability>
</yang-module-capabilities>

Remember to also put the YANG schemas into the cache folder.

Note

For putting multiple capabilities, you just need to replicate the
capability xml element inside yang-module-capability element.
Capability element is modeled as a leaf-list. With this
configuration, we would make the remote device report usage of
ietf-inet-types in the eyes of netconf-connector.

Reconfiguring Netconf-Connector While the Controller is Running

It is possible to change the configuration of a running module while the
whole controller is running. This example will continue where the last
left off and will change the configuration for the brand new
netconf-connector after it was spawned. Using one RESTCONF request, we
will change both username and password for the netconf-connector.

To update an existing netconf-connector you need to send following
request to RESTCONF:

PUT
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">prefix:sal-netconf-connector</type>
 <name>new-netconf-device</name>
 <username xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">bob</username>
 <password xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">passwd</password>
 <tcp-only xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">false</tcp-only>
 <event-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:netty">prefix:netty-event-executor</type>
 <name>global-event-executor</name>
 </event-executor>
 <binding-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-registry>
 <dom-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">prefix:dom-broker-osgi-registry</type>
 <name>dom-broker</name>
 </dom-registry>
 <client-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:config:netconf">prefix:netconf-client-dispatcher</type>
 <name>global-netconf-dispatcher</name>
 </client-dispatcher>
 <processing-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:threadpool</type>
 <name>global-netconf-processing-executor</name>
 </processing-executor>
 <keepalive-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:scheduled-threadpool</type>
 <name>global-netconf-ssh-scheduled-executor</name>
 </keepalive-executor>
</module>

Since a PUT is a replace operation, the whole configuration must be
specified along with the new values for username and password. This
should result in a 2xx response and the instance of netconf-connector
called new-netconf-device will be reconfigured to use username bob and
password passwd. New configuration can be verified by executing:

GET
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device

With new configuration, the old connection will be closed and a new one
established.

Destroying Netconf-Connector While the Controller is Running

Using RESTCONF one can also destroy an instance of a module. In case of
netconf-connector, the module will be destroyed, NETCONF connection
dropped and all resources will be cleaned. To do this, simply issue a
request to following URL:

DELETE
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device

The last element of the URL is the name of the instance and its
predecessor is the type of that module (In our case the type is
sal-netconf-connector and name new-netconf-device). The type and
name are actually the keys of the module list.

Netconf-connector configuration with MD-SAL

It is also possible to configure new NETCONF connectors directly through
MD-SAL with the usage of the network-topology model. You can configure
new NETCONF connectors both through the NETCONF server for MD-SAL (port
2830) or RESTCONF. This guide focuses on RESTCONF.

Tip

To enable NETCONF connector configuration through MD-SAL install
either the odl-netconf-topology or
odl-netconf-clustered-topology feature. We will explain the
difference between these features later.

Preconditions

	OpenDaylight is running

	In Karaf, you must have the odl-netconf-topology or
odl-netconf-clustered-topology feature installed.

	Feature odl-restconf must be installed

	Wait until log displays following entry:

Successfully pushed configuration snapshot 02-netconf-topology.xml(odl-netconf-topology,odl-netconf-topology)

or until

GET http://localhost:8181/restconf/operational/network-topology:network-topology/topology/topology-netconf/

returns a non-empty response, for example:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>topology-netconf</topology-id>
</topology>

Spawning new NETCONF connectors

To create a new NETCONF connector you need to send the following request
to RESTCONF:

PUT http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device

Headers:

	Accept: application/xml

	Content-Type: application/xml

Payload:

<node xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <node-id>new-netconf-device</node-id>
 <host xmlns="urn:opendaylight:netconf-node-topology">127.0.0.1</host>
 <port xmlns="urn:opendaylight:netconf-node-topology">17830</port>
 <username xmlns="urn:opendaylight:netconf-node-topology">admin</username>
 <password xmlns="urn:opendaylight:netconf-node-topology">admin</password>
 <tcp-only xmlns="urn:opendaylight:netconf-node-topology">false</tcp-only>
 <!-- non-mandatory fields with default values, you can safely remove these if you do not wish to override any of these values-->
 <reconnect-on-changed-schema xmlns="urn:opendaylight:netconf-node-topology">false</reconnect-on-changed-schema>
 <connection-timeout-millis xmlns="urn:opendaylight:netconf-node-topology">20000</connection-timeout-millis>
 <max-connection-attempts xmlns="urn:opendaylight:netconf-node-topology">0</max-connection-attempts>
 <between-attempts-timeout-millis xmlns="urn:opendaylight:netconf-node-topology">2000</between-attempts-timeout-millis>
 <sleep-factor xmlns="urn:opendaylight:netconf-node-topology">1.5</sleep-factor>
 <!-- keepalive-delay set to 0 turns off keepalives-->
 <keepalive-delay xmlns="urn:opendaylight:netconf-node-topology">120</keepalive-delay>
</node>

Note that the device name in <node-id> element must match the last
element of the restconf URL.

Reconfiguring an existing connector

The steps to reconfigure an existing connector are exactly the same as
when spawning a new connector. The old connection will be disconnected
and a new connector with the new configuration will be created.

Deleting an existing connector

To remove an already configured NETCONF connector you need to send the
following:

DELETE http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device

Connecting to a device supporting only NETCONF 1.0

OpenDaylight is schema-based distribution and heavily depends on YANG
models. However some legacy NETCONF devices are not schema-based and
implement just RFC 4741. This type of device does not utilize YANG
models internally and OpenDaylight does not know how to communicate
with such devices, how to validate data, or what the semantics of data
are.

NETCONF connector can communicate also with these devices, but the
trade-offs are worsened possibilities in utilization of NETCONF
mountpoints. Using RESTCONF with such devices is not suported. Also
communicating with schemaless devices from application code is slightly
different.

To connect to schemaless device, there is a optional configuration option
in netconf-node-topology model called schemaless. You have to set this
option to true.

Clustered NETCONF connector

To spawn NETCONF connectors that are cluster-aware you need to install
the odl-netconf-clustered-topology karaf feature.

Warning

The odl-netconf-topology and odl-netconf-clustered-topology
features are considered INCOMPATIBLE. They both manage the same
space in the datastore and would issue conflicting writes if
installed together.

Configuration of clustered NETCONF connectors works the same as the
configuration through the topology model in the previous section.

When a new clustered connector is configured the configuration gets
distributed among the member nodes and a NETCONF connector is spawned on
each node. From these nodes a master is chosen which handles the schema
download from the device and all the communication with the device. You
will be able to read/write to/from the device from all slave nodes due
to the proxy data brokers implemented.

You can use the odl-netconf-clustered-topology feature in a single
node scenario as well but the code that uses akka will be used, so for a
scenario where only a single node is used, odl-netconf-topology
might be preferred.

Netconf-connector utilization

Once the connector is up and running, users can utilize the new mount
point instance. By using RESTCONF or from their application code. This
chapter deals with using RESTCONF and more information for app
developers can be found in the developers guide or in the official
tutorial application ncmount that can be found in the coretutorials
project:

	https://github.com/opendaylight/coretutorials/tree/stable/beryllum/ncmount

Reading data from the device

Just invoke (no body needed):

GET
http://localhost:8080/restconf/operational/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/

This will return the entire content of operation datastore from the
device. To view just the configuration datastore, change operational
in this URL to config.

Writing configuration data to the device

In general, you cannot simply write any data you want to the device. The
data have to conform to the YANG models implemented by the device. In
this example we are adding a new interface-configuration to the mounted
device (assuming the device supports Cisco-IOS-XR-ifmgr-cfg YANG model).
In fact this request comes from the tutorial dedicated to the
ncmount tutorial app.

POST
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/Cisco-IOS-XR-ifmgr-cfg:interface-configurations

<interface-configuration xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg">
 <active>act</active>
 <interface-name>mpls</interface-name>
 <description>Interface description</description>
 <bandwidth>32</bandwidth>
 <link-status></link-status>
</interface-configuration>

Should return 200 response code with no body.

Tip

This call is transformed into a couple of NETCONF RPCs. Resulting
NETCONF RPCs that go directly to the device can be found in the
OpenDaylight logs after invoking log:set TRACE
org.opendaylight.controller.sal.connect.netconf in the Karaf
shell. Seeing the NETCONF RPCs might help with debugging.

This request is very similar to the one where we spawned a new netconf
device. That’s because we used the loopback netconf-connector to write
configuration data into config-subsystem datastore and config-subsystem
picked it up from there.

Invoking custom RPC

Devices can implement any additional RPC and as long as it provides YANG
models for it, it can be invoked from OpenDaylight. Following example
shows how to invoke the get-schema RPC (get-schema is quite common among
netconf devices). Invoke:

POST
http://localhost:8181/restconf/operations/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/ietf-netconf-monitoring:get-schema

<input xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <identifier>ietf-yang-types</identifier>
 <version>2013-07-15</version>
</input>

This call should fetch the source for ietf-yang-types YANG model from
the mounted device.

Netconf-connector + Netopeer

Netopeer [https://github.com/cesnet/netopeer] (an open-source
NETCONF server) can be used for testing/exploring NETCONF southbound in
OpenDaylight.

Netopeer installation

A Docker [https://www.docker.com/] container with netopeer will be
used in this guide. To install Docker and start the netopeer
image [https://index.docker.io/u/dockeruser/netopeer/] perform
following steps:

	Install docker http://docs.docker.com/linux/step_one/

	Start the netopeer image:

docker run -rm -t -p 1831:830 dockeruser/netopeer

	Verify netopeer is running by invoking (netopeer should send its
HELLO message right away:

ssh root@localhost -p 1831 -s netconf
(password root)

Mounting netopeer NETCONF server

Preconditions:

	OpenDaylight is started with features odl-restconf-all and
odl-netconf-connector-all.

	Netopeer is up and running in docker

Now just follow the chapter: Spawning
netconf-connector.
In the payload change the:

	name, e.g., to netopeer

	username/password to your system credentials

	ip to localhost

	port to 1831.

After netopeer is mounted successfully, its configuration can be read
using RESTCONF by invoking:

GET
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/netopeer/yang-ext:mount/

Northbound (NETCONF servers)

OpenDaylight provides 2 types of NETCONF servers:

	NETCONF server for config-subsystem (listening by default on port
1830)

	Serves as a default interface for config-subsystem and allows
users to spawn/reconfigure/destroy modules (or applications) in
OpenDaylight

	NETCONF server for MD-SAL (listening by default on port 2830)

	Serves as an alternative interface for MD-SAL (besides RESTCONF)
and allows users to read/write data from MD-SAL’s datastore and to
invoke its rpcs (NETCONF notifications are not available in the
Boron release of OpenDaylight)

Note

The reason for having 2 NETCONF servers is that config-subsystem and
MD-SAL are 2 different components of OpenDaylight and require
different approach for NETCONF message handling and data
translation. These 2 components will probably merge in the future.

Note

Since Nitrogen release, there is performance regression in NETCONF
servers accepting SSH connections. While opening a connection takes
less than 10 seconds on Carbon, on Nitrogen time can increase up to
60 seconds. Please see https://bugs.opendaylight.org/show_bug.cgi?id=9020

NETCONF server for config-subsystem

This NETCONF server is the primary interface for config-subsystem. It
allows the users to interact with config-subsystem in a standardized
NETCONF manner.

In terms of RFCs, these are supported:

	RFC-6241 [http://tools.ietf.org/html/rfc6241]

	RFC-5277 [https://tools.ietf.org/html/rfc5277]

	RFC-6470 [https://tools.ietf.org/html/rfc6470]

	(partially, only the schema-change notification is available in
Boron release)

	RFC-6022 [https://tools.ietf.org/html/rfc6022]

For regular users it is recommended to use RESTCONF + the
controller-config loopback mountpoint instead of using pure NETCONF. How
to do that is spesific for each component/module/application in
OpenDaylight and can be found in their dedicated user guides.

NETCONF server for MD-SAL

This NETCONF server is just a generic interface to MD-SAL in
OpenDaylight. It uses the stadard MD-SAL APIs and serves as an
alternative to RESTCONF. It is fully model driven and supports any data
and rpcs that are supported by MD-SAL.

In terms of RFCs, these are supported:

	RFC-6241 [http://tools.ietf.org/html/rfc6241]

	RFC-6022 [https://tools.ietf.org/html/rfc6022]

	draft-ietf-netconf-yang-library-06 [https://tools.ietf.org/html/draft-ietf-netconf-yang-library-06]

Notifications over NETCONF are not supported in the Boron release.

Tip

Install NETCONF northbound for MD-SAL by installing feature:
odl-netconf-mdsal in karaf. Default binding port is 2830.

Configuration

The default configuration can be found in file: 08-netconf-mdsal.xml.
The file contains the configuration for all necessary dependencies and a
single SSH endpoint starting on port 2830. There is also a (by default
disabled) TCP endpoint. It is possible to start multiple endpoints at
the same time either in the initial configuration file or while
OpenDaylight is running.

The credentials for SSH endpoint can also be configured here, the
defaults are admin/admin. Credentials in the SSH endpoint are not yet
managed by the centralized AAA component and have to be configured
separately.

Verifying MD-SAL’s NETCONF server

After the NETCONF server is available it can be examined by a command
line ssh tool:

ssh admin@localhost -p 2830 -s netconf

The server will respond by sending its HELLO message and can be used as
a regular NETCONF server from then on.

Mounting the MD-SAL’s NETCONF server

To perform this operation, just spawn a new netconf-connector as
described in Spawning
netconf-connector.
Just change the ip to “127.0.0.1” port to “2830” and its name to
“controller-mdsal”.

Now the MD-SAL’s datastore can be read over RESTCONF via NETCONF by
invoking:

GET
http://localhost:8181/restconf/operational/network-topology:network-topology/topology/topology-netconf/node/controller-mdsal/yang-ext:mount

Note

This might not seem very useful, since MD-SAL can be accessed
directly from RESTCONF or from Application code, but the same method
can be used to mount and control other OpenDaylight instances by the
“master OpenDaylight”.

NETCONF testtool

NETCONF testtool is a set of standalone runnable jars that can:

	Simulate NETCONF devices (suitable for scale testing)

	Stress/Performance test NETCONF devices

	Stress/Performance test RESTCONF devices

These jars are part of OpenDaylight’s controller project and are built
from the NETCONF codebase in OpenDaylight.

Tip

Download testtool from OpenDaylight Nexus at:
https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/netconf/netconf-testtool/1.1.0-Boron/

Nexus contains 3 executable tools:

	executable.jar - device simulator

	stress.client.tar.gz - NETCONF stress/performance measuring tool

	perf-client.jar - RESTCONF stress/performance measuring tool

Tip

Each executable tool provides help. Just invoke java -jar
<name-of-the-tool.jar> --help

NETCONF device simulator

NETCONF testtool (or NETCONF device simulator) is a tool that

	Simulates 1 or more NETCONF devices

	Is suitable for scale, performance or crud testing

	Uses core implementation of NETCONF server from OpenDaylight

	Generates configuration files for controller so that the OpenDaylight
distribution (Karaf) can easily connect to all simulated devices

	Provides broad configuration options

	Can start a fully fledged MD-SAL datastore

	Supports notifications

Building testtool

	Check out latest NETCONF repository from
git [https://git.opendaylight.org/gerrit/#/admin/projects/netconf]

	Move into the opendaylight/netconf/tools/netconf-testtool/ folder

	Build testtool using the mvn clean install command

Downloading testtool

Netconf-testtool is now part of default maven build profile for
controller and can be also downloaded from nexus. The executable jar for
testtool can be found at:
nexus-artifacts [https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/netconf/netconf-testtool/1.1.0-Boron/]

Running testtool

	After successfully building or downloading, move into the
opendaylight/netconf/tools/netconf-testtool/target/ folder and
there is file netconf-testtool-1.1.0-SNAPSHOT-executable.jar (or
if downloaded from nexus just take that jar file)

	Execute this file using, e.g.:

java -jar netconf-testtool-1.1.0-SNAPSHOT-executable.jar

This execution runs the testtool with default for all parameters and
you should see this log output from the testtool :

10:31:08.206 [main] INFO o.o.c.n.t.t.NetconfDeviceSimulator - Starting 1, SSH simulated devices starting on port 17830
10:31:08.675 [main] INFO o.o.c.n.t.t.NetconfDeviceSimulator - All simulated devices started successfully from port 17830 to 17830

Default Parameters

The default parameters for testtool are:

	Use SSH

	Run 1 simulated device

	Device port is 17830

	YANG modules used by device are only: ietf-netconf-monitoring,
ietf-yang-types, ietf-inet-types (these modules are required for
device in order to support NETCONF monitoring and are included in the
netconf-testtool)

	Connection timeout is set to 30 minutes (quite high, but when testing
with 10000 devices it might take some time for all of them to fully
establish a connection)

	Debug level is set to false

	No distribution is modified to connect automatically to the NETCONF
testtool

Verifying testtool

To verify that the simulated device is up and running, we can try to
connect to it using command line ssh tool. Execute this command to
connect to the device:

ssh admin@localhost -p 17830 -s netconf

Just accept the server with yes (if required) and provide any password
(testtool accepts all users with all passwords). You should see the
hello message sent by simulated device.

Testtool help

usage: netconf testool [-h] [--device-count DEVICES-COUNT] [--devices-per-port DEVICES-PER-PORT] [--schemas-dir SCHEMAS-DIR] [--notification-file NOTIFICATION-FILE]
 [--initial-config-xml-file INITIAL-CONFIG-XML-FILE] [--starting-port STARTING-PORT] [--generate-config-connection-timeout GENERATE-CONFIG-CONNECTION-TIMEOUT]
 [--generate-config-address GENERATE-CONFIG-ADDRESS] [--generate-configs-batch-size GENERATE-CONFIGS-BATCH-SIZE] [--distribution-folder DISTRO-FOLDER] [--ssh SSH] [--exi EXI]
 [--debug DEBUG] [--md-sal MD-SAL]

NETCONF device simulator. Detailed info can be found at https://wiki.opendaylight.org/view/OpenDaylight_Controller:Netconf:Testtool#Building_testtool

optional arguments:
 -h, --help show this help message and exit
 --device-count DEVICES-COUNT
 Number of simulated netconf devices to spin. This is the number of actual ports open for the devices.
 --devices-per-port DEVICES-PER-PORT
 Amount of config files generated per port to spoof more devices then are actually running
 --schemas-dir SCHEMAS-DIR
 Directory containing yang schemas to describe simulated devices. Some schemas e.g. netconf monitoring and inet types are included by default
 --notification-file NOTIFICATION-FILE
 Xml file containing notifications that should be sent to clients after create subscription is called
 --initial-config-xml-file INITIAL-CONFIG-XML-FILE
 Xml file containing initial simulatted configuration to be returned via get-config rpc
 --starting-port STARTING-PORT
 First port for simulated device. Each other device will have previous+1 port number
 --generate-config-connection-timeout GENERATE-CONFIG-CONNECTION-TIMEOUT
 Timeout to be generated in initial config files
 --generate-config-address GENERATE-CONFIG-ADDRESS
 Address to be placed in generated configs
 --generate-configs-batch-size GENERATE-CONFIGS-BATCH-SIZE
 Number of connector configs per generated file
 --distribution-folder DISTRO-FOLDER
 Directory where the karaf distribution for controller is located
 --ssh SSH Whether to use ssh for transport or just pure tcp
 --exi EXI Whether to use exi to transport xml content
 --debug DEBUG Whether to use debug log level instead of INFO
 --md-sal MD-SAL Whether to use md-sal datastore instead of default simulated datastore.

Supported operations

Testtool default simple datastore supported operations:

	get-schema

	returns YANG schemas loaded from user specified directory,

	edit-config

	always returns OK and stores the XML from the input in a local
variable available for get-config and get RPC. Every edit-config
replaces the previous data,

	commit

	always returns OK, but does not actually commit the data,

	get-config

	returns local XML stored by edit-config,

	get

	returns local XML stored by edit-config with netconf-state subtree,
but also supports filtering.

	(un)lock

	returns always OK with no lock guarantee

	create-subscription

	returns always OK and after the operation is triggered, provided
NETCONF notifications (if any) are fed to the client. No filtering
or stream recognition is supported.

Note: when operation=”delete” is present in the payload for edit-config,
it will wipe its local store to simulate the removal of data.

When using the MD-SAL datastore testtool behaves more like normal
NETCONF server and is suitable for crud testing. create-subscription is
not supported when testtool is running with the MD-SAL datastore.

Notification support

Testtool supports notifications via the –notification-file switch. To
trigger the notification feed, create-subscription operation has to be
invoked. The XML file provided should look like this example file:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>
<notifications>

<!-- Notifications are processed in the order they are defined in XML -->

<!-- Notification that is sent only once right after create-subscription is called -->
<notification>
 <!-- Content of each notification entry must contain the entire notification with event time. Event time can be hardcoded, or generated by testtool if XXXX is set as eventtime in this XML -->
 <content><![CDATA[
 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2011-01-04T12:30:46</eventTime>
 <random-notification xmlns="http://www.opendaylight.org/netconf/event:1.0">
 <random-content>single no delay</random-content>
 </random-notification>
 </notification>
]]></content>
</notification>

<!-- Repeated Notification that is sent 5 times with 2 second delay inbetween -->
<notification>
 <!-- Delay in seconds from previous notification -->
 <delay>2</delay>
 <!-- Number of times this notification should be repeated -->
 <times>5</times>
 <content><![CDATA[
 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>XXXX</eventTime>
 <random-notification xmlns="http://www.opendaylight.org/netconf/event:1.0">
 <random-content>scheduled 5 times 10 seconds each</random-content>
 </random-notification>
 </notification>
]]></content>
</notification>

<!-- Single notification that is sent only once right after the previous notification -->
<notification>
 <delay>2</delay>
 <content><![CDATA[
 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>XXXX</eventTime>
 <random-notification xmlns="http://www.opendaylight.org/netconf/event:1.0">
 <random-content>single with delay</random-content>
 </random-notification>
 </notification>
]]></content>
</notification>

</notifications>

Connecting testtool with controller Karaf distribution

Auto connect to OpenDaylight

It is possible to make OpenDaylight auto connect to the simulated
devices spawned by testtool (so user does not have to post a
configuration for every NETCONF connector via RESTCONF). The testtool is
able to modify the OpenDaylight distribution to auto connect to the
simulated devices after feature odl-netconf-connector-all is
installed. When running testtool, issue this command (just point the
testool to the distribution:

java -jar netconf-testtool-1.1.0-SNAPSHOT-executable.jar --device-count 10 --distribution-folder ~/distribution-karaf-0.4.0-SNAPSHOT/ --debug true

With the distribution-folder parameter, the testtool will modify the
distribution to include configuration for netconf-connector to connect
to all simulated devices. So there is no need to spawn
netconf-connectors via RESTCONF.

Running testtool and OpenDaylight on different machines

The testtool binds by default to 0.0.0.0 so it should be accessible from
remote machines. However you need to set the parameter
“generate-config-address” (when using autoconnect) to the address of
machine where testtool will be run so OpenDaylight can connect. The
default value is localhost.

Executing operations via RESTCONF on a mounted simulated device

Simulated devices support basic RPCs for editing their config. This part
shows how to edit data for simulated device via RESTCONF.

Test YANG schema

The controller and RESTCONF assume that the data that can be manipulated
for mounted device is described by a YANG schema. For demonstration, we
will define a simple YANG model:

module test {
 yang-version 1;
 namespace "urn:opendaylight:test";
 prefix "tt";

 revision "2014-10-17";

 container cont {

 leaf l {
 type string;
 }
 }
}

Save this schema in file called test@2014-10-17.yang and store it a
directory called test-schemas/, e.g., your home folder.

Editing data for simulated device

	Start the device with following command:

java -jar netconf-testtool-1.1.0-SNAPSHOT-executable.jar --device-count 10 --distribution-folder ~/distribution-karaf-0.4.0-SNAPSHOT/ --debug true --schemas-dir ~/test-schemas/

	Start OpenDaylight

	Install odl-netconf-connector-all feature

	Install odl-restconf feature

	Check that you can see config data for simulated device by executing
GET request to

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/17830-sim-device/yang-ext:mount/

	The data should be just and empty data container

	Now execute edit-config request by executing a POST request to:

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/17830-sim-device/yang-ext:mount

with headers:

Accept application/xml
Content-Type application/xml

and payload:

<cont xmlns="urn:opendaylight:test">
 <l>Content</l>
</cont>

	Check that you can see modified config data for simulated device by
executing GET request to

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/17830-sim-device/yang-ext:mount/

	Check that you can see the same modified data in operational for
simulated device by executing GET request to

http://localhost:8181/restconf/operational/network-topology:network-topology/topology/topology-netconf/node/17830-sim-device/yang-ext:mount/

Warning

Data will be mirrored in operational datastore only when using the
default simple datastore.

Known problems

Slow creation of devices on virtual machines

When testtool seems to take unusually long time to create the devices
use this flag when running it:

-Dorg.apache.sshd.registerBouncyCastle=false

Too many files open

When testtool or OpenDaylight starts to fail with TooManyFilesOpen
exception, you need to increase the limit of open files in your OS. To
find out the limit in linux execute:

ulimit -a

Example sufficient configuration in linux:

core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 63338
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 500000
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 63338
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

To set these limits edit file: /etc/security/limits.conf, for example:

* hard nofile 500000
* soft nofile 500000
root hard nofile 500000
root soft nofile 500000

“Killed”

The testtool might end unexpectedly with a simple message: “Killed”.
This means that the OS killed the tool due to too much memory consumed
or too many threads spawned. To find out the reason on linux you can use
following command:

dmesg | egrep -i -B100 'killed process'

Also take a look at this file: /proc/sys/kernel/threads-max. It limits
the number of threads spawned by a process. Sufficient (but probably
much more than enough) value is, e.g., 126676

NETCONF stress/performance measuring tool

This is basically a NETCONF client that puts NETCONF servers under heavy
load of NETCONF RPCs and measures the time until a configurable amount
of them is processed.

RESTCONF stress-performance measuring tool

Very similar to NETCONF stress tool with the difference of using
RESTCONF protocol instead of NETCONF.

YANGLIB remote repository

There are scenarios in NETCONF deployment, that require for a centralized
YANG models repository. YANGLIB plugin provides such remote repository.

To start this plugin, you have to install odl-yanglib feature. Then you
have to configure YANGLIB either through RESTCONF or NETCONF. We will
show how to configure YANGLIB through RESTCONF.

YANGLIB configuration through RESTCONF

You have to specify what local YANG modules directory you want to provide.
Then you have to specify address and port whre you want to provide YANG
sources. For example, we want to serve yang sources from folder /sources
on localhost:5000 adress. The configuration for this scenario will be
as follows:

PUT http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/yanglib:yanglib/example

Headers:

	Accept: application/xml

	Content-Type: application/xml

Payload:

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <name>example</name>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">prefix:yanglib</type>
 <broker xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </broker>
 <cache-folder xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">/sources</cache-folder>
 <binding-addr xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">localhost</binding-addr>
 <binding-port xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">5000</binding-port>
</module>

This should result in a 2xx response and new YANGLIB instance should be
created. This YANGLIB takes all YANG sources from /sources folder and
for each generates URL in form:

http://localhost:5000/schemas/{modelName}/{revision}

On this URL will be hosted YANG source for particular module.

YANGLIB instance also write this URL along with source identifier to
ietf-netconf-yang-library/modules-state/module list.

Netconf-connector with YANG library as fallback

There is an optional configuration in netconf-connector called
yang-library. You can specify YANG library to be plugged as additional
source provider into the mount’s schema repository. Since YANGLIB
plugin is advertising provided modules through yang-library model, we
can use it in mount point’s configuration as YANG library. To do this,
we need to modify the configuration of netconf-connector by adding this
XML

<yang-library xmlns="urn:opendaylight:netconf-node-topology">
 <yang-library-url xmlns="urn:opendaylight:netconf-node-topology">http://localhost:8181/restconf/operational/ietf-yang-library:modules-state</yang-library-url>
 <username xmlns="urn:opendaylight:netconf-node-topology">admin</username>
 <password xmlns="urn:opendaylight:netconf-node-topology">admin</password>
</yang-library>

This will register YANGLIB provided sources as a fallback schemas for
particular mount point.

NETCONF Call Home

Important

The call home feature is experimental and will change in a future
release. In particular, the Yang models will change to those specified
in the RFC 8071 [https://tools.ietf.org/html/rfc8071]

Call Home Installation

ODL Call-Home server is installed in Karaf by installing karaf feature
odl-netconf-callhome-ssh. RESTCONF feature is recommended for
configuring Call Home & testing its functionality.

feature:install odl-netconf-callhome-ssh

Note

In order to test Call Home functionality we recommend Netopeer.
See Netopeer Call Home [https://github.com/CESNET/netopeer/wiki/CallHome] to learn how to enable call-home on Netopeer.

Northbound Call-Home API

The northbound Call Home API is used for administering the Call-Home Server. The
following describes this configuration.

Global Configuration

Configuring global credentials

ODL Call-Home server allows user to configure global credentials, which
will be used for devices which does not have device-specific credentials
configured.

This is done by creating
/odl-netconf-callhome-server:netconf-callhome-server/global/credentials
with username and passwords specified.

Configuring global username & passwords to try

PUT
/restconf/config/odl-netconf-callhome-server:netconf-callhome-server/global/credentials HTTP/1.1
Content-Type: application/json
Accept: application/json

{
 "credentials":
 {
 "username": "example",
 "passwords": ["first-password-to-try", "second-password-to-try"]
 }
}

Configuring to accept any ssh server key using global credentials

By default Netconf Call-Home Server accepts only incoming connections
from allowed devices
/odl-netconf-callhome-server:netconf-callhome-server/allowed-devices,
if user desire to allow all incoming connections, it is possible to set
accept-all-ssh-keys to true in
/odl-netconf-callhome-server:netconf-callhome-server/global.

The name of this devices in netconf-topology will be in format
ip-address:port. For naming devices see Device-Specific
Configuration.

Allowing unknown devices to connect

This is a debug feature and should not be used in production. Besides being an obvious
security issue, this also causes the Call-Home Server to drastically increase its output
to the log.

POST
/restconf/config/odl-netconf-callhome-server:netconf-callhome-server/global HTTP/1.1
Content-Type: application/json
Accept: application/json

{
 "global": {
 "accept-all-ssh-keys": "true"
 }
}

Device-Specific Configuration

Allowing Device & Configuring Name

Netconf Call Home Server uses device provided SSH server key (host key)
to identify device. The pairing of name and server key is configured in
/odl-netconf-callhome-server:netconf-callhome-server/allowed-devices.
This list is colloquially called a whitelist.

If the Call-Home Server finds the SSH host key in the whitelist, it continues
to negotiate a NETCONF connection over an SSH session. If the SSH host key is
not found, the connection between the Call Home server and the device is dropped
immediately. In either case, the device that connects to the Call home server
leaves a record of its presence in the operational store.

Example of configuring device

PUT
/restconf/config/odl-netconf-callhome-server:netconf-callhome-server/allowed-devices/device/example HTTP/1.1
Content-Type: application/json
Accept: application/json

{
 "device": {
 "unique-id": "example",
 "ssh-host-key": "AAAAB3NzaC1yc2EAAAADAQABAAABAQDHoH1jMjltOJnCt999uaSfc48ySutaD3ISJ9fSECe1Spdq9o9mxj0kBTTTq+2V8hPspuW75DNgN+V/rgJeoUewWwCAasRx9X4eTcRrJrwOQKzb5Fk+UKgQmenZ5uhLAefi2qXX/agFCtZi99vw+jHXZStfHm9TZCAf2zi+HIBzoVksSNJD0VvPo66EAvLn5qKWQD4AdpQQbKqXRf5/W8diPySbYdvOP2/7HFhDukW8yV/7ZtcywFUIu3gdXsrzwMnTqnATSLPPuckoi0V2jd8dQvEcu1DY+rRqmqu0tEkFBurlRZDf1yhNzq5xWY3OXcjgDGN+RxwuWQK3cRimcosH"
 }
}

Configuring Device with Device-specific Credentials

Call Home Server also allows to configure credentials per device basis,
this is done by introducing credentials container into
device-specific configuration. Format is same as in global credentials.

Configuring Device with Credentials

PUT
/restconf/config/odl-netconf-callhome-server:netconf-callhome-server/allowed-devices/device/example HTTP/1.1
Content-Type: application/json
Accept: application/json

{
 "device": {
 "unique-id": "example",
 "credentials": {
 "username": "example",
 "passwords": ["password"]
 },
 "ssh-host-key": "AAAAB3NzaC1yc2EAAAADAQABAAABAQDHoH1jMjltOJnCt999uaSfc48ySutaD3ISJ9fSECe1Spdq9o9mxj0kBTTTq+2V8hPspuW75DNgN+V/rgJeoUewWwCAasRx9X4eTcRrJrwOQKzb5Fk+UKgQmenZ5uhLAefi2qXX/agFCtZi99vw+jHXZStfHm9TZCAf2zi+HIBzoVksSNJD0VvPo66EAvLn5qKWQD4AdpQQbKqXRf5/W8diPySbYdvOP2/7HFhDukW8yV/7ZtcywFUIu3gdXsrzwMnTqnATSLPPuckoi0V2jd8dQvEcu1DY+rRqmqu0tEkFBurlRZDf1yhNzq5xWY3OXcjgDGN+RxwuWQK3cRimcosH"
 }
}

Operational Status

Once an entry is made into the config side of “allowed-devices”, the Call-Home Server will
populate an corresponding operational device that is the same as the config device but
has an additional status. By default, this status is DISCONNECTED. Once a device calls
home, this status will change to one of:

CONNECTED — The device is currently connected and the NETCONF mount is available for network
management.

FAILED_AUTH_FAILURE — The last attempted connection was unsuccessful because the Call-Home
Server was unable to provide the acceptable credentials of the device. The device is also
disconnected and not available for network management.

FAILED_NOT_ALLOWED — The last attempted connection was unsuccessful because the device was
not recognized as an acceptable device. The device is also disconnected and not available for
network management.

FAILED — The last attempted connection was unsuccessful for a reason other than not
allowed to connect or incorrect client credentials. The device is also disconnected and not
available for network management.

DISCONNECTED — The device is currently disconnected.

Rogue Devices

Devices which are not on the whitelist might try to connect to the Call-Home Server. In
these cases, the server will keep a record by instantiating an operational device. There
will be no corresponding config device for these rogues. They can be identified readily
because their device id, rather than being user-supplied, will be of the form
“address:port”. Note that if a device calls back multiple times, there will only be
a single operatinal entry (even if the port changes); these devices are recognized by
their unique host key.

Southbound Call-Home API

The Call-Home Server listens for incoming TCP connections and assumes that the other side of
the connection is a device calling home via a NETCONF connection with SSH for
management. The server uses port 6666 by default and this can be configured via a
blueprint configuration file.

The device must initiate the connection and the server will not try to re-establish the
connection in case of a drop. By requirement, the server cannot assume it has connectivity
to the device due to NAT or firewalls among others.

NetIDE User Guide

Overview

OpenDaylight’s NetIDE project allows users to run SDN applications
written for different SDN controllers, e.g., Floodlight or Ryu, on top
of OpenDaylight managed infrastructure. The NetIDE Network Engine
integrates a client controller layer that executes the modules that
compose a Network Application and interfaces with a server SDN
controller layer that drives the underlying infrastructure. In addition,
it provides a uniform interface to common tools that are intended to
allow the inspection/debug of the control channel and the management of
the network resources.

The Network Engine provides a compatibility layer capable of translating
calls of the network applications running on top of the client
controllers, into calls for the server controller framework. The
communication between the client and the server layers is achieved
through the NetIDE intermediate protocol, which is an application-layer
protocol on top of TCP that transmits the network control/management
messages from the client to the server controller and vice-versa.
Between client and server controller sits the Core Layer which also
speaks the intermediate protocol.

NetIDE API

Architecture and Design

The NetIDE engine follows the ONF’s proposed Client/Server SDN
Application architecture.

[image: NetIDE Network Engine Architecture]
NetIDE Network Engine Architecture

Core

The NetIDE Core is a message-based system that allows for the exchange
of messages between OpenDaylight and subscribed Client SDN Controllers

Handling reply messages correctly

When an application module sends a request to the network (e.g. flow
statistics, features, etc.), the Network Engine must be able to
correctly drive the corresponding reply to such a module. This is not a
trivial task, as many modules may compose the network application
running on top of the Network Engine, and there is no way for the Core
to pair replies and requests. The transaction IDs (xid) in the OpenFlow
header are unusable in this case, as it may happen that different
modules use the same values.

In the proposed approach, represented in the figure below, the task of
pairing replies with requests is performed by the Shim Layer which
replaces the original xid of the OpenFlow requests coming from the core
with new unique xid values. The Shim also saves the original OpenFlow
xid value and the module id it finds in the NetIDE header. As the
network elements must use the same xid values in the replies, the Shim
layer can easily pair a reply with the correct request as it is using
unique xid values.

The below figure shows how the Network Engine should handle the
controller-to-switch OpenFlow messages. The diagram shows the case of a
request message sent by an application module to a network element where
the Backend inserts the module id of the module in the NetIDE header (X
in the Figure). For other messages generated by the client controller
platform (e.g. echo requests) or by the Backend, the module id of the
Backend is used (Y in the Figure).

[image: NetIDE Communication Flow]
NetIDE Communication Flow

Configuration

Below are the configuration items which can be edited, including their
default values.

	core-address: This is the ip address of the NetIDE Core, default is
127.0.0.1

	core-port: The port of on which the NetIDE core is listening on

	address: IP address where the controller listens for switch
connections, default is 127.0.0.1

	port: Port where controller listens for switch connections, default:
6644

	transport-protocol: default is TCP

	switch-idle-timeout: default is 15000ms

NetVirt User Guide

	NetVirt Design Specifications
	Design Specification Template

	ACLs - ACL Statistics

	ACLs - Remote ACL - Indirection Table to Improve Scale

	ACLs - ACL reflection on existing traffic

	Conntrack Based SNAT

	Cross site connectivity with Federation service

	DHCP Server with Dynamic Allocation Pool

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	ECMP Support for BGP based L3VPN

	Element Counters

	Hairpinning of floating IPs in flat/VLAN provider networks

	IPv6 Data Center to internet connectivity using L3VPN

	IPv6 Inter Data Center connectivity using L3VPN

	IPv6 L3 North-South support for Flat/VLAN based Provider Networks

	L3VPN Dual Stack for VMs

	Listener Dependency Helper, avoids waiting for dependent IID

	Migrate the SFC classifier from the old to the new netvirt

	Netvirt counters

	Policy based path selection for multiple VxLAN tunnels

	QoS Alert

	Quality of Service

	Setup Source-MAC-Address for routed packets to virtual endpoints

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Support of VXLAN based L2 connectivity across Datacenters

	Support of VXLAN based connectivity across Datacenters

	Temporary SMAC Learning

	VLAN provider network enhancement

	VNI based L2 switching, L3 forwarding and NATing

	Neutron Port Allocation For DHCP Service

	L3VPN Service: User Guide
	Overview

	Modules & Interfaces

	Provisioning Sequence & Sample Configurations

	Support
	Verified Combinations

	Open vSwitch Kernel and DPDK Modes

	Bridge Configuration
	The “br-int” Bridge

	Provider Networks

NetVirt Design Specifications

Starting from Carbon, NetVirt uses an RST format Design Specification document
for all new features. These specifications are a perfect way to understand
various NetVirt features.

Contents:

	Design Specification Template

	ACLs - ACL Statistics

	ACLs - Remote ACL - Indirection Table to Improve Scale

	ACLs - ACL reflection on existing traffic

	Conntrack Based SNAT

	Cross site connectivity with Federation service

	DHCP Server with Dynamic Allocation Pool

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	ECMP Support for BGP based L3VPN

	Element Counters

	Hairpinning of floating IPs in flat/VLAN provider networks

	IPv6 Data Center to internet connectivity using L3VPN

	IPv6 Inter Data Center connectivity using L3VPN

	IPv6 L3 North-South support for Flat/VLAN based Provider Networks

	L3VPN Dual Stack for VMs

	Listener Dependency Helper, avoids waiting for dependent IID

	Migrate the SFC classifier from the old to the new netvirt

	Netvirt counters

	Policy based path selection for multiple VxLAN tunnels

	QoS Alert

	Quality of Service

	Setup Source-MAC-Address for routed packets to virtual endpoints

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Support of VXLAN based L2 connectivity across Datacenters

	Support of VXLAN based connectivity across Datacenters

	Temporary SMAC Learning

	VLAN provider network enhancement

	VNI based L2 switching, L3 forwarding and NATing

	Neutron Port Allocation For DHCP Service

Table of Contents

	Title of the feature

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Title of the feature

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:cool-topic]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

example.yang

 module example {
 namespace "urn:opendaylight:netvirt:example";
 prefix "example";

 import ietf-yang-types {prefix yang; revision-date "2013-07-15";}

 description "An example YANG model.";

 revision 2017-02-14 { description "Initial revision"; }
 }

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

e.g. For most netvirt features this will include OpenStack APIs.

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-netvirt-openstack

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assignee and other contributors.

	Primary assignee:

	<developer-a>, <irc nick>, <email>

	Other contributors:

	<developer-b>, <irc nick>, <email>
<developer-c>, <irc nick>, <email>

Work Items

Break up work into individual items. This should be a checklist on a
Trello card for this feature. Provide the link to the trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc]. This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing projects that depend on Netvirt.

	Following projects currently depend on Netvirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is the impact on documentation for this change? If documentation
changes are needed call out one of the <contributors> who will work with
the Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	ACL Statistics

	Problem description

	Use Cases

	Proposed change

	ACL Changes

	Drop packets statistics support

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL Statistics

https://git.opendaylight.org/gerrit/#/q/topic:acl-stats

This feature is to provide additional operational support for ACL through statistical counters.
ACL rules provide security to VMs by filtering packets in either directions (ingress/egress).
Using OpenFlow statistical counters, ODL will provide additional information on the number of
packets dropped by the ACL rules. This information is made available to the operator “on demand”.

Drop statistics will be provided for below cases:

	Packets dropped due to ACL rules

	Packets dropped due to INVALID state. The INVALID state means that the packet can’t be identified
or that it does not have any state. This may be due to several reasons, such as the system
running out of memory or ICMP error messages that do not respond to any known connections.

The packet drop information provided through the statistical counters enable operators to
trouble shoot any misbehavior and take appropriate actions through automated or manual
intervention.

Collection and retrieval of information on the number of packets dropped by the SG rules

	Done for all (VM) ports in which SG is configured

	Flow statistical counters (in OpenFlow) are used for this purpose

	The information in these counters are made available to the operator, on demand, through an API

This feature will only be supported with Stateful ACL mode.

Problem description

With only ACL support, operators would not be able to tell how many packets dropped by ACL rules.
This enhancement planned is about ACL module supporting aforementioned limitation.

Use Cases

Collection and retrieval of information on the number of packets dropped by the ACL rules

	Done for all (VM) ports in which ACL is configured

	The information in these counters are made available to the operator, on demand, through an API

	Service Orchestrator/operator can also specify ports selectively where ACL rules are configured

Proposed change

ACL Changes

Current Stateful ACL implementation has drop flows for all ports combined for a device. This needs
to be modified to have drop flows for each of the OF ports connected to VMs (Neutron Ports).

With the current implementation, drop flows are as below:

cookie=0x6900000, duration=938.964s, table=252, n_packets=0, n_bytes=0, priority=62020,
 ct_state=+inv+trk actions=drop

cookie=0x6900000, duration=938.969s, table=252, n_packets=0, n_bytes=0, priority=50,
 ct_state=+new+trk actions=drop

Now, for supporting Drop packets statistics per port, ACL will be updated to replace above
flows with new DROP flows with lport tag as metadata for each of the VM (Neutron port) being
added to OVS as specified below:

cookie=0x6900001, duration=938.964s, table=252, n_packets=0, n_bytes=0, priority=62015,
 metadata=0x10000000000/0xffffff0000000000, ct_state=+inv+trk actions=drop

cookie=0x6900001, duration=938.969s, table=252, n_packets=0, n_bytes=0, priority=50,
 metadata=0x10000000000/0xffffff0000000000, ct_state=+new+trk actions=drop

Drop flows details explained above are for pipeline egress direction. For ingress side,
similar drop flows would be added with table=41.

Also, new cookie value 0x6900001 would be added with drop flows to identify it uniquely and
priority 62015 would be used with +inv+trk flows to give higher priority for +est and +rel
flows.

Drop packets statistics support

ODL Controller will be updated to provide a new RPC/NB REST API <get-acl-port-statistics> in
ACL module with ACL Flow Stats Request and ACL Flow Stats Response messages. This RPC/API
will retrieve details of dropped packets by Security Group rules for all the neutron ports
specified as part of ACL Flow Stats Request. The retrieved information (instantaneous) received
in the OF reply message is formatted as ACL Flow Stats Response message before sending it as a
response towards the NB.

<get-acl-port-statistics> RPC/API implementation would be triggering
opendaylight-direct-statistics:get-flow-statistics request of OFPlugin towards OVS to get the
flow statistics of ACL tables (ingress / egress) for the required ports.

ACL Flow Stats Request/Response messages are explained in subsequent sections.

Pipeline changes

No changes needed in OF pipeline. But, new flows as specified in above section would be added for
each of the Neutron ports being added.

Yang changes

New yang file will be created with RPC as specified below:

acl-live-statistics.yang

 module acl-live-statistics {
 namespace "urn:opendaylight:netvirt:acl:live:statistics";

 prefix "acl-stats";

 import ietf-interfaces {prefix if;}
 import aclservice {prefix aclservice; revision-date "2016-06-08";}

 description "YANG model describes RPC to retrieve ACL live statistics.";

 revision "2016-11-29" {
 description "Initial revision of ACL live statistics";
 }

 typedef direction {
 type enumeration {
 enum ingress;
 enum egress;
 enum both;
 }
 }

 grouping acl-drop-counts {
 leaf drop-count {
 description "Packets/Bytes dropped by ACL rules";
 type uint64;
 }
 leaf invalid-drop-count {
 description "Packets/Bytes identified as invalid";
 type uint64;
 }
 }

 grouping acl-stats-output {
 description "Output for ACL port statistics";
 list acl-interface-stats {
 key "interface-name";
 leaf interface-name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 list acl-drop-stats {
 max-elements "2";
 min-elements "0";
 leaf direction {
 type identityref {
 base "aclservice:direction-base";
 }
 }
 container packets {
 uses acl-drop-counts;
 }
 container bytes {
 uses acl-drop-counts;
 }
 }
 container error {
 leaf error-message {
 type string;
 }
 }
 }
 }

 grouping acl-stats-input {
 description "Input parameters for ACL port statistics";

 leaf direction {
 type identityref {
 base "aclservice:direction-base";
 }
 mandatory "true";
 }
 leaf-list interface-names {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 max-elements "unbounded";
 min-elements "1";
 }
 }

 rpc get-acl-port-statistics {
 description "Get ACL statistics for given list of ports";

 input {
 uses acl-stats-input;
 }
 output {
 uses acl-stats-output;
 }
 }
 }

Configuration impact

No configuration parameters being added/deprecated for this feature

Clustering considerations

No additional changes required to be done as only one RPC is being supported as part of
this feature.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

N.A.

Targeted Release

Carbon

Alternatives

Dispatcher table (table 17 and table 220) based approach of querying drop packets count was
considered. ie., arriving drop packets count by below rule:

<total packets entered ACL tables> - <total packets entered subsequent service>

This approach was not selected as this only provides total packets dropped count per port by ACL
services and does not provide details of whether it’s dropped by ACL rules or for some other
reasons.

Usage

Features to Install

odl-netvirt-openstack

REST API

Get ACL statistics

Following API gets ACL statistics for given list of ports.

Method: POST

URI: /operations/acl-live-statistics:get-acl-port-statistics

Parameters:

	Parameter

	Type

	Possible Values

	Comments

	“direction”

	Enum

	ingress/egress/both

	Required

	“interface-names”

	Array [UUID String]

	[<UUID String>,<UUID String>,..]

	Required (1,N)

Example:

{
 "input":
 {
 "direction": "both",
 "interface-names": [
 "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "6c53df3a-3456-11e5-a151-feff819cdc9f"
]
 }
}

Possible Responses:

RPC Success:

{
 "output": {
 "acl-port-stats": [
 {
 "interface-name": "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "0",
 "drop-count": "300"
 },
 "packets": {
 "invalid-drop-count": "0",
 "drop-count": "4"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "168",
 "drop-count": "378"
 },
 "packets": {
 "invalid-drop-count": "2",
 "drop-count": "9"
 }
 }]
 },
 {
 "interface-name": "6c53df3a-3456-11e5-a151-feff819cdc9f",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "1064",
 "drop-count": "1992"
 },
 "packets": {
 "invalid-drop-count": "18",
 "drop-count": "23"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "462",
 "drop-count": "476"
 },
 "packets": {
 "invalid-drop-count": "11",
 "drop-count": "6"
 }
 }]
 }]
}

RPC Success (with error for one of the interface):

{
 "output":
 {
 "acl-port-stats": [
 {
 "interface-name": "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "0",
 "drop-count": "300"
 },
 "packets": {
 "invalid-drop-count": "0",
 "drop-count": "4"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "168",
 "drop-count": "378"
 },
 "packets": {
 "invalid-drop-count": "2",
 "drop-count": "9"
 }
 },
 {
 "interface-name": "6c53df3a-3456-11e5-a151-feff819cdc9f",
 "error": {
 "error-message": "Interface not found in datastore."
 }
 }]
 }]
 }
}

Note

Below are error messages for the interface:

	“Interface not found in datastore.”

	“Failed to find device for the interface.”

	“Unable to retrieve drop counts due to error: <<error message>>”

	“Unable to retrieve drop counts as interface is not configured for statistics collection.”

	“Operation not supported for ACL <<Stateless/Transparent/Learn>> mode”

CLI

No CLI being added for this feature

Implementation

Assignee(s)

	Primary assignee:

	<Somashekar Byrappa>

	Other contributors:

	<Shashidhar R>

Work Items

	Adding new drop rules per port (in table 41 and 252)

	Yang changes

	Supporting new RPC

Dependencies

This doesn’t add any new dependencies.

This feature has dependency on below bug reported in OF Plugin:

Bug 7232 - Problem observed with “get-flow-statistics” RPC call [https://bugs.opendaylight.org/show_bug.cgi?id=7232]

Testing

Unit Tests

Following test cases will need to be added/expanded

	Verify ACL STAT RPC with single Neutron port

	Verify ACL STAT RPC with multiple Neutron ports

	Verify ACL STAT RPC with invalid Neutron port

	Verify ACL STAT RPC with mode set to “transparent/learn/stateless”

Also, existing unit tests will be updated to include new drop flows.

Integration Tests

Integration tests will be added, once IT framework is ready

CSIT

Following test cases will need to be added/expanded

	Verify ACL STAT RPC with single Neutron port with different directions (ingress, egress, both)

	Verify ACL STAT RPC with multiple Neutron ports with different
directions (ingress, egress, both)

	Verify ACL STAT RPC with invalid Neutron port

	Verify ACL STAT RPC with combination of valid and invalid Neutron ports

	Verify ACL STAT RPC with combination of Neutron ports with few having port-security-enabled as
true and others having false

Documentation Impact

This will require changes to User Guide. User Guide needs to be updated with details about new RPC
being supported and also about its REST usage.

References

N.A.

Note

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	ACL Remote ACL - Indirection Table to Improve Scale

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL Remote ACL - Indirection Table to Improve Scale

ACL Remote ACL Indirection patches:
https://git.opendaylight.org/gerrit/#/q/topic:remote_acl_indirection

This spec is to enhance the initial implementation of ACL remote ACLs filtering which was released
in Boron. The Boron release added full support for remote ACLs, however the current implementation
does not scale well in terms of flows. The Carbon release will update the implementation to
introduce a new indirection table for ACL rules with remote ACLs, to reduce the number of necessary
flows, in cases where the port is associated with a single ACL. Due to the complication of
supporting multiple ACLs on a single port, the current implementation will stay the same for these
cases.

Problem description

Today, for each logical port, an ACL rule results in a flow in the ACL table (ACL2). When a remote
ACL is configured on this rule, this flow is multiplied for each VM in the remote ACL, resulting in
a very large number of flows.

For example, consider we have:

	100 computes

	50 VMs on each compute (5000 VMs total),

	All VMs are in a SG (SG1)

	This SG has a security rule configured on it with remote SG=SG1
(it is common to set the remote SG as itself, to set rules within the SG).

This would result in 50*5000 = 250,000 flows on each compute, and 25M flows in ODL MDSAL (!).

Use Cases

Neutron configuration of security rules, configured with remote SGs. This optimization will be
relevant only when there is a single security group that is associated with the port. In case
more than one security group is associated with the port - we will fallback to the current
implementation which allows full functionality but with possible flow scaling issues.

Rules with a remote ACL are used to allow certain types of packets only between VMs in certain
security groups. For example, configuring rules with the parent security group also configured
as a remote security group, allows to configure rules applied only for traffic between VMs in
the same security group.

This will be done in the ACL implementation, so any ACL configured with a remote ACL via a different
northbound or REST would also be handled.

Proposed change

This blueprint proposes adding a new indirection table in the ACL service in each direction, which
will attempt to match the “remote” IP address associated with the packet (“dst_ip” in Ingress ACL,
“src_ip” in Egress ACL), and set the ACL ID as defined by the ietf-access-control-list in the
metadata. This match will also include the ELAN ID to handle ports with overlapping IPs.

These flows will be added to the ACL2 table. In addition, for each such ip->SG flow inserted in
ACL2, we will insert a single SG metadata match in ACL3 for each SG rule on the port configured with
this remote SG.

If the IP is associated with multiple SGs - it is impossible to do a 1:1 matching of the SG, so we
will not set the metadata at this time and fallback to the current implementation of matching all
possible IPs in the ACL table - for this ACL2 will have a default flow passing the unmatched packets
to ACL3 with an empty metadata SG_ID write (e.g. 0x0), to prevent potential garbage in the metadata
SG ID.

This means that on transition from a single SG on the port to multiple SG (and back), we would need
to remove/add these flows from ACL2, and insert the correct rules into ACL3.

ACL1 (211/241):

	This is the ACL that has default allow rules - it is left untouched, and usually goes to ACL2.

ACL2 (212/242):

	For each port with a single SG - we will match on the IPs and the ELAN ID (for tenant awareness)
here, and set the SG ID in the metadata, before going to the ACL3 table.

	For any port with multiple SGs (or with no SG) - an empty value (0x0) will be set as the SG ID in
the metadata, to avoid potential garbage in the SG ID, and goto ACL3 table.

ACL3 (213/243):

	For each security rule that doesn’t have a remote SG, we keep the behavior the same: ACL3
matches on rule, and resubmits to dispatcher if there is a match (Allow). The SG ID in the metadata
will not be matched.

	For each security rule that does have a remote SG, we have two options:

	For ports belonging to the remote SG that are associated with a single SG - there will be a
single flow per rule, matching the SG ID from the metadata (in addition to the other rule matches)
and allowing the packet.

	For ports belonging to the remote SG that are associated with multiple SGs - the existing
implementation will stay the same, multiplying the rule with all possible IP matches from the
remote security groups.

Considering the example from the problem description above, the new implementation would result in a
much reduced number of flows:

5000+50 = 5050 flows on each compute, and 505,000 flows in ODL MDSAL.

As noted above, this would require using part of the metadata for writing/matching of an ACL ID. We
would likely require at least 12 bits for this, to support up to 4K SGs, where 16 bits to support up
to 65K would be ideal. If the metadata bits are not available, we can use a register for this
purpose (16 bits).

In addition, the dispatcher will set the ELAN ID in the metadata before entering the ACL services,
to allow tenant aware IP to SG detection, supporting multi-tenants with IP collisions.

Pipeline changes

ACL3 will be added, and the flows in ACL2/ACL3 will be modified as noted above in the proposed change:

	Table

	Match

	Action

	Dispatcher

	metadata=service_id:ACL

	write_metadata:(elan_id=ELAN, service_id=NEXT), goto_table:ACL1

	ACL1 (211/241)

	goto_table:ACL2

	

	ACL2 (212/242)

	metadata=ELAN_ID, ip_src/dst=VM1_IP

	write_metadata:(remote_acl=id), goto_table:ACL3

	ACL2 (212/242)

	metadata=ELAN_ID, ip_src/dst=VM2_IP

	write_metadata:(remote_acl=id), goto_table:ACL3

	…

	
	

	ACL2 (212/242)

	
	goto_table:ACL3

	ACL3 (213/243)

	metadata=lport, <acl_rule>

	resubmit(,DISPATCHER) (X)

	ACL3 (213/243)

	metadata=lport+remote_acl, <acl_rule>

	resubmit(,DISPATCHER) (XX)

	ACL3 (213/243)

	metadata=lport,ip_src/dst=VM1_IP, <acl_rule>

	resubmit(,DISPATCHER) (XXX)

	ACL3 (213/243)

	metadata=lport,ip_src/dst=VM2_IP, <acl_rule>

	resubmit(,DISPATCHER) (XXX)

	…

	
	

(X) These are the regular rules, not configured with any remote SG.

(XX) These are the proposed rules with the optimization - assuming the lport is using a single ACL.

(XXX) These are the remote SG rules in the current implementation, which we will fall back to if the lport has multiple ACLs.

Table Numbering:

Currently the Ingress ACLs use tables 40,41,42 and the Egress ACLs use tables 251,252,253.

Table 43 is already proposed to be taken by SNAT, and table 254 is considered invalid by OVS.
To overcome this and align Ingress/Egress with symmetric numbering, I propose the following change:

	Ingress ACLs: 211, 212, 213, 214

	Egress ACLs: 241, 242, 243, 244

ACL1: INGRESS/EGRESS_ACL_TABLE
ACL2: INGRESS/EGRESS_ACL_REMOTE_ACL_TABLE
ACL3: INGRESS/EGRESS_ACL_FILTER_TABLE

ACL4 is used only for Learn implementation for which an extra table is required.

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

See example in description.
The scale of the flows will be drastically reduced when using remote ACLs.

Targeted Release

Carbon

Alternatives

For fully optimized support in all scenarios for remote SGs, meaning including support for ports
with multiple ACLs on them, we did consider implementing a similar optimization.

However, for this to happen due to OpenFlow limitations we would need to introduce an internal
dispatcher inside the ACL services, meaning we loop the ACL service multiple times, each time
setting a different metadata SG value for the port.

For another approach we could use a bitmask, but this would limit the number of possible SGs to be
the number of bits in the mask, which is much too low for any reasonable use case.

Usage

Any configuration of ACL rules with remote ACLs will receive this optimization if the port is using
a single SG.

Functionality should remain as before in any case.

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 1 for the Neutron CLI command syntax for managing Security
Rules with Remote Security Groups.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other
contributors.

Primary assignee:

	Alon Kochba <alonko@hpe.com>

	Aswin Suryanarayanan <asuryana@redhat.com>

Other contributors:

	?

Work Items

Task list in Carbon Trello [https://trello.com/c/6WBbSSkr/145-acl-remote-acls-indirection-table-to-improve-scale-remote-acl-indirection]

Dependencies

None.

Testing

Unit Tests

Integration Tests

CSIT

We should add tests verifying remote SG configuration functionality.
There should be at least:

	One security rule allowing ICMP traffic between VMs in the same SG.

	One positive test, checking ICMP connectivity works between two VMs using the same SG.

	One negative test, checking ICMP connectivity does not work between two VMs, one using the SG
configured with the rule above, and the other using a separate security group with all directions
allowed.

Documentation Impact

None.

References

	1

	Neutron Security Groups http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

Table of Contents

	ACL - Reflecting the ACL changes on existing traffic

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL - Reflecting the ACL changes on existing traffic

ACL patches:
https://git.opendaylight.org/gerrit/#/q/topic:acl-reflection-on-existing-traffic

This spec describes the new implementation for applying ACL changes on existing traffic.

In current ACL implementation, once a connection had been committed to the connection tracker, the connection would
continue to be allowed, even if the policy defined in the ACL table has changed. This spec will explain the new approach
that ensures ACL policy changes will affect existing connections as well. This approach will
improve the pipeline behaviour in terms of reliable traffic between the VMs.

Problem description

When the traffic between two VMs starts, the first packet will match the actual SG flow, which commits the packets
in connection tracker. It changes the state of the packets to established. Further traffic will match
the global conntrack flow and go through the connection tracker straightly. This will continue until we terminate the
established traffic.

When a rule is removed from the VM, the ACL flow getting removed from the respective tables. But, the already
established traffic is still working, because the connection still exists as ‘committed’ in the conntrack tracker.

For example, consider the below scenario which explains the problem in detail,

	Create a VM and associate the rule which allows ICMP

	Ping the DHCP server from the VM

	Remove the ICMP rule and check the ongoing traffic

When we remove the ICMP rule, the respective ICMP flow getting removed from the respective
table (For egress, table 213 and For Ingress, table 243). But, Since the conntrack flow having high priority than
the SG flow, the packets are matched by the conntrack flow and the live traffic is unaware of the flow removal.

The traffic between the VMs should be reliable and it should be succeeded accordance with SG flow. When a SG rule is
removed from the VM, the packets of ongoing traffic should be dropped.

Use Cases

	The new ACL implementation will affect the below use cases,

	
	VM Creation/Deletion with SG

	SG Rule addition and removal to/from existing SG associated to ports

Proposed change

This spec proposes the fix that requires a new table (210/240) in the existing pipeline.

In this approach, we will use the “ct_mark” flag of connection tracker. The default value of ct_mark is zero.

	ct_mark=0 matches the packet in new state

	ct_mark=1 matches the packet in established state

For every new traffic, the ct_mark value will be zero. When the traffic begins, the first packet of every
new traffic will be matched by the respective SG flow which commits the packets into the connection tracker and
changes the ct_mark value to 1. So, every packets of established traffic will have the ct_mark value as 1.

In conntrack flow, we will have a ct_mark=1 match condition. After first packet committed
to the connection tracker, further packets of established traffic will be matched by the conntrack flow straightly.

	In every SG flow, we will have below changes,

	“table=213/243, priority=3902, ct_state=+trk ,icmp,reg6=0x200/0xfffff00 actions=ct(commit,zone=6001,
exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	The SG flow will match the packets which are in tracked state. It will commit
the packet into the connection tracker. It will change the ct_mark value to 1.

	When a VM having duplicate flows, the removal of one flow should not affect the
existing traffic.

For example, consider a VM having ingress ICMP and Other protocol (ANY) rule. Ping the VM from the DHCP server. Removal of ingress ICMP rule
from the VM should not affect the existing traffic. Because the Other protocol ANY flow will match
the established packets of existing ICMP traffic and should make the communication possible.
To make the communication possible in above specific scenarios, we should match the established
packets in every SG flow. So, We will remove the “+new” check from the ct_state condition of every ACL flow to
recommit the established packets again into the conntrack.

	In conntrack flow,

	“table=213/243, priority=62020,ct_state=-new+est-rel-inv+trk, ct_mark=0x1 actions=resubmit(,17/220)”
“table=213/243, priority=62020,ct_state=-new-est+rel-inv+trk, ct_mark=0x1 actions=resubmit(,17/220)”

	The conntrack flow will match the packet which are in established state.

	For every new traffic, the first packet will be matched by the SG flow, which will change the ct_mark value to 1.
So, further packets will match the conntrack flow straightly.

	In default drop flow of table 213/243,

	“table=213, n_packets=0, n_bytes=0, priority=50, ct_state=+trk ,metadata=0x20000000000/0xfffff0000000000 actions=drop”
“table=243, n_packets=6, n_bytes=588, priority=50, ct_state=+trk ,reg6=0x300/0xfffff00 actions=drop”

	For every VM, we are having a default drop flow to measure the drop statistics of particular VM. So, we will remove
the “+new” state check from the ct_state to measure the drop counts accurately.

Deletion of SG flow will add the below flow with configured hard time out in the table 212/242.

[1] “table=212/242, n_packets=73, n_bytes=7154, priority=40,icmp,reg6=0x200/0xfffff00,ct_mark=1
actions=ct(commit, zone=5500, exec(set_field:0x0->ct_mark)),goto_table:ACL4”

	It will match the ct_mark value with the one and change the ct_mark to zero.

The below tables describes the default hard time out of each protocol as configured in the conntrack.

	Protocol

	Time out (secs)

	ICMP

	30

	TCP

	18000

	UDP

	180

Please refer the Pipeline Changes for table information.

For Egress, Dispatcher table (table 17) will forward the packets to the new table 210 where we will check the source match.
It will forward the packet to 211 to match the destination of the packets. After the destination of the packet verified,
The packets will forward to the table 212. New flow in the table, will match the ct_mark value and forward
the packets to the 213 table.

	Similarly, for Ingress, the packets will be forwarded through,

	Dispatcher table (220) >> New table (240) >> 241 >> 242 >> 243.

In dispatcher flows, we will have the below changes which will change the table 211/241 from the goto_table action to
the new table 210/240.

“table=17, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x900002157f000000/0xfffffffffffffffe, goto_table:210”

“table=220, priority=6,reg6=0x200 actions=load:0x90000200->NXM_NX_REG6[],write_metadata:0x157f000000/0xfffffffffe, goto_table:240”

Deletion of SG rule will add a new flow in the table 212/242 as mentioned above. The first packet after SG got deleted,
will match the above new flow and will change the ct_mark value to zero. So this packet will not match the conntrack
flow and will check the ACL4 table whether it having any other flows to match this packet. If the SG flow found, the packet
will be matched and change the ct_mark value 1.

If we restore the SG rule again, we will delete the added flow [1] from the 212/242 table, so the packets of
existing traffic will match the newly added SG flow in ACL4 table and proceed successfully.

Sample flows to be installed in each scenario,

	SG rule addition

	
	SG flow: [ADD]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk, icmp,
reg6=0x200/0xfffff00 actions=ct(commit,zone=6001, exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	Conntrack flow: [DEFAULT]

	“table=213/243, n_packets=105, n_bytes=10290, priority=62020,ct_state=-new+est-rel-inv+trk, ct_mark=0x1
actions=resubmit(,17/220)”

	SG Rule deletion

	
	SG flow: [DELETE]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk,icmp,reg6=0x200/0xfffff00
actions=ct(commit,zone=6001,exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	New flow: [ADD]

	“table=212/242, n_packets=73, n_bytes=7154, priority=62021, ct_mark=0x1,icmp,reg6=0x200/0xfffff00
actions=ct(commit, exec(set_field:0x0->ct_mark)),goto_table:213/243”

	Rule Restore

	
	SG flow: [ADD]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk, icmp,reg6=0x200/0xfffff00
actions=ct(commit,zone=6001,exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	New flow: [DELETE]

	“table=212/242, n_packets=73, n_bytes=7154, priority=62021,ct_mark=0x1,icmp,reg6=0x200/0xfffff00
actions=ct(commit,exec(set_field:0x0->ct_mark)),goto_table:213/243”

The new tables (210/240) will matches the source and the destination of the packets respectively. So, a default flow will be added in
the table 210/240 with least priority to drop the packets.

“table=210/240, n_packets=1, n_bytes=98, priority=0 actions=drop”

	Flow Sample:

	
Egress flows before the changes,

cookie=0x6900000, duration=30.590s, table=17, n_packets=108, n_bytes=10624, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x9000021389000000/0xfffffffffffffffe,goto_table:211
cookie=0x6900000, duration=30.247s, table=211, n_packets=0, n_bytes=0, priority=61010,ipv6,dl_src=fa:16:3e:93:dc:92,ipv6_src=fe80::f816:3eff:fe93:dc92 actions=ct(table=212,zone=5001)
cookie=0x6900000, duration=30.236s, table=211, n_packets=96, n_bytes=9312, priority=61010,ip,dl_src=fa:16:3e:93:dc:92,nw_src=10.100.5.3 actions=ct(table=212,zone=5001)
cookie=0x6900000, duration=486.527s, table=211, n_packets=2, n_bytes=180, priority=0 actions=drop
cookie=0x6900000, duration=30.157s, table=212, n_packets=0, n_bytes=0, priority=50,ipv6,metadata=0x1389000000/0xffff000000,ipv6_dst=fe80::f816:3eff:fe93:dc92 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=30.152s, table=212, n_packets=0, n_bytes=0, priority=50,ip,metadata=0x1389000000/0xffff000000,nw_dst=10.100.5.3 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=486.527s, table=212, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:212
cookie=0x6900000, duration=486.056s, table=213, n_packets=80, n_bytes=8128, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x6900000, duration=485.948s, table=213, n_packets=0, n_bytes=0, priority=62020,ct_state=-new-est+rel-inv+trk actions=resubmit(,17)
cookie=0x6900001, duration=30.184s, table=213, n_packets=0, n_bytes=0, priority=62015,ct_state=+inv+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop
cookie=0x6900000, duration=30.177s, table=213, n_packets=16, n_bytes=1184, priority=1000,ct_state=+new+trk,ip,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900000, duration=30.168s, table=213, n_packets=0, n_bytes=0, priority=1001,ct_state=+new+trk,ipv6,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900001, duration=30.207s, table=213, n_packets=0, n_bytes=0, priority=50,ct_state=+new+trk,metadata=0x20000000000/0xfffff0000000000 actions=dro

After the changes, flows will be,

cookie=0x6900000, duration=30.590s, table=17, n_packets=108, n_bytes=10624, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x9000021389000000/0xfffffffffffffffe,goto_table:210
cookie=0x6900000, duration=30.247s, table=210, n_packets=0, n_bytes=0, priority=61010,ipv6,dl_src=fa:16:3e:93:dc:92,ipv6_src=fe80::f816:3eff:fe93:dc92 actions=ct(table=211,zone=5001)
cookie=0x6900000, duration=30.236s, table=210, n_packets=96, n_bytes=9312, priority=61010,ip,dl_src=fa:16:3e:93:dc:92,nw_src=10.100.5.3 actions=ct(table=211,zone=5001)
cookie=0x6900000, duration=486.527s, table=210, n_packets=2, n_bytes=180, priority=0 actions=drop
cookie=0x6900000, duration=30.157s, table=211, n_packets=0, n_bytes=0, priority=50,ipv6,metadata=0x1389000000/0xffff000000,ipv6_dst=fe80::f816:3eff:fe93:dc92 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=30.152s, table=211, n_packets=0, n_bytes=0, priority=50,ip,metadata=0x1389000000/0xffff000000,nw_dst=10.100.5.3 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=486.527s, table=211, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:212
cookie=0x6900000, duration=486.527s, table=212, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:213
cookie=0x6900000, duration=486.056s, table=213, n_packets=80, n_bytes=8128, priority=62020,ct_state=-new+est-rel-inv+trk,ct_mark=0x1 actions=resubmit(,17)
cookie=0x6900000, duration=485.948s, table=213, n_packets=0, n_bytes=0, priority=62020,ct_state=-new-est+rel-inv+trk,ct_mark=0x1 actions=resubmit(,17)
cookie=0x6900001, duration=30.184s, table=213, n_packets=0, n_bytes=0, priority=62015,ct_state=+inv+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop
cookie=0x6900000, duration=30.177s, table=213, n_packets=16, n_bytes=1184, priority=1000,ct_state=+trk,ip,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001,exec(set_field:0x1->ct_mark)),resubmit(,17)
cookie=0x6900000, duration=30.168s, table=213, n_packets=0, n_bytes=0, priority=1001,ct_state=+new+trk,ipv6,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900001, duration=30.207s, table=213, n_packets=0, n_bytes=0, priority=50,ct_state=+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop

	New flow will be installed in table 212 when we delete SG rule,

	“cookie=0x6900000, duration=30.177s, table=212, n_packets=16, n_bytes=1184, priority=1000,ct_state=+trk,ip,metadata=0x20000000000/0xfffff0000000000,ct_mark=1,idle_timeout=1800 actions=ct(commit,zone=5001,exec(set_field:0x0->ct_mark)),goto_table:213”

Similarly, the ingress related flows will have the same changes as mentioned above.

Pipeline changes

	The propose changes includes:

	
	New tables 210 and 240

	Re-purposed tables 211, 212, 241, 242

The propose will re-purpose the table 211 and 212 of egress, table 241 and 242 of ingress.

Currently, for egress, we are using the table 211 for source match and 212 for destination match.
In new propose, we will use the new table 210 for source match, table 211 for destination match and table 212 for new
flow installation when we delete the SG flow.

	For Egress, the traffic will use the tables in following order,

	17 >> 210 >> 211 >> 212 >> 213.

Similarly, for ingress, currently we are using the table 241 for destination match and 242 for source match.
In new propose, we will use the new table 240 for destination match, table 241 for source match and table 242 for new
flow installation when we delete the SG flow.

	For Ingress, the traffic will use the tables in following order,

	220 >> 240 >> 241 >> 242 >> 243

flow will be added in table 212/242, and the match condition of ACL4 flows will be modified as noted above in the proposed change:

	Table

	Match

	Action

	Dispatcher

	metadata=service_id:ACL

	write_metadata:(elan_id=ELAN, service_id=NEXT), goto_table:210/240 (ACL1)

	ACL1 (210/240)

	
	goto_table:ACL2

	…

	
	

	ACL2 (211/241)

	
	goto_table:ACL3

	ACL3 (212/242)

	ip,ct_mark=0x1,reg6=0x200/0xfffff00

	(set_field:0x0->ct_mark), goto_table:ACL4

	ACL3 (212/242)

	
	goto_table:ACL4

	ACL4 (213/243)

	ct_state=-new+est-rel-inv+trk,ct_mark=0x1

	resubmit(,DISPATCHER)

	ACL4 (213/243)

	ct_state=+trk,priority=3902,ip,reg6=0x200/0xfffff00

	set_field:0x1>ct_mark, resubmit(,DISPATCHER)

	ACL4 (213/243)

	ct_state=+trk, reg6=0x200/0xfffff00

	drop

	…

	
	

Yang changes

The nicira-action.yang and the openflowplugin-extension-nicira-action.yang needs to be updated
with ct_mark action. The action structure shall be

grouping ofj-nx-action-conntrack-grouping {
 container nx-action-conntrack {
 leaf flags {
 type uint16;
 }
 leaf zone-src {
 type uint32;
 }
 leaf conntrack-zone {
 type uint16;
 }
 leaf recirc-table {
 type uint128;
 }
 leaf experimenter-id {
 type oft:experimenter-id;
 }
 list ct-actions{
 uses ofpact-actions;
 }
 }
 }

The nicira-match.yang and the openflowplugin-extension-nicira-match.yang needs to be updated
with the ct_mark match.

grouping ofj-nxm-nx-match-ct-mark-grouping{
 container ct-mark-values {
 leaf ct-mark {
 type uint32;
 }
 leaf mask {
 type uint32;
 }
 }
 }

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

When we delete the SG rule from the VM, A new flow will be added in the flow table 212 to flip
the value of ct_mark of ongoing traffics. This flow will have a time out based on the protocol as mentioned in the
proposed changes section. The packets of ongoing traffic will be recommitted and will do the set filed of ct_mark until
the flow reaches the time out.

Targeted Release

Carbon

Alternatives

While deleting a SG flow from the flow table, we will add a DROP flow with the highest priority in the ACL4 table.
This DROP flow will drop the packets and it will stop the existing traffic. Similarly, when we restore the
same rule again, we will delete the DROP flow from the ACL4 table which will enable the existing traffic.

But this approach will be effective only if the VM do not have any duplicate flows. With the current ACL
implementation, if we associate two SGs which having similar set of SG rule, netvirt will install the two set of
flows with different priority for the same VM.

As per above approach, if we dissociate any one of SG from the VM, It will add the DROP flow in ACL4 table which
will stops the existing traffic irrespective of there is still another flow available in ACL4, to make the
traffic possible.

Usage

Traffic between VMs will work accordance with the SG flow existence in the flow table.

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 1 for the Neutron CLI command syntax for managing Security
Rules.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assignee and other
contributors.

Primary assignee:

	VinothB <vinothb@hcl.com>

	Balakrishnan Karuppasamy <balakrishnan.ka@hcl.com>

Other contributors:

	?

Work Items

None

Dependencies

None.

Testing

Unit Tests

Integration Tests

CSIT

We should add tests verifying ACL change reflection on existing traffic.
There should be at least:

	One security rule allowing ICMP traffic between VMs in the same SG.

	One positive test, checking ICMP connectivity works between two VMs using the same SG. Delete all the rules from
the SG without disturbing the already established traffic. It should stop the traffic.

	One positive test, checking ICMP connectivity works between two VMs,one using the SG,
configured with the ICMP rule, Delete and restore the ICMP rule immediately. This should stop and resume the ICMP traffic after
restoring the ICMP rule.

	One positive test, checking ICMP connectivity between VMs, using the SG,
configured with ICMP ALL and Other protocol ANY rule. Delete the ICMP rule from the SG, It should not stop the ICMP traffic.

	One negative test, checking ICMP connectivity between two VMs, one using the SG,
configured with the ICMP and TCP rules above, and delete the TCP rule. This should not affect the ICMP traffic.

Documentation Impact

None.

References

	1

	Neutron Security Groups http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

Table of Contents

	Conntrack Based SNAT

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create External Network

	Create Internal Network

	Create Router

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Conntrack Based SNAT

https://git.opendaylight.org/gerrit/#/q/topic:snat_conntrack

The ovs conntrack based SNAT implements Source Network Address Translation using openflow rules by
leveraging ovs-netfilter integration.

Problem description

Today SNAT is done in Opendaylight netvirt using controller punting and thus controller installing
the rules for inbound and outbound NAPT. This causes significant delay as the first packet of all
the new connections needs to go through the controller.The number of flows grows linearly with the
increase in the vms. Also the current implementation does not support ICMP.

The current algorithm for selecting the NAPT switch does not work well with conntrack based SNAT.
For a NAPT switch to remain as designated NAPT switch, it requires at least one port from any of
the subnets present in the router. When such a port cease to exist a new NAPT switch will be
elected. With the controller based implementation the failover is faster as the NAT flows are
reinstalled to the new NAPT switch and should not lead to termination of existing connection.
With the conntrack based approach, the translation will be lost and the newly elected switch will
have to redo the translation. This will lead to connection timeout for TCP like connections. So
the re-election needs to be prevented unless switch is down. Also the current implementation
tends to select the node running the DHCP agent as the designated NAPT switch as the DHCP port is
the first port created for a subnet.

Use Cases

The following use case will be realized by the implementation

External Network Access
The SNAT enables the VM in a tenant network access the external network without using a floating ip. It
uses NAPT for sharing the external ip address across multiple VMs that share the same router
gateway.

Proposed change

The proposed implementation uses linux netfilter framework to do the NAPT (Network Address Port
Translation) and for tracking the connection. The first packet of a traffic will be committed to
the netfilter for translation along with the external ip. The subsequent packets will use the entry
in the netfilter for inbound and outbound translation. The router id will be used as the zone id in
the netfilter. Each zone tracks the connection in its own table. The rest of the implementation for
selecting the designated NAPT switch and non designated switches will remain the same. The pipeline
changes will happen in the designated switch. With this implementation we will be able to do
translation for icmp as well.

The openflow plugin needs to support new set of actions for conntrack based NAPT. This shall be
added in the nicira plugin extension of OpenFlow plugin.

The new implementation will not re-install the existing NAT entries to the new NAPT switch during
fail-over. Also spec does not cover the use case of having multiple external subnets in the same
router.

The HA framework will have a new algorithm to elect the designated NAPT switch. The
new logic will be applicable only if the conntrack mode is selected. The switch selection logic
will also be modified to use round robin logic with weights associated with each switch. It will
not take into account whether a port belonging to a subnet in the router is present in the switch.
The initial weight of all the switches shall be 0 and will be incremented by 1 when the switch is
selected as the designated NAPT. The weights shall be decremented by 1 when the router is deleted.
At any point of time the switch with the lowest weight will be selected as the designated NAPT
switch for a new router. If there are multiple the first one with the lowest weight will be
selected. A pseudo port will be added in the switch which is selected as the designated NAPT
switch. This port will be deleted only when the switch cease to be a designated NAPT switch. This
helps the switch to maintain the remote flows even when there are no ports in the router subnet in
the switch. Only if the switch hosting the designated NAPT switch is down a new NAPT switch will be
elected.

Pipeline changes

The ovs based NAPT flows will replace the controller based NAPT flows. The changes are limited
to the designated switch for the router. Below is the illustration for flat external network.

Outbound NAPT

Table 26 (PSNAT Table) => submits the packet to netfilter to check whether it is an existing
connection. Resubmits the packet back to 46.

Table 46 (NAPT OUTBOUND TABLE) => if it is an established connection, it indicates the
translation is done and the packet is forwarded to table 47 after writing the external network
metadata.

If it is a new connection the connection will be committed to netfilter and this entry will be
used for NAPT. The translated packet will be resubmitted to table 47. The external network
metadata will be written before sending the packet to netfilter.

Table 47 (NAPT FIB TABLE) => The translated packet will be sent to the egress group.

Sample Flows

table=26, priority=5,ip,metadata=0x222e2/0xfffffffe actions=ct(table=46,zone=5003,nat)
table=46, priority=6,ct_state=+snat,ip,metadata=0x222e2/0xfffffffe actions=set_field:0x222e0->metadata,resubmit(,47)
table=46, priority=5,ct_state=+new+trk,ip,metadata=0x222e2/0xfffffffe actions=set_field:0x222e0->metadata,ct(commit,table=47,zone=5003,nat(src=192.168.111.21))
table=47, n_packets=0, n_bytes=0, priority=6,ct_state=+snat,ip,nw_src=192.168.111.21 actions=group:200000

Inbound NAPT

Table 44 (NAPT INBOUND Table)=> submits the packet to netfilter to check for an existing
connection after changing the metadata to that of the internal network. The packet will be
submitted back to table 47.

Table 47 (NAPT FIB TABLE) => The translated packet will be submitted back to table 21.

Sample Flows

table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=192.168.111.21 actions=resubmit(,44)
table=44, priority=10,ip,metadata=0x222e0/0xfffffffe,nw_dst=192.168.111.21 actions=set_field:0x222e2->metadata,ct(table=47,zone=5003,nat)
table=47, priority=5,ct_state=+dnat,ip actions=resubmit(,21)

Yang changes

The nicira-action.yang and the openflowplugin-extension-nicira-action.yang needs to be updated
with nat action. The action structure shall be

typedef nx-action-nat-range-present {
 type enumeration {
 enum NX_NAT_RANGE_IPV4_MIN {
 value 1;
 description "IPV4 minimum value is present";
 }
 enum NX_NAT_RANGE_IPV4_MAX {
 value 2;
 description "IPV4 maximum value is present";
 }
 enum NX_NAT_RANGE_IPV6_MIN {
 value 4;
 description "IPV6 minimum value is present in range";
 }
 enum NX_NAT_RANGE_IPV6_MAX {
 value 8;
 description "IPV6 maximum value is present in range";
 }
 enum NX_NAT_RANGE_PROTO_MIN {
 value 16;
 description "Port minimum value is present in range";
 }
 enum NX_NAT_RANGE_PROTO_MAX {
 value 32;
 description "Port maximum value is present in range";
 }
 }
 }

typedef nx-action-nat-flags {
 type enumeration {
 enum NX_NAT_F_SRC {
 value 1;
 description "Source nat is selected ,Mutually exclusive with NX_NAT_F_DST";
 }
 enum NX_NAT_F_DST {
 value 2;
 description "Destination nat is selected";
 }
 enum NX_NAT_F_PERSISTENT {
 value 4;
 description "Persistent flag is selected";
 }
 enum NX_NAT_F_PROTO_HASH {
 value 8;
 description "Hash mode is selected for port mapping, Mutually exclusive with
 NX_NAT_F_PROTO_RANDOM ";
 }
 enum NX_NAT_F_PROTO_RANDOM {
 value 16;
 description "Port mapping will be randomized";
 }
 }
 }

grouping ofj-nx-action-conntrack-grouping {
 container nx-action-conntrack {
 leaf flags {
 type uint16;
 }
 leaf zone-src {
 type uint32;
 }
 leaf conntrack-zone {
 type uint16;
 }
 leaf recirc-table {
 type uint8;
 }
 leaf experimenter-id {
 type oft:experimenter-id;
 }
 list ct-actions{
 uses ofpact-actions;
 }
 }
 }

grouping ofpact-actions {
 description
 "Actions to be performed with conntrack.";
 choice ofpact-actions {
 case nx-action-nat-case {
 container nx-action-nat {
 leaf flags {
 type uint16;
 }
 leaf range_present {
 type uint16;
 }
 leaf ip-address-min {
 type inet:ip-address;
 }
 leaf ip-address-max {
 type inet:ip-address;
 }
 leaf port-min {
 type uint16;
 }
 leaf port-max {
 type uint16;
 }
 }
 }
 }
}

For the new configuration knob a new yang natservice-config shall be added in NAT service, with the
container for holding the NAT mode configured. It will have two options controller and conntrack,
with controller being the default.

container natservice-config {
 config true;
 leaf nat-mode {
 type enumeration {
 enum "controller";
 enum "conntrack";
 }
 default "controller";
 }
}

Configuration impact

The proposed change requires the NAT service to provide a configuration knob to switch between the
controller based/conntrack based implementation. A new configuration file
netvirt-natservice-config.xml shall be added with default value controller.

<natservice-config xmlns="urn:opendaylight:netvirt:natservice-config">
 <nat-mode>controller</nat-mode>
</natservice-config>

The dynamic update of nat-mode will not be supported. To change the nat-mode the controller cluster
needs to be restarted after changing the nat-mode. On restart the NAT translation lifecycle will be
reset and after the controller comes up in the updated nat-mode, a new set of switches will be
elected as designated NAPT switches and it can be different from the ones that were forwarding
traffic earlier.

Clustering considerations

NA

Other Infra considerations

The implementation requires ovs2.6 with the kernel module installed. OVS currently does not support
SNAT connection tracking for dpdk datapath. It would be supported in some future release.

Security considerations

NA

Scale and Performance Impact

The new SNAT implementation is expected to improve the performance when compared to the existing
one and will reduce the flows in ovs pipeline.

Targeted Release

Carbon

Alternatives

An alternative implementation of X NAPT switches was discussed, which will not be a part of this
document but will be considered as a further enhancement.

Usage

Create External Network

Create an external flat network and subnet

neutron net-create ext1 --router:external --provider:physical_network public --provider:network_type flat
neutron subnet-create --allocation-pool start=<start-ip>,end=<end-ip> --gateway=<gw-ip> --disable-dhcp --name subext1 ext1 <subnet-cidr>

Create Internal Network

Create an internal n/w and subnet

neutron net-create vx-net1 --provider:network_type vxlan
neutron subnet-create vx-net1 <subnet-cidr> --name vx-subnet1

Create Router

Create a router and add an interface to internal n/w. Set the external n/w as the router gateway.

neutron router-create router1
neutron router-interface-add router1 vx-subnet1
neutron router-gateway-set router1 ext1
nova boot --poll --flavor m1.tiny --image $(nova image-list | grep 'uec\s' | awk '{print $2}' | tail -1) --nic net-id=$(neutron net-list | grep -w vx-net1 | awk '{print $2}') vmvx2

Features to Install

odl-netvirt-openstack

REST API

NA

CLI

A new command line, display-napt-switch, will be added to display the current designated NAPT
switch selected for each router. It shall show the below info.

router id | Host Name of designated NAPT switch | Management Ip of the designated NAPT switch

Implementation

Assignee(s)

Aswin Suryanarayanan <asuryana@redhat.com>

Work Items

https://trello.com/c/DMLsrLfq/9-snat-decentralized-ovs-nat-based

	Write a framework which can support multiple modes of NAT implementation.

	Add support in openflow plugin for conntrack nat actions.

	Add support in genius for conntrack nat actions.

	Add a config parameter to select between controller based and conntrack based.

	Add the flow programming for SNAT in netvirt.

	Add the new HA framework.

	Add the command to display the designated NAPT switch.

	Write Unit tests for conntrack based snat.

Dependencies

NA

Testing

Unit Tests

Unit test needs to be added for the new snat mode. It shall use the component tests framework

Integration Tests

Integration tests needs to be added for the conntrack snat flows.

CSIT

Run the CSIT with conntrack based SNAT configured.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

Table of Contents

	Cross site connectivity with federation service

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Cross site connectivity with federation service

https://git.opendaylight.org/gerrit/#/q/topic:federation-plugin

Enabling neutron networks to expand beyond a single OpenStack instance to allow L2 switching and L3 routing
between sites. Sites may be geographically remote or partitioned in a single data center.

Each site is deployed with independent local ODL cluster. The clusters communicate using the federation
infrastructure [2] in order to publish MDSAL events whenever routable entities e.g. VM instances are added/removed
from remote sites.

VxLAN tunnels are used to form the overlay for cross site communication between OpenStack compute nodes.

Problem description

Today, communication between VMs in remote sites is based on BGP control plane and requires DC-GW.
Overlay network between data centers is based on MPLSoverGRE or VxLAN if the DC-GW supports EVPN RT5 [4].
The purpose of this feature is to allow inter-DC communication independent from BGP control plane and DC-GW.

Use Cases

This feature will cover the following use cases:

L2 switching use cases

	L2 Unicast frames exchanged between VMs sharing federated neutron network between OVS datapaths in
remote sites

	L2 Unicast frames exchanged between VM and PNF sharing federated neutron network between OVS and HWVTEP
datapath in remote sites

	L2 Broadcast frames exchanged between VMs sharing federated neutron network between OVS datapaths in
remote sites

	L2 Broadcast frames exchanged between VM and PNF sharing federated neutron network between OVS and HWVTEP
datapath in remote sites

L3 forwarding use cases

	L3 traffic exchanged between VMs sharing federated neutron router between OVS datapaths in
remote sites

Proposed change

For Carbon release, cross-site connectivity will be based on the current HPE downstream federation plugin codebase.
This plugin implements the federation service API [3] to synchronize the following MDSAL subtrees between connected
sites:

	config/ietf-interfaces:interfaces

	config/elan:elan-interfaces

	config/l3vpn:vpn-interfaces

	config/network-topology:network-topology/topology/ovsdb:1

	operational/network-topology:network-topology/topology/ovsdb:1

	config/network-topology:network-topology/topology/hwvtep:1

	operational/network-topology:network-topology/topology/hwvtep:1

	config/opendaylight-inventory:nodes

	operational/opendaylight-inventory:nodes

	config/neutron:neutron/l2gateways

	config/neutron:neutron/l2gatewayConnections

The provisioning of connected networks between remote sites is out of the scope of this spec and described in [6].

Upon receiving a list of shared neutron networks and subnets, the federation plugin will propagate MDSAL entities from
all of the subtrees detailed above to remote sites based on the federation connection definitions.
The federated entities will be transformed to match the target network/subnet/router details in each remote site.

For example, ELAN interface will be federated with elan-instance-name set to the remote site elan-instance-name.
VPN interface will be federated with the remote site vpn-instance-name i.e. router-id and remote subnet-id contained
in the primary VPN interface adjacency.

This would allow remotely federated entities a.k.a shadow entities to be handled the same way local entities are handled
thus shadow entities will appear as if they were local entities in remote sites.
As a result, the following pipeline elements will be added for shadow entities on all compute nodes in each connected
remote site:

	ELAN remote DMAC flow for L2 unicast packets to remote site

	ELAN remote broadcast group buckets for L2 multicast packets to remote site

	FIB remote nexthop flow for L3 packet to remote site

The following limitations exist for the current federation plugin implementation:

	Federated networks use VxLAN network type and the same VNI is used across sites.

	The IP addresses allocated to VM instances in federated subnets do not overlap across sites.

	The neutron-configured VNI will be passed on the wire for inter-DC L2/L3 communication between VxLAN networks.
The implementation is described in [5].

As part of Nitrogen, the federation plugin is planned to go through major redesign. The scope and internals have not
been finalized yet but this spec might be a good opportunity to agree on an alternate solution.

Some initial thoughts:

	For L3 cross site connectivity, it seems that federating the FIB vrf-entry associated with VMs in connected
networks should be sufficient to form remote nexthop connectivity across sites.

	In order to create VxLAN tunnels to remote sites, it may be possible to use the external tunnel concept instead
of creating internal tunnels that are dependent on federation of the OVS topology nodes from remote sites.

	L2 cross site connectivity is the most challenging part for federation of MAC addresses of both VM
instances and PNFs connected to HWVTEP.
If the ELAN model could be enhanced to have remote-mac-entry model containing MAC address, ELAN instance name
and remote TEP ip, it would be possible to federate such entity to remote sites in order to create remote DMAC
flows for cases of remote VM instances and PNFs connected HWVTEP in remote sites.

Pipeline changes

No new pipeline changes are introduced as part of this feature. The pipeline flow between VM instances in
remote sites is similar to the current implementation of cross compute intra-DC traffic since the
realization of remote compute nodes is similar to local ones.

Yang changes

The following new yang models will be introduced as part of the federation plugin API bundle:

Federation Plugin Yang

Marking for each federated entity using shadow-properties augmentation

module federation-plugin {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin";
 prefix "federation-plugin";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import network-topology {
 prefix topo;
 }

 import opendaylight-inventory {
 prefix inv;
 }

 import ietf-interfaces {
 prefix if;
 }

 import elan {
 prefix elan;
 }

 import l3vpn {
 prefix l3vpn;
 }

 import neutronvpn {
 prefix nvpn;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 grouping shadow-properties {
 leaf shadow {
 type boolean;
 description "Represents whether this is a federated entity";
 }
 leaf generation-number {
 type int32;
 description "The current generation number of the federated entity";
 }
 leaf remote-ip {
 type string;
 description "The IP address of the original site of the federated entity";
 }
 }

 augment "/topo:network-topology/topo:topology/topo:node" {
 ext:augment-identifier "topology-node-shadow-properties";
 uses shadow-properties;
 }

 augment "/inv:nodes/inv:node" {
 ext:augment-identifier "inventory-node-shadow-properties";
 uses shadow-properties;
 }

 augment "/if:interfaces/if:interface" {
 ext:augment-identifier "if-shadow-properties";
 uses shadow-properties;
 }

 augment "/elan:elan-interfaces/elan:elan-interface" {
 ext:augment-identifier "elan-shadow-properties";
 uses shadow-properties;
 }

 augment "/l3vpn:vpn-interfaces/l3vpn:vpn-interface" {
 ext:augment-identifier "vpn-shadow-properties";
 uses shadow-properties;
 }
}

Federation Plugin Manager Yang

Management of federated networks and routed RPCs subscription

module federation-plugin-manager {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:manager";
 prefix "federation-plugin-manager";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 identity mgr-context {
 description "Identity for a routed RPC";
 }

 container routed-container {
 list route-key-item {
 key "id";
 leaf id {
 type string;
 }

 ext:context-instance "mgr-context";
 }
 }

 container federated-networks {
 list federated-network {
 key self-net-id;
 uses federated-nets;
 }
 }

 container federation-generations {
 description
 "Federation generation information for a remote site.";
 list remote-site-generation-info {
 max-elements "unbounded";
 min-elements "0";
 key "remote-ip";
 leaf remote-ip {
 mandatory true;
 type string;
 description "Remote site IP address.";
 }
 leaf generation-number {
 type int32;
 description "The current generation number used for the remote site.";
 }
 }
 }

 grouping federated-nets {
 leaf self-net-id {
 type string;
 description "UUID representing the self net";
 }
 leaf self-subnet-id {
 type yang:uuid;
 description "UUID representing the self subnet";
 }
 leaf self-tenant-id {
 type yang:uuid;
 description "UUID representing the self tenant";
 }
 leaf subnet-ip {
 type string;
 description "Specifies the subnet IP in CIDR format";
 }

 list site-network {
 key id;
 leaf id {
 type string;
 description "UUID representing the site ID (from xsite manager)";
 }
 leaf site-ip {
 type string;
 description "Specifies the site IP";
 }
 leaf site-net-id {
 type string;
 description "UUID of the network in the site";
 }
 leaf site-subnet-id {
 type yang:uuid;
 description "UUID of the subnet in the site";
 }
 leaf site-tenant-id {
 type yang:uuid;
 description "UUID of the tenant holding this network in the site";
 }
 }
 }
}

Federation Plugin RPC Yang

FederationPluginRpcService yang definition for update-federated-networks RPC

module federation-plugin-rpc {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:rpc";
 prefix "federation-plugin-rpc";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import federation-plugin-manager {
 prefix federation-plugin-manager;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 rpc update-federated-networks {
 input {
 list federated-networks-in {
 key self-net-id;
 uses federation-plugin-manager:federated-nets;
 description "Contain all federated networks in this site that are still
 connected, a federated network that does not appear will be considered
 disconnected";
 }
 }
 }
}

Federation Plugin routed RPC Yang

Routed RPCs will be used only within the cluster to route connect/disconnect requests to the federation cluster singleton.

module federation-plugin-routed-rpc {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:routed:rpc";
 prefix "federation-plugin-routed-rpc";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import federation-plugin-manager {
 prefix federation-plugin-manager;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 rpc update-federated-networks {
 input {
 leaf route-key-item {
 type instance-identifier;
 ext:context-reference federation-plugin-manager:mgr-context;
 }

 list federated-networks-in {
 key self-net-id;
 uses federation-plugin-manager:federated-nets;
 }
 }
 }
}

Configuration impact

None.

Clustering considerations

The federation plugin will be active only on one of the ODL instances in the cluster. The cluster singleton service
infrastructure will be used in order to register the federation plugin routed RPCs only on the selected ODL instance.

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Features to Install

odl-netvirt-federation

This is a new feature that will load odl-netvirt-openstack and the federation service features.
It will not be installed by default and requires manual startup using karaf feature:install command.

REST API

Connecting neutron networks from remote sites

URL: restconf/operations/federation-plugin-manager:update-federated-networks

Sample JSON data

{
 "input": {
 "federated-networks-in": [
 {
 "self-net-id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7920",
 "self-subnet-id": "93dee7cb-ba25-4318-b60c-19a15f2c079a",
 "subnet-ip": "10.0.123.0/24",
 "site-network": [
 {
 "id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7922",
 "site-ip": "10.0.43.146",
 "site-net-id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7921",
 "site-subnet-id": "93dee7cb-ba25-4318-b60c-19a15f2c079b",
 }
]
 }
]
 }
}

CLI

None.

Implementation

Assignee(s)

	Primary assignee:

	Tali Ben-Meir <tali@hpe.com>

	Other contributors:

	Guy Sela <guy.sela@hpe.com>

Shlomi Alfasi <shlomi.alfasi@hpe.com>

Yair Zinger <yair.zinger@hpe.com>

Work Items

Trello card https://trello.com/c/mgdUO6xx/154-federation-plugin-for-netvirt

Since the code was already implemented in downstream no work items will be defined

Dependencies

This feature will be implemented in 2 new bundles - federation-plugin-api and federation-plugin-impl
the implementation will be dependent on federation-service-api [3] bundle from OpenDaylight federation project.

The new karaf feature odl-netvirt-federation will encapsulate the federation-plugin api and impl bundles
and will be dependant on the followings features:

	federation-with-rabbit from federation project

	odl-netvirt-openstack from netvirt project

Testing

Unit Tests

End-to-end component service will test the federation plugin on top of the federation service.

Integration Tests

None

CSIT

The CSIT infrastructure will be enhanced to support connect/disconnect operations between sites using
update-federated-networks RPC call.

A new federation suite will test L2 and L3 connectivity between remote sites and will be based on the
existing L2/L3 connectivity suites.
CSIT will load sites A,B and C in 1-node/3-node deployment options to run the following tests:

1 Install odl-netvirt-federation feature

	Basic L2 connectivity test within the site

	Basic L3 connectivity test within the site

	L2 connectivity between sites - expected to fail since sites are not connected

	L3 connectivity between sites - expected to fail since sites are not connected

2 Connect sites A,B

	Basic L2 connectivity test within the site

	L2 connectivity test between VMs in sites A,B

	L2 connectivity test between VMs in sites A,C and B,C - expected to fail since sites are not connected

	Basic L3 connectivity test within the site

	L3 connectivity test between VMs in sites A,B

	L3 connectivity test between VMs in sites A,C and B,C - expected to fail since sites are not connected

3 Connect site C to A,B

	L2 connectivity test between VMs in sites A,B B,C and A,C

	L3 connectivity test between VMs in sites A,B B,C and A,C

	Connectivity test between VMs in non-federated networks in sites A,B,C - expected to fail

4 Disconnect site C from A,B

	Repeat the test steps from 2 after C disconnect. Identical results expected.

5 Disconnect sites A,B

	Repeat the test steps from 1 after A,B disconnect. Identical results expected.

6 Federation cluster test

	Repeat test steps 1-5 while rebooting the ODLs between the steps similarly to the existing cluster suite.

Documentation Impact

None.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] Federation project [https://wiki.opendaylight.org/view/Federation:Main]

[3] Federation service API [https://github.com/opendaylight/federation/tree/master/federation-service/api]

[4] Support of VxLAN based connectivity across Datacenters [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/l3vpn-over-vxlan-with-evpn-rt5.html]

[5] VNI based L2 switching, L3 forwarding and NATing [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/vni-based-l2-switching-l3-forwarding-and-NATing.html]

[6] Cross site manager presentation ODL Summit 2016 [https://www.youtube.com/watch?v=wDdP6ONg8wU&list=PL8F5jrwEpGAiRCzJIyboA8Di3_TAjTT-2]

Table of Contents

	DHCP Server Dynamic Allocation Pool

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

DHCP Server Dynamic Allocation Pool

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:dhcp_server_pool]

Extension of the ODL based DHCP server, which add support for dynamic address allocation to end
point users, that are not controlled (known) by OpenStack Neutron. Each DHCP pool can be configured
with additional information such as DNS servers, lease time (not yet), static allocations based on
MAC address, etc.

The feature supports IPv4 only.

Problem description

In a non-neutron northbounds environment e.g. SD-WAN solution (unimgr), there is currently no
dynamic DHCP service for end-points or networks that are connected to OVS. Every DHCP packet that is
received by the controller, the controller finds the neutron port based on the inport of the packet,
extracts the ip which was allocated by neutron for that vm, and replies using that info. If the dhcp
packet is from a non-neutron port, the packet won’t even reach the controller.

Use Cases

a DHCP packet that is received by the odl, from a port that is managed by Netvirt and was configured
using the netvirt API, rather then the neutron API, in a way that there is no pre-allocated IP for
network interfaces behind that port - will be handled by the DHCP dynamic allocation pool that is
configured on the network associated with the receiving OVS port.

Proposed change

We wish to forward to the controller, every dhcp packet coming from a non-neutron port as well (as
long as it is configured to use the controller dhcp). Once a DHCP packet is recieved by the
controller, the controller will check if there is already a pre-allocated address by checking if
packet came from a neutron port. if so, the controller will reply using the information from the
neutron port. Otherwise, the controller will find the allocation pool for the network which the
packet came from and will allocate the next free ip. The operation of each allocation pool will
be managed through the Genius ID Manager service that will support the allocation and release of IP
addresses (ids), persistent mapping across controller restarts and more. Neutron IP allocations will
be added to the relevant pools to avoid allocation of the same addresses.

The allocation pool DHCP server will support:

	DHCP methods: Discover, Request, Release, Decline and Inform (future)

	Allocation of a dynamic or specific (future) available IP address from the pool

	(future) Static IP address allocations

	(future) IP Address Lease Time + Rebinding and Renewal Time

	Classless Static Routes for each pool

	Domain names (future) and DNS for each pool

	(future) Probe an address before allocation

	(future) Relay agents

Pipeline changes

This new rule in table 60 will be responsible for forwarding dhcp packets to the controller:

cookie=0x6800000, duration=121472.576s, table=60, n_packets=1, n_bytes=342, priority=49,udp,tp_src=68,tp_dst=67 actions=CONTROLLER:65535

Yang changes

New YANG model to support the configuration of the DHCP allocation pools and allocations, per
network and subnet.

	Allocation-Pool: configuration of allocation pool parameters like range, gateway and dns servers.

	Allocation-Instance: configuration of static IP address allocation and Neutron pre-allocated addresses, per MAC address.

dhcp_allocation_pool.yang

 container dhcp_allocation_pool {
 config true;
 description "contains DHCP Server dynamic allocations";

 list network {
 key "network-id";
 leaf network-id {
 description "network (elan-instance) id";
 type string;
 }
 list allocation {
 key "subnet";
 leaf subnet {
 description "subnet for the dhcp to allocate ip addresses";
 type inet:ip-prefix;
 }

 list allocation-instance {
 key "mac";
 leaf mac {
 description "requesting mac";
 type yang:phys-address;
 }
 leaf allocated-ip {
 description "allocated ip address";
 type inet:ip-address;
 }
 }
 }
 list allocation-pool {
 key "subnet";
 leaf subnet {
 description "subnet for the dhcp to allocate ip addresses";
 type inet:ip-prefix;
 }
 leaf allocate-from {
 description "low allocation limit";
 type inet:ip-address;
 }
 leaf allocate-to {
 description "high allocation limit";
 type inet:ip-address;
 }
 leaf gateway {
 description "default gateway for dhcp allocation";
 type inet:ip-address;
 }
 leaf-list dns-servers {
 description "dns server list";
 type inet:ip-address;
 }
 list static-routes {
 description "static routes list for dhcp allocation";
 key "destination";
 leaf destination {
 description "destination in CIDR format";
 type inet:ip-prefix;
 }
 leaf nexthop {
 description "router ip address";
 type inet:ip-address;
 }
 }
 }
 }
 }

Configuration impact

The feature is activated in the configuration (disabled by default).

adding dhcp-dynamic-allocation-pool-enabled leaf to dhcpservice-config:

dhcpservice-config.yang

 container dhcpservice-config {
 leaf controller-dhcp-enabled {
 description "Enable the dhcpservice on the controller";
 type boolean;
 default false;
 }

 leaf dhcp-dynamic-allocation-pool-enabled {
 description "Enable dynamic allocation pool on controller dhcpservice";
 type boolean;
 default false;
 }
 }

and netvirt-dhcpservice-config.xml:

<dhcpservice-config xmlns="urn:opendaylight:params:xml:ns:yang:dhcpservice:config">
 <controller-dhcp-enabled>false</controller-dhcp-enabled>
 <dhcp-dynamic-allocation-pool-enabled>false</dhcp-dynamic-allocation-pool-enabled>
</dhcpservice-config>

Clustering considerations

Support clustering.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release

Carbon.

Alternatives

Implement and maintain an external DHCP server.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

Introducing a new REST API for the feature

Dynamic allocation pool

URL: /config/dhcp_allocation_pool:dhcp_allocation_pool/

Sample JSON data

{"dhcp_allocation_pool": {
 "network": [
 {
 "network-id": "d211a14b-e5e9-33af-89f3-9e43a270e0c8",
 "allocation-pool": [
 {
 "subnet": "10.1.1.0/24",
 "dns-servers": [
 "8.8.8.8"
],
 "gateway": "10.1.1.1",
 "allocate-from": "10.1.1.2",
 "allocate-to": "10.1.1.200"
 "static-routes": [
 {
 "destination": "5.8.19.24/16",
 "nexthop": "10.1.1.254"
 }
]
]}]}}

Static address allocation

URL: /config/dhcp_allocation_pool:dhcp_allocation_pool/

Sample JSON data

{"dhcp_allocation_pool": {
 "network": [
 {
 "network-id": "d211a14b-e5e9-33af-89f3-9e43a270e0c8",
 "allocation": [
 {
 "subnet": "10.1.1.0/24",
 "allocation-instance": [
 {
 "mac": "fa:16:3e:9d:c6:f5",
 "allocated-ip": "10.1.1.2"
 }
]}]}]}}

CLI

None.

Implementation

Assignee(s)

	Primary assignee:

	Shai Haim (shai.haim@hpe.com)

	Other contributors:

	Alex Feigin (alex.feigin@hpe.com)

Work Items

Here is the link for the Trello Card:
https://trello.com/c/0mgGyJuV/153-dhcp-server-dynamic-allocation-pool

Dependencies

None.

Testing

Unit Tests

N.A.

Integration Tests

N.A.

CSIT

N.A.

Documentation Impact

??

References

Table of Contents

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	Problem description

	Subnet-Route

	Aliveness monitor

	Use Cases

	Proposed change

	Subnet-route

	Communication between VMs in tenant networks and PNFs in provider networks.

	Communication between VMs and PNFs in different tenant networks.

	ARP messages

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create external network with a subnet

	Create internal networks with subnets

	Create a router instance and connect it to an internal subnet and an external subnet

	Create a router instance and connect to it to two internal subnets

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Discovery of directly connected PNFs in Flat/VLAN provider networks

https://git.opendaylight.org/gerrit/#/q/topic:directly_connected_pnf_discovery

This features enables discovering and directing traffic to Physical Network Functions (PNFs)
in Flat/VLAN provider and tenant networks, by leveraging Subnet-Route feature.

Problem description

PNF is a device which has not been created by Openstack but connected to the hypervisors
L2 broadcast domain and configured with ip from one of the neutron subnets.

Ideally, L2/L3 communication between VM instances and PNFs on flat/VLAN networks
would be routed similarly to inter-VM communication. However, there are two main issues
preventing direct communication to PNFs.

	L3 connectivity of tenant network and VLAN provider network, between VMs and PNFs.
A VM is located in a tenant network, A PNF is located in a provider network (external network).
Both networks are connected via a router.
The only way for VMs to communicate with a PNF is via additional hop which is the external gateway,
instead of directly.

	L3 connectivity between VMs and PNFs in a two diffrent tenant networks,
connected by a router, which is not supported and have two problems.
First, traffic initiated from a VMs towards a PNF is dropped because there isn’t
an appropriate rule in FIB table (table 21) to route that traffic.
Second, in the other direction, PNFs are not able to resolve their default gateway.

We want to leverage the Subnet-Route and Aliveness-Monitor features in order to address
the above issues.

Subnet-Route

Today, Subnet-Route feature enables ODL to route traffic to a destination IP address,
even for ip addresses that have not been statically configured by OpenStack,
in the FIB table.
To achieve that, the FIB table contains a flow that match all IP packets in a given subnet range.
How that works?

	A flow is installed in the FIB table, matching on subnet prefix and vpn-id of the network,
with a goto-instruction directing packets to table 22. There, packets are punted to the controller.

	ODL hold the packets, and initiate an ARP request towards the destination IP.

	Upon receiving ARP reply, ODL installs exact IP match flow in FIB table to direct
all further traffic towards the newly learnt MAC of the destination IP

Current limitations of Subnet-Route feature:

	Works for BGPVPN only

	May cause traffic lost due to “swallowing” the packets punted from table 22.

	Uses the source MAC and source IP from the punted packet.

Aliveness monitor

After ODL learns a mac that is associated with an ip address,
ODL schedule an arp monitor task, with the purpose of verifying that the device is still alive
and responding. This is done by periodically sending arp requests to the device.

Current limitation:
Aliveness monitor was not designed for monitoring devices behind flat/VLAN provider network ports.

Use Cases

	
	L3 connectivity of tenant network and VLAN provider network, between VMs and PNFs.

	
	VMs in a private network, PNFs in external network

	L3 connectivity between VMs and PNFs in a two diffrent tenant networks.

Proposed change

Subnet-route

	Upon OpenStack configuration of a Subnet in a provider network,
a new vrf entry with subnet-route augmentation will be created.

	Upon associataion of neutron router with a subnet in a tenant network,
a new vrf entry with subnet-route augmentation will be created.

	Upon receiving ARP reply, install exact IP match flow in FIB table to direct all
further traffic towards the newly resolved PNF, on all relevant computes nodes,
which will be discussed later

	Packets that had been punted to controller will be resubmitted to the openflow pipeline
after installation of exact match flow.

Communication between VMs in tenant networks and PNFs in provider networks.

In this scenario a VM in a private tenant network wants to communicate with a PNF in the
(external) provider network

	The controller will hold the packets, and initiate an ARP request towards the PNF IP.
an ARP request will have source MAC and IP the router gateway
and will be sent from the NAPT switch.

	ARP packets will be punted from the NAPT switch only.

	Upon receiving ARP reply, install exact IP match flow in FIB table to direct all further
traffic towards the newly resolved PNF, on all compute nodes that are associated
with the external network.

	leveraging Aliveness monitor feature to monitor PNFs.
The controller will send ARP requests from the NAPT switch.

Communication between VMs and PNFs in different tenant networks.

In this scenario a VM and a PNF, in different private networks of the same tenant, wants to communicate.
For each subnet prefix, a designated switch will be chosen to communicate directly with the PNFs
in that subnet prefix. That means sending ARP requests to the PNFs and receiving their traffic.

Note: IP traffic from VM instances will retain the src MAC of the VM instance,
instead of replacing it with the router-interface-mac, in order to prevent MAC momvements
in the underlay switches.
This is a limitation until NetVirt supports a MAC per hypervisor implementation.

	A subnet flow will be installed in the FIB table,
matching the subnet prefix and vpn-id of the router.

	ARP request will have a source MAC and IP of the router interface, and will be sent via the provider port
in the designated switch.

	ARP packets will be punted from the designated switch only.

	Upon receiving an ARP reply, install exact IP match flow in FIB table to direct all
further traffic towards the newly resolved PNF, on all computes related to the router

	ARP responder flow: a new ARP responder flow will be installed in the designated switch
This flow will response for ARP requests from a PNF and the response MAC
will be the router interface MAC. This flow will use the LPort-tag of the provider port.

	Split Horizon protection disabling: traffic from PNFs,
arrives to the primary switch(via a provider port) due to the ARP responder rule described above,
and will need to be directed to the proper compute of the designated VM (via a provider port).
This require disabling the split horizon protection.
In order to protects against infinite loops, the packet TTL will be decreased.

	leveraging Aliveness monitor, the controller will send ARP requests from the designated switch.

ARP messages

ARP messages in the Flat/Vlan provider and tenant networks will be punted from
a designated switch, in order to avoid a performance issue in the controller,
of dealing with broadcast packets that may be received in multiple provider ports.
In external networks this switch is the NAPT switch.

Pipeline changes

First use-case depends on hairpinning spec [2], the flows presented here reflects that dependency.

Egress traffic from VM with floating IP to an unresolved PNF in external network

	Packets in FIB table after translation to FIP, will match on subnet flow
and will be punted to controller from Subnet Route table.
Then, ARP request will be generated and be sent to the PNF.
No flow changes are required in this part.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip
set vpn-id=ext-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=ext-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=ext-subnet-ip =>

Subnet Route table (22): => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.
No other flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip
set vpn-id=ext-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=ext-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=pnf-ip,
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Egress traffic from VM using NAPT to an unresolved PNF in external network

	Ingress-DPN is not the NAPT switch, no changes required.
Traffic will be directed to NAPT switch and directed to the outbound NAPT table straight
from the internal tunnel table

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group output to tunnel port of NAPT switch

	Ingress-DPN is the NAPT switch. Packets in FIB table after translation to NAPT,
will match on subnet flow and will be punted to controller from Subnet Route table.
Then, ARP request will be generated and be sent to the PNF. No flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port
set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB tabl (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=ext-subnet-ip =>

Subnet Route table (22) => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.
No other changes required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: vpn-id=router-id TBD set vpn-id=external-net-id =>

NAPT PFIB table (47) match: vpn-id=external-net-id =>

FIB table (21) match: vpn-id=ext-network-id, dst-ip=pnf-ip
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Egress traffic from VM in private network to an unresolved PNF in another private network

	Packet from a VM is punted to the controller, no flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id dst-ip=subnet-ip =>

Subnet Route table (22): => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id dst-ip=pnf-ip
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Ingress traffic to VM in private network from a PNF in another private network

	New flow in table 19, to distinguish our new use-case,
in which we want to decrease the TTL of the packet

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: lport-tag=provider-port, vpn-id=router-id, dst-mac=router-interface-mac,
set split-horizon-bit = 0, decrease-ttl =>

FIB table (21) match: vpn-id=router-id dst-ip=vm-ip
set dst-mac=vm-mac reg6=provider-lport-tag =>

Egress table (220) output to provider port

Yang changes

In odl-l3vpn module, adjacency-list grouping will be enhanced with the following field

 grouping adjacency-list {
 list adjacency {
 key "ip_address";
 ...
 leaf phys-network-func {
 type boolean;
 default false;
 description "Value of True indicates this is an adjacency of a device in a provider network";
 }
 }
}

An adjacency that is added as a result of a PNF discovery, is a primary adjacency with
an empty next-hop-ip list. This is not enough to distinguish PNF at all times.
This new field will help us identify this use-case in a more robust way.

Configuration impact

A configuration mode will be available to turn this feature ON/OFF.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

All traffic of PNFs in each subnet-prefix sends their traffic to a designated switch.

Targeted Release

Carbon

Alternatives

None

Usage

Create external network with a subnet

neutron net-create public-net -- --router:external --is-default --provider:network_type=flat
--provider:physical_network=physnet1
neutron subnet-create --ip_version 4 --gateway 10.64.0.1 --name public-subnet1 <public-net-uuid> 10.64.0.0/16
-- --enable_dhcp=False

Create internal networks with subnets

neutron net-create private-net1
neutron subnet-create --ip_version 4 --gateway 10.0.123.1 --name private-subnet1 <private-net1-uuid>
10.0.123.0/24
neutron net-create private-net2
neutron subnet-create --ip_version 4 --gateway 10.0.124.1 --name private-subnet2 <private-net2-uuid>
10.0.124.0/24

Create a router instance and connect it to an internal subnet and an external subnet

This will allow communication with PNFs in provider network

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> <router1-uuid> <public-net-uuid>

Create a router instance and connect to it to two internal subnets

This will allow East/West communication between VMs and PNFs

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-interface-add <router1-uuid> <private-subnet2-uuid>

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Tomer Pearl <tomer.pearl@hpe.com>

	Other contributors:

	Yakir Dorani <yakir.dorani@hpe.com>

Work Items

	Configure subnet-route flows upon ext-net configuration / router association

	Solve traffic lost issues of punted packets from table 22

	Enable aliveness monitoring on external interfaces.

	Add ARP responder flow for L3-PNF

	Add ARP packet-in from primary switch only

	Disable split-horizon and enable TTL decrease for L3-PNF

Dependencies

This feature depends on hairpinning feature [2]

Testing

Unit Tests

Unit tests will be added for the new functionality

Integration Tests

CSIT

Will need to see if a PNF could be simulated in CSIT

Documentation Impact

References

[1] https://docs.google.com/presentation/d/1ByvEQXUtIyH-H7Bin6OBJNrHjOv-3hpHYzU6Sf6hDbA/edit#slide=id.g11657174d1_0_31
[2] http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/hairpinning-flat-vlan.html

Table of Contents

	ECMP Support for BGP based L3VPN

	Problem description

	Use Cases

	High-Level Components:

	Proposed change

	Pipeline changes

	Local FIB entry/Nexthop Group programming:

	Remote FIB entry/Nexthop Group programming:

	YANG changes

	L3VPN YANG changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	ECMP forwarding through multiple Compute Node and VMs

	ECMP forwarding for dispersed VMs

	ECMP forwarding for co-located VMs

	ECMP forwarding through two DC-Gateways

	ECMP for Intra-DC L3VPN communication

	ECMP Path decision based on Internal/External Tunnel Monitoring

	GRE tunnel state handling

	VxLAN tunnel state handling

	Assumptions

	Reboot Scenarios

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ECMP Support for BGP based L3VPN

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn_ecmp

This Feature is needed for load balancing of traffic in a cloud and also
redundancy of paths for resiliency in cloud.

Problem description

The current L3VPN implementation for BGP VPN doesn’t support load balancing
behavior for external routes through multiple DC-GWs and reaching starting
route behind Nova VMs through multiple compute nodes.

This spec provides implementation details about providing traffic load
balancing using ECMP for L3 routing and forwarding. The load balancing of
traffic can be across virtual machines with each connected to the different
compute nodes, DC-Gateways. ECMP also enables fast failover of traffic
The ECMP forwarding is required for both inter-DC and intra-DC data traffic
types. For inter-DC traffic, spraying from DC-GW to compute nodes & VMs for
the traffic entering DC and spraying from compute node to DC-GWs for the
traffic exiting DC is needed. For intra-DC traffic, spraying of traffic
within DC across multiple compute nodes & VMs is needed. There should be
tunnel monitoring (e.g. GRE-KA or BFD) logic implemented to monitor DC-GW
/compute node GRE tunnels which helps to determine available ECMP paths to
forward the traffic.

Use Cases

	ECMP forwarding of traffic entering a DC (i.e. Spraying of
DC-GW -> OVS traffic across multiple Compute Nodes & VMs).
In this case, DC-GW can load balance the traffic if a static route can be reachable
through multiple NOVA VMs (say VM1 and VM2 connected on different compute nodes)
running some networking application (example: vRouter).

	ECMP forwarding of traffic exiting a DC (i.e. Spraying of
OVS -> DC-GW traffic across multiple DC Gateways).
In this case, a Compute Node can LB the traffic if external route can be
reachable from multiple DC-GWs.

	ECMP forwarding of intra-DC traffic (i.e. Spraying of traffic within DC
across multiple Compute Nodes & VMs)
This is similar to UC1, but load balancing behavior is applied on remote Compute
Node for intra-DC communication.

	OVS -> DC-GW tunnel status based ECMP for inter and intra-DC traffic.
Tunnel status based on monitoring (BFD) is considered in ECMP path set determination.

High-Level Components:

The following components of the Openstack - ODL solution need to be enhanced to provide
ECMP support:

	OpenStack Neutron BGPVPN Driver (for supporting multiple RDs)

	OpenDaylight Controller (NetVirt VpnService)

We will review enhancements that will be made to each of the above components in following
sections.

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager and VPN Interface Manager)

	FIB Manager

Pipeline changes

Local FIB entry/Nexthop Group programming:

A static route (example: 100.0.0.0/24) reachable through two VMs connected
with same compute node.

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>Local VM Group=>Table 220

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=100.0.0.0/24 actions=write_actions(group:150002)
group_id=150002,type=select,bucket=weight:50,actions=group:150001,bucket=weight:50,actions=group:150000
group_id=150001,type=all,bucket=actions=set_field:fa:16:3e:34:ff:58->eth_dst,load:0x200->NXM_NX_REG6[],resubmit(,220)
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:eb:61:39->eth_dst,load:0x100->NXM_NX_REG6[],resubmit(,220)

Remote FIB entry/Nexthop Group programming:

	A static route (example: 10.0.0.1/32) reachable through two VMs connected with
different compute node.

on remote compute node,

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>VxLAN port

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=10.0.0.1 actions=set_field:0xEF->tun_id, group:150003
group_id=150003,type=select,bucket=weight:50,actions=output:1,bucket=weight:50,actions=output:2

on local compute node,

Here, From LB group, packets flow through local VM and VxLAN port

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>Local VM Group=>Table 220

………………………………………………………………………………=> VxLAN port

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=10.0.0.1 actions=group:150003
group_id=150003,type=select,bucket=weight:50,group=150001,bucket=weight:50,actions=set_field:0xEF->tun_id, output:2
group_id=150001,type=all,bucket=actions=set_field:fa:16:3e:34:ff:58->eth_dst,load:0x200->NXM_NX_REG6[],resubmit(,220)

	An external route (example: 20.0.0.1/32) reachable through two DC-GWs.

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>GRE port

cookie=0x8000003, duration=13.044s, table=21, n_packets=0, n_bytes=0,priority=42,ip,metadata=0x222ec/0xfffffffe,nw_dst=20.0.0.1 actions=load:0x64->NXM_NX_REG0[0..19],load:0xc8->NXM_NX_REG1[0..19],group:150111
group_id=150111,type=select,bucket=weight:50,actions=push_mpls:0x8847, move:NXM_NX_REG0[0..19]->OXM_OF_MPLS_LABEL[],output:3, bucket=weight:50,actions=push_mpls:0x8847,move:NXM_NX_REG1[0..19]->OXM_OF_MPLS_LABEL[],output:4

YANG changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang and odl-fib.yang
to support ECMP functionality.

L3VPN YANG changes

route-distinguisher type is changed from leaf to leaf-list in vpn-af-config grouping in l3vpn.yang.

l3vpn.yang

 grouping vpn-af-config {
 description "A set of configuration parameters that is applicable to both IPv4 and
 IPv6 address family for a VPN instance .";

 leaf-list route-distinguisher {
 description "The route-distinguisher command configures a route distinguisher (RD)
 for the IPv4 or IPv6 address family of a VPN instance.
 Format is ASN:nn or IP-address:nn.";
 config "true";
 type string{
 length "3..21";
 }
 }
 }

ODL-L3VPN YANG changes

	Add vrf-id (RD) in adjacency list in odl-l3vpn.yang.

odl-l3vpn.yang

 grouping adjacency-list {
 list adjacency{
 key "ip_address";
 leaf-list next-hop-ip-list { type string; }
 leaf ip_address {type string;}
 leaf primary-adjacency {
 type boolean;
 default false;
 description "Value of True indicates this is a primary adjacency";
 }

 leaf label { type uint32; config "false"; } /*optional*/
 leaf mac_address {type string;} /*optional*/
 leaf vrf-id {type string;}
 }
 }

	vpn-to-extraroute have to be updated with multiple RDs (vrf-id) when extra route from VMs
connected with different compute node and when connected on same compute node, just use
same RD and update nexthop-ip-list with new VM IP address like below.

odl-l3vpn.yang

 container vpn-to-extraroutes {
 config false;
 list vpn-extraroutes {
 key "vpn-name";
 leaf vpn-name {
 type uint32;
 }

 list extra-routes {
 key "vrf-id";
 leaf vrf-id {
 description "The vrf-id command configures a route distinguisher (RD) for the IPv4
 or IPv6 address family of a VPN instance or vpn instance name for
 internal vpn case.";
 type string;
 }

 list route-paths {
 key "prefix";
 leaf prefix {type string;}
 leaf-list nexthop-ip-list {
 type string;
 }
 }
 }
 }
 }

	To manage RDs for extra with multiple next hops, the following YANG
model is required to advertise (or) withdraw the extra routes with
unique NLRI accordingly.

odl-l3vpn.yang

 container extraroute-routedistinguishers-map {
 config true;
 list extraroute-routedistingueshers {
 key "vpnid";
 leaf vpnid {
 type uint32;
 }

 list dest-prefixes {
 key "dest-prefix";
 leaf dest-prefix {
 type string;
 mandatory true;
 }

 leaf-list route-distinguishers {
 type string;
 }
 }
 }
 }

ODL-FIB YANG changes

	When Quagga BGP announces route with multiple paths, then it is ODL responsibility
to program Fib entries in all compute nodes where VPN instance blueprint is present,
so that traffic can be load balanced between these two DC gateways. It requires
changes in existing odl-fib.yang model (like below) to support multiple
routes for same destination IP prefix.

odl-fib.yang

 grouping vrfEntries {
 list vrfEntry {
 key "destPrefix";
 leaf destPrefix {
 type string;
 mandatory true;
 }

 leaf origin {
 type string;
 mandatory true;
 }

 list route-paths {
 key "nexthop-address";
 leaf nexthop-address {
 type string;
 mandatory true;
 }

 leaf label {
 type uint32;
 }
 }
 }
 }

	New YANG model to update load balancing next hop group buckets according
to VxLAN/GRE tunnel status [Note that these changes are required only if
watch_port in group bucket is not working based on tunnel port liveness
monitoring affected by the BFD status]. When one of the VxLAN/GRE tunnel
is going down, then retrieve nexthop-key from dpid-l3vpn-lb-nexthops by
providing tep-device-ids from src-info and dst-info of StateTunnelList
while handling its update DCN. After retrieving next hop key, fetch
target-device-id list from l3vpn-lb-nexthops and reprogram
VxLAN/GRE load balancing group in each remote Compute Node based
on tunnel state between source and destination Compute Node. Similarly,
when tunnel comes up, then logic have to be rerun to add its
bucket back into Load balancing group.

odl-fib.yang

 container l3vpn-lb-nexthops {
 config false;
 list nexthops {
 key "nexthop-key";
 leaf group-id { type string; }
 leaf nexhop-key { type string; }
 leaf-list target-device-id { type string;
 //dpId or ip-address }
 }
 }

 container dpid-l3vpn-lb-nexthops {
 config false;
 list dpn-lb-nexthops {
 key "src-dp-id dst-device-id";
 leaf src-dp-id { type uint64; }
 leaf dst-device-id { type string;
 //dpId or ip-address }
 leaf-list nexthop-keys { type string; }
 }
 }

ECMP forwarding through multiple Compute Node and VMs

In some cases, extra route can be added which can have reachability through
multiple Nova VMs. These VMs can be either connected on same compute node
(or) different Compute Nodes. When VMs are in different compute nodes, DC-GW
should learn all the route paths such that ECMP behavior can be applied for
these multi path routes. When VMs are co-located in same compute node, DC-GW
will not perform ECMP and compute node performs traffic splitting instead.

ECMP forwarding for dispersed VMs

When configured extra route are reached through nova VMs which are connected
with different compute node, then it is ODL responsibility to advertise these
multiple route paths (but with same MPLS label) to Quagga BGP which in turn
sends these routes into DC-GW. But DC-GW replaces the existing route with a new
route received from the peer if the NLRI (prefix) is same in the two routes.

This is true even when multipath is enabled on the DC-GW and it is as per standard
BGP RFC 4271, Section 9 UPDATE Message Handling. Hence the route is lost in DC-GW
even before path computation for multipath is applied.This scenario is solved by
adding multiple route distinguisher (RDs) for the vpn instance and let ODL uses
the list of RDs to advertise the same prefix with different BGP NHs. Multiple RDs
will be supported only for BGP VPNs.

ECMP forwarding for co-located VMs

When extra routes on VM interfaces are connected with same compute node, LFIB/FIB
and Terminating service table flow entries should be programmed so that traffic can
be load balanced between local VMs. This can be done by creating load balancing next
hop group for each vpn-to-extraroute (if nexthop-ip-list size is greater than 1) with
buckets pointing to the actual VMs next hop group on source Compute Node. Even for the
co-located VMs, VPN interface manager should assign separate RDs for each adjacency of
same dest IP prefix and let route can be advertised again to Quagga BGP with same next
hop (TEP IP address). This will enable DC-Gateway to realize ECMP behavior when an IP
prefix can be reachable through multiple co located VMs on one Compute Node and an
another VM connected on different Compute Node.

To create load balancing next hop group, the dest IP prefix is used as the key to
generate group id. When any of next hop is removed, then adjust load balancing nexthop
group so that traffic can be sent through active next hops.

ECMP forwarding through two DC-Gateways

The current ITM implementation provides support for creating multiple GRE tunnels for
the provided list of DC-GW IP addresses from compute node. This should help in creating
corresponding load balancing group whenever Quagga BGP is advertising two routes on same
IP prefix pointing to multiple DC GWs. The group id of this load balancing group can be
derived from sorted order of DC GW TEP IP addresses with the following format dc_gw_tep_ip
_address_1: dc_gw_tep_ip_address_2. This will be useful when multiple external IP prefixes
share the same next hops. The load balancing next hop group buckets is programmed according
to sorted remote end point DC-Gateway IP address. The support of action move:NXM_NX_REG0(1)
-> MPLS label is not supported in ODL openflowplugin. It has to be implemented. Since there
are two DC gateways present for the data center, it is possible that multiple equal cost
routes are supplied to ODL by Quagga BGP like Fig 2. The current Quagga BGP doesn’t have
multipath support and it will be done. When Quagga BGP announces route with multiple
paths, then it is ODL responsibility to program Fib entries in all compute nodes where
VPN instance blueprint is present, so that traffic can be load balanced between these
two DC gateways. It requires changes in existing odl-fib.yang model (like below) to
support multiple routes for same destination IP prefix.

BGPManager should be able to create vrf entry for the advertised IP prefix with multiple
route paths. VrfEntryListener listens to DCN on these vrf entries and program Fib entries
(21) based on number route paths available for given IP prefix. For the given (external)
destination IP prefix, if there is only one route path exists, use the existing approach
to program FIB table flow entry matches on (vpnid, ipv4_dst) and actions with push MPLS
label and output to gre tunnel port. For the given (external) destination IP prefix, if
there are two route paths exist, then retrieve next hop ip address from routes list in
the same sorted order (i.e. using same logic which is used to create buckets for load
balancing next hop group for DC- Gateway IP addresses), then program FIB table flow entry
with an instruction like Fig 3. It should have two set field actions where first action sets
MPLS label to NX_REG0 for first sorted DC-GW IP address and second action sets MPLS label
to NX_REG1 for the second sorted DC-GW IP address. When more than two DC Gateways are used,
then more number of NXM Registries have to be used to push appropriate MPLS label before
sending it to next hop group. It needs operational DS container to have mapping between DC
Gateway IP address and NXM_REG. When one of the route is withdrawn for the IP prefix, then
modify the FIB table flow entry with with push MPLS label and output to the available
gre tunnel port.

ECMP for Intra-DC L3VPN communication

ECMP within data center is required to load balance the data traffic when extra route can
be reached through multiple next hops (i.e. Nova VMs) when these are connected with different
compute nodes. It mainly deals with how Compute Nodes can spray the traffic when dest IP prefix
can be reached through two or more VMs (next hops) which are connected with multiple compute
nodes.

When there are multiple RDs (if VPN is of type BGP VPN) assigned to VPN instance so that VPN
engine can be advertise IP route with different RDs to achieve ECMP behavior in DC-GW as
mentioned before. But for intra-DC, this doesn’t make any more sense since it’s all about
programming remote FIB entries on computes nodes to achieve data traffic
spray behavior.

Irrespective of RDs, when multiple next hops (which are from different Compute Nodes) are
present for the extra-route adjacency, then FIB Manager has to create load balancing next
hop group in remote compute node with buckets pointing with targeted Compute Node VxLAN
tunnel ports.

To allocate group id for this load balancing next hop, the same destination IP prefix is
used as the group key. The remote FIB table flow should point to this next hop group after
writing prefix label into tunnel_id. The bucket weight of remote next hop is adjusted
according to number of VMs associated to given extra route and on which compute node
the VMs are connected. For example, two compute node having one VM each, then bucket
weight is 50 each. One compute node having two VMs and another compute node having one
VM, then bucket weight is 66 and 34 each. The hop-count property in vrfEntry data store
helps to decide what is the bucket weight for each bucket.

ECMP Path decision based on Internal/External Tunnel Monitoring

ODL will use GRE-KA or BFD protocol to implement monitoring of GRE external tunnels.
This implementation detail is out of scope in this document. Based on the tunnel state,
GRE Load Balancing Group is adjusted accordingly as mentioned like below.

GRE tunnel state handling

As soon as GRE tunnel interface is created in ODL, interface manager uses alivenessmonitor
to monitor the GRE tunnels for its liveness using GRE Keep-alive protocol. When tunnel state
changes, it has to handled accordingly to adjust above load balancing group so that data
traffic is sent to only active DC-GW tunnel. This can be done with listening to update
StateTunnelList DCN.

When one GRE tunnel is operationally going down, then retrieve the corresponding bucket
from the load balancing group and delete it.
When GRE tunnel comes up again, then add bucket back into load balancing group and
reprogram it.

When both GRE tunnels are going down, then just recreate load balancing group with empty.
Withdraw the routes from that particular DC-GW.
With the above implementation, there is no need of modifying Fib entries for GRE tunnel
state changes.

But when BGP Quagga withdrawing one of the route for external IP prefix, then reprogram
FIB flow entry (21) by directly pointing to output=<gre_port> after pushing MPLS label.

VxLAN tunnel state handling

Similarly, when VxLAN tunnel state changes, the Load Balancing Groups in Compute Nodes have
to be updated accordingly so that traffic can flow through active VxLAN tunnels. It can be
done by having config mapping between target data-path-id to next hop group Ids
and vice versa.

For both GRE and VxLAN tunnel monitoring, L3VPN has to implement the following YANG model
to update load balancing next hop group buckets according to tunnel status.

When one of the VxLAN/GRE tunnel is going down, then retrieve nexthop-key from
dpid-l3vpn-lb-nexthops by providing tep-device-ids from src-info and dst-info of
StateTunnelList while handling its update DCN.

After retrieving next hop key, fetch target-device-id list from l3vpn-lb-nexthops
and reprogram VxLAN/GRE load balancing group in each remote Compute Node based on
tunnel state between source and destination Compute Node. Similarly, when tunnel
comes up, then logic have to be rerun to add its bucket back into
Load balancing group.

Assumptions

The support for action move:NXM_NX_REG0(1) -> MPLS label is already available
in Compute Node.

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Implementation

Assignee(s)

	Primary assignee(s):

	
	Manu B <manu.b@ericsson.com>

	Kency Kurian <kency.kurian@ericsson.com>

	Gobinath <gobinath@ericsson.com>

	P Govinda Rajulu <p.govinda.rajulu@ericsson.com>

	Other contributors:

	
	Periyasamy Palanisamy <periyasamy.palanisamy@ericsson.com>

Work Items

The Trello cards have already been raised for this feature
under l3vpn_ecmp.

Link for the Trello Card: https://trello.com/c/8E3LWIkq/121-ecmp-support-for-bgp-based-l3vpn-l3vpn-ecmp

Dependencies

Quagga BGP multipath support and APIs. This is needed to support when two DC-GW advertises
routes for same external prefix with different route labels
GRE tunnel monitoring. This is need to implement ECMP forwarding based on MPLSoGRE tunnel state.
Support for action move:NXM_NX_REG0(1) -> MPLS label in ODL openflowplugin

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

	https://docs.google.com/document/d/1KRxrIGCLCBuz2D8f8IhU2I84VrM5EMa1Y7Scjb6qEKw

Table of Contents

	Element Counters

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Element Counters

https://git.opendaylight.org/gerrit/#/q/element-counters

This feature depends on the Netvirt statistics feature.

This feature enables collecting statistics on filtered traffic passed from/to a network element. For example: traffic outgoing/incoming from a specific IP, tcp traffic, udp traffic, incoming/outgoing traffic only.

Problem description

Collecting statistics on filtered traffic sent to/from a VM is currently not possible.

Use Cases

	Tracking East/West communication between local VMs.

	Tracking East/West communication between VMs that are located in different compute nodes.

	Tracking communication between a local VM and an IP located in an external network.

	Tracking TCP/UDP traffic sent from/to a VM.

	Tracking dropped packets between 2 VMs.

Proposed change

The Netvirt Statistics Plugin will receive requests regarding element filtered counters.
A new service will be implemented (“CounterService”), and will be associated with the relevant interfaces (either ingress side, egress sides or both of them).

	Ingress traffic: The service will be the first one in the pipeline after the Ingress ACL service.

	Egress traffic: The service will be the last one after the Egress ACL service.

	The input for counters request regarding VM A, and incoming and outgoing traffic from VM B, will be VM A interface uuid and VM B IP.

	The input can also include other filters like TCP only traffic, UDP only traffic, incoming/outgoing traffic.

	In order to track dropped traffic between VM A and VM B, the feature should be activated on both VMS (either in the same compute node or in different compute nodes). service binding will be done on both VMs relevant interfaces.

	If the counters request involves an external IP, service binding will be done only on the VM interface.

	Adding/Removing the “CounterService” should be dynamic and triggered by requesting element counters.

The Statistics Plugin will use OpenFlow flow statistic requests for these new rules,
allowing it to gather statistics regarding the traffic between the 2 elements.
It will be responsible to validate and filter the counters results.

Pipeline changes

Two new tables will be used: table 219 for outgoing traffic from the VM, and table 249 for incoming traffic from the VM.
In both ingress and egress pipelines, the counter service will be just after the appropriate ACL service.
The default rule will resubmit traffic to the appropriate dispatcher table.

Assuming we want statistics on VM A traffic, received or sent from VM B.

VM A Outgoing Traffic (vm interface)

In table 219 traffic will be matched against dst-ip and lport tag.

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: dst-ip=vmB-ip, lport-tag=vmA-interface, actions: resubmit to table 17 =>

VM A Incoming Traffic (vm interface)

In table 249 traffic will be matched against src-ip and lport tag.

Egress dispatcher table (220): match: lport-tag=vmA-interface, actions: go to table 249 =>

Egress counters table (249): match: lport-tag=vmA-interface, src-ip=vmB-ip, actions: resubmit to table 220 =>

Assuming we want statistics on VM A incoming TCP traffic.

VM A Outgoing Traffic (vm interface)

Egress dispatcher table (220): match: lport-tag=vmA-interface, actions: go to table 249 =>

Egress counters table (249): match: lport-tag=vmA-interface, tcp, actions: resubmit to table 220 =>

Assuming we want statistics on VM A outgoing UDP traffic.

VM A Incoming traffic (vm interface)

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: lport-tag=vmA-interface, udp, actions: resubmit to table 17 =>

Assuming we want statistics on all traffic sent to VM A port.

VM A Incoming traffic (vm interface)

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: lport-tag=vmA-interface, actions: resubmit to table 17 =>

Yang changes

Netvirt Statistics module will be enhanced with the following RPC:

grouping result {
 list counterResult {
 key id;
 leaf id {
 type string;
 }
 list groups {
 key name;
 leaf name {
 type string;
 }
 list counters {
 key name;
 leaf name {
 type string;
 }
 leaf value {
 type uint64;
 }
 }
 }
 }
}

grouping filters {
 leaf-list groupFilters {
 type string;
 }
 leaf-list counterFilter {
 type string;
 }
}

grouping elementRequestData {
 container filters {
 container tcpFilter {
 leaf on {
 type boolean;
 }
 leaf srcPort {
 type int32;
 default -1;
 }
 leaf dstPort {
 type int32;
 default -1;
 }
 }

 container udpFilter {
 leaf on {
 type boolean;
 }
 leaf dstPort {
 type int32;
 default -1;
 }
 leaf srcPort {
 type int32;
 default -1;
 }
 }

 container ipFilter {
 leaf ip {
 type string;
 default "";
 }
 }
 }
}

container elementCountersRequestConfig {
 list counterRequests {
 key "requestId";
 leaf requestId {
 type string;
 }
 leaf lportTag {
 type int32;
 }
 leaf dpn {
 type uint64;
 }
 leaf portId {
 type string;
 }
 leaf trafficDirection {
 type string;
 }
 uses elementRequestData;
 }
}

rpc acquireElementCountersRequestHandler {
 input {
 leaf portId {
 type string;
 }
 container incomingTraffic {
 uses elementRequestData;
 }
 container outgoingTraffic {
 uses elementRequestData;
 }
 uses filters;
 }
 output {
 leaf incomingTrafficHandler {
 type string;
 }
 leaf outcoingTrafficHandler {
 type string;
 }
 }
}

rpc releaseElementCountersRequestHandler {
 input {
 leaf handler {
 type string;
 }
 }
 output {
 }
}

rpc getElementCountersByHandler {
 input {
 leaf handler {
 type string;
 }
 }
 output {
 uses result;
 }
}

Configuration impact

The described above YANG model will be saved in the data store.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Since adding the new service is done by a request (as well as removing it), not all packets will be sent to the new tables described above.

Targeted Release

Carbon

Alternatives

None

Usage

	Create router, network, 2 VMS, VXLAN tunnel.

	Connect to each one of the VMs and send ping to the other VM.

	Use REST to get the statistics.

Run the following to get interface ids:

http://10.0.77.135:8181/restconf/operational/ietf-interfaces:interfaces-state/

Choose VM B interface and use the following REST in order to get the statistics:
Assuming VM A IP = 1.1.1.1, VM B IP = 2.2.2.2

Acquire counter request handler:

10.0.77.135:8181/restconf/operations/statistics-plugin:acquireElementCountersRequestHandler, {"input":{"portId":"4073b4fe-a3d5-47c0-b37d-4fb9db4be9b1", "incomingTraffic":{"filters":{"ipFilter":{"ip":"1.1.3.9"}}}}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Release handler:

10.0.77.135:8181/restconf/operations/statistics-plugin:releaseElementCountersRequestHandler, input={"input":{"handler":"1"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Get counters:

10.0.77.135:8181/restconf/operations/statistics-plugin:getElementCountersByHandler, input={"input":{"handler":"1"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Example counters output:

 {
"output": {
 "counterResult": [
 {
 "id": "SOME UNIQUE ID",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 298000000
 },
 {
 "name": "durationSecondCount",
 "value": 10369
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesTransmittedCount",
 "value": 648
 },
 {
 "name": "bytesReceivedCount",
 "value": 0
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsTransmittedCount",
 "value": 8
 },
 {
 "name": "packetsReceivedCount",
 "value": 0
 }
]
 }
]
 }
]
}

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Guy Regev <guy.regev@hpe.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/88MnwGwb/129-element-to-element-counters

	Add new service in Genius.

	Implement new rules installation.

	Update Netvirt Statistics module to support the new counters request.

Dependencies

None

Testing

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Netvirt statistics feature: https://git.opendaylight.org/gerrit/#/c/50164/8

Table of Contents

	Hairpinning of floating IPs in flat/VLAN provider networks

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create external network with two subnets

	Create internal networks with subnets

	Create two router instances and connect each router to one internal subnet and one external subnet

	Create router instance connected to both external subnets and the remaining internal subnets

	Create floating ips from both subnets

	Create 2 VM instance in each subnet and associate with floating ips

	Connectivity tests

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Hairpinning of floating IPs in flat/VLAN provider networks

https://git.opendaylight.org/gerrit/#/q/topic:hairpinning

This feature enables VM instances connected to the same router to communicate with each other using their
floating ip addresses directly without traversing via the external gateway.

Problem description

Local and East/West communication between VMs using floating ips for flat/VLAN provider types is not
handled internally by the pipeline currently. As a result, this type of traffic is mistakenly classified
as North/South and routed to the external network gateway.

Today, SNATted traffic to flat/VLAN network is routed directly to the external gateway after traversing
the SNAT/outbound NAPT pipeline using OF group per external network subnet.
The group itself sets the destination mac as the mac address of the external gw associated with the floating ip/
router gw and output to the provider network port via the egress table.
This workflow would be changed to align with the VxLAN provider type and direct SNATted traffic back to the FIB
where the destination can then resolved to be floating ip on local or remote compute node.

Use Cases

	Local and East/West communication between VMs co-located on the same compute node using associated floating ip.

	Local and East/West communication between VMs located on different compute nodes using associated floating ip.

Proposed change

	The vpn-id used for classification of floating ips and router gateway external addresses in flat/VLAN
provider networks is based on the external network id. It will be changed to reflect the subnet id
associated with the floating ip/router gateway. This will allow traffic from the SNAT/outbound NAPT
table to be resubmitted back to the FIB while preserving the subnet id.

	Each floating ip already has VRF entry in the fib table. The vpn-id of this entry will also be based
on the subnet id of the floating ip instead of the external network id. If the VM associated with the
floating ip is located on remote compute node, the traffic will be routed to the remote compute based
on the provider network of the subnet from which the floating ip was allocated e.g. if the private
network is VxLAN and the external network is VLAN provider, traffic to floating ip on remote compute
node will be routed to the provider port associated with the VLAN provider and not the tunnel
associated with the VxLAN provider.

	In the FIB table of the egress node, the destination mac will be replaced with the mac address
of the floating ip in case of routing to remote compute node. This will allow traffic from flat/VLAN
provider enter the L3 pipeline for DNAT of the floating ip.

	Default flow will be added to the FIB table for each external subnet-id. If no floating ip match
was found in the FIB table for the subnet id, the traffic will be sent to the group of the external
subnet. Each group entry will perform the following:
(a) replace the destination mac address to the external gateway mac address
(b) send the traffic to the provider network via the egress table.

	Ingress traffic from flat/VLAN provider network is bounded to L3VPN service using vpn-id of the
external network id. To allow traffic classification based on subnet id for floating ips and router
gateway ips, the GW MAC table will replace the vpn-id of the external network with
the vpn-id of the subnet id of the floating ip. For ingress traffic to router gateway mac, the vpn-id
of the correct subnet will be deterined at the FIB table based on the router gateway fixed ip.

	A new model will be introduced to contain the new vpn/subnet associations - odl-nat:subnets-networks.
This model will be filled only for external flat/VLAN provider networks and will take precedence over
odl-nat:external-networks model for selection of vpn-id. BGPVPN use cases won’t be affected by these
changes as this model will not be applicable for these scenarios.

Pipeline changes

Egress traffic from VM with floating IP to the internet

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ip

	Packets from SNAT table resubmitted back to the FIB rather than straight to the external network subnet-id group.
In the FIB table it should be matched against a new flow with lower priority than any other flow containing
dst-ip match. Traffic will be redirected based on the vpn-id of the floating ip subnet to the external network
subnet-id group.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip set vpn-id=fip-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id =>

Subnet-id group: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

Ingress traffic from the internet to VM with floating IP

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=floating-ip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=fip =>

Pre DNAT table (25) match: dst-ip=fip set vpn-id=router-id,dst-ip=vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm-ip =>

Local Next-Hop group: set dst-mac=vm-mac, reg6=vm-lport-tag =>

Egress table (220) output to VM port

Egress traffic from VM with no associated floating IP to the internet - NAPT switch

	For Outbound NAPT, NAPT PFIB and FIB tables the vpn-id will be based on the subnet-id of the router gateway

	Packets from NAPT PFIB table resubmitted back to the FIB rather than straight to the external network subnet-id group.
In the FIB table it should be matched against a new flow with lower priority than any other flow containing
dst-ip match. Traffic will be redirected based on the vpn-id of the router gateway subnet to the external network
subnet-id group.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB table (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=router-gw-subnet-id =>

Subnet-id group: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

Ingress traffic from the internet to VM with no associated floating IP - NAPT switch

	For FIB table the vpn-id will be based on the subnet-id of the router gateway

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match vpn-id=ext-net-id,dst-mac=router-gw mac =>

FIB table (21) match: vpn-id=ext-net-id,dst-ip=router-gw set vpn-id=router-gw-subnet-id =>

Inbound NAPT table (44) match: dst-ip=router-gw,port=ext-port set dst-ip=vm-ip,vpn-id=router-id,port=int-port =>

PFIB table (47) match: vpn-id=router-id =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm-ip =>

Local Next-Hop group: set dst-mac=vm-mac,reg6=vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - VM traffic to floating ip on the same compute node

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ips

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=src-vm-ip set vpn-id=fip-subnet-id,src-ip=src-fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=src-fip set src-mac=src-fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,reg6=dst-vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - VM traffic to floating ip on remote compute node

VM originating the traffic (Ingress DPN):

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ip

	The destination mac is updated by the FIB table to be the floating ip mac. Traffic is sent to the egress DPN over
the port of the flat/VLAN provider network.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=src-vm-ip set vpn-id=fip-subnet-id,src-ip=src-fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=src-fip set src-mac=src-fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip set dst-mac=dst-fip-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

VM receiving the traffic (Egress DPN):

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=dst-fip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,lport-tag=dst-vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - traffic from VM with no associated floating IP to floating ip on remote compute node

VM originating the traffic (Ingress DPN) is non-NAPT switch:

	No flow changes required. Traffic will be directed to NAPT switch and directed to the outbound NAPT table straight
from the internal tunnel table

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group output to tunnel port of NAPT switch =>

VM originating the traffic (Ingress DPN) is the NAPT switch:

	For Outbound NAPT, NAPT PFIB, Pre DNAT, DNAT and FIB tables the vpn-id will be based on the common subnet-id of the
router gateway and the floating-ip.

	Packets from NAPT PFIB table resubmitted back to the FIB where they will be matched against the destnation floating ip.

	The destination mac is updated by the FIB table to be the floating ip mac. Traffic is sent to the egress DPN over
the port of the flat/VLAN provider network.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB table (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=router-gw-subnet-id dst-ip=dst-fip set dst-mac=dst-fip-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

VM receiving the traffic (Egress DPN):

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=dst-fip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,lport-tag=dst-vm-lport-tag =>

Egress table (220) output to VM port

Yang changes

odl-nat module will be enhanced with the following container

container external-subnets {
 list subnets {
 key id;
 leaf id {
 type yang:uuid;
 }
 leaf vpnid {
 type yang:uuid;
 }
 leaf-list router-ids {
 type yang:uuid;
 }
 leaf external-network-id {
 type yang:uuid;
 }
 }
}

This model will be filled out only for flat/VLAN external network provider types.
If this model is missing, vpn-id will be taken from odl-nat:external-networks model
to maintain compatibility with BGPVPN models.

odl-nat:ext-routers container will be enhanced with the list of the external subnet-ids
associated with the router.

container ext-routers {
 list routers {
 key router-name;
 leaf router-name {
 type string;
 }
 ...

 leaf-list external-subnet-id {
 type yang:uuid; }
 }
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Create external network with two subnets

neutron net-create public-net -- --router:external --is-default --provider:network_type=flat
--provider:physical_network=physnet1
neutron subnet-create --ip_version 4 --gateway 10.64.0.1 --name public-subnet1 <public-net-uuid> 10.64.0.0/16
-- --enable_dhcp=False
neutron subnet-create --ip_version 4 --gateway 10.65.0.1 --name public-subnet2 <public-net-uuid> 10.65.0.0/16
-- --enable_dhcp=False

Create internal networks with subnets

neutron net-create private-net1
neutron subnet-create --ip_version 4 --gateway 10.0.123.1 --name private-subnet1 <private-net1-uuid>
10.0.123.0/24
neutron net-create private-net2
neutron subnet-create --ip_version 4 --gateway 10.0.124.1 --name private-subnet2 <private-net2-uuid>
10.0.124.0/24
neutron net-create private-net3
neutron subnet-create --ip_version 4 --gateway 10.0.125.1 --name private-subnet3 <private-net3-uuid>
10.0.125.0/24
neutron net-create private-net4
neutron subnet-create --ip_version 4 --gateway 10.0.126.1 --name private-subnet4 <private-net4-uuid>
10.0.126.0/24

Create two router instances and connect each router to one internal subnet and one external subnet

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> <router1-uuid> <public-net-uuid>
neutron router-create router2
neutron router-interface-add <router2-uuid> <private-subnet2-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet2-uuid> <router2-uuid> <public-net-uuid>

Create router instance connected to both external subnets and the remaining internal subnets

neutron router-create router3
neutron router-interface-add <router3-uuid> <private-subnet3-uuid>
neutron router-interface-add <router3-uuid> <private-subnet4-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> --fixed-ip subnet_id=<public-subnet2-uuid>
<router3-uuid> <public-net-uuid>

Create floating ips from both subnets

neutron floatingip-create --subnet <public-subnet1-uuid> public-net
neutron floatingip-create --subnet <public-subnet1-uuid> public-net
neutron floatingip-create --subnet <public-subnet2-uuid> public-net

Create 2 VM instance in each subnet and associate with floating ips

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net1-uuid> VM1
nova floating-ip-associate VM1 <fip1-public-subnet1>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net1-uuid> VM2
nova floating-ip-associate VM2 <fip2-public-subnet1>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net2-uuid> VM3
nova floating-ip-associate VM3 <fip1-public-subnet2>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net2-uuid> VM4
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net3-uuid> VM5
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net4-uuid> VM6

Connectivity tests

	Connect to the internet from all VMs. VM1 and VM2 will route traffic through external gateway 10.64.0.1
VM3 and VM4 route traffic through external gateway 10.65.0.1.

	Connect to the internet from VM5 and VM6. Each connection will be routed to different external gateway
with the corresponding subnet router-gateway ip.

	Hairpinning when source VM is associated with floating ip - ping between VM1 and VM2 using their floating ips.

	Hairpinning when source VM is not associated with floating ip - ping from VM4 to VM3 using floating ip.
Since VM4 has no associated floating ip a NAPT entry will be allocated using the router-gateway ip.

Features to Install

odl-netvirt-openstack

REST API

N/A

CLI

N/A

Implementation

Assignee(s)

	Primary assignee:

	Yair Zinger <yair.zinger@hpe.com>

	Other contributors:

	Tali Ben-Meir <tali@hpe.com>

Work Items

https://trello.com/c/uDcQw95v/104-pipeline-changes-fip-w-multiple-subnets-in-ext-net-hairpinning

	Add external-subnets model

	Add vpn-instances for external flat/VLAN sunbets

	Change pipeline to prefer vpn-id from external-subnets over vpn-id from external-networks

	Add write metadata to GW MAC table for floating ip/router gw mac addresses

	Add default subnet-id match in FIB table to external subnet group entry

	
	Changes in remote next-hop flow for floating ip in FIB table

	
	Set destination mac to floating ip mac

	Set egress actions to provider port of the network attached to the floating ip subnet

	Resubmit SNAT + Outbound NAPT flows to FIB table

Dependencies

None

Testing

Unit Tests

Integration Tests

CSIT

	Hairpinning between VMs in the same subnet

	Hairpinning between VMs in different subnets connected to the same router

	Hairpinning with NAPT - source VM is not associated with floating ip

	Traffic to external network with multiple subnets

Documentation Impact

None

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

Table of Contents

	IPv6 DC-Internet L3 North-South connectivity using L3VPN provider network types.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Fib Manager changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 DC-Internet L3 North-South connectivity using L3VPN provider network types.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-l3vpn-internet

In this specification we will be discussing the high level design of
IPv6 Datacenter to Internet North-South connectivity support in OpenDaylight
using L3VPN provider network type use-case.

Problem description

Provide IPv6 connectivity to virtual machines located in different subnets
spread over multiple sites or Data center can be achieved through use of
Globally Unique Addresses and capacity to update enough routing tables to
forge a path between the two. Even if IPv6 is made to interconnect hosts
without the help of any NAT mechanisms, routing with the best efficienty
(shortest path) or policy (route weight, commercial relationships) must
be configured using only few parameters, automatically updating routes
for each VM spawned in new network.

Keep in mind that key aspects of L3VPN connectivity is Route Targets and
VPN-IPv6 address family.
Assuming an operator can configure data center gateways with a
Route Distinguisher dedicated to Internet connectivity and a set of imported
Route Targets, each time a virtual machine is spawned within a data center subnet
associated with that Route Distinguisher, it will trigger the send of a BGP UPDATE
message containing MP-BGP attributes required for reaching the VM outside the
datacenter. In the same manner, adding extra-route or declaring subnetworks will
trigger the same.
Such behavior can be achieved by configuring a neutron router an internet public
VPN address. For the following of the document, we focus to GUA/128 addresses that
are advertised, when one VM start. Indeed, most of the requirements are dealing with
VM access to internet.

Only IPv6 Globally Unique Address (eg /128) are advertised, this is not a scaling
architecture since it implies as much routes to process as the number of spawned
VMs, but with such BGP routing information base, DCGW can select the Compute Node
to which a packet coming from the WAN should be forwarded to.

The following covers the case where a VM connects to a host located in the internet,
and the destination ip address of packets is not part of the list of advertised
prefixes (see spec [6]).

Following schema could help :

 OVS A flow:
 IP dst not in advertised list
 VPN configuration explained in use case chapter
 +-----------------+
 | +-------------+ |
 +---+ |VM1 | |
 BGP table | | | Subnet A::2 | |
 Prefix Subnet A::2 |OVS| +-------------+ |
+-------+ Label L2 | A | +-------------+ |
| | Next Hop OVS A | | |VM2 | |
| Host | +-+-+ | Subnet B::2 | |
+---+---+ +-------+ | | +-------------+ |
 | | | | +-----------------+
 | | +-----------------+
 +--Internet-----+ DCGW |
 | +-----------------+ +-----------------+
 | | | | +-------------+ |
 +-------+ +-+-+ |VM3 | |
 | | | Subnet A::3 | |
 |OVS| +-------------+ |
 | B | +-------------+ |
 | | |VM4 | |
 +---+ | Subnet B::2 | |
 | +-------------+ |
 +-----------------+

Use Cases

Datacenter IPv6 external connectivity to/from Internet for VMs spawned on tenant
networks.

There are several techniques for VPNs to access the Internet. Those methods are
described in [8], on section 11.
Also a note describes in [8] the different techniques that could be applied to
the DC-GW case. Note that not all solutions are compliant with the RFC. Also,
we make the hypothesis of using GUA.

The method that will be described more in detail below is the option 2. Option 2
is external network connectivity option 2 from [8]). That method implies 2 VPNs.
One VPN will be dedicated to Internet access, and will contain the Internet Routes,
but also the VPNs routes. The Internet VPN can also contain default route to a gateway.
Having a separated VPN brings some advantages:
- the VPN that do not need to get Internet access get the private characteristic

of VPNs.

	using a VPN internet, instead of default forwarding table is enabling
flexibility, since it coud permit creating more than one internet VPN.
As consequence, it could permit applying different rules (different gateway
for example).

Having 2 VPNs implies the following for one packet going from VPN to the internet.
The FIB table will be used for that. If the packet’s destination address does no
match any route in the first VPN, then it may be matched against the internet VPN
forwarding table.
Reversely, in order for traffic to flow natively in the opposite direction, some
of the routes from the VPN will be exported to the internet VPN.

Configuration steps in a datacenter:

	Configure ODL and Devstack networking-odl for BGP VPN.

	Create a tenant network with IPv6 subnet using GUA prefix or an

admin-created-shared-ipv6-subnet-pool.
- This tenant network is connected to an external network where the DCGW is

connected. Separation between both networks is done by DPN located on compute
nodes. The subnet on this external network is using the same tenant as an IPv4
subnet used for MPLS over GRE tunnels endpoints between DCGW and DPN on
Compute nodes. Configure one GRE tunnel between DPN on compute node and DCGW.

	Create a Neutron Router and connect its ports to all internal subnets

	Create a transport zone to declare that a tunneling method is planned to reach an external IP:

the IPv6 interface of the DC-GW

	The neutron router subnetworks will be associated to two L3 BGPVPN instance.

The step create the L3VPN instances and associate the instances to the router.
Especially, two VPN instances will be created, one for the VPN, and one for the
internetVPN.

	operations:neutronvpn:createL3VPN (“route-distinguisher” = “vpn1”

	“import-RT” = [“vpn1”,”internetvpn”]
“export-RT” = [“vpn1”,”internetvpn”])

	operations:neutronvpn:createL3VPN (“route-distinguisher” = “internetvpn”

	“import-RT” = “internetvpn”
“export-RT” = “internetvpn”)

	The DC-GW configuration will also include 2 BGP VPN instances.
Below is a configuration from QBGP using vty command interface.

vrf rd “internetvpn”
vrf rt both “internetvpn”
vrf rd “vpn1”
vrf rt both “vpn1” “internetvpn”

	Spawn VM and bind its network interface to a subnet, L3 connectivty between

VM in datacenter and a host on WAN must be successful.
More precisely, a route belonging to VPN1 will be associated to VM GUA.
and will be sent to remote DC-GW. DC-GW will import the entry to both “vpn1” and “internetvpn”
so that the route will be known on both vpns.
Reversely, because DC-GW knows internet routes in “internetvpn”, those routes will be sent to
QBGP. ODL will get those internet routes, only in the “internetvpn” vpn.
For example, when a VM will try to reach a remote, a first lookup will be done in “vpn1” FIB
table. If none is found, a second lookup will be found in the “internetvpn” FIB table. The
second lookup should be successfull, thus trigerring the encapsulation of packet to the DC-GW.

	When the data centers is set up, there are 2 use cases:

	
	Traffic from Local DPN to DC-Gateway

	Traffic from DC-Gateway to Local DPN

The use cases are slightly different from [6], on the Tx side.

Proposed change

Similar as with [6], plus a specific processing on Tx side.
An additionnal processing in DPN is required. When a packet is received by a
neutron router associated with L3VPN, with destination mac address is the subnet
gateway mac address, and the destination ip is not in the FIB (default gateway)
of local DPN, then the packet should do a second lookup in the second VPN configured.
So that the packet can enter the L3VPN netvirt pipeline.
The MPLS label pushed on the IPv6 packet is the one configured to provide access
to Internet at DCGW level.

Pipeline changes

No pipeline changes, compared with [6]. However, FIB Manager will be modified so as to
implement the fallback mechanism. The FIB tables of the import-RTs VPNs from the default
VPN created will be parsed. In our case, a match will be found in the “internetVPN”
FIB table. If not match is found, the drop rule will be applied.

Regarding the pipeline changes, we can use the same BGPVPNv4 pipeline
(Tables Dispatcher (17), DMAC (19), LFIB (20), L3FIB (21), and NextHop Group
tables) and enhance those tables to support IPv6 North-South communication
through MPLS/GRE.
For understanding, the pipeline is written below: l3vpn-id is the ID associated to the initial VPN,
while l3vpn-internet-id is the ID associated to the internet VPN.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

When a packet is coming from DC-Gateway, the label will help finding out the associated VPN. The first one is l3vpn-id.

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

When a packet is going out from a dedicated VM, the l3vpn-id attached to that subnetwork will be used.
Theorically, in L3 FIB, there will be no match for dst IP with this l3vpn-id.
However, because ODL know the relationship between both VPNs, then the dst IP will be attached
with the first l3vpn-id.

However, since the gateway IP for inter-DC and external access is the same, the same MPLS label will be used for both VPNs.

Classifier Table (0) =>

Lport Dispatcher Table (17) ``match: LportTag l3vpn service: set vpn-id=l3vpn-id` =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=internet-l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=<alternate-ip> set tun-id=mpls_label output to MPLSoGRE tunnel port =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Fib Manager changes

Ingress traffic from internet to VM

The FIB Manager is being configured with 2 entries for different RDs : l3vpn-id and internetvpn-id.
The LFIB will be matched first.
In our case, label NH and prefix are the same, whereas we have 2 VPN instances.
So, proposed change is to prevent LFIB from adding entries if a label is already registered for that compute node.

Egress traffic from VM to internet

The FIB Manager is being configured with the internet routes on one RD only : internetvpn-id.
As packets that are emitted from the VM with vpn=l3vpn-id, the internet route will not be matched in l3vpn, if implementation remains as it is.
In FIB Manager, solution is the following:
- The internetvpn is not attached to any local subnetwork.
so, any eligible VPNs are looked up in the list of VPN instances.
for each VPN instance, for each RD, if an imported RT matches the internetvpnID, then a new rule will be appended.

Yang changes

None

Configuration impact

The configuration will require to create 2 VPN instances.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

The number of entries will be duplicated, compared with [6].
This is the cost in order to keep some VPNs private, and others kind of public.
Another impact is the double lookup that may result, when emitting a packet.
This is due to the fact that the whole fib should be parsed to fallback
to the next VPN, in order to make an other search, so that the packet can enter
in the L3VPN flow.

Targeted Release

Carbon

Alternatives

None

Usage

	Configure MPLS/GRE tunnel endpoint on DCGW connected to public-net network

	Configure neutron networking-odl plugin

	Configure BGP speaker in charge of retrieving prefixes for/from data center
gateway in ODL through the set of vpnservice.bgpspeaker.host.name in
etc/custom.properties. No REST API can configure that parameter.
Use config/ebgp:bgp REST api to start BGP stack and configure VRF, address
family and neighboring. In our case, as example, following values will be used:

	rd=”100:2” # internet VPN
- import-rts=”100:2”
- export-rts=”100:2”

	rd=”100:1” # vpn1
- import-rts=”100:1 100:2”
- export-rts=”100:1 100:2”

POST config/ebgp:bgp
{
 "ebgp:as-id": {
 "ebgp:stalepath-time": "360",
 "ebgp:router-id": "<ip-bgp-stack>",
 "ebgp:announce-fbit": "true",
 "ebgp:local-as": "<as>"
 },
 "ebgp:neighbors": [
 {
 "ebgp:remote-as": "<as>",
 "ebgp:address-families": [
 {
 "ebgp:afi": "2",
 "ebgp:peer-ip": "<neighbor-ip-address>",
 "ebgp:safi": "128"
 }
],
 "ebgp:address": "<neighbor-ip-address>"
 }
],
}

* Configure BGP speaker on DCGW to exchange prefixes with ODL BGP stack. Since
 DCGW should be a vendor solution, the configuration of such equipment is out of
 the scope of this specification.

	Create an internal tenant network with an IPv6 (or dual-stack) subnet.

neutron net-create private-net
neutron subnet-create --name ipv6-int-subnet --ip-version 6
--ipv6-ra-mode slaac --ipv6-address-mode slaac private-net 2001:db8:0:2::/64

	Use neutronvpn:createL3VPN REST api to create L3VPN

POST /restconf/operations/neutronvpn:createL3VPN

{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid_1",
 "name":"internetvpn",
 "route-distinguisher": [100:2],
 "export-RT": [100:2],
 "import-RT": [100:2],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

POST /restconf/operations/neutronvpn:createL3VPN

{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid_2",
 "name":"vpn1",
 "route-distinguisher": [100:1],
 "export-RT": [100:1, 100:2],
 "import-RT": [100:1, 100:2],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

	Associate L3VPN To Network

POST /restconf/operations/neutronvpn:associateNetworks

{
 "input":{
 "vpn-id":"vpnid_uuid_1",
 "network-id":"network_uuid"
 }
}

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net> VM1

	Dump ODL BGP FIB

GET /restconf/config/odl-fib:fibEntries

{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid_1>
 },
 {
 "routeDistinguisher": <rd_vpn1>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
 {
 "routeDistinguisher": <rd-uuid_2>
 },
 {
 "routeDistinguisher": <rd_vpninternet>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Julien Courtat <julien.courtat@6wind.com>

	Other contributors:

	Noel de Prandieres <prandieres@6wind.com>
Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>
Philippe Guibert <philippe.guibert@6wind.com>

Work Items

	Validate proposed setup so that each VM entry is duplicated in 2 VPN instances

	Implement FIB-Manager fallback mechanism for output packets

Dependencies

[6]

Testing

Unit Tests

Unit tests related to fallback mechanism when setting up 2 VPN instances configured
as above.

Integration Tests

TBD

CSIT

CSIT provided for the BGPVPNv6 versions will be enhanced to also support
connectivity to Internet.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] IPv6 Distributed Router for Flat/VLAN based Provider Networks. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-distributed-router]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

[6] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN. [https://git.opendaylight.org/gerrit/#/c/50359]

[7] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/c/49909/]

[8] External Network connectivity in IPv6 networks. [https://drive.google.com/file/d/0BxAspfn9mEi8OEtvVFpsZXo0ZlE/view]

[9] BGP/MPLS IP Virtual Private Networks (VPNs) [https://tools.ietf.org/html/rfc4364#section-11]

Table of Contents

	IPv6 Inter-DC L3 North-South connectivity using L3VPN provider network types.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 Inter-DC L3 North-South connectivity using L3VPN provider network types.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-interdc-l3vpn

In this specification we will be discussing the high level design of
IPv6 Inter-Datacenter North-South connectivity support in OpenDaylight
using L3VPN provider network type use-case.

Problem description

Provide IPv6 connectivity to virtual machines located in different subnets
spread over multiple sites or Data center can be achieved through use of
Globally Unique Addresses and capacity to update enough routing tables to
forge a path between the two. Even if IPv6 is made to interconnect hosts
without the help of any NAT mechanisms, routing with the best efficienty
(shortest path) or policy (route weight, commercial relationships) must
be configured using only few parameters, automatically updating routes
for each VM spawned in new network.

Keep in mind that key aspects of L3VPN connectivity is Route Targets and
VPN-IPv6 address family.
Assuming an operator can configure both data center gateways with same
Route Distinguisher or set of imported Route Targets, each time a virtual
machine is spawned within a new subnet, it will trigger the send of a BGP UPDATE
message containing MP-BGP attributes required for reaching the VM.
Such behavior can be achieved by configuring a neutron router a default gateway.

Only IPv6 Globally Unique Address (eg /128) are advertised, this is not a scaling
architecture since it implies as much routes to process as the number of spawned
VMs, but with such BGP routing information base, DCGW can select the Compute Node
to which a packet coming from the WAN should be forwarded to.

Following schema could help :

+-----------------+ +-----------------+
+-------------+		+-------------+						
	VM1	+---+ +---+	VM1					
	Subnet C::4			BGP table			Subnet A::2	
+-------------+	OVS	Prefix Subnet A::2	OVS	+-------------+				
+-------------+	A	Label L1	A	+-------------+				
	VM2			Next Hop OVS A			VM2	
	Subnet D::4	+-+-+ +-+-+	Subnet B::2					
+-------------+		+------+ +-------+		+-------------+				
+-----------------+ | | | | | | +-----------------+
 +-----+ | | +--------+
 | DCGW +--WAN--+ DCGW |
+-----------------+ +-----+ | | +--------+ +-----------------+
+-------------+								+-------------+
	VM3	+-+-+ +------+ +-------+ +-+-+	VM3					
	Subnet C::5						Subnet A::3	
+-------------+	OVS		OVS	+-------------+				
+-------------+	B		B	+-------------+				
	VM4						VM4	
	Subnet D::5	+---+ +---+	Subnet B::3					
+-------------+		+-------------+						
+-----------------+ +-----------------+

BGP protocol and its MP-BGP extension would do the job as long as all BGP
speakers are capable of processing UPDATE messages containing VPN-IPv6 address
family, which AFI value is 2 and SAFI is 128. It is not required that BGP
speakers peers using IPv6 LLA or GUA, IPv4 will be used to peer speakers
together.

Opendaylight is already able to support the VPN-IPv4 address family (AFI=1,
SAFI=128), and this blueprint focuses on specific requirements to VPN-IPv6.

One big question concerns the underlying transport IP version used with MPLS/GRE
tunnels established between Data center Gateway (DCGW), and compute nodes
(CNs). There is one MPLS/GRE tunnel setup from DCGW to each Compute Node involved
in the L3VPN topology. Please note that this spec doesn’t covers the case of
VxLAN tunnels between DCGW and Compute Nodes.

According to RFC 4659 §3.2.1, the encoding of the nexthop attribute in
MP-BGP UPDATE message differs if the tunneling transport version required is
IPv4 or IPv6. In this blueprint spec, the assumption of transport IP version of
IPv4 is prefered. This implies that any nexthop set for a prefix in FIB will be
IPv4.

Within BGP RIB table, for each L3VPN entry, the nexthop and label are key
elements for creating MPLS/GRE tunnel endpoints, and the prefix is used for
programming netvirt pipeline. When a VM is spawned, the prefix advertised by BGP
is 128 bits long and the nexthop carried along within UPDATE message is the ip
address of the DPN interface used for DCGW connection.
Since DCGW can be proprietary device, it may not support MPLS/GRE tunnel endpoint
setup according to its internal BGP table. A static configuration of such tunnel
endpoint may be required.

Use Cases

Inter Datacenter IPv6 external connectivity for VMs spawned on tenant networks,
routes exchanged between BGP speakers using same Route Distinguisher.

Steps in both data centers :

	Configure ODL and Devstack networking-odl for BGP VPN.

	Create a tenant network with IPv6 subnet using GUA prefix or an
admin-created-shared-ipv6-subnet-pool.

	This tenant network is separated to an external network where the DCGW is
connected. Separation between both networks is done by DPN located on compute
nodes. The subnet on this external network is using the same tenant as an IPv4
subnet used for MPLS over GRE tunnels endpoints between DCGW and DPN on
Compute nodes. Configure one GRE tunnel between DPN on compute node and
DCGW.

	Create a Neutron Router and connect its ports to all internal subnets that
will belong to the same L3 BGPVPN identified by a Route Distinguisher.

	Start BGP stack managed by ODL, possibly on same host as ODL.

	Create L3VPN instance.

	Associate the Router with the L3VPN instance.

	Spawn VM on the tenant network, L3 connectivity between VMs located on
different datacenter sharing same Route Distinguisher must be successful.

When both data centers are set up, there are 2 use cases per data center:

	Traffic from DC-Gateway to Local DPN (VMS on compute node)

	Traffic from Local DPN to DC-Gateway

Proposed change

ODL Controller would program the necessary pipeline flows to support IPv6
North South communication through MPLS/GRE tunnels out of compute node.

BGP manager would be updated to process BGP RIB when entries are IPv6 prefixes.

FIB manager would be updated to take into acount IPv6 prefixes.

Thrift interface between ODL and BGP implementation (Quagga BGP) must be
enhanced to support new AFI=2. Thrift interface will still carry IPv4 Nexthops,
and it will be the Quagga duty to transform this IPv4 Nexthop address into an
IPv4-mapped IPv6 address in every NLRI fields. Here is the new api proposed :

enum af_afi {
 AFI_IP = 1,
 AFI_IPV6 = 2,
}
i32 pushRoute(1:string prefix, 2:string nexthop, 3:string rd, 4:i32 label,
 5:af_afi afi)
i32 withdrawRoute(1:string prefix, 2:string rd, 3:af_afi afi)
oneway void onUpdatePushRoute(1:string rd, 2:string prefix,
 3:i32 prefixlen, 4:string nexthop,
 5:i32 label, 6:af_afi afi)
oneway void onUpdateWithdrawRoute(1:string rd, 2:string prefix,
 3:i32 prefixlen, 4:string nexthop,
 5:af_afi afi)
Routes getRoutes(1:i32 optype, 2:i32 winSize, 3:af_afi afi)

BGP implementation (Quagga BGP) announcing (AFI=2,SAFI=128) capability as well
as processing UPDATE messages with such address family. Note that the required
changes in Quagga is not part of the design task covered by this blueprint.

Pipeline changes

Regarding the pipeline changes, we can use the same BGPVPNv4 pipeline
(Tables Dispatcher (17), DMAC (19), LFIB (20), L3FIB (21), and NextHop Group
tables) and enhance those tables to support IPv6 North-South communication
through MPLS/GRE.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Please note that vpn-subnet-gateway-mac-address stands for MAC address of
the neutron port of the internal subnet gateway router.

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) match: LportTag l3vpn service: set vpn-id=l3vpn-id =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Please note that router-internal-interface-mac stands for MAC address of
the neutron port of the internal subnet gateway router.

Yang changes

Changes will be needed in ebgp.yang to start supporting IPv6 networks
advertisements.

A new leaf afi will be added to container networks

ebgp.yang

list networks {
 key "rd prefix-len";

 leaf rd {
 type string;
 }

 leaf prefix-len {
 type string;
 }

 leaf afi {
 type uint32;
 mandatory "false";
 }

 leaf nexthop {
 type inet:ipv4-address;
 mandatory "false";
 }

 leaf label {
 type uint32;
 mandatory "false";
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Impact on scaling inside datacenter essentially grow with the number of VM
connected to subnets associated with the L3VPN.
Since Globally Unique Address are used and there is no NAT involved in the
datapath, it implies prefixes advertised are all /128.
At the end, it means that every prefix advertised will have its entry
in BGP RIB of all ODL controllers and DCGW involved in L3VPN (ie all bgp aware
equipment will handle all prefixes advertised wihtin a Route Distinguisher).

This may imply BGP table with very high number of entries. This also implies a
high number of entries in ODL routing table and equivalent number of flows
inserted in OVS, since prefix advertised add matching ip destination in OVS
tables.

This fact also impact the scaling of the BGP speaker implementation (Quagga
BGP) with many thousands of BGPVPNv4 and BGPVPNv6 prefixes (as much as number
of spawned VMs) with best path selection algorithm on route updates, graceful
restart procedure, and multipath.

Targeted Release

Carbon

Alternatives

None

Usage

	Configure MPLS/GRE tunnel endpoint on DCGW connected to public-net network

	Configure neutron networking-odl plugin

	Configure BGP speaker in charge of retrieving prefixes for/from data center
gateway in ODL through the set of vpnservice.bgpspeaker.host.name in
etc/custom.properties. No REST API can configure that parameter.
Use config/ebgp:bgp REST api to start BGP stack and configure VRF, address
family and neighboring

POST config/ebgp:bgp
{
 "ebgp:as-id": {
 "ebgp:stalepath-time": "360",
 "ebgp:router-id": "<ip-bgp-stack>",
 "ebgp:announce-fbit": "true",
 "ebgp:local-as": "<as>"
 },
 "ebgp:vrfs": [
 {
 "ebgp:export-rts": [
 "<export-rts>"
],
 "ebgp:rd": "<RD>",
 "ebgp:import-rts": [
 "<import-rts>"
]
 }
],
 "ebgp:neighbors": [
 {
 "ebgp:remote-as": "<as>",
 "ebgp:address-families": [
 {
 "ebgp:afi": "2",
 "ebgp:peer-ip": "<neighbor-ip-address>",
 "ebgp:safi": "128"
 }
],
 "ebgp:address": "<neighbor-ip-address>"
 }
],
}

	Configure BGP speaker on DCGW to exchange prefixes with ODL BGP stack. Since
DCGW should be a vendor solution, the configuration of such equipment is out of
the scope of this specification.

	Create an internal tenant network with an IPv6 (or dual-stack) subnet and
connect ports.

neutron net-create private-net
neutron subnet-create private-net 2001:db8:0:2::/64 --name ipv6-int-subnet
--ip-version 6 --ipv6-ra-mode slaac --ipv6-address-mode slaac
neutron port-create private-net --name port1_private1

	Create a router and associate it to internal subnets.

neutron router-create router1
neutron router-interface-add router1 ipv6-int-subnet

	Use neutronvpn:createL3VPN REST api to create L3VPN

POST /restconf/operations/neutronvpn:createL3VPN
{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid",
 "name":"vpn1",
 "route-distinguisher": [100:1],
 "export-RT": [100:1],
 "import-RT": [100:1],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

	Associate L3VPN To Routers

POST /restconf/operations/neutronvpn:associateRouter
{
 "input":{
 "vpn-id":"vpnid_uuid",
 "router-id":["router_uuid"]
 }
}

	Create MPLSoGRE tunnel between DPN and DCGW

POST /restconf/operations/itm-rpc:add-external-tunnel-endpoint
{
 "itm-rpc:input": {
 "itm-rpc:destination-ip": "dcgw_ip",
 "itm-rpc:tunnel-type": "odl-interface:tunnel-type-mpls-over-gre"
 }
}

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> \
 --nic net-id=port1_private1_uuid VM1

	Dump ODL BGP FIB

GET /restconf/config/odl-fib:fibEntries
{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid>
 },
 {
 "routeDistinguisher": <rd>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

A new option --afi will be added to command odl:bgp-network:

opendaylight-user@root>
odl:bgp-network --prefix 2001:db8::1/128 --rd 100:1 --nexthop 192.168.0.2
 --label 700 --afi 2 add/del

Implementation

Assignee(s)

	Primary assignee:

	Julien Courtat <julien.courtat@6wind.com>

	Other contributors:

	Noel de Prandieres <prandieres@6wind.com>
Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>
Philippe Guibert <philippe.guibert@6wind.com>

Work Items

	Implement necessary APIs to allocate a transport over IPv6 requirement
configuration for a given Route Target as the primary key.

	Support of BGPVPNv6 prefixes within MD-SAL. Enhance RIB-manager to support
routes learned from other bgp speakers, [un]set static routes.

	BGP speaker implementation, Quagga BGP, to support BGPVPN6 prefixes exchanges
with other BGP speakers (interoperability), and thrift interface updates.

	Program necessary pipeline flows to support IPv6 to MPLS/GRE (IPv4) communication.

Dependencies

Quagga from 6WIND is publicly available at the following url

	https://github.com/6WIND/quagga

	https://github.com/6WIND/zrpcd

Testing

Unit Tests

Unit tests provided for the BGPVPNv4 versions will be enhanced to also support
BGPVPNv6. No additional unit tests will be proposed.

Integration Tests

TBD

CSIT

CSIT provided for the BGPVPNv4 versions will be enhanced to also support
BGPVPNv6. No additional CSIT will be proposed.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	IPv6 L3 North-South support for Flat/VLAN Provider Networks.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 L3 North-South support for Flat/VLAN Provider Networks.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south

In this specification we will be discussing the high level design of
IPv6 North-South support in OpenDaylight for VLAN/FLAT provider network
use-case.

Problem description

OpenDaylight currently supports IPv6 IPAM (IP Address Management) and a fully
distributed east-west router. IPv6 external connectivity is not yet supported.
This SPEC captures the implementation details of IPv6 external connectivity for
VLAN/FLAT provider network use-cases.

We have a separate SPEC [3] that captures external connectivity for L3VPN use-case.

The expectation in OpenStack is that Tenant IPv6 subnets are created with Globally
Unique Addresses (GUA) that are routable by the external physical IPv6 gateway in
the datacenter for external connectivity. So, there is no concept of NAT or
Floating-IPs for IPv6 addresses in Neutron. An IPv6 router is hence expected to do
a plain forwarding.

Initially, we would like to pursue a Centralized IPv6 router (CVR) use-case and
look into a fully distributed router via a future spec. One of the main reasons
for pursuing the CVR over DVR is that OpenStack Neutron creates only a single
router gateway port (i.e., port with device owner as network:router_gateway)
when the router is associated with the external network. When implementing
a distributed router, we cannot use the same router gateway port MAC address
from multiple Compute nodes as it could create issues in the underlying physical
switches. In order to implement a fully distributed router, we would ideally
require a router-gateway-port per compute node. We will be addressing the
distributed router in a future spec taking into consideration both IPv4 and IPv6
use-cases.

Use Cases

IPv6 external connectivity (north-south) for VMs spawned on tenant networks,
when the external network is of type FLAT/VLAN based.

Steps:

	Create a tenant network with IPv6 subnet using GUA/ULA prefix or an
admin-created-shared-ipv6-subnet-pool.

	Create an external network of type FLAT/VLAN with an IPv6 subnet where the
gateway_ip points to the Link Local Address (LLA) of external/physical IPv6
gateway.

	Create a Neutron Router and associate it with the internal subnets and external
network.

	Spawn VMs on the tenant network.

 +------------------+
 | |
 | +------->Internet
 | External IPv6 |
 | Gateway |
 | |
 | |
 +------------------+
 |LLA of IPv6 GW
 |
 | Flat/VLAN External Network: 2001:db8:0:1::/64
 +--+
 | | |
 | | |
 | ---+
 | | Internal Tenant N/W | | | |
router-gw-port| | | | | |
 +------------------------+ +-------------------------+ +-------------------------+
+--------------------+										
	Virtual IPv6 Router									
	using OVS Flows									
+--------------------+										
+--------------------+		+---------------------+		+---------------------+						
	VM1				VM2				VM3	
	Tenant IPv6 Subnet									
	2001:db8:0:2::10/64				2001:db8:0:2::20/64				2001:db8:0:2::30/64	
+--------------------+		+---------------------+		+---------------------+						
 +------------------------+ +-------------------------+ +-------------------------+
 Compute Node-1 designated Compute Node-2 Compute Node-3
 as NAPT Switch for router1

Proposed change

ODL Controller would implement the following.

	Program the necessary pipeline flows to support IPv6 forwarding

	Support Neighbor Discovery for Router Gateway port-ips on the external network.
i.e., When the upstream/external IPv6 Gateway does a Neighbor Solicitation for the
router-gateway-ip, ODL-Controller/ipv6service would respond with a Neighbor Advertisement
providing the target link layer address.

	Enhance IPv6Service to learn the MAC-address of external-subnet-gateway-ip by framing
the necessary Neighbor Solicitation messages and parsing the corresponding response.
The APIs in IPv6Service would be triggered from Gateway MAC resolver code and the
information obtained will be used while programming the ProviderNetworkGroup entries.

The implementation would be aligned with the existing IPv4 SNAT support we have
in Netvirt. ODL controller would designate one of the compute nodes (also referred
as NAPT Switch), one per router, to act as an IPv6/IPv4-SNAT router, from where the
tenant traffic is routed to the external network. External traffic from VMs hosted
on the NAPT switch is forwarded directly, whereas traffic from VMs hosted on other
compute nodes would have to do an extra hop to NAPT switch before hitting the
external network. If a router has both IPv4 and IPv6 subnets, the same NAPT Switch
for the router will be used for IPv4-SNAT and IPV6 external-packet forwarding.

Pipeline changes

Flows on NAPT Switch for Egress traffic from VM to the internet

Classifier Table (0) =>

LPORT_DISPATCHER_TABLE (17) l3vpn service: set: vpn-id=router-id =>

L3_GW_MAC_TABLE (19) priority=20, match: vpn-id=router-id, dst-mac=router-internal-interface-mac =>

L3_FIB_TABLE (21) priority=10, match: ipv6, vpn-id=router-id, default-route-flow =>

PSNAT_TABLE (26) priority=5, match: ipv6, vpn-id=router-id, unknown-sip =>

OUTBOUND_NAPT_TABLE (46) priority=10, match: ipv6, vpn-id=router-id, ip-src=vm-ip set: src-mac=external-router-gateway-mac-address, vpn-id=external-net-id, =>

NAPT_PFIB_TABLE (47) priority=6, match: ipv6, vpn-id=external-net-id, src-ip=vm-ip =>

ProviderNetworkGroup: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

EGRESS_LPORT_DISPATCHER_TABLE (220) output to provider network

Flows on NAPT Switch for Ingress traffic from internet to VM

Classifier Table (0) =>

LPORT_DISPATCHER_TABLE (17) l3vpn service: set: vpn-id=ext-net-id =>

L3_GW_MAC_TABLE (19) priority=20, match: vpn-id=ext-net-id, dst-mac=router-gateway-mac =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=ext-net-id, dst-ip=vm-ip =>

INBOUND_NAPT_TABLE (44) priority=10, match: ipv6, vpn-id=ext-net-id, dst-ip=vm-ip set: vpn-id=router-id =>

NAPT_PFIB_TABLE (47) priority=5, match: ipv6, vpn-id=router-id set: in_port=0 =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=router-id, dst-ip=vm-ip =>

Local Next-Hop group: set: src-mac=router-intf-mac, dst-mac=vm-mac,reg6=vm-lport-tag =>

Egress table (220) output to VM port

Flows for VMs hosted on Compute node that is not acting as an NAPT Switch

Same egress pipeline flows as above until L3_FIB_TABLE (21).

PSNAT_TABLE (26) priority=5, match: ipv6, vpn-id=router-id set: tun_id=<tunnel-id> =>

TunnelOutputGroup: output to tunnel-port =>

OnNAPTSwitch (for Egress Traffic from VM)

INTERNAL_TUNNEL_TABLE (36): priority=10, match: ipv6, tun_id=<tunnel-id-set-on-compute-node> set: vpn-id=router-id, goto_table:46

Rest of the flows are common.

OnNAPTSwitch (for Ingress Traffic from Internet to VM)

Same flows in ingress pipeline shown above until NAPT_PFIB_TABLE (47) =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=router-id, dst-ip=vm-ip set: tun_id=<tunnel-id>, dst-mac=vm-mac, output: <tunnel-port> =>

Yang changes

IPv6Service would implement the following YANG model.

module ipv6-ndutil {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:ipv6service:ipv6util";
 prefix "ipv6-ndutil";

 import ietf-interfaces {
 prefix if;
 }

 import ietf-inet-types {
 prefix inet; revision-date 2013-07-15;
 }

 import ietf-yang-types {
 prefix yang;
 }

 revision "2017-02-10" {
 description "IPv6 Neighbor Discovery Util module";
 }

 grouping interfaces {
 list interface-address {
 key interface;
 leaf interface {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf src-ip-address {
 type inet:ipv6-address;
 }
 leaf src-mac-address {
 type yang:phys-address;
 }
 }
 }

 rpc send-neighbor-solicitation {
 input {
 leaf target-ip-address {
 type inet:ipv6-address;
 }
 uses interfaces;
 }
 }
}

neighbor-solicitation-packet container in neighbor-discovery.yang would be enhanced
with Source Link Layer optional header.

container neighbor-solicitation-packet {
 uses ethernet-header;
 uses ipv6-header;
 uses icmp6-header;
 leaf reserved {
 type uint32;
 }
 leaf target-ip-address {
 type inet:ipv6-address;
 }
 leaf option-type {
 type uint8;
 }
 leaf source-addr-length {
 type uint8;
 }
 leaf source-ll-address {
 type yang:mac-address;
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

Scale and Performance Impact

	In the proposed implementation, we have to configure a static route
on the external IPv6 Gateway with next-hop as the router-gateway-ip.
In a future patch, we would enhance the implementation to use BGP for
advertising the necessary routes.

	When the external IPv6 Gateway wants to contact the tenant VMs, it
forwards all the traffic to the router-gateway-port on the designated
NAPT Switch. To know the target-link-layer address of the router-gw-port,
the external IPv6 Gateway would send out a Neighbor Solicitation for the
router-gateway-port-ip. This request would be punted to the Controller
and ipv6service would respond with the corresponding Neighbor Advertisement.
In large deployments this can become a bottleneck.
Note: Currently, OpenFlow does not have support to auto-respond to Neighbor
Solicitation packets like IPv4 ARP. When the corresponding support is added
in OpenFlow, we would program the necessary ovs flows to auto-respond to
the Neighbor Soliciation requests for router-gateway-ports.

Targeted Release

Carbon

Alternatives

An alternate solution is to implement a fully distributed IPv6 router and
would be pursued in a future SPEC.

Usage

	Create an external FLAT/VLAN network with an IPv6 (or dual-stack) subnet.

neutron net-create public-net -- --router:external --is-default
--provider:network_type=flat --provider:physical_network=public

neutron subnet-create --ip_version 6 --name ipv6-public-subnet
--gateway <LLA-of-external-ipv6-gateway> <public-net-uuid> 2001:db8:0:1::/64

	Create an internal tenant network with an IPv6 (or dual-stack) subnet.

neutron net-create private-net
neutron subnet-create --name ipv6-int-subnet --ip-version 6
--ipv6-ra-mode slaac --ipv6-address-mode slaac private-net 2001:db8:0:2::/64

	Create a router and associate the external and internal subnets.
Explicitly specify the fixed_ip of router-gateway-port, as it would help us
when manually configuring the downstream route on the external IPv6 Gateway.

neutron router-create router1
neutron router-gateway-set --fixed-ip subnet_id=<ipv6-public-subnet-id>,ip_address=2001:db8:0:10 router1 public-net
neutron router-interface-add router1 ipv6-int-subnet

	Manually configure a downstream route in the external IPv6 gateway
for the IPv6 subnet “2001:db8:0:2::/64” with next hop address as the
router-gateway-ip.

Example (on Linux host acting as an external IPv6 gateway):
ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:10

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net> VM1

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Sridhar Gaddam <sgaddam@redhat.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/cqjOFmow/147-ipv6-centralized-router-l3-north-south-support-for-flat-vlan-provider-networks

	Program necessary pipeline flows to support IPv6 North-South communication.

	Enhance ipv6service to send out Neighbor Solicitation requests
for the external/physical IPv6 gateway-ip and parse the response.

	Support controller based Neighbor Advertisement for router-gateway-ports
on the external network.

	Implement Unit and Integration tests to validate the use-case.

Dependencies

None

Testing

Unit Tests

Necessary Unit tests would be added to validate the use-case.

Integration Tests

Necessary Integration tests would be added to validate the use-case.

CSIT

We shall explore the possibility to validate this use-case in CSIT.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/50359/]

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Dual Stack VM support in OpenDaylight

	Problem description

	Setup Presentation

	Known Limitations

	Use Cases

	Inter DC Access

	External Internet Connectivity

	Proposed changes

	Pipeline changes

	Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

	Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

	Configuration impact

	ECMP impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Dual Stack VM support in OpenDaylight

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn-dual-stack-vms

In this specification we will introduce a support of basic L3 forwarding for
dualstack VMs connectivity over L3 in NetVirt. Dualstack VM is a virtual machine
that has at least two IP addresses with different ethertypes: IPv4 address and
IPv6 address.

In addition to this, the specification ensures initial support of dualstack VMs
inside L3 BGPVPN. L3 forwarding for dualstack VMs connectivity inside L3 BGPVPN
will be provided for the following variations of L3 BGPVPN:

	L3 BGPVPN constructed purely using networks;

	L3 BGPVPN constructed purely using a router;

	L3 BGPVPN constructed using multiple networks and a router.

Problem description

As a dualstack VM, we assume a VM which has one Neutron Port, i.e. one VNIC,
that inherits two IPs addresses with different ethertypes: one IPv4 address and
one IPv6 address. We also will use in this document a term singlestack VM to
describe a VM, which VNIC possesses either IPv4 or IPv6 address, but not both
simultaneously.

So, dualstack VM has two IP addresses with different ethertypes. This could be
achieved by two ways:

1. VM was initially created with one VNIC, i.e. one Neutron Port from network
with IPv4 subnet. Second VNIC, corresponded to a Neutron Port from another
network with IPv6 subnet, was added to this machine after its creation.

2. VM has one Neutron Port from a network, which contains 2 subnets: IPv4 subnet
and IPv6 subnet.

OpenDaylight has already provided a support for the first way, so this use-case
is not in the scope of the specification. For the second way the specification
doesn’t intend to cover a use-case when, Neutron Port will possess several IPv4
and several IPv6 addresses. More specifically this specification covers only the
use-case, when Neutron Port has only one IPv4 and one IPv6 address.

Since there are more and more services that use IPv6 by default, support of
dualstack VMs is important. Usage of IPv6 GUA addresses has increased during the
last couple years. Administrators want to deploy services, which will be
accessible from traditional IPv4 infrastructures and from new IPv6 networks as
well.

Dualstack VM should be able to connect to other VMs, be they are of IPv4 (or)
IPv6 ethertypes.
So in this document we can handle following use cases:

	Intra DC, Inter-Subnet basic L3 Forwarding support for dualstack VMs;

	Intra DC, Inter-Subnet L3 Forwarding support for dualstack VMs within L3 BGPVPN.

Current L3 BGPVPN allocation scheme picks up only the first IP address of
dualstack VM Neutron Port. That means that the L3 BGPVPN allocation scheme will
not apply both IPv4 and IPv6 network configurations for a port. For example, if
the first allocated IP address is IPv4 address, then L3 BGPVPN allocation scheme
will only apply to IPv4 network configuration. The second IPv6 address will be
ignored.

Separate VPN connectivity for singlestack VMs within IPv4 subnetworks and within
IPv6 subnetworks is already achieved by using distinct L3 BGPVPN instances. What
we want is to support a case, when the same L3 BGPVPN instance will handle both
IPV4 and IPv6 VM connectivity.

Regarding the problem description above, we would propose to implement in
OpenDaylight two following solutions, applying to two setups

	two-router setup solution

One router belongs to IPv4 subnetwork, another one belongs to IPv6 subnetwork.
This setup brings flexibility to manage access to external networks. More
specifically, by having two routers, where one is holding IPv4 subnet and
another is holding IPv6 subnet, customer can tear-down access to external
network for IPv4 subnet ONLY or for IPv6 subnet ONLY by doing a
router-gateway-clear on a respective router.

Now this kind of orchestration step entail us to put a Single VPN Interface
(representing the VNIC of DualStack VM) in two different Internal-VPNs, where
each VPN represents one of the routers. To achive this we will use L3 BGPVPN
concept. We will extend existing L3 BGPVPN instance implementation to give it an
ability to be associated with two routers. As consequence, IPv4 and IPv6
subnetworks, added as ports in associated routers and, hence, IPv4 and IPv6 FIB
entries, would be gathered in one L3 BGPVPN instance.

L3 BGPVPN concept is the easiest solution to federate two routers in a single L3
BGPVPN entity. From the orchestration point of view and from the networking
point of view, there is no any reason to provide IPv4 L3VPN and IPv6 L3VPN
access separately for dualstack VMs. It makes sense to have the same L3 BGPVPN
entity that can handle both IPv4 and IPv6 subnetworks.

The external network connectivity using L3 BGPVPN is not in scope of this
specification. Please, find more details about this in [6]. Right now, this
configuration will be useful for inter-subnet and intra-dc routing.

	dualstack-router setup solution

The router with 2 ports (one port for IPv4 subnet and another one for IPv6
subnet) is attached to a L3 BGPVPN instance.

The external network connectivity using L3 BGPVPN is not in the scope of this
specification.

Setup Presentation

Following drawing could help :

+---------------------+
| +-----------------+ |
| |VM1 | +---+
	Subnet C::4/64		
	Subnet a.b.c.1/i		
+-----------------+	OVS		
+-----------------+	A		
	VM2		
	Subnet C::5/64		
	Subnet a.b.c.2/i	+-+-+	
+-----------------+		+------+	
+---------------------+ | | |
 | +-MPLSoGRE tunnel for IPv4/IPv6-+ |
 | | |
 Vxlan | |
 Tunnel | |
 | | DCGW +--WAN--
+---------------------+ +-MPLSoGRE tunnel for IPv4/IPV6-+ |
| +-----------------+ | | | |
| |VM3 | +-+-+ +------+
	Subnet C::6/64		
	Subnet a.b.c.3/i		
+-----------------+	OVS		
+-----------------+	B		
	VM4		
	Subnet C::7/64		
	Subnet a.b.c.4/i	+---+	
+-----------------+			
+---------------------+

	We identify there 2 subnets:

	
	IPv4 subnet: a.b.c.x/i

	IPv6 subnet: C::x/64

Each VM will receive IPs from these two defined subnets.

Following schemes stand for conceptual representation of used neutron
configurations for each proposed solution.

setup 1: two singlestack routers, associated with one BGPVPN
 ("two-router" solution)

 +---------------+
 | Network N3 |
 +---------------+
 +-----+ +---------------+ | Subnet C IPv4 |
 | VM1 |-----| Network N | +---------------+
 +-----+ +--| | |
 | +---------------+ +---------------+
 | | Subnet A IPv4 |----| Router 1 |-----+
 | +---------------+ +---------------+ |
 | | Subnet B IPv6 | | | +--------+
 | +---------------+ +---------------+ | | | | |
 | | | Subnet E IPv4 | |---+ BGPVPN |
 | | +---------------+ | | |
 | | | Network N2 | | +--------+
 | | +---------------+ |
 | +---------------+ |
 | | Router 2 |--------------------------+
 +-----+ | +---------------+
 | VM2 |--+ |
 +-----+ +---------------+
 | Subnet D IPv6 |
 +---------------+
 | Network N1 |
 +---------------+

Network N gathers 2 subnetworks, subnet A IPv4 and subnet B IPv6. This makes
possible to create Neutron Ports, which will have 2 IP addresses and whose
attributes will inherit information (extraroutes, etc) from these 2 subnets A
and B.

Router1 and Router2 are connected to Subnet A and Subnet B respectively and will
be attached to a same L3 BGPVPN instance. Routers 1 and 2 can also have other
ports, but they always should stay singlestack routers, otherwise this
configuration will not be still supported. See the chapter “Configuration
impact” for more details.

setup 2: one dualstack router associated with one BGPVPN
 ("dualstack-router" solution)

 +-----+ +---------------+
 | VM1 |-----| Network N |
 +-----+ +--| |
 | +---------------+ +----------+ +--------+
 | | Subnet A IPv4 |---------| | | |
 | +---------------+ | Router 1 |---+ BGPVPN |
 | | Subnet B IPv6 |---------| | | |
 | +---------------+ +----------+ +--------+
 +-----+ |
 | VM2 |--+
 +-----+

Network N gathers 2 subnetworks, subnet A IPv4 and subnet B IPv6. This makes
possible to create Neutron Ports, which will have 2 IP addresses and whose
attributes will inherit information (extraroutes, etc) from these 2 subnets A
and B.

Router 1 is connected to Subnet A and Subnet B, and it will be attached to a L3
BGPVPN instance X. Other subnets can be added to Router 1, but this
configurations will not be still supported. See the chapter “Configuration
impact” for more details.

setup 3: networks associated with one BGPVPN

 +-----+ +------------------+ +--------+
 | VM1 |-----| Network N1 |------| BGPVPN |
 +-----+ +--| | | |
 | +------------------+ +--------+
 | | Subnet A IPv4 (1)| |
 +-----+ | +------------------+ |
 | VM2 |--+ | Subnet B IPv6 (2)| |
 +-----+ +------------------+ |
 |
 |
 +-----+ +------------------+ |
 | VM3 |-----+ Network N2 |----------+
 +-----+ | |
 +------------------+
 | Subnet C IPv4 (3)|
 +------------------+
 | Subnet D IPv6 (4)|
 +------------------+

Network N1 gathers 2 subnets, subnet A with IPv4 ethertype and subnet B with
IPv6 ethertype. When Neutron Port was created in the network N1, it has 1 IPv4
address and 1 IPv6 address. If user lately will add others subnets to the
Network N1 and will create the second Neutron Port, anyway the second VPN port,
constructed for a new Neutron Port will keep only IP addresses from subnets (1)
and (2). So valid network configuration in this case is a network with only 2
subnets: IPv4 and IPv6. See the chapter “Configuration impact” for more details.
Second dualstack network N2 can be added to the same L3 BGPVPN instance.

It is valid for all schemes: in dependency of chosen ODL configuration, either
ODL, or Neutron Dhcp Agent will provide IPv4 addresses for launched VMs. Please
note, that currently DHCPv6 is supported only by Neutron Dhcp Agent. ODL
provides only SLAAC GUA IPv6 address allocation for VMs launched in IPv6 private
subnets attached to a Neutron router.

It is to be noted that today, setup 3 can not be executed for VPNv6 with the above
allocation scheme previously illustrated. Indeed, only a neutron router is able to
send router advertisements, which is the corner stone for DHCPv6 allocation. Either
IPv6 fixed IPs will have to be used for this setup, or an extra enhancement for providing
router advertisements for such a configuration will have to be done. The setup 3 will be
revisited in future.

Known Limitations

Currently, from Openstack-based Opendaylight Bgpvpn driver point-of-view, there
is a check, where it does not allow more than one router to be associated to a
single L3 BGPVPN. This was done in Openstack, because actually entire ODL
modeling and enforcement supported only one router per L3 BGPVPN by design.

From Netvirt point of view, there are some limitations as well:

	We can not associate VPN port with both IPv4 and IPv6 Neutron Port addresses
at the same time. Currently, any first Neutron Port IP address is using to
create a VPN interface. If a Neutron Port possesses multiple IP Addresses,
regardless of ethertype, this port might not work properly with ODL.

	It is not possible to associate a single L3 BGPVPN instance with two different
routers.

Use Cases

There is no change in the use cases described in [6] and [7], except that the
single L3 BGPVPN instance serves both IPv4 and IPv6 subnets.

Inter DC Access

	two-router solution

IPv4 subnet Subnet A is added as a port in Router 1, IPv6 subnet Subnet B is
added as a port in Router 2. The same L3 BGPVPN instance will be associated with
both Router 1 and Router 2.

The L3 BGPVPN instance will distinguish ethertype of router ports and will
create appropriate FIB entries associated to its own VPN entry, so IPv4 and IPv6
enries will be gathered in the same L3 BGPVPN.

	dualstack-router solution

IPv4 subnet Subnet A is added as a port in Router 1, IPv6 subnet Subnet B is
added as a port in Router 1 as well. L3 BGPVPN instance will be associated with
Router 1.

The L3 BGPVPN instance will distinguish ethertype of routers ports and will
create appropriate FIB entries associated to its own VPN entry as well.
Appropriate BGP VRF context for IPv4 or IPv6 subnets will be also created.

External Internet Connectivity

External Internet Connectivity is not in the scope of this specification.

Proposed changes

All changes we can split in two main parts.

	Distinguish IPv4 and IPv6 VRF tables with the same RD/iRT/eRT

1.1 Changes in neutronvpn

To support a pair of IPv4 and IPv6 prefixes for each launched dualstack VM we
need to obtain information about subnets, where dualstack VM was spawned and
information about extraroutes, enabled for these subnets. Obtained information
will be stored in vmAdj and erAdjList objects respectively. These objects are
attributes of created for new dualstack VM VPN interface. Created VPN port
instance will be stored as part of already existed L3 BGPVPN node instance in
MDSAL DataStore.

When we update L3 BGPVPN instance node (associate/dissociated router or
network), we need to provide information about ethertype of new
attached/detached subnets, hence, Neutron Ports. New argument flags ipv4On
and ipv6On will be introduced for that in NeutronvpnManager function
API, called to update current L3 BGPVPN instance (updateVpnInstanceNode()
method). UpdateVpnInstanceNode() method is also called, when we create a new
L3 BGPVPN instance. So, to provide appropriate values for ipv4On, ipv6On
flags we need to parse subnets list. Then in dependency of these flags values we
will set either Ipv4Family attribute for the new L3 BGPVPN instance or
Ipv6Family attribute, or both attributes. Ipv4Family, Ipv6Family
attributes allow to create ipv4 or/and ipv6 VRF context for underlayed
vpnmanager and bgpmanager APIs.

1.2. Changes in vpnmanager

When L3 BGPVPN instance is created or updated, VRF tables must be created for
QBGP as well. What we want, is to introduce separate VRF tables, created
according to IPv4Family/IPv6Family VPN attributes, i.e. we want to
distinguish IPv4 and IPv6 VRF tables, because this will bring flexibility in
QBGP. For example, if QBGP receives an entry IPv6 MPLSVPN on a router, which is
expecting to receive only IPv4 entries, this entry will be ignored. The same for
IPv4 MPLSVPN entries respectively.

So, for creating VrfEntry objects, we need to provide information about L3
BGPVPN instance ethertype (Ipv4Family/Ipv6Family attribute), route
distinguishers list, route imports list and route exports lists
(RD/iRT/eRT). RD/iRT/eRT lists will be simply obtained from subnetworks,
attached to the chosen L3 BGPVPN. Presence of IPv4Family, IPv6Family in
VPN will be translated in following VpnInstanceListener class attributes:
afiIpv4, afiIpv6, safiMplsVpn, safiEvpn, which will be passed to
addVrf() and deleteVrf() bgpmanager methods for creating/deleting either
IPv4 VrfEntry or IPv6 VrfEntry objects.

RD/iRT/eRT lists will be the same for both IPv4 VrfEntry and IPv6
VrfEntry in case, when IPv4 and IPv6 subnetworks are attached to the same L3
BGPVPN instance.

1.3 Changes in bgpmanager

In bgpmanager we need to change signatures of addVrf() and deleteVrf()
methods, which will trigger signature changes of underlying API methods
addVrf() and delVrf() from BgpConfigurationManager class.

This allows BgpConfigurationManager class to create needed IPv4 VrfEntry and
IPv6 VrfEntry objects with appropriate AFI and SAFI values and finally
pass this appropriate AFI and SAFI values to BgpRouter.

BgpRouter represents client interface for thrift API and will create needed
IPv4 and IPv6 VRF tables in QBGP.

1.4 Changes in yang model

To support new attributes AFI and SAFI in bgpmanager classes, it should
be added in ebgp.yang model:

list address-families {
 key "afi safi";
 leaf afi {
 type uint32;
 mandatory "true";
 }
 leaf safi {
 type uint32;
 mandatory "true";
 }
}

1.5 Changes in QBGP thrift interface

To support separate IPv4 and IPv6 VRF tables in QBGP we need to change
signatures of underlying methods addvrf() and delvrf() in thrift API as
well. They must include the address family and subsequent address families
informations:

enum af_afi {
 AFI_IP = 1,
 AFI_IPV6 = 2,
}

i32 addVrf(1:layer_type l_type, 2:string rd, 3:list<string> irts, 4:list<string> erts,
 5:af_afi afi, 6:af_safi afi),
i32 delVrf(1:string rd, 2:af_afi afi, 3:af_safi safi)

	Support of two routers, attached to the same L3 BGPVPN

2.1 Changes in neutronvpn

two-router solution assumes, that all methods, which are using to create,
update, delete VPN interface or/and VPN instance must be adapted to a case, when
we have a list of subnetworks and/or list of router IDs to attach. Due to this,
appropriate changes need to be done in nvpnManager method APIs.

To support two-router solution properly, we also should check, that we do
not try to associate to L2 BGPVPN a router, that was already associated to that
VPN instance. Attached to L3 BGPVPN router list must contain maximum 2 router
IDs. Routers, which IDs are in the list must be only singlestack routers. More
information about supported router configurations is available below in chapter
“Configuration Impact”.

For each created in dualstack network Neutron Port we take only the last
received IPv4 address and the last received IPv6 address. So we also limit a
length of subnets list, which could be attached to a L3 BGPVPN instance, to two
elements. (More detailed information about supported network configurations is
available below in chapter “Configuration Impact”.) Two corresponding
Subnetmap objects will be created in NeutronPortChangeListener class for
attached subnets. A list with created subnetmaps will be passed as argument,
when createVpnInterface method will be called.

2.2 Changes in vpnmanager

VpnMap structure must be changed to support a list with router IDs. This
change triggers modifications in all methods, which retry router ID from
VpnMap object.

VpnInterfaceManager structure must be also changed, to support a list of VPN
instance name. So all methods, which gives VPN router ID from VpnInterfaceManager
should be modified as well.

As consequence, in operDS, a VpnInterfaceOpDataEntry structure is created, inherited
from VpnInterface in configDS. While the latter structure has a list of VPN instance
name, the former will be instantiated in operDS as many times as there are VPN instances.
The services that were handling VPNInterface in operDS, will be changed to handle
VPNInterfaceOpDataEntry. That structure will be indexed by InterfaceName and by VPNName.
The services include natservice, fibmanager, vpnmanager, cloud service chain.

Also, an augment structure will be done for VPNInterfaceOpDataEntry to contain the list
of operational adjacencies. As for VpnInterfaceOpDataEntry, the new AdjacenciesOp
structure will replace Adjacencies that are in operDS. Similarly, the services will be
modified for that.

Also, VPNInterfaceOpDataEntry will contain a VPNInterfaceState that stands for the
state of the VPN Interface. Code change will be done to reflect the state of the interface.
For instance, if VPNInstance is not ready, associated VPNInterfaceOpDataEntries will have
the state changed to INACTIVE. Reversely, the state will be changed to ACTIVE.

2.3 Changes in yang model

To provide change in VpnMap and in VpnInterfaceManager structures, described
above, we need to modify following yang files.

2.3.1 neutronvpn.yang

	Currently, container vpnMap holds one router-id for each L3 BGPVPN instance ID. A
change consists in replacing one router-id leaf by a leaf-list of router-ids.
Obviously, no more than two router-ids will be used.

	Container vpnMaps is used internally for describing a L3 BGPVPN. Change router-id
leaf by router-ids leaf-list in this container is also necessary.

--- a/vpnservice/neutronvpn/neutronvpn-api/src/main/yang/neutronvpn.yang
+++ b/vpnservice/neutronvpn/neutronvpn-api/src/main/yang/neutronvpn.yang
@@ -1,4 +1,3 @@
-
module neutronvpn {

namespace "urn:opendaylight:netvirt:neutronvpn";
@@ -120,7 +119,7 @@ module neutronvpn {
Format is ASN:nn or IP-address:nn.";
}

- leaf router-id {
+ leaf-list router-ids {
 type yang:uuid;
 description "UUID router list";
 }
@@ -173,7 +172,7 @@ module neutronvpn {
description "The UUID of the tenant that will own the subnet.";
}

- leaf router-id {
+ leaf-list router_ids {
 type yang:uuid;
 description "UUID router list";
 }

2.3.2 l3vpn.yang

	Currently, list vpn-interface holds a leaf vpn-instance-name, which is a
container for VPN router ID. A change consists in replacing leaf
vpn-instance-name by a leaf-list of VPN router IDs, because L3 BGPVPN instance can
be associated with two routers.
Obviously, no more than two VPN router-IDs will be stored in leaf-list
vpn-instance-name.

--- a/vpnservice/vpnmanager/vpnmanager-api/src/main/yang/l3vpn.yang
+++ b/vpnservice/vpnmanager/vpnmanager-api/src/main/yang/l3vpn.yang
 @@ -795,21 +795,21 @@

 list vpn-interface {
 key "name";
 max-elements "unbounded";
 min-elements "0";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
- leaf vpn-instance-name {
+ leaf-list vpn-instance-name {
 type string {
 length "1..40";
 }
 }
 leaf dpn-id {
 type uint64;
 }
 leaf scheduled-for-remove {
 type boolean;
 }

2.3.3 odl-l3vpn.yang

 augment "/odl-l3vpn:vpn-interface-op-data/odl-l3vpn:vpn-interface-op-data-entry" {
 ext:augment-identifier "adjacencies-op";
 uses adjacency-list;
 }

 container vpn-interface-op-data {
 config false;
 list vpn-interface-op-data-entry {
 key "name vpn-instance-name";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf vpn-instance-name {
 type string {
 length "1..40";
 }
 }
 max-elements "unbounded";
 min-elements "0";
 leaf dpn-id {
 type uint64;
 }
 leaf scheduled-for-remove {
 type boolean;
 }
 leaf router-interface {
 type boolean;
 }
 leaf vpn-interface-state {
 description
 "This flag indicates the state of this interface in the VPN identified by vpn-name.
 ACTIVE state indicates that this vpn-interface is currently associated to vpn-name
 available as one of the keys.
 INACTIVE state indicates that this vpn-interface has already been dis-associated
 from vpn-name available as one of the keys.";

 type enumeration {
 enum active {
 value "0";
 description
 "Active state";
 }
 enum inactive {
 value "1";
 description
 "Inactive state";
 }
 }
 default "active";
 }
 }
}

Pipeline changes

There is no change in the pipeline, regarding the changes already done in [6]
and [7].

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

The DC-GW has the information, that permits to detect an underlay destination IP
and MPLS label for a packet coming from the Internet or from anotherr DC-GW.

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) match: LportTag l3vpn service: set vpn-id=l3vpn-id =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ipv4-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ipv6-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Please, note that router-internal-interface-mac stands for MAC address of
the internal subnet gateway router port.

Configuration impact

	Limitations for router configurations

	1.1 Maximum number of singlestack routers that can be associated to a

	L3BGPVPN is limited to 2. Maximum number of dualstack routers that can be
associated with a BGPVPN is limited to 1.

	1.2 If a L3 BGPVPN has already associated with a one singlestack router and we

	try to associate this VPN instance again with a dualstack router, exception will
not be raised. But this configuration will not be valid.

	1.3 If a singlestack router is already associated to a L3 BGPVPN instance, and

	it has more than one port and we try to add a port to this router with another
ethertype, i.e. we try to make this router dualstack, exception will not be
raised. But this configuration will not be valid and supported.

	1.4 When a different ethertype port is added to a singlestack router, which already

	has only one port and which is already associated to a L3 BGPVPN instance,
singlestack router in this case becomes dualstack router with only two ports.
This router configuration is allowed by current specification.

	Limitations for subnetworks configurations

	2.1 Maximum numbers of different ethertype subnetworks associated to a one L3

	BGPVPN instance is limited to two. If a network contains more than two different
ethertype subnetworks, exception won’t be raised, but this configuration isn’t
supported.

	2.2 When we associate a network with a L3 BGPVPN instance, we do not care if

	subnetworks from this network are ports in some routers and these routers were
associated with other VPNs. This configuration is not considered as supported as
well.

	Limitations for number of IP addresses for a Neutron Port

The specification only targets dual-stack networks, that is to say with 1 IPv4 address and
one IPv6 address only.
For other cases, that is to say, adding subnetworks IPv4 or IPv6, will lead to undefined or
untested use cases. The multiple subnets test case would be handled in a future spec.

ECMP impact

ECMP - Equal Cost multiple path.

ECMP feature is currently provided for Neutron BGPVPN networks and described in
the specification [10]. 3 cases have been cornered to use ECMP feature for
BGPVPN usability.

	ECMP of traffic from DC-GW to OVS (inter-DC case)

	ECMP of traffic from OVS to DC-GW (inter-DC case)

	ECMP of traffic from OVS to OVS (intra-DC case)

In each case, traffic begins either at DC-GW or OVS node. Then it is sprayed to
end either at OVS node or DC-GW.

ECMP feature for Neutron BGPVPN networks was successfully (OK) tested with IPv4
L3 BGPVPN and IPv6 L3 BGPVPN (OK). the dual stack VM connectivity should embrace
ECMP

We’ve included this chapter to remind, that code changes for supporting
dualstack VMs should be tested against ECMP scenario as well.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Assume, that in the same provider network we have OpenStack installed with 1
controller and 2 compute nodes, DC-GW node and OpenDaylight node.

	create private tenant networks and subnetworks

	create Network N;

	declare Subnet A IPv4 for Network N;

	declare Subnet B IPv6 for Network N;

	create two ports in Network N;

	each port will inherit a dual IP configuration.

	create routers

	two-router solution
+ create two routers A and B, each router will be respectively connected to

IPv4 and IPv6 subnets;

	add subnet A as a port to router A;

	add subnet B as a port to router B.

	dualstack-router solution
+ create router A;
+ add subnet A as a port to router A;
+ add subnet B as a port to router A.

	Create MPLSoGRE tunnel between DPN and DCGW

POST /restconf/operations/itm-rpc:add-external-tunnel-endpoint
{
 "itm-rpc:input": {
 "itm-rpc:destination-ip": "dcgw_ip",
 "itm-rpc:tunnel-type": "odl-interface:tunnel-type-mpls-over-gre"
 }
}

	create the DC-GW VPN settings

	Create a L3 BGPVPN context. This context will have the same settings as in
[7].In dualstack case both IPv4 and IPv6 prefixes will be injected in the same
L3 BGPVPN.

	create the ODL L3 BGPVPN settings

	Create a BGP context. This step permits to start QBGP module depicted in [8]
and [9]. ODL has an API, that permits interfacing with that external software.
The BGP creation context handles the following:

	start of BGP protocol;

	declaration of remote BGP neighbor with the AFI/SAFI affinities. In our
case, VPNv4 and VPNv6 address families will be used.

	Create a L3 BGPVPN, this L3 BGPVPN will have a name and will contain VRF
settings.

	associate created L3 BGPVPN to router

	two-router solution: associate routers A and B with a created L3 BGPVPN;

	dualstack-router solution: associate router A with a created L3 BGPVPN.

	Spawn a VM in a created tenant network:

The VM will possess IPv4 and IPv6 addresses from subnets A and B.

	Observation: dump ODL BGP FIB entries

At ODL node, we can dump ODL BGP FIB entries and we should see entries for
both IPv4 and IPv6 subnets prefixes:

GET /restconf/config/odl-fib:fibEntries
{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid>
 },
 {
 "routeDistinguisher": <rd>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

A new option --afi and --safi will be added to command odl:bgp-vrf:

odl:bgp-vrf --rd <> --import-rt <> --export-rt <> --afi <1|2> --safi <value> add|del

Implementation

Assignee(s)

	Primary assignee:

	Philippe Guibert <philippe.guibert@6wind.com>

	Other contributors:

	
	Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>

	Noel de Prandieres <prandieres@6wind.com>

Work Items

	QBGP Changes

	BGPManager changes

	VPNManager changes

	NeutronVpn changes

Dependencies

Quagga from 6WIND is available at the following urls:

	https://github.com/6WIND/quagga

	https://github.com/6WIND/zrpcd

Testing

Unit Tests

Some L3 BGPVPN testing may have be done.
Complementary specification for other tests will be done.

Integration Tests

TBD

CSIT

Basically, IPv4 and IPv6 vpnservice functionality have to be validated by
regression tests with a single BGPVRF.

CSIT specific testing will be done to check dualstack VMs connectivity with
network configurations for two-router and dualstack-router solutions.

Two-router solution test suite:

	Create 2 Neutron Networks NET_1_2RT and NET_2_2RT.

	1.1 Query ODL restconf API to check that both Neutron Network objects were

	successfully created in ODL.

1.2 Update NET_1_2RT with a new description attribute.

	In each Neutron Network create one Subnet IPv4 and one Subnet IPv6:
SUBNET_V4_1_2RT, SUBNET_V6_1_2RT, SUBNET_V4_2_2RT, SUBNET_V6_2_2RT,
respectively.

	2.1 Query ODL restconf API to check that all Subnetwork objects were

	successfully created in ODL.

2.2 Update SUBNET_V4_2RT, SUBNET_V6_2RT with a new description attribute.

	Create 2 Routers: ROUTER_1 and ROUTER_2.

	3.1 Query ODL restconf API to check that all Router objects were successfully

	created in ODL.

	Add SUBNET_V4_1_2RT, SUBNET_V4_2_2RT to ROUTER_1 and SUBNET_V6_1_2RT,
SUBNET_V6_2_2RT to ROUTER_2.

	Create 2 security-groups: SG6_2RT and SG4_2RT. Add appropriate rules to allow
IPv6 and IPv4 traffic from/to created subnets, respectively.

	In network NET_1_2RT create Neutron Ports: PORT_11_2RT, PORT_12_2RT, attached
with security groups SG6_2RT and SG4_2RT; in network NET_2_2RT: PORT_21_2RT,
PORT_22_2RT, attached with security groups SG6_2RT and SG4_2RT.

	6.1 Query ODL restconf API to check, that all Neutron Port objects were

	successfully created in ODL.

6.2 Update Name attribute of PORT_11_2RT.

	Use each created Neutron Port to launch a VM with it, so we should have 4 VM
instances: VM_11_2RT, VM_12_2RT, VM_21_2RT, VM_22_2RT.

	7.1 Connect to NET_1_2RT and NET_2_2RT dhcp-namespaces, check that subnet

	routes were successfully propagated.

7.2 Check that all VMs have: one IPv4 address and one IPv6 addresses.

	Check IPv4 and IPv6 VMs connectivity within NET_1_2RT and NET_2_2RT.

	Check IPv4 and IPv6 VMs connectivity across NET_1_2RT and NET_2_2RT with
ROUTER_1 and ROUTER_2.

9.1 Check that FIB entries were created for spawned Neutron Ports.

	9.2 Check that all needed tables (19, 17, 81, 21) are presented in OVS

	pipelines and VMs IPs, gateways MAC and IP addresses are taken in account.

	Connect to VM_11_2RT and VM_21_2RT and add extraroutes to other IPv4 and
IPv6 subnets.

	10.1 Check other IPv4 and IPv6 subnets reachability from VM_11_2RT and

	VM_21_2RT.

	Delete created extraroutes.

	Delete and recreate extraroutes and check its reachability again.

	Create L3VPN and check with ODL REST API, that it was successfully created.

	Associate ROUTER_1 and ROUTER_2 with created L3VPN and check the presence of
router IDs in VPN instance with ODL REST API.

	Check IPv4 and IPv6 connectivity accross NET_1_2RT and NET_2_2RT with
associated to L3VPN routers.

	15.1 Check with ODL REST API, that VMs IP addresses are presented in VPN

	interfaces entries.

15.2 Verify OVS pipelines at compute nodes.

	15.3 Check the presence of VMs IP addresses in vrfTables objects with

	ODL REST API query.

	Dissociate L3VPN from ROUTER_1 and ROUTER_2.

	Delete ROUTER_1 and ROUTER_2 and its interfaces from L3VPN.

	Try to delete router with NonExistentRouter name.

	Associate L3VPN to NET_1_2RT.

	Dissociate L3VPN from NET_1_2RT.

	Delete L3VPN.

	Create multiple L3VPN.

	Delete multiple L3VPN.

Documentation Impact

Necessary documentation would be added if needed.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

[6] Spec to support IPv6 DC to Internet L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/54050/]

[7] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/50359/]

[8] Zebra Remote Procedure Call [https://github.com/6WIND/zrpcd/]

[9] Quagga BGP protocol [https://github.com/6WIND/zrpcd/]

Listener Dependency Helper

https://git.opendaylight.org/gerrit/#/q/topic:ListenerDepedencyHelper

Listener Dependency Helper makes “Data Store Listeners” independent from dependency
resolution.

Problem description

When a DataStore-Listener is fired with config add/update/delete event, as
part of listener processing it may try to read the other data store objects,
at times those datastore objects are not yet populated. In this scenario,
listener event processing has to be delayed (or) discarded, as the required
information is NOT entirely available. Later when the dependant data objects
are available, this listener event will not be triggered again by DataStore.

This results in some events not getting processed resulting in possible
data-path, bgp control and data plane failures.

Example: VpnInterface add() callback triggered by MD-SAL on vpnInterface
add. While processing add() callback, the corresponding vpnInstance is
expected to be present in MD-SAL operational DS; which means that vpnInstance
creation is complete (updating the vpn-targets in Operational DS and BGP).

Information: vpnInstance Config-DS listener thread has to process vpnInstance
creation and update vpnInstance in operational DS. vpnInstance creation
listener callback is handled by different listener thread.

Use Cases

Use Case 1: VPNInterfaces may get triggered before VPNInstance Creation.

Current implementation: Delay based waits for handling VPNInterfaces that may
get triggered before VPNInstance Creation(waitForVpnInstance()).

Use Case 2: VPNManager to handle successful deletion of VPN which has a
large number of BGP Routes (internal/external):

Current implementation: Delay-based logic on VPNInstance delete in
VPNManager (waitForOpRemoval()).

Use Case 3: VpnSubnetRouteHandler that may get triggered before VPNInstance
Creation.

Current implementation: Delay based waits in VpnSubnetRouteHandler which may
get triggered before VPNInstance Creation(waitForVpnInstance()).

Use Case 4: VPN Swaps (Internal to External and vice-versa)

Current implementation: Currently we support max of 100 VM’s for swap
(VpnInterfaceUpdateTimerTask, waitForFibToRemoveVpnPrefix()).

Proposed change

During Listener event call-back (AsyncDataTreeChangeListenerBase) from
DataStore, check for pending events in “Listener-Dependent-Queue” with
same InstanceIdentifier to avoid re-ordering.

Generic Queue Event Format:

key : Instance Identifier
eventType : Type of event (ADD/UPDATE/DELETE)
oldData : Data before modification (for Update event);
newData : Newly populated data
queuedTime : at which the event is queued to LDH.
lastProcessedTime : latest time at which dependency list verified
expiryTime : beyond which processing for event is useless
waitBetweenDependencyCheckTime : wait time between each dependency check
dependentIIDs : list of dependent InstanceIdentifiers
retryCount : max retries allowed.
databroker : data broker.
deferTimerBased : flag to choose between (timer/listener based).

For Use Case - 1: deferTimerBased shall be set to TRUE (as per the specification).

During processing of events (either directly from DataStore or from
“Listener-Dependent-Queue”), if there any dependent objects are yet to
populated; queue them to “Listener-Dependent-Queue”.

Expectations from Listener: Listener will push the callable instance to
“Listener-Dependent-Queue” if it cannot proceed with processing of the
event due to dependent objects/InstanceIdentifier and list of dependent IID’s.

There are two approaches the Listener Dependency check can be verified.

approach-1 Get the list of dependent-IID’s, query DataStore/Cache for

depenedency resolution at regular intervals using “timer-task-pool”. Once
all the dependent IID’s are resolved, call respective listener for
processing.

LDH-task-pool : pool of threads which query for dependency resolution READ
ONLY operation in DataStore. These threads are part of LDH common for all
listeners.

hasDependencyResolved(<InstanceIdentifier iid, Boolean shouldDataExist,
DataStoreType DSType> List), this shall return either Null list (or) the list
which has dependencies yet to be resolved. In case Listener has local-cache
implemented for set of dependencies, it can look at cache and identify. This
api will be called from LDH-task-pool of thread(s).

instanceIdentifier is the MD-SAL key value which need to be verified for
existence/non-existence of data.
Boolean shouldDataExist: shall be TRUE, if the Listener expects to have the
information exists in MD-SAL; False otherwise.

approach-2 Register Listener for wild-card path of IID’s.

When a Listener gets queued to “”Listener-Dependent-Queue”, LDH shall register
itself as Listener for the dependent IID’s (using wild-card-path/parent-node).
Once the listener gets fired, identify the dependent listeners waiting for the
Data. Once the dependent Listener is identified, if the dependent-IID list is
NULL. Trigger listener for processing the event.
LDH-task-pool shall unregister itself from wild-card-path/parent-node once there
are no dependent listeners on child-nodes.

Re-Ordering

The following scenario, when re-ordering can happen and avoidance of the same:

	Example: Key1 and Value1 are present in MD-SAL Data Store under Tree1, SubTree1

	(for say). Update-Listener for Key1 is dependent on Dependency1.

Key1 received UPDATE event (UPDATE-1) with value=x, at the time of processing
UPDATE-1, dependency is not available. So Listener Queued ‘UPDATE-1’ event to
“UnProcessed-EventQueue”.
same key1 received UPDATE event (UPDATE-2) with value=y, at the time of
processing UPDATE-2, dependency is available (Dependency1 is resolved), so it
goes and processes the event and updates value of Key1 to y.

	After WaitTime, event Key1, UPDATE-1 is de-queued from “UnProcessed-EventQueue”

	and put for processing in Lister. Listener processes it and updates the Key1
value to x. (which is incorrect, happened due to re-ordering of events).

To avoid reordering of events within listener, every listener call back shall
peek into “UnProcessed-EventQueue” to identify if there exists a pending event
with same key value; if so, either suppress (or)
queue the event. Below are event ordering expected from MD-SAL and respective
actions:

what to consider before processing the event to avoid re-ordering of events:

	Current Event| Queued Event| Action

	ADD | ADD | NOT EXPECTED

	ADD | REMOVE | QUEUE THE EVENT

	ADD | UPDATE | NOT EXPECTED

	UPDATE | ADD | QUEUE EVENT

	UPDATE | UPDATE | QUEUE EVENT

	UPDATE | REMOVE | NOT EXPECTED

	REMOVE | ADD | SUPPRESS BOTH

	REMOVE | UPDATE | EXECUTE REMOVE SUPPRESS UPDATE

	REMOVE | REMOVE | NOT EXPECTED

Pipeline changes

none

Yang changes

none

Configuration impact

none

Clustering considerations

In the two approaches mentioned:
1 - Timer: polling MD-SAL for dependency resolution may incur in more
number of reads.

2 - RegisterListener: RegisterListener may some impact at the time of
registering listener after which a notification message to cluser nodes.

Predined List of Listeners

perational/odl-l3vpn:vpn-instance-op-data/vpn-instance-op-data-entry/*
operational/odl-l3vpn:vpn-instance-op-data/vpn-instance-op-data-entry/

vpn-id/vpn-to-dpn-list/*

config/l3vpn:vpn-instances/*

Other Infra considerations

Security considerations

none

Scale and Performance Impact

this infra, shall improve scaling of application without having to wait for
dependent data store gets populated.
Performance shall remain intact.

Targeted Release

Alternatives

	use polling/wait mechanisms

Features to Install

REST API

CLI

CLI will be added for debugging purpose.

Implementation

Assignee(s)

Primary assignee:
Siva Kumar Perumalla (sivakumar.perumalla@ericsson.com)

Other contributors:
Suneelu Verma K.

Work Items

Dependencies

Testing

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Acronyms

IID: InstanceIdentifier

Table of Contents

	New SFC Classifier

	Terminology

	Problem description

	Use Cases

	Proposed change

	Integration with Genius

	Classifier and SFC Genius Services

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

New SFC Classifier

https://git.opendaylight.org/gerrit/#/q/topic:new-sfc-classifier

The current SFC Netvirt classifier only exists in the old Netvirt.
This blueprint explains how to migrate the old Netvirt classifier
to a new Netvirt classifier.

Terminology

	NSH - Network Service Headers, used as Service Chaining encapsulation. NSH RFC Draft [1]

	NSI - Network Service Index, a field in the NSH header used to indicate the next hop

	NSP - Network Service Path, a field in the NSH header used to indicate the service chain

	RSP - Rendered Service Path, a service chain.

	SFC - Service Function Chaining. SFC RFC [2] ODL SFC Wiki [3].

	SF - Service Function

	SFF - Service Function Forwarder

	VXGPE - VXLAN GPE (Generic Protocol Encapsulation)
Used as transport for NSH. VXGPE uses the same header format as traditional
VXLAN, but adds a Next Protocol field to indicate NSH will be the next header.
Traditional VXLAN implicitly expects the next header to be ethernet. VXGPE RFC
Draft [4].

Problem description

In the Boron release, an SFC classifier was implemented, but in the
old Netvirt. This blueprint intends to explain how to migrate the
old Netvirt classifier to a new Netvirt classifier, which includes
integrating the classifier and SFC with Genius.

The classifier is an integral part of Service Function Chaining (SFC).
The classifier maps client/tenant traffic to a service chain by matching
the packets using an ACL, and once matched, the classifier encapsulates
the packets using some sort of Service Chaining encapsulation. Currently,
the only supported Service Chaining encapsulation is NSH using VXGPE as
the transport. Very soon (possibly in the Carbon release) Vxlan will be
added as another encapsulation/transport, in which case NSH is not used.
The transport and encapsulation information to be used for the service
chain is obtained by querying the Rendered Service Path (RSP) specified
in the ACL action.

The transport and encapsulation used between the classifier and the SFF,
and also between SFFs will be VXGPE+NSH. The transport and encapsulation
used between the SFF and the SF will be Ethernet+NSH.

The following image details the packet headers used for Service Chaining
encapsulation with VXGPE+NSH.

[image: VXGPE+NSH and Eth+NSH packet headers]

Diagram source [5].

The problem was originally discussed using the slides in this link [12]
as a guideline. These slides are only intended for reference, and are not
to be used for implementation.

Use Cases

The main use case addressed by adding an SFC classifier to Netvirt
is to integrate SFC with Netvirt, thus allowing for Service Chaining
to be used in an OpenStack virtual deployment, such as the OPNFV
SFC project [6].

SFC works with both OVS and VPP virtual switches, and its even possible
to have a hybrid setup whereby Netvirt is hosted on OVS and SFC is hosted
on VPP switches. This blueprint only addresses the use of SFC with NetVirt
and OVS.

As mentioned previously, currently SFC works with VXGPE+NSH and Eth+NSH
transport/encapsulation, and soon SFC will work with VXLAN as the transport and
encapsulation. The first version of this implementation will focus on VXGPE+NSH
and Eth+NSH. In the future, when VXLAN is implemented in SFC, VXLAN can be added
to the Netvirt SFC classifier. Changes in the transport and encapsulation
used for service chains will have no affect on the Netvirt ACL model, since
the transport and encapsulation information is obtained via the RSP specified
in the RSP.

Proposed change

The existing old Netvirt SFC code can be found here:

	netvirt/openstack/net-virt-sfc/{api,impl}

Once the new Netvirt SFC classifier is implemented and working, the old
Netvirt SFC classifier code will be left in place for at least one release
cycle.

The new Netvirt SFC code base will be located here:

	netvirt/vpnservice/sfc/classifier/{api,impl}

The new Netvirt SFC classifier implementation will be new code. This
implementation is not to be confused with the existing Netvirt aclservice,
which is implemented for Security Groups. More details about the Genius
integration can be found in the following section, but the Netvirt SFC
classifier will be in a new Genius classifier service. The SFC
implementation is already integrated with Genius and is managed via
the Genius SFC service.

Integration with Genius

Genius [7], [8] is an OpenDaylight project that provides generic
infrastructure services to other OpenDaylight projects. New Netvirt makes
use of Genius and the new Netvirt classifier will also make use of Genius
services. Among these services, the interface manager, tunnel manager
and service binding services are of special relevance for the new
Netvirt classifier.

Genius interface manager handles an overlay of logical interfaces on
top of the data plane physical ports. Based on these logical interfaces,
different services/applications may be bound to them with certain
priority ensuring that there is no interference between them. Avoiding
interference between services/applications is called Application Coexistence
in Genius terminology. Typically, the effect of an application binding to
a logical interface is that downstream traffic from that interface will be
handed off to that application pipeline. Each application is then responsible
to either perform a termination action with the packet (i.e output or drop
action) or to return the packet back to Genius so that another application
can handle the packet. There is a predefined set of types of services that
can bind, and Classifier is one of them.

For OpenStack environments, Netvirt registers Neutron ports as logical
interfaces in the Genius interface manager. Classifying traffic for a
client/tenant ultimately relies on classifying traffic downstream from
their corresponding Neutron ports. As such, the Netvirt classifier will
bind on these interfaces as a newly defined Genius Classifier service
through the Genius interface manager. It was considered integrating the
Netvirt classifier with the existing Netvirt security groups, but the idea
was discarded due to the possible conflicts and other complications this
could cause.

Netvirt also keeps track of the physical location of these Neutron
ports in the data plane and updates the corresponding Genius logical
interface with this information. Services integrated with Genius may
consume this information to be aware of the physical location of a
logical interface in the data plane and it’s changes when a VM migrates
from one location to another. New Netvirt classifier will install the
classification rules based on the data plane location of the client/tenant
Neutron ports whose traffic is to be classified. On VM migration, the
classifier has to remove or modify the corresponding classification rules
accounting for this location change, which can be a physical node
change or a physical port change.

The classifier is responsible for forwarding packets to the first
service function forwarder (SFF) in the chain. This SFF may or may
not be on the same compute host as the classifier. If the classifier
and SFF are located on the same compute host, then the encapsulated
packet is sent to the SFF via the Genius Dispatcher and OpenFlow
pipelines. The packets can be forwarded to the SFF locally via the
ingress or egress classifier, and it will most likely be performed
by the egress classifier, but this decision will be determined at
implementation time.

In scenarios where the first SFF is on a different compute host than
the client node, the encapsulated packet needs to be forwarded to that
SFF through a tunnel port. Tunnels are handled by the Genius tunnel
manager (ITM) with an entity called transport zone: all nodes in a
transport zone will be connected through a tunnel mesh. Thus the
netvirt classifier needs to ensure that the classifier and the SFF
are included in a transport zone. The transport type is also specified
at the transport zone level and for NSH it needs to be VXGPE. The
classifier needs to make sure that this transport zone is handled
for location changes of client VMs. Likewise, SFC needs to make sure
the transport zone is handled for SF location changes.

The afore-mentioned Genius ITM is different than the tunnels currently
used by Netvirt. SFC uses VXGPE tunnels, and requests they be created
via the Genius ITM.

Classifier and SFC Genius Services

There will be 2 new Genius services created in Netvirt for the new
Netvirt SFC classifier, namely an “Ingress SFC Classifier” and an
“Egress SFC Classifier”. There will also be a Genius service for
the SFC SFF functionality that has already been created in the SFC
project.

The priorites of the services will be as follows:

Ingress Dispatcher:

	SFC - P1

	IngressACL - P2

	Ingress SFC Classifier - P3

	IPv6, IPv4, L2 - P4…

Egress Dispatcher:

	EgressACL - P1

	Egress SFC Classifier - P2

The Ingress SFC classifier will bind on all the Neutron VM ports of
the Neutron Network configured in the ACL. All packets received from
these Neutron ports will be sent to the Ingress SFC classifier via the
Genius Ingress Dispatcher, and will be subjected to ACL matching.
If there is no match, then the packets will be returned to the Genius
dispatcher so they can be sent down the rest of the Netvirt pipeline.
If there is an ACL match, then the classifier will encapsulate NSH,
set the NSP and NSI accordingly, initialize C1 and C2 to 0, and send
the packet down the rest of the pipeline. Since the SFC service (SFF)
will most likely not be bound to this same Neutron port, the packet
wont be processed by the SFF on the ingress pipeline. If the classifier
and first SFF are in the same node, when the packet is processed by
the egress SFC classifier, it will be resubmitted back to the Ingress SFC
service (SFC SFF) for SFC processing. If not, the packet will be sent to
the first SFF.

The Ingress SFC service (SFF) will bind on the Neutron ports for the Service
Functions and on the VXGPE ports. The Ingress SFC service will receive
packets from these Neutron and VXGPE ports, and also those that have
been resubmitted from the Egress SFC Classifier. It may be possible that
packets received from the SFs are not NSH encapsulated, so any packets
received by the Ingress SFC service that are not NSH encapsulated will
not be processed and will be sent back to the Ingress Dispatcher. For
the NSH packets that are received, the Ingress SFC service will calculate
the Next-Hop and modify either the VXGPE header if the next hop is a
different SFF, or modify the Ethernet encapsulation header if the next
hop is an SF on this same SFF. Once NSH packets are processed by the
Ingress SFC service, they will be sent to the Egress Dispatcher.

The Egress SFC classifier service is the final phase of what the Ingress
SFC classifier service started when an ACL match happens. The packet needed
to go down the rest of the pipeline so the original packet destination
can be calculated. The Egress SFC classifier will take the information
prepared by the rest of the Netvirt pipeline and store the TunIPv4Dst and
VNID of the destination compute host in C1 and C2 respectively. If the
packet is not NSH encapsulated, then it will be sent back to the Egress
Dispatcher. If the packet does have NSH encapsulation, then if C1/C2 is
0, then the fields will be populated as explained above. If the C1/C2
fields are already set, the packet will be sent out to either the Next
Hop SF or SFF.

At the last hop SFF, when the packet egresses the Service Chain, the
SFF will pop the NSH encapsulation and use the NSH C1 and C2 fields to
tunnel the packet to its destination compute host. If the destination
compute host is the same as the last hop SFF, then the packet will be
sent down the rest of the Netvirt pipeline so it can be sent to its
destination VM on this compute host. When the destination is local,
then the inport will probably have to be adjusted.

An example of how the last hop SFF routing works, imagine the following
diagram where packet from the Src VM would go from br-int1 to br-int3 to
reach the Dst VM when there is no service chaining employed. When the
packets from the Src VM are subjected to service chaining, the pipeline
in br-int1 need to calculate the the final destination is br-int3, and
the appropriate information needs to be set in the NSH C1/C2 fields.
Then the SFC SFF on br-int2, upon chain egress will use C1/C2 to send
the packets to br-int3 so they can ultimately reach the Dst VM.

 +----+
 | SF |
 +--+-+
 Route with SFC |
 C1/C2 has tunnel +-------+-----+
 info to br-int3 | |
 +------------>| br-int2 |----+
+-----+ | | SFF | | +-----+
| Src | | +-------------+ | | Dst |
| VM | | | | VM |
+--+--+ | | +--+--+
 | | v |
 | +-----+-------+ +-------------+ |
 +------>| | | |<-+
 | br-int1 +----------------->| br-int3 |
 | | Original route | |
 +-------------+ with no SFC +-------------+

Pipeline changes

The existing Netvirt pipeline will not change as a result of adding the
new classifier, other than the fact that the Ingress SFC classifier and
Egress SFC classifier Genius Services will be added, which will change
the Genius Service priorities as explained previously. The Genius
pipelines can be found here [10].

Ingress Classifier Flows:

The following flows are an approximation of what the Ingress Classifier
service pipeline will look like. Notice there are 2 tables defined as
follows:

	
	table 100: Ingress Classifier Filter table.

	
	Only allows Non-NSH packets to proceed in the classifier

	
	table 101: Ingress Classifier ACL table.

	
	Performs the ACL classification, and sends packets to Ingress Dispatcher

The final table numbers may change depending on how they are assigned
by Genius.

 // Pkt has NSH, send back to Ingress Dispatcher
cookie=0xf005ball00000101 table=100, n_packets=11, n_bytes=918,
 priority=550,nsp=42 actions=resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

 // Pkt does NOT have NSH, send to GENIUS_INGRESS_DISPATCHER_TABLE
cookie=0xf005ball00000102 table=100, n_packets=11, n_bytes=918,
 priority=5 actions=goto_table:GENIUS_INGRESS_DISPATCHER_TABLE

 // ACL match: if TCP port=80
 // Action: encapsulate NSH and set NSH NSP, NSI, C1, C2, first SFF
 // IP in Reg0, and send back to Ingress Dispatcher to be sent down
 // the Netvirt pipeline. The in_port in the match is derived from
 // the Neutron Network specified in the ACL match and identifies
 // the tenant/Neutron Network the packet originates from
cookie=0xf005ball00000103, table=101, n_packets=11, n_bytes=918,
 tcp,tp_dst=80, in_port=10
 actions=push_nsh,
 load:0x1->NXM_NX_NSH_MDTYPE[],
 load:0x0->NXM_NX_NSH_C1[],
 load:0x0->NXM_NX_NSH_C2[],
 load:0x2a->NXM_NX_NSP[0..23],
 load:0xff->NXM_NX_NSI[],
 load:0x0a00010b->NXM_NX_REG0[],
 resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

Egress Classifier Flows:

The following flows are an approximation of what the Egress Classifier
service pipeline will look like. Notice there are 3 tables defined as
follows:

	
	table 221: Egress Classifier Filter table.

	
	Only allows NSH packets to proceed in the egress classifier

	
	table 222: Egress Classifier NextHop table.

	
	Set C1/C2 accordingly

	
	table 223: Egress Classifier TransportEgress table.

	
	Final egress processing and egress packets

	Determines if the packet should go to a local or remote SFF

The final table numbers may change depending on how they are assigned
by Genius.

 // If pkt has NSH, goto table 222 for more processing
cookie=0x14 table=221, n_packets=11, n_bytes=918,
 priority=260,md_type=1
 actions=goto_table:222

 // Pkt does not have NSH, send back to Egress Dispatcher
cookie=0x14 table=110, n_packets=0, n_bytes=0,
 priority=250
 actions=resubmit(,GENIUS_EGRESS_DISPATCHER_TABLE)

 // Pkt has NSH, if NSH C1/C2 = 0, Set C1/C2 and overwrite TunIpv4Dst
 // with SFF IP (Reg0) and send to table 223 for egress
cookie=0x14 table=222, n_packets=11, n_bytes=918,
 priority=260,nshc1=0,nshc2=0
 actions=load:NXM_NX_TUN_IPV4_DST[]->NXM_NX_NSH_C1[],
 load:NXM_NX_TUN_ID[]->NXM_NX_NSH_C2[],
 load:NXM_NX_REG0[]->NXM_NX_TUN_IPV4_DST[]
 goto_table:223

 // Pkt has NSH, but NSH C1/C2 aleady set,
 // send to table 223 for egress
cookie=0x14 table=222, n_packets=11, n_bytes=918,
 priority=250
 actions=goto_table:223

 // Checks if the first SFF (IP stored in reg0) is on this node,
 // if so resubmit to SFC SFF service
cookie=0x14 table=223, n_packets=0, n_bytes=0,
 priority=260,nsp=42,reg0=0x0a00010b
 actions=resubmit(, SFF_TRANSPORT_INGRESS_TABLE)

cookie=0x14 table=223, n_packets=0, n_bytes=0,
 priority=250,nsp=42
 actions=outport:6

Ingress SFC Service (SFF) Flows:

The following flows are an approximation of what the Ingress SFC
service (SFF) pipeline will look like. Notice there are 3 tables
defined as follows:

	
	table 83: SFF TransportIngress table.

	
	Only allows NSH packets to proceed into the SFF

	tables 84 and 85 are not used for NSH

	
	table 86: SFF NextHop table.

	
	Set the destination of the next SF

	
	table 87: SFF TransportEgress table.

	
	Prepare the packet for egress

The final table numbers may change depending on how they are assigned
by Genius.

 // Pkt has NSH, send to table 86 for further processing
cookie=0x14 table=83, n_packets=11, n_bytes=918,
 priority=250,nsp=42
 actions=goto_table:86
 // Pkt does NOT have NSH, send back to Ingress Dispatcher
cookie=0x14 table=83, n_packets=0, n_bytes=0,
 priority=5
 actions=resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

 // Table not used for NSH, shown for completeness
cookie=0x14 table=84, n_packets=0, n_bytes=0,
 priority=250
 actions=goto_table:86

 // Table not used for NSH, shown for completeness
cookie=0x14 table=85, n_packets=0, n_bytes=0,
 priority=250
 actions=goto_table:86

 // Match on specific NSH NSI/NSP, Encapsulate outer Ethernet
 // transport. Send to table 87 for further processing.
cookie=0x14 table=86, n_packets=11, n_bytes=918,
 priority=550,nsi=255,nsp=42
 actions=load:0xb00000c->NXM_NX_TUN_IPV4_DST[],
 goto_table:87
 // The rest of the packets are sent to
 // table 87 for further processing
cookie=0x14 table=86, n_packets=8, n_bytes=836,
 priority=5
 actions=goto_table:87

 // Match on specific NSH NSI/NSP, C1/C2 set
 // prepare pkt for egress, send to Egress Dispatcher
cookie=0xba5eba1100000101 table=87, n_packets=11, n_bytes=918,
 priority=650,nsi=255,nsp=42
 actions=move:NXM_NX_NSH_MDTYPE[]->NXM_NX_NSH_MDTYPE[],
 move:NXM_NX_NSH_NP[]->NXM_NX_NSH_NP[],
 move:NXM_NX_TUN_ID[0..31]->NXM_NX_TUN_ID[0..31],
 load:0x4->NXM_NX_TUN_GPE_NP[],
 resubmit(,GENIUS_EGRESS_DISPATCHER_TABLE)

Yang changes

The api YANGs used for the classifier build on the ietf acl models from
the mdsal models.

Multiple options can be taken, depending on the desired functionality.
Depending on the option chosen, YANG changes might be required.

Assuming no YANG changes, SFC classification will be performed on all VMs
in the same neutron-network - this attribute is already present in the
YANG model. This is the proposed route, since it hits a sweet-spot
in the trade-off between functionality and risk.

If classifying the traffic from specific interfaces is desired, then the
YANG model would need to be updated, possibly by adding a list of interfaces
on which to classify.

Configuration impact

None

Clustering considerations

None

Other Infra considerations

Since SFC uses NSH, and the new Netvirt Classifier will need to add NSH
encapsulation, a version of OVS that supports NSH must be used. NSH has not
been officially accepted into the OVS project, so a branched version of OVS is
used. Details about the branched version of OVS can be found here [9].

Security considerations

None

Scale and Performance Impact

None

Targeted Release

This change is targeted for the ODL Carbon release.

Alternatives

None

Usage

The new Netvirt Classifier will be configured via the REST JSON configuration
mentioned in the REST API section below.

Features to Install

The existing old Netvirt SFC classifier is implemented in the following Karaf
feature:

odl-ovsdb-sfc

When the new Netvirt SFC classifier is implemented, the previous Karaf feature
will no longer be needed, and the following will be used:

odl-netvirt-sfc

REST API

The classifier REST API wont change from the old to the new Netvirt. The
following example is how the old Netvirt classifier is configured.

Defined in netvirt/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang

An ACL is created which specifies the matching criteria and the action,
which is to send the packets to an SFC RSP. Notice the “network-uuid” is
set. This is for binding the Netvirt classifier service to a logical port.
The procedure will be to query Genius for all the logical ports in that
network uuid, and bind the Netvirt classifier service to each of them.

If the RSP has not been created yet, then the classification can not
be created, since there wont be any information available about the
RSP. In this case, the ACL information will be buffered, and there
will be a separate listener for RSPs. When the referenced RSP is
created, then the classifier processing will continue.

URL: /restconf/config/ietf-access-control-list:access-lists/

{
 "access-lists": {
 "acl": [
 {
 "acl-name": "ACL1",
 "acl-type": "ietf-access-control-list:ipv4-acl",
 "access-list-entries": {
 "ace": [
 {
 "rule-name": "ACE1",
 "actions": {
 "netvirt-sfc-acl:rsp-name": "RSP1"
 },
 "matches": {
 "network-uuid" : "eccb57ae-5a2e-467f-823e-45d7bb2a6a9a",
 "source-ipv4-network": "192.168.2.0/24",
 "protocol": "6",
 "source-port-range": {
 "lower-port": 0
 },
 "destination-port-range": {
 "lower-port": 80
 }
 }
 }
]
 }
 }]}}

CLI

None.

Implementation

Assignee(s)

Primary assignee:

	<brady.allen.johnson@ericsson.com>

Other contributors:

	<brady.allen.johnson@ericsson.com>

	<david.suarez.fuentes@ericsson.com

	<jaime.camaano.ruiz@ericsson.com>

	<miguel.duarte.de.mora.barroso@ericsson.com>

Work Items

Simple scenario:

	Augment the provisioned ACL with the ‘neutron-network’ augmentation - [11]

	From the neutron-network, get a list of neutron-ports - the interfaces
connecting the VMs to that particular neutron-network. For each interface, do
as follows:

	Extract the DPN-ID of the node hosting the VM having that neutron-port

	Extract the DPN-ID of the node hosting the first SF of the RSP

	The forwarding logic to implement depends on the co-location of the client’s
VM with the first SF in the chain.

	When the VMs are co-located (i.e. located in the same host), the output
actions are to forward the packet to the first table of the SFC pipeline.

	When the VMs are not co-located (i.e. hosted on different nodes) it
is necessary to:

	Use genius RPCs to get the interface connecting 2 DPN-IDs. This will
return the tunnel endpoint connecting the compute nodes.

	Use genius RPCs to get the list of actions to reach the tunnel
endpoint.

Enabling VM mobility:

	Handle first SF mobility

Listen to RSP updates, where the only relevant
migration is when the first SF moves to another node (different DPN-IDs).
In this scenario, we delete the flows from the old node, and install the
newly calculated flows in the new one. This happens for each node having
an interface to classify attached to the provisioned neutron-network.

	Handle client VM mobility

Listen to client’s InterfaceState changes,
re-evaluating the Forwarding logic, since the tunnel interface used to reach
the target DPN-ID is different. This means the action list to implement it,
will also be different. The interfaces to listen to will be ones attached to
the provisioned neutron-network.

	Must keep all the nodes having interfaces to classify (i.e. nodes
having neutron-ports attached to the neutron-network) and the first SF host
node within the same transport zone. By listening to InterfaceState changes
of clients within the neutron-network & the first SF neutron ports, the
transport zone rendering can be redone.

TODO: is there a better way to identify when the transport zone
needs to be updated?

Dependencies

No dependency changes will be introduced by this change.

Testing

Unit Tests

Unit tests for the new Netvirt classifier will be modeled on the existing
old Netvirt classifier unit tests, and tests will be removed and/or added
appropriately.

Integration Tests

The existing old Netvirt Classifier Integration tests will need to be
migrated to use the new Netvirt classifier.

CSIT

The existing Netvirt CSIT tests for the old classifier will need to be
migrated to use the new Netvirt classifier.

Documentation Impact

User Guide documentation will be added by one of the following contributors:

	<brady.allen.johnson@ericsson.com>

	<david.suarez.fuentes@ericsson.com

	<jaime.camaano.ruiz@ericsson.com>

	<miguel.duarte.de.mora.barroso@ericsson.com>

References

[1] https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/

[2] https://datatracker.ietf.org/doc/rfc7665/

[3] https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

[4] https://datatracker.ietf.org/doc/draft-ietf-nvo3-vxlan-gpe/

[5] https://docs.google.com/presentation/d/1kBY5PKPETEtRA4KRQ-GvVUSLbJoojPsmJlvpKyfZ5dU/edit?usp=sharing

[6] https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home

[7] http://docs.opendaylight.org/en/stable-boron/user-guide/genius-user-guide.html

[8] https://wiki.opendaylight.org/view/Genius:Design_doc

[9] https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#Building_Open_vSwitch_with_VxLAN-GPE_and_NSH_support

[10] http://docs.opendaylight.org/en/latest/submodules/genius/docs/pipeline.html

[11] https://github.com/opendaylight/netvirt/blob/master/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang

[12] https://docs.google.com/presentation/d/1gN8GnpVGwku4mp1on7EBZiE41RI7lZ-FFmFS2QlUTKk/edit?usp=sharing

Table of Contents

	Netvirt Statistics

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Netvirt Statistics

https://git.opendaylight.org/gerrit/#/q/topic:netvirt-counters

The feature enables getting statistics on ports and switches.

Problem description

Being able to ask for statistics, given as input Netvirt identifiers.
It will enable filtering the results and having aggregated result.
In a later stage, it will be also used to get element to element counters.
Examples for possible filters: RX only, TX only, port + VLAN counters…

Use Cases

	Getting port counters, given its interface id (ietf interface name).

	Getting node counters, given its node id.

Port counters can be useful also to get statistics on traffic going into tunnels
when requesting it from the tunnel endpoint port.
In addition, there will also be support in aggregated results. For example:
Getting the total number of transmitted packets from a given switch.

Proposed change

Adding a new bundle named “statistics-plugin” to Netvirt.
This bundle will be responsible for converting the Netvirt unique identifiers into OpenFlow ones,
and will get the relevant statistics by using OpenFlowPlugin capabilities.
It will also be responsible of validating and filtering the results.
It will be able to provide a wide range of aggregated results in the future.

Work flow description: Once a port statistics request is received, it is translated to a port statistics request from openflow plugin. Once the transaction is received, the data is validated and translated to a user friendly data. The user will be notified if a timeout occurs.
In case of a request for aggregated counters, the user will receive a single counter result divided to groups (such as “bits”, “packets”…). The counters in each group will be the sum of all of the matching counters for all ports.
Neither one of the counter request nor the counter response will not be stored in the configuration database. Moreover, requests are not periodic and they are on demand only.

Pipeline changes

None

Yang changes

The new plugin introduced will have the following models:

 grouping result {
 list counterResult {
 key id;
 leaf id {
 type string;
 }
 list groups {
 key name;
 leaf name {
 type string;
 }
 list counters {
 key name;
 leaf name {
 type string;
 }
 leaf value {
 type uint64;
 }
 }
 }
 }
}

grouping filters {
 leaf-list groupFilters {
 type string;
 }
 leaf-list counterFilter {
 type string;
 }
}

rpc getNodeConnectorCounters {
 input {
 leaf portId {
 type string;
 }
 uses filters;
 }
 output {
 uses result;
 }
}

rpc getNodeCounters {
 input {
 leaf nodeId {
 type uint64;
 }
 }
 output {
 uses result;
 }
}

rpc getNodeAggregatedCounters {
 input {
 leaf nodeId {
 type uint64;
 }
 uses filters;
 }
 output {
 uses result;
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

Getting the statistics from OpenFlow flows: it would be possible to target the appropriate rules in ingress/egress tables, and count the hits on these flows. The reason we decided to work with ports instead is because we don’t want to be dependent on flow structure changes.

Usage

	Create router, network, VMS, VXLAN tunnel.

	Connect to one of the VMs, send ping ping to the other VM.

	Use REST to get the statistics.

Port statistics:

http://10.0.77.135:8181/restconf/operational/ietf-interfaces:interfaces-state/

Choose a port id and use the following REST in order to get the statistics:

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeConnectorCounters, input={"input":{"portId":"b99a7352-1847-4185-ba24-9ecb4c1793d9"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Node statistics:

http://10.0.77.135:8181/restconf/config/odl-interface-meta:bridge-interface-info/

Choose a node dpId and use the following REST in order to get the statistics:

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeCounters, input=
 {"input": { "portId": "b99a7352-1847-4185-ba24-9ecb4c1793d9","groups": [{ "name": "byte*",
 "counters": [{
 "name": "rec*",
 }, {
 "name": "transmitted*",
 }]
 }]
 }},
headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeAggregatedCounters, input=
 {"input": { "portId": "b99a7352-1847-4185-ba24-9ecb4c1793d9","groups": [{ "name": "byte*",
 "counters": [{
 "name": "rec*",
 }, {
 "name": "transmitted*",
 }]
 }]
 }},
headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Example for a filtered request:

10.0.77.135:8181/restconf/operations/statistics-plugin:getPortCounters, input={"input": {"portId":"b99a7352-1847-4185-ba24-9ecb4c1793d9"} }, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

An example for node connector counters result:

 {
 "output": {
 "counterResult": [
 {
 "id": "openflow:194097926788804:5",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 471000000
 },
 {
 "name": "durationSecondCount",
 "value": 693554
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 1455
 },
 {
 "name": "bytesTransmittedCount",
 "value": 14151299
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 9
 },
 {
 "name": "packetsTransmittedCount",
 "value": 9
 }
]
 }
]
 }
]
 }
}

An example for node counters result:

 {
 "output": {
 "counterResult": [
 {
 "id": "openflow:194097926788804:3",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 43000000
 },
 {
 "name": "durationSecondCount",
 "value": 694674
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 648
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:2",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 882000000
 },
 {
 "name": "durationSecondCount",
 "value": 698578
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 648
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:1",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 978000000
 },
 {
 "name": "durationSecondCount",
 "value": 698627
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 6896336558
 },
 {
 "name": "bytesTransmittedCount",
 "value": 161078765
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 35644913
 },
 {
 "name": "packetsTransmittedCount",
 "value": 35644913
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:LOCAL",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 339000000
 },
 {
 "name": "durationSecondCount",
 "value": 698628
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 0
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:5",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 787000000
 },
 {
 "name": "durationSecondCount",
 "value": 693545
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 1455
 },
 {
 "name": "bytesTransmittedCount",
 "value": 14151073
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 9
 },
 {
 "name": "packetsTransmittedCount",
 "value": 9
 }
]
 }
]
 }
]
 }
}

Features to Install

odl-netvirt-openflowplugin-genius-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Guy Regev <guy.regev@hpe.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/ZdoLQWoV/126-netvirt-statistics

	Support port counters.

	Support node counters.

	Support aggregated results.

	Support filters on results.

Dependencies

	Genius

	OpenFlow Plugin

	Infrautils

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Policy based path selection for multiple VxLAN tunnels

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Policy based path selection for multiple VxLAN tunnels

https://git.opendaylight.org/gerrit/#/q/topic:policy-based-path-selection

The purpose of this feature is to allow selection of primary and backup VxLAN tunnels for different types of VxLAN
encapsulated traffic between a pair of OVS nodes based on some predefined policy.

Egress traffic can be classified using different characteristics e.g. 5-tuple, ingress port+VLAN, service-name
to determine the best available path when multiple VxLAN endpoints are configured for the same destination.

Problem description

Today, netvirt is not able to classify traffic and route it over different tunnel endpoints based on a set of
predefined characteristics. This is an essential infrastructure for applications on top of netvirt
offering premium and personalized services.

Use Cases

	Forwarding of VxLAN traffic between hypervisors with multiple physical/logical ports.

Proposed change

The current implementation of transport-zone creation generates vtep elements based on the local_ip
definition in the other-config column of the Open_vSwitch schema where the local_ip value represents
the tunnel interface ip.
This feature will introduce a new other-config property local_ips.
local_ips will express the association between multiple tunnel ip addresses and multiple underlay networks using the following format:

local_ips=<tun1-ip>:<underlay1-net>,<tun2-ip>:<underlay2-net>,..,<tunN-ip>:<underlayN-net>

Upon transport-zone creation, if the local_ips configuration is present, full tunnel mesh will be created between
all TEP ips in the same underlay network considering the existing transport-zone optimizations i.e. tunnels will be created
only between compute nodes with at least one spawned VM in the same VxLAN network or between networks connected to
the same router if at least one of the networks is VxLAN-based.

Note that configuration of multiple tunnel IPs for the same DPN in the same underlay network is not a supported
as part of this feature and requires further enhancements in both ITM and the transport-zone model.

The underlay networks are logical entities that will be used to distigush between multiple uplinks for routing of egress
VxLAN traffic. They have no relation to Openstack and neutron networks definition.
A new yang module is introduced to model the association between different types of OVS egress VxLAN traffic and the
selected underlay network paths to output the traffic.

Policy-based path selection will be defined as a new egress tunnel service and depends on tunnel service binding
functionality detailed in [3].

The policy service will be bounded only for tunnels of type logical tunnel group defined in [2].

The service will classify different types of traffic based on a predefined set of policy rules to find the best
available path to route each type of traffic. The policy model will be agnostic to the specific topology details
including DPN ids, tunnel interface and logical interface names. The only reference from the policy model
to the list of preferred paths is made using underlay network-ids described earlier in this document.

Each policy references an ordered set of policy-routes. Each policy-route can be a basic-route
referencing single underlay-network or route-group composed of multiple underlay networks.
This set will get translated in each DPN to OF fast-failover group. The content of the buckets in each DPN depends
on the existing underlay networks configured as part of the local_ips in the specific DPN.

The order of the buckets in the fast-failover group depends on the order of the underlay networks in the policy-routes model.
policy-routes with similar set of routes in different order will be translated to different groups.

Each bucket in the fast-failover group can either reference a single tunnel or an additional OF select group
depending on the type of policy route as detailed in the following table:

	Policy route type

	Bucket actions

	OF Watch type

	Basic route

	load reg6(tun-lport)
resubmit(220)

	watch_port(tun-port)

	Route group

	goto_group(select-grp)

	watch_group(select-grp)

This OF select group does not have the same content as the select groups defined in [2] and the content of its’
buckets is based on the defined route-group elements and weights.

Logical tunnel will be bounded to the policy service if and only if there is at least one policy-route referencing
one or more of the underlay networks in the logical group.

This service will take precedence over the default weighted LB service defined in [2] for logical tunnel group interfaces.

Policy-based path selection and weighted LB service pipeline example:

cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,reg6=0x500
actions=load:0xe000500->NXM_NX_REG6[],write_metadata:0xe000500000000000/0xffffffff00000000,goto_table:230
cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,reg6=0xe000500
actions=load:0xf000500->NXM_NX_REG6[],write_metadata:0xf000500000000000/0xffffffff00000000,group:800002
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x600 actions=output:3
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x700 actions=output:4
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x800 actions=output:5
cookie=0x9000007, duration=0.546s, table=230, n_packets=0, n_bytes=0,priority=7,ip,
metadata=0x222e0/0xfffffffe,nw_dst=10.0.123.2,tp_dst=8080 actions=write_metadata:0x200/0xfffffffe,goto_table:231
cookie=0x9000008, duration=0.546s, table=230, n_packets=0, n_bytes=0,priority=0,resubmit(,220)
cookie=0x7000007, duration=0.546s, table=231, n_packets=0, n_bytes=0,priority=7,metadata=0x500000000200/0xfffff00fffffffe,
actions=group:800000
cookie=0x9000008, duration=0.546s, table=231, n_packets=0, n_bytes=0,priority=0,resubmit(,220)
group_id=800000,type=ff,
bucket=weight:0,watch_group=800001,actions=group=800001,
bucket=weight:0,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
group_id=800001,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:50,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
group_id=800002,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)

Each bucket in the fast-failover group will set the watch_port or watch_group property to monitor the
liveness of the OF port in case of basic-route and underlay group in case of route-group.
This will allow the OVS to route egress traffic only to the first live bucket in each fast-failover group.

The policy model rules will be based on IETF ACL data model [4]. The following enhancements are proposed for
this model to support policy-based path selection:

	
	Name

	Attributes

	Description

	OF implementation

	ACE matches

	ingress-interface

	name

	Policy match based on the
ingress port and optionally
the VLAN id

	Match lport-tag
metadata bits

	vlan-id

	service

	service-type

	Policy match based on the
service-name of L2VPN/L3VPN
e.g. ELAN name/VPN instance
name

	Match service/vrf-id
metadata bits depending
on the service-type

	service-name

	ACE actions

	set
policy-classifier

	policy-classifier

	Set ingress/egress classifier
that can be later used for
policy routing etc.
Only the egress classifier
will be used in this feature

	Set policy classifier
in the metadata service
bits

	direction

To enable matching on previous services in the pipeline e.g. L2/L3VPN, the egress service binding for tunnel interfaces
will be changed to preserve the metadata of preceding services rather than override it as done in the current
implementation.

Each policy-classifier will be associated with policy-route. The same route can be shared by multiple classifiers.

The policy service will also maintain counters on number of policy rules assigned to underlay network per dpn
in the operational DS.

Pipeline changes

	The following new tables will be added to support the policy-based path selection service:

	Table Name

	Matches

	Actions

	Policy classifier table (230)

	ACE matches

	ACE policy actions:
set policy-classifier

	Policy routing table (231)

	match
policy-classifier

	set FF group-id

	Each Access List Entry (ACE) composed of standard and/or policy matches and policy actions will be translated
to a flow in the policy classifier table.

Each policy-classifier name will be allocated with id from a new pool - POLICY_SERVICE_POOL.
Once a policy classifier has been determined for a given ACE match, the classifier-id will be set in the service
bits of the metadata.

	Classified traffic will be sent from the policy classifier table to the policy routing table where the classifier-id
will be matched to select the preferred tunnel using OF fast-failover group. Multiple classifiers can point to a
single group.

	The default flow in the policy tables will resubmit traffic with no predefined policy/set of routes back to the
egress dispatcher table in order to continue processing in the next bounded egress service.

	For all the examples below it is assumed that a logical tunnel group was configured for both ingress and egress DPNs.
The logical tunnel group is composed of { tun1, tun2, tun3 } and bound to a policy service.

Traffic between VMs on the same DPN

No pipeline changes required

L3 traffic between VMs on different DPNs

VM originating the traffic (Ingress DPN):

	Remote next hop group in the FIB table references the logical tunnel group.

	Policy service on the logical group selects the egress interface by classifying the traffic e.g. based on
destination ip and port.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm2-ip set dst-mac=vm2-mac tun-id=vm2-label reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: vpn-id=router-id,dst-ip=vm2-ip,dst-tcp-port=8080 set egress-classifier=clf1 =>

Egress policy indirection table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf1 =>

Logical tunnel tun1 FF group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tun1

VM receiving the traffic (Ingress DPN):

	No pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vm2-label =>

Local Next-Hop group: set dst-mac=vm2-mac,reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

SNAT traffic from non-NAPT switch

VM originating the traffic is non-NAPT switch:

	NAPT group references the logical tunnel group.

	Policy service on the logical group selects the egress interface by classifying the traffic based on
the L3VPN service id.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group set tun-id=router-id reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: vpn-id=router-id set egress-classifier=clf2 =>

Policy routing table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf2 =>

Logical tunnel tun2 FF group set reg6=tun2-lport-tag =>

Egress table (220) match: reg6=tun2-lport-tag output to tun2

Traffic from NAPT switch punted to controller:

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=router-id =>

Outbound NAPT table (46) set vpn-id=router-id, punt-to-controller

L2 unicast traffic between VMs in different DPNs

VM originating the traffic (Ingress DPN):

	ELAN DMAC table references the logical tunnel group

	Policy service on the logical group selects the egress interface by classifying the traffic based on
the ingress port.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set tun-id=vm2-lport-tag reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: lport-tag=vm1-lport-tag set egress-classifier=clf3 =>

Policy routing table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf3 =>

Logical tunnel tun1 FF group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tun1

VM receiving the traffic (Ingress DPN):

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

L2 multicast traffic between VMs in different DPNs with undefined policy

VM originating the traffic (Ingress DPN):

	ELAN broadcast group references the logical tunnel group.

	Policy service on the logical group has no classification for this type of traffic. Fallback to the default
logical tunnel service - weighted LB [2].

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) =>

ELAN DMAC table (52) match: elan-tag=vxlan-net-tag =>

ELAN BC group goto_group=elan-local-group, set tun-id=vxlan-net-tag reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag set reg6=default-egress-service&logical-tun-lport-tag =>

Policy classifier table (230) =>

Egress table (220) match: reg6=default-egress-service&logical-tun-lport-tag =>

Logical tunnel LB select group set reg6=tun2-lport-tag =>

Egress table (220) match: reg6=tun2-lport-tag output to tun2

VM receiving the traffic (Ingress DPN):

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vxlan-net-tag =>

ELAN local BC group set tun-id=vm2-lport-tag =>

ELAN filter equal table (55) match: tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

Yang changes

The following yang modules will be added to support policy-based routing:

Policy Service Yang

policy-service.yang define policy profiles and add augmentations on top of
ietf-access-control-list:access-lists to apply policy classifications on access control entries.

module policy-service {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:policy";
 prefix "policy";

 import ietf-interfaces { prefix if; }

 import ietf-access-control-list { prefix ietf-acl; }

 import aclservice { prefix acl; }

 import yang-ext { prefix ext; }

 import opendaylight-l2-types { prefix ethertype; revision-date "2013-08-27"; }

 description
 "Policy Service module";

 revision "2017-02-07" {
 description
 "Initial revision";
 }

 identity policy-acl {
 base ietf-acl:acl-base;
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches" {
 ext:augment-identifier "ingress-interface";
 leaf name {
 type if:interface-ref;
 }

 leaf vlan-id {
 type ethertype:vlan-id;
 }
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches" {
 ext:augment-identifier "service";
 leaf service-type {
 type identityref {
 base service-type-base;
 }
 }

 leaf service-name {
 type string;
 }
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:actions" {
 ext:augment-identifier "set-policy-classifier";
 leaf policy-classifier {
 type leafref {
 path "/policy-profiles/policy-profile/policy-classifier";
 }
 }

 leaf direction {
 type identityref {
 base acl:direction-base;
 }
 }
 }

 container underlay-networks {
 list underlay-network {
 key "network-name";
 leaf network-name {
 type string;
 }

 leaf network-access-type {
 type identityref {
 base access-network-base;
 }
 }

 leaf bandwidth {
 type uint64;
 description "Maximum bandwidth. Units in byte per second";
 }

 list dpn-to-interface {
 config false;
 key "dp-id";
 leaf dp-id {
 type uint64;
 }

 list tunnel-interface {
 key "interface-name";
 leaf interface-name {
 type string;
 }
 }
 }

 list policy-profile {
 config false;
 key "policy-classifier";
 leaf policy-classifier {
 type string;
 }
 }
 }
 }

 container underlay-network-groups {
 list underlay-network-group {
 key "group-name";
 leaf group-name {
 type string;
 }

 list underlay-network {
 key "network-name";
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }

 leaf weight {
 type uint16;
 default 1;
 }
 }

 leaf bandwidth {
 type uint64;
 description "Maximum bandwidth of the group. Units in byte per second";
 }
 }
 }

 container policy-profiles {
 list policy-profile {
 key "policy-classifier";
 leaf policy-classifier {
 type string;
 }

 list policy-route {
 key "route-name";
 leaf route-name {
 type string;
 }

 choice route {
 case basic-route {
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }
 }

 case route-group {
 leaf group-name {
 type leafref {
 path "/underlay-network-groups/underlay-network-group/group-name";
 }
 }
 }
 }
 }

 list policy-acl-rule {
 config false;
 key "acl-name";
 leaf acl-name {
 type leafref {
 path "/ietf-acl:access-lists/ietf-acl:acl/ietf-acl:acl-name";
 }
 }

 list ace-rule {
 key "rule-name";
 leaf rule-name {
 type leafref {
 path "/ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:rule-name";
 }
 }
 }
 }
 }
 }

 container policy-route-counters {
 config false;

 list underlay-network-counters {
 key "network-name";
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }

 list dpn-counters {
 key "dp-id";
 leaf dp-id {
 type uint64;
 }

 leaf counter {
 type uint32;
 }
 }

 list path-counters {
 key "source-dp-id destination-dp-id";
 leaf source-dp-id {
 type uint64;
 }

 leaf destination-dp-id {
 type uint64;
 }

 leaf counter {
 type uint32;
 }
 }
 }
 }

 identity service-type-base {
 description "Base identity for service type";
 }

 identity l3vpn-service-type {
 base service-type-base;
 }

 identity l2vpn-service-type {
 base service-type-base;
 }

 identity access-network-base {
 description "Base identity for access network type";
 }

 identity mpls-access-network {
 base access-network-base;
 }

 identity docsis-access-network {
 base access-network-base;
 }

 identity pon-access-network {
 base access-network-base;
 }

 identity dsl-access-network {
 base access-network-base;
 }

 identity umts-access-network {
 base access-network-base;
 }

 identity lte-access-network {
 base access-network-base;
 }
}

Policy service tree view

module: policy-service
 +--rw underlay-networks
 | +--rw underlay-network* [network-name]
 | +--rw network-name string
 | +--rw network-access-type? identityref
 | +--rw bandwidth? uint64
 | +--ro dpn-to-interface* [dp-id]
 | | +--ro dp-id uint64
 | | +--ro tunnel-interface*
 | | +--ro interface-name? string
 | +--ro policy-profile* [policy-classifier]
 | +--ro policy-classifier string
 +--rw underlay-network-groups
 | +--rw underlay-network-group* [group-name]
 | +--rw group-name string
 | +--rw underlay-network* [network-name]
 | | +--rw network-name -> /underlay-networks/underlay-network/network-name
 | | +--rw weight? uint16
 | +--rw bandwidth? uint64
 +--rw policy-profiles
 | +--rw policy-profile* [policy-classifier]
 | +--rw policy-classifier string
 | +--rw policy-route* [route-name]
 | | +--rw route-name string
 | | +--rw (route)?
 | | +--:(basic-route)
 | | | +--rw network-name? -> /underlay-networks/underlay-network/network-name
 | | +--:(route-group)
 | | +--rw group-name? -> /underlay-network-groups/underlay-network-group/group-name
 | +--ro policy-acl-rule* [acl-name]
 | +--ro acl-name -> /ietf-acl:access-lists/acl/acl-name
 | +--ro ace-rule* [rule-name]
 | +--ro rule-name -> /ietf-acl:access-lists/acl/access-list-entries/ace/rule-name
 +--ro policy-route-counters
 +--ro underlay-network-counters* [network-name]
 +--ro network-name -> /underlay-networks/underlay-network/network-name
 +--ro dpn-counters* [dp-id]
 | +--ro dp-id uint64
 | +--ro counter? uint32
 +--ro path-counters* [source-dp-id destination-dp-id]
 +--ro source-dp-id uint64
 +--ro destination-dp-id uint64
 +--ro counter? uint32
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches:
 +--rw name? if:interface-ref
 +--rw vlan-id? ethertype:vlan-id
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches:
 +--rw service-type? identityref
 +--rw service-name? string
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:actions:
 +--rw policy-classifier? -> /policy-profiles/policy-profile/policy-classifier
 +--rw direction? identityref

Configuration impact

This feature introduces a new other_config parameter local_ips to support multiple ip:network
associations as detailed above.
Compatibility with the current local_ip parameter will be maintained but if both are present, local_ips
would take presedence over local_ip.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Features to Install

odl-netvirt-openstack

REST API

Sample JSON data

Create policy rule

URL: restconf/config/ietf-access-control-list:access-lists

The following REST will create rule to classify all http traffic to ports 8080-8181 from specific vpn-id

{
 "access-lists": {
 "acl": [
 {
 "acl-type": "policy-service:policy-acl",
 "acl-name": "http-policy",
 "access-list-entries": {
 "ace": [
 {
 "rule-name": "http-ports",
 "matches": {
 "protocol": 6,
 "destination-port-range": {
 "lower-port": 8080,
 "upper-port": 8181
 },
 "policy-service:service-type": "l3vpn",
 "policy-service:service-name": "71f7eb47-59bc-4760-8150-e5e408d2ba10"
 },
 "actions": {
 "policy-service:policy-classifier" : "classifier1",
 "policy-service:direction" : "egress"
 }
 }
]
 }
 }
]
 }
 }
 }

Create underlay networks

URL: restconf/config/policy-service:underlay-networks

The following REST will create multiple underlay networks with different access types

{
 "underlay-networks": {
 "underlay-network": [
 {
 "network-name": "MPLS",
 "network-access-type": "policy-service:mpls-access-network"
 },
 {
 "network-name": "DLS1",
 "network-access-type": "policy-service:dsl-access-network"
 },
 {
 "network-name": "DSL2",
 "network-access-type": "policy-service:dsl-access-network"
 }
]
 }
}

Create underlay group

URL: restconf/config/policy-service:underlay-network-groups

The following REST will create group for the DSL underlay networks

{
 "underlay-network-groups": {
 "underlay-network-group": [
 {
 "group-name": "DSL",
 "underlay-network": [
 {
 "network-name": "DSL1",
 "weight": 75
 },
 {
 "network-name": "DSL2",
 "weight": 25
 }
]
 }
]
 }
}

Create policy profile

URL: restconf/config/policy-service:policy-profiles

The following REST will create profile for classifier1 with multiple policy-routes

{
 "policy-profiles": {
 "policy-profile": [
 {
 "policy-classifier": "classifier1",
 "policy-route": [
 {
 "route-name": "primary",
 "network-name": "MPLS"
 },
 {
 "route-name": "backup",
 "group-name": "DSL"
 }
]
 }
]
 }
}

CLI

None

Implementation

Assignee(s)

	Primary assignee:

	Tali Ben-Meir <tali@hpe.com>

	Other contributors:

	Yair Zinger <yair.zinger@hpe.com>

Work Items

Trello card: https://trello.com/c/Uk3yrjUG/25-multiple-vxlan-endpoints-for-compute

	Transport-zone creation for multiple tunnels based on underlay network definitions

	Extract ACL flow programming to common location so it can be used by the policy service

	Create policy OF groups based on underlay network/group definitions

	Create policy classifier table based on ACL rules

	Create policy routing table

	Bind policy service to logical tunnels

	Maintain policy-route-counters per dpn/dpn-path

Dependencies

None

Testing

Unit Tests

Integration Tests

The test plan defined for CSIT below could be reused for integration tests.

CSIT

Adding multiple ports to the CSIT setups is challenging due to rackspace limitations.
As a result, the test plan defined for this feature uses white-box methodology and not verifying actual traffic was
sent over the tunnels.

Policy routing with single tunnel per access network type

	Set local_ips to contain tep ips for networks underlay1 and underlay2

	Each underlay network will be defined with different access-network-type

	Create the following policy profiles

	Profile1: policy-classifier=clf1, policy-routes=underlay1, underlay2

	Profile2: policy-classifier=clf2, policy-routes=underlay2, underlay1

	Create the following policy rules

	Policy rule 1: dst_ip=vm2_ip,dst_port=8080 set_policy_classifier=clf1

	Policy rule 2: src_ip=vm1_ip set_policy_classifier=clf2

	Policy rule 3: service-type=l2vpn service-name=elan-name set_policy_classifier=clf1

	Policy rule 4: service-type=l3vpn service-name=router-name set_policy_classifier=clf2

	Policy rule 5: ingress-port=vm3_port set_policy_classifier=clf1

	Policy rule 6: ingress-port=vm4_port vlan=vlan-id set_policy_classifier=clf2

	Verify policy service flows/groups for all policy rules

	Verify flows/groups removal after the profiles were deleted

Policy routing with multiple tunnels per access network type

	Set local_ips to contain tep ips for networks underlay1..``underlay4``

	underlay1, underlay2 and underlay3, underlay4 are from the same access-network-type

	Create the following policy profiles where each route can be either group or basic route

	Profile1: policy-classifier=clf1, policy-routes={underlay1, underlay2}, {underlay3,underlay4}

	Profile2: policy-classifier=clf2, policy-routes={underlay3,underlay4}, {underlay1, underlay2}

	Profile3: policy-classifier=clf3, policy-routes=underlay1, {underlay3,underlay4}

	Profile4: policy-classifier=clf4, policy-routes={underlay1, underlay2}, underlay3

	Profile5: policy-classifier=clf5, policy-routes={underlay1, underlay2}

	Profile6: policy-classifier=clf6, policy-routes=underlay4

	Create the following policy rules

	Policy rule 1: dst_ip=vm2_ip,dst_port=8080 set_policy_classifier=clf1

	Policy rule 2: src_ip=vm1_ip set_policy_classifier=clf2

	Policy rule 3: service-type=l2vpn service-name=elan-name set_policy_classifier=clf3

	Policy rule 4: service-type=l3vpn service-name=router-name set_policy_classifier=clf4

	Policy rule 5: ingress-port=vm3_port set_policy_classifier=clf5

	Policy rule 6: ingress-port=vm4_port vlan=vlan-id set_policy_classifier=clf6

	Verify policy service flows/groups for all policy rules

	Verify flows/groups removal after the profiles were deleted

Documentation Impact

Netvirt documentation needs to be updated with description and examples of policy service configuration

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] Load balancing and high availability of multiple VxLAN tunnels [https://git.opendaylight.org/gerrit/#/c/50779]

[3] Service Binding On Tunnels [https://git.opendaylight.org/gerrit/#/c/51270]

[4] Network Access Control List (ACL) YANG Data Model [https://tools.ietf.org/html/draft-ietf-netmod-acl-model-09]

Table of Contents

	Support for QoS Alert

	Problem description

	Use Cases

	Proposed change

	Log file format

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support for QoS Alert

https://git.opendaylight.org/gerrit/#/q/topic:qos-alert

This feature adds support to monitor the per port packet drop counts when QoS rate limit rule is
applied.

Problem description

If QoS bandwidth policy is applied on a neutron port, all packets exceeding the rate limit are
dropped by the switch. This spec proposes a new service to monitor the packet drop ratio and log
the alert message if packet drop ratio is greater than the configured threshold value.

Use Cases

Periodically monitor the port statistics of neutron ports having bandwidth limit rule and log an
alert message in a log file if packet drop ratio cross the threshold value. Log file can be
analyzed offline later to check the health/diagnostics of the network.

Proposed change

Proposed new service will use the RPC
/operations/opendaylight-direct-statistics:get-node-connector-statistics provided by
openflowplugin to retrieve port statistics directly from switch by polling at regular interval.
Polling interval is configurable with default value of 2 minutes.

Port packet drop ratio is calculated using delta of two port statistics counters
rx_dropped and rx_received between the sample interval.

packet drop ratio = 100 * (rx_dropped / (rx_received + rx_dropped))

An message is logged if packet drop ratio is greater than the configured threshold value.

Existing logging framework log4j shall be used to log the alert messages in the log file.
A new appender qosalertmsg shall be added in org.ops4j.pax.logging.cfg to define the
logging properties.

Log file format

2017-01-17 01:17:49,550 Packet drop threshold hit for qos policy qospolicy1 with qos-id qos-2dbf02f6-dcd1-4c13-90ee-6f727e21fe8d for port port-3afde68d-1103-4b8a-a38d-9cae631f7d67 on network network-563f9610-dd91-4524-ae23-8ec3c32f328e rx_received 4831 rx_dropped 4969
2017-01-17 01:17:49,550 Packet drop threshold hit for qos policy qospolicy2 with qos-id qos-cb7e5f67-2552-4d49-b534-0ce90ebc8d97 for port port-09d3a437-f4a4-43eb-8655-85df8bbe4793 on network network-389532a1-2b48-4ba9-9bcd-c1705d9e28f9 rx_received 3021 rx_dropped 4768
2017-01-17 01:19:49,339 Packet drop threshold hit for qos policy qospolicy1 with qos-id qos-2dbf02f6-dcd1-4c13-90ee-6f727e21fe8d for port port-3afde68d-1103-4b8a-a38d-9cae631f7d67 on network network-563f9610-dd91-4524-ae23-8ec3c32f328e rx_received 3837 rx_dropped 3961
2017-01-17 01:19:49,339 Packet drop threshold hit for qos policy qospolicy2 with qos-id qos-cb7e5f67-2552-4d49-b534-0ce90ebc8d97 for port port-09d3a437-f4a4-43eb-8655-85df8bbe4793 on network network-389532a1-2b48-4ba9-9bcd-c1705d9e28f9 rx_received 2424 rx_dropped 2766

Pipeline changes

None.

Yang changes

A new yang file shall be created for qos-alert configuration as specified below:

qos-alert-config.yang

module qosalert-config {

 yang-version 1;
 namespace "urn:opendaylight:params:xml:ns:yang:netvirt:qosalert:config";
 prefix "qosalert";

 revision "2017-01-03" {
 description "Initial revision of qosalert model";
 }

 description "This YANG module defines QoS alert configuration.";

 container qosalert-config {

 config true;

 leaf qos-alert-enabled {
 description "QoS alert enable-disable config knob";
 type boolean;
 default false;
 }

 leaf qos-drop-packet-threshold {
 description "QoS Packet drop threshold config. Specified as % of rx packets";
 type uint8 {
 range "1..100";
 }
 default 5;
 }

 leaf qos-alert-poll-interval {
 description "Polling interval in minutes";
 type uint16 {
 range "1..3600";
 }
 default 2;
 }

 }
}

Configuration impact

Following new parameters shall be made available as configuration. Initial or default configuration
is specified in netvirt-qosservice-config.xml

	Sl No.

	configuration

	Description

	
	

	qos-alert-enabled

	configuration parameter to enable/disable the alerts

	
	

	qos-drop-packet-threshold

	Drop percentage threshold configuration.

	
	

	qos-alert-poll-interval

	Polling interval in minutes

Logging properties like log file name, location, size and maximum number of backup files are
configured in file org.ops4j.pax.logging.cfg

Clustering considerations

In cluster setup, only one instance of qosalert service shall poll for port statistics.
Entity owner service (EOS) shall be used to determine the owner of service.

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

QoS Alert Service minimizes scale and performance impact by following:

	Proposed service uses the direct-statistics RPC instead of OpenflowPlugin statistics-manager. This
is lightweight because only node-connector statistics are queried instead of all statistics.

	Polling frequency is quite slow. Default polling interval is two minutes and minimum allowed
value is 1 minute.

Targeted Release

Carbon.

Alternatives

N.A.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

Put Qos Alert Config

Following API puts Qos Alert Config.

Method: POST

URI: /config/qosalert-config:qosalert-config

Parameters:

	Parameter

	Type

	Value range

	Comments

	qos-alert-enabled

	Boolean

	true/false

	Optional (default false)

	qos-drop-packet-threshold

	Uint16

	1..100

	Optional (default 5)

	qos-alert-poll-interval

	Uint16

	1..65535

	Optional time interval in minute(s) (default 2)

Example:
.. code-block:: json

	{

	
“input”:
{

“qos-alert-enabled”: true,

“qos-drop-packet-threshold”: 35,

“qos-alert-poll-interval”: 5

}

}

CLI

Following new karaf CLIs are added

qos:enable-qos-alert <true|false>

qos:drop-packet-threshold <threshold value in %>

qos:alert-poll-interval <polling interval in minutes>

Implementation

Assignee(s)

	Primary assignee:

	
	Arun Sharma (arun.e.sharma@ericsson.com)

	Other contributors:

	
	Ravi Sundareswaran (ravi.sundareswaran@ericsson.com)

	Mukta Rani (mukta.rani@tcs.com)

Work Items

Trello Link <https://trello.com/c/780v28Yw/148-netvirt-qos-alert>

	Adding new yang file and listener.

	Adding new log4j appender in odlparent org.ops4j.pax.logging.cfg file.

	Retrieval of port statistics data using the openflowplugin RPC.

	Logging alert message into the log file.

	UT and CSIT

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

Unit Tests

Standard UTs will be added.

Integration Tests

N.A.

CSIT

Following new CSIT tests shall be added

	Verify that alerts are generated if drop packets percentage is more than the configured threshold
value.

	Verify that alerts are not generated if drop packets percentage is less than threshold value.

	Verify that alerts are not generated when qos-alert-enabled if false irrespective of drop
packet percentage.

Documentation Impact

This will require changes to User Guide.

User Guide will need to add information on how qosalert service can
be used.

References

[1] Neutron QoS [http://docs.openstack.org/developer/neutron/devref/quality_of_service.html]

[2] Spec for NetVirt QoS [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/qos.html]

[3] Openflowplugin port statistics [https://github.com/opendaylight/openflowplugin/blob/master/model/model-flow-statistics/src/main/yang/opendaylight-direct-statistics.yang]

Table of Contents

	Neutron Quality of Service API Enhancements for NetVirt

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Neutron Quality of Service API Enhancements for NetVirt

QoS patches: https://git.opendaylight.org/gerrit/#/q/topic:qos

The Carbon release will enhance the initial implementation of Neutron
QoS API 1 support for NetVirt which was released in Boron. The
Boron released added support for Neutron QoS policies and the
Egress bandwidth rate limiting rule. The Carbon release will update the
QoS feature set of NetVirt by providing support for the DSCP Marking
rule and QoS Rule capability reporting.

Problem description

It is important to be able to configure QoS attributes of workloads on
virtual networks. The Neutron QoS API provides a method for defining
QoS policies and associated rules which can be applied to Neutron Ports
and Networks. These rules include:

	Egress Bandwidth Rate Limiting

	DSCP Marking

(Note that for the Neutron API, the direction of traffic flow (ingress, egress)
is from the perspective of the OpenStack instance.)

As a Neutron provider for ODL, NetVirt will provide the ability to report
back to Neutron its QoS rule capabilties and provide the ability to
configure and manage the supported QoS rules on supported backends
(e.g. OVS, …). The key changes in the Carbon release will be the
addition of support for the DSCP Marking rule.

Use Cases

Neutron QoS API support, including:

	Egress rate limiting -
Drop traffic that exceeeds the specified rate parameters for a
Neutron Port or Network.

	DSCP Marking -
Set the DSCP field for IP packets arriving from Neutron Ports
or Networks.

	Reporting of QoS capabilities -
Report to Neutron which QoS Rules are supported.

Proposed change

To handle DSCP marking, listener support will be added to the
neutronvpn service to respond to changes in DSCP Marking
Rules in QoS Policies in the Neutron Northbound QoS models 2 3 .

To implement DSCP marking support, a new ingress (from vswitch
perspective) QoS Service is defined in Genius. When DSCP Marking rule
changes are detected, a rule in a new OpenFlow table for
QoS DSCP marking rules will be updated.

The QoS service will be bound to an interface when a DSCP Marking
rule is added and removed when the DSCP Marking rule is deleted.
The QoS service follows the DHCP service and precedes the IPV6
service in the sequence of Genius ingress services.

Some use cases for DSCP marking require that the DSCP mark set on the inner packet
be replicated to the DSCP marking in the outer packet. Therefore, for packets egressing out
of OVS through vxlan/gre tunnels the option to copy the DSCP bits from the inner IP header
to the outer IP header is needed.
Marking of the inner header is done via OpenFlow rules configured on the corresponding Neutron port
as described above. For cases where the outer tunnel header should have a copy of the inner
header DSCP marking, the tos option on the tunnel interface in OVSDB must be configured
to the value inherit.
The setting of the tos option is done with a configurable parameter defined in the ITM module.
By default the tos option is set to 0 as specified in the OVSDB specification 4 .

On the creation of new tunnels, the tos field will be set to either the user provided value
or to the default value, which may be controlled via configuration. This will result in
the tunnel-options field in the IFM (Interface Manager) to be set which will in turn cause
the options field for the tunnel interface on the OVSDB node to be configured.

To implement QoS rule capability reporting back towards Neutron, code will
be added to the neutronvpn service to populate the operational qos-rule-types
list in the Neutron Northbound Qos model 3 with a list of the supported
QoS rules - which will be the bandwidth limit rule and DSCP marking rule for
the Carbon release.

Pipeline changes

A new QoS DSCP table is added to support the new QoS Service:

	Table

	Match

	Action

	QoS DSCP [90]

	Ethtype == IPv4 or IPv6 AND LPort tag

	Mark packet with DSCP value

Yang changes

A new leaf option-tunnel-tos is added to tunnel-end-points in itm-state.yang and to
vteps in itm.yang.

itm-state.yang

list tunnel-end-points {
 ordered-by user;
 key "portname VLAN-ID ip-address tunnel-type";

 leaf portname {
 type string;
 }
 leaf VLAN-ID {
 type uint16;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 leaf subnet-mask {
 type inet:ip-prefix;
 }
 leaf gw-ip-address {
 type inet:ip-address;
 }
 list tz-membership {
 key "zone-name";
 leaf zone-name {
 type string;
 }
 }
 leaf interface-name {
 type string;
 }
 leaf tunnel-type {
 type identityref {
 base odlif:tunnel-type-base;
 }
 }
 leaf option-of-tunnel {
 description "Use flow based tunnels for remote-ip";
 type boolean;
 default false;
 }
 leaf option-tunnel-tos {
 description "Value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 }
}

itm.yang

list vteps {
 key "dpn-id portname";
 leaf dpn-id {
 type uint64;
 }
 leaf portname {
 type string;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 leaf option-of-tunnel {
 description "Use flow based tunnels for remote-ip";
 type boolean;
 default false;
 }
 leaf option-tunnel-tos {
 description "Value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 }
}

A configurable parameter default-tunnel-tos is added to itm-config.yang which
defines the default ToS value to be applied to tunnel ports.

itm-config.yang

container itm-config {
 config true;

 leaf default-tunnel-tos {
 description "Default value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 default 0;
 }
}

Configuration impact

A configurable parameter default-tunnel-tos is added to
genius-itm-config.xml which specifies the default ToS to
use on a tunnel if it is not specified by the user when a
tunnel is created. This value may be set to inherit for
some DSCP Marking use cases.

genius-itm-config.xml

<itm-config xmlns="urn:opendaylight:genius:itm:config">
 <default-tunnel-tos>0</default-tunnel-tos>
</itm-config>

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

Additional OpenFlow packets will be generated to configure DSCP marking rules in response
to QoS Policy changes coming from Neutron.

Targeted Release

Carbon

Alternatives

Use of OpenFlow meters was desired, but the OpenvSwitch datapath implementation
does not support meters (although the OpenvSwitch OpenFlow protocol implementation
does support meters).

Usage

The user will use the QoS support by enabling and configuring the
QoS extension driver for networking-odl. This will allow QoS Policies and
Rules to be configured for Neuetron Ports and Networks using Neutron.

Perform the following configuration steps:

	In neutron.conf enable the QoS service by appending qos to
the service_plugins configuration:

/etc/neutron/neutron.conf

service_plugins = odl-router, qos

	Add the QoS notification driver to the neutron.conf file as follows:

/etc/neutron/neutron.conf

[qos]
notification_drivers = odl-qos

	Enable the QoS extension driver for the core ML2 plugin.
In file ml2.conf.ini append qos to extension_drivers

/etc/neutron/plugins/ml2/ml2.conf.ini

[ml2]
extensions_drivers = port_security,qos

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 5 for the Neutron CLI command syntax
for managing QoS policies and rules for Neutron networks and ports.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assigne and other contributors.

Primary assignee:

	Poovizhi Pugazh <poovizhi.p@ericsson.com>

Other contributors:

	Ravindra Nath Thakur <ravindra.nath.thakur@ericsson.com>

	Eric Multanen <eric.w.multanen@intel.com>

	Praveen Mala <praveen.mala@intel.com> (including CSIT)

Work Items

Task list in Carbon Trello: https://trello.com/c/bLE2n2B1/14-qos

Dependencies

Genius project - Code 6 to support QoS Service needs to be added.

Neutron Northbound - provides the Neutron QoS models for policies and rules (already done).

	Following projects currently depend on NetVirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

Documentation to describe use of Neutron QoS support with NetVirt
will be added.

OpenFlow pipeline documentation updated to show QoS service table.

References

http://specs.openstack.org/openstack/neutron-specs/specs/newton/ml2-qos-with-dscp.html

ODL gerrit adding QoS models to Neutron Northbound: https://git.opendaylight.org/gerrit/#/c/37165/

	1

	Neutron QoS http://docs.openstack.org/developer/neutron/devref/quality_of_service.html

	2

	Neutron Northbound QoS Model Extensions https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos-ext.yang

	3

	Neutron Northbound QoS Model https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos.yang

	4

	OVSDB Schema http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

	5

	Neutron CLI Reference http://docs.openstack.org/cli-reference/neutron.html#neutron-qos-available-rule-types

	6

	Genius code supporting QoS service https://git.opendaylight.org/gerrit/#/c/49084/

Table of Contents

	Setup Source-MAC-Address for routed packets destined to virtual endpoints

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Setup Source-MAC-Address for routed packets destined to virtual endpoints

https://git.opendaylight.org/gerrit/#/q/topic:SMAC_virt_endpoints

All L3 Routed packets destined to virtual endpoints in the datacenter managed by ODL
do not carry a proper source-mac address in such frames put out to virtual endpoints.

This spec makes sure a proper source-mac is updated in the packet at the point where the
packet is delivered to the VM, regardless of the tenant network type. On the actual datapath,
there will be no change in the source mac-addresses and packets continue to use the same
mechanism that is used today.

Addressing the datapath requires unique MAC allocation per OVS Datapath, so that it can be
used as the source MAC for all distributively routed packets of an ODL enabled cloud. It
would be handled in some future spec.

Problem description

Today all L3 Routed packets destined to virtual endpoints in the datacenter either

	Incorrectly carry the source mac-address of the originator (regardless of which network the originator is in)

	Incorrectly carry sometimes the reserved source mac address of 00:00:00:00:00:00

This spec is intended to setup a source-mac-address in the frame of L3 Routed packets just before
such frames are directed into the virtual endpoints themselves. This enables use-cases where certain
virtual endpoints which are VNFs in the datacenter that are source-mac conscious (or mandate that src-mac
in frames be valid) can become functional on their instantiation in an OpenDaylight enabled cloud.

Use Cases

	Intra-Datacenter L3 forwarded packets within a hypervisor.

	Intra-Datacenter L3 forwarded packets over Internal VXLAN Tunnels between two hypervisors in the datacenter.

	Inter-Datacenter L3 forwarded packets :

	Destined to VMs associated floating IP over External VLAN Provider Networks.

	Destined to VMs associated floating IP over External MPLSOverGRE Tunnels.

	SNAT traffic from VMs over External MPLSOverGRE Tunnels.

	SNAT traffic from VMS over External VLAN Provider Networks.

Proposed change

All the L3 Forwarded traffic today reaches the VM via a LocalNextHopGroup managed by
the VPN Engine (including FIBManager).

Currently the LocalNextHopGroup sets-up the destination MAC Address of the VM and forwards the traffic
to EGRESS_LPORT_DISPATCHER_TABLE (Table 220). In that LocalNextHopGroup we will additionally setup
source-mac-address for the frame. There are two cases to decide what source-mac-address should go
into the frame:

	If the VM is on a subnet (on a network) for which a subnet gatewayip port exists, then the
source-mac address of that subnet gateway port will be setup as the frame’s source-mac
inside the LocalNextHop group.This is typical of the case when a subnet is added to a router,
as the router interface port created by neutron will be representing the subnet’s gateway-ip address.

	If the VM is on a subnet (on a network), for which there is no subnet gatewayip port but that network
is part of a BGPVPN , then the source-mac address would be that of the connected mac-address of the
VM itself. The connected mac-address is nothing but the mac-address on the ovs-datapath for the VMs
tapxxx/vhuxxx port on that hypervisor itself.

The implementation also applies to Extra-Routes (on a router) and Discovered Routes as they both use the
LocalNextHopGroup in their last mile to send packets into their Nexthop VM.

We need to note that when a network is already part of a BGPVPN, adding a subnet on such a network to
a router is disallowed currently by NeutronVPN. And so the need to swap the mac-addresses inside
the LocalNextHopGroup to reflect the subnet gatewayip port here does not arise.

For all the use-cases listed in the USE-CASES section above, proper source mac address will be filled-up
in the frame before it enters the virtual endpoint.

Pipeline changes

There are no pipeline changes.

The only change is in the NextHopGroup created by VPN Engine (i.e., VRFEntryListener). In the NextHopGroup we
will additionally fill up the ethernet source mac address field with proper mac-address as outlined in the
‘Proposed change’ section.

Currently the LocalNextHopGroup is used in the following tables of VPN Pipeline:

	L3_LFIB_TABLE (Table 20) - Lands all routed packets from MPLSOverGRE tunnel into the virtual endpoint.

	INTERNAL_TUNNEL_TABLE (Table 36) - Lands all routed packets on Internal VXLAN Tunnel within the DC into the
virtual end point.

	L3_FIB_TABLE (Table 21) - Lands all routed packets within a specific hypervisor into the virtual endpoint.

cookie=0x8000002, duration=50.676s, table=20, n_packets=0, n_bytes=0, priority=10,mpls,mpls_label=70006 actions=write_actions(pop_mpls:0x0800,group:150000)
cookie=0x8000003, duration=50.676s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222f2/0xfffffffe,nw_dst=10.1.1.3 actions=write_actions(group:150000)
cookie=0x9011176, duration=50.676s, table=36, n_packets=0, n_bytes=0, priority=5,tun_id=0x11176 actions=write_actions(group:150000)

NEXTHOP GROUP:
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:01:1a:40->eth_src,set_field:fa:16:3e:8b:c5:51->eth_dst,load:0x300->NXM_NX_REG6[],resubmit(,220)

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None

Targeted Release

Carbon/Boron

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Primary assignee:

	Achuth Maniyedath (achuth.m@altencalsoftlabs.com)

Other contributors:

	Karthik Prasad (karthik.p@altencalsoftlabs.com)

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

https://trello.com/c/IfAmnFFr/110-add-source-macs-in-frames-for-l3-routed-packets-before-such-frames-get-to-the-virtual-endpoint

	Determine the smac address to be used for L3 packets forwarded to VMs.

	Update the LocalNextHopGroup table with proper ethernet source-mac parameter.

Dependencies

No new dependencies.

Testing

Verify the Source-MAC-Address setting on frames forwarded to Virtual endpoints in following cases.

Intra-Datacenter traffic to VMs (Intra/Inter subnet).

	VM to VM traffic within a hypervisor.

	VM to VM traffic across hypervisor over Internal VXLAN tunnel.

Inter-Datacenter traffic to/from VMs.

	External access to VMs using Floating IPs on MPLSOverGRE tunnels.

	External access to VMs using Floating IPs over VLAN provider networks.

	External access from VMs using SNAT over VLAN provider networks.

	External access from VMs using SNAT on MPLSOverGRE tunnels.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

	Validate that router-interface src-mac is available on received frames within the VM when that VM is on a router-arm.

	Validate that connected-mac as src-mac available on received frames within the VM when that VM is on a network-driven L3 BGPVPN.

Documentation Impact

N/A

References

N/A

Table of Contents

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	API changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Internal

	External

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support for TCP MD5 Signature Option configuration of Quagga BGP

https://git.opendaylight.org/gerrit/#/q/topic:qbgp-tcp-md5-signature-option

This functionality adds support to odl-netvirt-impl feature to configure the TCP MD5 Signature Option
[RFC2385] password in Quagga BGPs [QBGP].

Problem description

Quagga [QBGP] supports TCP MD5 Signature Option [RFC2385] in BGP traffic but current odl-netvirt-impl feature
implementation lacks support to configure the required passwords.

Use Cases

UC1: Protect (Quagga [QBGP]) BGP and DC gateway BGP interface using
TCP MD5 Signature Option [RFC2385].

Proposed change

The following components need to be enhanced:

	BGP Manager

Pipeline changes

No pipeline changes.

API changes

Changes will be needed in ebgp.yang, and qbgp.thrift.

YANG changes

A new optional leaf with the TCP MD5 Signature Option [RFC2385] password is added (by means of a
choice) to list neighbors.

ebgp.yang additions

typedef tcp-md5-signature-password-type {
 type string {
 length 1..80;
 } // subtype string
 description
 "The shared secret used by TCP MD5 Signature Option. The length is
 limited to 80 chars because A) it is identified by the RFC as current
 practice and B) it is the maximum length accepted by Quagga
 implementation.";
 reference "RFC 2385";
} // typedef tcp-md5-signature-password-type

grouping tcp-security-option-grouping {
 description "TCP security options.";
 choice tcp-security-option {
 description "The tcp security option in use, if any.";

 case tcp-md5-signature-option {
 description "The connection uses TCP MD5 Signature Option.";
 reference "RFC 2385";
 leaf tcp-md5-signature-password {
 type tcp-md5-signature-password-type;
 description "The shared secret used to sign the packets.";
 } // leaf tcp-md5-signature-password
 } // case tcp-md5-signature-option

 } // choice tcp-security-option
} // grouping tcp-security-option-grouping

ebgp.yang modifications

 list neighbors {
 key "address";
 leaf address {
 type inet:ipv4-address;
 mandatory "true";
 }
 leaf remote-as {
 type uint32;
 mandatory "true";
 }
 + use tcp-security-option-grouping;

Thrift changes

A new function setPeerSecret is added to the service BgpConfigurator.

qbgp.thrift modifications

--- a/vpnservice/bgpmanager/bgpmanager-impl/src/main/java/org/opendaylight/netvirt/bgpmanager/thrift/idl/qbgp.thrift
+++ b/vpnservice/bgpmanager/bgpmanager-impl/src/main/java/org/opendaylight/netvirt/bgpmanager/thrift/idl/qbgp.thrift
@@ -31,6 +31,8 @@ const i32 GET_RTS_NEXT = 1
 * ERR_NOT_ITER when GET_RTS_NEXT is called without
 * initializing with GET_RTS_INIT
 * ERR_PARAM when there is an issue with params
+ * ERR_NOT_SUPPORTED when the server does not support
+ * the operation.
 */

 const i32 BGP_ERR_FAILED = 1
@@ -38,6 +40,7 @@ const i32 BGP_ERR_ACTIVE = 10
 const i32 BGP_ERR_INACTIVE = 11
 const i32 BGP_ERR_NOT_ITER = 15
 const i32 BGP_ERR_PARAM = 100
+const i32 BGP_ERR_NOT_SUPPORTED = 200

 // these are the supported afi-safi combinations
 enum af_afi {
@@ -122,6 +125,33 @@ service BgpConfigurator {
 6:i32 stalepathTime, 7:bool announceFlush),
 i32 stopBgp(1:i64 asNumber),
 i32 createPeer(1:string ipAddress, 2:i64 asNumber),
+
+ /* 'setPeerSecret' sets the shared secret needed to protect the peer
+ * connection using TCP MD5 Signature Option (see rfc 2385).
+ *
+ * Params:
+ *
+ * 'ipAddress' is the peer (neighbour) address. Mandatory.
+ *
+ * 'rfc2385_sharedSecret' is the secret. Mandatory. Length must be
+ * greater than zero.
+ *
+ * Return codes:
+ *
+ * 0 on success.
+ *
+ * BGP_ERR_FAILED if 'ipAddress' is missing or unknown.
+ *
+ * BGP_ERR_PARAM if 'rfc2385_sharedSecret' is missing or invalid (e.g.
+ * it is too short or too long).
+ *
+ * BGP_ERR_INACTIVE when there is no session.
+ *
+ * BGP_ERR_NOT_SUPPORTED when TCP MD5 Signature Option is not supported
+ * (e.g. the underlying TCP stack does not support it)
+ *
+ */
+ i32 setPeerSecret(1:string ipAddress, 2:string rfc2385_sharedSecret),
 i32 deletePeer(1:string ipAddress)
 i32 addVrf(1:layer_type l_type, 2:string rd, 3:list<string> irts, 4:list<string> erts),
 i32 delVrf(1:string rd),

An old server (i.e. using a previous version of qbgp.thrift) will return
a TApplicationException with type UNKNOWN_METHOD. See
[TBaseProcessor].

Configuration impact

No configuration parameters deprecated.

New optional leaf tcp-md5-signature-password does not impact existing
deployments.

The recommended AAA configuration (See Security considerations) may impact
existing deployments.

Clustering considerations

NA

Other Infra considerations

Signature mismatch

On signature mismatch TCP MD5 Signature Option [RFC2385] (page 2) specifies the following
behaviour:

RFC 2385 page 2

Upon receiving a signed segment, the receiver must validate it by
calculating its own digest from the same data (using its own key) and
comparing the two digest. A failing comparison must result in the
segment being dropped and must not produce any response back to the
sender. Logging the failure is probably advisable.

A BGP will be unable to connect with a neighbor with a wrong password because
the TCP SYN,ACK will be dropped. The neighbor state will bounce between
“Active” and “Connect” while it retries.

Security considerations

tcp-md5-signature-password is stored in clear in the datastore. This is
a limitation of the proposed change.

Because tcp-md5-signature-password is stored in clear the REST access to
neighbors list should be restricted. See the following AAA
configuration examples:

etc/shiro.ini example

#
DISCOURAGED since Carbon
#
/config/ebgp:bgp/neighbors/** = authBasic, roles[admin]

AAA MDSALDynamicAuthorizationFilter example

{ "aaa:policies":
 { "aaa:policies": [
 { "aaa:resource": "/restconf/config/ebgp:bgp/neighbors/**",
 "aaa:permissions": [
 { "aaa:role": "admin",
 "aaa:actions": ["get","post","put","patch","delete"]
 }]
 }]
 }
}

If BgpConfigurator thrift service is not secured then
tcp-md5-signature-password goes clear on the wire.

Quagga [QBGP] (up to version 1.0) keeps the password in memory in clear.
The password can be retrieved through Quagga’s configuration interface.

Scale and Performance Impact

Negligible scale or performance impacts.

	datastore: A bounded (<=80) string per configured neighbor.

	Traffic (thrift BgpConfigurator service): A bounded (<=80) string field
per neighbor addition operation.

Targeted Release

Carbon

Alternatives

Three alternatives have been considered in order to avoid storing the plain
password in datastore: RPC, post-update, and transparent encryption.
They are briefly described below.

The best alternative is transparent encryption, but in Carbon time-frame
is not feasible.

The post-update alternative does not actually solve the limitation.

The RPC alternative is feasible in Carbon time-frame but, given that
currently BgpConfigurator thrift service is not secured, to add an RPC
does not pull its weight.

RPC encryption

A new RPC add-neighbor(address, as-number[, tcp-md5-signature-password])
is in charge of create neighbors elements.
The password is salted and encrypted with aaa-encryption-service.
Both the salt and the encrypted password are stored in the neighbors
element.

Post-update encryption

The neighbors element contains both a plain-password leaf and a
encrypted-password-with-salt leaf.
The listener BgpConfigurationManager.NeighborsReactor is in charge of
encrypt and remove the plain-password leaf when it is present (and the
encrypted one is not).

This alternative does not really solve the limitation because during a
brief period the password is stored in plain.

Transparent encryption

A plain value is provided in REST write operations but it is automagically
encrypted before it reaches MD-SAL.
Read operations never decrypts the encrypted values.

This alternative impacts at least aaa, yangtools, and netconf
projects. It can not possibly be done in Carbon.

Usage

Features to Install

odl-netvirt-openstack

REST API

The RESTful API for neighbors creation
(/restconf/config/ebgp:bgp/neighbors/{address}) will be enhanced to
accept an additional tcp-md5-signature-password attribute:

{ "neighbors": {
 "address": "192.168.50.2",
 "remote-as": "2791",
 "tcp-md5-signature-password": "password"
}}

CLI

A new option --tcp-md5-password will be added to commands
odl:configure-bgp and odl:bgp-nbr.

opendaylight-user@root> odl:configure-bgp -op add-neighbor --ip 192.168.50.2 --as-num 2791 --tcp-md5-password password
opendaylight-user@root> odl:bgp-nbr --ip-address 192.168.50.2 --as-number 2791 --tcp-md5-password password add

Implementation

Assignee(s)

	Primary assignee:

	Jose-Santos Pulido, JoseSantos, jose.santos.pulido.garcia@ericsson.com

	Other contributors:

	TBD

Work Items

	https://trello.com/c/87MAFjRf

	Spec

	ebgp.yang

	BgpConfigurator thrift service (both idl and client)

	BgpConfigurationManager.NeighborsReactor

	ConfigureBgpCli

Dependencies

Internal

No internal dependencies are added or removed.

External

To enable TCP MD5 Signature Option [RFC2385] in a BGP the following conditions need to be
met:

	BgpConfigurator thrift service provider (e.g. Zebra Remote Procedure
Call [ZRPC]) must support the new function setPeerSecret.

	BGP’s TCP stack must support TCP MD5 Signature Option (e.g. in linux the kernel option
CONFIG_TCP_MD5SIG must be set).

Testing

Unit Tests

Currently bgpmanager has no unit tests related to configuration.

Integration Tests

Currently bgpmanager has no integration tests.

CSIT

Currently there is no CSIT test exercising bgpmanager.

Documentation Impact

Currently there is no documentation related to bgpmanager.

References

	QBGP(1,2,3,4)

	Quagga Routing Suite [http://www.nongnu.org/quagga]

	RFC2385(1,2,3,4,5,6)

	IETF RFC 2385: Protection of BGP Sessions via the TCP MD5 Signature Option [https://tools.ietf.org/html/rfc2385]

	TBaseProcessor

	thrift java library’s TBaseProcessor.process [https://github.com/apache/thrift/blob/0.9.1/lib/java/src/org/apache/thrift/TBaseProcessor.java#L25-L41]

	ZRPC

	Zebra Remote Procedure Call [https://github.com/6WIND/zrpcd/]

Table of Contents

	Support of VXLAN based L2 connectivity across Datacenters

	Problem description

	In scope

	Out of scope

	Use Cases

	Datacenter access from another Datacenter over WAN via respective DC-Gateways (L2 DCI)

	Proposed change

	Pipeline changes

	INTRA DC

	Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

	Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	INTER DC

	Intra subnet Traffic from DC-Gateway to Local DPN

	Intra subnet Traffic from Local DPN to DC-Gateway

	Inter subnet Traffic from Local DPN to DC-Gateway (Symmetric IRB)

	Inter subnet Traffic from DC-Gateway to Local DPN (Symmetric IRB)

	Inter subnet Traffic from Local DPN to DC-Gateway (ASymmetric IRB)

	Intra subnet Traffic from DC-Gateway to Local DPN (ASymmetric IRB)

	ARP Pipeline changes

	Local DPN: VMs on the same subnet, same DPN

	Intra Subnet, Local DPN: VMs on the same subnet, on remote DC

	Yang changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	NEUTRONVPN YANG changes

	ELAN YANG changes

	Solution considerations

	Proposed change in Openstack Neutron BGPVPN Driver

	Proposed change in BGP Quagga Stack

	Proposed change in OpenDaylight-specific features

	Reboot Scenarios

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support of VXLAN based L2 connectivity across Datacenters

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT2

Enable realization of L2 connectivity over VXLAN tunnels using L2 BGPVPNs,
internally taking advantage of EVPN as the BGP Control Plane mechanism.

Problem description

OpenDaylight NetVirt service today supports L3VPN connectivity over VXLAN tunnels.
L2DCI communication is not possible so far.

This spec attempts to enhance the BGPVPN service in NetVirt to
embrace inter-DC L2 connectivity over external VXLAN tunnels.

In scope

The scope primarily includes providing ability to support intra-subnet
connectivity across DataCenters over VXLAN tunnels using BGP EVPN with type L2.

When we mention that we are using EVPN BGP Control plane, this
spec proposes using the RouteType 2 as the primary
means to provision the control plane to enable inter-DC connectivity
over external VXLAN tunnels.

With this inplace we will be able to support the following.

	Intra-subnet connectivity across dataCenters over VXLAN tunnels.

The following are already supported as part of the other spec(RT5)
and will continue to function.

	Intra-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity across dataCenters over VXLAN tunnels.

Out of scope

Use Cases

The following high level use-cases will be realized by the implementation of this Spec.

Datacenter access from another Datacenter over WAN via respective DC-Gateways (L2 DCI)

This use-case involves providing intra-subnet connectivity between two DataCenters.
Tenant VMs in one datacenter will be able to communicate with tenant VMs on the other
datacenter provided they are part of the same BGP EVPN and they are on same subnets.

The dataplane between the tenant VMs themselves and between the tenant VMs
towards the DC-Gateway will be over VXLAN Tunnels.

The dataplane between the DC-Gateway to its other WAN-based BGP Peers is
transparent to this spec. It is usually MPLS-based EPVPN.

The BGP Control plane between the ODL Controller and the DC-Gateway will be
via EVPN RouteType 2 as defined in EVPN_RT2.

The control plane between the DC-Gateway and it other BGP Peers in the WAN
is transparent to this spec, but can be EVPN IP-MPLS.

In this use-case:

	We will have only a single DCGW for WAN connectivity

	MAC IP prefix exchange between ODL controller and DC-GW (iBGP) using EVPN RT2

	WAN control plane may use EVPN IP-MPLS for route exchange.

	On the DC-Gateway, the VRF instance will be configured with two sets of import/export targets. One set of import/export route targets belong to EVPN inside DataCenter (realized using EVPN RT2) and the second set of import/export route target belongs to WAN control plane.

	EVPN single homing to be used in all RT2 exchanges inside the DataCenter i.e., ESI=0 for all prefixes sent from DataCenter to the DC-Gateway.

Proposed change

The following components of an Openstack-ODL-based solution need to be enhanced to provide
intra-subnet and inter-subnet connectivity across DCs using EVPN MAC IP Advertisement
(Route Type 2) mechanism (refer EVPN_RT2):

	Openstack Neutron BGPVPN Driver

	OpenDaylight Controller (NetVirt)

	BGP Quagga Stack to support EVPN with RouteType 2 NLRI

	DC-Gateway BGP Neighbour that supports EVPN with RouteType 2 NLRI

The changes required in Openstack Neutron BGPVPN Driver and BGP Quagga Stack
are captured in the Solution considerations section down below.

Pipeline changes

INTRA DC

Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

There are no explicit pipeline changes for this use-case.

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

INTER DC

Intra subnet Traffic from DC-Gateway to Local DPN

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L2VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (24) => match tunnel-id=l2vni, set elan-tag

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set reg6=vm-lport-tag =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

Intra subnet Traffic from Local DPN to DC-Gateway

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=external-vm-mac set tun-id=vxlan-net-tag group=next-hop-group

Next Hop Group bucket0 :set reg6=tunnel-lport-tag bucket1 :set reg6=tunnel2-lport-tag

Egress table (220) match: reg6=tunnel2-lport-tag output to tunnel2

Inter subnet Traffic from Local DPN to DC-Gateway (Symmetric IRB)

Classifier Table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set tun-id=l3vni output to nexthopgroup =>

NextHopGroup: set-eth-dst router-gw-vm, reg6=tunnel-lport-tag =>

Lport Egress Table (220) Output to tunnel port

Inter subnet Traffic from DC-Gateway to Local DPN (Symmetric IRB)

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (23) => match tunnel-id=l3vni, set l3vpn-id =>

L3 Gateway MAC Table (19) => match dst-mac=vpn-subnet-gateway-mac-address =>

FIB table (21) match: l3vpn-tag=l3vpn-id,dst-ip=vm2-ip set reg6=vm-lport-tag goto=local-nexthop-group =>

local nexthop group set dst-mac=vm2-mac table=220 =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

Inter subnet Traffic from Local DPN to DC-Gateway (ASymmetric IRB)

Classifier Table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set tun-id=l2vni output to nexthopgroup =>

NextHopGroup: set-eth-dst dst-vm-mac, reg6=tunnel-lport-tag =>

Lport Egress Table (220) Output to tunnel port

Intra subnet Traffic from DC-Gateway to Local DPN (ASymmetric IRB)

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L2VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (24) => match tunnel-id=l2vni, set elan-tag

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set reg6=vm-lport-tag =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

ARP Pipeline changes

Local DPN: VMs on the same subnet, same DPN

a. Introducing a new Table aka ELAN_ARP_SERVICE_TABLE (Table 81).
This table will be the first table in elan pipeline.

Classifier table (0) =>

Dispatcher table (17) elan service: set elan-id=vxlan-net-tag =>

Arp Service table (81) => match: arp-op=req, dst-ip=vm-ip, ela-id=vxlan-net-tag inline arp reply

Intra Subnet, Local DPN: VMs on the same subnet, on remote DC

Classifier table (0) =>

Dispatcher table (17) elan service: set elan-id=vxlan-net-tag =>

Arp Service table (81) => match: arp-op=req, dst-ip=vm-ip, ela-id=vxlan-net-tag inline arp reply

Yang changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang , odl-fib.yang and
neutronvpn.yang to start supporting EVPN functionality.

ODL-L3VPN YANG changes

A new container evpn-rd-to-networks is added
This holds the rd to networks mapping
This will be useful to extract in which elan the received RT2 route can be injected into.

odl-l3vpn.yang

 container evpn-rd-to-networks {
 config false;
 description "Holds the networks to which given evpn is attached to";
 list evpn-rd-to-network {
 key rd;
 leaf rd {
 type string;
 }
 list evpn-networks {
 key network-id;
 leaf network-id {
 type string;
 }
 }
 }
 }

ODL-FIB YANG changes

A new field macVrfEntries is added to the container fibEntries
This holds the RT2 routes received for the given rd

odl-fib.yang

 grouping vrfEntryBase {
 list vrfEntry{
 key "destPrefix";
 leaf destPrefix {
 type string;
 mandatory true;
 }
 leaf origin {
 type string;
 mandatory true;
 }
 leaf encap-type {
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 }
 default "mplsgre";
 }
 leaf l3vni {
 type uint32;
 }
 list route-paths {
 key "nexthop-address";
 leaf nexthop-address {
 type string;
 }
 leaf label {
 type uint32;
 }
 leaf gateway_mac_address {
 type string;
 }
 }
 }
 }

 grouping vrfEntries{
 list vrfEntry{
 key "destPrefix";
 uses vrfEntryBase;
 }
 }

 grouping macVrfEntries{
 list MacVrfEntry {
 key "mac_address";
 uses vrfEntryBase;
 leaf l2vni {
 type uint32;
 }
 }
 }

container fibEntries {
 config true;
 list vrfTables {
 key "routeDistinguisher";
 leaf routeDistinguisher {type string;}
 uses vrfEntries;
 uses macVrfEntries;//new field
 }
 container ipv4Table{
 uses ipv4Entries;
 }
 }

NEUTRONVPN YANG changes

A new rpc createEVPN is added
Existing rpc associateNetworks is reused to attach a network to EVPN assuming
uuid of L3VPN and EVPN does not collide with each other.

neutronvpn.yang

 rpc createEVPN {
 description "Create one or more EVPN(s)";
 input {
 list evpn {
 uses evpn-instance;
 }
 }
 output {
 leaf-list response {
 type string;
 description "Status response for createVPN RPC";
 }
 }
 }

 rpc deleteEVPN{
 description "delete EVPNs for specified Id list";
 input {
 leaf-list id {
 type yang:uuid;
 description "evpn-id";
 }
 }
 output {
 leaf-list response {
 type string;
 description "Status response for deleteEVPN RPC";
 }
 }
 }

 grouping evpn-instance {

 leaf id {
 mandatory "true";
 type yang:uuid;
 description "evpn-id";
 }

 leaf name {
 type string;
 description "EVPN name";
 }

 leaf tenant-id {
 type yang:uuid;
 description "The UUID of the tenant that will own the subnet.";
 }

 leaf-list route-distinguisher {
 type string;
 description
 "configures a route distinguisher (RD) for the EVPN instance.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf-list import-RT {
 type string;
 description
 "configures a list of import route target.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf-list export-RT{
 type string;
 description
 "configures a list of export route targets.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf l2vni {
 type uint32;
 }
 }

ELAN YANG changes

Existing container elan-instances is augmented with evpn information.

A new list external-teps is added to elan container.
This captures the broadcast domain of the given network/elan.
When the first RT2 route is received from the dc gw,
it’s tep ip is added to the elan to which this RT2 route belongs to.

elan.yang

 augment "/elan:elan-instances/elan:elan-instance" {
 ext:augment-identifier "evpn";
 leaf evpn-name {
 type string;
 }
 leaf l3vpn-name {
 type string;
 }
 }

 container elan-instances {
 list elan-instance {
 key "elan-instance-name";
 leaf elan-instance-name {
 type string;
 }
 //omitted other existing fields
 list external-teps {
 key tep-ip;
 leaf tep-ip {
 type inet:ip-address;
 }
 }
 }
 }

 container elan-interfaces {
 list elan-interface {
 key "name";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf elan-instance-name {
 mandatory true;
 type string;
 }
 list static-mac-entries {
 key "mac";
 leaf mac {
 type yang:phys-address;
 }
 leaf prefix {//new field
 mandatory false;
 type inet:ip-address;
 }
 }
 }
 }

 grouping forwarding-entries {
 list mac-entry {
 key "mac-address";
 leaf mac-address {
 type yang:phys-address;
 }
 leaf interface {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf controllerLearnedForwardingEntryTimestamp {
 type uint64;
 }
 leaf isStaticAddress {
 type boolean;
 }
 leaf prefix {//new field
 mandatory false;
 type inet:ip-address;
 }
 }
 }

Solution considerations

Proposed change in Openstack Neutron BGPVPN Driver

The Openstack Neutron BGPVPN’s ODL driver in Newton release is changed (mitaka release), so that
it is able to relay the configured L2 BGPVPNs, to the OpenDaylight Controller.

The Newton changes for the BGPVPN Driver has merged and is here:
https://review.openstack.org/#/c/370547/

Proposed change in BGP Quagga Stack

The BGP Quagga Stack is a component that interfaces with ODL Controller to enable ODL Controller itself
to become a BGP Peer. This BGP Quagga Stack need to be enhanced so that it is able to embrace EVPN
with Route Type 5 on the following two interfaces:

	Thrift Interface where ODL pushes routes to BGP Quagga Stack

	Route exchanges from BGP Quagga Stack to other BGP Neighbors (including DC-GW).

Proposed change in OpenDaylight-specific features

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager)

	ELAN Manager

	FIB Manager

	BGP Manager

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Configuration impact

The following parameters have been initially made available as configurable for EVPN. These
configurations can be made via the RESTful interface:

1.Multi-homing-mode – For multi-homing use cases where redundant DCGWs are used ODL can be configured with ‘none’, ‘all-active’ or ‘single-active’ multi-homing mode. Default will be ‘none’.

2.IRB-mode – Depending upon the support on DCGW, ODL can be configured with either ‘Symmetric’ or ‘Asymmetric’ IRB mode. Default is ‘Symmetric’.

There is another important parameter though it won’t be configurable:

MAC Address Prefix for EVPN – This MAC Address prefix represents the MAC Address prefix that will be hardcoded and that MACAddress will be used as the gateway mac address if it is not supplied from Openstack. This will usually be the case when networks are associated to an L3VPN with no gateway port yet configured in Openstack for such networks.

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

A new rpc is added to create and delete evpn:

{'input': {
 'evpn': [
 {'name': 'EVPN1',
 'export-RT': ['50:2'],
 'route-distinguisher': ['50:2'],
 'import-RT': ['50:2'],
 'id': '4ae8cd92-48ca-49b5-94e1-b2921a260007',
 ‘l2vni’: ‘200’,
 'tenant-id': 'a565b3ed854247f795c0840b0481c699'
}]}}

There is no change in the REST API for associating networks to the EVPN.

On the Openstack-side configuration, the vni_ranges configured in Openstack Neutron ml2_conf.ini
should not overlap with the L3VNI provided in the ODL RESTful API.
In an inter-DC case, where both the DCs are managed by two different Openstack Controller
Instances, the workflow will be to do the following:

	Configure the DC-GW2 facing OSC2 (Openstack) and DC-GW1 facing OSC1 with the same BGP configuration parameters.

	On first Openstack Controller (OSC1) create an L3VPN1 with RD1 and L3VNI1

	On first Openstack Controller (OSC1) create an EVPN1 with RD2 and L2VNI1

	Create a network Net1 and Associate that Network Net1 to L3VPN1

	Create a network Net1 and Associate that Network Net1 to EVPN1

	On second Openstack Controller (OSC2) create an L3VPN2 with RD1 with L3VNI1

	On second Openstack Controller (OSC2) create an EVPN2 with RD2 with L2VNI1

	Create a network Net2 on OSC2 with same cidr as the first one with a different allocation pool and associate that Network Net2 to L3VPN2.

	Associate that Network Net2 to EVPN2.

	Spin-off VM1 on Net1 in OSC1.

	Spin-off VM2 on Net2 in OSC2.

	Now VM1 and VM2 should be able to communicate.

Implementation

Assignee(s)

	Primary assignee:

	Vyshakh Krishnan C H <vyshakh.krishnan.c.h@ericsson.com>

Yugandhar Reddy Kaku <yugandhar.reddy.kaku@ericsson.com>

Riyazahmed D Talikoti <riyazahmed.d.talikoti@ericsson.com>

	Other contributors:

	K.V Suneelu Verma <k.v.suneelu.verma@ericsson.com>

Work Items

Trello card details https://trello.com/c/PysPZscm/150-evpn-evpn-rt2.

Dependencies

Requires a DC-GW that is supporting EVPN RT2 on BGP Control plane.

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

[1] EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

[2] Network Virtualization using EVPN [https://www.ietf.org/id/draft-ietf-bess-evpn-overlay-07.txt]

[3] Integrated Routing and Bridging in EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-inter-subnet-forwarding-04]

[4] VXLAN DCI using EVPN [https://tools.ietf.org/html/draft-boutros-bess-vxlan-evpn-02]

[5] BGP MPLS-Based Ethernet VPN [https://tools.ietf.org/html/rfc7432]

[6] Trello card details [https://trello.com/c/PysPZscm/150-evpn-evpn-rt2]

Table of Contents

	Support of VXLAN based connectivity across Datacenters

	Problem description

	In scope

	Out of scope

	Use Cases

	DataCenter access from a WAN-client via DC-Gateway (Single Homing)

	Datacenter access from another Datacenter over WAN via respective DC-Gateways (L3 DCI)

	Proposed change

	Pipeline changes

	INTRA DC

	Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

	Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	Inter Subnet, Remote DPN: VMs on two different DPNs, both VMs on different subnet, but same VPN

	INTER DC

	Intra Subnet

	Inter Subnet

	SNAT pipeline (Access to External Network Access over VXLAN)

	DNAT pipeline (Access from External Network over VXLAN)

	Yang changes

	L3VPN YANG changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	NEUTRONVPN YANG changes

	Solution considerations

	Proposed change in Openstack Neutron BGPVPN Driver

	Proposed change in BGP Quagga Stack

	Proposed change in OpenDaylight-specific features

	Import Export RT support for EVPN

	SubnetRoute support on EVPN

	NAT Service support for EVPN

	ARP request/response and MIP handling Support for EVPN

	Tunnel state handling Support

	InterVPNLink support for EVPN

	Supporting VLAN Aware VMs (Trunk and SubPorts)

	VM Mobility with RT5

	Reboot Scenarios

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support of VXLAN based connectivity across Datacenters

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT5

Enable realization of L3 connectivity over VXLAN tunnels using L3 BGPVPNs,
internally taking advantage of EVPN as the BGP Control Plane mechanism.

Problem description

OpenDaylight NetVirt service today supports VLAN-based,
VXLAN-based connectivity and MPLSOverGRE-based overlays.

In this VXLAN-based underlay is supported only for traffic
within the DataCenter. For all the traffic that need to
go via the DC-Gateway the only supported underlay is MPLSOverGRE.

Though there is a way to provision an external VXLAN tunnel
via the ITM service in Genius, the BGPVPN service in
NetVirt does not have the ability to take advantage of such
a tunnel to provide inter-DC connectivity.

This spec attempts to enhance the BGPVPN service (runs on
top of the current L3 Forwarding service) in NetVirt to
embrace inter-DC L3 connectivity over external VXLAN tunnels.

In scope

The scope primarily includes providing ability to support Inter-subnet
connectivity across DataCenters over VXLAN tunnels by modeling a
new type of L3VPN which will realize this connectivity using
EVPN BGP Control plane semantics.

When we mention that we are using EVPN BGP Control plane, this
spec proposes using the RouteType 5 explained in EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] as the primary
means to provision the control plane en enable inter-DC connectivity
over external VXLAN tunnels.

This new type of L3VPN will also inclusively support:

	Intra-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity within a DataCenter over VXLAN tunnels.

Out of scope

	Does not cover providing VXLAN connectivity between hypervisors (with OVS Datapath) and Top-Of-Rack switches that might be positioned within such DataCenters.

	Does not cover providing intra-subnet connectivity across DCs.

Both the points above will be covered by another spec that will be Phase 2 of realizing intra-subnet inter-DC connectivity.

Use Cases

The following high level use-cases will be realized by the implementation of this Spec.

DataCenter access from a WAN-client via DC-Gateway (Single Homing)

This use case involves communication within the DataCenter by tenant VMs and also
communication between the tenant VMs to a remote WAN-based client via DC-Gateway.
The dataplane between the tenant VMs themselves and between the tenant VMs
towards the DC-Gateway will be over VXLAN Tunnels.

The dataplane between the DC-Gateway to its other WAN-based BGP Peers is
transparent to this spec. It is usually MPLS-based IPVPN.

The BGP Control plane between the ODL Controller and the DC-Gateway will be
via EVPN RouteType 5 as defined in EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03].

The control plane between the DC-Gateway and it other BGP Peers in the WAN
is transparent to this spec, but can be IP-MPLS.

In this use-case:

	We will have only a single DCGW for WAN connectivity

	IP prefix exchange between ODL controller and DC-GW (iBGP) using EVPN RT5

	WAN control plane will use L3VPN IP-MPLS route exchange.

	On the DC-Gateway, the VRF instance will be configured with two sets of import/export targets. One set of import/export route targets belong to L3VPN inside DataCenter (realized using EVPN RT5) and the second set of import/export route target belongs to WAN control plane.

	EVPN single homing to be used in all RT5 exchanges inside the DataCenter i.e., ESI=0 for all prefixes sent from DataCenter to the DC-Gateway.

	Inter AS option B is used at DCGW, route regeneration at DCGW

Datacenter access from another Datacenter over WAN via respective DC-Gateways (L3 DCI)

This use-case involves providing inter-subnet connectivity between two DataCenters.
Tenant VMs in one datacenter will be able to communicate with tenant VMs on the other
datacenter provided they are part of the same L3VPN and they are on different subnets.

Both the Datacenters can be managed by different ODL Controllers, but the L3VPN configured on
both ODL Controllers will use identical RDs and RTs.

Proposed change

The following components of an Openstack-ODL-based solution need to be enhanced to provide
intra-subnet and inter-subnet connectivity across DCs using EVPN IP Prefix Advertisement
(Route Type 5) mechanism (refer EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]):

	Openstack Neutron BGPVPN Driver

	OpenDaylight Controller (NetVirt)

	BGP Quagga Stack to support EVPN with RouteType 5 NLRI

	DC-Gateway BGP Neighbour that supports EVPN with RouteType 5 NLRI

The changes required in Openstack Neutron BGPVPN Driver and BGP Quagga Stack
are captured in the Solution considerations section down below.

Pipeline changes

For both the use-cases above, we have put together the required pipeline changes here.
For ease of understanding, we have made subsections that talk about Intra-DC
traffic and Inter-DC traffic.

INTRA DC

Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) tablemiss: goto_table=17 =>

Lport Dispatcher Table (17) elan service: set elan-id=elan-tag =>

ELAN Source MAC Table (50) match: elan-id=elan-tag, src-mac=source-vm-mac =>

ELAN Destination MAC Table (51) match: elan-id=elan-tag, dst-mac=dst-vm-mac set output to port-of-dst-vm

Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

VM sourcing the traffic (Ingress DPN)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) l3vpn service: tablemiss: goto_table=17 =>

Lport Dispatcher Table (17) elan service: set elan-id=elan-tag =>

ELAN Source MAC Table (50) match: elan-id=elan-tag, src-mac=source-vm-mac =>

ELAN Destination MAC Table (51) match: elan-id=elan-tag, dst-mac=dst-vm-mac set tun-id=dst-vm-lport-tag, output to vxlan-tun-port

VM receiving the traffic (Egress DPN)

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=lport-tag set reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000000, table=0, priority=4,in_port=1 actions=write_metadata:0x10000000000/0xffffff0000000001,goto_table:17
cookie=0x8000001, table=17, priority=5,metadata=0x5000010000000000/0xffffff0000000000 actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, table=19, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=de:ad:be:ef:00:01 actions=goto_table:21
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)

Inter Subnet, Remote DPN: VMs on two different DPNs, both VMs on different subnet, but same VPN

For this use-case there is a change in the remote flow rule to L3 Forward the traffic to the remote VM.
The flow-rule will use the LPortTag as the vxlan-tunnel-id, in addition to setting the destination mac address of the
remote destination vm.

VM sourcing the traffic (Ingress DPN)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set eth-dst-mac=dst-vm-mac, tun-id=dst-vm-lport-tag, output to vxlan-tun-port

cookie=0x8000000, table=0, priority=4,in_port=1 actions=write_metadata:0x10000000000/0xffffff0000000001,goto_table:17
cookie=0x8000001, table=17, priority=5,metadata=0x5000010000000000/0xffffff0000000000 actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, table=19, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=de:ad:be:ef:00:01 actions=goto_table:21
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

As you can notice 0x2 set in the above flow-rule as tunnel-id is the LPortTag assigned to VM holding IP Address 10.0.0.3.

VM receiving the traffic (Egress DPN)

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=lport-tag set reg6=lport-tag-dst-vm =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000001, table=0, priority=5,in_port=2 actions=write_metadata:0x40000000001/0xfffff0000000001,goto_table:36
cookie=0x9000001, table=36, priority=5,tun_id=0x2 actions=load:0x400->NXM_NX_REG6[],resubmit(,220)

As you notice, 0x2 tunnel-id match in the above flow-rule in INTERNAL_TUNNEL_TABLE (Table 36), is the LPortTag assigned
to VM holding IP Address 10.0.0.3.

INTER DC

Intra Subnet

Not supported in this Phase

Inter Subnet

For this use-case we are doing a couple of pipeline changes:

a. Introducing a new Table aka L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (Table 23).
L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (Table 23) - This table is a new table in the L3VPN pipeline and will be
responsible only to process VXLAN packets coming from External VXLAN tunnels.

The packets coming from External VXLAN Tunnels (note: not Internal VXLAN Tunnels), would be directly punted
to this new table from the CLASSIFIER TABLE (Table 0) itself. Today when multiple services bind to a
tunnel port on GENIUS, the service with highest priority binds directly to Table 0 entry for the tunnel port.
So such a service should make sure to provide a fallback to Dispatcher Table so that subsequent service interested
in that tunnel traffic would be given the chance.

The new table L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE will have flows to match on VXLAN
VNIs that are L3VNIs. On a match, their action is to fill the metadata with the VPNID, so that further
tables in the L3VPN pipeline would be able to continue and operate with the VPNID metadata seamlessly.
After filling the metadata, the packets are resubmitted from this new table to the L3_GW_MAC_TABLE (Table 19).
The TableMiss in L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE will resubmit the packet to LPORT_DISPATCHER_TABLE to enable
next service if any to process the packet ingressing from the external VXLAN tunnel.

b. For all packets going from VMs within the DC, towards the external gateway device via the External VXLAN Tunnel,
we are setting the VXLAN Tunnel ID to the L3VNI value of VPNInstance to which the VM belongs to.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=l3vni set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000001, table=0, priority=5,in_port=9 actions=write_metadata:0x70000000001/0x1fffff0000000001,goto_table:23
cookie=0x8000001, table=19, priority=20,metadata=0x222e0/0xffffffff,dl_dst=de:ad:be:ef:00:06 actions=goto_table:21
cookie=0x8000001, table=23, priority=5,tun_id=0x16 actions= write_metadata:0x222e0/0xfffffffe,resubmit(19)
cookie=0x8000001, table=23, priority=0,resubmit(17)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

In the above flow rules, Table 23 is the new L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE. The in_port=9 reprsents an
external VXLAN Tunnel port.

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set eth-dst-mac=dst-mac-address, tun-id=l3vni, output to ext-vxlan-tun-port

cookie=0x7000001, table=0, priority=5,in_port=8, actions=write_metadata:0x60000000001/0x1fffff0000000001,goto_table:17
cookie=0x7000001, table=17, priority=5,metadata=0x60000000001/0x1fffff0000000001 actions=goto_table:19
cookie=0x7000001, table=19, priority=20,metadata=0x222e0/0xffffffff,dl_dst=de:ad:be:ef:00:06 actions=goto_table:21
cookie=0x7000001, table=23, priority=5,tun_id=0x16 actions= write_metadata:0x222e0/0xfffffffe,resubmit(19)
cookie=0x7000001, table=23, priority=0,resubmit(17)
cookie=0x7000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x7000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

SNAT pipeline (Access to External Network Access over VXLAN)

SNAT Traffic from Local DPN to External IP (assuming this DPN is NAPT Switch)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-entity-ip set eth-dst=external-entity-mac tun-id=external-l3vni, output to ext-vxlan-tun-port

SNAT Reverse Traffic from External IP to Local DPN (assuming this DPN is NAPT Switch)

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, dst-mac=external-router-gateway-mac-address =>

Inbound NAPT Table (44) match: vpn-id=external-vpn-id nw-dst=router-gateway-ip port=ext-port set vpn-id=l3vpn-id, dst-ip=vm-ip

NAPT PFIB Table (47) match: vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

DNAT pipeline (Access from External Network over VXLAN)

DNAT Traffic from External IP to Local DPN

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, eth-dst=floating-ip-dst-vm-mac-address =>

PDNAT Table (25) match: nw-dst=floating-ip,eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

DNAT Reverse Traffic from Local DPN to External IP

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-floating-ip set eth-dst=external-mac-address tun-id=external-l3vni, output to ext-vxlan-tun-port

DNAT to DNAT Traffic (Intra DC)

	FIP VM to FIP VM on Different Hypervisor

DPN1:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst=floating-ip-dst-vm-mac-address tun-id=external-l3vni, output to vxlan-tun-port

DPN2:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id= external-l3vni =>

PDNAT Table (25) match: nw-dst=floating-ip eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

In the above flow rules INTERNAL_TUNNEL_TABLE (table=36) will take the packet to the PDNAT_TABLE
(table 25) for an exact match with floating-ip and floating-ip-dst-vm-mac-address in PDNAT_TABLE.

In case of a successful floating-ip and floating-ip-dst-vm-mac-address match, PDNAT_TABLE will set IP destination as VM IP and VPN ID as internal l3 VPN ID then it will pointing to DNAT_TABLE (table=27)

In case of no match, the packet will be redirected to the SNAT pipeline towards the
INBOUND_NAPT_TABLE (table=44). This is the use-case where DPN2 also acts as
the NAPT DPN.

In summary, on an given NAPT switch, if both DNAT and SNAT are configured, the incoming traffic
will first be sent to the PDNAT_TABLE and if there is no FIP and FIP Mac match found, then it will be
forwarded to INBOUND_NAPT_TABLE for SNAT translation.
As part of the response, the external-l3vni will be used as tun_id to reach floating
IP VM on DPN1.

	FIP VM to FIP VM on same Hypervisor

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst= floating-ip-dst-vm-mac-address =>

PDNAT Table (25) match: nw-dst=floating-ip eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

SNAT to DNAT Traffic (Intra DC)

SNAT Hypervisor:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst=floating-ip-dst-vm-mac-address tun-id=external-l3vni, output to vxlan-tun-port

DNAT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id= external-l3vni =>

PDNAT Table (25) ``match: nw-dst=floating-ip eth-dst= floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id``=>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Non-NAPT to NAPT Forward Traffic (Intra DC)

Non-NAPT Hypervisor:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id set tun-id=router-lport-tag,group =>

group: output to NAPT vxlan-tun-port

NAPT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=router-lport-tag =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-entity-ip set eth-dst=external-entity-mac tun-id=external-l3vni, output to ext-vxlan-tun-port

For forwarding the traffic from Non-NAPT to NAPT DPN the tun-id will be setting with “router-lport-tag” which will be carved out per router.

NAPT to Non-NAPT Reverse Traffic (Intra DC)

NAPT Hypervisor:

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, dst-mac=external-router-gateway-mac-address =>

Inbound NAPT Table (44) match: vpn-id=external-vpn-id nw-dst=router-gateway-ip port=ext-port set vpn-id=l3vpn-id, dst-ip=vm-ip =>

NAPT PFIB Table (47) match: vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set eth-dst-mac=dst-vm-mac, tun-id=dst-vm-lport-tag, output to vxlan-tun-port

Non-NAPT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=dst-vm-lport-tag =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

More details of the NAT pipeline changes are in the NAT Service section of this spec.

Yang changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang , odl-fib.yang and
neutronvpn.yang to start supporting EVPN functionality.

L3VPN YANG changes

A new leaf l3vni and a new leaf type will be added to container vpn-instances

l3vpn.yang

 leaf type {
 description
 "The type of the VPN Instance.
 ipvpn indicates it is an L3VPN.
 evpn indicates it is EVPN”;

 type enumeration {
 enum ipvpn {
 value "0";
 description “L3VPN";
 }
 enum evpn {
 value "1";
 description "EVPN";
 }
 }
 default "ipvpn";
 }

 leaf l3vni {
 description
 "The L3 VNI to use for this L3VPN Instance.
 If this attribute is non-zero, it indicates
 this L3VPN will do L3Forwarding over VXLAN.
 If this value is non-zero, and the type field is ‘l2’,
 it is an error.
 If this value is zero, and the type field is ‘l3’, it is
 the legacy L3VPN that will do L3Forwarding
 with MPLSoverGRE.
 If this value is zero, and the type field is ‘l2’, it
 is an EVPN that will provide L2 Connectivity with
 Openstack supplied VNI”.

 type uint24;
 mandatory false;
 }

 The **type** value comes from Openstack BGPVPN ODL Driver based on what type of BGPVPN is
 orchestrated by the tenant. That same **type** value must be retrieved and stored into
 VPNInstance model above maintained by NeutronvpnManager.

ODL-L3VPN YANG changes

A new leaf l3vni and a new leaf type will be added to container vpn-instance-op-data

odl-l3vpn.yang

leaf type {
 description
 "The type of the VPN Instance.
 ipvpn indicates it is an L3VPN.
 evpn indicates it is EVPN”;

 type enumeration {
 enum ipvpn {
 value "0";
 description “L3VPN";
 }
 enum evpn {
 value "1";
 description "EVPN";
 }
 }
 default "ipvpn";
}

leaf l3vni {
 description
 "The L3 VNI to use for this L3VPN Instance.
 If this attribute is non-zero, it indicates
 this L3VPN will do L3Forwarding over VXLAN.
 If this value is non-zero, and the type field is ‘l2’,
 it is an error.
 If this value is zero, and the type field is ‘l3’, it is
 the legacy L3VPN that will do L3Forwarding
 with MPLSoverGRE.
 If this value is zero, and the type field is ‘l2’, it
 is an EVPN that will provide L2 Connectivity with
 Openstack supplied VNI”.

 type uint24;
 mandatory false;
}

For every interface in the cloud that is part of an L3VPN which has an L3VNI setup, we should
extract that L3VNI from the config VPNInstance and use that to both program the flows as well
as advertise to BGP Neighbour using RouteType 5 BGP Route exchange.
Fundamentally, what we are accomplishing is L3 Connectivity over VXLAN tunnels by using the
EVPN RT5 mechanism.

ODL-FIB YANG changes

Few new leafs like mac_address , gateway_mac_address , l2vni, l3vni and a leaf encap-type will
be added to container fibEntries

odl-fib.yang

leaf encap-type {
 description
 "This flag indicates how to interpret the existing label field.
 A value of mpls indicates that the label will continue to
 be considered as an MPLS Label.
 A value of vxlan indicates that vni should be used to
 advertise to bgp.
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 }
 default "mplsgre";
}

leaf mac_address {
 type string;
 mandatory false;
}

leaf l3vni {
 type uint24;
 mandatory false;
}

leaf l2vni {
 type uint24;
 mandatory false;
}

leaf gateway_mac_address {
 type string;
 mandatory false;
}
Augment:parent_rd {
 type string;
 mandatory false;
}

The encaptype indicates whether an MPLSOverGre or VXLAN encapsulation should be used
for this route. If the encapType is MPLSOverGre then the usual label field will carry
the MPLS Label to be used in datapath for traffic to/from this VRFEntry IP prefix.

If the encaptype is VXLAN, the VRFEntry implicitly refers that this route is reachable
via a VXLAN tunnel. The L3VNI will carry the VRF VNI and there will also be an L2VNI which
represents the VNI of the network to which the VRFEntry belongs to.

Based on whether Symmetric IRB (or) Asymmetric IRB is configured to be used by the CSC
(see section on Configuration Impact below). If Symmetric IRB is configured, then the L3VNI
should be used to program the flows rules. If Asymmetric IRB is configured, then L2VNI should
be used in the flow rules.

The mac_address field must be filled for every route in an EVPN. This mac_address field
will be used for support intra-DC communication for both inter-subnet and intra-subnet routing.

The gateway_mac_address must always be filled for every route in an EVPN.[AKMA7] [NV8]
This gateway_mac_address will be used for all packet exchanges between DC-GW and the
DPN in the DC to support L3 based forwarding with Symmetric IRB.

NEUTRONVPN YANG changes

One new leaf l3vni will be added to container grouping vpn-instance

odl-fib.yang

leaf l3vni {
 type uint32;
 mandatory false;
}

Solution considerations

Proposed change in Openstack Neutron BGPVPN Driver

The Openstack Neutron BGPVPN’s ODL driver in Newton release needs to be changed, so that
it is able to relay the configured L2 BGPVPNs, to the OpenDaylight Controller.
As of Mitaka release, only L3 BGPVPNs configured in Openstack are being relayed to the
OpenDaylight Controller. So in addition to addressing the ODL BGPVPN Driver changes in
Newton, we will provide a Mitaka based patch that will integrate into Openstack.

The Newton changes for the BGPVPN Driver has merged and is here:
https://review.openstack.org/#/c/370547/

Proposed change in BGP Quagga Stack

The BGP Quagga Stack is a component that interfaces with ODL Controller to enable ODL Controller itself
to become a BGP Peer. This BGP Quagga Stack need to be enhanced so that it is able to embrace EVPN
with Route Type 5 on the following two interfaces:

	Thrift Interface where ODL pushes routes to BGP Quagga Stack

	Route exchanges from BGP Quagga Stack to other BGP Neighbors (including DC-GW).

Proposed change in OpenDaylight-specific features

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager and VPN Interface Manager)

	FIB Manager

	BGP Manager

	VPN SubnetRoute Handler

	NAT Service

Import Export RT support for EVPN

Currently Import/Export logic for L3VPN uses a LabelRouteInfo structure to build information
about imported prefixes using MPLS Label as the key. However, this structure cannot be used
for EVPN as the L3VNI will be applicable for an entire EVPN Instance instead of the MPLS Label.
In lieu of LabelRouteInfo, we will maintain an IPPrefixInfo keyed structure that can be used
for facilitating Import/Export of VRFEntries across both EVPNs and L3VPNs.

odl-fib.yang

list ipprefix-info {

 key "prefix, parent-rd"
 leaf prefix {
 type string;
 }

 leaf parent-rd {
 type string;
 }

 leaf label {
 type uint32;
 }

 leaf dpn-id {
 type uint64;
 }

 leaf-list next-hop-ip-list {
 type string;
 }

 leaf-list vpn-instance-list {
 type string;
 }

 leaf parent-vpnid {
 type uint32;
 }

 leaf vpn-interface-name {
 type string;
 }

 leaf elan-tag {
 type uint32;
 }

 leaf is-subnet-route {
 type boolean;
 }

 leaf encap-type {
 description
 "This flag indicates how to interpret the existing label field.
 A value of mpls indicates that the l3label should be considered as an MPLS
 Label.
 A value of vxlan indicates that l3label should be considered as an VNI.
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 default "mplsgre";
 }
 }

 leaf l3vni {
 type uint24;
 mandatory false;
 }

 leaf l2vni {
 type uint24;
 mandatory false;
 }

 leaf gateway_mac_address {
 type string;
 mandatory false;
 }
}

SubnetRoute support on EVPN

The subnetRoute feature will continue to be supported on EVPN and we will use RT5 to publish
subnetRoute entries with either the router-interface-mac-address if available (or) if not
available use the pre-defined hardcoded MAC Address described in section Configuration Impact.
For both ExtraRoutes and MIPs (invisible IPs) discovered via subnetroute, we will continue
to use RT5 to publish those prefixes.[AKMA9] [NV10]
On the dataplane, VXLAN packets from the DC-GW will carry the MAC Address of the gateway-ip
for the subnet in the inner DMAC.

NAT Service support for EVPN

However, since external network NAT should continue to be supported on VXLAN, making NAT
service work on L3VPNs that use VXLAN as the tunnel type becomes imperative.

Existing SNAT/DNAT design assumed internetVpn to be using mplsogre as the connectivity
from external network towards DCGW. This needs to be changed such that it can handle even
EVPN case with VXLAN connectivity as well.

As of the implementation required for this specification, the workflow will be to create
InternetVPN with and associate a single external network to that is of VXLAN Provider Type.
The Internet VPN itself will be an L3VPN that will be created via the ODL RESTful API and
during creation an L3VNI parameter will be supplied to enable this L3VPN to operate on a
VXLAN dataplane. The L3VNI provided to the Internet VPN can be different from the VXLAN
segmentation ID associated to the external network.

However, it will be a more viable use-case in the community if we mandate in our workflow
that both the L3VNI configured for Internet VPN and the VXLAN segmentation id of the
associated external network to the Internet VPN be the same.
NAT service can use vpninstance-op-data model to classify the DCGW connectivity for internetVpn.

For the Pipeline changes for NAT Service, please refer to ‘Pipeline changes’ section.

SNAT to start using Router Gateway MAC, in translated entry in table 46 (Outbound SNAT table)
and in table 19 (L3_GW_MAC_Table). Presently Router gateway mac is already stored in odl-nat model
in External Routers.

DNAT to start using Floating MAC, in table 28 (SNAT table) and in table 19 (L3_GW_MAC Table).
Change in pipeline mainly reverse traffic for SNAT and DNAT so that when packet arrives from DCGW,
it goes to 0->38->17->19 and based on Vni and MAC matching, take it back to SNAT or DNAT pipelines.

Also final Fib Entry pointing to DCGW in forward direction also needs modification where we should
start using VXLAN’s vni, FloatingIPMAC (incase of DNAT) and ExternalGwMacAddress(incase of SNAT)
and finally encapsulation type as VXLAN.

For SNAT advertise to BGP happens during external network association to Vpn and during High
availability scenarios where you need to re-advertise the NAPT switch. For DNAT we need to
advertise when floating IP is associated to the VM.
For both SNAT and DNAT this IS mandates that we do only RT5 based advertisement. That RT5
advertisement must carry the external gateway mac address assigned for the respective Router
for SNAT case while for DNAT case the RT5 will carry the floating-ip-mac address.

ARP request/response and MIP handling Support for EVPN

Will not support ARP across DCs, as we donot support intra-subnet inter-DC scenarios.

	For intra-subnet intra-DC scenarios, the ARPs will be serviced by existing ELAN pipeline.

	For inter-subnet intra-DC scenarios, the ARPs will be processed by ARP Responder implementation that is already pursued in Carbon.

	For inter-subnet inter-DC scenarios, ARP requests won’t be generated by DC-GW. Instead the DC-GW will use ‘gateway mac’ extended attribute MAC Address information and put that directly into DSTMAC field of Inner MAC Header by the DC-GW for all packets sent to VMs within the DC.

	As quoted, intra-subnet inter-DC scenario is not a supported use-case as per this Implementation Spec.

Tunnel state handling Support

We have to handle both the internal and external tunnel events for L3VPN (with L3VNI) the same way
it is handled for current L3VPN.

InterVPNLink support for EVPN

Not supported as this is not a requirement for this Spec.

Supporting VLAN Aware VMs (Trunk and SubPorts)

Not supported as this is not a requirement for this Spec.

VM Mobility with RT5

We will continue to support cold migration of VMs across hypervisors across L3VPNs as supported
already in current ODL Carbon Release.

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Configuration impact

The following parameters have been initially made available as configurable for EVPN. These
configurations can be made via the RESTful interface:

1.Multi-homing-mode – For multi-homing use cases where redundant DCGWs are used ODL can be configured with ‘none’, ‘all-active’ or ‘single-active’ multi-homing mode. Default will be ‘none’.

2.IRB-mode – Depending upon the support on DCGW, ODL can be configured with either ‘Symmetric’ or ‘Asymmetric’ IRB mode. Default is ‘Symmetric’.

There is another important parameter though it won’t be configurable:

MAC Address Prefix for EVPN – This MAC Address prefix represents the MAC Address prefix that will be hardcoded and that MACAddress will be used as the gateway mac address if it is not supplied from Openstack. This will usually be the case when networks are associated to an L3VPN with no gateway port yet configured in Openstack for such networks.

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

The creational RESTful API for the L3VPN will be enhanced to accept
the L3VNI as an additional attribute as in the below request format:

{'input': {
 'l3vpn': [
 {'name': 'L3VPN2',
 'export-RT': ['50:2'],
 'route-distinguisher': ['50:2'],
 'import-RT': ['50:2'],
 'id': '4ae8cd92-48ca-49b5-94e1-b2921a260007',
 ‘l3vni’: ‘200’,
 'tenant-id': 'a565b3ed854247f795c0840b0481c699'
}]}}

There is no change in the REST API for associating networks, associating routers (or) deleting
the L3VPN.

On the Openstack-side configuration, the vni_ranges configured in Openstack Neutron ml2_conf.ini
should not overlap with the L3VNI provided in the ODL RESTful API.
In an inter-DC case, where both the DCs are managed by two different Openstack Controller
Instances, the workflow will be to do the following:

	Configure the DC-GW2 facing OSC2 and DC-GW1 facing OSC1 with the same BGP configuration parameters.

	On first Openstack Controller (OSC1) create an L3VPN1 with RD1 and L3VNI1

	Create a network Net1 and Associate that Network Net1 to L3VPN1

	On second Openstack Controller (OSC2) create an L3VPN2 with RD1 with L3VNI2

	Create a network Net2 on OSC2 and associate that Network Net2 to L3VPN2.

	Spin-off VM1 on Net1 in OSC1.

	Spin-off VM2 on Net2 in OSC2.

	Now VM1 and VM2 should be able to communicate.

Implementation

Assignee(s)

	Primary assignee:

	Kiran N Upadhyaya (kiran.n.upadhyaya@ericsson.com)

Sumanth MS (sumanth.ms@ericsson.com)

Basavaraju Chickmath (basavaraju.chickmath@ericsson.com)

	Other contributors:

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

The Trello cards have already been raised for this feature
under the EVPN_RT5.

Here is the link for the Trello Card:
https://trello.com/c/Tfpr3ezF/33-evpn-evpn-rt5

New tasks into this will be added to cover Java UT and
CSIT.

Dependencies

Requires a DC-GW that is supporting EVPN RT5 on BGP Control plane.

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

User Guide will need to add information on how OpenDaylight can
be used to deploy L3 BGPVPNs and enable communication across
datacenters between virtual endpoints in such L3 BGPVPN.

Developer Guide will capture the ODL L3VPN API changes to enable
management of an L3VPN that can use VXLAN overlay to enable
communication across datacenters.

References

[1] EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

[2] Network Virtualization using EVPN [https://www.ietf.org/id/draft-ietf-bess-evpn-overlay-07.txt]

[3] Integrated Routing and Bridging in EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-inter-subnet-forwarding-04]

[4] VXLAN DCI using EVPN [https://tools.ietf.org/html/draft-boutros-bess-vxlan-evpn-02]

[5] BGP MPLS-Based Ethernet VPN [https://tools.ietf.org/html/rfc7432]

	http://docs.opendaylight.org/en/latest/documentation.html

	https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

Temporary Source MAC Learning

https://git.opendaylight.org/gerrit/#/q/topic:temp-smac-learning

Temporary source MAC learning introduces two new tables to the ELAN service, for OVS-based source MAC learning using a learn action,
to reduce a large scale of packets punted to the controller for an unlearned source MAC.

Problem description

Currently any packet originating from an unknown source MAC address is punted to the controller from the ELAN service (L2 SMAC table 50).

This behavior continues for each packet from this source MAC until ODL properly processes this packet and adds an explicit source MAC rule to this table.

During the time that is required to punt a packet, process it by the ODL and create an appropriate flow, it is not necessary to punt any other packet from this source MAC, as it causes an unnecessary load.

Use Cases

Any L2 traffic from unknown source MACs passing through the ELAN service.

Proposed change

A preliminary logic will be added prior to the SMAC learning table,
that will use OpenFlow learn action to add a temporary rule for each
source MAC after the first packet is punted.

Pipeline changes

Two new tables will be introduced to the ELAN service:

Table 48 for resubmitting to tables 49 and 50 (trick required to use the learned flows, similar to the ACL implementation).

Table 49 for setting a register value to mark that this SMAC was already punted to the ODL for learning. The flows in this table will be generated automatically by OVS.

Table 50 will be modified, with a new flow, which has a lower priority than the existing known SMAC flows but a higher priority than the default flow. This flow passes packets marked with the register directly to the DMAC table 51 without punting to the controller, as it is already being processed. In addition, the default flow that punts packets to the controller, will also have a new learn action, temporarily adding a flow matching this source MAC to table 49.

Example of flows after change:

cookie=0x8040000, duration=1575.755s, table=17, n_packets=7865, n_bytes=1451576, priority=6,metadata=0x6000020000000000/0xffffff0000000000 actions=write_metadata:0x7000021389000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=1129.530s, table=48, n_packets=4149, n_bytes=729778, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x8600000, duration=6.875s, table=49, n_packets=0, n_bytes=0, hard_timeout=60, priority=0,dl_src=fa:16:3e:2f:73:61 actions=load:0x1->NXM_NX_REG4[0..7]
cookie=0x8051389, duration=7.078s, table=50, n_packets=0, n_bytes=0, priority=20,metadata=0x21389000000/0xfffffffff000000,dl_src=fa:16:3e:2f:73:61 actions=goto_table:51
cookie=0x8050000, duration=440.925s, table=50, n_packets=49, n_bytes=8030, priority=10,reg4=0x1 actions=goto_table:51
cookie=0x8050000, duration=124.209s, table=50, n_packets=68, n_bytes=15193, priority=0 actions=CONTROLLER:65535,learn(table=49,hard_timeout=60,priority=0,cookie=0x8600000,NXM_OF_ETH_SRC[],load:0x1->NXM_NX_REG4[0..7]),goto_table:51

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

This change should substantially reduce the packet in load from SMAC learning, resulting in a reduced load of the ODL in high performance traffic scenarios.

Targeted Release

Due to scale and performance criticality, and the low risk of this feature, suggest to target this functionality for Boron.

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other contributors.

	Primary assignee:

	Olga Schukin (olga.schukin@hpe.com)

	Other contributors:

	Alon Kochba (alonko@hpe.com)

Work Items

N/A.

Dependencies

No new dependencies.
Learn action is already in use in netvirt pipeline and has been available in OVS since early versions. However this is a non-standard OpenFlow feature.

Testing

Existing source MAC learning functionality should be verified.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

N/A.

Documentation Impact

Pipeline documentation should be updated accordingly to reflect the changes to the ELAN service.

Table of Contents

	Enhancement to VLAN Provider Network Support

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Enhancement to VLAN Provider Network Support

https://git.opendaylight.org/gerrit/#/q/topic:vlan-provider-network

This feature aims to enhance the support for VLAN provider networks that are not of type
external.As part of this enhancement, ELAN pipeline processing for the network will be
done on the switch only if there is at least one VM port in the network on the switch.
The behavior of VLAN provider networks of type external and flat networks will remain
unchanged as of now. The optimization for external network is out of scope of this spec
and will be handled as part of future releases.

Problem description

Current ODL implementation supports all configured VLAN segments corresponding to VLAN
provider networks on a particular patch port on all Open vSwitch which are part of the
network. This could have adverse performance impacts because every provider patch port
will receive and processes broadcast traffic for all configured VLAN segments even in
cases when the switch doesn’t have a VM port in the network. Furthermore, for unknown
SMACs it leads to unnecessary punts from ELAN pipeline to controller for source MAC
learning from all the switches.

Use Cases

L2 forwarding between OVS switches using provider type VLAN over L2 segment of the
underlay fabric

Proposed change

Instead of creating the VLAN member interface on the patch port at the time of network
creation, VLAN member interface creation will be deferred until a VM port comes up in the
switch in the VLAN provider network. Switch pipeline will not process broadcast traffic on
this switch in a VLAN provider network until VM port is added to the network. This will be
applicable to VLAN provider network without external router attribute set.

Elan service binding will also be done at the time of VLAN member interface
creation. Since many neutron ports on same switch can belong to a single VLAN provider
network, the flow rule should be created only once when first VM comes up and should be
deleted when there are no more neutron ports in the switch for the VLAN provider network.

Pipeline changes

None.

Yang changes

elan:elan-instances container will be enhanced with information whether an external
router is attached to VLAN provider network.

elan.yang

container elan-instances {
 description
 "elan instances configuration parameters. Elan instances support both the VLAN and VNI based elans.";

 list elan-instance {
 max-elements "unbounded";
 min-elements "0";
 key "elan-instance-name";
 description
 "Specifies the name of the elan instance. It is a string of 1 to 31
 case-sensitive characters.";
 leaf elan-instance-name {
 type string;
 description "The name of the elan-instance.";
 }
 ...

 leaf external {
 description "indicates whether the network has external router attached to it";
 type boolean;
 default "false";
 }
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

Performance will improve because of the following:

	Switch will drop packets if it doesn’t have a VM port in the VLAN on which packet is
received.

	Unnecessary punts to the controller from ELAN pipeline for source mac learning will be
prevented.

Targeted Release

Carbon.

Alternatives

N.A.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	
	Ravindra Nath Thakur (ravindra.nath.thakur@ericsson.com)

	Naveen Kumar Verma (naveen.kumar.verma@ericsson.com)

	Other contributors:

	
	Ravi Sundareswaran (ravi.sundareswaran@ericsson.com)

Work Items

N.A.

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

This feature will not require any change in User Guide.

References

[1] https://trello.com/c/A6Km6J3D/110-flat-and-vlan-network-type

Table of Contents

	VNI based L2 switching, L3 forwarding and NATing

	Problem description

	In Scope

	Out of Scope

	Use Cases

	L2 switching use cases

	L3 forwarding use cases

	NAT use cases

	Proposed change

	Pipeline changes

	L2 Switching

	Unicast

	Within hypervisor

	Across hypervisors

	Broadcast

	Across hypervisors

	L3 Forwarding

	Between VMs on a single OVS

	Between VMs on two different OVS

	VM sourcing the traffic (Ingress OVS)

	VM receiving the traffic (Egress OVS)

	NAT Service

	Inter DC

	SNAT

	DNAT

	Intra DC

	DNAT to DNAT

	SNAT to DNAT

	YANG changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release(s)

	Known Limitations

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

VNI based L2 switching, L3 forwarding and NATing

https://git.opendaylight.org/gerrit/#/q/topic:vni-based-l2-l3-nat

Important: All gerrit links raised for this feature will have topic name as vni-based-l2-l3-nat

This feature attempts to realize the use of VxLAN VNI (Virtual Network Identifier) for VxLAN
tenant traffic flowing on the cloud data-network. This is applicable to L2 switching, L3
forwarding and NATing for all VxLAN based provider networks. In doing so, it eliminates the
presence of LPort tags, ELAN tags and MPLS labels on the wire and instead, replaces
them with VNIs supplied by the tenant’s OpenStack.

This will be selectively done for the use-cases covered by this spec and hence, its
implementation won’t completely remove the usage of the above entities. The usage of LPort tags
and ELAN tags within an OVS datapath (not on the wire) of the hypervisor will be retained, as
eliminating it completely is a large redesign and can be pursued incrementally later.

This spec is the first step in the direction of enforcing datapath semantics that uses tenant
supplied VNI values on VxLAN Type networks created by tenants in OpenStack Neutron.

Note: The existing L3 BGPVPN control-path and data-path semantics will continue to use L3
labels on the wire as well as inside the OVS datapaths of the hypervisor to realize both intra-dc
and inter-dc connectivity.

Problem description

OpenDaylight NetVirt service today supports the following types of networks:

	Flat

	VLAN

	VxLAN

	GRE

Amongst these, VxLAN-based overlay is supported only for traffic within the DataCenter. External
network accesses over the DC-Gateway are supported via VLAN or GRE type external networks.
For rest of the traffic over the DC-Gateway, the only supported overlay is GRE.

Today, for VxLAN enabled networks by the tenant, the labels are generated by L3 forwarding service
and used. Such labels are re-used for inter-DC use-cases with BGPVPN as well. This does not honor
and is not in accordance with the datapath semantics from an orchestration point of view.

This spec attempts to change the datapath semantics by enforcing the VNIs (unique for every VxLAN
enabled network in the cloud) as dictated by the tenant’s OpenStack configuration for L2
switching, L3 forwarding and NATing.

This implementation will remove the reliance on using the following (on the wire) within the
DataCenter:

	Labels for L3 forwarding

	LPort tags for L2 switching

More specifically, the traffic from source VM will be routed in source OVS by the L3VPN / ELAN
pipeline. After that, the packet will travel as a switched packet in the VxLAN underlay within the
DC, containing the VNI in the VxLAN header instead of MPLS label / LPort tag. In the destination
OVS, the packet will be collected and sent to the destination VM through the existing ELAN
pipeline.

In the nodes themselves, the LPort tag will continue to be used when pushing the packet from
ELAN / L3VPN pipeline towards the VM as ACLService continues to use LPort tags.

Simiarly ELAN tags will continue to be used for handling L2 broadcast packets:

	locally generated in the OVS datapath

	remotely received from another OVS datapath via internal VxLAN tunnels

LPort tag uses 8 bits and ELAN tag uses 21 bits in the metadata. The existing use of both in the
metadata will remain unaffected.

In Scope

Since VNIs are provisioned only for VxLAN based underlays, this feature has in its scope the
use-cases pertaining to intra-DC connectivity over internal VxLAN tunnels only.

On the cloud data network wire, all the VxLAN traffic for basic L2 switching within a VxLAN
network and L3 forwarding across VxLAN-type networks using routers will use tenant supplied VNI
values for such VXLAN networks.

Inter-DC connectivity over external VxLAN tunnels is covered by the EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec.

Out of Scope

	Complete removal of use of LPort tags everywhere in ODL: Use of LPort tags within the OVS
Datapath of a hypervisor, for streaming traffic to the right virtual endpoint on that hypervisor
(note: not on the wire) will be retained

	Complete removal of use of ELAN tags everywhere in ODL: Use of ELAN tags within the OVS
Datapath to handle local/remote L2 broadcasts (note: not on the wire) will be retained

	Complete removal of use of MPLS labels everywhere in ODL: Use of MPLS labels for
realizing an L3 BGPVPN (regardless of type of networks put into such BGPVPN that may include
networks of type VxLAN) both on the wire and within the OVS Datapaths will be retained.

	Addressing or testing IPv6 use-cases

	Intra DC NAT usecase where no explicit Internet VPN is created for VxLAN based external provider
networks: Detailed further in Intra DC subsection in NAT section below.

Complete removal of use of LPort tags, ELAN tags and MPLS labels for VxLAN-type
networks has large scale design/pipeline implications and thus need to be attempted as future
initiatives via respective specs.

Use Cases

This feature involves amendments/testing pertaining to the following:

L2 switching use cases

	L2 Unicast frames exchanged within an OVS datapath

	L2 Unicast frames exchanged over OVS datapaths that are on different hypervisors

	L2 Broadcast frames transmitted within an OVS datapath

	L2 Broadcast frames received from remote OVS datapaths

L3 forwarding use cases

	Router realized using VNIs for networks attached to a new router (with network having
pre-created VMs)

	Router realized using VNIs for networks attached to a new router (with new VMs booted later on
the network)

	Router updated with one or more extra route(s) to an existing VM.

	Router updated to remove previously added one/more extra routes.

NAT use cases

The provider network types for external networks supported today are:

	External VLAN Provider Networks (transparent Internet VPN)

	External Flat Networks (transparent Internet VPN)

	Tenant-orchestrated Internet VPN of type GRE (actually MPLSOverGRE)

Following are the SNAT/DNAT use-cases applicable to the network types listed above:

	SNAT functionality.

	DNAT functionality.

	DNAT to DNAT functionality (Intra DC)

	FIP VM to FIP VM on same hypervisor

	FIP VM to FIP VM on different hypervisors

	SNAT to DNAT functionality (Intra DC)

	Non-FIP VM to FIP VM on the same NAPT hypervisor

	Non-FIP VM to FIP VM on the same hypervisor, but NAPT on different hypervisor

	Non-FIP VM to FIP VM on different hypervisors (with NAPT on FIP VM hypervisor)

	Non-FIP VM to FIP VM on different hypervisors (with NAPT on Non-FIP VM hypervisor)

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronVPN Manager

	ELAN Manager

	VPN Engine (VPN Manager, VPN Interface Manager and VPN Subnet Route Handler)

	FIB Manager

	NAT Service

Pipeline changes

L2 Switching

Unicast

Within hypervisor

There are no explicit pipeline changes for this use-case.

Across hypervisors

	Ingress OVS

Instead of setting the destination LPort tag, destination network VNI will be set in the
tun_id field in L2_DMAC_FILTER_TABLE (table 51) while egressing the packet on the tunnel
port.

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=65.484s, table=0, n_packets=23, n_bytes=2016, priority=4,in_port=6actions=write_metadata:0x30000000000/0xffffff0000000001,goto_table:17
cookie=0x6900000, duration=63.106s, table=17, n_packets=23, n_bytes=2016, priority=1,metadata=0x30000000000/0xffffff0000000000 actions=write_metadata:0x2000030000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=64.135s, table=40, n_packets=4, n_bytes=392, priority=61010,ip,dl_src=fa:16:3e:86:59:fd,nw_src=12.1.0.4 actions=ct(table=41,zone=5002)
cookie=0x6900000, duration=5112.542s, table=41, n_packets=21, n_bytes=2058, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x8040000, duration=62.125s, table=17, n_packets=15, n_bytes=854, priority=6,metadata=0x6000030000000000/0xffffff0000000000 actions=write_metadata:0x700003138a000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=5113.124s, table=48, n_packets=24, n_bytes=3044, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x805138a, duration=62.163s, table=50, n_packets=15, n_bytes=854, priority=20,metadata=0x3138a000000/0xfffffffff000000,dl_src=fa:16:3e:86:59:fd actions=goto_table:51
cookie=0x803138a, duration=62.163s, table=51, n_packets=6, n_bytes=476, priority=20,metadata=0x138a000000/0xffff000000,dl_dst=fa:16:3e:31:fb:91 actions=set_field:**0x710**->tun_id,output:1

	Egress OVS

On the egress OVS, for the packets coming in via the internal VxLAN tunnel (OVS - OVS),
INTERNAL_TUNNEL_TABLE currently matches on destination LPort tag for unicast packets. Since
the incoming packets will now contain the network VNI in the VxLAN header, the
INTERNAL_TUNNEL_TABLE will match on this VNI, set the ELAN tag in the metadata and forward
the packet to L2_DMAC_FILTER_TABLE so as to reach the destination VM via the ELAN pipeline.

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=5136.996s, table=0, n_packets=12601, n_bytes=899766, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=1145.594s, table=36, n_packets=15, n_bytes=476, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x803138a, duration=62.163s, table=51, n_packets=9, n_bytes=576, priority=20,metadata=0x138a000001/0xffff000000,dl_dst=fa:16:3e:86:59:fd actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

Broadcast

Across hypervisors

The ARP broadcast by the VM will be a (local + remote) broadcast.

For the local broadcast on the VM’s OVS itself, the packet will continue to get flooded to all the
VM ports by setting the destination LPort tag in the local broadcast group. Hence, there are no
explicit pipeline changes for when a packet is transmitted within the source OVS via a local
broadcast.

The changes in pipeline for the remote broadcast are illustrated below:

	Ingress OVS

Instead of setting the ELAN tag, network VNI will be set in the tun_id field as part of
bucket actions in remote broadcast group while egressing the packet on the tunnel port.

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=65.484s, table=0, n_packets=23, n_bytes=2016, priority=4,in_port=6actions=write_metadata:0x30000000000/0xffffff0000000001,goto_table:17
cookie=0x6900000, duration=63.106s, table=17, n_packets=23, n_bytes=2016, priority=1,metadata=0x30000000000/0xffffff0000000000 actions=write_metadata:0x2000030000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=64.135s, table=40, n_packets=4, n_bytes=392, priority=61010,ip,dl_src=fa:16:3e:86:59:fd,nw_src=12.1.0.4 actions=ct(table=41,zone=5002)
cookie=0x6900000, duration=5112.542s, table=41, n_packets=21, n_bytes=2058, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x8040000, duration=62.125s, table=17, n_packets=15, n_bytes=854, priority=6,metadata=0x6000030000000000/0xffffff0000000000 actions=write_metadata:0x700003138a000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=5113.124s, table=48, n_packets=24, n_bytes=3044, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x805138a, duration=62.163s, table=50, n_packets=15, n_bytes=854, priority=20,metadata=0x3138a000000/0xfffffffff000000,dl_src=fa:16:3e:86:59:fd actions=goto_table:51
cookie=0x8030000, duration=5112.911s, table=51, n_packets=18, n_bytes=2568, priority=0 actions=goto_table:52
cookie=0x870138a, duration=62.163s, table=52, n_packets=9, n_bytes=378, priority=5,metadata=0x138a000000/0xffff000001 actions=write_actions(group:210004)

group_id=210004,type=all,bucket=actions=group:210003,bucket=actions=set_field:**0x710**->tun_id,output:1

	Egress OVS

On the egress OVS, for the packets coming in via the internal VxLAN tunnel (OVS - OVS),
INTERNAL_TUNNEL_TABLE currently matches on ELAN tag for broadcast packets. Since the
incoming packets will now contain the network VNI in the VxLAN header, the
INTERNAL_TUNNEL_TABLE will match on this VNI, set the ELAN tag in the metadata and forward
the packet to L2_DMAC_FILTER_TABLE to be broadcasted via the local broadcast groups
traversing the ELAN pipeline.

The TUNNEL_INGRESS_BIT being set in the CLASSIFIER_TABLE (table 0) ensures that the
packet is always sent to the local broadcast group only and hence, remains within the OVS. This
is necessary to avoid switching loop back to the source OVS.

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=5136.996s, table=0, n_packets=12601, n_bytes=899766, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=1145.594s, table=36, n_packets=15, n_bytes=476, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x8030000, duration=5137.609s, table=51, n_packets=9, n_bytes=1293, priority=0 actions=goto_table:52
cookie=0x870138a, duration=1145.592s, table=52, n_packets=0, n_bytes=0, priority=5,metadata=0x138a000001/0xffff000001 actions=apply_actions(group:210003)

group_id=210003,type=all,bucket=actions=set_field:0x4->tun_id,resubmit(,55)

cookie=0x8800004, duration=1145.594s, table=55, n_packets=9, n_bytes=378, priority=9,tun_id=0x4,actions=load:0x400->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

The ARP response will be a unicast packet, and as indicated above, for unicast packets, there
are no explicit pipeline changes.

L3 Forwarding

Between VMs on a single OVS

There are no explicit pipeline changes for this use-case.
The destination LPort tag will continue to be set in the nexthop group since when
The EGRESS_DISPATCHER_TABLE sends the packet to EGRESS_ACL_TABLE, it is used by the ACL
service.

Between VMs on two different OVS

L3 forwarding between VMs on two different hypervisors is asymmetric forwarding since the traffic
is routed in the source OVS datapath while it is switched over the wire and then all the way to
the destination VM on the destination OVS datapath.

VM sourcing the traffic (Ingress OVS)

L3_FIB_TABLE will set the destination network VNI in the tun_id field instead of the MPLS
label.

CLASSIFIER_TABLE => DISPATCHER_TABLE => INGRESS_ACL_TABLE =>
DISPATCHER_TABLE => L3_GW_MAC_TABLE =>
L3_FIB_TABLE (set destination MAC, **set tunnel-ID as destination network VNI**)
=> Output to tunnel port

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=128.140s, table=0, n_packets=25, n_bytes=2716, priority=4,in_port=5 actions=write_metadata:0x50000000000/0xffffff0000000001,goto_table:17
cookie=0x8000000, duration=4876.599s, table=17, n_packets=0, n_bytes=0, priority=0,metadata=0x5000000000000000/0xf000000000000000 actions=write_metadata:0x6000000000000000/0xf000000000000000,goto_table:80
cookie=0x1030000, duration=4876.563s, table=80, n_packets=0, n_bytes=0, priority=0 actions=resubmit(,17)
cookie=0x6900000, duration=123.870s, table=17, n_packets=25, n_bytes=2716, priority=1,metadata=0x50000000000/0xffffff0000000000 actions=write_metadata:0x2000050000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=126.056s, table=40, n_packets=15, n_bytes=1470, priority=61010,ip,dl_src=fa:16:3e:63:ea:0c,nw_src=10.1.0.4 actions=ct(table=41,zone=5001)
cookie=0x6900000, duration=4877.057s, table=41, n_packets=17, n_bytes=1666, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x6800001, duration=123.485s, table=17, n_packets=28, n_bytes=3584, priority=2,metadata=0x2000050000000000/0xffffff0000000000 actions=write_metadata:0x5000050000000000/0xfffffffffffffffe,goto_table:60
cookie=0x6800000, duration=3566.900s, table=60, n_packets=24, n_bytes=2184, priority=0 actions=resubmit(,17)
cookie=0x8000001, duration=123.456s, table=17, n_packets=17, n_bytes=1554, priority=5,metadata=0x5000050000000000/0xffffff0000000000 actions=write_metadata:0x60000500000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, duration=124.815s, table=19, n_packets=15, n_bytes=1470, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=fa:16:3e:51:da:ee actions=goto_table:21
cookie=0x8000003, duration=125.568s, table=21, n_packets=9, n_bytes=882, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=12.1.0.3 actions=**set_field:0x710->tun_id**,set_field:fa:16:3e:31:fb:91->eth_dst,output:1

VM receiving the traffic (Egress OVS)

On the egress OVS, for the packets coming in via the VxLAN tunnel, INTERNAL_TUNNEL_TABLE
currently matches on MPLS label and sends it to the nexthop group to be taken to the destination
VM via EGRESS_ACL_TABLE.
Since the incoming packets will now contain network VNI in the VxLAN header, the INTERNAL_TUNNEL_TABLE
will match on the VNI, set the ELAN tag in the metadata and forward the packet to
L2_DMAC_FILTER_TABLE, from where it will be taken to the destination VM via the ELAN pipeline.

CLASSIFIER_TABLE => INTERNAL_TUNNEL_TABLE (Match on network VNI, set ELAN tag in the metadata)
=> L2_DMAC_FILTER_TABLE (Match on destination MAC) => EGRESS_DISPATCHER_TABLE
=> EGRESS_ACL_TABLE => Output to destination VM port

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=4918.647s, table=0, n_packets=12292, n_bytes=877616, priority=5,in_port=1actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=927.245s, table=36, n_packets=8234, n_bytes=52679, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x803138a, duration=62.163s, table=51, n_packets=9, n_bytes=576, priority=20,metadata=0x138a000001/0xffff000000,dl_dst=fa:16:3e:86:59:fd actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

NAT Service

For NAT, we need VNIs to be used in two scenarios:

	When packet is forwarded from non-NAPT to NAPT hypervisor (VNI per router)

	Between hypervisors (intra DC) over Internet VPN (VNI per Internet VPN)

Hence, a pool titled opendaylight-vni-ranges, non-overlapping with the OpenStack Neutron
vni_ranges configuration, needs to be configured by the OpenDaylight Controller Administrator.

This opendaylight-vni-ranges pool will be used to carve out a unique VNI per router to be then
used in the datapath for traffic forwarding from non-NAPT to NAPT switch for this router.

Similarly, for MPLSOverGRE based external networks, the opendaylight-vni-ranges pool will be
used to carve out a unique VNI per Internet VPN (GRE-provider-type) to be then used in the
datapath for traffic forwarding for SNAT-to-DNAT and DNAT-to-DNAT cases within the
DataCenter. Only one external network can be associated to Internet VPN today and this spec
doesn’t attempt to address that limitation.

A NeutronVPN configuration API will be exposed to the administrator to configure the lower and
higher limit for this pool.
If the administrator doesn’t configure this explicitly, then the pool will be created with default
values of lower limit set to 70000 and upper limit set to 100000, during the first NAT session
configuration.

FIB Manager changes: For external network of type GRE, it is required to use
Internet VPN VNI for intra-DC communication, but we still require MPLS labels to reach
SNAT/DNAT VMs from external entities via MPLSOverGRE. Hence, we will make use of the l3vni
attribute added to fibEntries container as part of EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec. NAT will populate both
label and l3vni values for fibEntries created for floating-ips and external-fixed-ips with
external network of type GRE. This l3vni value will be used while programming remote FIB flow
entries (on all the switches which are part of the same VRF). But still, MPLS label will be used
to advertise prefixes and in L3_LFIB_TABLE taking the packet to INBOUND_NAPT_TABLE and
PDNAT_TABLE.

For SNAT/DNAT use-cases, we have following provider network types for External Networks:

	VLAN - not VNI based

	Flat - not VNI based

	VxLAN - VNI based (covered by the EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec)

	GRE - not VNI based (will continue to use MPLS labels)

Inter DC

SNAT

	From a VM on a NAPT switch to reach Internet, and reverse traffic reaching back to the VM

There are no explicit pipeline changes.

	From a VM on a non-NAPT switch to reach Internet, and reverse traffic reaching back to the VM

On the non-NAPT switch, PSNAT_TABLE (table 26) will be set with tun_id field as
Router Based VNI allocated from the pool and send to group to reach NAPT switch.

On the NAPT switch, INTERNAL_TUNNEL_TABLE (table 36) will match on the tun_id field
which will be Router Based VNI and send the packet to OUTBOUND_NAPT_TABLE (table 46) for
SNAT Translation and to be taken to Internet.

	Non-NAPT switch

cookie=0x8000006, duration=2797.179s, table=26, n_packets=47, n_bytes=3196, priority=5,ip,metadata=0x23a50/0xfffffffe actions=**set_field:0x710->tun_id**,group:202501

group_id=202501,type=all,bucket=actions=output:1

	NAPT switch

cookie=0x8000001, duration=4918.647s, table=0, n_packets=12292, n_bytes=877616, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=927.245s, table=36, n_packets=8234, n_bytes=52679, priority=10,ip,**tun_id=0x710**,actions=write_metadata:0x23a50/0xfffffffe,goto_table:46

As part of the response from NAPT switch, the packet will be taken to the Non-NAPT switch
after SNAT reverse translation using destination VMs Network VNI.

DNAT

There is no NAT specific explicit pipeline change for DNAT traffic to DC-gateway.

Intra DC

	VLAN Provider External Networks: VNI is not applicable on the external VLAN Provider network.
However, the Router VNI will be used for datapath traffic from non-NAPT switch to NAPT-switch
over the internal VxLAN tunnel.

	VxLAN Provider External Networks:

	Explicit creation of Internet VPN: An L3VNI, mandatorily falling within the
opendaylight-vni-ranges, will be provided by the Cloud admin (or tenant). This VNI will be
used uniformly for all packet transfer over the VxLAN wire for this Internet VPN (uniformly
meaning all the traffic on Internal or External VXLAN Tunnel, except the non-NAPT to NAPT
communication). This usecase is covered by EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec

	No explicit creation of Internet VPN: A transparent Internet VPN having UUID same as that
of the corresponding external network UUID is created implicitly and the VNI configured for
this external network should be used on the VxLAN wire. This usecase is out of scope from
the perspective of this spec, and the same is indicated in Out of Scope section.

	GRE Provider External Networks: Internet VPN VNI will be carved per Internet VPN using
opendaylight-vni-ranges to be used on the wire.

DNAT to DNAT

	FIP VM to FIP VM on different hypervisors

After DNAT translation on the first hypervisor DNAT-OVS-1, the traffic will be sent to the
L3_FIB_TABLE (table=21) in order to reach the floating IP VM on the second hypervisor
DNAT-OVS-2. Here, the tun_id action field will be set as the INTERNET VPN VNI value.

	DNAT-OVS-1

cookie=0x8000003, duration=518.567s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222e8/0xfffffffe,nw_dst=172.160.0.200 actions=**set_field:0x11178->tun_id**,output:9

	DNAT-OVS-2

cookie=0x9011177, duration=411685.075s, table=36, n_packets=2, n_bytes=196, priority=**6**,**tun_id=0x11178**actions=resubmit(,25)
cookie=0x9011179, duration=478573.171s, table=36, n_packets=2, n_bytes=140, priority=5,**tun_id=0x11178**,actions=goto_table:44

cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ip,nw_dst=172.160.0.100,**eth_dst=fa:16:3e:e6:e3:c6** actions=set_field:10.0.0.5->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27
cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ipactions=goto_table:44

First, the INTERNAL_TUNNEL_TABLE (table=36) will take the packet to the PDNAT_TABLE
(table 25) for an exact FIP match in PDNAT_TABLE.

	In case of a successful FIP match, PDNAT_TABLE will further match on floating IP MAC.
This is done as a security prerogative since in DNAT usecases, the packet can land to the
hypervisor directly from the external world. Hence, better to have a second match criteria.

	In case of no match, the packet will be redirected to the SNAT pipeline towards the
INBOUND_NAPT_TABLE (table=44). This is the use-case where DNAT-OVS-2 also acts as
the NAPT switch.

In summary, on an given NAPT switch, if both DNAT and SNAT are configured, the incoming traffic
will first be sent to the PDNAT_TABLE and if there is no FIP match found, then it will be
forwarded to INBOUND_NAPT_TABLE for SNAT translation.

As part of the response, the Internet VPN VNI will be used as tun_id to reach floating
IP VM on DNAT-OVS-1.

	FIP VM to FIP VM on same hypervisor

The pipeline changes will be similar as are for different hypervisors, the only difference being
that INTERNAL_TUNNEL_TABLE will never be hit in this case.

SNAT to DNAT

	Non-FIP VM to FIP VM on different hypervisors (with NAPT elected as the FIP VM hypervisor)

The packet will be sent to the NAPT hypervisor from non-FIP VM (for SNAT translation) using
Router VNI (similar to as described in SNAT section). As part of the response from the
NAPT switch after SNAT reverse translation, the packet is forwarded to non-FIP VM using
destination VM’s Network VNI.

	Non-FIP VM to FIP VM on the same NAPT hypervisor

There are no explicit pipeline changes for this use-case.

	Non-FIP VM to FIP VM on the same hypervisor, but a different hypervisor elected as NAPT switch

	NAPT hypervisor

The packet will be sent to the NAPT hypervisor from non-FIP VM (for SNAT translation) using
Router VNI (similar to as described in SNAT section). On the NAPT switch, the
INTERNAL_TUNNEL_TABLE will match on the Router VNI in the tun_id field and send the
packet to OUTBOUND_NAPT_TABLE for SNAT translation (similar to as described in SNAT
section).

cookie=0x8000005, duration=5073.829s, table=36, n_packets=61, n_bytes=4610, priority=10,ip,**tun_id=0x11170**,actions=write_metadata:0x222e0/0xfffffffe,goto_table:46

The packet will later be sent back to the FIP VM hypervisor from L3_FIB_TABLE with tun_id
field set as the Internet VPN VNI.

cookie=0x8000003, duration=518.567s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222e8/0xfffffffe,nw_dst=172.160.0.200 actions=**set_field:0x11178->tun_id**,output:9

	FIP VM hypervisor

On reaching the FIP VM Hypervisor, the packet will be sent for DNAT translation. The
INTERNAL_TUNNEL_TABLE will match on the Internet VPN VNI in the tun_id field and
send the packet to PDNAT_TABLE.

cookie=0x9011177, duration=411685.075s, table=36, n_packets=2, n_bytes=196, priority=**6**,**tun_id=0x11178**,actions=resubmit(,25)
cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ip,nw_dst=172.160.0.100,**eth_dst=fa:16:3e:e6:e3:c6** actions=set_field:10.0.0.5->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27

Upon FIP VM response, DNAT reverse translation happens and traffic is sent back to the NAPT
switch for SNAT translation. The L3_FIB_TABLE will be set with Internet VPN VNI in the
tun_id field.

cookie=0x8000003, duration=95.300s, table=21, n_packets=2, n_bytes=140, priority=42,ip,metadata=0x222ea/0xfffffffe,nw_dst=172.160.0.3 actions=**set_field:0x11178->tun_id**,output:5

	NAPT hypervisor

On NAPT hypervisor, the INTERNAL_TUNNEL_TABLE will match on the Internet VPN VNI in
the tun_id field and send the packet to `` INBOUND_NAPT_TABLE`` for SNAT reverse
translation (external fixed IP to VM IP). The packet will then be sent back to the non-FIP VM
using destination VM’s Network VNI.

	Non-FIP VM to FIP VM on different hypervisors (with NAPT elected as the non-FIP VM hypervisor)

After SNAT Translation, Internet VPN VNI will be used to reach FIP VM. On FIP VM hypervisor,
the INTERNAL_TUNNEL_TABLE will take the packet to the PDNAT_TABLE to match on
Internet VPN VNI in the tun_id field for DNAT translation.

Upon response from FIP, DNAT reverse translation happens and uses Internet VPN VNI to reach
back to the non-FIP VM.

YANG changes

	opendaylight-vni-ranges and enforce-openstack-semantics leaf elements will be added to
neutronvpn-config container in neutronvpn-config.yang:

	opendaylight-vni-ranges will be introduced to accept inputs for the VNI range pool from
the configurator via the corresponding exposed REST API. In case this is not defined, the
default value defined in netvirt-neutronvpn-config.xml will be used to create this pool.

	enforce-openstack-semantics will be introduced to have the flexibility to enable
or disable OpenStack semantics in the dataplane for this feature. It will be defaulted to
true, meaning these semantics will be enforced by default. In case it is set to false, the
dataplane will continue to be programmed with LPort tags / ELAN tags for switching and with
labels for routing use-cases. Once this feature gets stabilized and the semantics are in place
to use VNIs on the wire for BGPVPN based forwarding too, this config can be permanently
removed if deemed fit.

neutronvpn-config.yang

container neutronvpn-config {
 config true;
 ...
 ...
 leaf opendaylight-vni-ranges {
 type string;
 default "70000:99999";
 }
 leaf enforce-openstack-semantics {
 type boolean;
 default true;
 }
}

	Provider network-type and provider segmentation-ID need to be propagated to FIB Manager to manipulate
flows based on the same. Hence:

	A new grouping network-attributes will be introduced in neutronvpn.yang to hold
network type and segmentation ID. This grouping will replace the leaf-node
network-id in subnetmaps MD-SAL configuration datastore:

neutronvpn.yang

grouping network-attributes {
 leaf network-id {
 type yang:uuid;
 description "UUID representing the network";
 }
 leaf network-type {
 type enumeration {
 enum "FLAT";
 enum "VLAN";
 enum "VXLAN";
 enum "GRE";
 }
 }
 leaf segmentation-id {
 type uint32;
 description "Optional. Isolated segment on the physical network.
 If segment-type is vlan, this ID is a vlan identifier.
 If segment-type is vxlan, this ID is a vni.
 If segment-type is flat/gre, this ID is set to 0";
 }
}

container subnetmaps {
 ...
 ...
 uses network-attributes;
}

	These attributes will be propagated upon addition of a router-interface or addition of a
subnet to a BGPVPN to VPN Manager module via the subnet-added-to-vpn notification
modelled in neutronvpn.yang. Hence, the following node will be added:

neutronvpn.yang

notification subnet-added-to-vpn {
 description "new subnet added to vpn";
 ...
 ...
 uses network-attributes;
}

	VpnSubnetRouteHandler will act on these notifications and store these attributes in
subnet-op-data MD-SAL operational datastore as described below. FIB Manager will get to
retrieve the subnetID from the primary adjacency of the concerned VPN interface. This
subnetID will be used as the key to retrieve network-attributes from subnet-op-data
datastore.

odl-l3vpn.yang

import neutronvpn {
 prefix nvpn;
 revision-date "2015-06-02";
}

container subnet-op-data {
 ...
 ...
 uses nvpn:network-attributes;
}

	subnetID and nat-prefix leaf elements will be added to prefix-to-interface
container in odl-l3vpn.yang:

	For NAT use-cases where the VRF entry is not always associated with a VPN interface (eg. for
NAT entries such as floating IP and router-gateway-IPs for external VLAN / flat networks),
subnetID leaf element will be added to make it possible to retrieve the
network-attributes.

	To distinguish a non-NAT prefix from a NAT prefix, nat-prefix leaf element will be
added. This is a boolean attribute indicating whether the prefix is a NAT prefix (meaning a
floating IP, or an external-fixed-ip of a router-gateway). The VRFEntry corresponding to
the NAT prefix entries here may carry both the MPLS label and the Internet VPN VNI.
For SNAT-to-DNAT within the datacenter, where the Internet VPN contains an MPLSOverGRE
based external network, this VRF entry will publish the MPLS label to BGP while the
Internet VPN VNI (also known as L3VNI) will be used to carry intra-DC traffic on
the external segment within the datacenter.

odl-l3vpn.yang

container prefix-to-interface {
 config false;
 list vpn-ids {
 key vpn-id;
 leaf vpn-id {type uint32;}
 list prefixes {
 key ip_address;
 ...
 ...
 leaf subnet-id {
 type yang:uuid;
 }
 leaf nat-prefix {
 type boolean;
 default false;
 }
 }
 }
}

Configuration impact

	We have to make sure that we do not accept configuration of VxLAN type provider networks without
the segmentation-ID available in them since we are using it to represent the VNI on the wire
and in the flows/groups.

Clustering considerations

No specific additional clustering considerations to be adhered to.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release(s)

Carbon.

Known Limitations

None.

Alternatives

N.A.

Usage

Features to Install

odl-netvirt-openstack

REST API

No new changes to the existing REST APIs.

CLI

No new CLI is being added.

Implementation

Assignee(s)

	Primary assignee:

	Abhinav Gupta <abhinav.gupta@ericsson.com>
Vivekanandan Narasimhan <n.vivekanandan@ericsson.com>

	Other contributors:

	Chetan Arakere Gowdru <chetan.arakere@altencalsoftlabs.com>
Karthikeyan Krishnan <karthikeyan.k@altencalsoftlabs.com>
Yugandhar Sarraju <yugandhar.s@altencalsoftlabs.com>

Work Items

Trello card: https://trello.com/c/PfARbEmU/84-enforce-vni-on-the-wire-for-l2-switching-l3-forwarding-and-nating-on-vxlan-overlay-networks

	Code changes to alter the pipeline and e2e testing of the use-cases mentioned.

	Add Documentation

Dependencies

This doesn’t add any new dependencies.

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

No new testcases to be added, existing ones should continue to succeed.

Documentation Impact

This will require changes to the Developer Guide.

Developer Guide needs to capture how this feature modifies the existing Netvirt L3 forwarding
service implementation.

References

	http://docs.opendaylight.org/en/latest/documentation.html

	https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

	EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

Table of Contents

	Neutron Port Allocation For DHCP Service

	Problem description

	Problem - 1: L2 Deployment with 3PP gateway

	Problem - 2: Designated DHCP for SR-IOV VMs via HWVTEP

	High-Level Components:

	Proposed change

	ODL Driver Changes:

	Pipeline changes

	ARP Changes for DHCP port

	Assumptions

	Reboot Scenarios

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	CSIT

	Documentation Impact

	References

Neutron Port Allocation For DHCP Service

https://git.opendaylight.org/gerrit/#/q/topic:neutron_port_dhcp

This feature will enable the Neutron DHCP proxy service within controller
to reserve and use a Neutron port per subnet for communication with
Neutron endpoints.

Problem description

The DHCP service currently assumes availability of the subnet gateway IP address
and its mac address for its DHCP proxy service, which may or may not be available
to the controller. This can lead to service unavailability.

Problem - 1: L2 Deployment with 3PP gateway

There can be deployment scenario in which L2 network is created with no distributed
Router/VPN functionality. This deployment can have a separate gateway for the network
such as a 3PP LB VM, which acts as a TCP termination point and this LB VM is
configured with a default gateway IP. It means all inter-subnet traffic is terminated
on this VM which takes the responsibility of forwarding the traffic.

But the current DHCP proxy service in controller hijacks gateway IP address for
serving DHCP discover/request messages. If the LB is up, this can continue to work,
DHCP broadcasts will get hijacked by the ODL, and responses
sent as PKT_OUTs with SIP = GW IP.

However, if the LB is down, and the VM ARPs for the same IP as part of a DHCP renew
workflow, the ARP resolution can fail, due to which renew request will not be
generated. This can cause the DHCP lease to lapse.

Problem - 2: Designated DHCP for SR-IOV VMs via HWVTEP

In this Deployment scenario, L2 network is created with no distributed Router/VPN
functionality, and HWVTEP for SR-IOV VMs. DHCP flood requests from SR-IOV VMs
(DHCP discover, request during bootup), are flooded by the HWVTEP on the ELAN,
and punted to the controller by designated vswitch. DHCP offers are sent as unicast
responses from Controller, which are forwarded by the HWVTEP to the VM. DHCP renews
can be unicast requests, which the HWVTEP may forward to an external Gateway VM (3PP
LB VM) as unicast packets. Designated vswitch will never receive these pkts, and thus
not be able to punt them to the controller, so renews will fail.

High-Level Components:

The following components of the Openstack - ODL solution need to be enhanced to provide
port allocation for DHCP service.

	Openstack ODL Mechanism Driver

	OpenDaylight Controller (NetVirt VpnService/DHCP Service/Elan Service)

We will review enhancements that will be made to each of the above components in following
sections.

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	Neutron VPN module

	DHCP module

	ELAN and L3VPN modules

OpenDaylight controller needs to preserve a Neutron port for every subnet so that DHCP proxy
service can be enabled in Openstack deployment. The Neutron port’s device owner property is
set to network:dhcp and uses this port for all outgoing DHCP messages. Since this port gets
a distinct IP address and MAC address from the subnet, both problem-1 and problem-2 will be
solved.

ODL Driver Changes:

ODL driver will need a config setting when ODL DHCP service is in use, as against when Neutron
DHCP agent is deployed (Community ODL default setting). This needs to be enabled for ODL deployment

ODL driver will insert an async call in subnet create/update workflow in POST_COMMIT for subnets
with DHCP set to ‘enabled’, with a port create request, with device owner set to network:dhcp,
and device ID set to controller hostname/IP (from ml2_conf.ini file)

ODL driver will insert an async call in subnet delete, and DHCP ‘disable’ workflow to ensure
the allocated port is deleted

ODL driver needs to ensure at any time no more than a single port is allocated per subnet
for these requirements

Pipeline changes

For example, If a VM interface is having 30.0.0.1/de:ad:be:ef:00:05 as its Gateway (or) Router
Interface IP/MAC address and its subnet DHCP neutron port is created with IP/MAC address
30.0.0.4/de:ad:be:ef:00:04. The ELAN pipeline is changed like below.

LPort Dispatcher Table (17)=>ELAN ARP Check Table(43) => ARP Responder Group (5000) => ARP Responder Table (81) => Egress dispatcher Table(220)

cookie=0x8040000, duration=627.038s, table=17, n_packets=0, n_bytes=0, priority=6, metadata=0xc019a00000000000/0xffffff0000000000 actions=write_metadata:0xc019a01771000000/0xfffffffffffffffe,goto_table:43
cookie=0x1080000, duration=979.712s, table=43, n_packets=0, n_bytes=0, priority=100,arp,arp_op=1 actions=group:5000
cookie=0x1080000, duration=979.713s, table=43, n_packets=0, n_bytes=0, priority=100,arp,arp_op=2 actions=CONTROLLER:65535,resubmit(,48)
cookie=0x8030000, duration=979.717s, table=43, n_packets=0, n_bytes=0, priority=0 actions=goto_table:48
cookie=0x262219a4, duration=312.151s, table=81, n_packets=0, n_bytes=0, priority=100,arp,metadata=0xc019a000000/0xfffffffff000000,arp_tpa=30.0.0.1,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:de:ad:be:ef:00:05->eth_src,load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xdeadbeef0005->NXM_NX_ARP_SHA[],load:0x1e000001->NXM_OF_ARP_SPA[],load:0->NXM_OF_IN_PORT[],load:0x19a000->NXM_NX_REG6[],resubmit(,220)
cookie=0x262219a4, duration=312.151s, table=81, n_packets=0, n_bytes=0, priority=100,arp,metadata=0xc019a000000/0xfffffffff000000,arp_tpa=30.0.0.4,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:de:ad:be:ef:00:04->eth_src,load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xdeadbeef0004->NXM_NX_ARP_SHA[],load:0x1e000001->NXM_OF_ARP_SPA[],load:0->NXM_OF_IN_PORT[],load:0x19a000->NXM_NX_REG6[],resubmit(,220)

group_id=5000,type=all,bucket=actions=CONTROLLER:65535,bucket=actions=resubmit(,48),bucket=actions=resubmit(,81)

ARP Changes for DHCP port

1. Client VM ARP requests for DHCP server IP need to be answered in L2 as well
as L3 deployment.
2. Create ARP responder table flow entry for DHCP server IP in computes nodes
on which ELAN footprint is available.
3. Currently ARP responder is part of L3VPN pipeline, however no L3 service
may be available in an L2 deployment to leverage the current ARP pipeline,
for DHCP IP ARP responses. To ensure ARP responses are sent in L2 deployment,
ARP processing needs to be migrated to the ELAN pipeline.
4. ELAN service to provide API to other services needing ARP responder entries
including L3VPN service (for router MAC, router-gw MAC and floating IPs,
and EVPN remote MAC entries).
5. ELAN service will be responsible for punting a copy of each ARP packet to the
controller if the source MAC address is not already learned.

Assumptions

Support for providing port allocation for DHCP service is available from
Openstack Pike release.

Reboot Scenarios

	This feature support all the following Reboot Scenarios for EVPN:

	
	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Nitrogen, Carbon

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Implementation

The programming of flow rules in Table 43 and Table 81 is handled in ELAN module and
following APIs are exposed from IElanService so that L3VPN and DHCP modules can
use it to program ARP responder table flow entries for Gateway/Router Interface,
floating IPs and DHCP port.

void addArpResponderEntry(BigIneger dpId, String ingressInterfaceName,
 String ipAddress, String macAddress, Optional<Integer> lportTag);
void removeArpResponderEntry(BigIneger dpId, String ingressInterfaceName,
 String ipAddress, String macAddress, Optional<Integer> lportTag);

A new container is introduced to hold the subnet DHCP port information.

dhcpservice-api.yang

 container subnet-dhcp-port-data {
 config true;
 list subnet-to-dhcp-port {
 key "subnet-id";
 leaf subnet-id {
 type string;
 }
 leaf port-name {
 type string;
 }
 leaf port-fixedip {
 type string;
 }
 leaf port-macaddress {
 type string;
 }
 }
 }

When no DHCP port is available for the subnet we will flag an error to indicate
DHCP service failure for virtual endpoints on such subnets which are dhcp-enabled
in Openstack neutron.

Assignee(s)

	Primary assignee:

	Karthik Prasad <karthik.p@altencalsoftlabs.com>
Achuth Maniyedath <achuth.m@altencalsoftlabs.com>
Vijayalakshmi CN <vijayalakshmi.c@altencalsoftlabs.com>

	Other contributors:

	Dayavanti Gopal Kamath <dayavanti.gopal.kamath@ericsson.com>
Vivekanandan Narasimhan <n.vivekanandan@ericsson.com>
Periyasamy Palanisamy <periyasamy.palanisamy@ericsson.com>

Work Items

Dependencies

Testing

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

	OpenStack Spec - https://review.openstack.org/#/c/453160

L3VPN Service: User Guide

Overview

L3VPN Service in OpenDaylight provides a framework to create L3VPN based
on BGP-MP. It also helps to create Network Virtualization for DC Cloud
environment.

Modules & Interfaces

L3VPN service can be realized using the following modules -

VPN Service Modules

	VPN Manager : Creates and manages VPNs and VPN Interfaces

	BGP Manager : Configures BGP routing stack and provides interface
to routing services

	FIB Manager : Provides interface to FIB, creates and manages
forwarding rules in Dataplane

	Nexthop Manager : Creates and manages nexthop egress pointer,
creates egress rules in Dataplane

	Interface Manager : Creates and manages different type of network
interfaces, e.g., VLAN, l3tunnel etc.,

	Id Manager : Provides cluster-wide unique ID for a given key.
Used by different modules to get unique IDs for different entities.

	MD-SAL Util : Provides interface to MD-SAL. Used by service
modules to access MD-SAL Datastore and services.

All the above modules can function independently and can be utilized by
other services as well.

Configuration Interfaces

The following modules expose configuration interfaces through which user
can configure L3VPN Service.

	BGP Manager

	VPN Manager

	Interface Manager

	FIB Manager

Configuration Interface Details

	Data Node Path : /config/bgp:bgp-router/

	Fields :

	local-as-identifier

	local-as-number

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/bgp:bgp-neighbors/

	Fields :

	List of bgp-neighbor

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path :
/config/bgp:bgp-neighbors/bgp-neighbor/``{as-number}``/

	Fields :

	as-number

	ip-address

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/l3vpn:vpn-instances/

	Fields :

	List of vpn-instance

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/l3vpn:vpn-interfaces/vpn-instance

	Fields :

	name

	route-distinguisher

	import-route-policy

	export-route-policy

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/l3vpn:vpn-interfaces/

	Fields :

	List of vpn-interface

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/l3vpn:vpn-interfaces/vpn-interface

	Fields :

	name

	vpn-instance-name

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path :
/config/l3vpn:vpn-interfaces/vpn-interface/``{name}``/adjacency

	Fields :

	ip-address

	mac-address

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/if:interfaces/interface

	Fields :

	name

	type

	enabled

	of-port-id

	tenant-id

	base-interface

	type specific fields

	when type = l2vlan

	vlan-id

	when type = stacked_vlan

	stacked-vlan-id

	when type = l3tunnel

	tunnel-type

	local-ip

	remote-ip

	gateway-ip

	when type = mpls

	list labelStack

	num-labels

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/odl-fib:fibEntries/vrfTables

	Fields :

	List of vrfTables

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path :
/config/odl-fib:fibEntries/vrfTables/``{routeDistinguisher}``/

	Fields :

	route-distinguisher

	list vrfEntries

	destPrefix

	label

	nexthopAddress

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/odl-fib:fibEntries/ipv4Table

	Fields :

	list ipv4Entry

	destPrefix

	nexthopAddress

	REST Methods : GET, PUT, DELETE, POST

Provisioning Sequence & Sample Configurations

Installation

	Edit etc/custom.properties and set the following property:
vpnservice.bgpspeaker.host.name = <bgpserver-ip> <bgpserver-ip>
here refers to the IP address of the host where BGP is running.

	Run ODL and install VPN Service feature:install odl-vpnservice-core

Use REST interface to configure L3VPN service

Pre-requisites:

	BGP stack with VRF support needs to installed and configured

	Configure BGP as specified in Step 1 below.

	Create pairs of GRE/VxLAN Tunnels (using ovsdb/ovs-vsctl) between
each switch and between each switch to the Gateway node

	Create *l3tunnel interfaces corresponding to each tunnel in
interfaces DS as specified in Step 2 below.*

Step 1 : Configure BGP

1. Configure BGP Router

REST API : PUT /config/bgp:bgp-router/

Sample JSON Data

{
 "bgp-router": {
 "local-as-identifier": "10.10.10.10",
 "local-as-number": 108
 }
}

2. Configure BGP Neighbors

REST API : PUT /config/bgp:bgp-neighbors/

Sample JSON Data

{
 "bgp-neighbor" : [
 {
 "as-number": 105,
 "ip-address": "169.144.42.168"
 }
]
 }

Step 2 : Create Tunnel Interfaces

Create l3tunnel interfaces corresponding to all GRE/VxLAN tunnels
created with ovsdb (refer Prerequisites). Use following REST
Interface -

REST API : PUT /config/if:interfaces/if:interfacce

Sample JSON Data

{
 "interface": [
 {
 "name" : "GRE_192.168.57.101_192.168.57.102",
 "type" : "odl-interface:l3tunnel",
 "odl-interface:tunnel-type": "odl-interface:tunnel-type-gre",
 "odl-interface:local-ip" : "192.168.57.101",
 "odl-interface:remote-ip" : "192.168.57.102",
 "odl-interface:portId" : "openflow:1:3",
 "enabled" : "true"
 }
]
}

Following is expected as a result of these configurations

	Unique If-index is generated

	Interface-state operational DS is updated

	Corresponding Nexthop Group Entry is created

Step 3 : OS Create Neutron Ports and attach VMs

At this step user creates VMs.

Step 4 : Create VM Interfaces

Create l2vlan interfaces corresponding to VM created in step 3

REST API : PUT /config/if:interfaces/if:interface

Sample JSON Data

{
 "interface": [
 {
 "name" : "dpn1-dp1.2",
 "type" : "l2vlan",
 "odl-interface:of-port-id" : "openflow:1:2",
 "odl-interface:vlan-id" : "1",
 "enabled" : "true"
 }
]
}

Step 5: Create VPN Instance

REST API : PUT /config/l3vpn:vpn-instances/l3vpn:vpn-instance/

Sample JSON Data

{
 "vpn-instance": [
 {
 "description": "Test VPN Instance 1",
 "vpn-instance-name": "testVpn1",
 "ipv4-family": {
 "route-distinguisher": "4000:1",
 "export-route-policy": "4000:1,5000:1",
 "import-route-policy": "4000:1,5000:1",
 }
 }
]
}

Following is expected as a result of these configurations

	VPN ID is allocated and updated in data-store

	Corresponding VRF is created in BGP

	If there are vpn-interface configurations for this VPN, corresponding
action is taken as defined in step 5

Step 5 : Create VPN-Interface and Local Adjacency

this can be done in two steps as well

1. Create vpn-interface

REST API : PUT /config/l3vpn:vpn-interfaces/l3vpn:vpn-interface/

Sample JSON Data

{
 "vpn-interface": [
 {
 "vpn-instance-name": "testVpn1",
 "name": "dpn1-dp1.2",
 }
]
}

Note

name here is the name of VM interface created in step 3, 4

2. Add Adjacencies on vpn-interafce

REST API : PUT
/config/l3vpn:vpn-interfaces/l3vpn:vpn-interface/dpn1-dp1.3/adjacency

Sample JSON Data

 {
 "adjacency" : [
 {
 "ip-address" : "169.144.42.168",
 "mac-address" : "11:22:33:44:55:66"
 }
]
 }

its a list, user can define more than one adjacency on a
vpn_interface

Above steps can be carried out in a single step as following

{
 "vpn-interface": [
 {
 "vpn-instance-name": "testVpn1",
 "name": "dpn1-dp1.3",
 "odl-l3vpn:adjacency": [
 {
 "odl-l3vpn:mac_address": "11:22:33:44:55:66",
 "odl-l3vpn:ip_address": "11.11.11.2",
 }
]
 }
]
}

Following is expected as a result of these configurations

	Prefix label is generated and stored in DS

	Ingress table is programmed with flow corresponding to interface

	Local Egress Group is created

	Prefix is added to BGP for advertisement

	BGP pushes route update to FIB YANG Interface

	FIB Entry flow is added to FIB Table in OF pipeline

Support

Table of Contents

	Support

	Verified Combinations

	Open vSwitch Kernel and DPDK Modes

Verified Combinations

This section describes which versions of OpenStack and Open vSwitch are
expected to work with with OpenDaylight. Using combinations outside this list
may work but have not been verified.

Note

Verified is defined as combinations that are actively tested and maintained.
OpenDaylight, OpenStack and Open vSwitch are very active and quickly adding
new features that makes it difficult to verify all the different release
combinations. Different combinations are likely to work but support will be
limited.

The following table details the expected supported combinations.

Supported Version Matrix

	OpenDaylight

	OpenStack

	Open vSwitch

	Sync

	Notes

	Boron

	Newton

	2.6

	S

	

	Carbon

	Ocata

	2.7

	
	Combination drops when Pike releases

	Carbon

	Pike

	2.7

	S

	

	Nitrogen

	Ocata

	2.7

	
	Combination drops when Pike releases

	Nitrogen

	Pike

	2.7

	
	Combination drops when Queens releases

	Nitrogen

	Queens

	2.8/2.9

	S

	

	Oxygen

	Pike

	2.7

	
	Combination drops when Queens releases

	Oxygen

	Queens

	2.8/2.9

	
	Combination drops when OpenStack R releases

	Oxygen

	R

	2.9

	S

	

	(S): in the Sync column indicates the final supported combination for that
OpenDaylight release.

	Differing release schedules will lead to short-lived combinations that will
drop as the releases line up. An example is with Carbon that releases
before Pike so for a period of time Carbon is supported with Ocata.

	The current OpenDaylight version and the previous will be supported.
Boron support will drop when Nitrogen releases; Carbon support will drop
when Oxygen releases.

Open vSwitch Kernel and DPDK Modes

The table below lists the Open vSwitch requirements for the Carbon release.

Kernel and DPDK Modes

	Feature

	OVS 2.6 kernel mode

	OVS 2.6 dpdk mode

	Conntrack - security groups

	yes

	yes

	Conntrack - NAT

	yes

	no (target 2.8*)

	Security groups stateful

	yes (conntrack)

	yes(conntrack)

	Security groups learn

	yes (but not needed)

	yes (but not needed)

	IPV4 NAT (without pkt punt to controller)

	yes (conntrack)

	no (target 2.8*)

	IPV4 NAT (with pkt punt to controller)

	not needed

	yes (until 2.8*)

(*) support is tentatively scheduled for Open vSwitch 2.8

Bridge Configuration

Table of Contents

	Bridge Configuration

	The “br-int” Bridge

	Provider Networks

The following describes OVS bridge configurations supported by OpenDaylight.

The “br-int” Bridge

If the br-int bridge is not configured prior to the ovsdb manager connection with ODL,
ODL will create it. If br-int exists prior to the ovsdb manager connection, ODL will retain
any existing configurations on br-int. Note that if you choose to create br-int prior to
connecting to ODL, disable-in-band MUST be set to true and any flows configured may interfere
with the flows ODL will create. ODL will add the following configuration items to br-int:

	ODL will set itself as br-int’s controller

	Any provider network configuration (see section “Provider Networks” below)

It is important to note that once the ovsdb manager connection is established with ODL, ODL
“owns” br-int and other applications should not modify its settings.

Provider Networks

Provider networks should be configured prior to OVSDB connecting to ODL. These are configured
in the Open_vSwitch table’s other_Config column and have the format <physnet>:<connector>
where <physnet> is the name of the provider network and <connector> is one of the following
three options:

	The name of a local interface (ODL will add this port to br-int)

	The name of a bridge on OpenVSwitch (ODL will create patch ports between br-int and this bridge)

	The name of a port already present on br-int (ODL will use that port)

For example, assume your provider network is called extnet and it is attached to the eth0 interface
on your host you can set this in OVSDB using the following command:

sudo ovs-vsctl set Open_vSwitch . Other_Config:provider_mappings=extnet:eth0

If instead of eth0 the provider network is accesable via on OVS bridge called br-int, eth0 in the
above command would be substituted with br-int.

Neutron Service User Guide

Overview

This Karaf feature (odl-neutron-service) provides integration
support for OpenStack Neutron via the OpenDaylight ML2 mechanism driver.
The Neutron Service is only one of the components necessary for
OpenStack integration. For those related components please refer to
documentations of each component:

	https://wiki.openstack.org/wiki/Neutron

	https://launchpad.net/networking-odl

	http://git.openstack.org/cgit/openstack/networking-odl/

	https://wiki.opendaylight.org/view/NeutronNorthbound:Main

Use cases and who will use the feature

If you want OpenStack integration with OpenDaylight, you will need this
feature with an OpenDaylight provider feature like ovsdb/netvirt, group
based policy, VTN, and lisp mapper. For provider configuration, please
refer to each individual provider’s documentation. Since the Neutron
service only provides the northbound API for the OpenStack Neutron ML2
mechanism driver. Without those provider features, the Neutron service
itself isn’t useful.

Neutron Service feature Architecture

The Neutron service provides northbound API for OpenStack Neutron via
RESTCONF and also its dedicated REST API. It communicates through its
YANG model with providers.

[image: Neutron Service Architecture]
Neutron Service Architecture

Configuring Neutron Service feature

As the Karaf feature includes everything necessary for communicating
northbound, no special configuration is needed. Usually this feature is
used with an OpenDaylight southbound plugin that implements actual
network virtualization functionality and OpenStack Neutron. The user
wants to setup those configurations. Refer to each related
documentations for each configurations.

Administering or Managing odl-neutron-service

There is no specific configuration regarding to Neutron service itself.
For related configuration, please refer to OpenStack Neutron
configuration and OpenDaylight related services which are providers for
OpenStack.

installing odl-neutron-service while the controller running

	While OpenDaylight is running, in Karaf prompt, type:
feature:install odl-neutron-service.

	Wait a while until the initialization is done and the controller
stabilizes.

odl-neutron-service provides only a unified interface for OpenStack
Neutron. It doesn’t provide actual functionality for network
virtualization. Refer to each OpenDaylight project documentation for
actual configuration with OpenStack Neutron.

Neutron Logger

Another service, the Neutron Logger, is provided for debugging/logging
purposes. It logs changes on Neutron YANG models.

feature:install odl-neutron-logger

Network Intent Composition (NIC) User Guide

Overview

Network Intent Composition (NIC) is an interface that allows clients to
express a desired state in an implementation-neutral form that will be
enforced via modification of available resources under the control of
the OpenDaylight system.

This description is purposely abstract as an intent interface might
encompass network services, virtual devices, storage, etc.

The intent interface is meant to be a controller-agnostic interface so
that “intents” are portable across implementations, such as OpenDaylight
and ONOS. Thus an intent specification should not contain implementation
or technology specifics.

The intent specification will be implemented by decomposing the intent
and augmenting it with implementation specifics that are driven by local
implementation rules, policies, and/or settings.

Network Intent Composition (NIC) Architecture

The core of the NIC architecture is the intent model, which specifies
the details of the desired state. It is the responsibility of the NIC
implementation transforms this desired state to the resources under the
control of OpenDaylight. The component that transforms the intent to the
implementation is typically referred to as a renderer.

For the Boron release, multiple, simultaneous renderers will not be
supported. Instead either the VTN or GBP renderer feature can be
installed, but not both.

For the Boron release, the only actions supported are “ALLOW” and
“BLOCK”. The “ALLOW” action indicates that traffic can flow between the
source and destination end points, while “BLOCK” prevents that flow;
although it is possible that an given implementation may augment the
available actions with additional actions.

Besides transforming a desired state to an actual state it is the
responsibility of a renderer to update the operational state tree for
the NIC data model in OpenDaylight to reflect the intent which the
renderer implemented.

Configuring Network Intent Composition (NIC)

For the Boron release there is no default implementation of a renderer,
thus without an additional module installed the NIC will not function.

Administering or Managing Network Intent Composition (NIC)

There is no additional administration of management capabilities related
to the Network Intent Composition features.

Interactions

A user can interact with the Network Intent Composition (NIC) either
through the RESTful interface using standard RESTCONF operations and
syntax or via the Karaf console CLI.

REST

Configuration

The Network Intent Composition (NIC) feature supports the following REST
operations against the configuration data store.

	POST - creates a new instance of an intent in the configuration
store, which will trigger the realization of that intent. An ID
must be specified as part of this request as an attribute of the
intent.

	GET - fetches a list of all configured intents or a specific
configured intent.

	DELETE - removes a configured intent from the configuration store,
which triggers the removal of the intent from the network.

Operational

The Network Intent Composition (NIC) feature supports the following REST
operations against the operational data store.

	GET - fetches a list of all operational intents or a specific
operational intent.

Karaf Console CLI

This feature provides karaf console CLI command to manipulate the intent
data model. The CLI essentailly invokes the equivalent data operations.

intent:add

Creates a new intent in the configuration data tree

DESCRIPTION
 intent:add

 Adds an intent to the controller.

Examples: --actions [ALLOW] --from <subject> --to <subject>
 --actions [BLOCK] --from <subject>

SYNTAX
 intent:add [options]

OPTIONS
 -a, --actions
 Action to be performed.
 -a / --actions BLOCK/ALLOW
 (defaults to [BLOCK])
 --help
 Display this help message
 -t, --to
 Second Subject.
 -t / --to <subject>
 (defaults to any)
 -f, --from
 First subject.
 -f / --from <subject>
 (defaults to any)

intent:delete

Removes an existing intent from the system

DESCRIPTION
 intent:remove

 Removes an intent from the controller.

SYNTAX
 intent:remove id

ARGUMENTS
 id Intent Id

intent:list

Lists all the intents in the system

DESCRIPTION
 intent:list

 Lists all intents in the controller.

SYNTAX
 intent:list [options]

OPTIONS
 -c, --config
 List Configuration Data (optional).
 -c / --config <ENTER>
 --help
 Display this help message

intent:show

Displayes the details of a single intent

DESCRIPTION
 intent:show

 Shows detailed information about an intent.

SYNTAX
 intent:show id

ARGUMENTS
 id Intent Id

intent:map

List/Add/Delete current state from/to the mapping service.

DESCRIPTION
 intent:map

 List/Add/Delete current state from/to the mapping service.

SYNTAX
 intent:map [options]

 Examples: --list, -l [ENTER], to retrieve all keys.
 --add-key <key> [ENTER], to add a new key with empty contents.
 --del-key <key> [ENTER], to remove a key with it's values."
 --add-key <key> --value [<value 1>, <value 2>, ...] [ENTER],
 to add a new key with some values (json format).
OPTIONS
 --help
 Display this help message
 -l, --list
 List values associated with a particular key.
 -l / --filter <regular expression> [ENTER]
 --add-key
 Adds a new key to the mapping service.
 --add-key <key name> [ENTER]
 --value
 Specifies which value should be added/delete from the mapping service.
 --value "key=>value"... --value "key=>value" [ENTER]
 (defaults to [])
 --del-key
 Deletes a key from the mapping service.
 --del-key <key name> [ENTER]

NIC Usage Examples

Default Requirements

Start mininet, and create three switches (s1, s2, and s3) and four hosts
(h1, h2, h3, and h4) in it.

Replace <Controller IP> based on your environment.

$ sudo mn --mac --topo single,2 --controller=remote,ip=<Controller IP>

mininet> net
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2

Downloading and deploy Karaf distribution

	Get the Boron distribution.

	Unzip the downloaded zip distribution.

	To run the Karaf.

./bin/karaf

	Once the console is up, type as below to install feature.

feature:install odl-nic-core-mdsal odl-nic-console odl-nic-listeners

Simple Mininet topology

!/usr/bin/python

from mininet.topo import Topo

class SimpleTopology(Topo):
 "Simple topology example."

 def __init__(self):
 "Create custom topo."

 Topo.__init__(self)

 Switch1 = self.addSwitch('s1')
 Switch2 = self.addSwitch('s2')
 Switch3 = self.addSwitch('s3')
 Switch4 = self.addSwitch('s4')
 Host11 = self.addHost('h1')
 Host12 = self.addHost('h2')
 Host21 = self.addHost('h3')
 Host22 = self.addHost('h4')
 Host23 = self.addHost('h5')
 Service1 = self.addHost('srvc1')

 self.addLink(Host11, Switch1)
 self.addLink(Host12, Switch1)
 self.addLink(Host21, Switch2)
 self.addLink(Host22, Switch2)
 self.addLink(Host23, Switch2)
 self.addLink(Switch1, Switch2)
 self.addLink(Switch2, Switch4)
 self.addLink(Switch4, Switch3)
 self.addLink(Switch3, Switch1)
 self.addLink(Switch3, Service1)
 self.addLink(Switch4, Service1)

topos = { 'simpletopology': (lambda: SimpleTopology()) }

	Initialize topology

	Add hosts and switches

	Host used to represent the service

	Add links

Source: https://gist.github.com/vinothgithub15/315d0a427d5afc39f2d7

How to configure VTN Renderer

The section demonstrates allow or block packets of the traffic within a
VTN Renderer, according to the specified flow conditions.

The table below lists the actions to be applied when a packet matches
the condition:

	Action

	Function

	Allow

	Permits the packet to be forwarded normally.

	Block

	Discards the packet preventing it from being forwarded.

Requirement

	Before execute the follow steps, please, use default requirements.
See section Default Requirements.

Configuration

Please execute the following curl commands to test network intent using
mininet:

Create Intent

To provision the network for the two hosts(h1 and h2) and demonstrates
the action allow.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/intent/b9a13232-525e-4d8c-be21-cd65e3436034 -d '{ "intent:intent" : { "intent:id": "b9a13232-525e-4d8c-be21-cd65e3436034", "intent:actions" : [{ "order" : 2, "allow" : {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"10.0.0.1"} }, { "order":2 , "end-point-group" : {"name":"10.0.0.2"}}] } }'

To provision the network for the two hosts(h2 and h3) and demonstrates
the action allow.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/intent/b9a13232-525e-4d8c-be21-cd65e3436035 -d '{ "intent:intent" : { "intent:id": "b9a13232-525e-4d8c-be21-cd65e3436035", "intent:actions" : [{ "order" : 2, "allow" : {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"10.0.0.2"} }, { "order":2 , "end-point-group" : {"name":"10.0.0.3"}}] } }'

Verification

As we have applied action type allow now ping should happen between
hosts (h1 and h2) and (h2 and h3).

mininet> pingall
Ping: testing ping reachability
h1 -> h2 X X
h2 -> h1 h3 X
h3 -> X h2 X
h4 -> X X X

Update the intent

To provision block action that indicates traffic is not allowed between
h1 and h2.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/intent/b9a13232-525e-4d8c-be21-cd65e3436034 -d '{ "intent:intent" : { "intent:id": "b9a13232-525e-4d8c-be21-cd65e3436034", "intent:actions" : [{ "order" : 2, "block" : {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"10.0.0.1"} }, { "order":2 , "end-point-group" : {"name":"10.0.0.2"}}] } }'

Verification

As we have applied action type block now ping should not happen between
hosts (h1 and h2).

mininet> pingall
Ping: testing ping reachability
h1 -> X X X
h2 -> X h3 X
h3 -> X h2 X
h4 -> X X X

Note

Old actions and hosts are replaced by the new action and hosts.

Delete the intent

Respective intent and the traffics will be deleted.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X DELETE http://localhost:8181/restconf/config/intent:intents/intent/b9a13232-525e-4d8c-be21-cd65e3436035

Verification

Deletion of intent and flow.

mininet> pingall
Ping: testing ping reachability
h1 -> X X X
h2 -> X X X
h3 -> X X X
h4 -> X X X

Note

Ping between two hosts can also be done using MAC Address

To provision the network for the two hosts(h1 MAC address and h2 MAC
address).

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/intent/b9a13232-525e-4d8c-be21-cd65e3436035 -d '{ "intent:intent" : { "intent:id": "b9a13232-525e-4d8c-be21-cd65e3436035", "intent:actions" : [{ "order" : 2, "allow" : {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"6e:4f:f7:27:15:c9"} }, { "order":2 , "end-point-group" : {"name":"aa:7d:1f:4a:70:81"}}] } }'

How to configure Redirect Action

The section explains the redirect action supported in NIC. The redirect
functionality supports forwarding (to redirect) the traffic to a service
configured in SFC before forwarding it to the destination.

[image: REDIRECT SERVICE]
REDIRECT SERVICE

Following steps explain Redirect action function:

	Configure the service in SFC using the SFC APIs.

	Configure the intent with redirect action and the service information
where the traffic needs to be redirected.

	The flows are computed as below

	First flow entry between the source host connected node and the
ingress node of the configured service.

	Second flow entry between the egress Node id the configured
service and the ID and destination host connected host.

	Third flow entry between the destination host node and the source
host node.

Requirement

	Save the mininet Simple Mininet
topology script as redirect_test.py

	Start mininet, and create switches in it.

Replace <Controller IP> based on your environment.

sudo mn --controller=remote,ip=<Controller IP>--custom redirect_test.py --topo mytopo2

mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
h3 h3-eth0:s2-eth1
h4 h4-eth0:s2-eth2
h5 h5-eth0:s2-eth3
srvc1 srvc1-eth0:s3-eth3 srvc1-eth1:s4-eth3
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0 s1-eth3:s2-eth4 s1-eth4:s3-eth2
s2 lo: s2-eth1:h3-eth0 s2-eth2:h4-eth0 s2-eth3:h5-eth0 s2-eth4:s1-eth3 s2-eth5:s4-eth1
s3 lo: s3-eth1:s4-eth2 s3-eth2:s1-eth4 s3-eth3:srvc1-eth0
s4 lo: s4-eth1:s2-eth5 s4-eth2:s3-eth1 s4-eth3:srvc1-eth1
c0

Starting the Karaf

	Before execute the following steps, please, use the default
requirements. See section Downloading and deploy Karaf
distribution.

Configuration

Mininet

[image: CONFIGURATION THE NETWORK IN MININET]
CONFIGURATION THE NETWORK IN MININET

	Configure srvc1 as service node in the mininet environment.

Please execute the following commands in the mininet console (where
mininet script is executed).

srvc1 ip addr del 10.0.0.6/8 dev srvc1-eth0
srvc1 brctl addbr br0
srvc1 brctl addif br0 srvc1-eth0
srvc1 brctl addif br0 srvc1-eth1
srvc1 ifconfig br0 up
srvc1 tc qdisc add dev srvc1-eth1 root netem delay 200ms

Configure service in SFC

The service (srvc1) is configured using SFC REST API. As part of the
configuration the ingress and egress node connected the service is
configured.

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{
 "service-functions": {
 "service-function": [
 {
 "name": "srvc1",
 "sf-data-plane-locator": [
 {
 "name": "Egress",
 "service-function-forwarder": "openflow:4"
 },
 {
 "name": "Ingress",
 "service-function-forwarder": "openflow:3"
 }
],
 "nsh-aware": false,
 "type": "delay"
 }
]
 }
}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function:service-functions/

SFF RESTCONF Request

Configuring switch and port information for the service functions.

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{
 "service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "openflow:3",
 "service-node": "OVSDB2",
 "sff-data-plane-locator": [
 {
 "name": "Ingress",
 "data-plane-locator":
 {
 "vlan-id": 100,
 "mac": "11:11:11:11:11:11",
 "transport": "service-locator:mac"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "port-id" : "3"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "srvc1",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name" : "openflow:3",
 "sff-dpl-name" : "Ingress"
 }
 }
]
 },
 {
 "name": "openflow:4",
 "service-node": "OVSDB3",
 "sff-data-plane-locator": [
 {
 "name": "Egress",
 "data-plane-locator":
 {
 "vlan-id": 200,
 "mac": "44:44:44:44:44:44",
 "transport": "service-locator:mac"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "port-id" : "3"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "srvc1",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name" : "openflow:4",
 "sff-dpl-name" : "Egress"
 }
 }
]
 }
]
 }
}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-forwarder:service-function-forwarders/

CLI Command

To provision the network for the two hosts (h1 and h5).

Demonstrates the redirect action with service name srvc1.

intent:add -f <SOURCE_MAC> -t <DESTINATION_MAC> -a REDIRECT -s <SERVICE_NAME>

Example:

intent:add -f 32:bc:ec:65:a7:d1 -t c2:80:1f:77:41:ed -a REDIRECT -s srvc1

Verification

	As we have applied action type redirect now ping should happen
between hosts h1 and h5.

mininet> h1 ping h5
PING 10.0.0.5 (10.0.0.5) 56(84) bytes of data.
64 bytes from 10.0.0.5: icmp_seq=2 ttl=64 time=201 ms
64 bytes from 10.0.0.5: icmp_seq=3 ttl=64 time=200 ms
64 bytes from 10.0.0.5: icmp_seq=4 ttl=64 time=200 ms

The redirect functionality can be verified by the time taken by the ping
operation (200ms). The service srvc1 configured using SFC introduces
200ms delay. As the traffic from h1 to h5 is redirected via the srvc1,
the time taken by the traffic from h1 to h5 will take about 200ms.

	Flow entries added to nodes for the redirect action.

mininet> dpctl dump-flows
*** s1 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.406s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=1,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed actions=output:4
cookie=0x0, duration=9.475s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=3,dl_src=c2:80:1f:77:41:ed, dl_dst=32:bc:ec:65:a7:d1 actions=output:1
cookie=0x1, duration=362.315s, table=0, n_packets=144, n_bytes=12240, idle_age=4, priority=9500,dl_type=0x88cc actions=CONTROLLER:65535
cookie=0x1, duration=362.324s, table=0, n_packets=4, n_bytes=168, idle_age=3, priority=10000,arp actions=CONTROLLER:65535,NORMAL
*** s2 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.503s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=3,dl_src=c2:80:1f:77:41:ed, dl_dst=32:bc:ec:65:a7:d1 actions=output:4
cookie=0x0, duration=9.437s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=5,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed actions=output:3
cookie=0x3, duration=362.317s, table=0, n_packets=144, n_bytes=12240, idle_age=4, priority=9500,dl_type=0x88cc actions=CONTROLLER:65535
cookie=0x3, duration=362.32s, table=0, n_packets=4, n_bytes=168, idle_age=3, priority=10000,arp actions=CONTROLLER:65535,NORMAL
*** s3 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.41s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=2,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed actions=output:3
*** s4 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.486s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=3,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed actions=output:1

How to configure QoS Attribute Mapping

This section explains how to provision QoS attribute mapping constraint
using NIC OF-Renderer.

The QoS attribute mapping currently supports DiffServ. It uses a 6-bit
differentiated services code point (DSCP) in the 8-bit differentiated
services field (DS field) in the IP header.

	Action

	Function

	Allow

	Permits the packet to be forwarded normally, but allows
for packet header fields, e.g., DSCP, to be modified.

The following steps explain QoS Attribute Mapping function:

	Initially configure the QoS profile which contains profile name and
DSCP value.

	When a packet is transferred from a source to destination, the flow
builder evaluates whether the transferred packet matches the
condition such as action, endpoints in the flow.

	If the packet matches the endpoints, the flow builder applies the
flow matching action and DSCP value.

Requirement

	Before execute the following steps, please, use the default
requirements. See section Default
Requirements.

Configuration

Please execute the following CLI commands to test network intent using
mininet:

	To apply the QoS constraint, configure the QoS profile.

intent:qosConfig -p <qos_profile_name> -d <valid_dscp_value>

Example:

intent:qosConfig -p High_Quality -d 46

Note

Valid DSCP value ranges from 0-63.

	To provision the network for the two hosts (h1 and h3), add intents
that allows traffic in both directions by execute the following CLI
command.

Demonstrates the ALLOW action with constraint QoS and QoS profile name.

intent:add -a ALLOW -t <DESTINATION_MAC> -f <SOURCE_MAC> -q QOS -p <qos_profile_name>

Example:

intent:add -a ALLOW -t 00:00:00:00:00:03 -f 00:00:00:00:00:01 -q QOS -p High_Quality
intent:add -a ALLOW -t 00:00:00:00:00:01 -f 00:00:00:00:00:03 -q QOS -p High_Quality

Verification

	As we have applied action type ALLOW now ping should happen between
hosts h1 and h3.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

	Verification of the flow entry and ensuring the mod_nw_tos is part
of actions.

mininet> dpctl dump-flows
*** s1 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=21.873s, table=0, n_packets=3, n_bytes=294, idle_age=21, priority=9000,dl_src=00:00:00:00:00:03,dl_dst=00:00:00:00:00:01 actions=NORMAL,mod_nw_tos:184
cookie=0x0, duration=41.252s, table=0, n_packets=3, n_bytes=294, idle_age=41, priority=9000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:03 actions=NORMAL,mod_nw_tos:184

Requirement

	Before execute the follow steps, please, use default requirements.
See section Default Requirements.

How to configure Log Action

This section demonstrates log action in OF Renderer. This demonstration
aims at enabling communication between two hosts and logging the flow
statistics details of the particular traffic.

Configuration

Please execute the following CLI commands to test network intent using
mininet:

	To provision the network for the two hosts (h1 and h3), add intents
that allows traffic in both directions by execute the following CLI
command.

intent:add –a ALLOW -t <DESTINATION_MAC> -f <SOURCE_MAC>

Example:

intent:add -a ALLOW -t 00:00:00:00:00:03 -f 00:00:00:00:00:01
intent:add -a ALLOW -t 00:00:00:00:00:01 -f 00:00:00:00:00:03

	To log the flow statistics details of the particular traffic.

intent:add –a LOG -t <DESTINATION_MAC> -f <SOURCE_MAC>

Example:

intent:add -a LOG -t 00:00:00:00:00:03 -f 00:00:00:00:00:01

Verification

	As we have applied action type ALLOW now ping should happen between
hosts h1 and h3.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

	To view the flow statistics log details such as, byte count, packet
count and duration, check the karaf.log.

2015-12-15 22:56:20,256 | INFO | lt-dispatcher-23 | IntentFlowManager | 264 - org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Creating block intent for endpoints: source00:00:00:00:00:01 destination 00:00:00:00:00:03
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 - org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for Byte Count:Counter64 [_value=238]
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 - org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for Packet Count:Counter64 [_value=3]
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 - org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for Duration in Nano second:Counter32 [_value=678000000]
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 - org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for Duration in Second:Counter32 [_value=49]

OCP Plugin User Guide

This document describes how to use the ORI Control & Management Protocol
(OCP) feature in OpenDaylight. This document contains overview, scope,
architecture and design, installation, configuration and tutorial
sections for the feature.

Overview

OCP is an ETSI standard protocol for control and management of Remote
Radio Head (RRH) equipment. The OCP Project addresses the need for a
southbound plugin that allows applications and controller services to
interact with RRHs using OCP. The OCP southbound plugin will allow
applications acting as a Radio Equipment Control (REC) to interact with
RRHs that support an OCP agent.

[image: OCP southbound plugin]
OCP southbound plugin

It is foreseen that, in 5G, C-RAN will use the packet-based
Transport-SDN (T-SDN) as the fronthaul network to transport both control
plane and user plane data between RRHs and BBUs. As a result, the
addition of the OCP plugin to OpenDaylight will make it possible to
build an RRH controller on top of OpenDaylight to centrally manage
deployed RRHs, as well as integrating the RRH controller with T-SDN on
one single platform, achieving the joint RRH and fronthaul network
provisioning in C-RAN.

Scope

The OCP Plugin project includes:

	OCP v4.1.1 support

	Integration of OCP protocol library

	Simple API invoked as a RPC

	Simple API that allows applications to perform elementary functions
of the following categories:

	Device management

	Config management

	Object lifecycle

	Object state management

	Fault management

	Software management (not yet implemented)

	Indication processing

	Logging (not yet implemented)

	AISG/Iuant interface message tunnelling (not yet implemented)

	ALD connection management (not yet implemented)

Architecture and Design

OCP is a vendor-neutral standard communications interface defined to
enable control and management between RE and REC of an ORI architecture.
The OCP Plugin supports the implementation of the OCP specification; it
is based on the Model Driven Service Abstraction Layer (MD-SAL)
architecture.

OCP Plugin will support the following functionality:

	Connection handling

	Session management

	State management

	Error handling

	Connection establishment will be handled by OCP library using
opensource netty.io library

	Message handling

	Event/indication handling and propagation to upper layers

Activities in OCP plugin module

	Integration with OCP protocol library

	Integration with corresponding MD-SAL infrastructure

OCP protocol library is a component in OpenDaylight that mediates
communication between OpenDaylight controller and RRHs supporting OCP
protocol. Its primary goal is to provide the OCP Plugin with
communication channel that can be used for managing RRHs.

Key objectives:

	Immutable transfer objects generation (transformation of OCP protocol
library’s POJO objects into OpenDaylight DTO objects)

	Scalable non-blocking implementation

	Pipeline processing

	Scatter buffer

	TLS support

OCP Service addresses the need for a northbound interface that allows
applications and other controller services to interact with RRHs using
OCP, by providing API for abstracting OCP operations.

[image: Overall architecture]
Overall architecture

Message Flow

[image: Message flow example]
Message flow example

Installation

The OCP Plugin project has two top level Karaf features,
odl-ocpplugin-all and odl-ocpjava-all, which contain the following
sub-features:

	odl-ocpplugin-southbound

	odl-ocpplugin-app-ocp-service

	odl-ocpjava-protocol

The OCP service (odl-ocpplugin-app-ocp-service), together with the OCP
southbound (odl-ocpplugin-southbound) and OCP protocol library
(odl-ocpjava-protocol), provides OpenDaylight with basic OCP v4.1.1
functionality.

There are two ways to interact with OCP service: one is via RESTCONF
(programmatic) and the other is using DLUX web interface (manual), so
you have to install the following features to enable RESTCONF and DLUX.

karaf#>feature:install odl-restconf odl-l2switch-switch odl-mdsal-apidocs odl-dlux-core odl-dluxapps-applications

Then install the odl-ocpplugin-all feature which includes the
odl-ocpplugin-southbound and odl-ocpplugin-app-ocp-service features.
Note that the odl-ocpjava-all feature will be installed automatically as
the odl-ocpplugin-southbound feature is dependent on the
odl-ocpjava-protocol feature.

karaf#>feature:install odl-ocpplugin-all

After all required features are installed, use following command from
karaf console to check and make sure features are correctly installed
and initialized.

karaf#>feature:list | grep ocp

Configuration

Configuring the OCP plugin can be done via its configuration file,
62-ocpplugin.xml, which can be found in the
<odl-install-dir>/etc/opendaylight/karaf/ directory.

There are the following settings that are configurable:

	port specifies the port number on which the OCP plugin listens
for connection requests

	radioHead-idle-timeout determines the time duration (unit:
milliseconds) for which a radio head has been idle before the idle
event is triggered to perform health check

	ocp-version specifies the OCP protocol version supported by the
OCP plugin

	rpc-requests-quota sets the maximum number of concurrent rpc
requests allowed

	global-notification-quota sets the maximum number of concurrent
notifications allowed

[image: OCP plugin configuration]
OCP plugin configuration

Test Environment

The OCP Plugin project contains a simple OCP agent for testing purposes;
the agent has been designed specifically to act as a fake radio head
device, giving you an idea of what it would look like during the OCP
handshake taking place between the OCP agent and OpenDaylight (OCP
plugin).

To run the simple OCP agent, you have to first download its JAR file
from OpenDaylight Nexus Repository.

wget https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/ocpplugin/simple-agent/${ocp-version}/simple-agent-${ocp-version}.jar

Then run the agent with no arguments (assuming you already have JDK 1.8
or above installed) and it should display the usage that lists the
expected arguments.

java -classpath simple-agent-${ocp-version}.jar org.opendaylight.ocpplugin.OcpAgent

Usage: java org.opendaylight.ocpplugin.OcpAgent <controller's ip address> <port number> <vendor id> <serial number>

Here is an example:

java -classpath simple-agent-${ocp-version}.jar org.opendaylight.ocpplugin.OcpAgent 127.0.0.1 1033 XYZ 123

Web / Graphical Interface

Once you enable the DLUX feature, you can access the Controller GUI
using following URL.

http://<controller-ip>:8080/index.html

Expand Nodes. You should see all the radio head devices that are
connected to the controller running at <controller-ip>.

[image: DLUX Nodes]
DLUX Nodes

And expand Yang UI if you want to browse the various northbound APIs
exposed by the OCP service.

[image: DLUX Yang UI]
DLUX Yang UI

For information on how to use these northbound APIs, please refer to the
OCP Plugin Developer Guide.

Programmatic Interface

The OCP Plugin project has implemented a complete set of the C&M
operations (elementary functions) defined in the OCP specification, in
the form of both northbound and southbound APIs, including:

	health-check

	set-time

	re-reset

	get-param

	modify-param

	create-obj

	delete-obj

	get-state

	modify-state

	get-fault

The API is documented in the OCP Plugin Developer Guide under the
section Southbound API and Northbound API, respectively.

ODL-SDNi User Guide

Introduction

This user guide will help to setup the ODL-SDNi application.

Components

SDNiAggregator, SDNi API, SDNiWrapper, and SDNiUI are the four
components in ODL-SDNi App:

	SDNiAggregator: Connects with switch, topology, hosttracker managers
of controller to get the topology and other related data.

	SDNi REST API: It is a part of controller northbound, which gives the
required information by quering SDNiAggregator through RESTCONF.

	SDNiWrapper: This component uses the SDNi REST API and gathers the
information required to be shared among controllers.

	SDNiUI:This component displays all the SDN controllers which are
connected to each other.

Troubleshooting

To work with multiple controllers, change some of the configuration in
config.ini file. For example change the listening port of one controller
to 6653 and other controller to 6663 in
/root/controller/opendaylight/distribution/opendaylight/target/distribution.opendaylight-osgipackage/opendaylight/configuration/config.ini
(i.e., of.listenPort=6653).

OpenFlow related system parameters.

TCP port on which the controller is listening (default 6633)
of.listenPort=6653

OF-CONFIG User Guide

Overview

OF-CONFIG defines an OpenFlow switch as an abstraction called an
OpenFlow Logical Switch. The OF-CONFIG protocol enables configuration of
essential artifacts of an OpenFlow Logical Switch so that an OpenFlow
controller can communicate and control the OpenFlow Logical switch via
the OpenFlow protocol. OF-CONFIG introduces an operating context for one
or more OpenFlow data paths called an OpenFlow Capable Switch for one or
more switches. An OpenFlow Capable Switch is intended to be equivalent
to an actual physical or virtual network element (e.g. an Ethernet
switch) which is hosting one or more OpenFlow data paths by partitioning
a set of OpenFlow related resources such as ports and queues among the
hosted OpenFlow data paths. The OF-CONFIG protocol enables dynamic
association of the OpenFlow related resources of an OpenFlow Capable
Switch with specific OpenFlow Logical Switches which are being hosted on
the OpenFlow Capable Switch. OF-CONFIG does not specify or report how
the partitioning of resources on an OpenFlow Capable Switch is achieved.
OF-CONFIG assumes that resources such as ports and queues are
partitioned amongst multiple OpenFlow Logical Switches such that each
OpenFlow Logical Switch can assume full control over the resources that
is assigned to it.

How to start

	start OF-CONFIG feature as below:

feature:install odl-of-config-all

Configuration on the OVS supporting OF-CONFIG

Note

OVS is not supported by OF-CONFIG temporarily because the
OpenDaylight version of OF-CONFIG is 1.2 while the OVS version of
OF-CONFIG is not standard.

The introduction of configuring the OVS can be referred to:

https://github.com/openvswitch/of-config.

Connection Establishment between the Capable/Logical Switch and OF-CONFIG

The OF-CONFIG protocol is based on NETCONF. So the switches supporting
OF-CONFIG can also access OpenDaylight using the functions provided by
NETCONF. This is the preparation step before connecting to OF-CONFIG.
How to access the switch to OpenDaylight using the NETCONF can be
referred to the NETCONF Southbound User
Guide or NETCONF Southbound
examples on the
wiki [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf].

Now the switches supporting OF-CONFIG and they have connected to the
controller using NETCONF as described in preparation phase. OF-CONFIG
can check whether the switch can support OF-CONFIG by reading the
capability list in NETCONF.

The OF-CONFIG will get the information of the capable switch and logical
switch via the NETCONF connection, and creates separate topologies for
the capable and logical switches in the OpenDaylight Topology module.

The Connection between the capable/logical switches and OF-CONFIG is
finished.

Configuration On Capable Switch

Here is an example showing how to make the configuration to
modify-controller-connection on the capable switch using OF-CONFIG.
Other configurations can follow the same way of the example.

	Example: modify-controller-connection

Note

this configuration can execute via the NETCONF, which can be
referred to the NETCONF Southbound User
Guide or NETCONF Southbound
examples on the
wiki [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf].

OpenFlow Plugin Project User Guide

Overview and Architecture

Overview and Architecture

Overview

OpenFlow is a vendor-neutral standard communications interface defined
to enable interaction between the control and forwarding layers of an
SDN architecture. The OpenFlow plugin project intends to develop a
plugin to support implementations of the OpenFlow specification as it
develops and evolves. Specifically the project has developed a plugin
aiming to support OpenFlow 1.0 and 1.3.x. It can be extended to add
support for subsequent OpenFlow specifications. The plugin is based on
the Model Driven Service Abstraction Layer (MD-SAL) architecture
(https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL).
This new OpenFlow 1.0/1.3 MD-SAL based plugin is distinct from the old
OpenFlow 1.0 plugin which was based on the API driven SAL (AD-SAL)
architecture.

Scope

	Southbound plugin and integration of OpenFlow 1.0/1.3.x library
project

	Ongoing support and integration of the OpenFlow specification

	The plugin should be implemented in an easily extensible manner

	Protocol verification activities will be performed on supported
OpenFlow specifications

Architecture and Design

Functionality

OpenFlow 1.3 Plugin will support the following functionality

	Connection Handling

	Session Management

	State Management.

	Error Handling.

	Mapping function(Infrastructure to OF structures).

	Connection establishment will be handled by OpenFlow library using
opensource netty.io library.

	Message handling(Ex: Packet in).

	Event handling and propagation to upper layers.

	Plugin will support both MD-SAL and Hard SAL.

	Will be backward compatible with OF 1.0.

Activities in OF plugin module

	New OF plugin bundle will support both OF 1.0 and OF 1.3.

	Integration with OpenFlow library.

	Integration with corresponding MD-SAL infrastructure.

	Hard SAL will be supported as adapter on top of MD-SAL plugin.

	OF 1.3 and OF 1.0 plugin will be integrated as single bundle.

Design

Overall Architecture

[image: overal architecture]
overal architecture

Coverage

Intro

This page is to catalog the things that have been tested and confirmed
to work:

Coverage

Coverage has been moved to a GoogleDoc
Spreadsheet [https://docs.google.com/spreadsheet/ccc?key=0AtpUuSEP8OyMdHNTZjBoM0VjOE9BcGhHMzk3N19uamc&usp=sharing%23gid=2#gid=0]

OF 1.3 Considerations

The baseline model is a OF 1.3 model, and the coverage tables primarily
deal with OF 1.3. However for OF 1.0, we have a column to indicate
either N/A if it doesn’t apply, or whether its been confirmed working.

OF 1.0 Considerations

OF 1.0 is being considered as a switch with: * 1 Table * 0 Groups * 0
Meters * 1 Instruction (Apply Actions) * and a limited vocabulary of
matches and actions.

Tutorial / How-To

Running the controller with the new OpenFlow Plugin

How to start

There are all helium features (from features-openflowplugin) duplicated
into features-openflowplugin-li. The duplicates got suffix -li and
provide Lithium codebase functionality.

These are most used:

	odl-openflowplugin-app-lldp-speaker-li

	odl-openflowplugin-flow-services-rest-li

	odl-openflowplugin-drop-test-li

In case topology is required then the first one should be installed.

feature:install odl-openflowplugin-app-lldp-speaker-li

The Li-southbound currently provides:

	flow management

	group management

	meter management

	statistics polling

What to log

In order to see really low level messages enter these in karaf console:

log:set TRACE org.opendaylight.openflowplugin.openflow.md.core
log:set TRACE org.opendaylight.openflowplugin.impl

How enable topology

In order for topology to work (fill dataStore/operational with links)
there must be LLDP responses delivered back to controller. This requires
table-miss-entries. Table-miss-entry is a flow in table.id=0 with low
priority, empty match and one output action = send to controller. Having
this flow installed on every node will enable for gathering and
exporting links between nodes into dataStore/operational. This is done
if you use for example l2 switch application.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <barrier>false</barrier>
 <cookie>54</cookie>
 <flags>SEND_FLOW_REM</flags>
 <flow-name>FooXf54</flow-name>
 <hard-timeout>0</hard-timeout>
 <id>4242</id>
 <idle-timeout>0</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <apply-actions>
 <action>
 <output-action>
 <max-length>65535</max-length>
 <output-node-connector>CONTROLLER</output-node-connector>
 </output-action>
 <order>0</order>
 </action>
 </apply-actions>
 <order>0</order>
 </instruction>
 </instructions>
 <match/>
 <priority>0</priority>
 <strict>false</strict>
 <table_id>0</table_id>
</flow>

Enable RESTCONF and Controller GUI

If you want to use RESTCONF with openflowplugin project, you have to
install odl-restconf feature to enable that. To install odl-restconf
feature run the following command

karaf#>feature:install odl-restconf

If you want to access the Controller GUI, you have to install
odl-dlux-core feature to enable that. Run following command to install
it

karaf#>feature:install odl-dlux-core

Once you enable the feature, access the Controller GUI using following
URL

http://<controller-ip>:8181/dlux/index.html

OpenFlow 1.3 Enabled Software Switches / Environment

Getting Mininet with OF 1.3

Download Mininet VM Upgraded to OF
1.3 [https://www.dropbox.com/s/dbf9a372elqs1s1/mininet-of-1.3.zip]
(or the newer mininet-2.1.0 with
OVS-2.0 [https://www.dropbox.com/s/t66vqfqx57a7nhk/mininet-2.1.0-of1.3.zip]
that works with VMware Player. For using this on VirtualBox, import this
to VMware Player and then export the .vmdk) or you could build one
yourself Openflow Protocol Library:OpenVirtualSwitch[Instructions for
setting up Mininet with OF 1.3].

Installing under VirtualBox

[image: configuring a host-only adapter]
configuring a host-only adapter

For whatever reason, at least on the Mac, NATed interfaces in VirtualBox
don’t actually seem to allow for connections from the host to the VM.
Instead, you need to configure a host-only network and set it up. Do
this by:

	Go to the VM’s settings in VirtualBox then to network and add a
second adapter attached to “Host-only Adapter” (see the screenshot to
the right)

	Edit the /etc/network/interfaces file to configure the adapter
properly by adding these two lines

auto eth1
iface eth1 inet dhcp

	Reboot the VM

At this point you should have two interfaces one which gives you NATed
access to the internet and another that gives you access between your
mac and the VMs. At least for me, the NATed interface gets a 10.0.2.x
address and the the host-only interface gets a 192.168.56.x address.

Your simplest choice: Use Vagrant

Download Virtual Box [https://www.virtualbox.org/] and install it
Download Vagrant [http://www.vagrantup.com/] and install it

cd openflowplugin/vagrant/mininet-2.1.0-of-1.3/
vagrant up
vagrant ssh

This will leave you sshed into a fully provisioned Ubuntu Trusty box
with mininet-2.1.0 and OVS 2.0 patches to work with OF 1.3.

Setup CPqD Openflow 1.3 Soft Switch

Latest version of Openvswitch (v2.0.0) doesn’t support all the openflow
1.3 features, e.g group multipart statistics request. Alternate options
is CPqD Openflow 1.3 soft switch, It supports most of the openflow 1.3
features.

	You can setup the switch as per the instructions given on the
following URL

https://github.com/CPqD/ofsoftswitch13

	Fire following command to start the switch

Start the datapath :

$ sudo udatapath/ofdatapath --datapath-id=<dpid> --interfaces=<if-list> ptcp:<port>
 e.g $ sudo udatapath/ofdatapath --datapath-id=000000000001 --interfaces=ethX ptcp:6680

ethX should not be associated with ip address and ipv6 should be
disabled on it. If you are installing the switch on your local machine,
you can use following command (for Ubuntu) to create virtual interface.

ip link add link ethX address 00:19:d1:29:d2:58 macvlan0 type macvlan

ethX - Any existing interface.

Or if you are using mininet VM for installing this switch, you can
simply add one more adaptor to your VM.

Start Openflow protocol agent:

$secchan/ofprotocol tcp:<switch-host>:<switch-port> tcp:<ctrl-host>:<ctrl-port>
 e.g $secchan/ofprotocol tcp:127.0.0.1:6680 tcp:127.0.0.1:6653

Commands to add entries to various tables of the switch

	Add meter

$utilities/dpctl tcp:<switch-host>:<switch-port> meter-mod cmd=add,meter=1 drop:rate=50

	Add Groups

$utilities/dpctl tcp:127.0.0.1:6680 group-mod cmd=add,type=all,group=1

$utilities/dpctl tcp:127.0.0.1:6680 group-mod cmd=add,type=sel,group=2 weight=10 output:1

	Create queue

$utilities/dpctl tcp:<ip>:<switch port> queue-mod <port-number> <queue-number> <minimum-bandwidth>
 e.g - $utilities/dpctl tcp:127.0.0.1:6680 queue-mod 1 1 23

“dpctl” –help is not very intuitive, so please keep adding any new
command you figured out while your experiment with the switch.

Using the built-in Wireshark

Mininet comes with pre-installed Wireshark, but for some reason it does
not include the Openflow protocol dissector. You may want to get and
install it in the /.wireshark/plugins/ directory.

First login to your mininet VM

ssh mininet@<your mininet vm ip> -X

The -X option in ssh will enable x-session over ssh so that the
wireshark window can be shown on your host machine’s display. when
prompted, enter the password (mininet).

From the mininet vm shell, set the wireshark capture privileges
(http://wiki.wireshark.org/CaptureSetup/CapturePrivileges):

sudo chgrp mininet /usr/bin/dumpcap
sudo chmod 754 /usr/bin/dumpcap
sudo setcap 'CAP_NET_RAW+eip CAP_NET_ADMIN+eip' /usr/bin/dumpcap

Finally, start wireshark:

wireshark

The wireshark window should show up.

To see only Openflow packets, you may want to apply the following filter
in the Filter window:

tcp.port == 6633 and tcp.flags.push == 1

Start the capture on any port.

Running Mininet with OF 1.3

From within the Mininet VM, run:

sudo mn --topo single,3 --controller 'remote,ip=<your controller ip>,port=6653' --switch ovsk,protocols=OpenFlow13

End to End Inventory

Introduction

The purpose of this page is to walk you through how to see the Inventory
Manager working end to end with the openflowplugin using OpenFlow 1.3.

Basically, you will learn how to:

	Run the Base/Virtualization/Service provider Edition with the new
openflowplugin:
OpenDaylight_OpenFlow_Plugin::Running_controller_with_the_new_OF_plugin[Running
the controller with the new OpenFlow Plugin]

	Start mininet to use OF 1.3:
OpenDaylight_OpenFlow_Plugin::Test_Environment[OpenFlow 1.3
Enabled Software Switches / Environment]

	Use RESTCONF to see the nodes appear in inventory.

Restconf for Inventory

The REST url for listing all the nodes is:

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/

You will need to set the Accept header:

Accept: application/xml

You will also need to use HTTP Basic Auth with username: admin password:
admin.

Alternately, if you have a node’s id you can address it as

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/<id>

for example

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1

How to hit RestConf with Postman

Install Postman for
Chrome [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]

In the chrome browser bar enter

chrome://apps/

And click on Postman.

Enter the URL. Click on the Headers button on the far right. Enter the
Accept: header. Click on the Basic Auth Tab at the top and setup the
username and password. Send.

Known Bug

If you have not had any switches come up, and though no children for
http://localhost:8080/restconf/datastore/opendaylight-inventory:nodes/
and exception will be thrown. I’m pretty sure I know how to fix this
bug, just need to get to it :)

End to End Flows

Instructions

Learn End to End for Inventory

See End to End Inventory

Check inventory

	Run mininet with support for OF 1.3 as described in End to End Inventory

	Make sure you see the openflow:1 node come up as described in End to End Inventory

Flow Strategy

Current way to flush a flow to switch looks like this:

	Create MD-SAL modeled flow and commit it into dataStore using two
phase commit MD-SAL
FAQ [https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ]

	FRM gets notified and invokes corresponding rpc (addFlow) on
particular service provider (if suitable provider for given node
registered)

	The provider (plugin in this case) transforms MD-SAL modeled flow
into OF-API modeled flow

	OF-API modeled flow is then flushed into OFLibrary

	OFLibrary encodes flow into particular version of wire protocol and
sends it to particular switch

	Check on mininet side if flow is set

Push your flow

	With PostMan:

	Set headers:

	Content-Type: application/xml

	Accept: application/xml

	Authentication

	Use URL: “http://<controller
IP>:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/0/flow/1”

	PUT

	Use Body:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <priority>2</priority>
 <flow-name>Foo</flow-name>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.10.2/24</ipv4-destination>
 </match>
 <id>1</id>
 <table_id>0</table_id>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
</flow>

*Note: If you want to try a different flow id or a different table,
make sure the URL and the body stay in sync. For example, if you wanted
to try: table 2 flow 20 you’d change the URL to:

“http://<controller
IP>:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/20”

but you would also need to update the 20 and 2 in the body of the XML.

Other caveat, we have a known bug with updates, so please only write to
a given flow id and table id on a given node once at this time until we
resolve it. Or you can use the DELETE method with the same URL in
PostMan to delete the flow information on switch and controller cache.

Check for your flow on the switch

	See your flow on your mininet:

mininet@mininet-vm:~$ sudo ovs-ofctl -O OpenFlow13 dump-flows s1
OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=7.325s, table=0, n_packets=0, n_bytes=0, idle_timeout=300, hard_timeout=600, send_flow_rem priority=2,ip,nw_dst=10.0.10.0/24 actions=dec_ttl

If you want to see the above information from the mininet prompt - use
“sh” instead of “sudo” i.e. use “sh ovs-ofctl -O OpenFlow13 dump-flows
s1”.

Check for your flow in the controller config via RESTCONF

	See your configured flow in POSTMAN with

	URL http://<controller IP>:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/

	GET

	You no longer need to set Accept header

Return Response:

{
 "flow-node-inventory:table": [
 {
 "flow-node-inventory:id": 0,
 "flow-node-inventory:flow": [
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "10b1a23c-5299-4f7b-83d6-563bab472754",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:1"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.2"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "020bf359-1299-4da6-b4f7-368bd83b5841",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:1"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.1"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "42172bfc-9142-4a92-9e90-ee62529b1e85",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:1"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.3"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "99bf566e-89f3-4c6f-ae9e-e26012ceb1e4",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:1"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.4"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "019dcc2e-5b4f-44f0-90cc-de490294b862",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:2"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.5"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "968cf81e-3f16-42f1-8b16-d01ff719c63c",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:2"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.8"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "1c14ea3c-9dcc-4434-b566-7e99033ea252",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:2"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.6"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "ed9deeb2-be8f-4b84-bcd8-9d12049383d6",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:2"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.7"
 },
 "flow-node-inventory:cookie": 0
 }
]
 }
]
}

Look for your flow stats in the controller operational data via

RESTCONF

	See your operational flow stats in POSTMAN with

	URL “http://<controller
IP>:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/”

	GET

Return Response:

{
 "flow-node-inventory:table": [
 {
 "flow-node-inventory:id": 0,
 "flow-node-inventory:flow": [
 {
 "flow-node-inventory:id": "10b1a23c-5299-4f7b-83d6-563bab472754",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 886000000,
 "opendaylight-flow-statistics:second": 2707
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 784,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.2/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 8,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "1",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "020bf359-1299-4da6-b4f7-368bd83b5841",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 826000000,
 "opendaylight-flow-statistics:second": 2711
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 1568,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.1/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 16,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "1",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "42172bfc-9142-4a92-9e90-ee62529b1e85",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 548000000,
 "opendaylight-flow-statistics:second": 2708
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 784,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.3/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 8,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "1",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "99bf566e-89f3-4c6f-ae9e-e26012ceb1e4",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 296000000,
 "opendaylight-flow-statistics:second": 2710
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 1274,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.4/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 13,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "1",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "019dcc2e-5b4f-44f0-90cc-de490294b862",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 392000000,
 "opendaylight-flow-statistics:second": 2711
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 1470,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.5/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 15,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "2",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "968cf81e-3f16-42f1-8b16-d01ff719c63c",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 344000000,
 "opendaylight-flow-statistics:second": 2707
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 784,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.8/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 8,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "2",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "ed9deeb2-be8f-4b84-bcd8-9d12049383d6",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 577000000,
 "opendaylight-flow-statistics:second": 2706
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 784,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.7/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 8,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "2",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "1c14ea3c-9dcc-4434-b566-7e99033ea252",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 659000000,
 "opendaylight-flow-statistics:second": 2705
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 784,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.6/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 8,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "2",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 }
],
 "opendaylight-flow-table-statistics:flow-table-statistics": {
 "opendaylight-flow-table-statistics:active-flows": 8,
 "opendaylight-flow-table-statistics:packets-matched": 97683,
 "opendaylight-flow-table-statistics:packets-looked-up": 101772
 }
 }
]
}

Discovering and testing new Flow Types

Currently, the openflowplugin has a test-provider that allows you to
push various flows through the system from the OSGI command line. Once
those flows have been pushed through, you can see them as examples and
then use them to see in the config what a particular flow example looks
like.

Using addMDFlow

From the

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet at the controller as described above.

once you can see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

addMDFlow openflow:1 f#

Where # is a number between 1 and 80. This will create one of 80
possible flows. You can go confirm they were created on the switch.

Once you’ve done that, use

	GET

	Accept: application/xml

	URL:
“http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/”

To see a full listing of the flows in table 2 (where they will be put).
If you want to see a particular flow, look at

	URL:
“http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/#”

Where # is 123 + the f# you used. So for example, for f22, your url
would be

	URL:
“http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/145”

Note: You may have to trim out some of the sections like that contain
bitfields and binary types that are not correctly modeled.

Note: Before attempting to PUT a flow you have created via addMDFlow,
please change its URL and body to, for example, use table 1 instead of
table 2 or another Flow Id, so you don’t collide.

Note: There are several test command providers and the one handling
flows is OpenflowpluginTestCommandProvider. Methods, which can be
use as commands in OSGI-console have prefix _.

Example Flows

Examples for XML for various flow matches, instructions & actions can be
found in following section here.

End to End Topology

Introduction

The purpose of this page is to walk you through how to see the Topology
Manager working end to end with the openflowplugin using OpenFlow 1.3.

Basically, you will learn how to:

	Run the Base/Virtualization/Service provider Edition with the new
openflowplugin: Running the controller with the new OpenFlow
Plugin

	Start mininet to use OF 1.3: OpenFlow 1.3 Enabled Software Switches
/ Environment

	Use RESTCONF to see the topology information.

Restconf for Topology

The REST url for listing all the nodes is:

http://localhost:8080/restconf/operational/network-topology:network-topology/

You will need to set the Accept header:

Accept: application/xml

You will also need to use HTTP Basic Auth with username: admin password:
admin.

Alternately, if you have a node’s id you can address it as

http://localhost:8080/restconf/operational/network-topology:network-topology/topology/<id>

for example

http://localhost:8080/restconf/operational/network-topology:network-topology/topology/flow:1/

How to hit RestConf with Postman

Install
postman [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]
for Chrome

In the chrome browser bar enter

chrome://apps/

And click on Postman.

Enter the URL. Click on the Headers button on the far right. Enter the
Accept: header. Click on the Basic Auth Tab at the top and setup the
username and password. Send.

End to End Groups

NOTE

Groups are NOT SUPPORTED in current (2.0.0) version of
openvswitch [http://www.openvswitch.org/download]. See

	http://openvswitch.org/releases/NEWS-2.0.0

	http://comments.gmane.org/gmane.linux.network.openvswitch.general/3251

For testing group feature please use for example
CPQD virtual switch in the End to End Inventory section.

Instructions

Learn End to End for Inventory

End to End Inventory

Check inventory

Run CPqD with support for OF 1.3 as described in End to End Inventory

Make sure you see the openflow:1 node come up as described in End to End Inventory

Group Strategy

Current way to flush a group to switch looks like this:

	create MD-SAL modeled group and commit it into dataStore using two
phase commit

	FRM gets notified and invokes corresponding rpc (addGroup) on
particular service provider (if suitable provider for given node
registered)

	the provider (plugin in this case) transforms MD-SAL modeled group
into OF-API modeled group

	OF-API modeled group is then flushed into OFLibrary

	OFLibrary encodes group into particular version of wire protocol and
sends it to particular switch

	check on CPqD if group is installed

Push your Group

	With PostMan:

	Set

	Content-Type: application/xml

	Accept: application/xml

	Use URL:
“http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/1”

	PUT

	Use Body:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<group xmlns="urn:opendaylight:flow:inventory">
 <group-type>group-all</group-type>
 <buckets>
 <bucket>
 <action>
 <pop-vlan-action/>
 <order>0</order>
 </action>
 <bucket-id>12</bucket-id>
 <watch_group>14</watch_group>
 <watch_port>1234</watch_port>
 </bucket>
 <bucket>
 <action>
 <set-field>
 <ipv4-source>100.1.1.1</ipv4-source>
 </set-field>
 <order>0</order>
 </action>
 <action>
 <set-field>
 <ipv4-destination>200.71.9.5210</ipv4-destination>
 </set-field>
 <order>1</order>
 </action>
 <bucket-id>13</bucket-id>
 <watch_group>14</watch_group>
 <watch_port>1234</watch_port>
 </bucket>
 </buckets>
 <barrier>false</barrier>
 <group-name>Foo</group-name>
 <group-id>1</group-id>
</group>

Note

If you want to try a different group id, make sure the URL and the
body stay in sync. For example, if you wanted to try: group-id 20
you’d change the URL to
“http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/20”
but you would also need to update the <group-id>20</group-id> in the
body to match.

Note

<ip-address> :Provide the IP Address of the machine on which the
controller is running.

Check for your group on the switch

	See your group on your cpqd switch:

COMMAND: sudo dpctl tcp:127.0.0.1:6000 stats-group

SENDING:
stat_req{type="grp", flags="0x0", group="all"}

RECEIVED:
stat_repl{type="grp", flags="0x0", stats=[
{group="1", ref_cnt="0", pkt_cnt="0", byte_cnt="0", cntrs=[{pkt_cnt="0", byte_cnt="0"}, {pkt_cnt="0", byte_cnt="0"}]}]}

Check for your group in the controller config via RESTCONF

	See your configured group in POSTMAN with

	URL
http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/1

	GET

	You should no longer need to set Accept

	Note: <ip-address> :Provide the IP Address of the machine on which
the controller is running.

Look for your group stats in the controller operational data via RESTCONF

	See your operational group stats in POSTMAN with

	URL
http://<ip-address>:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/group/1

	GET

	Note: <ip-address> :Provide the IP Address of the machine on which
the controller is running.

Discovering and testing Group Types

Currently, the openflowplugin has a test-provider that allows you to
push various groups through the system from the OSGI command line. Once
those groups have been pushed through, you can see them as examples and
then use them to see in the config what a particular group example looks
like.

Using addGroup

From the

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your CPqD at the controller as described above.

once you can see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

addGroup openflow:1

This will install a group in the switch. You can check whether the group
is installed or not.

Once you’ve done that, use

	GET

	Accept: application/xml

	URL:
“http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/1”

	Note: <ip-address> :Provide the IP Address of the machine on which
the controller is running.

Note

Before attempting to PUT a group you have created via addGroup,
please change its URL and body to, for example, use group 1 instead
of group 2 or another Group Id, so that they don’t collide.

Note

There are several test command providers and the one handling groups
is OpenflowpluginGroupTestCommandProvider. Methods, which can be use
as commands in OSGI-console have prefix _.

Example Group

Examples for XML for various Group Types can be found in the
test-scripts bundle of the plugin code with names g1.xml, g2.xml and
g3.xml.

End to End Meters

Instructions

Learn End to End for Inventory

	End to End Inventory

Check inventory

	Run mininet with support for OF 1.3 as described in End to End Inventory

	Make sure you see the openflow:1 node come up as described in End to End Inventory

Meter Strategy

Current way to flush a meter to switch looks like this:

	create MD-SAL modeled flow and commit it into dataStore using two
phase commit

	FRM gets notified and invokes corresponding rpc (addMeter) on
particular service provider (if suitable provider for given node
registered)

	the provider (plugin in this case) transforms MD-SAL modeled meter
into OF-API modeled meter

	OF-API modeled meter is then flushed into OFLibrary

	OFLibrary encodes meter into particular version of wire protocol and
sends it to particular switch

	check on mininet side if meter is installed

Push your Meter

	Using PostMan:

	Set Request Headers

	Content-Type: application/xml

	Accept: application/xml

	Use URL:
“http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/1”

	Method:PUT

	Request Body:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<meter xmlns="urn:opendaylight:flow:inventory">
 <container-name>abcd</container-name>
 <flags>meter-burst</flags>
 <meter-band-headers>
 <meter-band-header>
 <band-burst-size>444</band-burst-size>
 <band-id>0</band-id>
 <band-rate>234</band-rate>
 <dscp-remark-burst-size>5</dscp-remark-burst-size>
 <dscp-remark-rate>12</dscp-remark-rate>
 <prec_level>1</prec_level>
 <meter-band-types>
 <flags>ofpmbt-dscp-remark</flags>
 </meter-band-types>
 </meter-band-header>
 </meter-band-headers>
 <meter-id>1</meter-id>
 <meter-name>Foo</meter-name>
</meter>

Note

If you want to try a different meter id, make sure the URL and the
body stay in sync. For example, if you wanted to try: meter-id 20
you’d change the URL to
“http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/20”
but you would also need to update the 20 in the body to match.

Note

:Provide the IP Address of the machine on which the controller is
running.

Check for your meter on the switch

	See your meter on your CPqD switch:

COMMAND: $ sudo dpctl tcp:127.0.0.1:6000 meter-config

SENDING:
stat_req{type="mconf", flags="0x0"{meter_id= ffffffff"}

RECEIVED:
stat_repl{type="mconf", flags="0x0", stats=[{meter= c"", flags="4", bands=[{type = dscp_remark, rate="12", burst_size="5", prec_level="1"}]}]}

Check for your meter in the controller config via RESTCONF

	See your configured flow in POSTMAN with

	URL
“http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/1”

	Method: GET

	You should no longer need to set Request Headers for Accept

	Note: :Provide the IP Address of the machine on which the
controller is running.

Look for your meter stats in the controller operational data via RESTCONF

	See your operational meter stats in POSTMAN with

	URL
“http://:8080/restconfig/operational/opendaylight-inventory:nodes/node/openflow:1/meter/1”

	Method: GET

	Note: :Provide the IP Address of the machine on which the
controller is running.

Discovering and testing Meter Types

Currently, the openflowplugin has a test-provider that allows you to
push various meters through the system from the OSGI command line. Once
those meters have been pushed through, you can see them as examples and
then use them to see in the config what a particular meter example looks
like.

Using addMeter

From the

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your CPqD at the controller as described above.

Once you can see your CPqD connected to the controller, at the OSGI
command line try running:

addMeter openflow:1

Once you’ve done that, use

	GET

	Accept: application/xml

	URL:
“http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/12”

	Note: :Provide the IP Address of the machine on which the
controller is running.

Note

Before attempting to PUT a meter you have created via addMeter,
please change its URL and body to, for example, use meter 1 instead
of meter 2 or another Meter Id, so you don’t collide.

Note

There are several test command providers and the one handling Meter
is OpenflowpluginMeterTestCommandProvider. Methods, which can be
used as commands in OSGI-console have prefix _. Examples:
addMeter, modifyMeter and removeMeter.

Example Meter

Examples for XML for various Meter Types can be found in the
test-scripts bundle of the plugin code with names m1.xml, m2.xml and
m3.xml.

Statistics

Overview

This page contains high level detail about the statistics collection
mechanism in new OpenFlow plugin.

Statistics collection in new OpenFlow plugin

New OpenFlow plugin collects following statistics from OpenFlow enabled
node(switch):

	Individual Flow Statistics

	Aggregate Flow Statistics

	Flow Table Statistics

	Port Statistics

	Group Description

	Group Statistics

	Meter Configuration

	Meter Statistics

	Queue Statistics

	Node Description

	Flow Table Features

	Port Description

	Group Features

	Meter Features

At a high level statistics collection mechanism is divided into
following three parts

	Statistics related YANG models, service APIs and notification
interfaces [https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=tree;f=opendaylight/md-sal/model/model-flow-statistics;h=3488133625ccf18d023bc59aa35c38e922b17d8d;hb=HEAD]
are defined in the MD-SAL.

	Service APIs (RPCs) defined in yang models are implemented by
OpenFlow plugin. Notification interfaces are wired up by OpenFlow
plugin to MD-SAL.

	Statistics Manager Module: This module use service APIs implemented
by OpenFlow plugin to send statistics requests to all the connected
OpenFlow enabled nodes. Module also implements notification
interfaces to receive statistics response from nodes. Once it
receives statistics response, it augment all the statistics data to
the relevant element of the node (like node-connector, flow,
table,group, meter) and store it in MD-SAL operational data store.

Details of statistics collection

	Current implementation collects above mentioned statistics (except
10-14) at a periodic interval of 15 seconds.

	Statistics mentioned in 10 to 14 are only fetched when any node
connects to the controller because these statistics are just static
details about the respective elements.

	Whenever any new element is added to node (like flow, group, meter,
queue) it sends statistics request immediately to fetch the latest
statistics and store it in the operational data store.

	Whenever any element is deleted from the node, it immediately remove
the relevant statistics from operational data store.

	Statistics data are augmented to their respective element stored in
the configuration data store. E.g Controller installed flows are
stored in configuration data store. Whenever Statistics Manager
receive statistics data related to these flow, it search the
corresponding flow in the configuration data store and augment
statistics in the corresponding location in operational data store.
Similar approach is used for other elements of the node.

	Statistics Manager stores flow statistics as an unaccounted flow
statistics in operational data store if there is no corresponding
flow exist in configuration data store. ID format of unaccounted flow
statistics is as follows - [#UF$TABLE**Unaccounted-flow-count - e.g
#UF$TABLE*2*1].

	All the unaccounted flows will be cleaned up periodically after every
two cycle of flow statistics collection, given that there is no
update for these flows in the last two cycles.

	Statistics Manager only entertains statistics response for the
request sent by itself. User can write its own statistics collector
using the statistics service APIs and notification defined in yang
models, it won’t effect the functioning of Statistics Manager.

	OpenFlow 1.0 don’t have concept of Meter and Group, so Statistics
Manager don’t send any group & meter related statistics request to
OpenFlow 1.0 enabled switch.

RESTCONF Uris to access statistics of various node elements

	Aggregate Flow Statistics & Flow Table Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/table/{table-id}

	Individual Flow Statistics from specific table

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/table/{table-id}/flow/{flow-id}

	Group Features & Meter Features Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}

	Group Description & Group Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/group/{group-id}

	Meter Configuration & Meter Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/meter/{meter-id}

	Node Connector Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/node-connector/{node-connector-id}

	Queue Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/node-connector/{node-connector-id}/queue/{queue-id}

Bugs

For more details and queuries, please send mail to
openflowplugin-dev@lists.opendaylight.org or avishnoi@in.ibm.com If you
want to report any bug in statistics collection, please use
bugzilla [https://bugs.opendaylight.org].

Web / Graphical Interface

In the Hydrogen & Helium release, the current Web UI does not support
the new OpenFlow 1.3 constructs such as groups, meters, new fields in
the flows, multiple flow tables, etc.

Command Line Interface

The following is not exactly CLI - just a set of test commands which can
be executed on the OSGI console testing various features in OpenFlow 1.3
spec.

	OSGI Console Test Provider Commands:
Flows

	OSGI Console Test Provider Commands:
Groups

	OSGI Console Test Provider Commands:
Meters

	OSGI Console Test Provider Commands: Topology
Events

Flows : Test Provider

Currently, the openflowplugin has a test-provider that allows you to
push various flows through the system from the OSGI command line. Once
those flows have been pushed through, you can see them as examples and
then use them to see in the config what a particular flow example looks
like.

AddFlow : addMDFlow

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

addMDFlow openflow:1 f#

Where # is a number between 1 and 80 and openflow:1 is the of the
switch. This will create one of 80 possible flows. You can confirm that
they were created on the switch.

RemoveFlow : removeMDFlow

Similar to addMDFlow, from the controller OSGi prompt, while your switch
is connected to the controller, try running:

removeMDFlow openflow:1 f#

where # is a number between 1 and 80 and openflow:1 is the of the
switch. The flow to be deleted should have same flowid and Nodeid as
used for flow add.

ModifyFlow : modifyMDFlow

Similar to addMDFlow, from the controller OSGi prompt, while your switch
is connected to the controller, try running:

modifyMDFlow openflow:1 f#

where # is a number between 1 and 80 and openflow:1 is the of the
switch. The flow to be deleted should have same flowid and Nodeid as
used for flow add.

Group : Test Provider

Currently, the openflowplugin has a test-provider that allows you to
push various flows through the system from the OSGI command line. Once
those flows have been pushed through, you can see them as examples and
then use them to see in the config what a particular flow example looks
like.

AddGroup : addGroup

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

addGroup openflow:1 a# g#

Where # is a number between 1 and 4 for grouptype(g#) and 1 and 28 for
actiontype(a#). You can confirm that they were created on the switch.

RemoveGroup : removeGroup

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet at the controller as described above.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

removeGroup openflow:1 a# g#

Where # is a number between 1 and 4 for grouptype(g#) and 1 and 28 for
actiontype(a#). GroupId should be same as that used for adding the flow.
You can confirm that it was removed from the switch.

ModifyGroup : modifyGroup

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet at the controller as described above.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

modifyGroup openflow:1 a# g#

Where # is a number between 1 and 4 for grouptype(g#) and 1 and 28 for
actiontype(a#). GroupId should be same as that used for adding the flow.
You can confirm that it was modified on the switch.

Meters : Test Provider

Currently, the openflowplugin has a test-provider that allows you to
push various flows through the system from the OSGI command line. Once
those flows have been pushed through, you can see them as examples and
then use them to see in the config what a particular flow example looks
like.

AddMeter : addMeter

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

addMeter openflow:1

You can now confirm that meter has been created on the switch.

RemoveMeter : removeMeter

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

removeMeter openflow:1

The CLI takes care of using the same meterId and nodeId as used for
meter add. You can confirm that it was removed from the switch.

ModifyMeter : modifyMeter

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

modifyMeter openflow:1

The CLI takes care of using the same meterId and nodeId as used for
meter add. You can confirm that it was modified on the switch.

Topology : Notification

Currently, the openflowplugin has a test-provider that allows you to get
notifications for the topology related events like Link-Discovered ,
Link-Removed events.

Link Discovered Event : Testing

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=. Once the controller is connected to the switch,
Link-Discovered event can be tested by initially configuring the
specific flows on the switch. For Link Discovered event either
table-miss flow or LLDP ether-type flow can be configured.

Configuring Table-Miss flow using OpenflowpluginTestCommandProvider

addMDFlow Openflow:1 fTM

as per this
OpenDaylight_OpenFlow_Plugin:Test_Provider#Flows_:_Test_Provider[link].
fTM is the table-miss scenario here.

Once the table-miss flow is configured through above command, we can see
the Link-Discovered event in the debug logs on the controller console.

Configuring LLDP ether-type flow using OpenflowpluginTestCommandProvider

addMDFlow Openflow:1 0(table-id) f81

You can confirm that they were created on the switch.

Once the LLDP ether-type flow is configured through above command, we
can see the Link-Discovered event in the debug logs on the controller
console.

Link Removed Event : Testing

Having configured either table-miss or lldp ether-type flow on switch,
once the switch is disconnected we see the Link-Removed event

Programmatic Interface

The API is documented in the model documentation under the section
OpenFlow Services at:

	Models Documentation (OpenFlow Services
Section) [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Model_Reference]

Example flows

Overview

The flow examples on this page are tested to work with OVS.

Use, for example, POSTMAN with the following parameters:

PUT http://<ctrl-addr>:8080/restconf/config/opendaylight-inventory:nodes/node/<Node-id>/table/<Table-#>/flow/<Flow-#>

- Accept: application/xml
- Content-Type: application/xml

For example:

PUT http://localhost:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/127

Make sure that the Table-# and Flow-# in the URL and in the XML match.

The format of the flow-programming XML is determined by by the grouping
flow in the opendaylight-flow-types yang model: MISSING LINK.

Match Examples

The format of the XML that describes OpenFlow matches is determined by
the opendaylight-match-types yang model: .

IPv4 Dest Address

	Flow=124, Table=2, Priority=2,
Instructions=\{Apply_Actions={dec_nw_ttl}},
match=\{ipv4_destination_address=10.0.1.1/24}

	Note that ethernet-type MUST be 2048 (0x800)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>124</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.1.1/24</ipv4-destination>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>1</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf1</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src Address

	Flow=126, Table=2, Priority=2,
Instructions=\{Apply_Actions={drop}},
match=\{ethernet-source=00:00:00:00:00:01}

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <drop-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>126</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <ethernet-match>
 <ethernet-source>
 <address>00:00:00:00:00:01</address>
 </ethernet-source>
 </ethernet-match>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>3</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf3</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, Ethernet Type

	Flow=127, Table=2, Priority=2,
Instructions=\{Apply_Actions={drop}},
match=\{ethernet-source=00:00:00:00:23:ae,
ethernet-destination=ff:ff:ff:ff:ff:ff, ethernet-type=45}

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-mpls-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>127</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>45</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:ff:ff</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:00:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>4</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf4</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, Input Port

	Note that ethernet-type MUST be 34887 (0x8847)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-mpls-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>128</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:ff:ff</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:00:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>10.1.2.3/24</ipv4-source>
 <ipv4-destination>20.4.5.6/16</ipv4-destination>
 <in-port>0</in-port>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>5</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf5</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, IP

Protocol #, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>130</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:ff:aa</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>10.1.2.3/24</ipv4-source>
 <ipv4-destination>20.4.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>56</ip-protocol>
 <ip-dscp>15</ip-dscp>
 <ip-ecn>1</ip-ecn>
 </ip-match>
 <in-port>0</in-port>
 </match>
 <hard-timeout>12000</hard-timeout>
 <cookie>7</cookie>
 <idle-timeout>12000</idle-timeout>
 <flow-name>FooXf7</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, TCP Src &

Dest Ports, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

	Note that IP Protocol Type MUST be 6

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>131</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>2</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>25364</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 <in-port>0</in-port>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>8</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf8</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, UDP Src &

Dest Ports, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

	Note that IP Protocol Type MUST be 17

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>132</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>9</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf9</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, ICMPv4

Type & Code, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

	Note that IP Protocol Type MUST be 1

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>134</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>1</ip-protocol>
 <ip-dscp>27</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <icmpv4-match>
 <icmpv4-type>6</icmpv4-type>
 <icmpv4-code>3</icmpv4-code>
 </icmpv4-match>
 <in-port>0</in-port>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>11</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf11</flow-name>
 <priority>2</priority>
</flow>

Ethernet Src & Dest Addresses, ARP Operation, ARP Src & Target

Transport Addresses, ARP Src & Target Hw Addresses

	Note that ethernet-type MUST be 2054 (0x806)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 <action>
 <order>1</order>
 <dec-mpls-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>137</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2054</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:FF:ff</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:FC:01:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <arp-op>1</arp-op>
 <arp-source-transport-address>192.168.4.1</arp-source-transport-address>
 <arp-target-transport-address>10.21.22.23</arp-target-transport-address>
 <arp-source-hardware-address>
 <address>12:34:56:78:98:AB</address>
 </arp-source-hardware-address>
 <arp-target-hardware-address>
 <address>FE:DC:BA:98:76:54</address>
 </arp-target-hardware-address>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>14</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf14</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>

Ethernet Src & Dest Addresses, Ethernet Type, VLAN ID, VLAN PCP

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>138</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <vlan-match>
 <vlan-id>
 <vlan-id>78</vlan-id>
 <vlan-id-present>true</vlan-id-present>
 </vlan-id>
 <vlan-pcp>3</vlan-pcp>
 </vlan-match>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>15</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf15</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, MPLS Label, MPLS TC, MPLS BoS

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <flow-name>FooXf17</flow-name>
 <id>140</id>
 <cookie_mask>255</cookie_mask>
 <cookie>17</cookie>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <priority>2</priority>
 <table_id>2</table_id>
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <protocol-match-fields>
 <mpls-label>567</mpls-label>
 <mpls-tc>3</mpls-tc>
 <mpls-bos>1</mpls-bos>
 </protocol-match-fields>
 </match>
</flow>

IPv6 Src & Dest Addresses

	Note that ethernet-type MUST be 34525

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf18</flow-name>
 <id>141</id>
 <cookie_mask>255</cookie_mask>
 <cookie>18</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>fe80::2acf:e9ff:fe21:6431/128</ipv6-source>
 <ipv6-destination>aabb:1234:2acf:e9ff::fe21:6431/64</ipv6-destination>
 </match>
</flow>

Metadata

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf19</flow-name>
 <id>142</id>
 <cookie_mask>255</cookie_mask>
 <cookie>19</cookie>
 <table_id>2</table_id>
 <priority>1</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 </match>
</flow>

Metadata, Metadata Mask

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf20</flow-name>
 <id>143</id>
 <cookie_mask>255</cookie_mask>
 <cookie>20</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <metadata>
 <metadata>12345</metadata>
 <metadata-mask>//FF</metadata-mask>
 </metadata>
 </match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, UDP Src & Dest Ports

	Note that ethernet-type MUST be 34525

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf21</flow-name>
 <id>144</id>
 <cookie_mask>255</cookie_mask>
 <cookie>21</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80::2acf:e9ff:fe21:6431/128</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 </match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dest Ports

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 6

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf22</flow-name>
 <id>145</id>
 <cookie_mask>255</cookie_mask>
 <cookie>22</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dest Ports, IPv6 Label

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 6

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf23</flow-name>
 <id>146</id>
 <cookie_mask>255</cookie_mask>
 <cookie>23</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ipv6-label>
 <ipv6-flabel>33</ipv6-flabel>
 </ipv6-label>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Tunnel ID

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf24</flow-name>
 <id>147</id>
 <cookie_mask>255</cookie_mask>
 <cookie>24</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <tunnel>
 <tunnel-id>2591</tunnel-id>
 </tunnel>
 </match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, ICMPv6 Type & Code, IPv6 Label

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 58

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf25</flow-name>
 <id>148</id>
 <cookie_mask>255</cookie_mask>
 <cookie>25</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ipv6-label>
 <ipv6-flabel>33</ipv6-flabel>
 </ipv6-label>
 <ip-match>
 <ip-protocol>58</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <icmpv6-match>
 <icmpv6-type>6</icmpv6-type>
 <icmpv6-code>3</icmpv6-code>
 </icmpv6-match>
 </match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dst Ports, IPv6 Label, IPv6 Ext Header

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 58

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf27</flow-name>
 <id>150</id>
 <cookie_mask>255</cookie_mask>
 <cookie>27</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ipv6-label>
 <ipv6-flabel>33</ipv6-flabel>
 </ipv6-label>
 <ipv6-ext-header>
 <ipv6-exthdr>0</ipv6-exthdr>
 </ipv6-ext-header>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Actions

The format of the XML that describes OpenFlow actions is determined by
the opendaylight-action-types yang model: .

Apply Actions

Output to TABLE

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf101</flow-name>
 <id>256</id>
 <cookie_mask>255</cookie_mask>
 <cookie>101</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>TABLE</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Output to INPORT

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf102</flow-name>
 <id>257</id>
 <cookie_mask>255</cookie_mask>
 <cookie>102</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>INPORT</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
7 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>2</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>25364</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Output to Physical Port

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf103</flow-name>
 <id>258</id>
 <cookie_mask>255</cookie_mask>
 <cookie>103</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>1</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>2</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>25364</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Output to LOCAL

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf104</flow-name>
 <id>259</id>
 <cookie_mask>255</cookie_mask>
 <cookie>104</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>LOCAL</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Output to NORMAL

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf105</flow-name>
 <id>260</id>
 <cookie_mask>255</cookie_mask>
 <cookie>105</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>NORMAL</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/84</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/90</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>45</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>20345</tcp-source-port>
 <tcp-destination-port>80</tcp-destination-port>
 </match>
</flow>

Output to FLOOD

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf106</flow-name>
 <id>261</id>
 <cookie_mask>255</cookie_mask>
 <cookie>106</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>FLOOD</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/100</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/67</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>45</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>20345</tcp-source-port>
 <tcp-destination-port>80</tcp-destination-port>
 </match>
</flow>

Output to ALL

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf107</flow-name>
 <id>262</id>
 <cookie_mask>255</cookie_mask>
 <cookie>107</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>ALL</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
</flow>

Output to CONTROLLER

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf108</flow-name>
 <id>263</id>
 <cookie_mask>255</cookie_mask>
 <cookie>108</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>CONTROLLER</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
</flow>

Output to ANY

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf109</flow-name>
 <id>264</id>
 <cookie_mask>255</cookie_mask>
 <cookie>109</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>ANY</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
</flow>

Push VLAN

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <push-vlan-action>
 <ethernet-type>33024</ethernet-type>
 </push-vlan-action>
 <order>0</order>
 </action>
 <action>
 <set-field>
 <vlan-match>
 <vlan-id>
 <vlan-id>79</vlan-id>
 <vlan-id-present>true</vlan-id-present>
 </vlan-id>
 </vlan-match>
 </set-field>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>5</output-node-connector>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>0</table_id>
 <id>31</id>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>FF:FF:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:AE</address>
 </ethernet-source>
 </ethernet-match>
 <in-port>1</in-port>
 </match>
 <flow-name>vlan_flow</flow-name>
 <priority>2</priority>
</flow>

Push MPLS

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <flow-name>push-mpls-action</flow-name>
 <instructions>
 <instruction>
 <order>3</order>
 <apply-actions>
 <action>
 <push-mpls-action>
 <ethernet-type>34887</ethernet-type>
 </push-mpls-action>
 <order>0</order>
 </action>
 <action>
 <set-field>
 <protocol-match-fields>
 <mpls-label>27</mpls-label>
 </protocol-match-fields>
 </set-field>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>2</output-node-connector>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <strict>false</strict>
 <id>100</id>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <in-port>1</in-port>
 <ipv4-destination>10.0.0.4/32</ipv4-destination>
 </match>
 <idle-timeout>0</idle-timeout>
 <cookie_mask>255</cookie_mask>
 <cookie>401</cookie>
 <priority>8</priority>
 <hard-timeout>0</hard-timeout>
 <installHw>false</installHw>
 <table_id>0</table_id>
</flow>

Swap MPLS

	Note that ethernet-type MUST be 34887

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <flow-name>push-mpls-action</flow-name>
 <instructions>
 <instruction>
 <order>2</order>
 <apply-actions>
 <action>
 <set-field>
 <protocol-match-fields>
 <mpls-label>37</mpls-label>
 </protocol-match-fields>
 </set-field>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>2</output-node-connector>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <strict>false</strict>
 <id>101</id>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 </ethernet-match>
 <in-port>1</in-port>
 <protocol-match-fields>
 <mpls-label>27</mpls-label>
 </protocol-match-fields>
 </match>
 <idle-timeout>0</idle-timeout>
 <cookie_mask>255</cookie_mask>
 <cookie>401</cookie>
 <priority>8</priority>
 <hard-timeout>0</hard-timeout>
 <installHw>false</installHw>
 <table_id>0</table_id>
</flow>

Pop MPLS

	Note that ethernet-type MUST be 34887

	Issue with OVS 2.1 OVS
fix [http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=openvswitch;a=commitdiff;h=b3f2fc93e3f357f8d05a92f53ec253339a40887f]

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <flow-name>FooXf10</flow-name>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <pop-mpls-action>
 <ethernet-type>2048</ethernet-type>
 </pop-mpls-action>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>2</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <id>11</id>
 <strict>false</strict>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 </ethernet-match>
 <in-port>1</in-port>
 <protocol-match-fields>
 <mpls-label>37</mpls-label>
 </protocol-match-fields>
 </match>
 <idle-timeout>0</idle-timeout>
 <cookie>889</cookie>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <hard-timeout>0</hard-timeout>
 <priority>10</priority>
 <table_id>0</table_id>
</flow>

Learn

	Nicira extension defined in
https://github.com/osrg/openvswitch/blob/master/include/openflow/nicira-ext.h

	Example section is -
https://github.com/osrg/openvswitch/blob/master/include/openflow/nicira-ext.h#L788

<flow>
 <id>ICMP_Ingress258a5a5ad-08a8-4ff7-98f5-ef0b96ca3bb8</id>
 <hard-timeout>0</hard-timeout>
 <idle-timeout>0</idle-timeout>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <metadata>
 <metadata>2199023255552</metadata>
 <metadata-mask>2305841909702066176</metadata-mask>
 </metadata>
 <ip-match>
 <ip-protocol>1</ip-protocol>
 </ip-match>
 </match>
 <cookie>110100480</cookie>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>1</order>
 <nx-resubmit
 xmlns="urn:opendaylight:openflowplugin:extension:nicira:action">
 <table>220</table>
 </nx-resubmit>
 </action>
 <action>
 <order>0</order>
 <nx-learn
 xmlns="urn:opendaylight:openflowplugin:extension:nicira:action">
 <idle-timeout>60</idle-timeout>
 <fin-idle-timeout>0</fin-idle-timeout>
 <hard-timeout>60</hard-timeout>
 <flags>0</flags>
 <table-id>41</table-id>
 <priority>61010</priority>
 <fin-hard-timeout>0</fin-hard-timeout>
 <flow-mods>
 <flow-mod-add-match-from-value>
 <src-ofs>0</src-ofs>
 <value>2048</value>
 <src-field>1538</src-field>
 <flow-mod-num-bits>16</flow-mod-num-bits>
 </flow-mod-add-match-from-value>
 </flow-mods>
 <flow-mods>
 <flow-mod-add-match-from-field>
 <src-ofs>0</src-ofs>
 <dst-ofs>0</dst-ofs>
 <dst-field>4100</dst-field>
 <src-field>3588</src-field>
 <flow-mod-num-bits>32</flow-mod-num-bits>
 </flow-mod-add-match-from-field>
 </flow-mods>
 <flow-mods>
 <flow-mod-add-match-from-field>
 <src-ofs>0</src-ofs>
 <dst-ofs>0</dst-ofs>
 <dst-field>518</dst-field>
 <src-field>1030</src-field>
 <flow-mod-num-bits>48</flow-mod-num-bits>
 </flow-mod-add-match-from-field>
 </flow-mods>
 <flow-mods>
 <flow-mod-add-match-from-field>
 <src-ofs>0</src-ofs>
 <dst-ofs>0</dst-ofs>
 <dst-field>3073</dst-field>
 <src-field>3073</src-field>
 <flow-mod-num-bits>8</flow-mod-num-bits>
 </flow-mod-add-match-from-field>
 </flow-mods>
 <flow-mods>
 <flow-mod-copy-value-into-field>
 <dst-ofs>0</dst-ofs>
 <value>1</value>
 <dst-field>65540</dst-field>
 <flow-mod-num-bits>8</flow-mod-num-bits>
 </flow-mod-copy-value-into-field>
 </flow-mods>
 <cookie>110100480</cookie>
 </nx-learn>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <installHw>true</installHw>
 <barrier>false</barrier>
 <strict>false</strict>
 <priority>61010</priority>
 <table_id>253</table_id>
 <flow-name>ACL</flow-name>
</flow>

Opendaylight OpenFlow Plugin: Troubleshooting

empty section

OpFlex agent-ovs User Guide

Introduction

agent-ovs is a policy agent that works with OVS to enforce a group-based
policy networking model with locally attached virtual machines or
containers. The policy agent is designed to work well with orchestration
tools like OpenStack.

Agent Configuration

The agent configuration is handled using its config file which is by
default found at “/etc/opflex-agent-ovs/opflex-agent-ovs.conf”

Here is an example configuration file that documents the available
options:

{
 // Logging configuration
 // "log": {
 // // Set the log level.
 // // Possible values in descending order of verbosity:
 // // "debug7"-"debug0", "debug" (synonym for "debug0"),
 // // "info", "warning", "error", "fatal"
 // // Default: "info"
 // "level": "info"
 // },

 // Configuration related to the OpFlex protocol
 "opflex": {
 // The policy domain for this agent.
 "domain": "openstack",

 // The unique name in the policy domain for this agent.
 "name": "example-agent",

 // a list of peers to connect to, by hostname and port. One
 // peer, or an anycast pseudo-peer, is sufficient to bootstrap
 // the connection without needing an exhaustive list of all
 // peers.
 "peers": [
 // EXAMPLE:
 // {"hostname": "10.0.0.30", "port": 8009}
],

 "ssl": {
 // SSL mode. Possible values:
 // disabled: communicate without encryption (default)
 // encrypted: encrypt but do not verify peers
 // secure: encrypt and verify peer certificates
 "mode": "encrypted",

 // The path to a directory containing trusted certificate
 // authority public certificates, or a file containing a
 // specific CA certificate.
 // Default: "/etc/ssl/certs"
 "ca-store": "/etc/ssl/certs"
 },

 "inspector": {
 // Enable the MODB inspector service, which allows
 // inspecting the state of the managed object database.
 // Default: true
 "enabled": true,

 // Listen on the specified socket for the inspector
 // Default: "/var/run/opflex-agent-ovs-inspect.sock"
 "socket-name": "/var/run/opflex-agent-ovs-inspect.sock"
 },

 "notif": {
 // Enable the agent notification service, which sends
 // notifications to interested listeners over a UNIX
 // socket.
 // Default: true
 "enabled": true,

 // Listen on the specified socket for the inspector
 // Default: "/var/run/opflex-agent-ovs-notif.sock"
 "socket-name": "/var/run/opflex-agent-ovs-notif.sock",

 // Set the socket owner user after binding if the user
 // exists
 // Default: do not set the owner
 // "socket-owner": "root",

 // Set the socket group after binding if the group name
 // exists
 // Default: do not set the group
 "socket-group": "opflexep",

 // Set the socket permissions after binding to the
 // specified octal permissions mask
 // Default: do not set the permissions
 "socket-permissions": "770"
 }
 },

 // Endpoint sources provide metadata about local endpoints
 "endpoint-sources": {
 // Filesystem path to monitor for endpoint information
 // Default: no endpoint sources
 "filesystem": ["/var/lib/opflex-agent-ovs/endpoints"]
 },

 // Service sources provide metadata about services that can
 // provide functionality for local endpoints
 "service-sources": {
 // Filesystem path to monitor for service information
 // Default: no service sources
 "filesystem": ["/var/lib/opflex-agent-ovs/services"]
 },

 // Renderers enforce policy obtained via OpFlex.
 // Default: no renderers
 "renderers": {
 // Stitched-mode renderer for interoperating with a
 // hardware fabric such as ACI
 // EXAMPLE:
 "stitched-mode": {
 // "Integration" bridge used to enforce contracts and forward
 // packets
 "int-bridge-name": "br-int",

 // "Access" bridge used to enforce access control and enforce
 // security groups.
 "access-bridge-name": "br-access",

 // Set encapsulation type. Must set either vxlan or vlan.
 "encap": {
 // Encapsulate traffic with VXLAN.
 "vxlan" : {
 // The name of the tunnel interface in OVS
 "encap-iface": "br0_vxlan0",

 // The name of the interface whose IP should be used
 // as the source IP in encapsulated traffic.
 "uplink-iface": "team0.4093",

 // The vlan tag, if any, used on the uplink interface.
 // Set to zero or omit if the uplink is untagged.
 "uplink-vlan": 4093,

 // The IP address used for the destination IP in
 // the encapsulated traffic. This should be an
 // anycast IP address understood by the upstream
 // stiched-mode fabric.
 "remote-ip": "10.0.0.32",

 // UDP port number of the encapsulated traffic.
 "remote-port": 8472
 }

 // Encapsulate traffic with a locally-significant VLAN
 // tag
 // EXAMPLE:
 // "vlan" : {
 // // The name of the uplink interface in OVS
 // "encap-iface": "team0"
 // }
 },

 // Configure forwarding policy
 "forwarding": {
 // Configure the virtual distributed router
 "virtual-router": {
 // Enable virtual distributed router. Set to true
 // to enable or false to disable.
 // Default: true.
 "enabled": true,

 // Override MAC address for virtual router.
 // Default: "00:22:bd:f8:19:ff"
 "mac": "00:22:bd:f8:19:ff",

 // Configure IPv6-related settings for the virtual
 // router
 "ipv6" : {
 // Send router advertisement messages in
 // response to router solicitation requests as
 // well as unsolicited advertisements. This
 // is not required in stitched mode since the
 // hardware router will send them.
 "router-advertisement": false
 }
 },

 // Configure virtual distributed DHCP server
 "virtual-dhcp": {
 // Enable virtual distributed DHCP server. Set to
 // true to enable or false to disable.
 // Default: true
 "enabled": true,

 // Override MAC address for virtual dhcp server.
 // Default: "00:22:bd:f8:19:ff"
 "mac": "00:22:bd:f8:19:ff"
 },

 "endpoint-advertisements": {
 // Set mode for generation of periodic ARP/NDP
 // advertisements for endpoints. Possible values:
 // disabled: Do not send advertisements
 // gratuitous-unicast: Send gratuitous endpoint
 // advertisements as unicast packets to the router
 // mac.
 // gratuitous-broadcast: Send gratuitous endpoint
 // advertisements as broadcast packets.
 // router-request: Unicast a spoofed request/solicitation
 // for the subnet's gateway router.
 // Default: router-request.
 "mode": "gratuitous-broadcast"
 }
 },

 // Location to store cached IDs for managing flow state
 // Default: "/var/lib/opflex-agent-ovs/ids"
 "flowid-cache-dir": "/var/lib/opflex-agent-ovs/ids",

 // Location to write multicast groups for the mcast-daemon
 // Default: "/var/lib/opflex-agent-ovs/mcast/opflex-groups.json"
 "mcast-group-file": "/var/lib/opflex-agent-ovs/mcast/opflex-groups.json"
 }
 }
}

Endpoint Registration

The agent learns about endpoints using endpoint metadata files located
by default in “/var/lib/opflex-agent-ovs/endpoints”.

These are JSON-format files such as the (unusually complex) example
below:

{
 "uuid": "83f18f0b-80f7-46e2-b06c-4d9487b0c754",
 "policy-space-name": "test",
 "endpoint-group-name": "group1",
 "interface-name": "veth0",
 "ip": [
 "10.0.0.1", "fd8f:69d8:c12c:ca62::1"
],
 "dhcp4": {
 "ip": "10.200.44.2",
 "prefix-len": 24,
 "routers": ["10.200.44.1"],
 "dns-servers": ["8.8.8.8", "8.8.4.4"],
 "domain": "example.com",
 "static-routes": [
 {
 "dest": "169.254.169.0",
 "dest-prefix": 24,
 "next-hop": "10.0.0.1"
 }
]
 },
 "dhcp6": {
 "dns-servers": ["2001:4860:4860::8888", "2001:4860:4860::8844"],
 "search-list": ["test1.example.com", "example.com"]
 },
 "ip-address-mapping": [
 {
 "uuid": "91c5b217-d244-432c-922d-533c6c036ab4",
 "floating-ip": "5.5.5.1",
 "mapped-ip": "10.0.0.1",
 "policy-space-name": "common",
 "endpoint-group-name": "nat-epg"
 },
 {
 "uuid": "22bfdc01-a390-4b6f-9b10-624d4ccb957b",
 "floating-ip": "fdf1:9f86:d1af:6cc9::1",
 "mapped-ip": "fd8f:69d8:c12c:ca62::1",
 "policy-space-name": "common",
 "endpoint-group-name": "nat-epg"
 }
],
 "mac": "00:00:00:00:00:01",
 "promiscuous-mode": false
}

The possible parameters for these files are:

	uuid

	A globally unique ID for the endpoint

	endpoint-group-name

	The name of the endpoint group for the endpoint

	policy-space-name

	The name of the policy space for the endpoint group.

	interface-name

	The name of the OVS interface to which the endpoint is attached

	ip

	A list of strings contains either IPv4 or IPv6 addresses that the
endpoint is allowed to use

	mac

	The MAC address for the endpoint’s interface.

	promiscuous-mode

	Allow traffic from this VM to bypass default port security

	dhcp4

	A distributed DHCPv4 configuration block (see below)

	dhcp6

	A distributed DHCPv6 configuration block (see below)

	ip-address-mapping

	A list of IP address mapping configuration blocks (see below)

DHCPv4 configuration blocks can contain the following parameters:

	ip

	the IP address to return with DHCP. Must be one of the configured
IPv4 addresses.

	prefix

	the subnet prefix length

	routers

	a list of default gateways for the endpoint

	dns

	a list of DNS server addresses

	domain

	The domain name parameter to send in the DHCP reply

	static-routes

	A list of static route configuration blocks, which contains a
“dest”, “dest-prefix”, and “next-hop” parameters to send as static
routes to the end host

DHCPv6 configuration blocks can contain the following parameters:

	dns

	A list of DNS servers for the endpoint

	search-patch

	The DNS search path for the endpoint

IP address mapping configuration blocks can contain the following
parameters:

	uuid

	a globally unique ID for the virtual endpoint created by the
mapping.

	floating-ip

	Map using DNAT to this floating IPv4 or IPv6 address

	mapped-ip

	the source IPv4 or IPv6 address; must be one of the IPs assigned to
the endpoint.

	endpoint-group-name

	The name of the endpoint group for the NATed IP

	policy-space-name

	The name of the policy space for the NATed IP

Inspector

The Opflex inspector is a useful command-line tool that will allow you
to inspect the state of the managed object database for the agent for
debugging and diagnosis purposes.

The command is called “gbp_inspect” and takes the following arguments:

gbp_inspect -h
Usage: gbp_inspect [options]
Allowed options:
 -h [--help] Print this help message
 --log arg Log to the specified file (default
 standard out)
 --level arg (=warning) Use the specified log level (default
 warning)
 --syslog Log to syslog instead of file or
 standard out
 --socket arg (=/usr/var/run/opflex-agent-ovs-inspect.sock)
 Connect to the specified UNIX domain
 socket (default /usr/var/run/opfl
 ex-agent-ovs-inspect.sock)
 -q [--query] arg Query for a specific object with
 subjectname,uri or all objects of a
 specific type with subjectname
 -r [--recursive] Retrieve the whole subtree for each
 returned object
 -f [--follow-refs] Follow references in returned objects
 --load arg Load managed objects from the specified
 file into the MODB view
 -o [--output] arg Output the results to the specified
 file (default standard out)
 -t [--type] arg (=tree) Specify the output format: tree,
 asciitree, list, or dump (default tree)
 -p [--props] Include object properties in output

Here are some examples of the ways to use this tool.

You can get information about the running system using one or more
queries, which consist of an object model class name and optionally the
URI of a specific object. The simplest query is to get a single object,
nonrecursively:

gbp_inspect -q DmtreeRoot
───⦁ DmtreeRoot,/
gbp_inspect -q GbpEpGroup
───⦁ GbpEpGroup,/PolicyUniverse/PolicySpace/test/GbpEpGroup/group1/
───⦁ GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
gbp_inspect -q GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
───⦁ GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/

You can also display all the properties for each object:

gbp_inspect -p -q GbpeL24Classifier
───⦁ GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier4/
 {
 connectionTracking : 1 (reflexive)
 dFromPort : 80
 dToPort : 80
 etherT : 2048 (ipv4)
 name : classifier4
 prot : 6
 }
───⦁ GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier3/
 {
 etherT : 34525 (ipv6)
 name : classifier3
 order : 100
 prot : 58
 }
───⦁ GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier1/
 {
 etherT : 2054 (arp)
 name : classifier1
 order : 102
 }
───⦁ GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier2/
 {
 etherT : 2048 (ipv4)
 name : classifier2
 order : 101
 prot : 1
 }

You can also request to get the all the children of an object you query
for:

gbp_inspect -r -q GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
──┬⦁ GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
 ├──⦁ GbpeInstContext,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/GbpeInstContext/
 ╰──⦁ GbpEpGroupToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/GbpEpGroupToNetworkRSrc/

You can also follow references found in any object downloads:

gbp_inspect -fr -q GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
──┬⦁ GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
 ├──⦁ GbpeInstContext,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/GbpeInstContext/
 ╰──⦁ GbpEpGroupToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/GbpEpGroupToNetworkRSrc/
──┬⦁ GbpBridgeDomain,/PolicyUniverse/PolicySpace/common/GbpBridgeDomain/bd_ext/
 ╰──⦁ GbpBridgeDomainToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpBridgeDomain/bd_ext/GbpBridgeDomainToNetworkRSrc/
──┬⦁ GbpFloodDomain,/PolicyUniverse/PolicySpace/common/GbpFloodDomain/fd_ext/
 ╰──⦁ GbpFloodDomainToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpFloodDomain/fd_ext/GbpFloodDomainToNetworkRSrc/
──┬⦁ GbpRoutingDomain,/PolicyUniverse/PolicySpace/common/GbpRoutingDomain/rd_ext/
 ├──⦁ GbpRoutingDomainToIntSubnetsRSrc,/PolicyUniverse/PolicySpace/common/GbpRoutingDomain/rd_ext/GbpRoutingDomainToIntSubnetsRSrc/152/%2fPolicyUniverse%2fPolicySpace%2fcommon%2fGbpSubnets%2fsubnets_ext%2f/
 ╰──⦁ GbpForwardingBehavioralGroupToSubnetsRSrc,/PolicyUniverse/PolicySpace/common/GbpRoutingDomain/rd_ext/GbpForwardingBehavioralGroupToSubnetsRSrc/
──┬⦁ GbpSubnets,/PolicyUniverse/PolicySpace/common/GbpSubnets/subnets_ext/
 ├──⦁ GbpSubnet,/PolicyUniverse/PolicySpace/common/GbpSubnets/subnets_ext/GbpSubnet/subnet_ext4/
 ╰──⦁ GbpSubnet,/PolicyUniverse/PolicySpace/common/GbpSubnets/subnets_ext/GbpSubnet/subnet_ext6/

OVSDB User Guide

The OVSDB project implements the OVSDB protocol (RFC 7047), as well as
plugins to support OVSDB Schemas, such as the Open_vSwitch database
schema and the hardware_vtep database schema.

OVSDB Plugins

Overview and Architecture

There are currently two OVSDB Southbound plugins:

	odl-ovsdb-southbound: Implements the OVSDB Open_vSwitch database
schema.

	odl-ovsdb-hwvtepsouthbound: Implements the OVSDB hardware_vtep
database schema.

These plugins are normally installed and used automatically by higher
level applications such as odl-ovsdb-openstack; however, they can also
be installed separately and used via their REST APIs as is described in
the following sections.

OVSDB Southbound Plugin

The OVSDB Southbound Plugin provides support for managing OVS hosts via
an OVSDB model in the MD-SAL which maps to important tables and
attributes present in the Open_vSwitch schema. The OVSDB Southbound
Plugin is able to connect actively or passively to OVS hosts and operate
as the OVSDB manager of the OVS host. Using the OVSDB protocol it is
able to manage the OVS database (OVSDB) on the OVS host as defined by
the Open_vSwitch schema.

OVSDB YANG Model

The OVSDB Southbound Plugin provides a YANG model which is based on the
abstract network topology
model [https://github.com/opendaylight/yangtools/blob/stable/boron/yang/yang-parser-impl/src/test/resources/ietf/network-topology%402013-10-21.yang].

The details of the OVSDB YANG model are defined in the
ovsdb.yang [https://github.com/opendaylight/ovsdb/blob/stable/boron/southbound/southbound-api/src/main/yang/ovsdb.yang]
file.

The OVSDB YANG model defines three augmentations:

	ovsdb-node-augmentation

	This augments the network-topology node and maps primarily to the
Open_vSwitch table of the OVSDB schema. The ovsdb-node-augmentation
is a representation of the OVS host. It contains the following
attributes.

	connection-info - holds the local and remote IP address and
TCP port numbers for the OpenDaylight to OVSDB node connections

	db-version - version of the OVSDB database

	ovs-version - version of OVS

	list managed-node-entry - a list of references to
ovsdb-bridge-augmentation nodes, which are the OVS bridges
managed by this OVSDB node

	list datapath-type-entry - a list of the datapath types
supported by the OVSDB node (e.g. system, netdev) - depends
on newer OVS versions

	list interface-type-entry - a list of the interface types
supported by the OVSDB node (e.g. internal, vxlan, gre,
dpdk, etc.) - depends on newer OVS verions

	list openvswitch-external-ids - a list of the key/value pairs
in the Open_vSwitch table external_ids column

	list openvswitch-other-config - a list of the key/value pairs
in the Open_vSwitch table other_config column

	list managery-entry - list of manager information entries and
connection status

	list qos-entries - list of QoS entries present in the QoS
table

	list queues - list of queue entries present in the queue
table

	ovsdb-bridge-augmentation

	This augments the network-topology node and maps to an specific
bridge in the OVSDB bridge table of the associated OVSDB node. It
contains the following attributes.

	bridge-uuid - UUID of the OVSDB bridge

	bridge-name - name of the OVSDB bridge

	bridge-openflow-node-ref - a reference (instance-identifier)
of the OpenFlow node associated with this bridge

	list protocol-entry - the version of OpenFlow protocol to use
with the OpenFlow controller

	list controller-entry - a list of controller-uuid and
is-connected status of the OpenFlow controllers associated with
this bridge

	datapath-id - the datapath ID associated with this bridge on
the OVSDB node

	datapath-type - the datapath type of this bridge

	fail-mode - the OVSDB fail mode setting of this bridge

	flow-node - a reference to the flow node corresponding to
this bridge

	managed-by - a reference to the ovsdb-node-augmentation
(OVSDB node) that is managing this bridge

	list bridge-external-ids - a list of the key/value pairs in
the bridge table external_ids column for this bridge

	list bridge-other-configs - a list of the key/value pairs in
the bridge table other_config column for this bridge

	ovsdb-termination-point-augmentation

	This augments the topology termination point model. The OVSDB
Southbound Plugin uses this model to represent both the OVSDB port
and OVSDB interface for a given port/interface in the OVSDB schema.
It contains the following attributes.

	port-uuid - UUID of an OVSDB port row

	interface-uuid - UUID of an OVSDB interface row

	name - name of the port and interface

	interface-type - the interface type

	list options - a list of port options

	ofport - the OpenFlow port number of the interface

	ofport_request - the requested OpenFlow port number for the
interface

	vlan-tag - the VLAN tag value

	list trunks - list of VLAN tag values for trunk mode

	vlan-mode - the VLAN mode (e.g. access, native-tagged,
native-untagged, trunk)

	list port-external-ids - a list of the key/value pairs in the
port table external_ids column for this port

	list interface-external-ids - a list of the key/value pairs
in the interface table external_ids interface for this interface

	list port-other-configs - a list of the key/value pairs in
the port table other_config column for this port

	list interface-other-configs - a list of the key/value pairs
in the interface table other_config column for this interface

	list inteface-lldp - LLDP Auto Attach configuration for the
interface

	qos - UUID of the QoS entry in the QoS table assigned to this
port

Getting Started

To install the OVSDB Southbound Plugin, use the following command at the
Karaf console:

feature:install odl-ovsdb-southbound-impl-ui

After installing the OVSDB Southbound Plugin, and before any OVSDB
topology nodes have been created, the OVSDB topology will appear as
follows in the configuration and operational MD-SAL.

HTTP GET:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/
 or
http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/

Result Body:

{
 "topology": [
 {
 "topology-id": "ovsdb:1"
 }
]
}

Where

<controller-ip> is the IP address of the OpenDaylight controller

OpenDaylight as the OVSDB Manager

An OVS host is a system which is running the OVS software and is capable
of being managed by an OVSDB manager. The OVSDB Southbound Plugin is
capable of connecting to an OVS host and operating as an OVSDB manager.
Depending on the configuration of the OVS host, the connection of
OpenDaylight to the OVS host will be active or passive.

Active Connection to OVS Hosts

An active connection is when the OVSDB Southbound Plugin initiates the
connection to an OVS host. This happens when the OVS host is configured
to listen for the connection (i.e. the OVSDB Southbound Plugin is active
the the OVS host is passive). The OVS host is configured with the
following command:

sudo ovs-vsctl set-manager ptcp:6640

This configures the OVS host to listen on TCP port 6640.

The OVSDB Southbound Plugin can be configured via the configuration
MD-SAL to actively connect to an OVS host.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1

Body:

{
 "network-topology:node": [
 {
 "node-id": "ovsdb://HOST1",
 "connection-info": {
 "ovsdb:remote-port": "6640",
 "ovsdb:remote-ip": "<ovs-host-ip>"
 }
 }
]
}

Where

<ovs-host-ip> is the IP address of the OVS Host

Note that the configuration assigns a node-id of “ovsdb://HOST1” to
the OVSDB node. This node-id will be used as the identifier for this
OVSDB node in the MD-SAL.

Query the configuration MD-SAL for the OVSDB topology.

HTTP GET:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/

Result Body:

{
 "topology": [
 {
 "topology-id": "ovsdb:1",
 "node": [
 {
 "node-id": "ovsdb://HOST1",
 "ovsdb:connection-info": {
 "remote-ip": "<ovs-host-ip>",
 "remote-port": 6640
 }
 }
]
 }
]
}

As a result of the OVSDB node configuration being added to the
configuration MD-SAL, the OVSDB Southbound Plugin will attempt to
connect with the specified OVS host. If the connection is successful,
the plugin will connect to the OVS host as an OVSDB manager, query the
schemas and databases supported by the OVS host, and register to monitor
changes made to the OVSDB tables on the OVS host. It will also set an
external id key and value in the external-ids column of the
Open_vSwtich table of the OVS host which identifies the MD-SAL instance
identifier of the OVSDB node. This ensures that the OVSDB node will use
the same node-id in both the configuration and operational MD-SAL.

"opendaylight-iid" = "instance identifier of OVSDB node in the MD-SAL"

When the OVS host sends the OVSDB Southbound Plugin the first update
message after the monitoring has been established, the plugin will
populate the operational MD-SAL with the information it receives from
the OVS host.

Query the operational MD-SAL for the OVSDB topology.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/

Result Body:

{
 "topology": [
 {
 "topology-id": "ovsdb:1",
 "node": [
 {
 "node-id": "ovsdb://HOST1",
 "ovsdb:openvswitch-external-ids": [
 {
 "external-id-key": "opendaylight-iid",
 "external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1']"
 }
],
 "ovsdb:connection-info": {
 "local-ip": "<controller-ip>",
 "remote-port": 6640,
 "remote-ip": "<ovs-host-ip>",
 "local-port": 39042
 },
 "ovsdb:ovs-version": "2.3.1-git4750c96",
 "ovsdb:manager-entry": [
 {
 "target": "ptcp:6640",
 "connected": true,
 "number_of_connections": 1
 }
]
 }
]
 }
]
}

To disconnect an active connection, just delete the configuration MD-SAL
entry.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1

Note in the above example, that / characters which are part of the
node-id are specified in hexadecimal format as “%2F”.

Passive Connection to OVS Hosts

A passive connection is when the OVS host initiates the connection to
the OVSDB Southbound Plugin. This happens when the OVS host is
configured to connect to the OVSDB Southbound Plugin. The OVS host is
configured with the following command:

sudo ovs-vsctl set-manager tcp:<controller-ip>:6640

The OVSDB Southbound Plugin is configured to listen for OVSDB
connections on TCP port 6640. This value can be changed by editing the
“./karaf/target/assembly/etc/custom.properties” file and changing the
value of the “ovsdb.listenPort” attribute.

When a passive connection is made, the OVSDB node will appear first in
the operational MD-SAL. If the Open_vSwitch table does not contain an
external-ids value of opendaylight-iid, then the node-id of the new
OVSDB node will be created in the format:

"ovsdb://uuid/<actual UUID value>"

If there an opendaylight-iid value was already present in the
external-ids column, then the instance identifier defined there will be
used to create the node-id instead.

Query the operational MD-SAL for an OVSDB node after a passive
connection.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/

Result Body:

{
 "topology": [
 {
 "topology-id": "ovsdb:1",
 "node": [
 {
 "node-id": "ovsdb://uuid/163724f4-6a70-428a-a8a0-63b2a21f12dd",
 "ovsdb:openvswitch-external-ids": [
 {
 "external-id-key": "system-id",
 "external-id-value": "ecf160af-e78c-4f6b-a005-83a6baa5c979"
 }
],
 "ovsdb:connection-info": {
 "local-ip": "<controller-ip>",
 "remote-port": 46731,
 "remote-ip": "<ovs-host-ip>",
 "local-port": 6640
 },
 "ovsdb:ovs-version": "2.3.1-git4750c96",
 "ovsdb:manager-entry": [
 {
 "target": "tcp:10.11.21.7:6640",
 "connected": true,
 "number_of_connections": 1
 }
]
 }
]
 }
]
}

Take note of the node-id that was created in this case.

Manage Bridges

The OVSDB Southbound Plugin can be used to manage bridges on an OVS
host.

This example shows how to add a bridge to the OVSDB node
ovsdb://HOST1.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest

Body:

{
 "network-topology:node": [
 {
 "node-id": "ovsdb://HOST1/bridge/brtest",
 "ovsdb:bridge-name": "brtest",
 "ovsdb:protocol-entry": [
 {
 "protocol": "ovsdb:ovsdb-bridge-protocol-openflow-13"
 }
],
 "ovsdb:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1']"
 }
]
}

Notice that the ovsdb:managed-by attribute is specified in the
command. This indicates the association of the new bridge node with its
OVSDB node.

Bridges can be updated. In the following example, OpenDaylight is
configured to be the OpenFlow controller for the bridge.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest

Body:

{
 "network-topology:node": [
 {
 "node-id": "ovsdb://HOST1/bridge/brtest",
 "ovsdb:bridge-name": "brtest",
 "ovsdb:controller-entry": [
 {
 "target": "tcp:<controller-ip>:6653"
 }
],
 "ovsdb:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1']"
 }
]
}

If the OpenDaylight OpenFlow Plugin is installed, then checking on the
OVS host will show that OpenDaylight has successfully connected as the
controller for the bridge.

$ sudo ovs-vsctl show
 Manager "ptcp:6640"
 is_connected: true
 Bridge brtest
 Controller "tcp:<controller-ip>:6653"
 is_connected: true
 Port brtest
 Interface brtest
 type: internal
 ovs_version: "2.3.1-git4750c96"

Query the operational MD-SAL to see how the bridge appears.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/

Result Body:

{
 "node": [
 {
 "node-id": "ovsdb://HOST1/bridge/brtest",
 "ovsdb:bridge-name": "brtest",
 "ovsdb:datapath-type": "ovsdb:datapath-type-system",
 "ovsdb:datapath-id": "00:00:da:e9:0c:08:2d:45",
 "ovsdb:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1']",
 "ovsdb:bridge-external-ids": [
 {
 "bridge-external-id-key": "opendaylight-iid",
 "bridge-external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1/bridge/brtest']"
 }
],
 "ovsdb:protocol-entry": [
 {
 "protocol": "ovsdb:ovsdb-bridge-protocol-openflow-13"
 }
],
 "ovsdb:bridge-uuid": "080ce9da-101e-452d-94cd-ee8bef8a4b69",
 "ovsdb:controller-entry": [
 {
 "target": "tcp:10.11.21.7:6653",
 "is-connected": true,
 "controller-uuid": "c39b1262-0876-4613-8bfd-c67eec1a991b"
 }
],
 "termination-point": [
 {
 "tp-id": "brtest",
 "ovsdb:port-uuid": "c808ae8d-7af2-4323-83c1-e397696dc9c8",
 "ovsdb:ofport": 65534,
 "ovsdb:interface-type": "ovsdb:interface-type-internal",
 "ovsdb:interface-uuid": "49e9417f-4479-4ede-8faf-7c873b8c0413",
 "ovsdb:name": "brtest"
 }
]
 }
]
}

Notice that just like with the OVSDB node, an opendaylight-iid has
been added to the external-ids column of the bridge since it was created
via the configuration MD-SAL.

A bridge node may be deleted as well.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest

Manage Ports

Similarly, ports may be managed by the OVSDB Southbound Plugin.

This example illustrates how a port and various attributes may be
created on a bridge.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/termination-point/testport/

Body:

{
 "network-topology:termination-point": [
 {
 "ovsdb:options": [
 {
 "ovsdb:option": "remote_ip",
 "ovsdb:value" : "10.10.14.11"
 }
],
 "ovsdb:name": "testport",
 "ovsdb:interface-type": "ovsdb:interface-type-vxlan",
 "tp-id": "testport",
 "vlan-tag": "1",
 "trunks": [
 {
 "trunk": "5"
 }
],
 "vlan-mode":"access"
 }
]
}

Ports can be updated - add another VLAN trunk.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/termination-point/testport/

Body:

{
 "network-topology:termination-point": [
 {
 "ovsdb:name": "testport",
 "tp-id": "testport",
 "trunks": [
 {
 "trunk": "5"
 },
 {
 "trunk": "500"
 }
]
 }
]
}

Query the operational MD-SAL for the port.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/termination-point/testport/

Result Body:

{
 "termination-point": [
 {
 "tp-id": "testport",
 "ovsdb:port-uuid": "b1262110-2a4f-4442-b0df-84faf145488d",
 "ovsdb:options": [
 {
 "option": "remote_ip",
 "value": "10.10.14.11"
 }
],
 "ovsdb:port-external-ids": [
 {
 "external-id-key": "opendaylight-iid",
 "external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1/bridge/brtest']/network-topology:termination-point[network-topology:tp-id='testport']"
 }
],
 "ovsdb:interface-type": "ovsdb:interface-type-vxlan",
 "ovsdb:trunks": [
 {
 "trunk": 5
 },
 {
 "trunk": 500
 }
],
 "ovsdb:vlan-mode": "access",
 "ovsdb:vlan-tag": 1,
 "ovsdb:interface-uuid": "7cec653b-f407-45a8-baec-7eb36b6791c9",
 "ovsdb:name": "testport",
 "ovsdb:ofport": 1
 }
]
}

Remember that the OVSDB YANG model includes both OVSDB port and
interface table attributes in the termination-point augmentation. Both
kinds of attributes can be seen in the examples above. Again, note the
creation of an opendaylight-iid value in the external-ids column of
the port table.

Delete a port.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest2/termination-point/testport/

Overview of QoS and Queue

The OVSDB Southbound Plugin provides the capability of managing the QoS
and Queue tables on an OVS host with OpenDaylight configured as the
OVSDB manager.

QoS and Queue Tables in OVSDB

The OVSDB includes a QoS and Queue table. Unlike most of the other
tables in the OVSDB, except the Open_vSwitch table, the QoS and Queue
tables are “root set” tables, which means that entries, or rows, in
these tables are not automatically deleted if they can not be reached
directly or indirectly from the Open_vSwitch table. This means that QoS
entries can exist and be managed independently of whether or not they
are referenced in a Port entry. Similarly, Queue entries can be managed
independently of whether or not they are referenced by a QoS entry.

Modelling of QoS and Queue Tables in OpenDaylight MD-SAL

Since the QoS and Queue tables are “root set” tables, they are modeled
in the OpenDaylight MD-SAL as lists which are part of the attributes of
the OVSDB node model.

The MD-SAL QoS and Queue models have an additonal identifier attribute
per entry (e.g. “qos-id” or “queue-id”) which is not present in the
OVSDB schema. This identifier is used by the MD-SAL as a key for
referencing the entry. If the entry is created originally from the
configuration MD-SAL, then the value of the identifier is whatever is
specified by the configuration. If the entry is created on the OVSDB
node and received by OpenDaylight in an operational update, then the id
will be created in the following format.

"queue-id": "queue://<UUID>"
"qos-id": "qos://<UUID>"

The UUID in the above identifiers is the actual UUID of the entry in the
OVSDB database.

When the QoS or Queue entry is created by the configuration MD-SAL, the
identifier will be configured as part of the external-ids column of the
entry. This will ensure that the corresponding entry that is created in
the operational MD-SAL uses the same identifier.

"queues-external-ids": [
 {
 "queues-external-id-key": "opendaylight-queue-id",
 "queues-external-id-value": "QUEUE-1"
 }
]

See more in the examples that follow in this section.

The QoS schema in OVSDB currently defines two types of QoS entries.

	linux-htb

	linux-hfsc

These QoS types are defined in the QoS model. Additional types will need
to be added to the model in order to be supported. See the examples that
folow for how the QoS type is specified in the model.

QoS entries can be configured with addtional attritubes such as
“max-rate”. These are configured via the other-config column of the
QoS entry. Refer to OVSDB schema (in the reference section below) for
all of the relevant attributes that can be configured. The examples in
the rest of this section will demonstrate how the other-config column
may be configured.

Similarly, the Queue entries may be configured with additional
attributes via the other-config column.

Managing QoS and Queues via Configuration MD-SAL

This section will show some examples on how to manage QoS and Queue
entries via the configuration MD-SAL. The examples will be illustrated
by using RESTCONF (see QoS and Queue Postman
Collection [https://github.com/opendaylight/ovsdb/blob/stable/boron/resources/commons/Qos-and-Queue-Collection.json.postman_collection]
).

A pre-requisite for managing QoS and Queue entries is that the OVS host
must be present in the configuration MD-SAL.

For the following examples, the following OVS host is configured.

HTTP POST:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/

Body:

{
 "node": [
 {
 "node-id": "ovsdb:HOST1",
 "connection-info": {
 "ovsdb:remote-ip": "<ovs-host-ip>",
 "ovsdb:remote-port": "<ovs-host-ovsdb-port>"
 }
 }
]
}

Where

	<controller-ip> is the IP address of the OpenDaylight controller

	<ovs-host-ip> is the IP address of the OVS host

	<ovs-host-ovsdb-port> is the TCP port of the OVSDB server on the
OVS host (e.g. 6640)

This command creates an OVSDB node with the node-id “ovsdb:HOST1”. This
OVSDB node will be used in the following examples.

QoS and Queue entries can be created and managed without a port, but
ultimately, QoS entries are associated with a port in order to use them.
For the following examples a test bridge and port will be created.

Create the test bridge.

HTTP PUT

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test

Body:

{
 "network-topology:node": [
 {
 "node-id": "ovsdb:HOST1/bridge/br-test",
 "ovsdb:bridge-name": "br-test",
 "ovsdb:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1']"
 }
]
}

Create the test port (which is modeled as a termination point in the
OpenDaylight MD-SAL).

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Body:

{
 "network-topology:termination-point": [
 {
 "ovsdb:name": "testport",
 "tp-id": "testport"
 }
]
}

If all of the previous steps were successful, a query of the operational
MD-SAL should look something like the following results. This indicates
that the configuration commands have been successfully instantiated on
the OVS host.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test

Result Body:

{
 "node": [
 {
 "node-id": "ovsdb:HOST1/bridge/br-test",
 "ovsdb:bridge-name": "br-test",
 "ovsdb:datapath-type": "ovsdb:datapath-type-system",
 "ovsdb:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1']",
 "ovsdb:datapath-id": "00:00:8e:5d:22:3d:09:49",
 "ovsdb:bridge-external-ids": [
 {
 "bridge-external-id-key": "opendaylight-iid",
 "bridge-external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1/bridge/br-test']"
 }
],
 "ovsdb:bridge-uuid": "3d225d8d-d060-4909-93ef-6f4db58ef7cc",
 "termination-point": [
 {
 "tp-id": "br=-est",
 "ovsdb:port-uuid": "f85f7aa7-4956-40e4-9c94-e6ca2d5cd254",
 "ovsdb:ofport": 65534,
 "ovsdb:interface-type": "ovsdb:interface-type-internal",
 "ovsdb:interface-uuid": "29ff3692-6ed4-4ad7-a077-1edc277ecb1a",
 "ovsdb:name": "br-test"
 },
 {
 "tp-id": "testport",
 "ovsdb:port-uuid": "aa79a8e2-147f-403a-9fa9-6ee5ec276f08",
 "ovsdb:port-external-ids": [
 {
 "external-id-key": "opendaylight-iid",
 "external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1/bridge/br-test']/network-topology:termination-point[network-topology:tp-id='testport']"
 }
],
 "ovsdb:interface-uuid": "e96f282e-882c-41dd-a870-80e6b29136ac",
 "ovsdb:name": "testport"
 }
]
 }
]
}

Create Queue

Create a new Queue in the configuration MD-SAL.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:queues/QUEUE-1/

Body:

{
 "ovsdb:queues": [
 {
 "queue-id": "QUEUE-1",
 "dscp": 25,
 "queues-other-config": [
 {
 "queue-other-config-key": "max-rate",
 "queue-other-config-value": "3600000"
 }
]
 }
]
}

Query Queue

Now query the operational MD-SAL for the Queue entry.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:queues/QUEUE-1/

Result Body:

{
 "ovsdb:queues": [
 {
 "queue-id": "QUEUE-1",
 "queues-other-config": [
 {
 "queue-other-config-key": "max-rate",
 "queue-other-config-value": "3600000"
 }
],
 "queues-external-ids": [
 {
 "queues-external-id-key": "opendaylight-queue-id",
 "queues-external-id-value": "QUEUE-1"
 }
],
 "queue-uuid": "83640357-3596-4877-9527-b472aa854d69",
 "dscp": 25
 }
]
}

Create QoS

Create a QoS entry. Note that the UUID of the Queue entry, obtained by
querying the operational MD-SAL of the Queue entry, is specified in the
queue-list of the QoS entry. Queue entries may be added to the QoS entry
at the creation of the QoS entry, or by a subsequent update to the QoS
entry.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/

Body:

{
 "ovsdb:qos-entries": [
 {
 "qos-id": "QOS-1",
 "qos-type": "ovsdb:qos-type-linux-htb",
 "qos-other-config": [
 {
 "other-config-key": "max-rate",
 "other-config-value": "4400000"
 }
],
 "queue-list": [
 {
 "queue-number": "0",
 "queue-uuid": "83640357-3596-4877-9527-b472aa854d69"
 }
]
 }
]
}

Query QoS

Query the operational MD-SAL for the QoS entry.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/

Result Body:

{
 "ovsdb:qos-entries": [
 {
 "qos-id": "QOS-1",
 "qos-other-config": [
 {
 "other-config-key": "max-rate",
 "other-config-value": "4400000"
 }
],
 "queue-list": [
 {
 "queue-number": 0,
 "queue-uuid": "83640357-3596-4877-9527-b472aa854d69"
 }
],
 "qos-type": "ovsdb:qos-type-linux-htb",
 "qos-external-ids": [
 {
 "qos-external-id-key": "opendaylight-qos-id",
 "qos-external-id-value": "QOS-1"
 }
],
 "qos-uuid": "90ba9c60-3aac-499d-9be7-555f19a6bb31"
 }
]
}

Add QoS to a Port

Update the termination point entry to include the UUID of the QoS entry,
obtained by querying the operational MD-SAL, to associate a QoS entry
with a port.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Body:

{
 "network-topology:termination-point": [
 {
 "ovsdb:name": "testport",
 "tp-id": "testport",
 "qos": "90ba9c60-3aac-499d-9be7-555f19a6bb31"
 }
]
}

Query the Port

Query the operational MD-SAL to see how the QoS entry appears in the
termination point model.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Result Body:

{
 "termination-point": [
 {
 "tp-id": "testport",
 "ovsdb:port-uuid": "aa79a8e2-147f-403a-9fa9-6ee5ec276f08",
 "ovsdb:port-external-ids": [
 {
 "external-id-key": "opendaylight-iid",
 "external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1/bridge/br-test']/network-topology:termination-point[network-topology:tp-id='testport']"
 }
],
 "ovsdb:qos": "90ba9c60-3aac-499d-9be7-555f19a6bb31",
 "ovsdb:interface-uuid": "e96f282e-882c-41dd-a870-80e6b29136ac",
 "ovsdb:name": "testport"
 }
]
}

Query the OVSDB Node

Query the operational MD-SAL for the OVS host to see how the QoS and
Queue entries appear as lists in the OVS node model.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/

Result Body (edited to only show information relevant to the QoS and
Queue entries):

{
 "node": [
 {
 "node-id": "ovsdb:HOST1",
 <content edited out>
 "ovsdb:queues": [
 {
 "queue-id": "QUEUE-1",
 "queues-other-config": [
 {
 "queue-other-config-key": "max-rate",
 "queue-other-config-value": "3600000"
 }
],
 "queues-external-ids": [
 {
 "queues-external-id-key": "opendaylight-queue-id",
 "queues-external-id-value": "QUEUE-1"
 }
],
 "queue-uuid": "83640357-3596-4877-9527-b472aa854d69",
 "dscp": 25
 }
],
 "ovsdb:qos-entries": [
 {
 "qos-id": "QOS-1",
 "qos-other-config": [
 {
 "other-config-key": "max-rate",
 "other-config-value": "4400000"
 }
],
 "queue-list": [
 {
 "queue-number": 0,
 "queue-uuid": "83640357-3596-4877-9527-b472aa854d69"
 }
],
 "qos-type": "ovsdb:qos-type-linux-htb",
 "qos-external-ids": [
 {
 "qos-external-id-key": "opendaylight-qos-id",
 "qos-external-id-value": "QOS-1"
 }
],
 "qos-uuid": "90ba9c60-3aac-499d-9be7-555f19a6bb31"
 }
]
 <content edited out>
 }
]
}

Remove QoS from a Port

This example removes a QoS entry from the termination point and
associated port. Note that this is a PUT command on the termination
point with the QoS attribute absent. Other attributes of the termination
point should be included in the body of the command so that they are not
inadvertantly removed.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Body:

{
 "network-topology:termination-point": [
 {
 "ovsdb:name": "testport",
 "tp-id": "testport"
 }
]
}

Remove a Queue from QoS

This example removes the specific Queue entry from the queue list in the
QoS entry. The queue entry is specified by the queue number, which is
“0” in this example.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/queue-list/0/

Remove Queue

Once all references to a specific queue entry have been removed from QoS
entries, the Queue itself can be removed.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:queues/QUEUE-1/

Remove QoS

The QoS entry may be removed when it is no longer referenced by any
ports.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/

References

Openvswitch
schema [http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf]

OVSDB and Netvirt Postman
Collection [https://github.com/opendaylight/ovsdb/blob/stable/boron/resources/commons]

OVSDB Hardware VTEP SouthBound Plugin

Overview

Hwvtepsouthbound plugin is used to configure a hardware VTEP which
implements hardware ovsdb schema. This page will show how to use
RESTConf API of hwvtepsouthbound. There are two ways to connect to ODL:

switch initiates connection..

Both will be introduced respectively.

User Initiates Connection

Prerequisite

Configure the hwvtep device/node to listen for the tcp connection in
passive mode. In addition, management IP and tunnel source IP are also
configured. After all this configuration is done, a physical switch is
created automatically by the hwvtep node.

Connect to a hwvtep device/node

Send below Restconf request if you want to initiate the connection to a
hwvtep node from the controller, where listening IP and port of hwvtep
device/node are provided.

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/

{
 "network-topology:node": [
 {
 "node-id": "hwvtep://192.168.1.115:6640",
 "hwvtep:connection-info":
 {
 "hwvtep:remote-port": 6640,
 "hwvtep:remote-ip": "192.168.1.115"
 }
 }
]
}

Please replace odl in the URL with the IP address of your OpenDaylight
controller and change 192.168.1.115 to your hwvtep node IP.

NOTE: The format of node-id is fixed. It will be one of the two:

User initiates connection from ODL:

hwvtep://ip:port

Switch initiates connection:

hwvtep://uuid/<uuid of switch>

The reason for using UUID is that we can distinguish between multiple
switches if they are behind a NAT.

After this request is completed successfully, we can get the physical
switch from the operational data store.

REST API: GET
http://odl:8181/restconf/operational/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

There is no body in this request.

The response of the request is:

{
 "node": [
 {
 "node-id": "hwvtep://192.168.1.115:6640",
 "hwvtep:switches": [
 {
 "switch-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640/physicalswitch/br0']"
 }
],
 "hwvtep:connection-info": {
 "local-ip": "192.168.92.145",
 "local-port": 47802,
 "remote-port": 6640,
 "remote-ip": "192.168.1.115"
 }
 },
 {
 "node-id": "hwvtep://192.168.1.115:6640/physicalswitch/br0",
 "hwvtep:management-ips": [
 {
 "management-ips-key": "192.168.1.115"
 }
],
 "hwvtep:physical-switch-uuid": "37eb5abd-a6a3-4aba-9952-a4d301bdf371",
 "hwvtep:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']",
 "hwvtep:hwvtep-node-description": "",
 "hwvtep:tunnel-ips": [
 {
 "tunnel-ips-key": "192.168.1.115"
 }
],
 "hwvtep:hwvtep-node-name": "br0"
 }
]
}

If there is a physical switch which has already been created by manual
configuration, we can get the node-id of the physical switch from this
response, which is presented in “swith-ref”. If the switch does not
exist, we need to create the physical switch. Currently, most hwvtep
devices do not support running multiple switches.

Create a physical switch

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/

request body:

{
 "network-topology:node": [
 {
 "node-id": "hwvtep://192.168.1.115:6640/physicalswitch/br0",
 "hwvtep-node-name": "ps0",
 "hwvtep-node-description": "",
 "management-ips": [
 {
 "management-ips-key": "192.168.1.115"
 }
],
 "tunnel-ips": [
 {
 "tunnel-ips-key": "192.168.1.115"
 }
],
 "managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']"
 }
]
}

Note: “managed-by” must provided by user. We can get its value after the
step Connect to a hwvtep device/node since the node-id of hwvtep
device is provided by user. “managed-by” is a reference typed of
instance identifier. Though the instance identifier is a little
complicated for RestConf, the primary user of hwvtepsouthbound plugin
will be provider-type code such as NetVirt and the instance identifier
is much easier to write code for.

Create a logical switch

Creating a logical switch is effectively creating a logical network. For
VxLAN, it is a tunnel network with the same VNI.

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

request body:

{
 "logical-switches": [
 {
 "hwvtep-node-name": "ls0",
 "hwvtep-node-description": "",
 "tunnel-key": "10000"
 }
]
}

Create a physical locator

After the VXLAN network is ready, we will add VTEPs to it. A VTEP is
described by a physical locator.

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

request body:

{
 "termination-point": [
 {
 "tp-id": "vxlan_over_ipv4:192.168.0.116",
 "encapsulation-type": "encapsulation-type-vxlan-over-ipv4",
 "dst-ip": "192.168.0.116"
 }
]
}

The “tp-id” of locator is “{encapsualation-type}: {dst-ip}”.

Note: As far as we know, the OVSDB database does not allow the insertion
of a new locator alone. So, no locator is inserted after this request is
sent. We will trigger off the creation until other entity refer to it,
such as remote-mcast-macs.

Create a remote-mcast-macs entry

After adding a physical locator to a logical switch, we need to create a
remote-mcast-macs entry to handle unknown traffic.

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

request body:

{
 "remote-mcast-macs": [
 {
 "mac-entry-key": "00:00:00:00:00:00",
 "logical-switch-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/hwvtep:logical-switches[hwvtep:hwvtep-node-name='ls0']",
 "locator-set": [
 {
 "locator-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://219.141.189.115:6640']/network-topology:termination-point[network-topology:tp-id='vxlan_over_ipv4:192.168.0.116']"
 }
]
 }
]
}

The physical locator vxlan_over_ipv4:192.168.0.116 is just created
in “Create a physical locator”. It should be noted that list
“locator-set” is immutable, that is, we must provide a set of
“locator-ref” as a whole.

Note: “00:00:00:00:00:00” stands for “unknown-dst” since the type of
mac-entry-key is yang:mac and does not accept “unknown-dst”.

Create a physical port

Now we add a physical port into the physical switch
“hwvtep://192.168.1.115:6640/physicalswitch/br0”. The port is attached
with a physical server or an L2 network and with the vlan 100.

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640%2Fphysicalswitch%2Fbr0

{
 "network-topology:termination-point": [
 {
 "tp-id": "port0",
 "hwvtep-node-name": "port0",
 "hwvtep-node-description": "",
 "vlan-bindings": [
 {
 "vlan-id-key": "100",
 "logical-switch-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/hwvtep:logical-switches[hwvtep:hwvtep-node-name='ls0']"
 }
]
 }
]
}

At this point, we have completed the basic configuration.

Typically, hwvtep devices learn local MAC addresses automatically. But
they also support getting MAC address entries from ODL.

Create a local-mcast-macs entry

It is similar to Create a remote-mcast-macs entry.

Create a remote-ucast-macs

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

request body:

{
 "remote-ucast-macs": [
 {
 "mac-entry-key": "11:11:11:11:11:11",
 "logical-switch-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/hwvtep:logical-switches[hwvtep:hwvtep-node-name='ls0']",
 "ipaddr": "1.1.1.1",
 "locator-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/network-topology:termination-point[network-topology:tp-id='vxlan_over_ipv4:192.168.0.116']"
 }
]
}

Create a local-ucast-macs entry

This is similar to Create a remote-ucast-macs.

Switch Initiates Connection

We do not need to connect to a hwvtep device/node when the switch
initiates the connection. After switches connect to ODL successfully, we
get the node-id’s of switches by reading the operational data store.
Once the node-id of a hwvtep device is received, the remaining steps are
the same as when the user initiates the connection.

References

https://wiki.opendaylight.org/view/User_talk:Pzhang

PCEP User Guide

This guide contains information on how to use the OpenDaylight Path Computation Element Configuration Protocol (PCEP) plugin.
The user should learn about PCEP basic concepts, supported capabilities, configuration and operations.

Contents

	Overview

	Running PCEP

	Active Stateful PCE

	Test tools

	Troubleshooting

	References

Overview

This section provides a high-level overview of the PCEP, SDN use-cases and OpenDaylight implementation.

Contents

	Path Computation Element Communication Protocol

	PCEP in SDN

	OpenDaylight PCEP plugin

	List of supported capabilities

Path Computation Element Communication Protocol

The Path Computation Element (PCE) Communication Protocol (PCEP) is used for communication between a Path Computation Client (PCC) and a PCE in context of MPLS and GMPLS Traffic Engineering (TE) Label Switched Paths (LSPs).
This interaction include path computation requests and computation replies.
The PCE operates on a network graph, built from the (Traffic Engineering Database) TED, in order to compute paths based on the path computation request issued by the PCC.
The path computation request includes the source and destination of the path and set of constrains to be applied during the computation.
The PCE response contains the computed path or the computation failure reason.
The PCEP operates on top the TCP, which provides reliable communication.

[image: PCEP]
PCE-based architecture.

PCEP in SDN

The Path Computation Element perfectly fits into the centralized SDN controller architecture.
The PCE’s knowledge of the availability of network resources (i.e. TED) and active LSPs awareness (LSP-DB) allows to perform automated application-driven network operations:

	LSP Re-optimization

	Resource defragmentation

	Link failure restoration

	Auto-bandwidth adjustment

	Bandwidth scheduling

	Shared Risk Link Group (SRLG) diversity maintenance

OpenDaylight PCEP plugin

The OpenDaylight PCEP plugin provides all basic service units necessary to build-up a PCE-based controller.
In addition, it offers LSP management functionality for Active Stateful PCE - the cornerstone for majority of PCE-enabled SDN solutions.
It consists of the following components:

	Protocol library

	PCEP session handling

	Stateful PCE LSP-DB

	Active Stateful PCE LSP Operations

[image: PCEP plugin]
OpenDaylight PCEP plugin overview.

Important

The PCEP plugin does not provide path computational functionality and does not build TED.

List of supported capabilities

	RFC5440 [https://tools.ietf.org/html/rfc5440] - Path Computation Element (PCE) Communication Protocol (PCEP)

	RFC5455 [https://tools.ietf.org/html/rfc5455] - Diffserv-Aware Class-Type Object for the Path Computation Element Communication Protocol

	RFC5520 [https://tools.ietf.org/html/rfc5520] - Preserving Topology Confidentiality in Inter-Domain Path Computation Using a Path-Key-Based Mechanism

	RFC5521 [https://tools.ietf.org/html/rfc5521] - Extensions to the Path Computation Element Communication Protocol (PCEP) for Route Exclusions

	RFC5541 [https://tools.ietf.org/html/rfc5541] - Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)

	RFC5557 [https://tools.ietf.org/html/rfc5557] - Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global Concurrent Optimization

	RFC5886 [https://tools.ietf.org/html/rfc5886] - A Set of Monitoring Tools for Path Computation Element (PCE)-Based Architecture

	RFC7470 [https://tools.ietf.org/html/rfc7470] - Conveying Vendor-Specific Constraints in the Path Computation Element Communication Protocol

	RFC7896 [https://tools.ietf.org/html/rfc7896] - Update to the Include Route Object (IRO) Specification in the Path Computation Element Communication Protocol (PCEP)

	draft-ietf-pce-stateful-pce [https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-16] - PCEP Extensions for Stateful PCE

	draft-ietf-pce-pce-initiated-lsp [https://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp-07] - PCEP Extensions for PCE-initiated LSP Setup in a Stateful PCE Model

	draft-ietf-pce-segment-routing [https://tools.ietf.org/html/draft-ietf-pce-segment-routing-07] - PCEP Extension for segment routing

	draft-ietf-pce-lsp-setup-type [https://tools.ietf.org/html/draft-ietf-pce-lsp-setup-type-03] - PCEP Extension for path setup type

	draft-ietf-pce-stateful-sync-optimizations [https://tools.ietf.org/html/draft-ietf-pce-stateful-sync-optimizations-05] - Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE

	draft-sivabalan-pce-binding-label-sid [https://tools.ietf.org/html/draft-sivabalan-pce-binding-label-sid-01] - Carrying Binding Label/Segment-ID in PCE-based Networks

	draft-ietf-pce-pceps [https://tools.ietf.org/html/draft-ietf-pce-pceps-10] - Secure Transport for PCEP

Running PCEP

This section explains how to install PCEP plugin.

	Install PCEP feature - odl-bgpcep-pcep.
Also, for sake of this sample, it is required to install RESTCONF.
In the Karaf console, type command:

feature:install odl-restconf odl-bgpcep-pcep

	The PCEP plugin contains a default configuration, which is applied after the feature starts up.
One instance of PCEP plugin is created (named pcep-topology), and its presence can be verified via REST:

URL: restconf/operational/network-topology:network-topology/topology/pcep-topology

Method: GET

Response Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>pcep-topology</topology-id>
 <topology-types>
 <topology-pcep xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep"></topology-pcep>
 </topology-types>
</topology>

Active Stateful PCE

The PCEP extension for Stateful PCE brings a visibility of active LSPs to PCE, in order to optimize path computation, while considering individual LSPs and their interactions.
This requires state synchronization mechanism between PCE and PCC.
Moreover, Active Stateful PCE is capable to address LSP parameter changes to the PCC.

Contents

	Configuration

	MD5 authentication configuration

	LSP State Database

	LSP-DB API

	LSP Delegation

	LSP Update

	PCE-initiated LSP Setup

	Configuration

	LSP Instantiation

	LSP Deletion

	PCE-initiated LSP Delegation

	Segment Routing

	Configuration

	LSP Operations for PCEP SR

	LSP State Synchronization Optimization Procedures

	Configuration

	State Synchronization Avoidance

	Incremental State Synchronization

	PCE-triggered Initial Synchronization

	PCE-triggered Re-synchronization

Configuration

This capability is enabled by default. No additional configuration is required.

MD5 authentication configuration

The OpenDaylight PCEP implementation is supporting TCP MD5 for authentication.
Sample configuration below shows how to set authentication password for a particular PCC.
It is required to install odl-netconf-connector-ssh feature first.

URL: /restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-pcep-topology-provider-cfg:pcep-topology-provider/pcep-topology

Method: PUT

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 <module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">x:pcep-topology-provider</type>
 <name>pcep-topology</name>
 <data-provider xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">x:binding-async-data-broker</type>
 <name>pingpong-binding-data-broker</name>
 </data-provider>
 <dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:pcep">x:pcep-dispatcher</type>
 <name>global-pcep-dispatcher</name>
 </dispatcher>
 <rpc-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">x:binding-rpc-registry</type>
 <name>binding-rpc-broker</name>
 </rpc-registry>
 <scheduler xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:programming:spi">x:instruction-scheduler</type>
 <name>global-instruction-scheduler</name>
 </scheduler>
 <stateful-plugin xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <type>pcep-topology-stateful</type>
 <name>stateful07</name>
 </stateful-plugin>
 <topology-id xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">pcep-topology</topology-id>
 <client xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <address>43.43.43.43</address>
 <password>topsecret</password>
 </client>
 </module>

@line 26: address - A PCC IP address.

@line 27: password - MD5 authentication phrase.

Warning

The PCE (pcep-topology-provider) configuration is going to be changed in Carbon release - moving to configuration datastore.

LSP State Database

The LSP State Database (LSP-DB) contains an information about all LSPs and their attributes.
The LSP state is synchronized between the PCC and PCE.
First, initial LSP state synchronization is performed once the session between PCC and PCE is established in order to learn PCC’s LPSs.
This step is a prerequisite to following LSPs manipulation operations.

[image: LSP State synchronization]
LSP State Synchronization.

LSP-DB API

path-computation-client
 +--ro reported-lsp* [name]
 +--ro name string
 +--ro path* [lsp-id]
 | +--ro lsp-id rsvp:lsp-id
 | +--ro ero
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro subobject*
 | | +--ro loose boolean
 | | +--ro (subobject-type)?
 | | +--:(as-number-case)
 | | | +--ro as-number
 | | | +--ro as-number inet:as-number
 | | +--:(ip-prefix-case)
 | | | +--ro ip-prefix
 | | | +--ro ip-prefix inet:ip-prefix
 | | +--:(label-case)
 | | | +--ro label
 | | | +--ro uni-directional boolean
 | | | +--ro (label-type)?
 | | | +--:(type1-label-case)
 | | | | +--ro type1-label
 | | | | +--ro type1-label uint32
 | | | +--:(generalized-label-case)
 | | | | +--ro generalized-label
 | | | | +--ro generalized-label binary
 | | | +--:(waveband-switching-label-case)
 | | | +--ro waveband-switching-label
 | | | +--ro end-label uint32
 | | | +--ro start-label uint32
 | | | +--ro waveband-id uint32
 | | +--:(srlg-case)
 | | | +--ro srlg
 | | | +--ro srlg-id srlg-id
 | | +--:(unnumbered-case)
 | | | +--ro unnumbered
 | | | +--ro router-id uint32
 | | | +--ro interface-id uint32
 | | +--:(exrs-case)
 | | | +--ro exrs
 | | | +--ro exrs*
 | | | +--ro mandatory? boolean
 | | | +--ro attribute enumeration
 | | | +--ro (subobject-type)?
 | | | +--:(as-number-case)
 | | | | +--ro as-number
 | | | | +--ro as-number inet:as-number
 | | | +--:(ip-prefix-case)
 | | | | +--ro ip-prefix
 | | | | +--ro ip-prefix inet:ip-prefix
 | | | +--:(label-case)
 | | | | +--ro label
 | | | | +--ro uni-directional boolean
 | | | | +--ro (label-type)?
 | | | | +--:(type1-label-case)
 | | | | | +--ro type1-label
 | | | | | +--ro type1-label uint32
 | | | | +--:(generalized-label-case)
 | | | | | +--ro generalized-label
 | | | | | +--ro generalized-label binary
 | | | | +--:(waveband-switching-label-case)
 | | | | +--ro waveband-switching-label
 | | | | +--ro end-label uint32
 | | | | +--ro start-label uint32
 | | | | +--ro waveband-id uint32
 | | | +--:(srlg-case)
 | | | | +--ro srlg
 | | | | +--ro srlg-id srlg-id
 | | | +--:(unnumbered-case)
 | | | +--ro unnumbered
 | | | +--ro router-id uint32
 | | | +--ro interface-id uint32
 | | +--:(path-key-case)
 | | +--ro path-key
 | | +--ro pce-id pce-id
 | | +--ro path-key path-key
 | +--ro lspa
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro hold-priority? uint8
 | | +--ro setup-priority? uint8
 | | +--ro local-protection-desired? boolean
 | | +--ro label-recording-desired? boolean
 | | +--ro se-style-desired? boolean
 | | +--ro session-name? string
 | | +--ro include-any? attribute-filter
 | | +--ro exclude-any? attribute-filter
 | | +--ro include-all? attribute-filter
 | | +--ro tlvs
 | | +--ro vendor-information-tlv*
 | | +--ro enterprise-number? iana:enterprise-number
 | | +--ro (enterprise-specific-information)?
 | +--ro bandwidth
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro bandwidth? netc:bandwidth
 | +--ro reoptimization-bandwidth
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro bandwidth? netc:bandwidth
 | +--ro metrics*
 | | +--ro metric
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro metric-type uint8
 | | +--ro bound? boolean
 | | +--ro computed? boolean
 | | +--ro value? ieee754:float32
 | +--ro iro
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro subobject*
 | | +--ro loose boolean
 | | +--ro (subobject-type)?
 | | +--:(as-number-case)
 | | | +--ro as-number
 | | | +--ro as-number inet:as-number
 | | +--:(ip-prefix-case)
 | | | +--ro ip-prefix
 | | | +--ro ip-prefix inet:ip-prefix
 | | +--:(label-case)
 | | | +--ro label
 | | | +--ro uni-directional boolean
 | | | +--ro (label-type)?
 | | | +--:(type1-label-case)
 | | | | +--ro type1-label
 | | | | +--ro type1-label uint32
 | | | +--:(generalized-label-case)
 | | | | +--ro generalized-label
 | | | | +--ro generalized-label binary
 | | | +--:(waveband-switching-label-case)
 | | | +--ro waveband-switching-label
 | | | +--ro end-label uint32
 | | | +--ro start-label uint32
 | | | +--ro waveband-id uint32
 | | +--:(srlg-case)
 | | | +--ro srlg
 | | | +--ro srlg-id srlg-id
 | | +--:(unnumbered-case)
 | | | +--ro unnumbered
 | | | +--ro router-id uint32
 | | | +--ro interface-id uint32
 | | +--:(exrs-case)
 | | | +--ro exrs
 | | | +--ro exrs*
 | | | +--ro mandatory? boolean
 | | | +--ro attribute enumeration
 | | | +--ro (subobject-type)?
 | | | +--:(as-number-case)
 | | | | +--ro as-number
 | | | | +--ro as-number inet:as-number
 | | | +--:(ip-prefix-case)
 | | | | +--ro ip-prefix
 | | | | +--ro ip-prefix inet:ip-prefix
 | | | +--:(label-case)
 | | | | +--ro label
 | | | | +--ro uni-directional boolean
 | | | | +--ro (label-type)?
 | | | | +--:(type1-label-case)
 | | | | | +--ro type1-label
 | | | | | +--ro type1-label uint32
 | | | | +--:(generalized-label-case)
 | | | | | +--ro generalized-label
 | | | | | +--ro generalized-label binary
 | | | | +--:(waveband-switching-label-case)
 | | | | +--ro waveband-switching-label
 | | | | +--ro end-label uint32
 | | | | +--ro start-label uint32
 | | | | +--ro waveband-id uint32
 | | | +--:(srlg-case)
 | | | | +--ro srlg
 | | | | +--ro srlg-id srlg-id
 | | | +--:(unnumbered-case)
 | | | +--ro unnumbered
 | | | +--ro router-id uint32
 | | | +--ro interface-id uint32
 | | +--:(path-key-case)
 | | +--ro path-key
 | | +--ro pce-id pce-id
 | | +--ro path-key path-key
 | +--ro rro
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro subobject*
 | | +--ro protection-available? boolean
 | | +--ro protection-in-use? boolean
 | | +--ro (subobject-type)?
 | | +--:(ip-prefix-case)
 | | | +--ro ip-prefix
 | | | +--ro ip-prefix inet:ip-prefix
 | | +--:(label-case)
 | | | +--ro label
 | | | +--ro uni-directional boolean
 | | | +--ro (label-type)?
 | | | | +--:(type1-label-case)
 | | | | | +--ro type1-label
 | | | | | +--ro type1-label uint32
 | | | | +--:(generalized-label-case)
 | | | | | +--ro generalized-label
 | | | | | +--ro generalized-label binary
 | | | | +--:(waveband-switching-label-case)
 | | | | +--ro waveband-switching-label
 | | | | +--ro end-label uint32
 | | | | +--ro start-label uint32
 | | | | +--ro waveband-id uint32
 | | | +--ro global? boolean
 | | +--:(unnumbered-case)
 | | | +--ro unnumbered
 | | | +--ro router-id uint32
 | | | +--ro interface-id uint32
 | | +--:(path-key-case)
 | | +--ro path-key
 | | +--ro pce-id pce-id
 | | +--ro path-key path-key
 | +--ro xro
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro flags bits
 | | +--ro subobject*
 | | +--ro mandatory? boolean
 | | +--ro attribute enumeration
 | | +--ro (subobject-type)?
 | | +--:(as-number-case)
 | | | +--ro as-number
 | | | +--ro as-number inet:as-number
 | | +--:(ip-prefix-case)
 | | | +--ro ip-prefix
 | | | +--ro ip-prefix inet:ip-prefix
 | | +--:(label-case)
 | | | +--ro label
 | | | +--ro uni-directional boolean
 | | | +--ro (label-type)?
 | | | +--:(type1-label-case)
 | | | | +--ro type1-label
 | | | | +--ro type1-label uint32
 | | | +--:(generalized-label-case)
 | | | | +--ro generalized-label
 | | | | +--ro generalized-label binary
 | | | +--:(waveband-switching-label-case)
 | | | +--ro waveband-switching-label
 | | | +--ro end-label uint32
 | | | +--ro start-label uint32
 | | | +--ro waveband-id uint32
 | | +--:(srlg-case)
 | | | +--ro srlg
 | | | +--ro srlg-id srlg-id
 | | +--:(unnumbered-case)
 | | +--ro unnumbered
 | | +--ro router-id uint32
 | | +--ro interface-id uint32
 | +--ro of
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro code of-id
 | | +--ro tlvs
 | | +--ro vendor-information-tlv*
 | | +--ro enterprise-number? iana:enterprise-number
 | | +--ro (enterprise-specific-information)?
 | +--ro class-type
 | +--ro processing-rule? boolean
 | +--ro ignore? boolean
 | +--ro class-type class-type
 +--ro metadata
 +--ro lsp
 | +--ro processing-rule? boolean
 | +--ro ignore? boolean
 | +--ro tlvs
 | | +--ro lsp-error-code
 | | | +--ro error-code? uint32
 | | +--ro lsp-identifiers
 | | | +--ro lsp-id? rsvp:lsp-id
 | | | +--ro tunnel-id? rsvp:tunnel-id
 | | | +--ro (address-family)?
 | | | +--:(ipv4-case)
 | | | | +--ro ipv4
 | | | | +--ro ipv4-tunnel-sender-address inet:ipv4-address
 | | | | +--ro ipv4-extended-tunnel-id rsvp:ipv4-extended-tunnel-id
 | | | | +--ro ipv4-tunnel-endpoint-address inet:ipv4-address
 | | | +--:(ipv6-case)
 | | | +--ro ipv6
 | | | +--ro ipv6-tunnel-sender-address inet:ipv6-address
 | | | +--ro ipv6-extended-tunnel-id rsvp:ipv6-extended-tunnel-id
 | | | +--ro ipv6-tunnel-endpoint-address inet:ipv6-address
 | | +--ro rsvp-error-spec
 | | | +--ro (error-type)?
 | | | +--:(rsvp-case)
 | | | | +--ro rsvp-error
 | | | +--:(user-case)
 | | | +--ro user-error
 | | +--ro symbolic-path-name
 | | | +--ro path-name? symbolic-path-name
 | | o--ro vs-tlv
 | | | +--ro enterprise-number? iana:enterprise-number
 | | | +--ro (vendor-payload)?
 | | +--ro vendor-information-tlv*
 | | | +--ro enterprise-number? iana:enterprise-number
 | | | +--ro (enterprise-specific-information)?
 | | +--ro path-binding
 | | x--ro binding-type? uint8
 | | x--ro binding-value? binary
 | | +--ro (binding-type-value)?
 | | +--:(mpls-label)
 | | | +--ro mpls-label? netc:mpls-label
 | | +--:(mpls-label-entry)
 | | +--ro label? netc:mpls-label
 | | +--ro traffic-class? uint8
 | | +--ro bottom-of-stack? boolean
 | | +--ro time-to-live? uint8
 | +--ro plsp-id? plsp-id
 | +--ro delegate? boolean
 | +--ro sync? boolean
 | +--ro remove? boolean
 | +--ro administrative? boolean
 | +--ro operational? operational-status
 +--ro path-setup-type
 +--ro pst? uint8

The LSP-DB is accessible via RESTCONF.
The PCC’s LSPs are stored in the pcep-topology while the session is active.
In a next example, there is one PCEP session with PCC identified by its IP address (43.43.43.43) and one reported LSP (foo).

URL: /restconf/operational/network-topology:network-topology/topology/pcep-topology/node/pcc:%2F%2F43.43.43.43

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	<node>
 <node-id>pcc://43.43.43.43</node-id>
 <path-computation-client>
 <ip-address>43.43.43.43</ip-address>
 <state-sync>synchronized</state-sync>
 <stateful-tlv>
 <stateful>
 <lsp-update-capability>true</lsp-update-capability>
 </stateful>
 </stateful-tlv>
 <reported-lsp>
 <name>foo</name>
 <lsp>
 <operational>up</operational>
 <sync>true</sync>
 <plsp-id>1</plsp-id>
 <create>false</create>
 <administrative>true</administrative>
 <remove>false</remove>
 <delegate>true</delegate>
 <tlvs>
 <lsp-identifiers>
 <ipv4>
 <ipv4-tunnel-sender-address>43.43.43.43</ipv4-tunnel-sender-address>
 <ipv4-tunnel-endpoint-address>39.39.39.39</ipv4-tunnel-endpoint-address>
 <ipv4-extended-tunnel-id>39.39.39.39</ipv4-extended-tunnel-id>
 </ipv4>
 <tunnel-id>1</tunnel-id>
 <lsp-id>1</lsp-id>
 </lsp-identifiers>
 <symbolic-path-name>
 <path-name>Zm9v</path-name>
 </symbolic-path-name>
 </tlvs>
 </lsp>
 <ero>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>201.20.160.40/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>195.20.160.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>39.39.39.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 </ero>
 </reported-lsp>
 </path-computation-client>
</node>

@line 2: node-id The PCC identifier.

@line 4: ip-address IP address of the PCC.

@line 5: state-sync Synchronization status of the PCC’s LSPs. The synchronized indicates the State Synchronization is done.

@line 8: lsp-update-capability - Indicates that PCC allows LSP modifications.

@line 12: name - Textual representation of LPS’s name.

@line 14: operational - Represent operational status of the LSP:

	down - not active.

	up - signaled.

	active - up and carrying traffic.

	going-down - LSP is being torn down, resources are being released.

	going-up - LSP is being signaled.

@line 15: sync - The flag set by PCC during LSPs State Synchronization.

@line 16: plsp-id - A PCEP-specific identifier for the LSP. It is assigned by PCC and it is constant for a lifetime of a PCEP session.

@line 17: create - The false indicates that LSP is PCC-initiated.

@line 18: administrative - The flag indicates target operational status of the LSP.

@line 20: delegate - The delegate flag indicates that the PCC is delegating the LSP to the PCE.

@line 24: ipv4-tunnel-sender-address - Contains the sender node’s IP address.

@line 25: ipv4-tunnel-endpoint-address - Contains the egress node’s IP address.

@line 26: ipv4-extended-tunnel-id - The Extended Tunnel ID identifier.

@line 28: tunnel-id - The Tunnel ID identifier.

@line 29: lsp-id - The LSP ID identifier.

@line 32: path-name - The symbolic name for the LSP.

@line 36: ero - The Explicit Route Object is encoding the path of the TE LSP through the network.

LSP Delegation

The LSP control delegations is an mechanism, where PCC grants to a PCE the temporary right in order to modify LSP attributes.
The PCC can revoke the delegation or the PCE may waive the delegation at any time.
The LSP control is delegated to at most one PCE at the same time.

[image: Returning a Delegation]
Returning a Delegation.

Following RPC example illustrates a request for the LSP delegation give up:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	<input>
 <node>pcc://43.43.43.43</node>
 <name>foo</name>
 <arguments>
 <lsp xmlns:stateful="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>false</delegate>
 <administrative>true</administrative>
 <tlvs>
 <symbolic-path-name>
 <path-name>Zm9v</path-name>
 </symbolic-path-name>
 </tlvs>
 </lsp>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP.

@line 6: delegate - Delegation flag set false in order to return the LSP delegation.

@line 10: path-name - The Symbolic Path Name TLV must be present when sending a request to give up the delegation.

LSP Update

The LSP Update Request is an operation where a PCE requests a PCC to update attributes of an LSP and to rebuild the LSP with updated attributes.
In order to update LSP, the PCE must hold a LSP delegation.
The LSP update is done in make-before-break fashion - first, new LSP is initiated and then the old LSP is torn down.

[image: Active Stateful PCE LSP Update]
Active Stateful PCE LSP Update.

Following RPC example shows a request for the LSP update:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>foo</name>
 <arguments>
 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>true</delegate>
 <administrative>true</administrative>
 </lsp>
 <ero>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>200.20.160.41/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>196.20.160.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>39.39.39.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 </ero>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP to be updated.

@line 6: delegate - Delegation flag set true in order to keep the LSP control.

@line 7: administrative - Desired administrative status of the LSP is active.

@line 9: ero - This LSP attribute is changed.

PCE-initiated LSP Setup

The PCEP Extension for PCE-initiated LSP Setup allows PCE to request a creation and deletion of LSPs.

Configuration

This capability is enabled by default. No additional configuration is required.

LSP Instantiation

The PCE can request LSP creation.
The LSP instantiation is done by sending an LSP Initiate Message to PCC.
The PCC assign delegation to PCE which triggered creation.
PCE-initiated LSPs are identified by Create flag.

[image: LSP instantiation]
LSP instantiation.

Following RPC example shows a request for the LSP initiation:

URL: /restconf/operations/network-topology-pcep:add-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>update-tunel</name>
 <arguments>
 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>true</delegate>
 <administrative>true</administrative>
 </lsp>
 <endpoints-obj>
 <ipv4>
 <source-ipv4-address>43.43.43.43</source-ipv4-address>
 <destination-ipv4-address>39.39.39.39</destination-ipv4-address>
 </ipv4>
 </endpoints-obj>
 <ero>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>201.20.160.40/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>195.20.160.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>39.39.39.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 </ero>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP to be created.

@line 8: endpoints-obj - The END-POINT Object is mandatory for an instantiation request of an RSVP-signaled LSP. It contains source and destination addresses for provisioning the LSP.

@line 14: ero - The ERO object is mandatory for LSP initiation request.

LSP Deletion

The PCE may request a deletion of PCE-initiated LSPs.
The PCE must be delegation holder for this particular LSP.

[image: LSP deletion.]
LSP deletion.

Following RPC example shows a request for the LSP deletion:

URL: /restconf/operations/network-topology-pcep:remove-lsp

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>update-tunel</name>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP to be removed.

PCE-initiated LSP Delegation

The PCE-initiated LSP control is delegated to the PCE which requested the initiation.
The PCC cannot revoke delegation of PCE-initiated LSP.
When PCE returns delegation for such LSP or PCE fails, then the LSP become orphan and can be removed by a PCC after some time.
The PCE may ask for a delegation of the orphan LSP.

[image: LSP re-delegation]
Orphan PCE-initiated LSP - control taken by PCE.

Following RPC example illustrates a request for the LSP delegation:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	<input>
 <node>pcc://43.43.43.43</node>
 <name>update-tunel</name>
 <arguments>
 <lsp xmlns:stateful="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>true</delegate>
 <administrative>true</administrative>
 <tlvs>
 <symbolic-path-name>
 <path-name>dXBkYXRlLXR1bmVs</path-name>
 </symbolic-path-name>
 </tlvs>
 </lsp>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP.

@line 6: delegate - Delegation flag set true in order to take the LSP delegation.

@line 10: path-name - The Symbolic Path Name TLV must be present when sending a request to take a delegation.

Segment Routing

The PCEP Extensions for Segment Routing (SR) allow a stateful PCE to compute and initiate TE paths in SR networks.
The SR path is defined as an order list of segments.
Segment Routing architecture can be directly applied to the MPLS forwarding plane without changes.
Segment Identifier (SID) is encoded as a MPLS label.

Configuration

This capability is enabled by default.
In PCEP-SR draft version 6, SR Explicit Route Object/Record Route Object subobjects IANA code points change was proposed.
In order to use the latest code points, a configuration should be changed in following way:

URL: /restconf/config/pcep-segment-routing-app-config:pcep-segment-routing-app-config

Method: PUT

Content-Type: application/xml

Request Body:

	1
2
3

	<pcep-segment-routing-config xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:segment-routing-app-config">
 <iana-sr-subobjects-type>true</iana-sr-subobjects-type>
</pcep-segment-routing-config>

LSP Operations for PCEP SR

The PCEP SR extension defines new ERO subobject - SR-ERO subobject capable of carrying a SID.

sr-ero-type
 +---- c-flag? boolean
 +---- m-flag? boolean
 +---- sid-type? sid-type
 +---- sid? uint32
 +---- (nai)?
 +--:(ip-node-id)
 | +---- ip-address inet:ip-address
 +--:(ip-adjacency)
 | +---- local-ip-address inet:ip-address
 | +---- remote-ip-address inet:ip-address
 +--:(unnumbered-adjacency)
 +---- local-node-id uint32
 +---- local-interface-id uint32
 +---- remote-node-id uint32
 +---- remote-interface-id uint32

Following RPC example illustrates a request for the SR-TE LSP creation:

URL: /restconf/operations/network-topology-pcep:add-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>sr-path</name>
 <arguments>
 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>true</delegate>
 <administrative>true</administrative>
 </lsp>
 <endpoints-obj>
 <ipv4>
 <source-ipv4-address>43.43.43.43</source-ipv4-address>
 <destination-ipv4-address>39.39.39.39</destination-ipv4-address>
 </ipv4>
 </endpoints-obj>
 <path-setup-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <pst>1</pst>
 </path-setup-type>
 <ero>
 <subobject>
 <loose>false</loose>
 <sid-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">ipv4-node-id</sid-type>
 <m-flag xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">true</m-flag>
 <sid xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">24001</sid>
 <ip-address xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">39.39.39.39</ip-address>
 </subobject>
 </ero>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 16: path-setup-type - Set 1 for SR-TE LSP

@line 21: ipv4-node-id - The SR-ERO subobject represents IPv4 Node ID NAI.

@line 22: m-flag - The SID value represents an MPLS label.

@line 23: sid - The Segment Identifier.

Following RPC example illustrates a request for the SR-TE LSP update including modified path:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>update-tunnel</name>
 <arguments>
 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>true</delegate>
 <administrative>true</administrative>
 </lsp>
 <path-setup-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <pst>1</pst>
 </path-setup-type>
 <ero>
 <subobject>
 <loose>false</loose>
 <sid-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">ipv4-node-id</sid-type>
 <m-flag xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">true</m-flag>
 <sid xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">24002</sid>
 <ip-address xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">200.20.160.41</ip-address>
 </subobject>
 <subobject>
 <loose>false</loose>
 <sid-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">ipv4-node-id</sid-type>
 <m-flag xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">true</m-flag>
 <sid xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">24001</sid>
 <ip-address xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">39.39.39.39</ip-address>
 </subobject>
 </ero>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

LSP State Synchronization Optimization Procedures

This extension bring optimizations for state synchronization:

	State Synchronization Avoidance

	Incremental State Synchronization

	PCE-triggered Initial Synchronization

	PCE-triggered Re-synchronization

Configuration

This capability is enabled by default. No additional configuration is required.

State Synchronization Avoidance

The State Synchronization Avoidance procedure is intended to skip state synchronization if the state has survived and not changed during session restart.

[image: Sync skipped]
State Synchronization Skipped.

Incremental State Synchronization

The Incremental State Synchronization procedure is intended to do incremental (delta) state synchronization when possible.

[image: Sync incremental]
Incremental Synchronization Procedure.

PCE-triggered Initial Synchronization

The PCE-triggered Initial Synchronization procedure is intended to do let PCE control the timing of the initial state synchronization.

[image: Initial Sync]
PCE-triggered Initial State Synchronization Procedure.

Following RPC example illustrates a request for the initial synchronization:

URL: /restconf/operations/network-topology-pcep:trigger-sync

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

PCE-triggered Re-synchronization

The PCE-triggered Re-synchronization: To let PCE re-synchronize the state for sanity check.

[image: Re-sync]
PCE-triggered Re-synchronization Procedure.

Following RPC example illustrates a request for the LSP re-synchronization:

URL: /restconf/operations/network-topology-pcep:trigger-sync

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>update-lsp</name>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 3: name - The LSP name. If this parameter is omitted, re-synchronization is requested for all PCC’s LSPs.

Test tools

PCC Mock

The PCC Mock is a stand-alone Java application purposed to simulate a PCC(s).
The simulator is capable to report sample LSPs, respond to delegation, LSP management operations and synchronization optimization procedures.
This application is not part of the OpenDaylight Karaf distribution, however it can be downloaded from OpenDaylight’s Nexus (use latest release version):

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/bgpcep/pcep-pcc-mock

Usage

The application can be run from command line:

java -jar pcep-pcc-mock-*-executable.jar

with optional input parameters:

--local-address <Address:Port> (optional, default 127.0.0.1)
 The first PCC IP address. If more PCCs are required, the IP address will be incremented. Port number can be optionally specified.

--remote-address <Address1:Port1,Address2:Port2,Address3:Port3,...> (optional, default 127.0.0.1:4189)
 The list of IP address for the PCE servers. Port number can be optionally specified, otherwise default port number 4189 is used.

--pcc <N> (optional, default 1)
 Number of mocked PCC instances.

--lsp <N> (optional, default 1)
 Number of tunnels (LSPs) reported per PCC, might be zero.

--pcerr (optional flag)
 If the flag is present, response with PCErr, otherwise PCUpd.

--log-level <LEVEL> (optional, default INFO)
 Set logging level for pcc-mock.

-d, --deadtimer <0..255> (optional, default 120)
 DeadTimer value in seconds.

-ka, --keepalive <0.255> (optional, default 30)
 KeepAlive timer value in seconds.

--password <password> (optional)
 If the password is present, it is used in TCP MD5 signature, otherwise plain TCP is used.

--reconnect <seconds> (optional)
 If the argument is present, the value in seconds, is used as a delay before each new reconnect (initial connect or connection re-establishment) attempt.
 The number of reconnect attempts is unlimited. If the argument is omitted, pcc-mock is not trying to reconnect.

--redelegation-timeout <seconds> (optional, default 0)
 The timeout starts when LSP delegation is returned or PCE fails, stops when LSP is re-delegated to PCE.
 When timeout expires, LSP delegation is revoked and held by PCC.

--state-timeout <seconds> (optional, default -1 (disabled))
 The timeout starts when LSP delegation is returned or PCE fails, stops when LSP is re-delegated to PCE.
 When timeout expires, PCE-initiated LSP is removed.

--state-sync-avoidance <disconnect_after_x_seconds> <reconnect_after_x_seconds> <dbVersion>
 Synchronization avoidance capability enabled.
 - disconnect_after_x_seconds: seconds that will pass until disconnections is forced. If set to smaller number than 1, disconnection wont be performed.
 - reconnect_after_x_seconds: seconds that will pass between disconnection and new connection attempt. Only happens if disconnection has been performed.
 - dbVersion: dbVersion used in new Open and must be always equal or bigger than LSP. If equal than LSP skip synchronization will be performed,
 if not full synchronization will be performed taking in account new starting dbVersion desired.
 --incremental-sync-procedure <disconnect_after_x_seconds> <reconnect_after_x_seconds> <dbVersion>
 Incremental synchronization capability enabled.
 - dbVersion: dbVersion used in new Open and must be always bigger than LSP. Incremental synchronization will be performed taking in account new starting dbVersion desired.

 --triggered-initial-sync
 PCE-triggered synchronization capability enabled. Can be combined combined with state-sync-avoidance/incremental-sync-procedure.

 --triggered-re-sync
 PCE-triggered re-synchronization capability enabled.

Data Change Counter Tool

Data Change Counter tool registers a Data Change Listener to a specified topology’s subtree.
This will allow us to know the quantity of changes produced under it, with each data change event counter will be incremented.

Installation

Installing data change counter tool

feature:install odl-restconf odl-bgpcep-data-change-counter

Configuration

Once we set the configuration, a new data change counter will be created and registers to example-linkstate-topology.

Important

Clustering - Each Counter Identifier should be unique.

URL: /restconf/config/odl-data-change-counter-config:data-change-counter-config/data-change-counter

Method: PUT

Content-Type: application/xml

Request Body:

	1
2
3
4

	<data-change-counter-config xmlns="urn:opendaylight:params:xml:ns:yang:bgpcep:data-change-counter-config">
 <counter-id>data-change-counter</counter-id>
 <topology-name>example-linkstate-topology</topology-name>
</data-change-counter-config>

@line 2: Counter Id - Unique counter change identifier.

@line 3: Topology Name - An identifier for a topology.

Usage

Counter state for topology

URL: /restconf/operational/data-change-counter:data-change-counter/counter/data-change-counter

Method: GET

Response Body:

	1
2
3
4

	<counter xmlns="urn:opendaylight:params:xml:ns:yang:bgp-data-change-counter">
 <id>data-change-counter</id>
 <count>0</count>
</counter>

@line 2: Counter Id - Unique counter change identifier.

@line 3: Count - Number of changes under registered topology’s subtree.

Troubleshooting

This section offers advices in a case OpenDaylight PCEP plugin is not working as expected.

Contents

	PCEP is not working…

	Bug reporting

PCEP is not working…

	First of all, ensure that all required features are installed, local PCE and remote PCC configuration is correct.

To list all installed features in OpenDaylight use the following command at the Karaf console:

feature:list -i

	Check OpenDaylight Karaf logs:

From Karaf console:

log:tail

or open log file: data/log/karaf.log

Possibly, a reason/hint for a cause of the problem can be found there.

	Try to minimize effect of other OpenDaylight features, when searching for a reason of the problem.

	Try to set DEBUG severity level for PCEP logger via Karaf console commands, in order to collect more information:

log:set DEBUG org.opendaylight.protocol.pcep

log:set DEBUG org.opendaylight.bgpcep.pcep

Bug reporting

Before you report a bug, check BGPCEP Jira [https://jira.opendaylight.org/projects/BGPCEP/issues/BGPCEP-589?filter=allopenissues] to ensure same/similar bug is not already filed there.

Write an e-mail to bgpcep-users@lists.opendaylight.org and provide following information:

	State OpenDaylight version

	Describe your use-case and provide as much details related to PCEP as possible

	Steps to reproduce

	Attach Karaf log files, optionally packet captures, REST input/output

References

	A Path Computation Element (PCE)-Based Architecture [https://tools.ietf.org/html/rfc4655]

	Path Computation Element (PCE) Communication Protocol Generic Requirements [https://tools.ietf.org/html/rfc4657]

	Unanswered Questions in the Path Computation Element Architecture [https://tools.ietf.org/html/rfc7399]

	A PCE-Based Architecture for Application-Based Network Operations [https://tools.ietf.org/html/rfc7491]

	Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic Engineering [https://tools.ietf.org/html/rfc5623]

	Applicability of a Stateful Path Computation Element (PCE) [https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-app-07]

PacketCable User Guide

Overview

These components introduce a DOCSIS QoS Gates management using the PCMM
protocol. The driver component is responsible for the PCMM/COPS/PDP
functionality required to service requests from PacketCable Provider and
FlowManager. Requests are transposed into PCMM Gate Control messages and
transmitted via COPS to the CMTS. This plugin adheres to the
PCMM/COPS/PDP functionality defined in the CableLabs specification.
PacketCable solution is an MDSAL compliant component.

PacketCable Components

PacketCable is comprised of two OpenDaylight bundles:

	Bundle

	Description

	odl-packetcable-policy-server

	Plugin that provides PCMM model
implementation based on CMTS
structure and COPS protocol.

	odl-packetcable-policy-model

	The Model provided provides a direct
mapping to the underlying QoS Gates
of CMTS.

See the PacketCable YANG
Models [https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-policy-model/src/main/yang].

Installing PacketCable

To install PacketCable, run the following feature:install command
from the Karaf CLI

feature:install odl-packetcable-policy-server-all odl-restconf odl-mdsal-apidocs

Explore and exercise the PacketCable REST API

To see the PacketCable APIs, browse to this URL:
http://localhost:8181/apidoc/explorer/index.html

Replace localhost with the IP address or hostname where OpenDaylight is
running if you are not running OpenDaylight locally on your machine.

Note

Prior to setting any PCMM gates, a CCAP must first be added.

Postman

Install the Chrome
extension [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]

Download and import sample packetcable
collection [https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-policy-server/doc/restconf-samples]

Postman Operations

[image: Postman Operations]
Postman Operations

PacketCable REST API Usage Examples

	CCAP “CONFIG” DATASTORE API STRUCTURE

	Add and view CCAPConfigDatastore(add triggers also the CCAP COPS connection):

PUT http://localhost:8181/restconf/config/packetcable:ccaps/ccap/CMTS-1

{"ccap":[
 {"ccapId":"CMTS-1",
 "amId": {
 "am-tag": 51930,
 "am-type": 1
 },
 "connection": {
 "ipAddress": "10.20.30.40",
 "port":3918
 },"subscriber-subnets": [
 "2001:4978:030d:1000:0:0:0:0/52",
 "44.137.0.0/16"
],"upstream-scns": [
 "SCNA",
 "extrm_up"
],"downstream-scns": [
 "extrm_dn",
 "ipvideo_dn",
 "SCNC"
]}
]}

GET http://localhost:8181/restconf/config/packetcable:ccaps/ccap/CMTS-1

	CCAP OPERATIONAL STATUS - GET CCAP (COPS) CONNECTION STATUS

	Shows the Operational Datastorecontents for the CCAP COPS connection.

	The status is updated when the COPS connection is initiated or after an RPC poll:

GET http://localhost:8181/restconf/operational/packetcable:ccaps/ccap/CMTS-1/
Response: 200 OK

{
 "ccap": [
 {
 "ccapId": "CMTS-1",
 "connection": {
 "error": [
 "E6-CTO: CCAP client is connected"
],
 "timestamp": "2016-03-23T14:15:54.129-05:00",
 "connected": true
 }
 }
]
}

	CCAP OPERATIONAL STATUS - RPC CCAP POLL CONNECTION

	A CCAP RPC poll returns the COPS connectivity status info and also triggers an Operational Datastore status update with the same data:

POST http://localhost:8181/restconf/operations/packetcable:ccap-poll-connection
{
 "input": {
 "ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId='CMTS-1']"
 }
}
Response: 200 OK
{
"output": {
 "response": "CMTS-1: CCAP poll complete",
 "timestamp": "2016-03-23T14:15:54.131-05:00",
 "ccap": {
 "ccapId": "CMTS-1",
 "connection": {
 "connection": {
 "error": [
 "CMTS-1: CCAP client is connected"
],
 "timestamp": "2016-03-23T14:15:54.129-05:00",
 "connected": true
 }
 }
 }
 }
}

	CCAP OPERATIONAL STATUS - RPC CCAP POLL CONNECTION (2) - CONNECTION DOWN:

POST http://localhost:8181/restconf/operations/packetcable:ccap-poll-connection
{
 "input": {
 "ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId='CMTS-1']"
 }
}
Response: 200 OK
{
"output": {
 "response": "CMTS-1: CCAP poll complete",
 "timestamp": "2016-03-23T14:15:54.131-05:00",
 "ccap": {
 "ccapId": "CMTS-1",
 "connection": {
 "error": [
 "CMTS-1: CCAP client is disconnected with error: null",
 "CMTS-1: CCAP Cops socket is closed"],
 "timestamp": "2016-03-23T14:15:54.129-05:00",
 "connected": false
 }
 }
 }
}

	CCAP OPERATIONAL STATUS - RPC CCAP SET CONNECTION

	A CCAP RPC sets the CCAP COPS connection; possible values true or false meaning that the connection should be up or down.

	RPC responds with the same info as RPC POLL CONNECTION, and also updates the Operational Datastore:

POST http://localhost:8181/restconf/operations/packetcable:ccap-set-connection
{
 "input": {
 "ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId='CMTS-1']",
 "connection": {
 "connected": true
 }
 }
}
Response: 200 OK
{
 "output": {

 "response": "CMTS-1: CCAP set complete",
 "timestamp": "2016-03-23T17:47:29.446-05:00",
 "ccap": {
 "ccapId": "CMTS-1",
 "connection": {
 "error": [
 "CMTS-1: CCAP client is connected",
 "CMTS-1: CCAP COPS socket is already open"],
 "timestamp": "2016-03-23T17:47:29.436-05:00",
 "connected": true
 }
 }
 }
}

	CCAP OPERATIONAL STATUS - RPC CCAP SET CONNECTION (2) - SHUTDOWN COPS CONNECTION:

POST http://localhost:8181/restconf/operations/packetcable:ccap-set-connection
{
 "input": {
 "ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId='E6-CTO']",
 "connection": {
 "connected": false
 }
 }
}
Response: 200 OK
{
 "output": {
 "response": "E6-CTO: CCAP set complete",
 "timestamp": "2016-03-23T17:47:29.446-05:00",
 "ccap": {
 "ccapId": "E6-CTO",
 "connection": {
 "error": [
 "E60CTO: CCAP client is disconnected with error: null"],
 "timestamp": "2016-03-23T17:47:29.436-05:00",
 "connected": false
 }
 }
 }
}

Note

A “null” in the error information means that the CCAP connection has been disconnected as a result of a RPC SET.

	GATES “CONFIG” DATASTORE API STRUCTURE CHANGED

	A CCAP RPC poll returns the gate status info, and also triggers a Operational Datastorestatus update.

	At a minimum the appIdneeds to be included in the input, subscriberIdand gateIdare optional.

	A gate status response is only included if the RPC request is done for a specific gate (subscriberIdand gateIdincluded in input).

	Add and retrieve gates to/from the Config Datastore:

PUT http://localhost:8181/restconf/config/packetcable:qos/apps/app/cto-app/subscribers/subscriber/44.137.0.12/gates/gate/gate88/

{
 "gate": [
 {
 "gateId": "gate88",
 "gate0spec": {
 "dscp-tos-overwrite": "0xa0",
 "dscp-tos-mask": "0xff"
 },
 "traffic-profile": {
 "service-class-name": "extrm_dn"
 },
 "classifiers": {
 "classifier-container": [
 {
 "classifier-id": "1",
 "classifier": {
 "srcIp": "44.137.0.0",
 "dstIp": "44.137.0.11",
 "protocol": "0",
 "srcPort": "1234",
 "dstPort": "4321",
 "tos-byte": "0xa0",
 "tos-mask": "0xe0"
 }
 }
]
 }
 }
]
}

GET http://localhost:8181/restconf/config/packetcable:qos/apps/app/cto-app/subscribers/subscriber/44.137.0.12/gates/gate/gate88/

	GATES SUPPORT MULTIPLE (UP TO FOUR) CLASSIFIERS

	Please note that there is a classifier container now that can have up to four classifiers:

PUT http://localhost:8181/restconf/config/packetcable:qos/apps/app/cto-app/subscribers/subscriber/44.137.0.12/gates/gate/gate88/
{ "gate":{
 "gateId": "gate44",
 "gate-spec": {
 "dscp-tos-overwrite": "0xa0",
 "dscp-tos-mask": "0xff" },
 "traffic-profile": {
 "service-class-name": "extrm_dn"},
 "classifiers":
 { "classifier-container":[
 { "classifier-id": "1",
 "ipv6-classifier": {
 "srcIp6": "2001:4978:030d:1100:0:0:0:0/64",
 "dstIp6": "2001:4978:030d:1000:0:0:0:0/64",
 "flow-label": "102",
 "tc-low": "0xa0",
 "tc-high": "0xc0",
 "tc-mask": "0xe0",
 "next-hdr": "256",
 "srcPort-start": "4321",
 "srcPort-end": "4322",
 "dstPort-start": "1234",
 "dstPort-end": "1235"
 }},
 { "classifier-id": "2",
 "ext-classifier" : {
 "srcIp": "44.137.0.12",
 "srcIpMask": "255.255.255.255",
 "dstIp": "10.10.10.0",
 "dstIpMask": "255.255.255.0",
 "tos-byte": "0xa0",
 "tos-mask": "0xe0",
 "protocol": "0",
 "srcPort-start": "4321",
 "srcPort-end": "4322",
 "dstPort-start": "1234",
 "dstPort-end": "1235"
 }
 }]
 }
 }
}

	CCAP OPERATIONAL STATUS - GET GATE STATUS FROM OPERATIONAL DATASTORE

	Shows the Operational Datastore contents for the gate.

	The gate status is updated at the time when the gate is configured or during an RPC poll:

GET http://localhost:8181/restconf/operational/packetcable:qos/apps/app/cto-app/subscribers/subscriber/44.137.0.12/gates/gate/gate88

Response: 200
{
 "gate":[{
 "gateId":"gate88",
 "cops-gate-usage-info": "0",
 "cops-gate-state": "Committed(4)/Other(-1)",
 "gatePath": "cto-app/44.137.0.12/gate88",
 "cops-gate-time-info": "0",
 "cops-gateId": "3e0800e9",
 "timestamp": "2016-03-24T10:30:18.763-05:00",
 "ccapId": "E6-CTO"
 }]
}

	CCAP OPERATIONAL STATUS - RPC GATE STATUS POLL

	A CCAP RPC poll returns the gate status info and also triggers an Operational Datastore status update.

	At a minimum, the appId needs to be included in the input; subscriberId and gateId are optional.

	A gate status response is only included if the RPC request is done for a specific gate (subscriberId and gateId included in input):

POST http://localhost:8181/restconf/operations/packetcable:qos-poll-gates
{
 "input": {
 "appId": "/packetcable:apps/packetcable:apps[packetcable:appId='cto-app]",
 "subscriberId": "44.137.0.11",
 "gateId": "gate44"
 }
}
Response: 200 OK
{
 "output": {
 "gate": {
 "cops-gate-usage-info": "0",
 "cops-gate-state": "Committed(4)/Other(-1)",
 "gatePath": "ctoapp/44.137.0.12/gate88",
 "cops-gate-time-info": "0",
 "cops-gateId": "1ceb0001",
 "error": [""],
 "timestamp": "2016-03-24T13:22:59.900-05:00",
 "ccapId": "E6-CTO"
 },
 "response": "cto-app/44.137.0.12/gate88: gate poll complete",
 "timestamp": "2016-03-24T13:22:59.906-05:00"
 }
}

	When multiple gates are polled (only appId or appId and subscriberId are provided), a generic response is returned and the Operational Datastore is updated in the background:

{ "output": {
 "gate": {},
 "response": "cto-app/: gate subtree poll in progress",
 "timestamp": "2016-03-24T13:25:30.471-05:00"
 }
}

Service Function Chaining

OpenDaylight Service Function Chaining (SFC) Overview

OpenDaylight Service Function Chaining (SFC) provides the ability to
define an ordered list of a network services (e.g. firewalls, load
balancers). These service are then “stitched” together in the network to
create a service chain. This project provides the infrastructure
(chaining logic, APIs) needed for ODL to provision a service chain in
the network and an end-user application for defining such chains.

	ACE - Access Control Entry

	ACL - Access Control List

	SCF - Service Classifier Function

	SF - Service Function

	SFC - Service Function Chain

	SFF - Service Function Forwarder

	SFG - Service Function Group

	SFP - Service Function Path

	RSP - Rendered Service Path

	NSH - Network Service Header

SFC User Interface

Overview

SFC User Interface (SFC-UI) is based on Dlux project. It provides an
easy way to create, read, update and delete configuration stored in
datastore. Moreover, it shows the status of all SFC features (e.g
installed, uninstalled) and Karaf log messages as well.

SFC-UI Architecture

SFC-UI operates purely by using RESTCONF.

[image: SFC-UI integration into ODL]
SFC-UI integration into ODL

Configuring SFC-UI

	Run ODL distribution (run karaf)

	In Karaf console execute: feature:install odl-sfc-ui

	Visit SFC-UI on: http://<odl_ip_address>:8181/sfc/index.html

SFC Southbound REST Plug-in

Overview

The Southbound REST Plug-in is used to send configuration from datastore
down to network devices supporting a REST API (i.e. they have a
configured REST URI). It supports POST/PUT/DELETE operations, which are
triggered accordingly by changes in the SFC data stores.

	Access Control List (ACL)

	Service Classifier Function (SCF)

	Service Function (SF)

	Service Function Group (SFG)

	Service Function Schedule Type (SFST)

	Service Function Forwarder (SFF)

	Rendered Service Path (RSP)

Southbound REST Plug-in Architecture

From the user perspective, the REST plug-in is another SFC Southbound
plug-in used to communicate with network devices.

[image: Southbound REST Plug-in integration into ODL]
Southbound REST Plug-in integration into ODL

Configuring Southbound REST Plugin

	Run ODL distribution (run karaf)

	In Karaf console execute: feature:install odl-sfc-sb-rest

	Configure REST URIs for SF/SFF through SFC User Interface or RESTCONF
(required configuration steps can be found in the tutorial stated
bellow)

Tutorial

Comprehensive tutorial on how to use the Southbound REST Plug-in and how
to control network devices with it can be found on:
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#SFC_101

SFC-OVS integration

Overview

SFC-OVS provides integration of SFC with Open vSwitch (OVS) devices.
Integration is realized through mapping of SFC objects (like SF, SFF,
Classifier, etc.) to OVS objects (like Bridge,
TerminationPoint=Port/Interface). The mapping takes care of automatic
instantiation (setup) of corresponding object whenever its counterpart
is created. For example, when a new SFF is created, the SFC-OVS plug-in
will create a new OVS bridge and when a new OVS Bridge is created, the
SFC-OVS plug-in will create a new SFF.

The feature is intended for SFC users willing to use Open vSwitch as
underlying network infrastructure for deploying RSPs (Rendered Service
Paths).

SFC-OVS Architecture

SFC-OVS uses the OVSDB MD-SAL Southbound API for getting/writing
information from/to OVS devices. From the user perspective SFC-OVS acts
as a layer between SFC datastore and OVSDB.

[image: SFC-OVS integration into ODL]
SFC-OVS integration into ODL

Configuring SFC-OVS

	Run ODL distribution (run karaf)

	In Karaf console execute: feature:install odl-sfc-ovs

	Configure Open vSwitch to use ODL as a manager, using following
command: ovs-vsctl set-manager tcp:<odl_ip_address>:6640

Tutorials

Verifying mapping from OVS to SFF

Overview

This tutorial shows the usual work flow when OVS configuration is
transformed to corresponding SFC objects (in this case SFF).

Prerequisites

	Open vSwitch installed (ovs-vsctl command available in shell)

	SFC-OVS feature configured as stated above

Instructions

	ovs-vsctl set-manager tcp:<odl_ip_address>:6640

	ovs-vsctl add-br br1

	ovs-vsctl add-port br1 testPort

Verification

	visit SFC User Interface:
http://<odl_ip_address>:8181/sfc/index.html#/sfc/serviceforwarder

	use pure RESTCONF and send GET request to URL:
http://<odl_ip_address>:8181/restconf/config/service-function-forwarder:service-function-forwarders

There should be SFF, which name will be ending with br1 and the SFF
should containt two DataPlane locators: br1 and testPort.

Verifying mapping from SFF to OVS

Overview

This tutorial shows the usual workflow during creation of OVS Bridge
with use of SFC APIs.

Prerequisites

	Open vSwitch installed (ovs-vsctl command available in shell)

	SFC-OVS feature configured as stated above

Instructions

	In shell execute: ovs-vsctl set-manager tcp:<odl_ip_address>:6640

	Send POST request to URL:
http://<odl_ip_address>:8181/restconf/operations/service-function-forwarder-ovs:create-ovs-bridge
Use Basic auth with credentials: “admin”, “admin” and set
Content-Type: application/json. The content of POST request
should be following:

{
 "input":
 {
 "name": "br-test",
 "ovs-node": {
 "ip": "<Open_vSwitch_ip_address>"
 }
 }
}

Open_vSwitch_ip_address is IP address of machine, where Open vSwitch
is installed.

Verification

In shell execute: ovs-vsctl show. There should be Bridge with name
br-test and one port/interface called br-test.

Also, corresponding SFF for this OVS Bridge should be configured, which
can be verified through SFC User Interface or RESTCONF as stated in
previous tutorial.

SFC Classifier User Guide

Overview

Description of classifier can be found in:
https://datatracker.ietf.org/doc/draft-ietf-sfc-architecture/

There are two types of classifier:

	OpenFlow Classifier

	Iptables Classifier

OpenFlow Classifier

OpenFlow Classifier implements the classification criteria based on
OpenFlow rules deployed into an OpenFlow switch. An Open vSwitch will
take the role of a classifier and performs various encapsulations such
NSH, VLAN, MPLS, etc. In the existing implementation, classifier can
support NSH encapsulation. Matching information is based on ACL for MAC
addresses, ports, protocol, IPv4 and IPv6. Supported protocols are TCP,
UDP and SCTP. Actions information in the OF rules, shall be forwarding
of the encapsulated packets with specific information related to the
RSP.

Classifier Architecture

The OVSDB Southbound interface is used to create an instance of a bridge
in a specific location (via IP address). This bridge contains the
OpenFlow rules that perform the classification of the packets and react
accordingly. The OpenFlow Southbound interface is used to translate the
ACL information into OF rules within the Open vSwitch.

Note

in order to create the instance of the bridge that takes the role of
a classifier, an “empty” SFF must be created.

Configuring Classifier

	An empty SFF must be created in order to host the ACL that contains
the classification information.

	SFF data plane locator must be configured

	Classifier interface must be manually added to SFF bridge.

Administering or Managing Classifier

Classification information is based on MAC addresses, protocol, ports
and IP. ACL gathers this information and is assigned to an RSP which
turns to be a specific path for a Service Chain.

Iptables Classifier

Classifier manages everything from starting the packet listener to
creation (and removal) of appropriate ip(6)tables rules and marking
received packets accordingly. Its functionality is available only on
Linux as it leverdges NetfilterQueue, which provides access to
packets matched by an iptables rule. Classifier requires root
privileges to be able to operate.

So far it is capable of processing ACL for MAC addresses, ports, IPv4
and IPv6. Supported protocols are TCP and UDP.

Classifier Architecture

Python code located in the project repository
sfc-py/common/classifier.py.

Note

classifier assumes that Rendered Service Path (RSP) already
exists in ODL when an ACL referencing it is obtained

	sfc_agent receives an ACL and passes it for processing to the
classifier

	the RSP (its SFF locator) referenced by ACL is requested from ODL

	if the RSP exists in the ODL then ACL based iptables rules for it are
applied

After this process is over, every packet successfully matched to an
iptables rule (i.e. successfully classified) will be NSH encapsulated
and forwarded to a related SFF, which knows how to traverse the RSP.

Rules are created using appropriate iptables command. If the Access
Control Entry (ACE) rule is MAC address related both iptables and
IPv6 tables rules re issued. If ACE rule is IPv4 address related, only
iptables rules are issued, same for IPv6.

Note

iptables raw table contains all created rules

Configuring Classifier

Classfier does’t need any configuration.

Its only requirement is that the second (2) Netfilter Queue is not
used by any other process and is avalilable for the classifier.

Administering or Managing Classifier

Classifier runs alongside sfc_agent, therefore the command for starting
it locally is:

sudo python3.4 sfc-py/sfc_agent.py --rest --odl-ip-port localhost:8181 --auto-sff-name --nfq-class

SFC OpenFlow Renderer User Guide

Overview

The Service Function Chaining (SFC) OpenFlow Renderer (SFC OF Renderer)
implements Service Chaining on OpenFlow switches. It listens for the
creation of a Rendered Service Path (RSP), and once received it programs
Service Function Forwarders (SFF) that are hosted on OpenFlow capable
switches to steer packets through the service chain.

Common acronyms used in the following sections:

	SF - Service Function

	SFF - Service Function Forwarder

	SFC - Service Function Chain

	SFP - Service Function Path

	RSP - Rendered Service Path

SFC OpenFlow Renderer Architecture

The SFC OF Renderer is invoked after a RSP is created using an MD-SAL
listener called SfcOfRspDataListener. Upon SFC OF Renderer
initialization, the SfcOfRspDataListener registers itself to listen
for RSP changes. When invoked, the SfcOfRspDataListener processes
the RSP and calls the SfcOfFlowProgrammerImpl to create the
necessary flows in the Service Function Forwarders configured in the
RSP. Refer to the following diagram for more details.

[image: SFC OpenFlow Renderer High Level Architecture]
SFC OpenFlow Renderer High Level Architecture

SFC OpenFlow Switch Flow pipeline

The SFC OpenFlow Renderer uses the following tables for its Flow
pipeline:

	Table 0, Classifier

	Table 1, Transport Ingress

	Table 2, Path Mapper

	Table 3, Path Mapper ACL

	Table 4, Next Hop

	Table 10, Transport Egress

The OpenFlow Table Pipeline is intended to be generic to work for all of
the different encapsulations supported by SFC.

All of the tables are explained in detail in the following section.

The SFFs (SFF1 and SFF2), SFs (SF1), and topology used for the flow
tables in the following sections are as described in the following
diagram.

[image: SFC OpenFlow Renderer Typical Network Topology]
SFC OpenFlow Renderer Typical Network Topology

Classifier Table detailed

It is possible for the SFF to also act as a classifier. This table maps
subscriber traffic to RSPs, and is explained in detail in the classifier
documentation.

If the SFF is not a classifier, then this table will just have a simple
Goto Table 1 flow.

Transport Ingress Table detailed

The Transport Ingress table has an entry per expected tunnel transport
type to be received in a particular SFF, as established in the SFC
configuration.

Here are two example on SFF1: one where the RSP ingress tunnel is MPLS
assuming VLAN is used for the SFF-SF, and the other where the RSP
ingress tunnel is NSH GRE (UDP port 4789):

	Priority

	Match

	Action

	256

	EtherType==0x8847 (MPLS unicast)

	Goto Table 2

	256

	EtherType==0x8100 (VLAN)

	Goto Table 2

	256

	EtherType==0x0800,udp,tp_dst==4789
(IP v4)

	Goto Table 2

	5

	Match Any

	Drop

Table: Table Transport Ingress

Path Mapper Table detailed

The Path Mapper table has an entry per expected tunnel transport info to
be received in a particular SFF, as established in the SFC
configuration. The tunnel transport info is used to determine the RSP
Path ID, and is stored in the OpenFlow Metadata. This table is not used
for NSH, since the RSP Path ID is stored in the NSH header.

For SF nodes that do not support NSH tunneling, the IP header DSCP field
is used to store the RSP Path Id. The RSP Path Id is written to the DSCP
field in the Transport Egress table for those packets sent to an SF.

Here is an example on SFF1, assuming the following details:

	VLAN ID 1000 is used for the SFF-SF

	The RSP Path 1 tunnel uses MPLS label 100 for ingress and 101 for
egress

	The RSP Path 2 (symmetric downlink path) uses MPLS label 101 for
ingress and 100 for egress

	Priority

	Match

	Action

	256

	MPLS Label==100

	RSP Path=1, Pop MPLS,
Goto Table 4

	256

	MPLS Label==101

	RSP Path=2, Pop MPLS,
Goto Table 4

	256

	VLAN ID==1000, IP
DSCP==1

	RSP Path=1, Pop VLAN,
Goto Table 4

	256

	VLAN ID==1000, IP
DSCP==2

	RSP Path=2, Pop VLAN,
Goto Table 4

	5

	Match Any

	Goto Table 3

Table: Table Path Mapper

Path Mapper ACL Table detailed

This table is only populated when PacketIn packets are received from the
switch for TcpProxy type SFs. These flows are created with an inactivity
timer of 60 seconds and will be automatically deleted upon expiration.

Next Hop Table detailed

The Next Hop table uses the RSP Path Id and appropriate packet fields to
determine where to send the packet next. For NSH, only the NSP (Network
Services Path, RSP ID) and NSI (Network Services Index, next hop) fields
from the NSH header are needed to determine the VXLAN tunnel destination
IP. For VLAN or MPLS, then the source MAC address is used to determine
the destination MAC address.

Here are two examples on SFF1, assuming SFF1 is connected to SFF2. RSP
Paths 1 and 2 are symmetric VLAN paths. RSP Paths 3 and 4 are symmetric
NSH paths. RSP Path 1 ingress packets come from external to SFC, for
which we don’t have the source MAC address (MacSrc).

	Priority

	Match

	Action

	256

	RSP Path==1, MacSrc==SF1

	MacDst=SFF2, Goto Table 10

	256

	RSP Path==2, MacSrc==SF1

	Goto Table 10

	256

	RSP Path==2, MacSrc==SFF2

	MacDst=SF1, Goto Table 10

	246

	RSP Path==1

	MacDst=SF1, Goto Table 10

	256

	nsp=3,nsi=255 (SFF Ingress RSP
3)

	load:0xa000002→NXM_NX_TUN_I
PV4_DST[],
Goto Table 10

	256

	nsp=3,nsi=254 (SFF Ingress
from SF, RSP 3)

	load:0xa00000a→NXM_NX_TUN_I
PV4_DST[],
Goto Table 10

	256

	nsp=4,nsi=254 (SFF1 Ingress
from SFF2)

	load:0xa00000a→NXM_NX_TUN_I
PV4_DST[],
Goto Table 10

	5

	Match Any

	Drop

Table: Table Next Hop

Transport Egress Table detailed

The Transport Egress table prepares egress tunnel information and sends
the packets out.

Here are two examples on SFF1. RSP Paths 1 and 2 are symmetric MPLS
paths that use VLAN for the SFF-SF. RSP Paths 3 and 4 are symmetric NSH
paths. Since it is assumed that switches used for NSH will only have one
VXLAN port, the NSH packets are just sent back where they came from.

	Priority

	Match

	Action

	256

	RSP Path==1, MacDst==SF1

	Push VLAN ID 1000, Port=SF1

	256

	RSP Path==1, MacDst==SFF2

	Push MPLS Label 101, Port=SFF2

	256

	RSP Path==2, MacDst==SF1

	Push VLAN ID 1000, Port=SF1

	246

	RSP Path==2

	Push MPLS Label 100,
Port=Ingress

	256

	nsp=3,nsi=255 (SFF Ingress RSP
3)

	IN_PORT

	256

	nsp=3,nsi=254 (SFF Ingress
from SF, RSP 3)

	IN_PORT

	256

	nsp=4,nsi=254 (SFF1 Ingress
from SFF2)

	IN_PORT

	5

	Match Any

	Drop

Table: Table Transport Egress

Administering SFC OF Renderer

To use the SFC OpenFlow Renderer Karaf, at least the following Karaf
features must be installed.

	odl-openflowplugin-nxm-extensions

	odl-openflowplugin-flow-services

	odl-sfc-provider

	odl-sfc-model

	odl-sfc-openflow-renderer

	odl-sfc-ui (optional)

The following command can be used to view all of the currently installed
Karaf features:

opendaylight-user@root>feature:list -i

Or, pipe the command to a grep to see a subset of the currently
installed Karaf features:

opendaylight-user@root>feature:list -i | grep sfc

To install a particular feature, use the Karaf feature:install
command.

SFC OF Renderer Tutorial

Overview

In this tutorial, 2 different encapsulations will be shown: MPLS and
NSH. The following Network Topology diagram is a logical view of the
SFFs and SFs involved in creating the Service Chains.

[image: SFC OpenFlow Renderer Typical Network Topology]
SFC OpenFlow Renderer Typical Network Topology

Prerequisites

To use this example, SFF OpenFlow switches must be created and connected
as illustrated above. Additionally, the SFs must be created and
connected.

Note that RSP symmetry depends on Service Function Path symmetric field, if present.
If not, the RSP will be symmetric if any of the SFs involved in the chain
has the bidirectional field set to true.

Target Environment

The target environment is not important, but this use-case was created
and tested on Linux.

Instructions

The steps to use this tutorial are as follows. The referenced
configuration in the steps is listed in the following sections.

There are numerous ways to send the configuration. In the following
configuration chapters, the appropriate curl command is shown for
each configuration to be sent, including the URL.

Steps to configure the SFC OF Renderer tutorial:

	Send the SF RESTCONF configuration

	Send the SFF RESTCONF configuration

	Send the SFC RESTCONF configuration

	Send the SFP RESTCONF configuration

	Create the RSP with a RESTCONF RPC command

Once the configuration has been successfully created, query the Rendered
Service Paths with either the SFC UI or via RESTCONF. Notice that the
RSP is symmetrical, so the following 2 RSPs will be created:

	sfc-path1

	sfc-path1-Reverse

At this point the Service Chains have been created, and the OpenFlow
Switches are programmed to steer traffic through the Service Chain.
Traffic can now be injected from a client into the Service Chain. To
debug problems, the OpenFlow tables can be dumped with the following
commands, assuming SFF1 is called s1 and SFF2 is called s2.

sudo ovs-ofctl -O OpenFlow13 dump-flows s1

sudo ovs-ofctl -O OpenFlow13 dump-flows s2

In all the following configuration sections, replace the ${JSON}
string with the appropriate JSON configuration. Also, change the
localhost destination in the URL accordingly.

SFC OF Renderer NSH Tutorial

The following configuration sections show how to create the different
elements using NSH encapsulation.

NSH Service Function configuration

The Service Function configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function:service-functions/

SF configuration JSON.

{
 "service-functions": {
 "service-function": [
 {
 "name": "sf1",
 "type": "http-header-enrichment",
 "ip-mgmt-address": "10.0.0.2",
 "sf-data-plane-locator": [
 {
 "name": "sf1dpl",
 "ip": "10.0.0.10",
 "port": 4789,
 "transport": "service-locator:vxlan-gpe",
 "service-function-forwarder": "sff1"
 }
]
 },
 {
 "name": "sf2",
 "type": "firewall",
 "ip-mgmt-address": "10.0.0.3",
 "sf-data-plane-locator": [
 {
 "name": "sf2dpl",
 "ip": "10.0.0.20",
 "port": 4789,
 "transport": "service-locator:vxlan-gpe",
 "service-function-forwarder": "sff2"
 }
]
 }
]
 }
}

NSH Service Function Forwarder configuration

The Service Function Forwarder configuration can be sent with the
following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-forwarder:service-function-forwarders/

SFF configuration JSON.

{
 "service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "sff1",
 "service-node": "openflow:2",
 "sff-data-plane-locator": [
 {
 "name": "sff1dpl",
 "data-plane-locator":
 {
 "ip": "10.0.0.1",
 "port": 4789,
 "transport": "service-locator:vxlan-gpe"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "sf1",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name": "sf1dpl",
 "sff-dpl-name": "sff1dpl"
 }
 }
]
 },
 {
 "name": "sff2",
 "service-node": "openflow:3",
 "sff-data-plane-locator": [
 {
 "name": "sff2dpl",
 "data-plane-locator":
 {
 "ip": "10.0.0.2",
 "port": 4789,
 "transport": "service-locator:vxlan-gpe"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "sf2",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name": "sf2dpl",
 "sff-dpl-name": "sff2dpl"
 }
 }
]
 }
]
 }
}

NSH Service Function Chain configuration

The Service Function Chain configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-chain:service-function-chains/

SFC configuration JSON.

{
 "service-function-chains": {
 "service-function-chain": [
 {
 "name": "sfc-chain1",
 "sfc-service-function": [
 {
 "name": "hdr-enrich-abstract1",
 "type": "http-header-enrichment"
 },
 {
 "name": "firewall-abstract1",
 "type": "firewall"
 }
]
 }
]
 }
}

NSH Service Function Path configuration

The Service Function Path configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-path:service-function-paths/

SFP configuration JSON.

{
 "service-function-paths": {
 "service-function-path": [
 {
 "name": "sfc-path1",
 "service-chain-name": "sfc-chain1",
 "transport-type": "service-locator:vxlan-gpe",
 "symmetric": true
 }
]
 }
}

NSH Rendered Service Path creation

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X POST --user admin:admin http://localhost:8181/restconf/operations/rendered-service-path:create-rendered-path/

RSP creation JSON.

{
 "input": {
 "name": "sfc-path1",
 "parent-service-function-path": "sfc-path1"
 }
}

NSH Rendered Service Path removal

The following command can be used to remove a Rendered Service Path
called sfc-path1:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{"input": {"name": "sfc-path1" } }' -X POST --user admin:admin http://localhost:8181/restconf/operations/rendered-service-path:delete-rendered-path/

NSH Rendered Service Path Query

The following command can be used to query all of the created Rendered
Service Paths:

curl -H "Content-Type: application/json" -H "Cache-Control: no-cache" -X GET --user admin:admin http://localhost:8181/restconf/operational/rendered-service-path:rendered-service-paths/

SFC OF Renderer MPLS Tutorial

The following configuration sections show how to create the different
elements using MPLS encapsulation.

MPLS Service Function configuration

The Service Function configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function:service-functions/

SF configuration JSON.

{
 "service-functions": {
 "service-function": [
 {
 "name": "sf1",
 "type": "http-header-enrichment",
 "ip-mgmt-address": "10.0.0.2",
 "sf-data-plane-locator": [
 {
 "name": "sf1-sff1",
 "mac": "00:00:08:01:02:01",
 "vlan-id": 1000,
 "transport": "service-locator:mac",
 "service-function-forwarder": "sff1"
 }
]
 },
 {
 "name": "sf2",
 "type": "firewall",
 "ip-mgmt-address": "10.0.0.3",
 "sf-data-plane-locator": [
 {
 "name": "sf2-sff2",
 "mac": "00:00:08:01:03:01",
 "vlan-id": 2000,
 "transport": "service-locator:mac",
 "service-function-forwarder": "sff2"
 }
]
 }
]
 }
}

MPLS Service Function Forwarder configuration

The Service Function Forwarder configuration can be sent with the
following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-forwarder:service-function-forwarders/

SFF configuration JSON.

{
 "service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "sff1",
 "service-node": "openflow:2",
 "sff-data-plane-locator": [
 {
 "name": "ulSff1Ingress",
 "data-plane-locator":
 {
 "mpls-label": 100,
 "transport": "service-locator:mpls"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "mac": "11:11:11:11:11:11",
 "port-id" : "1"
 }
 },
 {
 "name": "ulSff1ToSff2",
 "data-plane-locator":
 {
 "mpls-label": 101,
 "transport": "service-locator:mpls"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "mac": "33:33:33:33:33:33",
 "port-id" : "2"
 }
 },
 {
 "name": "toSf1",
 "data-plane-locator":
 {
 "mac": "22:22:22:22:22:22",
 "vlan-id": 1000,
 "transport": "service-locator:mac",
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "mac": "33:33:33:33:33:33",
 "port-id" : "3"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "sf1",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name": "sf1-sff1",
 "sff-dpl-name": "toSf1"
 }
 }
]
 },
 {
 "name": "sff2",
 "service-node": "openflow:3",
 "sff-data-plane-locator": [
 {
 "name": "ulSff2Ingress",
 "data-plane-locator":
 {
 "mpls-label": 101,
 "transport": "service-locator:mpls"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "mac": "44:44:44:44:44:44",
 "port-id" : "1"
 }
 },
 {
 "name": "ulSff2Egress",
 "data-plane-locator":
 {
 "mpls-label": 102,
 "transport": "service-locator:mpls"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "mac": "66:66:66:66:66:66",
 "port-id" : "2"
 }
 },
 {
 "name": "toSf2",
 "data-plane-locator":
 {
 "mac": "55:55:55:55:55:55",
 "vlan-id": 2000,
 "transport": "service-locator:mac"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "port-id" : "3"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "sf2",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name": "sf2-sff2",
 "sff-dpl-name": "toSf2"

 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "port-id" : "3"
 }
 }
]
 }
]
 }
}

MPLS Service Function Chain configuration

The Service Function Chain configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-chain:service-function-chains/

SFC configuration JSON.

{
 "service-function-chains": {
 "service-function-chain": [
 {
 "name": "sfc-chain1",
 "sfc-service-function": [
 {
 "name": "hdr-enrich-abstract1",
 "type": "http-header-enrichment"
 },
 {
 "name": "firewall-abstract1",
 "type": "firewall"
 }
]
 }
]
 }
}

MPLS Service Function Path configuration

The Service Function Path configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-path:service-function-paths/

SFP configuration JSON.

{
 "service-function-paths": {
 "service-function-path": [
 {
 "name": "sfc-path1",
 "service-chain-name": "sfc-chain1",
 "transport-type": "service-locator:mpls",
 "symmetric": true
 }
]
 }
}

MPLS Rendered Service Path creation

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X POST --user admin:admin http://localhost:8181/restconf/operations/rendered-service-path:create-rendered-path/

RSP creation JSON.

{
 "input": {
 "name": "sfc-path1",
 "parent-service-function-path": "sfc-path1"
 }
}

MPLS Rendered Service Path removal

The following command can be used to remove a Rendered Service Path
called sfc-path1:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{"input": {"name": "sfc-path1" } }' -X POST --user admin:admin http://localhost:8181/restconf/operations/rendered-service-path:delete-rendered-path/

MPLS Rendered Service Path Query

The following command can be used to query all of the created Rendered
Service Paths:

curl -H "Content-Type: application/json" -H "Cache-Control: no-cache" -X GET --user admin:admin http://localhost:8181/restconf/operational/rendered-service-path:rendered-service-paths/

SFC IOS XE Renderer User Guide

Overview

The early Service Function Chaining (SFC) renderer for IOS-XE devices
(SFC IOS-XE renderer) implements Service Chaining functionality on
IOS-XE capable switches. It listens for the creation of a Rendered
Service Path (RSP) and sets up Service Function Forwarders (SFF) that
are hosted on IOS-XE switches to steer traffic through the service
chain.

Common acronyms used in the following sections:

	SF - Service Function

	SFF - Service Function Forwarder

	SFC - Service Function Chain

	SP - Service Path

	SFP - Service Function Path

	RSP - Rendered Service Path

	LSF - Local Service Forwarder

	RSF - Remote Service Forwarder

SFC IOS-XE Renderer Architecture

When the SFC IOS-XE renderer is initialized, all required listeners are
registered to handle incoming data. It involves CSR/IOS-XE
NodeListener which stores data about all configurable devices
including their mountpoints (used here as databrokers),
ServiceFunctionListener, ServiceForwarderListener (see mapping)
and RenderedPathListener used to listen for RSP changes. When the
SFC IOS-XE renderer is invoked, RenderedPathListener calls the
IosXeRspProcessor which processes the RSP change and creates all
necessary Service Paths and Remote Service Forwarders (if necessary) on
IOS-XE devices.

Service Path details

Each Service Path is defined by index (represented by NSP) and contains
service path entries. Each entry has appropriate service index (NSI) and
definition of next hop. Next hop can be Service Function, different
Service Function Forwarder or definition of end of chain - terminate.
After terminating, the packet is sent to destination. If a SFF is
defined as a next hop, it has to be present on device in the form of
Remote Service Forwarder. RSFs are also created during RSP processing.

Example of Service Path:

service-chain service-path 200
 service-index 255 service-function firewall-1
 service-index 254 service-function dpi-1
 service-index 253 terminate

Mapping to IOS-XE SFC entities

Renderer contains mappers for SFs and SFFs. IOS-XE capable device is
using its own definition of Service Functions and Service Function
Forwarders according to appropriate .yang file.
ServiceFunctionListener serves as a listener for SF changes. If SF
appears in datastore, listener extracts its management ip address and
looks into cached IOS-XE nodes. If some of available nodes match,
Service function is mapped in IosXeServiceFunctionMapper to be
understandable by IOS-XE device and it’s written into device’s config.
ServiceForwarderListener is used in a similar way. All SFFs with
suitable management ip address it mapped in
IosXeServiceForwarderMapper. Remapped SFFs are configured as a Local
Service Forwarders. It is not possible to directly create Remote Service
Forwarder using IOS-XE renderer. RSF is created only during RSP
processing.

Administering SFC IOS-XE renderer

To use the SFC IOS-XE Renderer Karaf, at least the following Karaf
features must be installed:

	odl-aaa-shiro

	odl-sfc-model

	odl-sfc-provider

	odl-restconf

	odl-netconf-topology

	odl-sfc-ios-xe-renderer

SFC IOS-XE renderer Tutorial

Overview

This tutorial is a simple example how to create Service Path on IOS-XE
capable device using IOS-XE renderer

Preconditions

To connect to IOS-XE device, it is necessary to use several modified
yang models and override device’s ones. All .yang files are in the
Yang/netconf folder in the sfc-ios-xe-renderer module in the SFC
project. These files have to be copied to the cache/schema
directory, before Karaf is started. After that, custom capabilities have
to be sent to network-topology:

PUT ./config/network-topology:network-topology/topology/topology-netconf/node/<device-name>

<node xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <node-id>device-name</node-id>
 <host xmlns="urn:opendaylight:netconf-node-topology">device-ip</host>
 <port xmlns="urn:opendaylight:netconf-node-topology">2022</port>
 <username xmlns="urn:opendaylight:netconf-node-topology">login</username>
 <password xmlns="urn:opendaylight:netconf-node-topology">password</password>
 <tcp-only xmlns="urn:opendaylight:netconf-node-topology">false</tcp-only>
 <keepalive-delay xmlns="urn:opendaylight:netconf-node-topology">0</keepalive-delay>
 <yang-module-capabilities xmlns="urn:opendaylight:netconf-node-topology">
 <override>true</override>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&revision=2013-07-15
 </capability>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 urn:ietf:params:xml:ns:yang:ietf-yang-types?module=ietf-yang-types&revision=2013-07-15
 </capability>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 urn:ios?module=ned&revision=2016-03-08
 </capability>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 http://tail-f.com/yang/common?module=tailf-common&revision=2015-05-22
 </capability>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 http://tail-f.com/yang/common?module=tailf-meta-extensions&revision=2013-11-07
 </capability>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 http://tail-f.com/yang/common?module=tailf-cli-extensions&revision=2015-03-19
 </capability>
 </yang-module-capabilities>
</node>

Note

The device name in the URL and in the XML must match.

Instructions

When the IOS-XE renderer is installed, all NETCONF nodes in
topology-netconf are processed and all capable nodes with accessible
mountpoints are cached. The first step is to create LSF on node.

Service Function Forwarder configuration

PUT ./config/service-function-forwarder:service-function-forwarders

{
 "service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "CSR1Kv-2",
 "ip-mgmt-address": "172.25.73.23",
 "sff-data-plane-locator": [
 {
 "name": "CSR1Kv-2-dpl",
 "data-plane-locator": {
 "transport": "service-locator:vxlan-gpe",
 "port": 6633,
 "ip": "10.99.150.10"
 }
 }
]
 }
]
 }
}

If the IOS-XE node with appropriate management IP exists, this
configuration is mapped and LSF is created on the device. The same
approach is used for Service Functions.

PUT ./config/service-function:service-functions

{
 "service-functions": {
 "service-function": [
 {
 "name": "Firewall",
 "ip-mgmt-address": "172.25.73.23",
 "type": "firewall",
 "sf-data-plane-locator": [
 {
 "name": "firewall-dpl",
 "port": 6633,
 "ip": "12.1.1.2",
 "transport": "service-locator:gre",
 "service-function-forwarder": "CSR1Kv-2"
 }
]
 },
 {
 "name": "Dpi",
 "ip-mgmt-address": "172.25.73.23",
 "type":"dpi",
 "sf-data-plane-locator": [
 {
 "name": "dpi-dpl",
 "port": 6633,
 "ip": "12.1.1.1",
 "transport": "service-locator:gre",
 "service-function-forwarder": "CSR1Kv-2"
 }
]
 },
 {
 "name": "Qos",
 "ip-mgmt-address": "172.25.73.23",
 "type":"qos",
 "sf-data-plane-locator": [
 {
 "name": "qos-dpl",
 "port": 6633,
 "ip": "12.1.1.4",
 "transport": "service-locator:gre",
 "service-function-forwarder": "CSR1Kv-2"
 }
]
 }
]
 }
}

All these SFs are configured on the same device as the LSF. The next
step is to prepare Service Function Chain.

PUT ./config/service-function-chain:service-function-chains/

{
 "service-function-chains": {
 "service-function-chain": [
 {
 "name": "CSR3XSF",
 "sfc-service-function": [
 {
 "name": "Firewall",
 "type": "firewall"
 },
 {
 "name": "Dpi",
 "type": "dpi"
 },
 {
 "name": "Qos",
 "type": "qos"
 }
]
 }
]
 }
}

Service Function Path:

PUT ./config/service-function-path:service-function-paths/

{
 "service-function-paths": {
 "service-function-path": [
 {
 "name": "CSR3XSF-Path",
 "service-chain-name": "CSR3XSF",
 "starting-index": 255,
 "symmetric": "true"
 }
]
 }
}

Without a classifier, there is possibility to POST RSP directly.

POST ./operations/rendered-service-path:create-rendered-path

{
 "input": {
 "name": "CSR3XSF-Path-RSP",
 "parent-service-function-path": "CSR3XSF-Path"
 }
}

The resulting configuration:

!
service-chain service-function-forwarder local
 ip address 10.99.150.10
!
service-chain service-function firewall
ip address 12.1.1.2
 encapsulation gre enhanced divert
!
service-chain service-function dpi
ip address 12.1.1.1
 encapsulation gre enhanced divert
!
service-chain service-function qos
ip address 12.1.1.4
 encapsulation gre enhanced divert
!
service-chain service-path 1
 service-index 255 service-function firewall
 service-index 254 service-function dpi
 service-index 253 service-function qos
 service-index 252 terminate
!
service-chain service-path 2
 service-index 255 service-function qos
 service-index 254 service-function dpi
 service-index 253 service-function firewall
 service-index 252 terminate
!

Service Path 1 is direct, Service Path 2 is reversed. Path numbers may
vary.

Service Function Scheduling Algorithms

Overview

When creating the Rendered Service Path, the origin SFC controller chose
the first available service function from a list of service function
names. This may result in many issues such as overloaded service
functions and a longer service path as SFC has no means to understand
the status of service functions and network topology. The service
function selection framework supports at least four algorithms (Random,
Round Robin, Load Balancing and Shortest Path) to select the most
appropriate service function when instantiating the Rendered Service
Path. In addition, it is an extensible framework that allows 3rd party
selection algorithm to be plugged in.

Architecture

The following figure illustrates the service function selection
framework and algorithms.

[image: SF Selection Architecture]
SF Selection Architecture

A user has three different ways to select one service function selection
algorithm:

	Integrated RESTCONF Calls. OpenStack and/or other administration
system could provide plugins to call the APIs to select one
scheduling algorithm.

	Command line tools. Command line tools such as curl or browser
plugins such as POSTMAN (for Google Chrome) and RESTClient (for
Mozilla Firefox) could select schedule algorithm by making RESTCONF
calls.

	SFC-UI. Now the SFC-UI provides an option for choosing a selection
algorithm when creating a Rendered Service Path.

The RESTCONF northbound SFC API provides GUI/RESTCONF interactions for
choosing the service function selection algorithm. MD-SAL data store
provides all supported service function selection algorithms, and
provides APIs to enable one of the provided service function selection
algorithms. Once a service function selection algorithm is enabled, the
service function selection algorithm will work when creating a Rendered
Service Path.

Select SFs with Scheduler

Administrator could use both the following ways to select one of the
selection algorithm when creating a Rendered Service Path.

	Command line tools. Command line tools includes Linux commands curl
or even browser plugins such as POSTMAN(for Google Chrome) or
RESTClient(for Mozilla Firefox). In this case, the following JSON
content is needed at the moment:
Service_function_schudule_type.json

{
 "service-function-scheduler-types": {
 "service-function-scheduler-type": [
 {
 "name": "random",
 "type": "service-function-scheduler-type:random",
 "enabled": false
 },
 {
 "name": "roundrobin",
 "type": "service-function-scheduler-type:round-robin",
 "enabled": true
 },
 {
 "name": "loadbalance",
 "type": "service-function-scheduler-type:load-balance",
 "enabled": false
 },
 {
 "name": "shortestpath",
 "type": "service-function-scheduler-type:shortest-path",
 "enabled": false
 }
]
 }
}

If using the Linux curl command, it could be:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$${Service_function_schudule_type.json}'
-X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-scheduler-type:service-function-scheduler-types/

Here is also a snapshot for using the RESTClient plugin:

[image: Mozilla Firefox RESTClient]
Mozilla Firefox RESTClient

	SFC-UI.SFC-UI provides a drop down menu for service function
selection algorithm. Here is a snapshot for the user interaction from
SFC-UI when creating a Rendered Service Path.

[image: Karaf Web UI]
Karaf Web UI

Note

Some service function selection algorithms in the drop list are not
implemented yet. Only the first three algorithms are committed at
the moment.

Random

Select Service Function from the name list randomly.

Overview

The Random algorithm is used to select one Service Function from the
name list which it gets from the Service Function Type randomly.

Prerequisites

	Service Function information are stored in datastore.

	Either no algorithm or the Random algorithm is selected.

Target Environment

The Random algorithm will work either no algorithm type is selected or
the Random algorithm is selected.

Instructions

Once the plugins are installed into Karaf successfully, a user can use
his favorite method to select the Random scheduling algorithm type.
There are no special instructions for using the Random algorithm.

Round Robin

Select Service Function from the name list in Round Robin manner.

Overview

The Round Robin algorithm is used to select one Service Function from
the name list which it gets from the Service Function Type in a Round
Robin manner, this will balance workloads to all Service Functions.
However, this method cannot help all Service Functions load the same
workload because it’s flow-based Round Robin.

Prerequisites

	Service Function information are stored in datastore.

	Round Robin algorithm is selected

Target Environment

The Round Robin algorithm will work one the Round Robin algorithm is
selected.

Instructions

Once the plugins are installed into Karaf successfully, a user can use
his favorite method to select the Round Robin scheduling algorithm type.
There are no special instructions for using the Round Robin algorithm.

Load Balance Algorithm

Select appropriate Service Function by actual CPU utilization.

Overview

The Load Balance Algorithm is used to select appropriate Service
Function by actual CPU utilization of service functions. The CPU
utilization of service function obtained from monitoring information
reported via NETCONF.

Prerequisites

	CPU-utilization for Service Function.

	NETCONF server.

	NETCONF client.

	Each VM has a NETCONF server and it could work with NETCONF client
well.

Instructions

Set up VMs as Service Functions. enable NETCONF server in VMs. Ensure
that you specify them separately. For example:

	Set up 4 VMs include 2 SFs’ type are Firewall, Others are Napt44.
Name them as firewall-1, firewall-2, napt44-1, napt44-2 as Service
Function. The four VMs can run either the same server or different
servers.

	Install NETCONF server on every VM and enable it. More information on
NETCONF can be found on the OpenDaylight wiki here:
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf:Manual_netopeer_installation

	Get Monitoring data from NETCONF server. These monitoring data should
be get from the NETCONF server which is running in VMs. The following
static XML data is an example:

static XML data like this:

<?xml version="1.0" encoding="UTF-8"?>
<service-function-description-monitor-report>
 <SF-description>
 <number-of-dataports>2</number-of-dataports>
 <capabilities>
 <supported-packet-rate>5</supported-packet-rate>
 <supported-bandwidth>10</supported-bandwidth>
 <supported-ACL-number>2000</supported-ACL-number>
 <RIB-size>200</RIB-size>
 <FIB-size>100</FIB-size>
 <ports-bandwidth>
 <port-bandwidth>
 <port-id>1</port-id>
 <ipaddress>10.0.0.1</ipaddress>
 <macaddress>00:1e:67:a2:5f:f4</macaddress>
 <supported-bandwidth>20</supported-bandwidth>
 </port-bandwidth>
 <port-bandwidth>
 <port-id>2</port-id>
 <ipaddress>10.0.0.2</ipaddress>
 <macaddress>01:1e:67:a2:5f:f6</macaddress>
 <supported-bandwidth>10</supported-bandwidth>
 </port-bandwidth>
 </ports-bandwidth>
 </capabilities>
 </SF-description>
 <SF-monitoring-info>
 <liveness>true</liveness>
 <resource-utilization>
 <packet-rate-utilization>10</packet-rate-utilization>
 <bandwidth-utilization>15</bandwidth-utilization>
 <CPU-utilization>12</CPU-utilization>
 <memory-utilization>17</memory-utilization>
 <available-memory>8</available-memory>
 <RIB-utilization>20</RIB-utilization>
 <FIB-utilization>25</FIB-utilization>
 <power-utilization>30</power-utilization>
 <SF-ports-bandwidth-utilization>
 <port-bandwidth-utilization>
 <port-id>1</port-id>
 <bandwidth-utilization>20</bandwidth-utilization>
 </port-bandwidth-utilization>
 <port-bandwidth-utilization>
 <port-id>2</port-id>
 <bandwidth-utilization>30</bandwidth-utilization>
 </port-bandwidth-utilization>
 </SF-ports-bandwidth-utilization>
 </resource-utilization>
 </SF-monitoring-info>
</service-function-description-monitor-report>

	Unzip SFC release tarball.

	Run SFC: ${sfc}/bin/karaf. More information on Service Function
Chaining can be found on the OpenDaylight SFC’s wiki page:
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

	Deploy the SFC2 (firewall-abstract2⇒napt44-abstract2) and click
button to Create Rendered Service Path in SFC UI
(http://localhost:8181/sfc/index.html).

	Verify the Rendered Service Path to ensure the CPU utilization of the
selected hop is the minimum one among all the service functions with
same type. The correct RSP is firewall-1⇒napt44-2

Shortest Path Algorithm

Select appropriate Service Function by Dijkstra’s algorithm. Dijkstra’s
algorithm is an algorithm for finding the shortest paths between nodes
in a graph.

Overview

The Shortest Path Algorithm is used to select appropriate Service
Function by actual topology.

Prerequisites

	Deployed topology (include SFFs, SFs and their links).

	Dijkstra’s algorithm. More information on Dijkstra’s algorithm can be
found on the wiki here:
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Instructions

	Unzip SFC release tarball.

	Run SFC: ${sfc}/bin/karaf.

	Depoly SFFs and SFs. import the service-function-forwarders.json and
service-functions.json in UI
(http://localhost:8181/sfc/index.html#/sfc/config)

service-function-forwarders.json:

{
 "service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "SFF-br1",
 "service-node": "OVSDB-test01",
 "rest-uri": "http://localhost:5001",
 "sff-data-plane-locator": [
 {
 "name": "eth0",
 "service-function-forwarder-ovs:ovs-bridge": {
 "uuid": "4c3778e4-840d-47f4-b45e-0988e514d26c",
 "bridge-name": "br-tun"
 },
 "data-plane-locator": {
 "port": 5000,
 "ip": "192.168.1.1",
 "transport": "service-locator:vxlan-gpe"
 }
 }
],
 "service-function-dictionary": [
 {
 "sff-sf-data-plane-locator": {
 "sf-dpl-name": "sf1dpl",
 "sff-dpl-name": "sff1dpl"
 },
 "name": "napt44-1",
 "type": "napt44"
 },
 {
 "sff-sf-data-plane-locator": {
 "sf-dpl-name": "sf2dpl",
 "sff-dpl-name": "sff2dpl"
 },
 "name": "firewall-1",
 "type": "firewall"
 }
],
 "connected-sff-dictionary": [
 {
 "name": "SFF-br3"
 }
]
 },
 {
 "name": "SFF-br2",
 "service-node": "OVSDB-test01",
 "rest-uri": "http://localhost:5002",
 "sff-data-plane-locator": [
 {
 "name": "eth0",
 "service-function-forwarder-ovs:ovs-bridge": {
 "uuid": "fd4d849f-5140-48cd-bc60-6ad1f5fc0a1",
 "bridge-name": "br-tun"
 },
 "data-plane-locator": {
 "port": 5000,
 "ip": "192.168.1.2",
 "transport": "service-locator:vxlan-gpe"
 }
 }
],
 "service-function-dictionary": [
 {
 "sff-sf-data-plane-locator": {
 "sf-dpl-name": "sf1dpl",
 "sff-dpl-name": "sff1dpl"
 },
 "name": "napt44-2",
 "type": "napt44"
 },
 {
 "sff-sf-data-plane-locator": {
 "sf-dpl-name": "sf2dpl",
 "sff-dpl-name": "sff2dpl"
 },
 "name": "firewall-2",
 "type": "firewall"
 }
],
 "connected-sff-dictionary": [
 {
 "name": "SFF-br3"
 }
]
 },
 {
 "name": "SFF-br3",
 "service-node": "OVSDB-test01",
 "rest-uri": "http://localhost:5005",
 "sff-data-plane-locator": [
 {
 "name": "eth0",
 "service-function-forwarder-ovs:ovs-bridge": {
 "uuid": "fd4d849f-5140-48cd-bc60-6ad1f5fc0a4",
 "bridge-name": "br-tun"
 },
 "data-plane-locator": {
 "port": 5000,
 "ip": "192.168.1.2",
 "transport": "service-locator:vxlan-gpe"
 }
 }
],
 "service-function-dictionary": [
 {
 "sff-sf-data-plane-locator": {
 "sf-dpl-name": "sf1dpl",
 "sff-dpl-name": "sff1dpl"
 },
 "name": "test-server",
 "type": "dpi"
 },
 {
 "sff-sf-data-plane-locator": {
 "sf-dpl-name": "sf2dpl",
 "sff-dpl-name": "sff2dpl"
 },
 "name": "test-client",
 "type": "dpi"
 }
],
 "connected-sff-dictionary": [
 {
 "name": "SFF-br1"
 },
 {
 "name": "SFF-br2"
 }
]
 }
]
 }
}

service-functions.json:

{
 "service-functions": {
 "service-function": [
 {
 "rest-uri": "http://localhost:10001",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "preferred",
 "port": 10001,
 "ip": "10.3.1.103",
 "service-function-forwarder": "SFF-br1"
 }
],
 "name": "napt44-1",
 "type": "napt44"
 },
 {
 "rest-uri": "http://localhost:10002",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "master",
 "port": 10002,
 "ip": "10.3.1.103",
 "service-function-forwarder": "SFF-br2"
 }
],
 "name": "napt44-2",
 "type": "napt44"
 },
 {
 "rest-uri": "http://localhost:10003",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "1",
 "port": 10003,
 "ip": "10.3.1.102",
 "service-function-forwarder": "SFF-br1"
 }
],
 "name": "firewall-1",
 "type": "firewall"
 },
 {
 "rest-uri": "http://localhost:10004",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "2",
 "port": 10004,
 "ip": "10.3.1.101",
 "service-function-forwarder": "SFF-br2"
 }
],
 "name": "firewall-2",
 "type": "firewall"
 },
 {
 "rest-uri": "http://localhost:10005",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "3",
 "port": 10005,
 "ip": "10.3.1.104",
 "service-function-forwarder": "SFF-br3"
 }
],
 "name": "test-server",
 "type": "dpi"
 },
 {
 "rest-uri": "http://localhost:10006",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "4",
 "port": 10006,
 "ip": "10.3.1.102",
 "service-function-forwarder": "SFF-br3"
 }
],
 "name": "test-client",
 "type": "dpi"
 }
]
 }
}

The deployed topology like this:

 +----+ +----+ +----+
 |sff1|+----------|sff3|---------+|sff2|
 +----+ +----+ +----+
 | |
 +--------------+ +--------------+
 | | | |
+----------+ +--------+ +----------+ +--------+
|firewall-1| |napt44-1| |firewall-2| |napt44-2|
+----------+ +--------+ +----------+ +--------+

	Deploy the SFC2(firewall-abstract2⇒napt44-abstract2), select
“Shortest Path” as schedule type and click button to Create Rendered
Service Path in SFC UI (http://localhost:8181/sfc/index.html).

[image: select schedule type]
select schedule type

	Verify the Rendered Service Path to ensure the selected hops are
linked in one SFF. The correct RSP is firewall-1⇒napt44-1 or
firewall-2⇒napt44-2. The first SF type is Firewall in Service
Function Chain. So the algorithm will select first Hop randomly among
all the SFs type is Firewall. Assume the first selected SF is
firewall-2. All the path from firewall-1 to SF which type is Napt44
are list:

	Path1: firewall-2 → sff2 → napt44-2

	Path2: firewall-2 → sff2 → sff3 → sff1 → napt44-1 The shortest
path is Path1, so the selected next hop is napt44-2.

[image: rendered service path]
rendered service path

Service Function Load Balancing User Guide

Overview

SFC Load-Balancing feature implements load balancing of Service
Functions, rather than a one-to-one mapping between
Service-Function-Forwarder and Service-Function.

Load Balancing Architecture

Service Function Groups (SFG) can replace Service Functions (SF) in the
Rendered Path model. A Service Path can only be defined using SFGs or
SFs, but not a combination of both.

Relevant objects in the YANG model are as follows:

	Service-Function-Group-Algorithm:

Service-Function-Group-Algorithms {
 Service-Function-Group-Algorithm {
 String name
 String type
 }
}

Available types: ALL, SELECT, INDIRECT, FAST_FAILURE

	Service-Function-Group:

Service-Function-Groups {
 Service-Function-Group {
 String name
 String serviceFunctionGroupAlgorithmName
 String type
 String groupId
 Service-Function-Group-Element {
 String service-function-name
 int index
 }
 }
}

	ServiceFunctionHop: holds a reference to a name of SFG (or SF)

Tutorials

This tutorial will explain how to create a simple SFC configuration,
with SFG instead of SF. In this example, the SFG will include two
existing SF.

Setup SFC

For general SFC setup and scenarios, please see the SFC wiki page:
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#SFC_101

Create an algorithm

POST -
http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms

{
 "service-function-group-algorithm": [
 {
 "name": "alg1"
 "type": "ALL"
 }
]
}

(Header “content-type”: application/json)

Verify: get all algorithms

GET -
http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms

In order to delete all algorithms: DELETE -
http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms

Create a group

POST -
http://127.0.0.1:8181/restconf/config/service-function-group:service-function-groups

{
 "service-function-group": [
 {
 "rest-uri": "http://localhost:10002",
 "ip-mgmt-address": "10.3.1.103",
 "algorithm": "alg1",
 "name": "SFG1",
 "type": "napt44",
 "sfc-service-function": [
 {
 "name":"napt44-104"
 },
 {
 "name":"napt44-103-1"
 }
]
 }
]
}

Verify: get all SFG’s

GET -
http://127.0.0.1:8181/restconf/config/service-function-group:service-function-groups

SFC Proof of Transit User Guide

Overview

Several deployments use traffic engineering, policy routing, segment
routing or service function chaining (SFC) to steer packets through a
specific set of nodes. In certain cases regulatory obligations or a
compliance policy require to prove that all packets that are supposed to
follow a specific path are indeed being forwarded across the exact set
of nodes specified. I.e. if a packet flow is supposed to go through a
series of service functions or network nodes, it has to be proven that
all packets of the flow actually went through the service chain or
collection of nodes specified by the policy. In case the packets of a
flow weren’t appropriately processed, a proof of transit egress device
would be required to identify the policy violation and take
corresponding actions (e.g. drop or redirect the packet, send an alert
etc.) corresponding to the policy.

Service Function Chaining (SFC) Proof of Transit (SFC PoT)
implements Service Chaining Proof of Transit functionality on capable
network devices. Proof of Transit defines mechanisms to securely
prove that traffic transited the defined path. After the creation of an
Rendered Service Path (RSP), a user can configure to enable SFC proof
of transit on the selected RSP to effect the proof of transit.

To ensure that the data traffic follows a specified path or a function
chain, meta-data is added to user traffic in the form of a header. The
meta-data is based on a ‘share of a secret’ and provisioned by the SFC
PoT configuration from ODL over a secure channel to each of the nodes
in the SFC. This meta-data is updated at each of the service-hop while
a designated node called the verifier checks whether the collected
meta-data allows the retrieval of the secret.

The following diagram shows the overview and essentially utilizes Shamir’s
secret sharing algorithm, where each service is given a point on the
curve and when the packet travels through each service, it collects these
points (meta-data) and a verifier node tries to re-construct the curve
using the collected points, thus verifying that the packet traversed
through all the service functions along the chain.

[image: SFC Proof of Transit overview]
SFC Proof of Transit overview

Transport options for different protocols includes a new TLV in SR header
for Segment Routing, NSH Type-2 meta-data, IPv6 extension headers, IPv4
variants and for VXLAN-GPE. More details are captured in the following
link.

In-situ OAM: https://github.com/CiscoDevNet/iOAM

Common acronyms used in the following sections:

	SF - Service Function

	SFF - Service Function Forwarder

	SFC - Service Function Chain

	SFP - Service Function Path

	RSP - Rendered Service Path

	SFC PoT - Service Function Chain Proof of Transit

SFC Proof of Transit Architecture

SFC PoT feature is implemented as a two-part implementation with a
north-bound handler that augments the RSP while a south-bound renderer
auto-generates the required parameters and passes it on to the nodes
that belong to the SFC.

The north-bound feature is enabled via odl-sfc-pot feature while the
south-bound renderer is enabled via the odl-sfc-pot-netconf-renderer
feature. For the purposes of SFC PoT handling, both features must be
installed.

RPC handlers to augment the RSP are part of SfcPotRpc while the
RSP augmentation to enable or disable SFC PoT feature is done via
SfcPotRspProcessor.

SFC Proof of Transit entities

In order to implement SFC Proof of Transit for a service function chain,
an RSP is a pre-requisite to identify the SFC to enable SFC PoT on. SFC
Proof of Transit for a particular RSP is enabled by an RPC request to
the controller along with necessary parameters to control some of the
aspects of the SFC Proof of Transit process.

The RPC handler identifies the RSP and adds PoT feature meta-data like
enable/disable, number of PoT profiles, profiles refresh parameters etc.,
that directs the south-bound renderer appropriately when RSP changes
are noticed via call-backs in the renderer handlers.

Administering SFC Proof of Transit

To use the SFC Proof of Transit Karaf, at least the following Karaf
features must be installed:

	odl-sfc-model

	odl-sfc-provider

	odl-sfc-netconf

	odl-restconf

	odl-netconf-topology

	odl-netconf-connector-all

	odl-sfc-pot

Please note that the odl-sfc-pot-netconf-renderer or other renderers in future
must be installed for the feature to take full-effect. The details of the renderer
features are described in other parts of this document.

SFC Proof of Transit Tutorial

Overview

This tutorial is a simple example how to configure Service Function
Chain Proof of Transit using SFC POT feature.

Preconditions

To enable a device to handle SFC Proof of Transit, it is expected that
the NETCONF node device advertise capability as under ioam-sb-pot.yang
present under sfc-model/src/main/yang folder. It is also expected that base
NETCONF support be enabled and its support capability advertised as capabilities.

NETCONF support:urn:ietf:params:netconf:base:1.0

PoT support: (urn:cisco:params:xml:ns:yang:sfc-ioam-sb-pot?revision=2017-01-12)sfc-ioam-sb-pot

It is also expected that the devices are netconf mounted and available
in the topology-netconf store.

Instructions

When SFC Proof of Transit is installed, all netconf nodes in topology-netconf
are processed and all capable nodes with accessible mountpoints are cached.

First step is to create the required RSP as is usually done using RSP creation
steps in SFC main.

Once RSP name is available it is used to send a POST RPC to the
controller similar to below:

POST -
http://ODL-IP:8181/restconf/operations/sfc-ioam-nb-pot:enable-sfc-ioam-pot-rendered-path/

{
 "input":
 {
 "sfc-ioam-pot-rsp-name": "sfc-path-3sf3sff",
 "ioam-pot-enable":true,
 "ioam-pot-num-profiles":2,
 "ioam-pot-bit-mask":"bits32",
 "refresh-period-time-units":"milliseconds",
 "refresh-period-value":5000
 }
}

The following can be used to disable the SFC Proof of Transit on an RSP
which disables the PoT feature.

POST -
http://ODL-IP:8181/restconf/operations/sfc-ioam-nb-pot:disable-sfc-ioam-pot-rendered-path/

{
 "input":
 {
 "sfc-ioam-pot-rsp-name": "sfc-path-3sf3sff",
 }
}

SFC PoT NETCONF Renderer User Guide

Overview

The SFC Proof of Transit (PoT) NETCONF renderer implements SFC Proof of
Transit functionality on NETCONF-capable devices, that have advertised
support for in-situ OAM (iOAM) support.

It listens for an update to an existing RSP with enable or disable proof of
transit support and adds the auto-generated SFC PoT configuration parameters
to all the SFC hop nodes. The last node in the SFC is configured as a
verifier node to allow SFC PoT process to be completed.

Common acronyms are used as below:

	SF - Service Function

	SFC - Service Function Chain

	RSP - Rendered Service Path

	SFF - Service Function Forwarder

Mapping to SFC entities

The renderer module listens to RSP updates in SfcPotNetconfRSPListener
and triggers configuration generation in SfcPotNetconfIoam class. Node
arrival and leaving are managed via SfcPotNetconfNodeManager and
SfcPotNetconfNodeListener. In addition there is a timer thread that
runs to generate configuration periodically to refresh the profiles in the
nodes that are part of the SFC.

Administering SFC PoT NETCONF Renderer

To use the SFC Proof of Transit Karaf, the following Karaf features must
be installed:

	odl-sfc-model

	odl-sfc-provider

	odl-sfc-netconf

	odl-restconf-all

	odl-netconf-topology

	odl-netconf-connector-all

	odl-sfc-pot

	odl-sfc-pot-netconf-renderer

SFC PoT NETCONF Renderer Tutorial

Overview

This tutorial is a simple example how to enable SFC PoT on NETCONF-capable
devices.

Preconditions

The NETCONF-capable device will have to support sfc-ioam-sb-pot.yang file.

It is expected that a NETCONF-capable VPP device has Honeycomb (Hc2vpp)
Java-based agent that helps to translate between NETCONF and VPP internal
APIs.

More details are here:
In-situ OAM: https://github.com/CiscoDevNet/iOAM

Steps

When the SFC PoT NETCONF renderer module is installed, all NETCONF nodes in
topology-netconf are processed and all sfc-ioam-sb-pot yang capable nodes
with accessible mountpoints are cached.

The first step is to create RSP for the SFC as per SFC guidelines above.

Enable SFC PoT is done on the RSP via RESTCONF to the ODL as outlined above.

Internally, the NETCONF renderer will act on the callback to a modified RSP
that has PoT enabled.

In-situ OAM algorithms for auto-generation of SFC PoT parameters are
generated automatically and sent to these nodes via NETCONF.

Logical Service Function Forwarder

Overview

Rationale

When the current SFC is deployed in a cloud environment, it is assumed that each
switch connected to a Service Function is configured as a Service Function Forwarder and
each Service Function is connected to its Service Function Forwarder depending on the
Compute Node where the Virtual Machine is located.

[image: Deploying SFC in Cloud Environments]

As shown in the picture above, this solution allows the basic cloud use cases to be fulfilled,
as for example, the ones required in OPNFV Brahmaputra, however, some advanced use cases
like the transparent migration of VMs can not be implemented. The Logical Service Function Forwarder
enables the following advanced use cases:

	Service Function mobility without service disruption

	Service Functions load balancing and failover

As shown in the picture below, the Logical Service Function Forwarder concept extends the current
SFC northbound API to provide an abstraction of the underlying Data Center infrastructure.
The Data Center underlaying network can be abstracted by a single SFF. This single SFF uses
the logical port UUID as data plane locator to connect SFs globally and in a location-transparent manner.
SFC makes use of Genius project to track the
location of the SF’s logical ports.

[image: Single Logical SFF concept]

The SFC internally distributes the necessary flow state over the relevant switches based on the
internal Data Center topology and the deployment of SFs.

Changes in data model

The Logical Service Function Forwarder concept extends the current SFC northbound API to provide
an abstraction of the underlying Data Center infrastructure.

The Logical SFF simplifies the configuration of the current SFC data model by reducing the number
of parameters to be be configured in every SFF, since the controller will discover those parameters
by interacting with the services offered by the Genius project.

The following picture shows the Logical SFF data model. The model gets simplified as most of the
configuration parameters of the current SFC data model are discovered in runtime. The complete
YANG model can be found here logical SFF model [https://github.com/opendaylight/sfc/blob/master/sfc-model/src/main/yang/service-function-forwarder-logical.yang].

[image: Logical SFF data model]

How to configure the Logical SFF

The following are examples to configure the Logical SFF:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/restconf/config/service-function:service-functions/

Service Functions JSON.

{
"service-functions": {
 "service-function": [
 {
 "name": "firewall-1",
 "type": "firewall",
 "sf-data-plane-locator": [
 {
 "name": "firewall-dpl",
 "interface-name": "eccb57ae-5a2e-467f-823e-45d7bb2a6a9a",
 "transport": "service-locator:eth-nsh",
 "service-function-forwarder": "sfflogical1"

 }
]
 },
 {
 "name": "dpi-1",
 "type": "dpi",
 "sf-data-plane-locator": [
 {
 "name": "dpi-dpl",
 "interface-name": "df15ac52-e8ef-4e9a-8340-ae0738aba0c0",
 "transport": "service-locator:eth-nsh",
 "service-function-forwarder": "sfflogical1"
 }
]
 }
]
}
}

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-forwarder:service-function-forwarders/

Service Function Forwarders JSON.

{
"service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "sfflogical1"
 }
]
}
}

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-chain:service-function-chains/

Service Function Chains JSON.

{
"service-function-chains": {
 "service-function-chain": [
 {
 "name": "SFC1",
 "sfc-service-function": [
 {
 "name": "dpi-abstract1",
 "type": "dpi"
 },
 {
 "name": "firewall-abstract1",
 "type": "firewall"
 }
]
 },
 {
 "name": "SFC2",
 "sfc-service-function": [
 {
 "name": "dpi-abstract1",
 "type": "dpi"
 }
]
 }
]
}
}

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8182/restconf/config/service-function-chain:service-function-paths/

Service Function Paths JSON.

{
"service-function-paths": {
 "service-function-path": [
 {
 "name": "SFP1",
 "service-chain-name": "SFC1",
 "starting-index": 255,
 "symmetric": "true",
 "context-metadata": "NSH1",
 "transport-type": "service-locator:vxlan-gpe"

 }
]
}
}

As a result of above configuration, OpenDaylight renders the needed flows in all involved SFFs. Those flows implement:

	Two Rendered Service Paths:

	dpi-1 (SF1), firewall-1 (SF2)

	firewall-1 (SF2), dpi-1 (SF1)

	The communication between SFFs and SFs based on eth-nsh

	The communication between SFFs based on vxlan-gpe

The following picture shows a topology and traffic flow (in green) which corresponds to the above configuration.

[image: Logical SFF Example]
Logical SFF Example

The Logical SFF functionality allows OpenDaylight to find out the SFFs holding the SFs involved in a path. In this example
the SFFs affected are Node3 and Node4 thus the controller renders the flows containing NSH parameters just in those SFFs.

Here you have the new flows rendered in Node3 and Node4 which implement the NSH protocol. Every Rendered Service Path is represented
by an NSP value. We provisioned a symmetric RSP so we get two NSPs: 8388613 and 5. Node3 holds the first SF of NSP 8388613 and
the last SF of NSP 5. Node 4 holds the first SF of NSP 5 and the last SF of NSP 8388613. Both Node3 and Node4 will pop the NSH header
when the received packet has gone through the last SF of its path.

Rendered flows Node 3

cookie=0x14, duration=59.264s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5 actions=goto_table:86
cookie=0x14, duration=59.194s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=8388613 actions=goto_table:86
cookie=0x14, duration=59.257s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,nsp=5 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e->NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0x14, duration=59.189s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,nsp=8388613 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e->NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0xba5eba1100000203, duration=59.213s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=253,nsp=5 actions=pop_nsh,set_field:6e:e0:06:b4:c5:1e->eth_src,resubmit(,17)
cookie=0xba5eba1100000201, duration=59.213s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=5 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000201, duration=59.188s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=255,nsp=8388613 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000201, duration=59.182s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=8388613 actions=set_field:0->tun_id,output:6

Rendered Flows Node 4

cookie=0x14, duration=69.040s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5 actions=goto_table:86
cookie=0x14, duration=69.008s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=8388613 actions=goto_table:86
cookie=0x14, duration=69.040s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,nsp=5 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0x14, duration=69.005s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,nsp=8388613 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0xba5eba1100000201, duration=69.029s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=255,nsp=5 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000201, duration=69.029s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=5 actions=set_field:0->tun_id,output:1
cookie=0xba5eba1100000201, duration=68.999s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=8388613 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000203, duration=68.996s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=253,nsp=8388613 actions=pop_nsh,set_field:02:14:84:5e:a8:5d->eth_src,resubmit(,17)

An interesting scenario to show the Logical SFF strength is the migration of a SF from a compute node to another.
The OpenDaylight will learn the new topology by itself, then it will re-render the new flows to the new SFFs affected.

[image: Logical SFF - SF Migration Example]
Logical SFF - SF Migration Example

In our example, SF2 is moved from Node4 to Node2 then OpenDaylight removes NSH specific flows from Node4 and puts them in Node2.
Check below flows showing this effect. Now Node3 keeps holding the first SF of NSP 8388613 and the last SF of NSP 5;
but Node2 becomes the new holder of the first SF of NSP 5 and the last SF of NSP 8388613.

Rendered Flows Node 3 After Migration

cookie=0x14, duration=64.044s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5 actions=goto_table:86
cookie=0x14, duration=63.947s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=8388613 actions=goto_table:86
cookie=0x14, duration=64.044s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,nsp=5 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e->NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0x14, duration=63.947s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,nsp=8388613 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e->NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0xba5eba1100000201, duration=64.034s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=5 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000203, duration=64.034s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=253,nsp=5 actions=pop_nsh,set_field:6e:e0:06:b4:c5:1e->eth_src,resubmit(,17)
cookie=0xba5eba1100000201, duration=63.947s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=255,nsp=8388613 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000201, duration=63.942s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=8388613 actions=set_field:0->tun_id,output:2

Rendered Flows Node 2 After Migration

cookie=0x14, duration=56.856s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5 actions=goto_table:86
cookie=0x14, duration=56.755s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=8388613 actions=goto_table:86
cookie=0x14, duration=56.847s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,nsp=5 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0x14, duration=56.755s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,nsp=8388613 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0xba5eba1100000201, duration=56.823s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=255,nsp=5 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000201, duration=56.823s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=5 actions=set_field:0->tun_id,output:4
cookie=0xba5eba1100000201, duration=56.755s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=8388613 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000203, duration=56.750s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=253,nsp=8388613 actions=pop_nsh,set_field:02:14:84:5e:a8:5d->eth_src,resubmit(,17)

Rendered Flows Node 4 After Migration

-- No flows for NSH processing --

Classifier impacts

As previously mentioned, in the Logical SFF rationale, the Logical SFF feature relies on
Genius to get the dataplane IDs of the OpenFlow switches, in order to properly
steer the traffic through the chain.

Since one of the classifier’s objectives is to steer the packets into the
SFC domain, the classifier has to be aware of where the first Service
Function is located - if it migrates somewhere else, the classifier table
has to be updated accordingly, thus enabling the seemless migration of Service
Functions.

For this feature, mobility of the client VM is out of scope, and should be
managed by its high-availability module, or VNF manager.

Keep in mind that classification always occur in the compute-node where
the client VM (i.e. traffic origin) is running.

How to attach the classifier to a Logical SFF

In order to leverage this functionality, the classifier has to be configured
using a Logical SFF as an attachment-point, specifying within it the neutron
port to classify.

The following examples show how to configure an ACL, and a classifier having
a Logical SFF as an attachment-point:

Configure an ACL

The following ACL enables traffic intended for port 80 within the subnetwork
192.168.2.0/24, for RSP1 and RSP1-Reverse.

{
 "access-lists": {
 "acl": [
 {
 "acl-name": "ACL1",
 "acl-type": "ietf-access-control-list:ipv4-acl",
 "access-list-entries": {
 "ace": [
 {
 "rule-name": "ACE1",
 "actions": {
 "service-function-acl:rendered-service-path": "RSP1"
 },
 "matches": {
 "destination-ipv4-network": "192.168.2.0/24",
 "source-ipv4-network": "192.168.2.0/24",
 "protocol": "6",
 "source-port-range": {
 "lower-port": 0
 },
 "destination-port-range": {
 "lower-port": 80
 }
 }
 }
]
 }
 },
 {
 "acl-name": "ACL2",
 "acl-type": "ietf-access-control-list:ipv4-acl",
 "access-list-entries": {
 "ace": [
 {
 "rule-name": "ACE2",
 "actions": {
 "service-function-acl:rendered-service-path": "RSP1-Reverse"
 },
 "matches": {
 "destination-ipv4-network": "192.168.2.0/24",
 "source-ipv4-network": "192.168.2.0/24",
 "protocol": "6",
 "source-port-range": {
 "lower-port": 80
 },
 "destination-port-range": {
 "lower-port": 0
 }
 }
 }
]
 }
 }
]
 }
}

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/ietf-access-control-list:access-lists/

Configure a classifier JSON

The following JSON provisions a classifier, having a Logical SFF as an
attachment point. The value of the field ‘interface’ is where you
indicate the neutron ports of the VMs you want to classify.

{
 "service-function-classifiers": {
 "service-function-classifier": [
 {
 "name": "Classifier1",
 "scl-service-function-forwarder": [
 {
 "name": "sfflogical1",
 "interface": "09a78ba3-78ba-40f5-a3ea-1ce708367f2b"
 }
],
 "acl": {
 "name": "ACL1",
 "type": "ietf-access-control-list:ipv4-acl"
 }
 }
]
 }
}

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-classifier:service-function-classifiers/

SFC pipeline impacts

After binding SFC service with a particular interface by means of Genius, as explained in the Genius User Guide,
the entry point in the SFC pipeline will be table 82 (SFC_TRANSPORT_CLASSIFIER_TABLE), and from that point, packet
processing will be similar to the SFC OpenFlow pipeline, just with another set
of specific tables for the SFC service.

This picture shows the SFC pipeline after service integration with Genius:

[image: SFC Logical SFF OpenFlow pipeline]
SFC Logical SFF OpenFlow pipeline

SNMP Plugin User Guide

Installing Feature

The SNMP Plugin can be installed using a single karaf feature:
odl-snmp-plugin

After starting Karaf:

	Install the feature: feature:install odl-snmp-plugin

	Expose the northbound API: feature:install odl-restconf

Northbound APIs

There are two exposed northbound APIs: snmp-get & snmp-set

SNMP GET

Default URL: http://localhost:8181/restconf/operations/snmp:snmp-get

POST Input

	Field Name

	Type

	Description

	Example

	Required?

	ip-address

	Ipv4 Address

	The IPv4
Address of the
desired
network node

	10.86.3.13

	Yes

	oid

	String

	The Object
Identifier of
the desired
MIB
table/object

	1.3.6.1.2.1.1.
1

	Yes

	get-type

	ENUM (GET,
GET-NEXT,
GET-BULK,
GET-WALK)

	The type of
get request to
send

	GET-BULK

	Yes

	community

	String

	The community
string to use
for the SNMP
request

	private

	No. (Default:
public)

Example.

{
 "input": {
 "ip-address": "10.86.3.13",
 "oid" : "1.3.6.1.2.1.1.1",
 "get-type" : "GET-BULK",
 "community" : "private"
 }
}

POST Output

	Field Name

	Type

	Description

	results

	List of { “value” :
String } pairs

	The results of the SNMP
query

Example.

{
 "snmp:results": [
 {
 "value": "Ethernet0/0/0",
 "oid": "1.3.6.1.2.1.2.2.1.2.1"
 },
 {
 "value": "FastEthernet0/0/0",
 "oid": "1.3.6.1.2.1.2.2.1.2.2"
 },
 {
 "value": "GigabitEthernet0/0/0",
 "oid": "1.3.6.1.2.1.2.2.1.2.3"
 }
]
}

SNMP SET

Default URL: http://localhost:8181/restconf/operations/snmp:snmp-set

POST Input

	Field Name

	Type

	Description

	Example

	Required?

	ip-address

	Ipv4 Address

	The Ipv4
address of the
desired
network node

	10.86.3.13

	Yes

	oid

	String

	The Object
Identifier of
the desired
MIB object

	1.3.6.2.1.1.1

	Yes

	value

	String

	The value to
set on the
network device

	“Hello World”

	Yes

	community

	String

	The community
string to use
for the SNMP
request

	private

	No. (Default:
public)

Example.

{
 "input": {
 "ip-address": "10.86.3.13",
 "oid" : "1.3.6.1.2.1.1.1.0",
 "value" : "Sample description",
 "community" : "private"
 }
}

POST Output

On a successful SNMP-SET, no output is presented, just a HTTP status of
200.

Errors

If any errors happen in the set request, you will be presented with an
error message in the output.

For example, on a failed set request you may see an error like:

{
 "errors": {
 "error": [
 {
 "error-type": "application",
 "error-tag": "operation-failed",
 "error-message": "SnmpSET failed with error status: 17, error index: 1. StatusText: Not writable"
 }
]
 }
}

which corresponds to Error status 17 in the SNMPv2 RFC:
https://tools.ietf.org/html/rfc1905.

SNMP4SDN User Guide

Overview

We propose a southbound plugin that can control the off-the-shelf
commodity Ethernet switches for the purpose of building SDN using
Ethernet switches. For Ethernet switches, forwarding table, VLAN table,
and ACL are where one can install flow configuration on, and this is
done via SNMP and CLI in the proposed plugin. In addition, some settings
required for Ethernet switches in SDN, e.g., disabling STP and flooding,
are proposed.

[image: SNMP4SDN as an OpenDaylight southbound plugin]
SNMP4SDN as an OpenDaylight southbound plugin

Configuration

Just follow the steps:

Prepare the switch list database file

A sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file],
and we suggest to save it as /etc/snmp4sdn_swdb.csv so that SNMP4SDN
Plugin can automatically load this file. Note that the first line is
title and should not be removed.

Prepare the vendor-specific configuration file

A sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:snmp4sdn_VendorSpecificSwitchConfig_file],
and we suggest to save it as
/etc/snmp4sdn_VendorSpecificSwitchConfig.xml so that SNMP4SDN Plugin
can automatically load this file.

Install SNMP4SDN Plugin

If using SNMP4SDN Plugin provided in OpenDaylight release, just do the
following from the Karaf CLI:

feature:install odl-snmp4sdn-all

Troubleshooting

Installation Troubleshooting

Feature installation failure

When trying to install a feature, if the following failure occurs:

Error executing command: Could not start bundle ...
Reason: Missing Constraint: Require-Capability: osgi.ee; filter="(&(osgi.ee=JavaSE)(version=1.7))"

A workaround: exit Karaf, and edit the file
<karaf_directory>/etc/config.properties, remove the line
${services-${karaf.framework}} and the “, " in the line above.

Runtime Troubleshooting

Problem starting SNMP Trap Interface

It is possible to get the following exception during controller startup.
(The error would not be printed in Karaf console, one may see it in
<karaf_directory>/data/log/karaf.log)

2014-01-31 15:00:44.688 CET [fileinstall-./plugins] WARN o.o.snmp4sdn.internal.SNMPListener - Problem starting SNMP Trap Interface: {}
 java.net.BindException: Permission denied
 at java.net.PlainDatagramSocketImpl.bind0(Native Method) ~[na:1.7.0_51]
 at java.net.AbstractPlainDatagramSocketImpl.bind(AbstractPlainDatagramSocketImpl.java:95) ~[na:1.7.0_51]
 at java.net.DatagramSocket.bind(DatagramSocket.java:376) ~[na:1.7.0_51]
 at java.net.DatagramSocket.<init>(DatagramSocket.java:231) ~[na:1.7.0_51]
 at java.net.DatagramSocket.<init>(DatagramSocket.java:284) ~[na:1.7.0_51]
 at java.net.DatagramSocket.<init>(DatagramSocket.java:256) ~[na:1.7.0_51]
 at org.snmpj.SNMPTrapReceiverInterface.<init>(SNMPTrapReceiverInterface.java:126) ~[org.snmpj-1.4.3.jar:na]
 at org.snmpj.SNMPTrapReceiverInterface.<init>(SNMPTrapReceiverInterface.java:99) ~[org.snmpj-1.4.3.jar:na]
 at org.opendaylight.snmp4sdn.internal.SNMPListener.<init>(SNMPListener.java:75) ~[bundlefile:na]
 at org.opendaylight.snmp4sdn.core.internal.Controller.start(Controller.java:174) [bundlefile:na]
...

This indicates that the controller is being run as a user which does not
have sufficient OS privileges to bind the SNMPTRAP port (162/UDP)

Switch list file missing

The SNMP4SDN Plugin needs a switch list file, which is necessary for
topology discovery and should be provided by the administrator (so
please prepare one for the first time using SNMP4SDN Plugin, here is the
sample [https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file]).
The default file path is /etc/snmp4sdn_swdb.csv. SNMP4SDN Plugin would
automatically load this file and start topology discovery. If this file
is not ready there, the following message like this will pop up:

2016-02-02 04:21:52,476 | INFO| Event Dispatcher | CmethUtil | 466 - org.opendaylight.snmp4sdn - 0.3.0.SNAPSHOT | CmethUtil.readDB() err: {}
java.io.FileNotFoundException: /etc/snmp4sdn_swdb.csv (No such file or directory)
 at java.io.FileInputStream.open0(Native Method)[:1.8.0_65]
 at java.io.FileInputStream.open(FileInputStream.java:195)[:1.8.0_65]
 at java.io.FileInputStream.<init>(FileInputStream.java:138)[:1.8.0_65]
 at java.io.FileInputStream.<init>(FileInputStream.java:93)[:1.8.0_65]
 at java.io.FileReader.<init>(FileReader.java:58)[:1.8.0_65]
 at org.opendaylight.snmp4sdn.internal.util.CmethUtil.readDB(CmethUtil.java:66)
 at org.opendaylight.snmp4sdn.internal.util.CmethUtil.<init>(CmethUtil.java:43)
...

Configuration

Just follow the steps:

1. Prepare the switch list database file

A sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file],
and we suggest to save it as /etc/snmp4sdn_swdb.csv so that SNMP4SDN
Plugin can automatically load this file.

Note

The first line is title and should not be removed.

2. Prepare the vendor-specific configuration file

A sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:snmp4sdn_VendorSpecificSwitchConfig_file],
and we suggest to save it as
/etc/snmp4sdn_VendorSpecificSwitchConfig.xml so that SNMP4SDN Plugin
can automatically load this file.

3. Install SNMP4SDN Plugin

If using SNMP4SDN Plugin provided in OpenDaylight release, just do the
following:

Launch Karaf in Linux console:

cd <Boron_controller_directory>/bin
(for example, cd distribution-karaf-x.x.x-Boron/bin)

./karaf

Then in Karaf console, execute:

feature:install odl-snmp4sdn-all

4. Load switch list

For initialization, we need to feed SNMP4SDN Plugin the switch list.
Actually SNMP4SDN Plugin automatically try to load the switch list at
/etc/snmp4sdn_swdb.csv if there is. If so, this step could be skipped.
In Karaf console, execute:

snmp4sdn:ReadDB <switch_list_path>
(For example, snmp4sdn:ReadDB /etc/snmp4sdn_swdb.csv)
(in Windows OS, For example, snmp4sdn:ReadDB D://snmp4sdn_swdb.csv)

A sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file],
and we suggest to save it as /etc/snmp4sdn_swdb.csv so that SNMP4SDN
Plugin can automatically load this file.

Note

The first line is title and should not be removed.

5. Show switch list

snmp4sdn:PrintDB

Tutorial

Topology Service

Execute topology discovery

The SNMP4SDN Plugin automatically executes topology discovery on
startup. One may use the following commands to invoke topology discovery
manually. Note that you may need to wait for seconds for itto complete.

Note

Currently, one needs to manually execute snmp4sdn:TopoDiscover
first (just once), then later the automatic topology discovery can
be successful. If switches change (switch added or removed),
snmp4sdn:TopoDiscover is also required. A future version will fix
it to eliminate these requirements.

snmp4sdn:TopoDiscover

If one like to discover all inventory (i.e. switches and their ports)
but not edges, just execute “TopoDiscoverSwitches”:

snmp4sdn:TopoDiscoverSwitches

If one like to only discover all edges but not inventory, just execute
“TopoDiscoverEdges”:

snmp4sdn:TopoDiscoverEdges

You can also trigger topology discovery via the REST API by using
curl from the Linux console (or any other REST client):

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:rediscover

You can change the periodic topology discovery interval via a REST API:

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:set-discovery-interval -d "{"input":{"interval-second":'<interval_time>'}}"
For example, set the interval as 15 seconds:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:set-discovery-interval -d "{"input":{"interval-second":'15'}}"

Show the topology

SNMP4SDN Plugin supports to show topology via REST API:

	Get topology

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:get-edge-list

	Get switch list

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:get-node-list

	Get switches’ ports list

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:get-node-connector-list

	The three commands above are just for user to get the latest topology
discovery result, it does not trigger SNMP4SDN Plugin to do topology
discovery.

	To trigger SNMP4SDN Plugin to do topology discover, as described in
aforementioned Execute topology discovery.

Flow configuration

FDB configuration

SNMP4SDN supports to add entry on FDB table via REST API:

	Get FDB table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/fdb:get-fdb-table -d "{input:{"node-id":<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/fdb:get-fdb-table -d "{input:{"node-id":158969157063648}}"

	Get FDB table entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/fdb:get-fdb-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "dest-mac-addr":<destination-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/fdb:get-fdb-entry -d "{input:{"node-id":158969157063648, "vlan-id":1, "dest-mac-addr":158969157063648}}"

	Set FDB table entry

(Notice invalid value: (1) non unicast mac (2) port not in the VLAN)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/fdb:set-fdb-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "dest-mac-addr":<destination-mac-address-in-number>, "port":<port-in-number>, "type":'<type>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/fdb:set-fdb-entry -d "{input:{"node-id":158969157063648, "vlan-id":1, "dest-mac-addr":187649984473770, "port":23, "type":'MGMT'}}"

	Delete FDB table entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/fdb:del-fdb-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "dest-mac-addr":<destination-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/fdb:del-fdb-entry -d "{input:{"node-id":158969157063648, "vlan-id":1, "dest-mac-addr":187649984473770}}"

VLAN configuration

SNMP4SDN supports to add entry on VLAN table via REST API:

	Get VLAN table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/vlan:get-vlan-table -d "{input:{node-id:<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vlan:get-vlan-table -d "{input:{node-id:158969157063648}}"

	Add VLAN

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/vlan:add-vlan -d "{"input":{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "vlan-name":'<vlan-name>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vlan:add-vlan -d "{"input":{"node-id":158969157063648, "vlan-id":123, "vlan-name":'v123'}}"

	Delete VLAN

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/vlan:delete-vlan -d "{"input":{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vlan:delete-vlan -d "{"input":{"node-id":158969157063648, "vlan-id":123}}"

	Add VLAN and set ports

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/vlan:add-vlan-and-set-ports -d "{"input":{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "vlan-name":'<vlan-name>', "tagged-port-list":'<tagged-ports-separated-by-comma>', "untagged-port-list":'<untagged-ports-separated-by-comma>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vlan:add-vlan-and-set-ports -d "{"input":{"node-id":158969157063648, "vlan-id":123, "vlan-name":'v123', "tagged-port-list":'1,2,3', "untagged-port-list":'4,5,6'}}"

	Set VLAN ports

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/vlan:set-vlan-ports -d "{"input":{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "tagged-port-list":'<tagged-ports-separated-by-comma>', "untagged-port-list":'<untagged-ports-separated-by-comma>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vlan:set-vlan-ports -d "{"input":{"node-id":"158969157063648", "vlan-id":"123", "tagged-port-list":'4,5', "untagged-port-list":'2,3'}}"

ACL configuration

SNMP4SDN supports to add flow on ACL table via REST API. However, it is
so far only implemented for the D-Link DGS-3120 switch.

ACL configuration via CLI is vendor-specific, and SNMP4SDN will support
configuration with vendor-specific CLI in future release.

To do ACL configuration using the REST APIs, use commands like the
following:

	Clear ACL table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:clear-acl-table -d "{"input":{"nodeId":<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:clear-acl-table -d "{"input":{"nodeId":158969157063648}}"

	Create ACL profile (IP layer)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:create-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',"acl-layer":'IP',"vlan-mask":<vlan_mask_in_number>,"src-ip-mask":'<src_ip_mask>',"dst-ip-mask":"<destination_ip_mask>"}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:create-acl-profile -d "{input:{"nodeId":158969157063648,"profile-id":1,"profile-name":'profile_1',"acl-layer":'IP',"vlan-mask":1,"src-ip-mask":'255.255.0.0',"dst-ip-mask":'255.255.255.255'}}"

	Create ACL profile (MAC layer)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:create-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',"acl-layer":'ETHERNET',"vlan-mask":<vlan_mask_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:create-acl-profile -d "{input:{"nodeId":158969157063648,"profile-id":2,"profile-name":'profile_2',"acl-layer":'ETHERNET',"vlan-mask":4095}}"

	Delete ACL profile

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":<profile_id_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-profile -d "{input:{"nodeId":158969157063648,"profile-id":1}}"

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:del-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-name":"<profile_name>"}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-profile -d "{input:{"nodeId":158969157063648,"profile-name":'profile_2'}}"

	Set ACL rule

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:set-acl-rule -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',"rule-id":<rule_id_in_number>,"port-list":[<port_number>,<port_number>,...],"acl-layer":'<acl_layer>',"vlan-id":<vlan_id_in_number>,"src-ip":"<src_ip_address>","dst-ip":'<dst_ip_address>',"acl-action":'<acl_action>'}}"
(<acl_layer>: IP or ETHERNET)
(<acl_action>: PERMIT as permit, DENY as deny)

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:set-acl-rule -d "{input:{"nodeId":158969157063648,"profile-id":1,"profile-name":'profile_1',"rule-id":1,"port-list":[1,2,3],"acl-layer":'IP',"vlan-id":2,"src-ip":'1.1.1.1',"dst-ip":'2.2.2.2',"acl-action":'PERMIT'}}"

	Delete ACL rule

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:del-acl-rule -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',"rule-id":<rule_id_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-rule -d "{input:{"nodeId":158969157063648,"profile-id":1,"profile-name":'profile_1',"rule-id":1}}"

Special configuration

SNMP4SDN supports setting the following special configurations via REST
API:

	Set STP port state

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:set-stp-port-state -d "{input:{"node-id":<switch-mac-address-in-number>, "port":<port_number>, enable:<true_or_false>}}"
(true: enable, false: disable)

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:set-stp-port-state -d "{input:{"node-id":158969157063648, "port":2, enable:false}}"

	Get STP port state

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:get-stp-port-state -d "{input:{"node-id":<switch-mac-address-in-number>, "port":<port_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:get-stp-port-state -d "{input:{"node-id":158969157063648, "port":2}}"

	Get STP port root

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:get-stp-port-root -d "{input:{"node-id":<switch-mac-address-in-number>, "port":<port_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:get-stp-port-root -d "{input:{"node-id":158969157063648, "port":2}}"

	Enable STP

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:enable-stp -d "{input:{"node-id":<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:enable-stp -d "{input:{"node-id":158969157063648}}"

	Disable STP

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:disable-stp -d "{input:{"node-id":<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:disable-stp -d "{input:{"node-id":158969157063648}}"

	Get ARP table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:get-arp-table -d "{input:{"node-id":<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:get-arp-table -d "{input:{"node-id":158969157063648}}"

	Set ARP entry

(Notice to give IP address with subnet prefix)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:set-arp-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "ip-address":'<ip_address>', "mac-address":<mac_address_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:set-arp-entry -d "{input:{"node-id":158969157063648, "ip-address":'10.217.9.9', "mac-address":1}}"

	Get ARP entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:get-arp-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "ip-address":'<ip_address>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:get-arp-entry -d "{input:{"node-id":158969157063648, "ip-address":'10.217.9.9'}}"

	Delete ARP entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:delete-arp-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "ip-address":'<ip_address>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:delete-arp-entry -d "{input:{"node-id":158969157063648, "ip-address":'10.217.9.9'}}"

Using Postman to invoke REST API

Besides using the curl tool to invoke REST API, like the examples
aforementioned, one can also use GUI tool like Postman for better data
display.

	Install Postman: Install Postman in the Chrome
browser [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]

	In the chrome browser bar enter

chrome://apps/

	Click on Postman.

Example: Get VLAN table using Postman

As the screenshot shown below, one needs to fill in required fields.

URL:
http://<controller_ip_address>:8181/restconf/operations/vlan:get-vlan-table

Accept header:
application/json

Content-type:
application/json

Body:
{input:{"node-id":<node_id>}}
for example:
{input:{"node-id":158969157063648}}

[image: Example: Get VLAN table using Postman]
Example: Get VLAN table using Postman

Multi-vendor support

So far the supported vendor-specific configurations:

	Add VLAN and set ports

	(More functions are TBD)

The SNMP4SDN Plugin would examine whether the configuration is described
in the vendor-specific configuration file. If yes, the configuration
description would be adopted, otherwise just use the default
configuration. For example, adding VLAN and setting the ports is
supported via SNMP standard MIB. However we found some special cases,
for example, certain Accton switch requires to add VLAN first and then
allows to set the ports. So one may describe this in the vendor-specific
configuration file.

A vendor-specific configuration file sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:snmp4sdn_VendorSpecificSwitchConfig_file],
and we suggest to save it as
/etc/snmp4sdn_VendorSpecificSwitchConfig.xml so that SNMP4SDN Plugin
can automatically load it.

Help

	SNMP4SDN Wiki [https://wiki.opendaylight.org/view/SNMP4SDN:Main]

	SNMP4SDN Mailing Lists:
(user [https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-users],
developer [https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-dev])

	Latest
troubleshooting [https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Troubleshooting]
in Wiki

SXP User Guide

Overview

SXP (Scalable-Group Tag eXchange Protocol) project is an effort to enhance
OpenDaylight platform with IP-SGT (IP Address to Source Group Tag)
bindings that can be learned from connected SXP-aware network nodes. The
current implementation supports SXP protocol version 4 according to the
Smith, Kandula - SXP IETF
draft [https://tools.ietf.org/html/draft-smith-kandula-sxp-05] and
grouping of peers and creating filters based on ACL/Prefix-list syntax
for filtering outbound and inbound IP-SGT bindings. All protocol legacy
versions 1-3 are supported as well. Additionally, version 4 adds
bidirectional connection type as an extension of a unidirectional one.

SXP Architecture

The SXP Server manages all connected clients in separate threads and a
common SXP protocol agreement is used between connected peers. Each SXP
network peer is modelled with its pertaining class, e.g., SXP Server
represents the SXP Speaker, SXP Listener the Client. The server program
creates the ServerSocket object on a specified port and waits until a
client starts up and requests connect on the IP address and port of the
server. The client program opens a Socket that is connected to the
server running on the specified host IP address and port.

The SXP Listener maintains connection with its speaker peer. From an
opened channel pipeline, all incoming SXP messages are processed by
various handlers. Message must be decoded, parsed and validated.

The SXP Speaker is a counterpart to the SXP Listener. It maintains a
connection with its listener peer and sends composed messages.

The SXP Binding Handler extracts the IP-SGT binding from a message and
pulls it into the SXP-Database. If an error is detected during the
IP-SGT extraction, an appropriate error code and sub-code is selected
and an error message is sent back to the connected peer. All transitive
messages are routed directly to the output queue of SXP Binding
Dispatcher.

The SXP Binding Dispatcher represents a selector that will decides how
many data from the SXP-database will be sent and when. It is responsible
for message content composition based on maximum message length.

The SXP Binding Filters handles filtering of outgoing and incoming
IP-SGT bindings according to BGP filtering using ACL and Prefix List
syntax for specifying filter or based on Peer-sequence length.

The SXP Domains feature provides isolation of SXP peers and bindings
learned between them, also exchange of Bindings is possible across
SXP-Domains by ACL, Prefix List or Peer-Sequence filters

Configuring SXP

The OpenDaylight Karaf distribution comes pre-configured with baseline
SXP configuration. Configuration of SXP Nodes is also possible via
NETCONF.

	22-sxp-controller-one-node.xml (defines the basic parameters)

Administering or Managing SXP

By RPC (response is XML document containing requested data or operation
status):

	Get Connections POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-connections

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <domain-name>global</domain-name>
 <requested-node>0.0.0.100</requested-node>
</input>

	Add Connection POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-connection

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <connections>
 <connection>
 <peer-address>172.20.161.50</peer-address>
 <tcp-port>64999</tcp-port>
 <!-- Password setup: default | none leave empty -->
 <password>default</password>
 <!-- Mode: speaker/listener/both -->
 <mode>speaker</mode>
 <version>version4</version>
 <description>Connection to ASR1K</description>
 <!-- Timers setup: 0 to disable specific timer usability, the default value will be used -->
 <connection-timers>
 <!-- Speaker -->
 <hold-time-min-acceptable>45</hold-time-min-acceptable>
 <keep-alive-time>30</keep-alive-time>
 </connection-timers>
 </connection>
 <connection>
 <peer-address>172.20.161.178</peer-address>
 <tcp-port>64999</tcp-port>
 <!-- Password setup: default | none leave empty-->
 <password>default</password>
 <!-- Mode: speaker/listener/both -->
 <mode>listener</mode>
 <version>version4</version>
 <description>Connection to ISR</description>
 <!-- Timers setup: 0 to disable specific timer usability, the default value will be used -->
 <connection-timers>
 <!-- Listener -->
 <reconciliation-time>120</reconciliation-time>
 <hold-time>90</hold-time>
 <hold-time-min>90</hold-time-min>
 <hold-time-max>180</hold-time-max>
 </connection-timers>
 </connection>
 </connections>
</input>

	Delete Connection POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-connection

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <peer-address>172.20.161.50</peer-address>
</input>

	Add Binding Entry POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-entry

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <ip-prefix>192.168.2.1/32</ip-prefix>
 <sgt>20</sgt >
</input>

	Update Binding Entry POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:update-entry

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <original-binding>
 <ip-prefix>192.168.2.1/32</ip-prefix>
 <sgt>20</sgt>
 </original-binding>
 <new-binding>
 <ip-prefix>192.168.3.1/32</ip-prefix>
 <sgt>30</sgt>
 </new-binding>
</input>

	Delete Binding Entry POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-entry

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <ip-prefix>192.168.3.1/32</ip-prefix>
 <sgt>30</sgt >
</input>

	Get Node Bindings

This RPC gets particular device bindings. An SXP-aware node is
identified with a unique Node-ID. If a user requests bindings for a
Speaker 20.0.0.2, the RPC will search for an appropriate path, which
contains 20.0.0.2 Node-ID, within locally learnt SXP data in the SXP
database and replies with associated bindings. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-node-bindings

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>20.0.0.2</requested-node>
 <bindings-range>all</bindings-range>
 <domain-name>global</domain-name>
</input>

	Get Binding SGTs POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-binding-sgts

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <ip-prefix>192.168.12.2/32</ip-prefix>
</input>

	Add PeerGroup with or without filters to node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-peer-group

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <sxp-peer-group>
 <name>TEST</name>
 <sxp-peers>
 </sxp-peers>
 <sxp-filter>
 <filter-type>outbound</filter-type>
 <acl-entry>
 <entry-type>deny</entry-type>
 <entry-seq>1</entry-seq>
 <sgt-start>1</sgt-start>
 <sgt-end>100</sgt-end>
 </acl-entry>
 <acl-entry>
 <entry-type>permit</entry-type>
 <entry-seq>45</entry-seq>
 <matches>1</matches>
 <matches>3</matches>
 <matches>5</matches>
 </acl-entry>
 </sxp-filter>
 </sxp-peer-group>
</input>

	Delete PeerGroup with peer-group-name from node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-peer-group

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <peer-group-name>TEST</peer-group-name>
</input>

	Get PeerGroup with peer-group-name from node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-peer-group

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <peer-group-name>TEST</peer-group-name>
</input>

	Add Filter to peer group on node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-filter

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <peer-group-name>TEST</peer-group-name>
 <sxp-filter>
 <filter-type>outbound</filter-type>
 <acl-entry>
 <entry-type>deny</entry-type>
 <entry-seq>1</entry-seq>
 <sgt-start>1</sgt-start>
 <sgt-end>100</sgt-end>
 </acl-entry>
 <acl-entry>
 <entry-type>permit</entry-type>
 <entry-seq>45</entry-seq>
 <matches>1</matches>
 <matches>3</matches>
 <matches>5</matches>
 </acl-entry>
 </sxp-filter>
</input>

	Delete Filter from peer group on node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-filter

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <peer-group-name>TEST</peer-group-name>
 <filter-type>outbound</filter-type>
</input>

	Update Filter of the same type in peer group on node request-node.
POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:update-filter

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <peer-group-name>TEST</peer-group-name>
 <sxp-filter>
 <filter-type>outbound</filter-type>
 <acl-entry>
 <entry-type>deny</entry-type>
 <entry-seq>1</entry-seq>
 <sgt-start>1</sgt-start>
 <sgt-end>100</sgt-end>
 </acl-entry>
 <acl-entry>
 <entry-type>permit</entry-type>
 <entry-seq>45</entry-seq>
 <matches>1</matches>
 <matches>3</matches>
 <matches>5</matches>
 </acl-entry>
 </sxp-filter>
</input>

	Add new SXP aware Node POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-node

<input xmlns="urn:opendaylight:sxp:controller">
 <node-id>1.1.1.1</node-id>
 <source-ip>0.0.0.0</source-ip>
 <timers>
 <retry-open-time>5</retry-open-time>
 <hold-time-min-acceptable>120</hold-time-min-acceptable>
 <delete-hold-down-time>120</delete-hold-down-time>
 <hold-time-min>90</hold-time-min>
 <reconciliation-time>120</reconciliation-time>
 <hold-time>90</hold-time>
 <hold-time-max>180</hold-time-max>
 <keep-alive-time>30</keep-alive-time>
 </timers>
 <mapping-expanded>150</mapping-expanded>
 <security>
 <password>password</password>
 </security>
 <tcp-port>64999</tcp-port>
 <version>version4</version>
 <description>ODL SXP Controller</description>
 <master-database></master-database>
</input>

	Delete SXP aware node POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-node

<input xmlns="urn:opendaylight:sxp:controller">
 <node-id>1.1.1.1</node-id>
</input>

	Add SXP Domain on node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-domain

<input xmlns="urn:opendaylight:sxp:controller">
 <node-id>1.1.1.1</node-id>
 <domain-name>global</domain-name>
</input>

	Delete SXP Domain on node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-domain

<input xmlns="urn:opendaylight:sxp:controller">
 <node-id>1.1.1.1</node-id>
 <domain-name>global</domain-name>
</input>

	Add Route Adds route to leader Node. PUT
http://127.0.0.1:8181/restconf/config/sxp-cluster-route:sxp-cluster-route/

<sxp-cluster-route xmlns="urn:opendaylight:sxp:cluster:route">
 <routing-definition>
 <ip-address>80.12.43.2</ip-address>
 <interface>eth1:0</interface>
 <netmask>255.255.255.0</netmask>
 </routing-definition>
</sxp-cluster-route>

Use cases for SXP

Cisco has a wide installed base of network devices supporting SXP. By
including SXP in OpenDaylight, the binding of policy groups to IP
addresses can be made available for possible further processing to a
wide range of devices, and applications running on OpenDaylight. The
range of applications that would be enabled is extensive. Here are just
a few of them:

OpenDaylight based applications can take advantage of the IP-SGT binding
information. For example, access control can be defined by an operator
in terms of policy groups, while OpenDaylight can configure access
control lists on network elements using IP addresses, e.g., existing
technology.

Interoperability between different vendors. Vendors have different
policy systems. Knowing the IP-SGT binding for Cisco makes it possible
to maintain policy groups between Cisco and other vendors.

OpenDaylight can aggregate the binding information from many devices and
communicate it to a network element. For example, a firewall can use the
IP-SGT binding information to know how to handle IPs based on the
group-based ACLs it has set. But to do this with SXP alone, the firewall
has to maintain a large number of network connections to get the binding
information. This incurs heavy overhead costs to maintain all of the SXP
peering and protocol information. OpenDaylight can aggregate the
IP-group information so that the firewall need only connect to
OpenDaylight. By moving the information flow outside of the network
elements to a centralized position, we reduce the overhead of the CPU
consumption on the enforcement element. This is a huge savings - it
allows the enforcement point to only have to make one connection rather
than thousands, so it can concentrate on its primary job of forwarding
and enforcing.

OpenDaylight can relay the binding information from one network element
to others. Changes in group membership can be propagated more readily
through a centralized model. For example, in a security application a
particular host (e.g., user or IP Address) may be found to be acting
suspiciously or violating established security policies. The defined
response is to put the host into a different source group for
remediation actions such as a lower quality of service, restricted
access to critical servers, or special routing conditions to ensure
deeper security enforcement (e.g., redirecting the host’s traffic
through an IPS with very restrictive policies). Updated group membership
for this host needs to be communicated to multiple network elements as
soon as possible; a very efficient and effective method of propagation
can be performed using OpenDaylight as a centralized point for relaying
the information.

OpenDaylight can create filters for exporting and receiving IP-SGT
bindings used on specific peer groups, thus can provide more complex
maintaining of policy groups.

Although the IP-SGT binding is only one specific piece of information,
and although SXP is implemented widely in a single vendor’s equipment,
bringing the ability of OpenDaylight to process and distribute the
bindings, is a very specific immediate useful implementation of policy
groups. It would go a long way to develop both the usefulness of
OpenDaylight and of policy groups.

TSDR User Guide

This document describes how to use HSQLDB, HBase, and Cassandra data
stores to capture time series data using Time Series Data Repository
(TSDR) features in OpenDaylight. This document contains configuration,
administration, management, usage, and troubleshooting sections for these
features.

Overview

The Time Series Data Repository (TSDR) project in OpenDaylight (ODL)
creates a framework for collecting, storing, querying, and maintaining
time series data. TSDR provides the framework for plugging in
data collectors to collect various time series data and store the data
into TSDR Data Stores. With a common data model and generic TSDR data
persistence APIs, the user can choose various data stores to be plugged
into the TSDR persistence framework. Currently, three types of data
stores are supported: HSQLDB relational database (default installed),
HBase NoSQL database and Cassandra NoSQL database.

With the capabilities of data collection, storage, query, aggregation,
and purging provided by TSDR, network administrators can leverage
various data driven applications built on top of TSDR for security risk
detection, performance analysis, operational configuration optimization,
traffic engineering and network analytics with automated intelligence.

TSDR Architecture

TSDR has the following major components:

	Data Collection Service

	Data Storage Service

	TSDR Persistence Layer with data stores as plugins

	TSDR Data Stores

	Data Query Service

	Grafana integration for time series data visualization

	Data Aggregation Service

	Data Purging Service

The Data Collection Service handles the collection of time series data
into TSDR and hands it over to the Data Storage Service. The Data
Storage Service stores the data into TSDR through the TSDR Persistence
Layer. The TSDR Persistence Layer provides generic Service APIs allowing
various data stores to be plugged in. The Data Aggregation Service
aggregates time series fine-grained raw data into course-grained roll-up
data to control the size of the data. The Data Purging Service
periodically purges both fine-grained raw data and course-grained
aggregated data according to user-defined schedules.

TSDR provides component-based services on a common data model. These
services include the data collection service, data storage service and
data query service. The TSDR data storage service supports HSQLDB
(the default datastore), HBASE and Cassandra datastores. Between these
services and components, time series data is communicated using a common
TSDR data model. This data model is designed around the abstraction of
time series data commonalities. With these services, TSDR is able
to collect the data from the data sources and store them into one of
the TSDR data stores; HSQLDB, HBase and Cassandra datastores. Data can
be retrieved with the Data Query service using the default OpenDaylight
RestConf interface or its ODL API interface. TSDR also has integrated
support for ElasticSearch capabilities. TSDR data can also be viewed
directly with Grafana for time series visualization or various chart formats.

Configuring TSDR Data Stores

To Configure HSQLDB Data Store

The HSQLDB based storage files get stored automatically in <karaf
install folder>/tsdr/ directory. If you want to change the default
storage location, the configuration file to change can be found in
<karaf install folder>/etc directory. The filename is
org.ops4j.datasource-metric.cfg. Change the last portion of the
url=jdbc:hsqldb:./tsdr/metric to point to different directory.

To Configure HBase Data Store

After installing HBase Server on the same machine as OpenDaylight, if
the user accepts the default configuration of the HBase Data Store, the
user can directly proceed with the installation of HBase Data Store from
Karaf console.

Optionally, the user can configure TSDR HBase Data Store following HBase
Data Store Configuration Procedure.

	HBase Data Store Configuration Steps

	Open the file etc/tsdr-persistence-hbase.peroperties under karaf
distribution directory.

	Edit the following parameters:

	HBase server name

	HBase server port

	HBase client connection pool size

	HBase client write buffer size

After the configuration of HBase Data Store is complete, proceed with
the installation of HBase Data Store from Karaf console.

	HBase Data Store Installation Steps

	Start Karaf Console

	Run the following commands from Karaf Console: feature:install
odl-tsdr-hbase

To Configure Cassandra Data Store

Currently, there’s no configuration needed for Cassandra Data Store. The
user can use Cassandra data store directly after installing the feature
from Karaf console.

Additionally separate commands have been implemented to install various
data collectors.

Administering or Managing TSDR Data Stores

To Administer HSQLDB Data Store

Once the TSDR default datastore feature (odl-tsdr-hsqldb-all) is
enabled, the TSDR captured OpenFlow statistics metrics can be accessed
from Karaf Console by executing the command

tsdr:list <metric-category> <starttimestamp> <endtimestamp>

wherein

	<metric-category> = any one of the following categories
FlowGroupStats, FlowMeterStats, FlowStats, FlowTableStats, PortStats,
QueueStats

	<starttimestamp> = to filter the list of metrics starting this
timestamp

	<endtimestamp> = to filter the list of metrics ending this timestamp

	<starttimestamp> and <endtimestamp> are optional.

	Maximum 1000 records will be displayed.

To Administer HBase Data Store

	Using Karaf Command to retrieve data from HBase Data Store

The user first need to install hbase data store from karaf console:

feature:install odl-tsdr-hbase

The user can retrieve the data from HBase data store using the following
commands from Karaf console:

tsdr:list
tsdr:list <CategoryName> <StartTime> <EndTime>

Typing tab will get the context prompt of the arguments when typeing the
command in Karaf console.

To Administer Cassandra Data Store

The user first needs to install Cassandra data store from Karaf console:

feature:install odl-tsdr-cassandra

Then the user can retrieve the data from Cassandra data store using the
following commands from Karaf console:

tsdr:list
tsdr:list <CategoryName> <StartTime> <EndTime>

Typing tab will get the context prompt of the arguments when typeing the
command in Karaf console.

Installing TSDR Data Collectors

When the user uses HSQLDB data store and installed “odl-tsdr-hsqldb-all”
feature from Karaf console, besides the HSQLDB data store, OpenFlow data
collector is also installed with this command. However, if the user
needs to use other collectors, such as NetFlow Collector, Syslog
Collector, SNMP Collector, and Controller Metrics Collector, the user
needs to install them with separate commands. If the user uses HBase or
Cassandra data store, no collectors will be installed when the data
store is installed. Instead, the user needs to install each collector
separately using feature install command from Karaf console.

The following is the list of supported TSDR data collectors with the
associated feature install commands:

	OpenFlow Data Collector

feature:install odl-tsdr-openflow-statistics-collector

	NetFlow Data Collector

feature:install odl-tsdr-netflow-statistics-collector

	sFlow Data Collector

feature:install odl-tsdr-sflow-statistics-colletor

	SNMP Data Collector

feature:install odl-tsdr-snmp-data-collector

	Syslog Data Collector

feature:install odl-tsdr-syslog-collector

	Controller Metrics Collector

feature:install odl-tsdr-controller-metrics-collector

	Web Activity Collector

feature:install odl-tsdr-restconf-collector

In order to use controller metrics collector, the user needs to install
Sigar library.

The following is the instructions for installing Sigar library on
Ubuntu:

	Install back end library by “sudo apt-get install
libhyperic-sigar-java”

	Execute “export
LD_LIBRARY_PATH=/usr/lib/jni/:/usr/lib:/usr/local/lib” to set the
path of the JNI (you can add this to the “.bashrc” in your home
directory)

	Download the file “sigar-1.6.4.jar”. It might be also in your “.m2”
directory under “~/.m2/resources/org/fusesource/sigar/1.6.4”

	Create the directory “org/fusesource/sigar/1.6.4” under the “system”
directory in your controller home directory and place the
“sigar-1.6.4.jar” there

Configuring TSDR Data Collectors

	SNMP Data Collector Device Credential Configuration

After installing SNMP Data Collector, a configuration file under etc/
directory of ODL distribution is generated: etc/tsdr.snmp.cfg is
created.

The following is a sample tsdr.snmp.cfg file:

credentials=[192.168.0.2,public],[192.168.0.3,public]

The above credentials indicate that TSDR SNMP Collector is going to
connect to two devices. The IPAddress and Read community string of these
two devices are (192.168.0.2, public), and (192.168.0.3) respectively.

The user can make changes to this configuration file any time during
runtime. The configuration will be picked up by TSDR in the next cycle
of data collection.

Polling interval configuration for SNMP Collector and OpenFlow Stats Collector

The default polling interval of SNMP Collector and OpenFlow Stats
Collector is 30 seconds and 15 seconds respectively. The user can change
the polling interval through restconf APIs at any time. The new polling
interval will be picked up by TSDR in the next collection cycle.

	Retrieve Polling Interval API for SNMP Collector

	URL:
http://localhost:8181/restconf/config/tsdr-snmp-data-collector:TSDRSnmpDataCollectorConfig

	Verb: GET

	Update Polling Interval API for SNMP Collector

	URL:
http://localhost:8181/restconf/operations/tsdr-snmp-data-collector:setPollingInterval

	Verb: POST

	Content Type: application/json

	Input Payload:

{
 "input": {
 "interval": "15000"
 }
}

	Retrieve Polling Interval API for OpenFlowStats Collector

	URL:
http://localhost:8181/restconf/config/tsdr-openflow-statistics-collector:TSDROSCConfig

	Verb: GET

	Update Polling Interval API for OpenFlowStats Collector

	URL:
http://localhost:8181/restconf/operations/tsdr-openflow-statistics-collector:setPollingInterval

	Verb: POST

	Content Type: application/json

	Input Payload:

{
 "input": {
 "interval": "15000"
 }
}

Querying TSDR from REST APIs

TSDR provides two REST APIs for querying data stored in TSDR data
stores.

	Query of TSDR Metrics

	URL: http://localhost:8181/tsdr/metrics/query

	Verb: GET

	Parameters:

	tsdrkey=[NID=][DC=][MN=][RK=]

The TSDRKey format indicates the NodeID(NID), DataCategory(DC), MetricName(MN), and RecordKey(RK) of the monitored objects.
For example, the following is a valid tsdrkey:
[NID=openflow:1][DC=FLOWSTATS][MN=PacketCount][RK=Node:openflow:1,Table:0,Flow:3]
The following is also a valid tsdrkey:
tsdrkey=[NID=][DC=FLOWSTATS][MN=][RK=]
In the case when the sections in the tsdrkey is empty, the query will return all the records in the TSDR data store that matches the filled tsdrkey. In the above example, the query will return all the data in FLOWSTATS data category.
The query will return only the first 1000 records that match the query criteria.

	from=<time_in_seconds>

	until=<time_in_seconds>

The following is an example curl command for querying metric data from
TSDR data store:

curl -G -v -H “Accept: application/json” -H “Content-Type:
application/json” “http://localhost:8181/tsdr/metrics/query”
–data-urlencode “tsdrkey=[NID=][DC=FLOWSTATS][MN=][RK=]”
–data-urlencode “from=0” –data-urlencode “until=240000000000”|more

	Query of TSDR Log type of data

	URL:http://localhost:8181/tsdr/logs/query

	Verb: GET

	Parameters:

	tsdrkey=tsdrkey=[NID=][DC=][RK=]

The TSDRKey format indicates the NodeID(NID), DataCategory(DC), and RecordKey(RK) of the monitored objects.
For example, the following is a valid tsdrkey:
[NID=openflow:1][DC=NETFLOW][RK]
The query will return only the first 1000 records that match the query criteria.

	from=<time_in_seconds>

	until=<time_in_seconds>

The following is an example curl command for querying log type of data
from TSDR data store:

curl -G -v -H “Accept: application/json” -H “Content-Type:
application/json” “http://localhost:8181/tsdr/logs/query”
–data-urlencode “tsdrkey=[NID=][DC=NETFLOW][RK=]” –data-urlencode
“from=0” –data-urlencode “until=240000000000”|more

Grafana integration with TSDR

TSDR provides northbound integration with Grafana time series data
visualization tool. All the metric type of data stored in TSDR data
store can be visualized using Grafana.

For the detailed instruction about how to install and configure Grafana
to work with TSDR, please refer to the following link:

https://wiki.opendaylight.org/view/Grafana_Integration_with_TSDR_Step-by-Step

Purging Service configuration

After the data stores are installed from Karaf console, the purging
service will be installed as well. A configuration file called
tsdr.data.purge.cfg will be generated under etc/ directory of ODL
distribution.

The following is the sample default content of the tsdr.data.purge.cfg
file:

host=127.0.0.1 data_purge_enabled=true data_purge_time=23:59:59
data_purge_interval_in_minutes=1440 retention_time_in_hours=168

The host indicates the IPAddress of the data store. In the case when the
data store is together with ODL controller, 127.0.0.1 should be the
right value for the host IP. The other attributes are self-explained.
The user can change those attributes at any time. The configuration
change will be picked up right away by TSDR Purging service at runtime.

How to use TSDR to collect, store, and view OpenFlow Interface Statistics

Overview

This tutorial describes an example of using TSDR to collect, store, and
view one type of time series data in OpenDaylight environment.

Prerequisites

You would need to have the following as prerequisits:

	One or multiple OpenFlow enabled switches. Alternatively, you can use
mininet to simulate such a switch.

	Successfully installed OpenDaylight Controller.

	Successfully installed HBase Data Store following TSDR HBase Data
Store Installation Guide.

	Connect the OpenFlow enabled switch(es) to OpenDaylight Controller.

Target Environment

HBase data store is only supported in Linux operation system.

Instructions

	Start OpenDaylight.

	Connect OpenFlow enabled switch(es) to the controller.

	If using mininet, run the following commands from mininet command
line:

	mn –topo single,3 –controller
remote,ip=172.17.252.210,port=6653 –switch
ovsk,protocols=OpenFlow13

	Install TSDR hbase feature from Karaf:

	feature:install odl-tsdr-hbase

	Install OpenFlow Statistics Collector from Karaf:

	feature:install odl-tsdr-openflow-statistics-collector

	run the following command from Karaf console:

	tsdr:list PORTSTATS

You should be able to see the interface statistics of the switch(es)
from the HBase Data Store. If there are too many rows, you can use
“tsdr:list InterfaceStats|more” to view it page by page.

By tabbing after “tsdr:list”, you will see all the supported data
categories. For example, “tsdr:list FlowStats” will output the Flow
statistics data collected from the switch(es).

ElasticSearch

To setup and run the TSDR data store ElasticSearch feature, you need to have
an ElasticSearch node (or a cluster of such nodes) running. You can use a
customized ElasticSearch docker image for this purpose.

Your ElasticSearch (ES) setup must have the “Delete By Query Plugin” installed.
Without this, some of the ES functionality won’t work properly.

(You can skip this section if you already have an instance of ElasticSearch running)

Run the following set of commands:

cat << EOF > Dockerfile
FROM elasticsearch:2
RUN /usr/share/elasticsearch/bin/plugin install --batch delete-by-query
EOF

To build the image, run the following command in the directory where the
Dockerfile was created:

docker build . -t elasticsearch-dd

You can check whether the image was properly created by running:

docker images

This should print all your container images including the elasticsearch-dd.

Now we can create and run a container from our image by typing:

docker run -d -p 9200:9200 -p 9300:9300 --name elasticsearch-dd elasticsearch-dd

To see whether the container is running, run the following command:

docker ps

The output should include a row with elasticsearch-dd in the NAMES column.
To check the std out of this container use

docker logs elasticsearch-dd

Running the ElasticSearch feature

Once the features have been installed, you can change some of its properties. For
example, to setup the URL where your ElasticSearch installation runs,
change the serverUrl parameter in tsdr/persistence-elasticsearch/src/main/resources/configuration/initial/:

tsdr-persistence-elasticsearch.properties

All the data are stored into the TSDR index under a type. The metric data are
stored under the metric type and the log data are store under the log type.
You can modify the files in tsdr/persistence-elasticsearch/src/main/resources/configuration/initial/:

tsdr-persistence-elasticsearch_metric_mapping.json
tsdr-persistence-elasticsearch_log_mapping.json

to change or tune the mapping for those types. The changes in those files will be promoted after
the feature is reloaded or the distribution is restarted.

We can now test whether the setup is correct by downloading and installing mininet,
which we use to send some data to the running ElasticSearch instance.

Installing the necessary features:

start OpenDaylight
feature:install odl-restconf odl-l2switch-switch odl-tsdr-core odl-tsdr-openflow-statistics-collector
feature:install odl-tsdr-elasticsearch

We can check whether the distribution is now listening on port 6653:

netstat -an | grep 6653

Run mininet

sudo mn --topo single,3 --controller 'remote,ip=distro_ip,port=6653' --switch ovsk,protocols=OpenFlow13

where the distro_ip is the IP address of the machine where the OpenDaylight distribution
is running. This command will create three hosts connected to one OpenFlow capable
switch.

We can check if data was stored by ElasticSearch in TSDR by running the
following command:

tsdr:list FLOWTABLESTATS

The output should look similar to the following:

[NID=openflow:1][DC=FLOWTABLESTATS][MN=ActiveFlows][RK=Node:openflow:1,Table:50][TS=1473427383598][3]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,Table:50][TS=1473427383598][12]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketLookup][RK=Node:openflow:1,Table:50][TS=1473427383598][12]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=ActiveFlows][RK=Node:openflow:1,Table:80][TS=1473427383598][3]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,Table:80][TS=1473427383598][17]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,Table:246][TS=1473427383598][19]
...

Or you can query your ElasticSearch instance:

curl -XPOST "http://elasticseach_ip:9200/_search?pretty" -d'{ "from": 0, "size": 10000, "query": { "match_all": {} } }'

The elasticseach_ip is the IP address of the server where the ElasticSearch is running.

Web Activity Collector

The Web Activity Collector records the meaningful REST requests made through the
OpenDaylight RESTCONF interface.

	Install some other feature that has a RESTCONF interface, for example. “odl-tsdr-syslog-collector”

	Issue a RESTCONF command that uses either POST,PUT or DELETE.
For example, you could call the register-filter RPC of tsdr-syslog-collector.

	Look up data in TSDR database from Karaf.

tsdr:list RESTCONF

	You should see the request that you have sent, along with its information
(URL, HTTP method, requesting IP address and request body)

	Try to send a GET request, then check again, your request should not be
registered, because the collector does not register GET requests by default.

	Open the file: “etc/tsdr.restconf.collector.cfg”, and add GET to the list of
METHODS_TO_LOG, so that it becomes:

METHODS_TO_LOG=POST,PUT,DELETE,GET

	Try again to issue your GET request, and check if it was recorded this time,
it should be recorder.

	Try manipulating the other properties (PATHS_TO_LOG (which URLs do we want
to log from), REMOTE_ADDRESSES_TO_LOG (which requesting IP addresses do we
want to log from) and CONTENT_TO_LOG (what should be in the request’s body
in order to log it)), and see if the requests are getting logged.

	Try providing invalid properties (unknown methods for the METHODS_TO_LOG
parameter, or the same method repeated multiple times, and invalid regular
expressions for the other parameters), then check karaf’s log using
“log:display”. It should tell you that the value is invalid, and that it
will use the default value instead.

Troubleshooting

Karaf logs

All TSDR features and components write logging information including
information messages, warnings, errors and debug messages into
karaf.log.

HBase and Cassandra logs

For HBase and Cassandra data stores, the database level logs are written
into HBase log and Cassandra logs.

	HBase log

	HBase log is under <HBase-installation-directory>/logs/.

	Cassandra log

	Cassandra log is under {cassandra.logdir}/system.log. The default
{cassandra.logdir} is /var/log/cassandra/.

Security

TSDR gets the data from a variety of sources, which can be secured in
different ways.

	OpenFlow Security

	The OpenFlow data can be configured with Transport Layer Security
(TLS) since the OpenFlow Plugin that TSDR depends on provides this
security support.

	SNMP Security

	The SNMP version3 has security support. However, since ODL SNMP
Plugin that TSDR depends on does not support version 3, we (TSDR)
will not have security support at this moment.

	NetFlow Security

	NetFlow, which cannot be configured with security so we recommend
making sure it flows only over a secured management network.

	Syslog Security

	Syslog, which cannot be configured with security so we recommend
making sure it flows only over a secured management network.

Support multiple data stores simultaneously at runtime

TSDR supports running multiple data stores simultaneously at runtim. For
example, it is possible to configure TSDR to push log type of data into
Cassandra data store, while pushing metrics type of data into HBase.

When you install one TSDR data store from karaf console, such as using
feature:install odl-tsdr-hsqldb, a properties file will be generated
under <Karaf-distribution-directory>/etc/. For example, when you install
hsqldb, a file called tsdr-persistence-hsqldb.properties is generated
under that directory.

By default, all the types of data are supported in the data store. For
example, the default content of tsdr-persistence-hsqldb.properties is as
follows:

metric-persistency=true
log-persistency=true
binary-persistency=true

When the user would like to use different data stores to support
different types of data, he/she could enable or disable a particular
type of data persistence in the data stores by configuring the
properties file accordingly.

For example, if the user would like to store the log type of data in
HBase, and store the metric and binary type of data in Cassandra, he/she
needs to install both hbase and cassandra data stores from Karaf
console. Then the user needs to modify the properties file under
<Karaf-distribution-directory>/etc as follows:

	tsdr-persistence-hbase.properties

metric-persistency=false
log-persistency=true
binary-persistency=true

	tsdr-persistence-cassandra.properties

metric-psersistency=true
log-persistency=false
binary-persistency=false

TTP CLI Tools User Guide

Overview

Table Type Patterns are a specification developed by the Open
Networking Foundation [https://www.opennetworking.org/] to enable the
description and negotiation of subsets of the OpenFlow protocol. This is
particularly useful for hardware switches that support OpenFlow as it
enables the to describe what features they do (and thus also what
features they do not) support. More details can be found in the full
specification listed on the OpenFlow specifications
page [https://www.opennetworking.org/sdn-resources/onf-specifications/openflow].

TTP CLI Tools Architecture

The TTP CLI Tools use the TTP Model and the YANG Tools/RESTCONF codecs
to translate between the Data Transfer Objects (DTOs) and JSON/XML.

User Network Interface Manager Plug-in (Unimgr) User Guide

Overview

The User Network Interface (UNI) Manager project within OpenDaylight provides
data models and APIs that enable software applications and service
orchestrators to configure and provision connectivity services; in particular,
Carrier Ethernet services as defined by MEF Forum, in physical and virtual
network elements.

MEF has defined the Lifecycle Service Orchestration (LSO) Reference
Architecture for the management and control of domains and entities that enable
cooperative network services across one or more service provider networks. The
architecture also identifies LSO Reference Points, which are the logical points
of interaction between specific functional management components. These LSO
Reference Points are further defined by interface profiles and instantiated by
APIs.

The LSO Reference Architecture is shown below. Note that this is a functional
architecture that does not describe how the management components are
implemented (e.g., single vs. multiple instances), but rather identifies
management components that provide logical functionality as well as the points
of interaction among them.

[image: MEF LSO Reference Architecture]
MEF LSO Reference Architecture

Unimgr provides support for both the Legato as well as the Presto interfaces.
These interfaces, and the APIs associated with them, are defined by YANG models
developed within MEF in collaboration with ONF and IETF. For the Carbon release,
these are as follows:

Legato YANG modules:
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=legato-api/src/main/yang;hb=refs/heads/stable/carbon

Presto YANG modules:
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=presto-api/src/main/yang;hb=refs/heads/stable/carbon

An application/user can interact with Unimgr at either the service
orchestration layer (Legato) or the network resource provisioning layer
(Presto).

Unimgr Architecture

Unimgr is comprised of the following OpenDaylight Karaf features:

	odl-unimgr-api

	OpenDaylight :: UniMgr :: api

	odl-unimgr

	OpenDaylight :: UniMgr

	odl-unimgr-console

	OpenDaylight :: UniMgr :: CLI

	odl-unimgr-rest

	OpenDaylight :: UniMgr :: REST

	odl-unimgr-ui

	OpenDaylight :: UniMgr :: UI

Configuring Unimgr

After launching OpenDaylight, install the feature for Unimgr. From the karaf
command prompt execute the following command:

$ feature:install odl-unimgr-ui

Explore and exercise the Unimgr REST API

To see the Unimgr API, browse to this URL:
http://localhost:8181/apidoc/explorer/index.html

Replace localhost with the IP address or hostname where OpenDaylight is
running if you are not running OpenDaylight locally on your machine.

See also the Unimgr Developer Guide for a full listing of the API.

Unified Secure Channel

This document describes how to use the Unified Secure Channel (USC)
feature in OpenDaylight. This document contains configuration,
administration, and management sections for the feature.

Overview

In enterprise networks, more and more controller and network management
systems are being deployed remotely, such as in the cloud. Additionally,
enterprise networks are becoming more heterogeneous - branch, IoT,
wireless (including cloud access control). Enterprise customers want a
converged network controller and management system solution. This
feature is intended for device and network administrators looking to use
unified secure channels for their systems.

USC Channel Architecture

	USC Agent

	The USC Agent provides proxy and agent functionality on top of all
standard protocols supported by the device. It initiates call-home
with the controller, maintains live connections with with the
controller, acts as a demuxer/muxer for packets with the USC
header, and authenticates the controller.

	USC Plugin

	The USC Plugin is responsible for communication between the
controller and the USC agent . It responds to call-home with the
controller, maintains live connections with the devices, acts as a
muxer/demuxer for packets with the USC header, and provides
support for TLS/DTLS.

	USC Manager

	The USC Manager handles configurations, high availability,
security, monitoring, and clustering support for USC.

	USC UI

	The USC UI is responsible for displaying a graphical user
interface representing the state of USC in the OpenDaylight DLUX
UI.

Installing USC Channel

To install USC, download OpenDaylight and use the Karaf console to
install the following feature:

odl-usc-channel-ui

Configuring USC Channel

This section gives details about the configuration settings for various
components in USC.

The USC configuration files for the Karaf distribution are located in
distribution/karaf/target/assembly/etc/usc

	certificates

	The certificates folder contains the client key, pem, and rootca
files as is necessary for security.

	akka.conf

	This file contains configuration related to clustering. Potential
configuration properties can be found on the akka website at
http://doc.akka.io

	usc.properties

	This file contains configuration related to USC. Use this file to
set the location of certificates, define the source of additional
akka configurations, and assign default settings to the USC
behavior.

Administering or Managing USC Channel

After installing the odl-usc-channel-ui feature from the Karaf console,
users can administer and manage USC channels from the the UI or APIDOCS
explorer.

Go to
http://${ipaddress}:8181/index.html,
sign in, and click on the USC side menu tab. From there, users can view
the state of USC channels.

Go to
http://${ipaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the usc-channel panel. From there, users can execute
various API calls to test their USC deployment such as add-channel,
delete-channel, and view-channel.

Tutorials

Below are tutorials for USC Channel

Viewing USC Channel

The purpose of this tutorial is to view USC Channel

Overview

This tutorial walks users through the process of viewing the USC Channel
environment topology including established channels connecting the
controllers and devices in the USC topology.

Prerequisites

For this tutorial, we assume that a device running a USC agent is
already installed.

Instructions

	Run the OpenDaylight distribution and install odl-usc-channel-ui from
the Karaf console.

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Execute add-channel with the following json data:

	{“input”:{“channel”:{“hostname”:”127.0.0.1”,”port”:1068,”remote”:false}}}

	Go to
http://${ipaddress}:8181/index.html

	Click on the USC side menu tab.

	The UI should display a table including the added channel from step
3.

Virtual Tenant Network (VTN)

VTN Overview

OpenDaylight Virtual Tenant Network (VTN) is an application that
provides multi-tenant virtual network on an SDN controller.

Conventionally, huge investment in the network systems and operating
expenses are needed because the network is configured as a silo for each
department and system. So, various network appliances must be installed
for each tenant and those boxes cannot be shared with others. It is a
heavy work to design, implement and operate the entire complex network.

The uniqueness of VTN is a logical abstraction plane. This enables the
complete separation of logical plane from physical plane. Users can
design and deploy any desired network without knowing the physical
network topology or bandwidth restrictions.

VTN allows the users to define the network with a look and feel of
conventional L2/L3 network. Once the network is designed on VTN, it will
automatically be mapped into underlying physical network, and then
configured on the individual switch leveraging SDN control protocol. The
definition of logical plane makes it possible not only to hide the
complexity of the underlying network but also to better manage network
resources. It achieves reducing reconfiguration time of network services
and minimizing network configuration errors.

[image: VTN Overview]
VTN Overview

It is implemented as two major components

	VTN Manager

	VTN Coordinator

VTN Manager

An OpenDaylight Plugin that interacts with other modules to implement
the components of the VTN model. It also provides a REST interface to
configure VTN components in OpenDaylight. VTN Manager is implemented as
one plugin to the OpenDaylight. This provides a REST interface to
create/update/delete VTN components. The user command in VTN Coordinator
is translated as REST API to VTN Manager by the OpenDaylight Driver
component. In addition to the above mentioned role, it also provides an
implementation to the OpenStack L2 Network Functions API.

Features Overview

	odl-vtn-manager provides VTN Manager’s JAVA API.

	odl-vtn-manager-rest provides VTN Manager’s REST API.

	odl-vtn-manager-neutron provides the integration with Neutron
interface.

REST API

VTN Manager provides REST API for virtual network functions.

Here is an example of how to create a virtual tenant network.

curl --user "admin":"admin" -H "Accept: application/json" -H \
"Content-type: application/json" -X POST \
http://localhost:8181/restconf/operations/vtn:update-vtn \
-d '{"input":{"tenant-name":"vtn1"}}'

You can check the list of all tenants by executing the following
command.

curl --user "admin":"admin" -H "Accept: application/json" -H \
"Content-type: application/json" -X GET \
http://localhost:8181/restconf/operational/vtn:vtns

REST Conf documentation for VTN Manager, please refer to:
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html

VTN Coordinator

The VTN Coordinator is an external application that provides a REST
interface for an user to use OpenDaylight VTN Virtualization. It
interacts with VTN Manager plugin to implement the user configuration.
It is also capable of multiple OpenDaylight orchestration. It realizes
Virtual Tenant Network (VTN) provisioning in OpenDaylight instances. In
the OpenDaylight architecture VTN Coordinator is part of the network
application, orchestration and services layer. VTN Coordinator will use
the REST interface exposed by the VTN Manger to realize the virtual
network using OpenDaylight. It uses OpenDaylight APIs (REST) to
construct the virtual network in OpenDaylight instances. It provides
REST APIs for northbound VTN applications and supports virtual networks
spanning across multiple OpenDaylight by coordinating across
OpenDaylight.

For VTN Coordinator REST API, please refer to:
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:VTN_Coordinator:RestApi

Network Virtualization Function

The user first defines a VTN. Then, the user maps the VTN to a physical
network, which enables communication to take place according to the VTN
definition. With the VTN definition, L2 and L3 transfer functions and
flow-based traffic control functions (filtering and redirect) are
possible.

Virtual Network Construction

The following table shows the elements which make up the VTN. In the
VTN, a virtual network is constructed using virtual nodes (vBridge,
vRouter) and virtual interfaces and links. It is possible to configure a
network which has L2 and L3 transfer function, by connecting the virtual
intrefaces made on virtual nodes via virtual links.

	vBridge

	The logical representation of L2
switch function.

	vRouter

	The logical representation of router
function.

	vTep

	The logical representation of Tunnel
End Point - TEP.

	vTunnel

	The logical representation of
Tunnel.

	vBypass

	The logical representation of
connectivity between controlled
networks.

	Virtual interface

	The representation of end point on
the virtual node.

	Virtual Linkv(vLink)

	The logical representation of L1
connectivity between virtual
interfaces.

The following figure shows an example of a constructed virtual network.
VRT is defined as the vRouter, BR1 and BR2 are defined as vBridges.
interfaces of the vRouter and vBridges are connected using vLinks.

[image: VTN Construction]
VTN Construction

Mapping of Physical Network Resources

Map physical network resources to the constructed virtual network.
Mapping identifies which virtual network each packet transmitted or
received by an OpenFlow switch belongs to, as well as which interface in
the OpenFlow switch transmits or receives that packet. There are two
mapping methods. When a packet is received from the OFS, port mapping is
first searched for the corresponding mapping definition, then VLAN
mapping is searched, and the packet is mapped to the relevant vBridge
according to the first matching mapping.

	Port mapping

	Maps physical network resources to
an interface of vBridge using Switch
ID, Port ID and VLAN ID of the
incoming L2 frame. Untagged frame
mapping is also supported.

	VLAN mapping

	Maps physical network resources to a
vBridge using VLAN ID of the
incoming L2 frame.Maps physical
resources of a particular switch to
a vBridge using switch ID and VLAN
ID of the incoming L2 frame.

	MAC mapping

	Maps physical resources to an
interface of vBridge using MAC
address of the incoming L2 frame(The
initial contribution does not
include this method).

VTN can learn the terminal information from a terminal that is connected
to a switch which is mapped to VTN. Further, it is possible to refer
that terminal information on the VTN.

	Learning terminal information VTN learns the information of a
terminal that belongs to VTN. It will store the MAC address and VLAN
ID of the terminal in relation to the port of the switch.

	Aging of terminal information Terminal information, learned by the
VTN, will be maintained until the packets from terminal keep flowing
in VTN. If the terminal gets disconnected from the VTN, then the
aging timer will start clicking and the terminal information will be
maintained till timeout.

The following figure shows an example of mapping. An interface of BR1 is
mapped to port GBE0/1 of OFS1 using port mapping. Packets received from
GBE0/1 of OFS1 are regarded as those from the corresponding interface of
BR1. BR2 is mapped to VLAN 200 using VLAN mapping. Packets with VLAN tag
200 received from any ports of any OFSs are regarded as those from an
interface of BR2.

[image: VTN Mapping]
VTN Mapping

vBridge Functions

The vBridge provides the bridge function that transfers a packet to the
intended virtual port according to the destination MAC address. The
vBridge looks up the MAC address table and transmits the packet to the
corresponding virtual interface when the destination MAC address has
been learned. When the destination MAC address has not been learned, it
transmits the packet to all virtual interfaces other than the receiving
port (flooding). MAC addresses are learned as follows.

	MAC address learning The vBridge learns the MAC address of the
connected host. The source MAC address of each received frame is
mapped to the receiving virtual interface, and this MAC address is
stored in the MAC address table created on a per-vBridge basis.

	MAC address aging The MAC address stored in the MAC address table is
retained as long as the host returns the ARP reply. After the host is
disconnected, the address is retained until the aging timer times
out. To have the vBridge learn MAC addresses statically, you can
register MAC addresses manually.

vRouter Functions

The vRouter transfers IPv4 packets between vBridges. The vRouter
supports routing, ARP learning, and ARP aging functions. The following
outlines the functions.

	Routing function When an IP address is registered with a virtual
interface of the vRouter, the default routing information for that
interface is registered. It is also possible to statically register
routing information for a virtual interface.

	ARP learning function The vRouter associates a destination IP
address, MAC address and a virtual interface, based on an ARP request
to its host or a reply packet for an ARP request, and maintains this
information in an ARP table prepared for each routing domain. The
registered ARP entry is retained until the aging timer, described
later, times out. The vRouter transmits an ARP request on an
individual aging timer basis and deletes the associated entry from
the ARP table if no reply is returned. For static ARP learning, you
can register ARP entry information manually.

	DHCP relay agent function The vRouter also provides the DHCP relay
agent function.

Flow Filter Functions

Flow Filter function is similar to ACL. It is possible to allow or
prohibit communication with only certain kind of packets that meet a
particular condition. Also, it can perform a processing called
Redirection - WayPoint routing, which is different from the existing
ACL. Flow Filter can be applied to any interface of a vNode within VTN,
and it is possible to the control the packets that pass interface. The
match conditions that could be specified in Flow Filter are as follows.
It is also possible to specify a combination of multiple conditions.

	Source MAC address

	Destination MAC address

	MAC ether type

	VLAN Priority

	Source IP address

	Destination IP address

	DSCP

	IP Protocol

	TCP/UDP source port

	TCP/UDP destination port

	ICMP type

	ICMP code

The types of Action that can be applied on packets that match the Flow
Filter conditions are given in the following table. It is possible to
make only those packets, which match a particular condition, to pass
through a particular server by specifying Redirection in Action. E.g.,
path of flow can be changed for each packet sent from a particular
terminal, depending upon the destination IP address. VLAN priority
control and DSCP marking are also supported.

	Action

	Function

	Pass

	Pass particular packets matching the
specified conditions.

	Drop

	Discards particular packets matching
the specified conditions.

	Redirection

	Redirects the packet to a desired
virtual interface. Both Transparent
Redirection (not changing MAC
address) and Router Redirection
(changing MAC address) are
supported.

The following figure shows an example of how the flow filter function
works.

If there is any matching condition specified by flow filter when a
packet being transferred within a virtual network goes through a virtual
interface, the function evaluates the matching condition to see whether
the packet matches it. If the packet matches the condition, the function
applies the matching action specified by flow filter. In the example
shown in the figure, the function evaluates the matching condition at
BR1 and discards the packet if it matches the condition.

[image: VTN FlowFilter]
VTN FlowFilter

Multiple SDN Controller Coordination

With the network abstractions, VTN enables to configure virtual network
across multiple SDN controllers. This provides highly scalable network
system.

VTN can be created on each SDN controller. If users would like to manage
those multiple VTNs with one policy, those VTNs can be integrated to a
single VTN.

As a use case, this feature is deployed to multi data center
environment. Even if those data centers are geographically separated and
controlled with different controllers, a single policy virtual network
can be realized with VTN.

Also, one can easily add a new SDN Controller to an existing VTN or
delete a particular SDN Controller from VTN.

In addition to this, one can define a VTN which covers both OpenFlow
network and Overlay network at the same time.

Flow Filter, which is set on the VTN, will be automatically applied on
the newly added SDN Controller.

Coordination between OpenFlow Network and L2/L3 Network

It is possible to configure VTN on an environment where there is mix of
L2/L3 switches as well. L2/L3 switch will be shown on VTN as vBypass.
Flow Filter or policing cannot be configured for a vBypass. However, it
is possible to treat it as a virtual node inside VTN.

Virtual Tenant Network (VTN) API

VTN provides Web APIs. They are implemented by REST architecture and
provide the access to resources within VTN that are identified by URI.
User can perform the operations like GET/PUT/POST/DELETE against the
virtual network resources (e.g. vBridge or vRouter) by sending a message
to VTN through HTTPS communication in XML or JSON format.

[image: VTN API]
VTN API

Function Outline

VTN provides following operations for various network resources.

	Resources

	GET

	POST

	PUT

	DELETE

	VTN

	Yes

	Yes

	Yes

	Yes

	vBridge

	Yes

	Yes

	Yes

	Yes

	vRouter

	Yes

	Yes

	Yes

	Yes

	vTep

	Yes

	Yes

	Yes

	Yes

	vTunnel

	Yes

	Yes

	Yes

	Yes

	vBypass

	Yes

	Yes

	Yes

	Yes

	vLink

	Yes

	Yes

	Yes

	Yes

	Interface

	Yes

	Yes

	Yes

	Yes

	Port map

	Yes

	No

	Yes

	Yes

	Vlan map

	Yes

	Yes

	Yes

	Yes

	Flowfilter
(ACL/redirect)

	Yes

	Yes

	Yes

	Yes

	Controller
information

	Yes

	Yes

	Yes

	Yes

	Physical
topology
information

	Yes

	No

	No

	No

	Alarm
information

	Yes

	No

	No

	No

Example usage

The following is an example of the usage to construct a virtual network.

	Create VTN

 curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"vtn":{"vtn_name":"VTN1"}}' http://172.1.0.1:8083/vtn-webapi/vtns.json

	Create Controller Information

 curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"controller": {"controller_id":"CONTROLLER1","ipaddr":"172.1.0.1","type":"odc","username":"admin", \
"password":"admin","version":"1.0"}}' http://172.1.0.1:8083/vtn-webapi/controllers.json

	Create vBridge under VTN

curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"vbridge":{"vbr_name":"VBR1","controller_id": "CONTROLLER1","domain_id": "(DEFAULT)"}}' \
http://172.1.0.1:8083/vtn-webapi/vtns/VTN1/vbridges.json

	Create the interface under vBridge

curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"interface":{"if_name":"IF1"}}' http://172.1.0.1:8083/vtn-webapi/vtns/VTN1/vbridges/VBR1/interfaces.json

VTN OpenStack Configuration

This guide describes how to set up OpenStack for integration with
OpenDaylight Controller.

While OpenDaylight Controller provides several ways to integrate with
OpenStack, this guide focus on the way which uses VTN features available
on OpenDaylight. In the integration, VTN Manager work as network service
provider for OpenStack.

VTN Manager features, enable OpenStack to work in pure OpenFlow
environment in which all switches in data plane are OpenFlow switch.

Requirements

	OpenDaylight Controller. (VTN features must be installed)

	OpenStack Control Node.

	OpenStack Compute Node.

	OpenFlow Switch like mininet(Not Mandatory).

The VTN features support multiple OpenStack nodes. You can deploy
multiple OpenStack Compute Nodes. In management plane, OpenDaylight
Controller, OpenStack nodes and OpenFlow switches should communicate
with each other. In data plane, Open vSwitches running in OpenStack
nodes should communicate with each other through a physical or logical
OpenFlow switches. The core OpenFlow switches are not mandatory.
Therefore, you can directly connect to the Open vSwitch’s.

[image: Openstack Overview]
Openstack Overview

Sample Configuration

Below steps depicts the configuration of single OpenStack Control node
and OpenStack Compute node setup. Our test setup is as follows

[image: LAB Setup]
LAB Setup

Server Preparation

	Install Ubuntu 14.04 LTS in two servers (OpenStack Control node and
Compute node respectively)

	While installing, Ubuntu mandates creation of a User, we created the
user “stack”(We will use the same user for running devstack)

	Proceed with the below mentioned User Settings and Network Settings
in both the Control and Compute nodes.

User Settings for devstack - Login to both servers - Disable Ubuntu
Firewall

sudo ufw disable

	Install the below packages (optional, provides ifconfig and route
coammnds, handy for debugging!!)

sudo apt-get install net-tools

	Edit sudo vim /etc/sudoers and add an entry as follows

stack ALL=(ALL) NOPASSWD: ALL

Network Settings - Checked the output of ifconfig -a, two interfaces
were listed eth0 and eth1 as indicated in the image above. - We had
connected eth0 interface to the Network where OpenDaylight is reachable.
- eth1 interface in both servers were connected to a different network
to act as data plane for the VM’s created using the OpenStack. -
Manually edited the file : sudo vim /etc/network/interfaces and made
entries as follows

 stack@ubuntu-devstack:~/devstack$ cat /etc/network/interfaces
 # This file describes the network interfaces available on your system
 # and how to activate them. For more information, see interfaces(5).
 # The loop-back network interface
 auto lo
 iface lo inet loopback
 # The primary network interface
 auto eth0
 iface eth0 inet static
 address <IP_ADDRESS_TO_REACH_ODL>
 netmask <NET_MASK>
 broadcast <BROADCAST_IP_ADDRESS>
 gateway <GATEWAY_IP_ADDRESS>
auto eth1
iface eth1 inet static
 address <IP_ADDRESS_UNIQ>
 netmask <NETMASK>

Note

Please ensure that the eth0 interface is the default route and it is
able to reach the ODL_IP_ADDRESS NOTE: The entries for eth1 are
not mandatory, If not set, we may have to manually do “ifup eth1”
after the stacking is complete to activate the interface

Finalize the user and network settings - Please reboot both nodes
after the user and network settings to have the network settings applied
to the network - Login again and check the output of ifconfig to ensure
that both interfaces are listed

OpenDaylight Settings and Execution

VTN Configuration for OpenStack Integration:

	VTN uses the configuration parameters from “90-vtn-neutron.xml” file
for the OpenStack integration.

	These values will be set for the OpenvSwitch, in all the
participating OpenStack nodes.

	A configuration file “90-vtn-neutron.xml” will be generated
automatically by following the below steps,

	Download the latest Boron karaf distribution from the below link,

http://www.opendaylight.org/software/downloads

	cd “distribution-karaf-0.5.0-Boron” and run karaf by using the
following command “./bin/karaf”.

	Install the below feature to generate “90-vtn-neutron.xml”

feature:install odl-vtn-manager-neutron

	Logout from the karaf console and Check “90-vtn-neutron.xml” file
from the following path
“distribution-karaf-0.5.0-Boron/etc/opendaylight/karaf/”.

	The contents of “90-vtn-neutron.xml” should be as follows:

bridgename=br-int portname=eth1 protocols=OpenFlow13 failmode=secure

	The values of the configuration parameters must be changed based on
the user environment.

	Especially, “portname” should be carefully configured, because if the
value is wrong, OpenDaylight fails to forward packets.

	Other parameters works fine as is for general use cases.

	bridgename

	The name of the bridge in Open vSwitch, that will be created by
OpenDaylight Controller.

	It must be “br-int”.

	portname

	The name of the port that will be created in the vbridge in
Open vSwitch.

	This must be the same name of the interface of OpenStack Nodes
which is used for interconnecting OpenStack Nodes in data
plane.(in our case:eth1)

	By default, if 90-vtn-neutron.xml is not created, VTN uses
ens33 as portname.

	protocols

	OpenFlow protocol through which OpenFlow Switch and Controller
communicate.

	The values can be OpenFlow13 or OpenFlow10.

	failmode

	The value can be “standalone” or “secure”.

	Please use “secure” for general use cases.

Start ODL Controller

	Please refer to the Installation Pages to run ODL with VTN Feature
enabled.

	After running ODL Controller, please ensure ODL Controller listens to
the ports:6633,6653, 6640 and 8080

	Please allow the ports in firewall for the devstack to be able to
communicate with ODL Controller.

Note

	6633/6653 - OpenFlow Ports

	6640 - OVS Manager Port

	8080 - Port for REST API

Devstack Setup

Get Devstack (All nodes)

	Install git application using

	sudo apt-get install git

	Get devstack

	git clone https://git.openstack.org/openstack-dev/devstack;

	Switch to stable/Juno Version branch

	cd devstack

git checkout stable/juno

Note

If you want to use stable/kilo Version branch, Please execute the
below command in devstack folder

git checkout stable/kilo

Note

If you want to use stable/liberty Version branch, Please execute the
below command in devstack folder

git checkout stable/liberty

Stack Control Node

	local.conf:

	cd devstack in the controller node

	Copy the contents of local.conf for juno (devstack control node) from
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack
and save it as “local.conf” in the “devstack”.

	Copy the contents of local.conf for kilo and liberty (devstack
control node) from
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack_post_juno_versions
and save it as “local.conf” in the “devstack”.

	Please modify the IP Address values as required.

	Stack the node

./stack.sh

Verify Control Node stacking

	stack.sh prints out Horizon is now available at
http://<CONTROL_NODE_IP_ADDRESS>:8080/

	Execute the command sudo ovs-vsctl show in the control node
terminal and verify if the bridge br-int is created.

	Typical output of the ovs-vsctl show is indicated below:

e232bbd5-096b-48a3-a28d-ce4a492d4b4f
 Manager "tcp:192.168.64.73:6640"
 is_connected: true
 Bridge br-int
 Controller "tcp:192.168.64.73:6633"
 is_connected: true
 fail_mode: secure
 Port "eth1"
 Interface "eth1"
 ovs_version: "2.0.2"

Stack Compute Node

	local.conf:

	cd devstack in the controller node

	Copy the contents of local.conf for juno (devstack compute node) from
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack
and save it as “local.conf” in the “devstack”.

	Copy the contents of local.conf file for kilo and liberty (devstack
compute node) from
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack_post_juno_versions
and save it as “local.conf” in the “devstack”.

	Please modify the IP Address values as required.

	Stack the node

./stack.sh

Verify Compute Node Stacking

	stack.sh prints out This is your host ip:
<COMPUTE_NODE_IP_ADDRESS>

	Execute the command sudo ovs-vsctl show in the control node
terminal and verify if the bridge br-int is created.

	The output of the ovs-vsctl show will be similar to the one seen in
control node.

Additional Verifications

	Please visit the OpenDaylight DLUX GUI after stacking all the nodes,
http://<ODL_IP_ADDRESS>:8181/index.html.
The switches, topology and the ports that are currently read can be
validated.

http://<controller-ip>:8181/index.html

Tip

If the interconnected between the Open vSwitch is not seen, Please
bring up the interface for the dataplane manually using the below
comamnd

ifup <interface_name>

	Please Accept Promiscuous mode in the networks involving the
interconnect.

Create VM from Devstack Horizon GUI

	Login to
http://<CONTROL_NODE_IP>:8080/
to check the horizon GUI.

[image: Horizon GUI]
Horizon GUI

Enter the value for User Name as admin and enter the value for Password
as labstack.

	We should first ensure both the hypervisors(control node and compute
node) are mapped under hypervisors by clicking on Hpervisors tab.

[image: Hypervisors]
Hypervisors

	Create a new Network from Horizon GUI.

	Click on Networks Tab.

	click on the Create Network button.

[image: Create Network]
Create Network

	A popup screen will appear.

	Enter network name and click Next button.

[image: Step 1]
Step 1

	Create a sub network by giving Network Address and click Next button
.

[image: Step 2]
Step 2

	Specify the additional details for subnetwork (please refer the image
for your reference).

[image: Step 3]
Step 3

	Click Create button

	Create VM Instance

	Navigate to Instances tab in the GUI.

[image: Instance Creation]
Instance Creation

	Click on Launch Instances button.

[image: Launch Instance]
Launch Instance

	Click on Details tab to enter the VM details.For this demo we are
creating Ten VM’s(instances).

	In the Networking tab, we must select the network,for this we need to
drag and drop the Available networks to Selected Networks (i.e.,)
Drag vtn1 we created from Available networks to Selected Networks and
click Launch to create the instances.

[image: Launch Network]
Launch Network

	Ten VM’s will be created.

[image: Load All Instances]
Load All Instances

	Click on any VM displayed in the Instances tab and click the Console
tab.

[image: Instance Console]
Instance Console

	Login to the VM console and verify with a ping command.

[image: Ping]
Ping

Verification of Control and Compute Node after VM creation

	Every time a new VM is created, more interfaces are added to the
br-int bridge in Open vSwitch.

	Use sudo ovs-vsctl show to list the number of interfaces added.

	Please visit the DLUX GUI to list the new nodes in every switch.

Getting started with DLUX

Ensure that you have created a topology and enabled MD-SAL feature in
the Karaf distribution before you use DLUX for network management.

Logging In

To log in to DLUX, after installing the application: * Open a browser
and enter the login URL. If you have installed DLUX as a stand-alone,
then the login URL is http://localhost:9000/DLUX/index.html. However if
you have deployed DLUX with Karaf, then the login URL is
http://<your IP>:8181/dlux/index.html. * Login
to the application with user ID and password credentials as admin.
NOTE:admin is the only user type available for DLUX in this release.

Working with DLUX

To get a complete DLUX feature list, install restconf, odl l2 switch,
and switch while you start the DLUX distribution.

[image: DLUX_GUI]
DLUX_GUI

Note

DLUX enables only those modules, whose APIs are responding. If you
enable just the MD-SAL in beginning and then start dlux, only MD-SAL
related tabs will be visible. While using the GUI if you enable
AD-SAL karaf features, those tabs will appear automatically.

Viewing Network Statistics

The Nodes module on the left pane enables you to view the network
statistics and port information for the switches in the network. * To
use the Nodes module: ** Select Nodeson the left pane.

The right pane displays atable that lists all the nodes, node connectors and the statistics.

	Enter a node ID in the Search Nodes tab to search by node connectors.

	Click on the Node Connector number to view details such as port ID,
port name, number of ports per switch, MAC Address, and so on.

	Click Flows in the Statistics column to view Flow Table Statistics
for the particular node like table ID, packet match, active flows and
so on.

	Click Node Connectors to view Node Connector Statistics for the
particular node ID.

Viewing Network Topology

To view network topology: * Select Topology on the left pane. You will
view the graphical representation on the right pane.

In the diagram
blue boxes represent the switches,black represents the hosts available, and lines represents how switches are connected.

Note

DLUX UI does not provide ability to add topology information. The
Topology should be created using an open flow plugin. Controller
stores this information in the database and displays on the DLUX
page, when the you connect to the controller using OpenFlow.

[image: Topology]
Topology

OpenStack PackStack Installation Steps

	Please go through the below wiki page for OpenStack PackStack
installation steps.

	https://wiki.opendaylight.org/view/Release/Lithium/VTN/User_Guide/Openstack_Packstack_Support

References

	http://devstack.org/guides/multinode-lab.html

	https://wiki.opendaylight.org/view/File:Vtn_demo_hackfest_2014_march.pdf

VTN Manager Usage Examples

How to provision virtual L2 Network

Overview

This page explains how to provision virtual L2 network using VTN
Manager. This page targets Boron release, so the procedure described
here does not work in other releases.

[image: Virtual L2 network for host1 and host3]
Virtual L2 network for host1 and host3

Requirements

Mininet

	To provision OpenFlow switches, this page uses Mininet. Mininet
details and set-up can be referred at the following page:
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

	Start Mininet and create three switches(s1, s2, and s3) and four
hosts(h1, h2, h3, and h4) in it.

mininet@mininet-vm:~$ sudo mn --controller=remote,ip=192.168.0.100 --topo tree,2

Note

Replace “192.168.0.100” with the IP address of OpenDaylight
controller based on your environment.

	you can check the topology that you have created by executing “net”
command in the Mininet console.

mininet> net
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2

	In this guide, you will provision the virtual L2 network to establish
communication between h1 and h3.

Configuration

To provision the virtual L2 network for the two hosts (h1 and h3),
execute REST API provided by VTN Manager as follows. It uses curl
command to call the REST API.

	Create a virtual tenant named vtn1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	Create a virtual bridge named vbr1 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1"}}'

	Create two interfaces into the virtual bridge by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2"}}'

	Configure two mappings on the created interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].

	The interface if1 of the virtual bridge will be mapped to the port
“s2-eth1” of the switch “openflow:2” of the Mininet.

	The h1 is connected to the port “s2-eth1”.

	The interface if2 of the virtual bridge will be mapped to the port
“s3-eth1” of the switch “openflow:3” of the Mininet.

	The h3 is connected to the port “s3-eth1”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1", "node":"openflow:2", "port-name":"s2-eth1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2", "node":"openflow:3", "port-name":"s3-eth1"}}'

Verification

	Please execute ping from h1 to h3 to verify if the virtual L2 network
for h1 and h3 is provisioned successfully.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=243 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=64 time=0.341 ms
64 bytes from 10.0.0.3: icmp_seq=3 ttl=64 time=0.078 ms
64 bytes from 10.0.0.3: icmp_seq=4 ttl=64 time=0.079 ms

	You can also verify the configuration by executing the following REST
API. It shows all configuration in VTN Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns/

	The result of the command should be like this.

{
 "vtns": {
 "vtn": [
 {
 "name": "vtn1",
 "vtenant-config": {
 "idle-timeout": 300,
 "hard-timeout": 0
 },
 "vbridge": [
 {
 "name": "vbr1",
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vbridge-config": {
 "age-interval": 600
 },
 "vinterface": [
 {
 "name": "if2",
 "vinterface-status": {
 "entity-state": "UP",
 "state": "UP",
 "mapped-port": "openflow:3:3"
 },
 "vinterface-config": {
 "enabled": true
 },
 "port-map-config": {
 "vlan-id": 0,
 "port-name": "s3-eth1",
 "node": "openflow:3"
 }
 },
 {
 "name": "if1",
 "vinterface-status": {
 "entity-state": "UP",
 "state": "UP",
 "mapped-port": "openflow:2:1"
 },
 "vinterface-config": {
 "enabled": true
 },
 "port-map-config": {
 "vlan-id": 0,
 "port-name": "s2-eth1",
 "node": "openflow:2"
 }
 }
]
 }
]
 }
]
 }
}

Cleaning Up

	You can delete the virtual tenant vtn1 by executing the remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1"}}'

How To Test Vlan-Map In Mininet Environment

Overview

This page explains how to test Vlan-map in a multi host scenario using
mininet. This page targets Boron release, so the procedure described
here does not work in other releases.

[image: Example that demonstrates vlanmap testing in Mininet Environment]
Example that demonstrates vlanmap testing in Mininet Environment

Requirements

Save the mininet script given below as vlan_vtn_test.py and run the
mininet script in the mininet environment where Mininet is installed.

Mininet Script

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_hosts_in_different_vlan

	Run the mininet script

sudo mn --controller=remote,ip=192.168.64.13 --custom vlan_vtn_test.py --topo mytopo

Note

Replace “192.168.64.13” with the IP address of OpenDaylight
controller based on your environment.

	You can check the topology that you have created by executing “net”
command in the Mininet console.

mininet> net
h1 h1-eth0.200:s1-eth1
h2 h2-eth0.300:s2-eth2
h3 h3-eth0.200:s2-eth3
h4 h4-eth0.300:s2-eth4
h5 h5-eth0.200:s3-eth2
h6 h6-eth0.300:s3-eth3
s1 lo: s1-eth1:h1-eth0.200 s1-eth2:s2-eth1 s1-eth3:s3-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0.300 s2-eth3:h3-eth0.200 s2-eth4:h4-eth0.300
s3 lo: s3-eth1:s1-eth3 s3-eth2:h5-eth0.200 s3-eth3:h6-eth0.300
c0

Configuration

To test vlan-map, execute REST API provided by VTN Manager as follows.

	Create a virtual tenant named vtn1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	Create a virtual bridge named vbr1 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1"}}'

	Configure a vlan map with vlanid 200 for vBridge vbr1 by executing
the add-vlan-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vlan-map.html#add-vlan-map].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vlan-map:add-vlan-map -d '{"input":{"vlan-id":200,"tenant-name":"vtn1","bridge-name":"vbr1"}}'

	Create a virtual bridge named vbr2 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr2"}}'

	Configure a vlan map with vlanid 300 for vBridge vbr2 by executing
the add-vlan-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vlan-map.html#add-vlan-map].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vlan-map:add-vlan-map -d '{"input":{"vlan-id":300,"tenant-name":"vtn1","bridge-name":"vbr2"}}'

Verification

	Please execute pingall in mininet environment to view the host
reachability.

mininet> pingall
Ping: testing ping reachability
h1 -> X h3 X h5 X
h2 -> X X h4 X h6
h3 -> h1 X X h5 X
h4 -> X h2 X X h6
h5 -> h1 X h3 X X
h6 -> X h2 X h4 X

	You can also verify the configuration by executing the following REST
API. It shows all configurations in VTN Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns

	The result of the command should be like this.

{
 "vtns": {
 "vtn": [
 {
 "name": "vtn1",
 "vtenant-config": {
 "hard-timeout": 0,
 "idle-timeout": 300,
 "description": "creating vtn"
 },
 "vbridge": [
 {
 "name": "vbr2",
 "vbridge-config": {
 "age-interval": 600,
 "description": "creating vbr2"
 },
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vlan-map": [
 {
 "map-id": "ANY.300",
 "vlan-map-config": {
 "vlan-id": 300
 },
 "vlan-map-status": {
 "active": true
 }
 }
]
 },
 {
 "name": "vbr1",
 "vbridge-config": {
 "age-interval": 600,
 "description": "creating vbr1"
 },
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vlan-map": [
 {
 "map-id": "ANY.200",
 "vlan-map-config": {
 "vlan-id": 200
 },
 "vlan-map-status": {
 "active": true
 }
 }
]
 }
]
 }
]
 }
}

Cleaning Up

	You can delete the virtual tenant vtn1 by executing the remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1"}}'

How To Configure Service Function Chaining using VTN Manager

Overview

This page explains how to configure VTN Manager for Service Chaining.
This page targets Boron release, so the procedure described here
does not work in other releases.

[image: Service Chaining With One Service]
Service Chaining With One Service

Requirements

	Please refer to the Installation
Pages [https://wiki.opendaylight.org/view/VTN:Boron:Installation_Guide]
to run ODL with VTN Feature enabled.

	Please ensure Bridge-Utils package is installed in mininet
environment before running the mininet script.

	To install Bridge-Utils package run sudo apt-get install bridge-utils
(assuming Ubuntu is used to run mininet, If not then this is not
required).

	Save the mininet script given below as topo_handson.py and run the
mininet script in the mininet environment where Mininet is installed.

Mininet Script

	Script for emulating network with multiple
hosts [https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet].

	Before executing the mininet script, please confirm Controller is up
and running.

	Run the mininet script.

	Replace <path> and <Controller IP> based on your environment

sudo mn --controller=remote,ip=<Controller IP> --custom <path>\topo_handson.py --topo mytopo2

mininet> net
h11 h11-eth0:s1-eth1
h12 h12-eth0:s1-eth2
h21 h21-eth0:s2-eth1
h22 h22-eth0:s2-eth2
h23 h23-eth0:s2-eth3
srvc1 srvc1-eth0:s3-eth3 srvc1-eth1:s4-eth3
srvc2 srvc2-eth0:s3-eth4 srvc2-eth1:s4-eth4
s1 lo: s1-eth1:h11-eth0 s1-eth2:h12-eth0 s1-eth3:s2-eth4 s1-eth4:s3-eth2
s2 lo: s2-eth1:h21-eth0 s2-eth2:h22-eth0 s2-eth3:h23-eth0 s2-eth4:s1-eth3 s2-eth5:s4-eth1
s3 lo: s3-eth1:s4-eth2 s3-eth2:s1-eth4 s3-eth3:srvc1-eth0 s3-eth4:srvc2-eth0
s4 lo: s4-eth1:s2-eth5 s4-eth2:s3-eth1 s4-eth3:srvc1-eth1 s4-eth4:srvc2-eth1

Configurations

Mininet

	Please follow the below steps to configure the network in mininet as
in the below image:

[image: Mininet Configuration]
Mininet Configuration

Configure service nodes

	Please execute the following commands in the mininet console where
mininet script is executed.

mininet> srvc1 ip addr del 10.0.0.6/8 dev srvc1-eth0
mininet> srvc1 brctl addbr br0
mininet> srvc1 brctl addif br0 srvc1-eth0
mininet> srvc1 brctl addif br0 srvc1-eth1
mininet> srvc1 ifconfig br0 up
mininet> srvc1 tc qdisc add dev srvc1-eth1 root netem delay 200ms
mininet> srvc2 ip addr del 10.0.0.7/8 dev srvc2-eth0
mininet> srvc2 brctl addbr br0
mininet> srvc2 brctl addif br0 srvc2-eth0
mininet> srvc2 brctl addif br0 srvc2-eth1
mininet> srvc2 ifconfig br0 up
mininet> srvc2 tc qdisc add dev srvc2-eth1 root netem delay 300ms

Controller

Multi-Tenancy

	Please execute the below commands to configure the network topology
in the controller as in the below image:

[image: Tenant2]
Tenant2

Please execute the below commands in controller

Note

The below commands are for the difference in behavior of Manager in
Boron topology. The Link below has the details for this bug:
https://bugs.opendaylight.org/show_bug.cgi?id=3818.

curl --user admin:admin -H 'content-type: application/json' -H 'ipaddr:127.0.0.1' -X PUT http://localhost:8181/restconf/config/vtn-static-topology:vtn-static-topology/static-edge-ports -d '{"static-edge-ports": {"static-edge-port": [{"port": "openflow:3:3"}, {"port": "openflow:3:4"}, {"port": "openflow:4:3"}, {"port": "openflow:4:4"}]}}'

	Create a virtual tenant named vtn1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1","update-mode":"CREATE","operation":"SET","description":"creating vtn","idle-timeout":300,"hard-timeout":0}}'

	Create a virtual bridge named vbr1 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"creating vbr","tenant-name":"vtn1","bridge-name":"vbr1"}}'

	Create interface if1 into the virtual bridge vbr1 by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vbrif1 interface","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1"}}'

	Configure port mapping on the interface by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].

	The interface if1 of the virtual bridge will be mapped to the port
“s1-eth2” of the switch “openflow:1” of the Mininet.

	The h12 is connected to the port “s1-eth2”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"vlan-id":0,"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1","node":"openflow:1","port-name":"s1-eth2"}}'

	Create interface if2 into the virtual bridge vbr1 by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vbrif2 interface","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2"}}'

	Configure port mapping on the interface by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].

	The interface if2 of the virtual bridge will be mapped to the port
“s2-eth2” of the switch “openflow:2” of the Mininet.

	The h22 is connected to the port “s2-eth2”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"vlan-id":0,"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2","node":"openflow:2","port-name":"s2-eth2"}}'

	Create interface if3 into the virtual bridge vbr1 by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vbrif3 interface","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if3"}}'

	Configure port mapping on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].

	The interface if3 of the virtual bridge will be mapped to the port
“s2-eth3” of the switch “openflow:2” of the Mininet.

	The h23 is connected to the port “s2-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"vlan-id":0,"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if3","node":"openflow:2","port-name":"s2-eth3"}}'

Traffic filtering

	Create flowcondition named cond_1 by executing the
set-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition].

	For option source and destination-network, get inet address of
host h12(src) and h22(dst) from mininet.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"operation":"SET","present":"false","name":"cond_1","vtn-flow-match":[{"index":1,"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.2/32","destination-network":"10.0.0.4/32"}}]}}'

	Flow filter demonstration with DROP action-type. Create Flowfilter in
VBR Interface if1 by executing the set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{"output":"false","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1","vtn-flow-filter":[{"condition":"cond_1","index":10,"vtn-drop-filter":{}}]}}'

Service Chaining

With One Service

	Please execute the below commands to configure the network topology
which sends some specific traffic via a single service(External
device) in the controller as in the below image:

[image: Service Chaining With One Service LLD]
Service Chaining With One Service LLD

	Create a virtual terminal named vt_srvc1_1 in the tenant vtn1 by
executing the update-vterminal
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_srvc1_1","description":"Creating vterminal"}}'

	Create interface IF into the virtual terminal vt_srvc1_1 by
executing the update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF","enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc1_1","interface-name":"IF"}}'

	Configure port mapping on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].

	The interface IF of the virtual terminal will be mapped to the
port “s3-eth3” of the switch “openflow:3” of the Mininet.

	The h12 is connected to the port “s3-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1","terminal-name":"vt_srvc1_1","interface-name":"IF","node":"openflow:3","port-name":"s3-eth3"}}'

	Create a virtual terminal named vt_srvc1_2 in the tenant vtn1 by
executing the update-vterminal
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","description":"Creating vterminal"}}'

	Create interface IF into the virtual terminal vt_srvc1_2 by
executing the update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF","enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":"IF"}}'

	Configure port mapping on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].

	The interface IF of the virtual terminal will be mapped to the
port “s4-eth3” of the switch “openflow:4” of the Mininet.

	The h22 is connected to the port “s4-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":"IF","node":"openflow:4","port-name":"s4-eth3"}}'

	Create flowcondition named cond_1 by executing the
set-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition].

	For option source and destination-network, get inet address of
host h12(src) and h22(dst) from mininet.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"operation":"SET","present":"false","name":"cond_1","vtn-flow-match":[{"index":1,"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.2/32","destination-network":"10.0.0.4/32"}}]}}'

	Create flowcondition named cond_any by executing the
set-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"operation":"SET","present":"false","name":"cond_any","vtn-flow-match":[{"index":1}]}}'

	Flow filter demonstration with redirect action-type. Create
Flowfilter in virtual terminal vt_srvc1_2 interface IF by executing
the set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].

	Flowfilter redirects vt_srvc1_2 to bridge1-IF2

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{"output":"false","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":"IF","vtn-flow-filter":[{"condition":"cond_any","index":10,"vtn-redirect-filter":{"redirect-destination":{"bridge-name":"vbr1","interface-name":"if2"},"output":"true"}}]}}'

	Flow filter demonstration with redirect action-type. Create
Flowfilter in vbridge vbr1 interface if1 by executing the
set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].

	Flow filter redirects Bridge1-IF1 to vt_srvc1_1

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{"output":"false","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1","vtn-flow-filter":[{"condition":"cond_1","index":10,"vtn-redirect-filter":{"redirect-destination":{"terminal-name":"vt_srvc1_1","interface-name":"IF"},"output":"true"}}]}}'

Verification

[image: Service Chaining With One Service]
Service Chaining With One Service

	Ping host12 to host22 to view the host rechability, a delay of 200ms
will be taken to reach host22 as below.

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=35 ttl=64 time=209 ms
64 bytes from 10.0.0.4: icmp_seq=36 ttl=64 time=201 ms
64 bytes from 10.0.0.4: icmp_seq=37 ttl=64 time=200 ms
64 bytes from 10.0.0.4: icmp_seq=38 ttl=64 time=200 ms

With two services

	Please execute the below commands to configure the network topology
which sends some specific traffic via two services(External device)
in the controller as in the below image.

[image: Service Chaining With Two Services LLD]
Service Chaining With Two Services LLD

	Create a virtual terminal named vt_srvc2_1 in the tenant vtn1 by
executing the update-vterminal
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_srvc2_1","description":"Creating vterminal"}}'

	Create interface IF into the virtual terminal vt_srvc2_1 by
executing the update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF","enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc2_1","interface-name":"IF"}}'

	Configure port mapping on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].

	The interface IF of the virtual terminal will be mapped to the
port “s3-eth4” of the switch “openflow:3” of the Mininet.

	The host h12 is connected to the port “s3-eth4”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1","terminal-name":"vt_srvc2_1","interface-name":"IF","node":"openflow:3","port-name":"s3-eth4"}}'

	Create a virtual terminal named vt_srvc2_2 in the tenant vtn1 by
executing the update-vterminal
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_srvc2_2","description":"Creating vterminal"}}'

	Create interfaces IF into the virtual terminal vt_srvc2_2 by
executing the update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF","enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc2_2","interface-name":"IF"}}'

	Configure port mapping on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].

	The interface IF of the virtual terminal will be mapped to the
port “s4-eth4” of the switch “openflow:4” of the mininet.

	The host h22 is connected to the port “s4-eth4”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1","terminal-name":"vt_srvc2_2","interface-name":"IF","node":"openflow:4","port-name":"s4-eth4"}}'

	Flow filter demonstration with redirect action-type. Create
Flowfilter in virtual terminal vt_srvc2_2 interface IF by executing
the set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].

	Flow filter redirects vt_srvc2_2 to Bridge1-IF2.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{"output":"false","tenant-name":"vtn1","terminal-name":"vt_srvc2_2","interface-name":"IF","vtn-flow-filter":[{"condition":"cond_any","index":10,"vtn-redirect-filter":{"redirect-destination":{"bridge-name":"vbr1","interface-name":"if2"},"output":"true"}}]}}'

	Flow filter demonstration with redirect action-type. Create
Flowfilter in virtual terminal vt_srvc2_2 interface IF by executing
the set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].

	Flow filter redirects vt_srvc1_2 to vt_srvc2_1.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{"output":"false","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":"IF","vtn-flow-filter":[{"condition":"cond_any","index":10,"vtn-redirect-filter":{"redirect-destination":{"terminal-name":"vt_srvc2_1","interface-name":"IF"},"output":"true"}}]}}'

Verification

[image: Service Chaining With Two Service]
Service Chaining With Two Service

	Ping host12 to host22 to view the host rechability, a delay of 500ms
will be taken to reach host22 as below.

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=512 ms
64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=501 ms
64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=500 ms
64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=500 ms

	You can verify the configuration by executing the following REST API.
It shows all configuration in VTN Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns

{
 "vtn": [
 {
 "name": "vtn1",
 "vtenant-config": {
 "hard-timeout": 0,
 "idle-timeout": 300,
 "description": "creating vtn"
 },
 "vbridge": [
 {
 "name": "vbr1",
 "vbridge-config": {
 "age-interval": 600,
 "description": "creating vbr"
 },
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "if1",
 "vinterface-status": {
 "mapped-port": "openflow:1:2",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:1",
 "port-name": "s1-eth2"
 },
 "vinterface-config": {
 "description": "Creating vbrif1 interface",
 "enabled": true
 },
 "vinterface-input-filter": {
 "vtn-flow-filter": [
 {
 "index": 10,
 "condition": "cond_1",
 "vtn-redirect-filter": {
 "output": true,
 "redirect-destination": {
 "terminal-name": "vt_srvc1_1",
 "interface-name": "IF"
 }
 }
 }
]
 }
 },
 {
 "name": "if2",
 "vinterface-status": {
 "mapped-port": "openflow:2:2",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:2",
 "port-name": "s2-eth2"
 },
 "vinterface-config": {
 "description": "Creating vbrif2 interface",
 "enabled": true
 }
 },
 {
 "name": "if3",
 "vinterface-status": {
 "mapped-port": "openflow:2:3",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:2",
 "port-name": "s2-eth3"
 },
 "vinterface-config": {
 "description": "Creating vbrif3 interface",
 "enabled": true
 }
 }
]
 }
],
 "vterminal": [
 {
 "name": "vt_srvc2_2",
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "IF",
 "vinterface-status": {
 "mapped-port": "openflow:4:4",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:4",
 "port-name": "s4-eth4"
 },
 "vinterface-config": {
 "description": "Creating vterminal IF",
 "enabled": true
 },
 "vinterface-input-filter": {
 "vtn-flow-filter": [
 {
 "index": 10,
 "condition": "cond_any",
 "vtn-redirect-filter": {
 "output": true,
 "redirect-destination": {
 "bridge-name": "vbr1",
 "interface-name": "if2"
 }
 }
 }
]
 }
 }
],
 "vterminal-config": {
 "description": "Creating vterminal"
 }
 },
 {
 "name": "vt_srvc1_1",
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "IF",
 "vinterface-status": {
 "mapped-port": "openflow:3:3",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:3",
 "port-name": "s3-eth3"
 },
 "vinterface-config": {
 "description": "Creating vterminal IF",
 "enabled": true
 }
 }
],
 "vterminal-config": {
 "description": "Creating vterminal"
 }
 },
 {
 "name": "vt_srvc1_2",
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "IF",
 "vinterface-status": {
 "mapped-port": "openflow:4:3",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:4",
 "port-name": "s4-eth3"
 },
 "vinterface-config": {
 "description": "Creating vterminal IF",
 "enabled": true
 },
 "vinterface-input-filter": {
 "vtn-flow-filter": [
 {
 "index": 10,
 "condition": "cond_any",
 "vtn-redirect-filter": {
 "output": true,
 "redirect-destination": {
 "terminal-name": "vt_srvc2_1",
 "interface-name": "IF"
 }
 }
 }
]
 }
 }
],
 "vterminal-config": {
 "description": "Creating vterminal"
 }
 },
 {
 "name": "vt_srvc2_1",
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "IF",
 "vinterface-status": {
 "mapped-port": "openflow:3:4",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:3",
 "port-name": "s3-eth4"
 },
 "vinterface-config": {
 "description": "Creating vterminal IF",
 "enabled": true
 }
 }
],
 "vterminal-config": {
 "description": "Creating vterminal"
 }
 }
]
 }
]
}

Cleaning Up

	To clean up both VTN and flowconditions.

	You can delete the virtual tenant vtn1 by executing the remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	You can delete the flowcondition cond_1 and cond_any by executing
the remove-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#remove-flow-condition].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{"input":{"name":"cond_1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{"input":{"name":"cond_any"}}'

How To View Dataflows

Overview

This page explains how to view Dataflows using VTN Manager. This page
targets Boron release, so the procedure described here does not work
in other releases.

Dataflow feature enables retrieval and display of data flows in the
OpenFlow network. The data flows can be retrieved based on an OpenFlow
switch or a switch port or a L2 source host.

The flow information provided by this feature are

	Location of virtual node which maps the incoming packet and outgoing
packets.

	Location of physical switch port where incoming and outgoing packets
is sent and received.

	A sequence of physical route info which represents the packet route
in the physical network.

Configuration

	To view Dataflow information, configure with VLAN Mapping
https://wiki.opendaylight.org/view/VTN:Mananger:How_to_test_Vlan-map_using_mininet.

Verification

After creating vlan mapping configuration from the above page, execute
as below in mininet to get switch details.

mininet> net
h1 h1-eth0.200:s1-eth1
h2 h2-eth0.300:s2-eth2
h3 h3-eth0.200:s2-eth3
h4 h4-eth0.300:s2-eth4
h5 h5-eth0.200:s3-eth2
h6 h6-eth0.300:s3-eth3
s1 lo: s1-eth1:h1-eth0.200 s1-eth2:s2-eth1 s1-eth3:s3-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0.300 s2-eth3:h3-eth0.200 s2-eth4:h4-eth0.300
s3 lo: s3-eth1:s1-eth3 s3-eth2:h5-eth0.200 s3-eth3:h6-eth0.300
c0
mininet>

Please execute ping from h1 to h3 to check hosts reachability.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=11.4 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=64 time=0.654 ms
64 bytes from 10.0.0.3: icmp_seq=3 ttl=64 time=0.093 ms

Parallely execute below Restconf command to get data flow information of
node “openflow:1” and its port “s1-eth1”.

	Get the Dataflows information by executing the get-data-flow
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow.html#get-data-flow].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow:get-data-flow -d '{"input":{"tenant-name":"vtn1","mode":"DETAIL","node":"openflow:1","data-flow-port":{"port-id":"1","port-name":"s1-eth1"}}}'

{
 "output": {
 "data-flow-info": [
 {
 "averaged-data-flow-stats": {
 "packet-count": 1.1998800119988002,
 "start-time": 1455241209151,
 "end-time": 1455241219152,
 "byte-count": 117.58824117588242
 },
 "physical-route": [
 {
 "physical-ingress-port": {
 "port-name": "s2-eth3",
 "port-id": "3"
 },
 "physical-egress-port": {
 "port-name": "s2-eth1",
 "port-id": "1"
 },
 "node": "openflow:2",
 "order": 0
 },
 {
 "physical-ingress-port": {
 "port-name": "s1-eth2",
 "port-id": "2"
 },
 "physical-egress-port": {
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "node": "openflow:1",
 "order": 1
 }
],
 "data-egress-node": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "hard-timeout": 0,
 "idle-timeout": 300,
 "data-flow-stats": {
 "duration": {
 "nanosecond": 640000000,
 "second": 362
 },
 "packet-count": 134,
 "byte-count": 12932
 },
 "data-egress-port": {
 "node": "openflow:1",
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "data-ingress-node": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-ingress-port": {
 "node": "openflow:2",
 "port-name": "s2-eth3",
 "port-id": "3"
 },
 "creation-time": 1455240855753,
 "data-flow-match": {
 "vtn-ether-match": {
 "vlan-id": 200,
 "source-address": "6a:ff:e2:81:86:bb",
 "destination-address": "26:9f:82:70:ec:66"
 }
 },
 "virtual-route": [
 {
 "reason": "VLANMAPPED",
 "virtual-node-path": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "order": 0
 },
 {
 "reason": "FORWARDED",
 "virtual-node-path": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "order": 1
 }
],
 "flow-id": 16
 },
 {
 "averaged-data-flow-stats": {
 "packet-count": 1.1998800119988002,
 "start-time": 1455241209151,
 "end-time": 1455241219152,
 "byte-count": 117.58824117588242
 },
 "physical-route": [
 {
 "physical-ingress-port": {
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "physical-egress-port": {
 "port-name": "s1-eth2",
 "port-id": "2"
 },
 "node": "openflow:1",
 "order": 0
 },
 {
 "physical-ingress-port": {
 "port-name": "s2-eth1",
 "port-id": "1"
 },
 "physical-egress-port": {
 "port-name": "s2-eth3",
 "port-id": "3"
 },
 "node": "openflow:2",
 "order": 1
 }
],
 "data-egress-node": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "hard-timeout": 0,
 "idle-timeout": 300,
 "data-flow-stats": {
 "duration": {
 "nanosecond": 587000000,
 "second": 362
 },
 "packet-count": 134,
 "byte-count": 12932
 },
 "data-egress-port": {
 "node": "openflow:2",
 "port-name": "s2-eth3",
 "port-id": "3"
 },
 "data-ingress-node": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-ingress-port": {
 "node": "openflow:1",
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "creation-time": 1455240855747,
 "data-flow-match": {
 "vtn-ether-match": {
 "vlan-id": 200,
 "source-address": "26:9f:82:70:ec:66",
 "destination-address": "6a:ff:e2:81:86:bb"
 }
 },
 "virtual-route": [
 {
 "reason": "VLANMAPPED",
 "virtual-node-path": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "order": 0
 },
 {
 "reason": "FORWARDED",
 "virtual-node-path": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "order": 1
 }
],
 "flow-id": 15
 }
]
 }
}

How To Create Mac Map In VTN

Overview

	This page demonstrates Mac Mapping. This demonstration aims at
enabling communication between two hosts and denying communication of
particular host by associating a Vbridge to the hosts and configuring
Mac Mapping (mac address) to the Vbridge.

	This page targets Boron release, so the procedure described here
does not work in other releases.

[image: Single Controller Mapping]
Single Controller Mapping

Requirement

Configure mininet and create a topology

	Script for emulating network with multiple
hosts [https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_Multiple_Hosts_for_Service_Function_Chain].

	Before executing the mininet script, please confirm Controller is up
and running.

	Run the mininet script.

	Replace <path> and <Controller IP> based on your environment.

sudo mn --controller=remote,ip=<Controller IP> --custom <path>\topo_handson.py --topo mytopo2

mininet> net
h11 h11-eth0:s1-eth1
h12 h12-eth0:s1-eth2
h21 h21-eth0:s2-eth1
h22 h22-eth0:s2-eth2
h23 h23-eth0:s2-eth3
srvc1 srvc1-eth0:s3-eth3 srvc1-eth1:s4-eth3
srvc2 srvc2-eth0:s3-eth4 srvc2-eth1:s4-eth4
s1 lo: s1-eth1:h11-eth0 s1-eth2:h12-eth0 s1-eth3:s2-eth4 s1-eth4:s3-eth2
s2 lo: s2-eth1:h21-eth0 s2-eth2:h22-eth0 s2-eth3:h23-eth0 s2-eth4:s1-eth3 s2-eth5:s4-eth1
s3 lo: s3-eth1:s4-eth2 s3-eth2:s1-eth4 s3-eth3:srvc1-eth0 s3-eth4:srvc2-eth0
s4 lo: s4-eth1:s2-eth5 s4-eth2:s3-eth1 s4-eth3:srvc1-eth1 s4-eth4:srvc2-eth1

Configuration

To create Mac Map in VTN, execute REST API provided by VTN Manager as
follows. It uses curl command to call REST API.

	Create a virtual tenant named Tenant1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"Tenant1"}}'

	Create a virtual bridge named vBridge1 in the tenant Tenant1 by
executing the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"Tenant1","bridge-name":"vBridge1"}}'

	Configuring Mac Mappings on the vBridge1 by giving the mac address of
host h12 and host h22 as follows to allow the communication by
executing the set-mac-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-mac-map.html#set-mac-map].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-mac-map:set-mac-map -d '{"input":{"operation":"SET","allowed-hosts":["de:05:40:c4:96:76@0","62:c5:33:bc:d7:4e@0"],"tenant-name":"Tenant1","bridge-name":"vBridge1"}}'

Note

Mac Address of host h12 and host h22 can be obtained with the
following command in mininet.

mininet> h12 ifconfig
h12-eth0 Link encap:Ethernet HWaddr 62:c5:33:bc:d7:4e
inet addr:10.0.0.2 Bcast:10.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::60c5:33ff:febc:d74e/64 Scope:Link

mininet> h22 ifconfig
h22-eth0 Link encap:Ethernet HWaddr de:05:40:c4:96:76
inet addr:10.0.0.4 Bcast:10.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::dc05:40ff:fec4:9676/64 Scope:Link

	MAC Mapping will not be activated just by configuring it, a two end
communication needs to be established to activate Mac Mapping.

	Ping host h22 from host h12 in mininet, the ping will not happen
between the hosts as only one way activation is enabled.

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
From 10.0.0.2 icmp_seq=1 Destination Host Unreachable
From 10.0.0.2 icmp_seq=2 Destination Host Unreachable

	Ping host h12 from host h22 in mininet, now the ping communication
will take place as the two end communication is enabled.

mininet> h22 ping h12
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=91.8 ms
64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=0.510 ms

	After two end communication enabled, now host h12 can ping host h22

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_req=1 ttl=64 time=0.780 ms
64 bytes from 10.0.0.4: icmp_req=2 ttl=64 time=0.079 ms

Verification

	To view the configured Mac Map of allowed host execute the following
command.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns/vtn/Tenant1/vbridge/vBridge1/mac-map

{
 "mac-map": {
 "mac-map-status": {
 "mapped-host": [
 {
 "mac-address": "c6:44:22:ba:3e:72",
 "vlan-id": 0,
 "port-id": "openflow:1:2"
 },
 {
 "mac-address": "f6:e0:43:b6:3a:b7",
 "vlan-id": 0,
 "port-id": "openflow:2:2"
 }
]
 },
 "mac-map-config": {
 "allowed-hosts": {
 "vlan-host-desc-list": [
 {
 "host": "c6:44:22:ba:3e:72@0"
 },
 {
 "host": "f6:e0:43:b6:3a:b7@0"
 }
]
 }
 }
 }
}

Note

When Deny is configured a broadcast message is sent to all the hosts
connected to the vBridge, so a two end communication need not be
establihed like allow, the hosts can communicate directly without
any two way communication enabled.

	To Deny host h23 communication from hosts connected on vBridge1, the
following configuration can be applied.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-mac-map:set-mac-map -d '{"input":{"operation": "SET", "denied-hosts": ["0a:d3:ea:3d:8f:a5@0"],"tenant-name": "Tenant1","bridge-name": "vBridge1"}}'

Cleaning Up

	You can delete the virtual tenant Tenant1 by executing the
remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"Tenant1"}}'

How To Configure Flowfilters

Overview

	This page explains how to provision flowfilter using VTN Manager.
This page targets Boron release, so the procedure described here
does not work in other releases.

	The flow-filter function discards, permits, or redirects packets of
the traffic within a VTN, according to specified flow conditions. The
table below lists the actions to be applied when a packet matches the
condition:

	Action

	Function

	Pass

	
Permits the packet to pass along the determined
path.

As options, packet transfer priority (set
priority) and DSCP change (set ip-dscp) is
specified.

	Drop

	Discards the packet.

	Redirect

	
Redirects the packet to a desired virtual
interface.

As an option, it is possible to change the MAC
address when the packet is transferred.

[image: Flow Filter Example]
Flow Filter Example

	Following steps explain flow-filter function:

	when a packet is transferred to an interface within a virtual
network, the flow-filter function evaluates whether the
transferred packet matches the condition specifed in the
flow-list.

	If the packet matches the condition, the flow-filter applies the
flow-list matching action specified in the flow-filter.

Requirements

To apply the packet filter, configure the following:

	Create a flow condition.

	Specify where to apply the flow-filter, for example VTN, vBridge, or
interface of vBridge.

To provision OpenFlow switches, this page uses Mininet. Mininet details
and set-up can be referred at the below page:
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

Start Mininet, and create three switches (s1, s2, and s3) and four hosts
(h1, h2, h3 and h4) in it.

sudo mn --controller=remote,ip=192.168.0.100 --topo tree,2

Note

Replace “192.168.0.100” with the IP address of OpenDaylight
controller based on your environment.

You can check the topology that you have created by executing “net”
command in the Mininet console.

mininet> net
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2

In this guide, you will provision flowfilters to establish communication
between h1 and h3.

Configuration

To provision the virtual L2 network for the two hosts (h1 and h3),
execute REST API provided by VTN Manager as follows. It uses curl
command to call the REST API.

	Create a virtual tenant named vtn1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	Create a virtual bridge named vbr1 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1"}}'

	Create two interfaces into the virtual bridge by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2"}}'

	Configure two mappings on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].

	The interface if1 of the virtual bridge will be mapped to the port
“s2-eth1” of the switch “openflow:2” of the Mininet.

	The h1 is connected to the port “s2-eth1”.

	The interface if2 of the virtual bridge will be mapped to the port
“s3-eth1” of the switch “openflow:3” of the Mininet.

	The h3 is connected to the port “s3-eth1”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1", "node":"openflow:2", "port-name":"s2-eth1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2", "node":"openflow:3", "port-name":"s3-eth1"}}'

	Create flowcondition named cond_1 by executing the
set-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition].

	For option source and destination-network, get inet address of
host h1 and h3 from mininet.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"name":"cond_1", "vtn-flow-match":[{"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.1/32","protocol":1,"destination-network":"10.0.0.3/32"},"index":"1"}]}}'

	Flowfilter can be applied either in VTN, VBR or VBR Interfaces. Here
in this page we provision flowfilter with VBR Interface and
demonstrate with action type drop and then pass.

	Flow filter demonstration with DROP action-type. Create Flowfilter in
VBR Interface if1 by executing the set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input": {"tenant-name": "vtn1", "bridge-name": "vbr1","interface-name":"if1","vtn-flow-filter":[{"condition":"cond_1","vtn-drop-filter":{},"vtn-flow-action":[{"order": "1","vtn-set-inet-src-action":{"ipv4-address":"10.0.0.1/32"}},{"order": "2","vtn-set-inet-dst-action":{"ipv4-address":"10.0.0.3/32"}}],"index": "1"}]}}'

Verification of the drop filter

	Please execute ping from h1 to h3. As we have applied the action type
“drop” , ping should fail with no packet flows between hosts h1 and
h3 as below,

mininet> h1 ping h3

Configuration for pass filter

	Update the flow filter to pass the packets by executing the
set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input": {"tenant-name": "vtn1", "bridge-name": "vbr1","interface-name":"if1","vtn-flow-filter":[{"condition":"cond_1","vtn-pass-filter":{},"vtn-flow-action":[{"order": "1","vtn-set-inet-src-action":{"ipv4-address":"10.0.0.1/32"}},{"order": "2","vtn-set-inet-dst-action":{"ipv4-address":"10.0.0.3/32"}}],"index": "1"}]}}'

Verification For Packets Success

	As we have applied action type PASS now ping should happen between
hosts h1 and h3.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

	You can also verify the configurations by executing the following
REST API. It shows all configuration in VTN Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns/vtn/vtn1

{
 "vtn": [
 {
 "name": "vtn1",
 "vtenant-config": {
 "hard-timeout": 0,
 "idle-timeout": 300,
 "description": "creating vtn"
 },
 "vbridge": [
 {
 "name": "vbr1",
 "vbridge-config": {
 "age-interval": 600,
 "description": "creating vBridge1"
 },
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "if1",
 "vinterface-status": {
 "mapped-port": "openflow:2:1",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:2",
 "port-name": "s2-eth1"
 },
 "vinterface-config": {
 "description": "Creating if1 interface",
 "enabled": true
 },
 "vinterface-input-filter": {
 "vtn-flow-filter": [
 {
 "index": 1,
 "condition": "cond_1",
 "vtn-flow-action": [
 {
 "order": 1,
 "vtn-set-inet-src-action": {
 "ipv4-address": "10.0.0.1/32"
 }
 },
 {
 "order": 2,
 "vtn-set-inet-dst-action": {
 "ipv4-address": "10.0.0.3/32"
 }
 }
],
 "vtn-pass-filter": {}
 },
 {
 "index": 10,
 "condition": "cond_1",
 "vtn-drop-filter": {}
 }
]
 }
 },
 {
 "name": "if2",
 "vinterface-status": {
 "mapped-port": "openflow:3:1",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:3",
 "port-name": "s3-eth1"
 },
 "vinterface-config": {
 "description": "Creating if2 interface",
 "enabled": true
 }
 }
]
 }
]
 }
]
}

Cleaning Up

	To clean up both VTN and flowcondition.

	You can delete the virtual tenant vtn1 by executing the remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	You can delete the flowcondition cond_1 by executing the
remove-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#remove-flow-condition].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{"input":{"name":"cond_1"}}'

How to use VTN to change the path of the packet flow

Overview

	This page explains how to create specific VTN Pathmap using VTN
Manager. This page targets Boron release, so the procedure
described here does not work in other releases.

[image: Pathmap]
Pathmap

Requirement

	Save the mininet script given below as pathmap_test.py and run the
mininet script in the mininet environment where Mininet is installed.

	Create topology using the below mininet script:

from mininet.topo import Topo
class MyTopo(Topo):
 "Simple topology example."
 def __init__(self):
 "Create custom topo."
 # Initialize topology
 Topo.__init__(self)
 # Add hosts and switches
 leftHost = self.addHost('h1')
 rightHost = self.addHost('h2')
 leftSwitch = self.addSwitch('s1')
 middleSwitch = self.addSwitch('s2')
 middleSwitch2 = self.addSwitch('s4')
 rightSwitch = self.addSwitch('s3')
 # Add links
 self.addLink(leftHost, leftSwitch)
 self.addLink(leftSwitch, middleSwitch)
 self.addLink(leftSwitch, middleSwitch2)
 self.addLink(middleSwitch, rightSwitch)
 self.addLink(middleSwitch2, rightSwitch)
 self.addLink(rightSwitch, rightHost)
topos = { 'mytopo': (lambda: MyTopo()) }

	After creating new file with the above script start the mininet as
below,

sudo mn --controller=remote,ip=10.106.138.124 --custom pathmap_test.py --topo mytopo

Note

Replace “10.106.138.124” with the IP address of OpenDaylight
controller based on your environment.

mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s3-eth3
s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1 s1-eth3:s4-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:s3-eth1
s3 lo: s3-eth1:s2-eth2 s3-eth2:s4-eth2 s3-eth3:h2-eth0
s4 lo: s4-eth1:s1-eth3 s4-eth2:s3-eth2
c0

	Generate traffic by pinging between host h1 and host h2 before
creating the portmaps respectively.

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable
From 10.0.0.1 icmp_seq=3 Destination Host Unreachable
From 10.0.0.1 icmp_seq=4 Destination Host Unreachable

Configuration

	To change the path of the packet flow, execute REST API provided by
VTN Manager as follows. It uses curl command to call the REST API.

	Create a virtual tenant named vtn1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	Create a virtual bridge named vbr1 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1"}}'

	Create two interfaces into the virtual bridge by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2"}}'

	Configure two mappings on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].

	The interface if1 of the virtual bridge will be mapped to the port
“s2-eth1” of the switch “openflow:1” of the Mininet.

	The h1 is connected to the port “s1-eth1”.

	The interface if2 of the virtual bridge will be mapped to the port
“s3-eth1” of the switch “openflow:3” of the Mininet.

	The h3 is connected to the port “s3-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1", "node":"openflow:1", "port-name":"s1-eth1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2", "node":"openflow:3", "port-name":"s3-eth3"}}'

	Genarate traffic by pinging between host h1 and host h2 after
creating the portmaps respectively.

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.861 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.101 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.101 ms

	Get the Dataflows information by executing the get-data-flow
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow.html#get-data-flow].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow:get-data-flow -d '{"input":{"tenant-name":"vtn1","mode":"DETAIL","node":"openflow:1","data-flow-port":{"port-id":1,"port-name":"s1-eth1"}}}'

	Create flowcondition named cond_1 by executing the
set-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition].

	For option source and destination-network, get inet address of
host h1 or host h2 from mininet

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"operation":"SET","present":"false","name":"cond_1", "vtn-flow-match":[{"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.1/32","protocol":1,"destination-network":"10.0.0.2/32"},"index":"1"}]}}'

	Create pathmap with flowcondition cond_1 by executing the
set-path-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-path-map.html#set-path-map].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-path-map:set-path-map -d '{"input":{"tenant-name":"vtn1","path-map-list":[{"condition":"cond_1","policy":"1","index": "1","idle-timeout":"300","hard-timeout":"0"}]}}'

	Create pathpolicy by executing the set-path-policy
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-path-policy.html#set-path-policy].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-path-policy:set-path-policy -d '{"input":{"operation":"SET","id": "1","default-cost": "10000","vtn-path-cost": [{"port-desc":"openflow:1,3,s1-eth3","cost":"1000"},{"port-desc":"openflow:4,2,s4-eth2","cost":"1000"},{"port-desc":"openflow:3,3,s3-eth3","cost":"100000"}]}}'

Verification

	Before applying Path policy get node information by executing get
dataflow command.

"data-flow-info": [
{
 "physical-route": [
 {
 "physical-ingress-port": {
 "port-name": "s3-eth3",
 "port-id": "3"
 },
 "physical-egress-port": {
 "port-name": "s3-eth1",
 "port-id": "1"
 },
 "node": "openflow:3",
 "order": 0
 },
 {
 "physical-ingress-port": {
 "port-name": "s2-eth2",
 "port-id": "2"
 },
 "physical-egress-port": {
 "port-name": "s2-eth1",
 "port-id": "1"
 },
 "node": "openflow:2",
 "order": 1
 },
 {
 "physical-ingress-port": {
 "port-name": "s1-eth2",
 "port-id": "2"
 },
 "physical-egress-port": {
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "node": "openflow:1",
 "order": 2
 }
],
 "data-egress-node": {
 "interface-name": "if1",
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-egress-port": {
 "node": "openflow:1",
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "data-ingress-node": {
 "interface-name": "if2",
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-ingress-port": {
 "node": "openflow:3",
 "port-name": "s3-eth3",
 "port-id": "3"
 },
 "flow-id": 32
 },
}

	After applying Path policy get node information by executing get
dataflow command.

"data-flow-info": [
{
 "physical-route": [
 {
 "physical-ingress-port": {
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "physical-egress-port": {
 "port-name": "s1-eth3",
 "port-id": "3"
 },
 "node": "openflow:1",
 "order": 0
 },
 {
 "physical-ingress-port": {
 "port-name": "s4-eth1",
 "port-id": "1"
 },
 "physical-egress-port": {
 "port-name": "s4-eth2",
 "port-id": "2"
 },
 "node": "openflow:4",
 "order": 1
 },
 {
 "physical-ingress-port": {
 "port-name": "s3-eth2",
 "port-id": "2"
 },
 "physical-egress-port": {
 "port-name": "s3-eth3",
 "port-id": "3"
 },
 "node": "openflow:3",
 "order": 2
 }
],
 "data-egress-node": {
 "interface-name": "if2",
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-egress-port": {
 "node": "openflow:3",
 "port-name": "s3-eth3",
 "port-id": "3"
 },
 "data-ingress-node": {
 "interface-name": "if1",
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-ingress-port": {
 "node": "openflow:1",
 "port-name": "s1-eth1",
 "port-id": "1"
 },
}

Cleaning Up

	To clean up both VTN and flowcondition.

	You can delete the virtual tenant vtn1 by executing the remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	You can delete the flowcondition cond_1 by executing the
remove-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#remove-flow-condition].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{"input":{"name":"cond_1"}}'

VTN Coordinator Usage Examples

How to configure L2 Network with Single Controller

Overview

This example provides the procedure to demonstrate configuration of VTN
Coordinator with L2 network using VTN Virtualization(single controller).
Here is the Example for vBridge Interface Mapping with Single Controller
using mininet. mininet details and set-up can be referred at below URL:
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

[image: EXAMPLE DEMONSTRATING SINGLE CONTROLLER]
EXAMPLE DEMONSTRATING SINGLE CONTROLLER

Requirements

	Configure mininet and create a topology:

mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo tree,2

	mininet> net

s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0
h1 h1-eth0:s1-eth1
h2 h2-eth0:s2-eth2

Configuration

	Create a Controller named controllerone and mention its ip-address in
the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "controllerone", "ipaddr":"10.0.0.2", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers.json

	Create a VTN named vtn1 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create a vBridge named vBridge1 in the vtn1 by executing the
create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"controllerone","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

	Create two Interfaces named if1 and if2 into the vBridge1

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

	Get the list of logical ports configured

Curl --user admin:adminpass -H 'content-type: application/json' -X GET http://127.0.0.1:8083/vtn-webapi/controllers/controllerone/domains/\(DEFAULT\)/logical_ports.json

	Configure two mappings on each of the interfaces by executing the
below command.

The interface if1 of the virtual bridge will be mapped to the port
“s2-eth1” of the switch “openflow:2” of the Mininet. The h1 is connected
to the port “s2-eth1”.

The interface if2 of the virtual bridge will be mapped to the port
“s3-eth1” of the switch “openflow:3” of the Mininet. The h3 is connected
to the port “s3-eth1”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/portmap.json
curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/portmap.json

Verification

Please verify whether the Host1 and Host3 are pinging.

	Send packets from Host1 to Host3

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.780 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.079 ms

How to configure L2 Network with Multiple Controllers

	This example provides the procedure to demonstrate configuration of
VTN Coordinator with L2 network using VTN Virtualization Here is the
Example for vBridge Interface Mapping with Multi-controller using
mininet.

[image: EXAMPLE DEMONSTRATING MULTIPLE CONTROLLERS]
EXAMPLE DEMONSTRATING MULTIPLE CONTROLLERS

Requirements

	Configure multiple controllers using the mininet script given below:
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_multiple_switches_and_OpenFlow_controllers

Configuration

	Create a VTN named vtn3 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {"vtn_name":"vtn3"}}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create two Controllers named odc1 and odc2 with its ip-address in the
below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "odc1", "ipaddr":"10.100.9.52", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "odc2", "ipaddr":"10.100.9.61", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers.json

	Create two vBridges in the VTN like, vBridge1 in Controller1 and
vBridge2 in Controller2

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vbr1","controller_id":"odc1","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vbr2","controller_id":"odc2","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges.json

	Create two Interfaces if1, if2 for the two vBridges vbr1 and vbr2.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr2/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr2/interfaces.json

	Get the list of logical ports configured

curl --user admin:adminpass -H 'content-type: application/json' -X GET http://127.0.0.1:8083/vtn-webapi/controllers/odc1/domains/\(DEFAULT\)/logical_ports/detail.json

	Create boundary and vLink for the two controllers

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"boundary": {"boundary_id": "b1", "link": {"controller1_id": "odc1", "domain1_id": "(DEFAULT)", "logical_port1_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth3", "controller2_id": "odc2", "domain2_id": "(DEFAULT)", "logical_port2_id": "PP-OF:00:00:00:00:00:00:00:04-s4-eth3"}}}' http://127.0.0.1:8083/vtn-webapi/boundaries.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vlink": {"vlk_name": "vlink1" , "vnode1_name": "vbr1", "if1_name":"if2", "vnode2_name": "vbr2", "if2_name": "if2", "boundary_map": {"boundary_id":"b1","vlan_id": "50"}}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vlinks.json

	Configure two mappings on each of the interfaces by executing the
below command.

The interface if1 of the vbr1 will be mapped to the port “s2-eth2” of
the switch “openflow:2” of the Mininet. The h2 is connected to the port
“s2-eth2”.

The interface if2 of the vbr2 will be mapped to the port “s5-eth2” of
the switch “openflow:5” of the Mininet. The h6 is connected to the port
“s5-eth2”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr1/interfaces/if1/portmap.json

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:05-s5-eth2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr2/interfaces/if1/portmap.json

Verification

Please verify whether Host h2 and Host h6 are pinging.

	Send packets from h2 to h6

mininet> h2 ping h6

PING 10.0.0.6 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.6: icmp_req=1 ttl=64 time=0.780 ms
64 bytes from 10.0.0.6: icmp_req=2 ttl=64 time=0.079 ms

How To Test Vlan-Map In Mininet Environment

Overview

This example explains how to test vlan-map in a multi host scenario.

[image: Example that demonstrates vlanmap testing in Mininet Environment]
Example that demonstrates vlanmap testing in Mininet Environment

Requirements

	Save the mininet script given below as vlan_vtn_test.py and run the
mininet script in the mininet environment where Mininet is installed.

Mininet Script

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_hosts_in_different_vlan

	Run the mininet script

sudo mn --controller=remote,ip=192.168.64.13 --custom vlan_vtn_test.py --topo mytopo

Configuration

Please follow the below steps to test a vlan map using mininet:

	Create a Controller named controllerone and mention its ip-address in
the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "controllerone", "ipaddr":"10.0.0.2", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers

	Create a VTN named vtn1 by executing the create-vtn command

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' -d '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create a vBridge named vBridge1 in the vtn1 by executing the
create-vbr command.

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"controllerone","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

	Create a vlan map with vlanid 200 for vBridge vBridge1

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' -d '{"vlanmap" : {"vlan_id": 200 }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/vlanmaps.json

	Create a vBridge named vBridge2 in the vtn1 by executing the
create-vbr command.

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' -d '{"vbridge" : {"vbr_name":"vBridge2","controller_id":"controllerone","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

	Create a vlan map with vlanid 300 for vBridge vBridge2

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' -d '{"vlanmap" : {"vlan_id": 300 }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge2/vlanmaps.json

Verification

Ping all in mininet environment to view the host reachability.

mininet> pingall
Ping: testing ping reachability
h1 -> X h3 X h5 X
h2 -> X X h4 X h6
h3 -> h1 X X h5 X
h4 -> X h2 X X h6
h5 -> h1 X h3 X X
h6 -> X h2 X h4 X

How To View Specific VTN Station Information.

This example demonstrates on how to view a specific VTN Station
information.

[image: EXAMPLE DEMONSTRATING VTN STATIONS]
EXAMPLE DEMONSTRATING VTN STATIONS

Requirement

	Configure mininet and create a topology:

 $ sudo mn --custom /home/mininet/mininet/custom/topo-2sw-2host.py --controller=remote,ip=10.100.9.61 --topo mytopo
mininet> net

 s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1
 s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0
 h1 h1-eth0:s1-eth1
 h2 h2-eth0:s2-eth2

	Generate traffic by pinging between hosts h1 and h2 after configuring
the portmaps respectively

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=16.7 ms
64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=13.2 ms

Configuration

	Create a Controller named controllerone and mention its ip-address in
the below create-controller command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "controllerone", "ipaddr":"10.100.9.61", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers.json

	Create a VTN named vtn1 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create a vBridge named vBridge1 in the vtn1 by executing the
create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"controllerone","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

	Create two Interfaces named if1 and if2 into the vBridge1

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

	Configure two mappings on each of the interfaces by executing the
below command.

The interface if1 of the virtual bridge will be mapped to the port
“s1-eth1” of the switch “openflow:1” of the Mininet. The h1 is connected
to the port “s1-eth1”.

The interface if2 of the virtual bridge will be mapped to the port
“s1-eth2” of the switch “openflow:1” of the Mininet. The h2 is connected
to the port “s1-eth2”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/portmap.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth2"}}' http://17.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/portmap.json

	Get the VTN stations information

curl -X GET -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' "http://127.0.0.1:8083/vtn-webapi/vtnstations?controller_id=controllerone&vtn_name=vtn1"

Verification

curl -X GET -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' "http://127.0.0.1:8083/vtn-webapi/vtnstations?controller_id=controllerone&vtn_name=vtn1"
{
 "vtnstations": [
 {
 "domain_id": "(DEFAULT)",
 "interface": {},
 "ipaddrs": [
 "10.0.0.2"
],
 "macaddr": "b2c3.06b8.2dac",
 "no_vlan_id": "true",
 "port_name": "s2-eth2",
 "station_id": "178195618445172",
 "switch_id": "00:00:00:00:00:00:00:02",
 "vnode_name": "vBridge1",
 "vnode_type": "vbridge",
 "vtn_name": "vtn1"
 },
 {
 "domain_id": "(DEFAULT)",
 "interface": {},
 "ipaddrs": [
 "10.0.0.1"
],
 "macaddr": "ce82.1b08.90cf",
 "no_vlan_id": "true",
 "port_name": "s1-eth1",
 "station_id": "206130278144207",
 "switch_id": "00:00:00:00:00:00:00:01",
 "vnode_name": "vBridge1",
 "vnode_type": "vbridge",
 "vtn_name": "vtn1"
 }
]
}

How To View Dataflows in VTN

This example demonstrates on how to view a specific VTN Dataflow
information.

Configuration

The same Configuration as Vlan Mapping
Example(https://wiki.opendaylight.org/view/VTN:Coordinator:Beryllium:HowTos:How_To_test_vlanmap_using_mininet)

Verification

Get the VTN Dataflows information

curl -X GET -H 'content-type: application/json' --user 'admin:adminpass' "http://127.0.0.1:8083/vtn-webapi/dataflows?controller_id=controllerone&srcmacaddr=924c.e4a3.a743&vlan_id=300&switch_id=openflow:2&port_name=s2-eth1"

{
 "dataflows": [
 {
 "controller_dataflows": [
 {
 "controller_id": "controllerone",
 "controller_type": "odc",
 "egress_domain_id": "(DEFAULT)",
 "egress_port_name": "s3-eth3",
 "egress_station_id": "3",
 "egress_switch_id": "00:00:00:00:00:00:00:03",
 "flow_id": "29",
 "ingress_domain_id": "(DEFAULT)",
 "ingress_port_name": "s2-eth2",
 "ingress_station_id": "2",
 "ingress_switch_id": "00:00:00:00:00:00:00:02",
 "match": {
 "macdstaddr": [
 "4298.0959.0e0b"
],
 "macsrcaddr": [
 "924c.e4a3.a743"
],
 "vlan_id": [
 "300"
]
 },
 "pathinfos": [
 {
 "in_port_name": "s2-eth2",
 "out_port_name": "s2-eth1",
 "switch_id": "00:00:00:00:00:00:00:02"
 },
 {
 "in_port_name": "s1-eth2",
 "out_port_name": "s1-eth3",
 "switch_id": "00:00:00:00:00:00:00:01"
 },
 {
 "in_port_name": "s3-eth1",
 "out_port_name": "s3-eth3",
 "switch_id": "00:00:00:00:00:00:00:03"
 }
]
 }
],
 "reason": "success"
 }
]
}

How To Configure Flow Filters Using VTN

Overview

The flow-filter function discards, permits, or redirects packets of the
traffic within a VTN, according to specified flow conditions The table
below lists the actions to be applied when a packet matches the
condition:

	Action

	Function

	Pass

	Permits the packet to pass. As
options, packet transfer priority
(set priority) and DSCP change (se t
ip-dscp) is specified.

	Drop

	Discards the packet.

	Redirect

	Redirects the packet to a desired
virtual interface. As an option, it
is possible to change the MAC
address when the packet is
transferred.

[image: Flow Filter]
Flow Filter

Following steps explain flow-filter function:

	When a packet is transferred to an interface within a virtual
network, the flow-filter function evaluates whether the transferred
packet matches the condition specified in the flow-list.

	If the packet matches the condition, the flow-filter applies the
flow-list matching action specified in the flow-filter.

Requirements

To apply the packet filter, configure the following:

	Create a flow-list and flow-listentry.

	Specify where to apply the flow-filter, for example VTN, vBridge, or
interface of vBridge.

Configure mininet and create a topology:

$ mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo tree

Please generate the following topology

$ mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo tree,2
mininet> net
c0
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2

Configuration

	Create a Controller named controller1 and mention its ip-address in
the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "controller1", "ipaddr":"10.100.9.61", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers

	Create a VTN named vtn_one by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {"vtn_name":"vtn_one","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create a vBridge named vbr_two in the vtn1 by executing the
create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vbr_one^C"controller_id":"controller1","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" :
{"vbr_name":"vbr_two","controller_id":"controller1","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges.json

	Create two Interfaces named if1 and if2 into the vbr_two

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces.json

	Get the list of logical ports configured

curl --user admin:adminpass -H 'content-type: application/json' -X GET http://127.0.0.1:8083/vtn-webapi/controllers/controllerone/domains/\(DEFAULT\)/logical_ports.json

	Configure two mappings on each of the interfaces by executing the
below command.

The interface if1 of the virtual bridge will be mapped to the port
“s2-eth1” of the switch “openflow:2” of the Mininet. The h1 is connected
to the port “s2-eth1”.

The interface if2 of the virtual bridge will be mapped to the port
“s3-eth1” of the switch “openflow:3” of the Mininet. The h3 is connected
to the port “s3-eth1”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/portmap.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if2/portmap.json

	Create Flowlist

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"flowlist": {"fl_name": "flowlist1", "ip_version":"IP"}}' http://127.0.0.1:8083/vtn-webapi/flowlists.json

	Create Flowlistentry

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"flowlistentry": {"seqnum": "233","macethertype": "0x8000","ipdstaddr": "10.0.0.3","ipdstaddrprefix": "2","ipsrcaddr": "10.0.0.2","ipsrcaddrprefix": "2","ipproto": "17","ipdscp": "55","icmptypenum":"232","icmpcodenum": "232"}}' http://127.0.0.1:8083/vtn-webapi/flowlists/flowlist1/flowlistentries.json

	Create vBridge Interface Flowfilter

curl --user admin:adminpass -X POST -H 'content-type: application/json' -d '{"flowfilter" : {"ff_type": "in"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/flowfilters.json

Flow filter demonstration with DROP action-type

curl --user admin:adminpass -X POST -H 'content-type: application/json' -d '{"flowfilterentry": {"seqnum": "233", "fl_name": "flowlist1", "action_type":"drop", "priority":"3", "dscp":"55" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/flowfilters/in/flowfilterentries.json

Verification

As we have applied the action type “drop” , ping should fail.

mininet> h1 ping h3
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable

Flow filter demonstration with PASS action-type

curl --user admin:adminpass -X PUT -H 'content-type: application/json' -d '{"flowfilterentry": {"seqnum": "233", "fl_name": "flowlist1", "action_type":"pass", "priority":"3", "dscp":"55" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/flowfilters/in/flowfilterentries/233.json

Verification

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

How To Use VTN To Make Packets Take Different Paths

This example demonstrates on how to create a specific VTN Path Map
information.

[image: PathMap]
PathMap

Requirement

	Save the mininet script given below as pathmap_test.py and run the
mininet script in the mininet environment where Mininet is installed.

	Create topology using the below mininet script:

from mininet.topo import Topo
class MyTopo(Topo):
 "Simple topology example."
 def __init__(self):
 "Create custom topo."
 # Initialize topology
 Topo.__init__(self)
 # Add hosts and switches
 leftHost = self.addHost('h1')
 rightHost = self.addHost('h2')
 leftSwitch = self.addSwitch('s1')
 middleSwitch = self.addSwitch('s2')
 middleSwitch2 = self.addSwitch('s4')
 rightSwitch = self.addSwitch('s3')
 # Add links
 self.addLink(leftHost, leftSwitch)
 self.addLink(leftSwitch, middleSwitch)
 self.addLink(leftSwitch, middleSwitch2)
 self.addLink(middleSwitch, rightSwitch)
 self.addLink(middleSwitch2, rightSwitch)
 self.addLink(rightSwitch, rightHost)
topos = { 'mytopo': (lambda: MyTopo()) }

mininet> net
c0
s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1 s1-eth3:s4-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:s3-eth1
s3 lo: s3-eth1:s2-eth2 s3-eth2:s4-eth2 s3-eth3:h2-eth0
s4 lo: s4-eth1:s1-eth3 s4-eth2:s3-eth2
h1 h1-eth0:s1-eth1
h2 h2-eth0:s3-eth3

	Generate traffic by pinging between hosts h1 and h2 before creating
the portmaps respectively

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable
From 10.0.0.1 icmp_seq=3 Destination Host Unreachable
From 10.0.0.1 icmp_seq=4 Destination Host Unreachable

Configuration

	Create a Controller named controller1 and mention its ip-address in
the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "odc", "ipaddr":"10.100.9.42", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers.json

	Create a VTN named vtn1 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create a vBridge named vBridge1 in the vtn1 by executing the
create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"odc","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

	Create two Interfaces named if1 and if2 into the vBridge1

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json
curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

	Configure two mappings on each of the interfaces by executing the
below command.

The interface if1 of the virtual bridge will be mapped to the port
“s1-eth1” of the switch “openflow:1” of the Mininet. The h1 is connected
to the port “s1-eth1”.

The interface if2 of the virtual bridge will be mapped to the port
“s3-eth3” of the switch “openflow:3” of the Mininet. The h2 is connected
to the port “s3-eth3”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/portmap.json
curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth3"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/portmap.json

	Generate traffic by pinging between hosts h1 and h2 after creating
the portmaps respectively

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=36.4 ms
64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=0.880 ms
64 bytes from 10.0.0.2: icmp_req=3 ttl=64 time=0.073 ms
64 bytes from 10.0.0.2: icmp_req=4 ttl=64 time=0.081 ms

	Get the VTN Dataflows information

curl -X GET -H 'content-type: application/json' --user 'admin:adminpass' "http://127.0.0.1:8083/vtn-webapi/dataflows?&switch_id=00:00:00:00:00:00:00:01&port_name=s1-eth1&controller_id=odc&srcmacaddr=de3d.7dec.e4d2&no_vlan_id=true"

	Create a Flowcondition in the VTN

(The flowconditions, pathmap and pathpolicy commands have to be
executed in the controller).

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"operation":"SET","present":"false","name":"cond_1", "vtn-flow-match":[{"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.1/32","protocol":1,"destination-network":"10.0.0.2/32"},"index":"1"}]}}'

	Create a Pathmap in the VTN

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-path-map:set-path-map -d '{"input":{"tenant-name":"vtn1","path-map-list":[{"condition":"cond_1","policy":"1","index": "1","idle-timeout":"300","hard-timeout":"0"}]}}'

	Get the Path policy information

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-path-policy:set-path-policy -d '{"input":{"operation":"SET","id": "1","default-cost": "10000","vtn-path-cost": [{"port-desc":"openflow:1,3,s1-eth3","cost":"1000"},{"port-desc":"openflow:4,2,s4-eth2","cost":"100000"},{"port-desc":"openflow:3,3,s3-eth3","cost":"10000"}]}}'

Verification

	Before applying Path policy information in the VTN

{
 "pathinfos": [
 {
 "in_port_name": "s1-eth1",
 "out_port_name": "s1-eth3",
 "switch_id": "openflow:1"
 },
 {
 "in_port_name": "s4-eth1",
 "out_port_name": "s4-eth2",
 "switch_id": "openflow:4"
 },
 {
 "in_port_name": "s3-eth2",
 "out_port_name": "s3-eth3",
 "switch_id": "openflow:3"
 }
]
}

	After applying Path policy information in the VTN

{
 "pathinfos": [
 {
 "in_port_name": "s1-eth1",
 "out_port_name": "s1-eth2",
 "switch_id": "openflow:1"
 },
 {
 "in_port_name": "s2-eth1",
 "out_port_name": "s2-eth2",
 "switch_id": "openflow:2"
 },
 {
 "in_port_name": "s3-eth1",
 "out_port_name": "s3-eth3",
 "switch_id": "openflow:3"
 }
]
}

VTN Coordinator(Troubleshooting HowTo)

Overview

This page demonstrates Installation troubleshooting steps of VTN
Coordinator. OpenDaylight VTN provides multi-tenant virtual network
functions on OpenDaylight controllers. OpenDaylight VTN consists of two
parts:

	VTN Coordinator.

	VTN Manager.

VTN Coordinator orchestrates multiple VTN Managers running in
OpenDaylight Controllers, and provides VTN Applications with VTN API.
VTN Manager is OSGi bundles running in OpenDaylight Controller. Current
VTN Manager supports only OpenFlow switches. It handles PACKET_IN
messages, sends PACKET_OUT messages, manages host information, and
installs flow entries into OpenFlow switches to provide VTN Coordinator
with virtual network functions. The requirements for installing these
two are different.Therefore, we recommend that you install VTN Manager
and VTN Coordinator in different machines.

List of installation Troubleshooting How to’s

	https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:VTN_Coordinator

After executing db_setup, you have encountered the error “Failed to
setup database”?

The error could be due to the below reasons

	Access Restriction

The user who owns /usr/local/vtn/ directory and installs VTN
Coordinator, can only start db_setup. Example :

The directory should appear as below (assuming the user as "vtn"):
ls -l /usr/local/
 drwxr-xr-x. 12 vtn vtn 4096 Mar 14 21:53 vtn
If the user doesnot own /usr/local/vtn/ then, please run the below command (assuming the username as vtn),
 chown -R vtn:vtn /usr/local/vtn

	Postgres not Present

1. In case of Fedora/CentOS/RHEL, please check if /usr/pgsql/<version> directory is present and also ensure the commands initdb, createdb,pg_ctl,psql are working. If, not please re-install postgres packages
2. In case of Ubuntu, check if /usr/lib/postgres/<version> directory is present and check for the commands as in the previous step.

	Not enough space to create tables

Please check df -k and ensure enough free space is available.

	If the above steps do not solve the problem, please refer to the log
file for the exact problem

/usr/local/vtn/var/dbm/unc_setup_db.log for the exact error.

	list of VTN Coordinator processes

	Run the below command ensure the Coordinator daemons are running.

 Command: /usr/local/vtn/bin/unc_dmctl status
 Name Type IPC Channel PID
----------- ----------- -------------- ------
 drvodcd DRIVER drvodcd 15972
 lgcnwd LOGICAL lgcnwd 16010
 phynwd PHYSICAL phynwd 15996

	Issue the curl command to fetch version and ensure the process is
able to respond.

How to debug a startup failure?.

The following activities take place in order during startup

	Database server is started after setting virtual memory to required
value,Any database startup errors will be reflected in any of the
below logs.

/usr/local/vtn/var/dbm/unc_db_script.log.
/usr/local/vtn/var/db/pg_log/postgresql-*.log (the pattern will have the date)

	uncd daemon is kicked off, The daemon in turn kicks off the rest of
the daemons.

Any uncd startup failures will be reflected in /usr/local/vtn/var/uncd/uncd_start.err.

After setting up the apache tomcat server, what are the aspects that should be checked.

Please check if catalina is running..

The command ps -ef | grep catalina | grep -v grep should list a catalina process

If you encounter an erroneous situation where the REST API is always
failing..

Please ensure the firewall settings for port:8181 (Beryllium release) or port:8083 (Post Beryllium release) and enable the same.

How to debug a REST API returning a failure message?.

Please check the /usr/share/java/apache-tomcat-7.0.39/logs/core/core.log
for failure details.

REST API for VTN configuration fails, how to debug?.

The default log level for all daemons is “INFO”, to debug the situation
TRACE or DEBUG logs may be needed. To increase the log level for
individual daemons, please use the commands suggested below

/usr/local/vtn/bin/lgcnw_control loglevel trace -- upll daemon log
 /usr/local/vtn/bin/phynw_control loglevel trace -- uppl daemon log
 /usr/local/vtn/bin/unc_control loglevel trace -- uncd daemon log
 /usr/local/vtn/bin/drvodc_control loglevel trace -- Driver daemon log

After setting the log levels, the operation can be repeated and the log
files can be referred for debugging.

Problems while Installing PostgreSQL due to openssl.

Errors may occur when trying to install postgreSQL rpms. Recently
PostgreSQL has upgraded all their binaries to use the latest openssl
versions with fix for http://en.wikipedia.org/wiki/Heartbleed Please
upgrade the openssl package to the latest version and re-install. For
RHEL 6.1/6.4 : If you have subscription, Please use the same and update
the rpms. The details are available in the following link
https://access.redhat.com/site/solutions/781793 ACCESS-REDHAT

rpm -Uvh http://mirrors.kernel.org/centos/6/os/x86_64/Packages/openssl-1.0.1e-15.el6.x86_64.rpm
rpm -ivh http://mirrors.kernel.org/centos/6/os/x86_64/Packages/openssl-devel-1.0.1e-15.el6.x86_64.rpm

For other linux platforms, Please do yum update, the public respositroes
will have the latest openssl, please install the same.

Support for Microsoft SCVMM 2012 R2 with ODL VTN

Introduction

System Center Virtual Machine Manager (SCVMM) is Microsoft’s virtual
machine support center for window’s based emulations. SCVMM is a
management solution for the virtualized data center. You can use it to
configure and manage your virtualization host, networking, and storage
resources in order to create and deploy virtual machines and services to
private clouds that you have created.

The VSEM Provider is a plug-in to bridge between SCVMM and OpenDaylight.

Microsoft Hyper-V is a server virtualization developed by Microsoft,
which provides virtualization services through hypervisor-based
emulations.

[image: Set-Up Diagram]
Set-Up Diagram

The topology used in this set-up is:

	A SCVMM with VSEM Provider installed and a running VTN Coordinator
and OpenDaylight with VTN Feature installed.

	PF1000 virtual switch extension has been installed in the two Hyper-V
servers as it implements the OpenFlow capability in Hyper-V.

	Three OpenFlow switches simulated using mininet and connected to
Hyper-V.

	Four VM’s hosted using SCVMM.

It is implemented as two major components:

	SCVMM

	OpenDaylight (VTN Feature)

	VTN Coordinator

VTN Coordinator

OpenDaylight VTN as Network Service provider for SCVMM where VSEM
provider is added in the Network Service which will handle all requests
from SCVMM and communicate with the VTN Coordinator. It is used to
manage the network virtualization provided by OpenDaylight.

Installing HTTPS in VTN Coordinator

	System Center Virtual Machine Manager (SCVMM) supports only https
protocol.

Apache Portable Runtime (APR) Installation Steps

	Enter the command “yum install apr” in VTN Coordinator installed
machine.

	In /usr/bin, create a soft link as “ln –s /usr/bin/apr-1-config
/usr/bin/apr-config”.

	Extract tomcat under “/usr/share/java” by using the below command
“tar -xvf apache-tomcat-8.0.27.tar.gz –C /usr/share/java”.

Note

Please go through the bleow link to download
apache-tomcat-8.0.27.tar.gz file,
https://archive.apache.org/dist/tomcat/tomcat-8/v8.0.27/bin/

	Please go to the directory “cd
/usr/share/java/apache-tomcat-8.0.27/bin and unzip tomcat-native.gz
using this command “tar -xvf tomcat-native.gz”.

	Go to the directory “cd
/usr/share/java/apache-tomcat-8.0.27/bin/tomcat-native-1.1.33-src/jni/native”.

	Enter the command “./configure –with-os-type=bin
–with-apr=/usr/bin/apr-config”.

	Enter the command “make” and “make install”.

	Apr libraries are successfully installed in “/usr/local/apr/lib”.

Enable HTTP/HTTPS in VTN Coordinator

Enter the command “firewall-cmd –zone=public –add-port=8083/tcp
–permanent” and “firewall-cmd –reload” to enable firewall settings in
server.

Create a CA’s private key and a self-signed certificate in server

	Execute the following command “openssl req -x509 -days 365
-extensions v3_ca -newkey rsa:2048 –out /etc/pki/CA/cacert.pem
–keyout /etc/pki/CA/private/cakey.pem” in a single line.

	Argument

	Description

	Country Name

	
Specify the country code.

For example, JP

	State or Province
Name

	
Specify the state or province.

For example, Tokyo

	Locality Name

	
Locality Name

For example, Chuo-Ku

	Organization Name

	Specify the company.

	Organizational Unit
Name

	Specify the department, division, or the like.

	Common Name

	Specify the host name.

	Email Address

	Specify the e-mail address.

	Execute the following commands: “touch /etc/pki/CA/index.txt” and
“echo 00 > /etc/pki/CA/serial” in server after setting your CA’s
private key.

Create a private key and a CSR for web server

	Execute the following command “openssl req -new -newkey rsa:2048 -out
csr.pem –keyout /usr/local/vtn/tomcat/conf/key.pem” in a single line.

	Enter the PEM pass phrase: Same password you have given in CA’s
private key PEM pass phrase.

	Argument

	Description

	Country Name

	
Specify the country code.

For example, JP

	State or Province
Name

	
Specify the state or province.

For example, Tokyo

	Locality Name

	
Locality Name

For example, Chuo-Ku

	Organization Name

	Specify the company.

	Organizational Unit
Name

	Specify the department, division, or the like.

	Common Name

	Specify the host name.

	Email Address

	Specify the e-mail address.

	A challenge password

	Specify the challenge password.

	An optional company
name

	Specify an optional company name.

Create a certificate for web server

	Execute the following command “openssl ca –in csr.pem –out
/usr/local/vtn/tomcat/conf/cert.pem –days 365 –batch” in a single
line.

	Enter pass phrase for /etc/pki/CA/private/cakey.pem: Same password
you have given in CA’s private key PEM pass phrase.

	Open the tomcat file using “vim /usr/local/vtn/tomcat/bin/tomcat”.

	Include the line ” TOMCAT_PROPS=”$TOMCAT_PROPS
-Djava.library.path="/usr/local/apr/lib"” ” in 131th line and
save the file.

Edit server.xml file and restart the server

	Open the server.xml file using “vim
/usr/local/vtn/tomcat/conf/server.xml” and add the below lines.

<Connector port="${vtn.port}" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
SSLCertificateFile="/usr/local/vtn/tomcat/conf/cert.pem"
SSLCertificateKeyFile="/usr/local/vtn/tomcat/conf/key.pem"
SSLPassword=same password you have given in CA's private key PEM pass phrase
connectionTimeout="20000" />

	Save the file and restart the server.

	To stop vtn use the following command.

/usr/local/vtn/bin/vtn_stop

	To start vtn use the following command.

/usr/local/vtn/bin/vtn_start

	Copy the created CA certificate from cacert.pem to cacert.crt by
using the following command,

openssl x509 –in /etc/pki/CA/cacert.pem –out cacert.crt

Checking the HTTP and HTTPS connection from client

	You can check the HTTP connection by using the following command:

curl -X GET -H 'contenttype:application/json' -H 'username:admin' -H 'password:adminpass' http://<server IP address>:8083/vtn-webapi/api_version.json

	You can check the HTTPS connection by using the following command:

curl -X GET -H 'contenttype:application/json' -H 'username:admin' -H 'password:adminpass' https://<server IP address>:8083/vtn-webapi/api_version.json --cacert /etc/pki/CA/cacert.pem

	The response should be like this for both HTTP and HTTPS:

{"api_version":{"version":"V1.4"}}

Prerequisites to create Network Service in SCVMM machine, Please follow the below steps

	Please go through the below link to download VSEM Provider zip file,
https://nexus.opendaylight.org/content/groups/public/org/opendaylight/vtn/application/vtnmanager-vsemprovider/1.2.0-Boron/vtnmanager-vsemprovider-1.2.0-Boron-bin.zip

	Unzip the vtnmanager-vsemprovider-1.2.0-Boron-bin.zip file
anywhere in your SCVMM machine.

	Stop SCVMM service from “service manager→tools→servers→select
system center virtual machine manager” and click stop.

	Go to “C:/Program Files” in your SCVMM machine. Inside
“C:/Program Files”, create a folder named as “ODLProvider”.

	Inside “C:/Program Files/ODLProvider”, create a folder named as
“Module” in your SCVMM machine.

	Inside “C:/Program Files/ODLProvider/Module”, Create two folders
named as “Odl.VSEMProvider” and “VSEMOdlUI” in your SCVMM
machine.

	Copy the “VSEMOdl.dll” file from
“ODL_SCVMM_PROVIDER/ODL_VSEM_PROVIDER” to “C:/Program
Files/ODLProvider/Module/Odl.VSEMProvider” in your SCVMM machine.

	Copy the “VSEMOdlProvider.psd1” file from
“application/vsemprovider/VSEMOdlProvider/VSEMOdlProvider.psd1”
to “C:/Program Files/ODLProvider/Module/Odl.VSEMProvider” in
your SCVMM machine.

	Copy the “VSEMOdlUI.dll” file from
“ODL_SCVMM_PROVIDER/ODL_VSEM_PROVIDER_UI” to “C:/Program
Files/ODLProvider/Module/VSEMOdlUI” in your SCVMM machine.

	Copy the “VSEMOdlUI.psd1” file from
“application/vsemprovider/VSEMOdlUI” to “C:/Program
Files/ODLProvider/Module/VSEMOdlUI” in your SCVMM machine.

	Copy the “reg_entry.reg” file from
“ODL_SCVMM_PROVIDER/Register_settings” to your SCVMM desktop
and double click the “reg_entry.reg” file to install registry
entry in your SCVMM machine.

	Download “PF1000.msi” from this link,
https://www.pf-info.com/License/en/index.php?url=index/index_non_buyer
and place into “C:/Program Files/Switch Extension Drivers” in
your SCVMM machine.

	Start SCVMM service from “service manager→tools→servers→select
system center virtual machine manager” and click start.

System Center Virtual Machine Manager (SCVMM)

It supports two major features:

	Failover Clustering

	Live Migration

Failover Clustering

A single Hyper-V can host a number of virtual machines. If the host were
to fail then all of the virtual machines that are running on it will
also fail, thereby resulting in a major outage. Failover clustering
treats individual virtual machines as clustered resources. If a host
were to fail then clustered virtual machines are able to fail over to a
different Hyper-V server where they can continue to run.

Live Migration

Live Migration is used to migrate the running virtual machines from one
Hyper-V server to another Hyper-V server without any interruptions.
Please go through the below video for more details,

	https://youtu.be/34YMOTzbNJM

SCVMM User Guide

	Please go through the below link for SCVMM user guide:
https://wiki.opendaylight.org/images/c/ca/ODL_SCVMM_USER_GUIDE_final.pdf

	Please go through the below links for more details

	OpenDaylight SCVMM VTN Integration: https://youtu.be/iRt4dxtiz94

	OpenDaylight Congestion Control with SCVMM VTN:
https://youtu.be/34YMOTzbNJM

OpenDaylight with Openstack Guide

Overview

OpenStack [https://www.openstack.org/] is a popular open source Infrastructure
as a service project, covering compute, storage and network management.
OpenStack can use OpenDaylight as its network management provider through the
Modular Layer 2 (ML2) north-bound plug-in. OpenDaylight manages the network
flows for the OpenStack compute nodes via the OVSDB south-bound plug-in. This
page describes how to set that up, and how to tell when everything is working.

Installing OpenStack

Installing OpenStack is out of scope for this document, but to get started, it
is useful to have a minimal multi-node OpenStack deployment.

The reference deployment we will use for this document is a 3 node cluster:

	One control node containing all of the management services for OpenStack [https://www.openstack.org/]
(Nova, Neutron, Glance, Swift, Cinder, Keystone)

	Two compute nodes running nova-compute

	Neutron using the OVS back-end and vxlan for tunnels

Once you have installed OpenStack [https://www.openstack.org/], verify that it is working by connecting
to Horizon and performing a few operations. To check the Neutron
configuration, create two instances on a private subnet bridging to your
public network, and verify that you can connect to them, and that they can
see each other.

Installing OpenDaylight

	OpenStack with NetVirt

	OpenStack with GroupBasedPolicy

	Using Groupbasedpolicy’s Neutron VPP Mapper

	OpenStack with Virtual Tenant Network

OpenStack with NetVirt

	OpenStack with NetVirt
	Installing OpenDaylight on an existing OpenStack

	Installing OpenStack and OpenDaylight using DevStack

	Troubleshooting

	Useful Links

OpenStack with NetVirt

Table of Contents

	OpenStack with NetVirt

	Installing OpenDaylight on an existing OpenStack

	Installing OpenStack and OpenDaylight using DevStack

	Troubleshooting

	Useful Links

Prerequisites: OpenDaylight requires Java 1.8.0 and Open vSwitch >= 2.5.0

Installing OpenDaylight on an existing OpenStack

	On the control host, Download the latest OpenDaylight release [https://www.opendaylight.org/software/downloads]

	Uncompress it as root, and start OpenDaylight (you can start OpenDaylight
by running karaf directly, but exiting from the shell will shut it down):

tar xvfz distribution-karaf-0.5.1-Boron-SR1.tar.gz
cd distribution-karaf-0.5.1-Boron-SR1
./bin/start # Start OpenDaylight as a server process

	Connect to the Karaf shell, and install the odl-netvirt-openstack bundle,
dlux and their dependencies:

./bin/client # Connect to OpenDaylight with the client
opendaylight-user@root> feature:install odl-netvirt-openstack odl-dlux-core odl-mdsal-apidocs

	If everything is installed correctly, you should now be able to log in to the dlux interface on
http://CONTROL_HOST:8181/index.html - the default username and password is “admin/admin” (see screenshot below)

[image: ../../../../_images/dlux-login1.png]

Optional - Advanced OpenDaylight Installation - Configurations and Clustering

	ACL Implementation - Security Groups - Stateful:

	Default implementation used is stateful, requiring OVS compiled with conntrack modules.

	This requires using a linux kernel that is >= 4.3

	To check if OVS is running with conntrack support:

root@devstack:~/# lsmod | grep conntrack | grep openvswitch
 nf_conntrack 106496 9 xt_CT,openvswitch,nf_nat,nf_nat_ipv4,xt_conntrack,nf_conntrack_netlink,xt_connmark,nf_conntrack_ipv4,nf_conntrack_ipv6

	If the conntrack modules are not installed for OVS, either recompile/install an OVS version with conntrack support, or alternatively configure OpenDaylight to use a non-stateful implementation.

	OpenvSwitch 2.5 with conntrack support can be acquired from this repository for yum based linux distributions:

yum install -y http://rdoproject.org/repos/openstack-newton/rdo-release-newton.rpm
yum install -y --nogpgcheck openvswitch

	ACL Implementations - Alternative options:

	“learn” - semi-stateful implementation that does not require conntrack support. This is the most complete non-conntrack implementation.

	“stateless” - naive security group implementation for TCP connections only. UDP and ICMP packets are allowed by default.

	“transparent” - no security group support. all traffic is allowed, this is the recommended mode if you don’t need to use security groups at all.

	To configure one of these alternative implementations, the following needs to be done prior to running OpenDaylight:

mkdir -p <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/
export CONFFILE=\`find <ODL_FOLDER> -name "*aclservice*config.xml"\`
cp \CONFFILE <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/netvirt-aclservice-config.xml
sed -i s/stateful/<learn/transparent>/ <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/netvirt-aclservice-config.xml
cat <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/netvirt-aclservice-config.xml

	Running multiple OpenDaylight controllers in a cluster:

	For redundancy, it is possible to run OpenDaylight in a 3-node cluster.

	More info on Clustering available here [http://docs.opendaylight.org/en/latest/getting-started-guide/common-features/clustering.html].

	To configure OpenDaylight in clustered mode, run <ODL_FOLDER>/bin/configure_cluster.sh on each node prior to running OpenDaylight.
This script is used to configure cluster parameters on this controller. The user should restart controller to apply changes.

Usage: ./configure_cluster.sh <index> <seed_nodes_list>
- index: Integer within 1..N, where N is the number of seed nodes.
- seed_nodes_list: List of seed nodes, separated by comma or space.

	The address at the provided index should belong this controller.
When running this script on multiple seed nodes, keep the seed_node_list same,
and vary the index from 1 through N.

	Optionally, shards can be configured in a more granular way by modifying the file
“custom_shard_configs.txt” in the same folder as this tool.
Please see that file for more details.

Note

OpenDaylight should be restarted after applying any of the above changes via configuration files.

Ensuring OpenStack network state is clean

When using OpenDaylight as the Neutron back-end, OpenDaylight expects to be the only source of
truth for Neutron configurations. Because of this, it is necessary to remove existing OpenStack
configurations to give OpenDaylight a clean slate.

	Delete instances:

nova list
nova delete <instance names>

	Remove links from subnets to routers:

neutron subnet-list
neutron router-list
neutron router-port-list <router name>
neutron router-interface-delete <router name> <subnet ID or name>

	Delete subnets, networks, routers:

neutron subnet-delete <subnet name>
neutron net-list
neutron net-delete <net name>
neutron router-delete <router name>

	Check that all ports have been cleared - at this point, this should be an
empty list:

neutron port-list

Ensure Neutron is stopped

While Neutron is managing the OVS instances on compute and control nodes,
OpenDaylight and Neutron can be in conflict. To prevent issues, we turn off
Neutron server on the network controller, and Neutron’s Open vSwitch agents
on all hosts.

	Turn off neutron-server on control node:

systemctl stop neutron-server
systemctl stop neutron-l3-agent

	On each node in the cluster, shut down and disable Neutron’s agent services to
ensure that they do not restart after a reboot:

systemctl stop neutron-openvswitch-agent
systemctl disable
neutron-openvswitch-agent
systemctl stop neutron-l3-agent
systemctl disable neutron-l3-agent

Configuring Open vSwitch to be managed by OpenDaylight

On each host (both compute and control nodes) we will clear the pre-existing
Open vSwitch config and set OpenDaylight to manage the switch:

	Stop the Open vSwitch service, and clear existing OVSDB (OpenDaylight expects to
manage vSwitches completely):

systemctl stop openvswitch
rm -rf /var/log/openvswitch/*
rm -rf /etc/openvswitch/conf.db
systemctl start openvswitch

	At this stage, your Open vSwitch configuration should be empty:

[root@odl-compute2 ~]# ovs-vsctl show
9f3b38cb-eefc-4bc7-828b-084b1f66fbfd
 ovs_version: "2.5.1"

	Set OpenDaylight as the manager on all nodes:

ovs-vsctl set-manager tcp:{CONTROL_HOST}:6640

	Set the IP to be used for VXLAN connectivity on all nodes.
This IP must correspond to an actual linux interface on each machine.

sudo ovs-vsctl set Open_vSwitch . other_config:local_ip=<ip>

	You should now see a new section in your Open vSwitch configuration
showing that you are connected to the OpenDaylight server via OVSDB,
and OpenDaylight will automatically create a br-int bridge that is
connected via OpenFlow to the controller:

[root@odl-compute2 ~]# ovs-vsctl show
9f3b38cb-eefc-4bc7-828b-084b1f66fbfd
 Manager "tcp:172.16.21.56:6640"
 is_connected: true
 Bridge br-int
 Controller "tcp:172.16.21.56:6633"
 is_connected: true
 fail_mode: secure
 Port br-int
 Interface br-int
 ovs_version: "2.5.1"

 [root@odl-compute2 ~]# ovs-vsctl get Open_vSwitch . other_config
 {local_ip="10.0.42.161"}

	If you do not see the result above (specifically, if you do not see “is_connected: true” in the Manager section or in the Controller section), you may not have a security policies in place to allow Open vSwitch remote administration.

Note

There might be iptables restrictions - if so the relevant ports should be opened (6640, 6653).

If SELinux is running on your linux, set to permissive mode on all nodes and ensure it stays that way after boot.

setenforce 0
sed -i -e 's/SELINUX=enforcing/SELINUX=permissive/g' /etc/selinux/config

	Make sure all nodes, including the control node, are connected to OpenDaylight.

	If you reload DLUX, you should now see that all of your Open vSwitch nodes are now connected to OpenDaylight.

[image: ../../../../_images/dlux-with-switches.png]

	If something has gone wrong, check data/log/karaf.log under
the OpenDaylight distribution directory. If you do not see any interesting
log entries, set logging for netvirt to TRACE level inside Karaf and try again:

log:set TRACE netvirt

Configuring Neutron to use OpenDaylight

Once you have configured the vSwitches to connect to OpenDaylight, you can
now ensure that OpenStack Neutron is using OpenDaylight.

This requires the neutron networking-odl module to be installed.
| pip install networking-odl

First, ensure that port 8080 (which will be used by OpenDaylight to listen
for REST calls) is available. By default, swift-proxy-service listens on the
same port, and you may need to move it (to another port or another host), or
disable that service. It can be moved to a different port (e.g. 8081) by editing
/etc/swift/proxy-server.conf and /etc/cinder/cinder.conf,
modifying iptables appropriately, and restarting swift-proxy-service.
Alternatively, OpenDaylight can be configured to listen on a different port,
by modifying the jetty.port property value in etc/jetty.conf.

<Set name="port">
 <Property name="jetty.port" default="8080" />
</Set>

	Configure Neutron to use OpenDaylight’s ML2 driver:

crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 mechanism_drivers opendaylight
crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 tenant_network_types vxlan

cat <<EOT>> /etc/neutron/plugins/ml2/ml2_conf.ini
[ml2_odl]
url = http://{CONTROL_HOST}:8080/controller/nb/v2/neutron
password = admin
username = admin
EOT

	Configure Neutron to use OpenDaylight’s odl-router service plugin for L3 connectivity:

crudini --set /etc/neutron/plugins/neutron.conf DEFAULT service_plugins odl-router

	Configure Neutron DHCP agent to provide metadata services:

crudini --set /etc/neutron/plugins/dhcp_agent.ini DEFAULT force_metadata True

Note

If the OpenStack version being used is Newton, this workaround should be applied,

configuring the Neutron DHCP agent to use vsctl as the OVSDB interface:

crudini --set /etc/neutron/plugins/dhcp_agent.ini OVS ovsdb_interface vsctl

	Reset Neutron’s database

mysql -e "DROP DATABASE IF EXISTS neutron;"
mysql -e "CREATE DATABASE neutron CHARACTER SET utf8;"
/usr/local/bin/neutron-db-manage --config-file /etc/neutron/neutron.conf --config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade head

	Restart neutron-server:

systemctl start neutron-server

Verifying it works

	Verify that OpenDaylight’s ML2 interface is working:

curl -u admin:admin http://{CONTROL_HOST}:8080/controller/nb/v2/neutron/networks

{
 "networks" : []
}

If this does not work or gives an error, check Neutron’s log file in /var/log/neutron/server.log.

Error messages here should give some clue as to what the problem is in the connection with OpenDaylight.

	Create a network, subnet, router, connect ports, and start an instance using the Neutron CLI:

neutron router-create router1
neutron net-create private
neutron subnet-create private --name=private_subnet 10.10.5.0/24
neutron router-interface-add router1 private_subnet
nova boot --flavor <flavor> --image <image id> --nic net-id=<network id> test1
nova boot --flavor <flavor> --image <image id> --nic net-id=<network id> test2

At this point, you have confirmed that OpenDaylight is creating network
end-points for instances on your network and managing traffic to them.

VMs can be reached using Horizon console, or alternatively by issuing nova get-vnc-console <vm> novnc

Through the console, connectivity between VMs can be verified.

Adding an external network for floating IP connectivity

	In order to connect to the VM using a floating IP, we need to configure external network connectivity, by creating an external network and subnet. This external network must be linked to a physical port on the machine, which will provide connectivity to an external gateway.

sudo ovs-vsctl set Open_vSwitch . other_config:provider_mappings=physnet1:eth1
neutron net-create public-net -- --router:external --is-default --provider:network_type=flat --provider:physical_network=physnet1
neutron subnet-create --allocation-pool start=10.10.10.2,end=10.10.10.254 --gateway 10.10.10.1 --name public-subnet public-net 10.10.0.0/16 -- --enable_dhcp=False
neutron router-gateway-set router1 public-net

neutron floatingip-create public-net
nova floating-ip-associate test1 <floating_ip>

Installing OpenStack and OpenDaylight using DevStack

The easiest way to load and OpenStack setup using OpenDaylight is by using devstack, which does all the steps mentioned in previous sections.
| git clone https://git.openstack.org/openstack-dev/devstack

	The following lines need to be added to your local.conf:

enable_plugin networking-odl http://git.openstack.org/openstack/networking-odl <branch>
ODL_MODE=allinone
Q_ML2_PLUGIN_MECHANISM_DRIVERS=opendaylight,logger
ODL_GATE_SERVICE_PROVIDER=vpnservice
disable_service q-l3
ML2_L3_PLUGIN=odl-router
ODL_PROVIDER_MAPPINGS={PUBLIC_PHYSICAL_NETWORK}:<external linux interface>

	More details on using devstack can be found in the following links:

	Devstack All-In-One Single Machine Tutorial [http://docs.openstack.org/developer/devstack/guides/single-machine.html]

	Devstack networking-odl README [https://github.com/openstack/networking-odl/blob/master/devstack/README.rst]

Troubleshooting

VM DHCP Issues

	Trigger DHCP requests - access VM console:

	View log: nova console-log <vm>

	Access using VNC console: nova get-vnc-console <vm> novnc

	Trigger DHCP requests:
sudo ifdown eth0 ; sudo ifup eth0

udhcpc (v1.20.1) started
Sending discover...
Sending select for 10.0.123.3...
Lease of 10.0.123.3 obtained, lease time 86400 # This only happens when DHCP is properly obtained.

	Check if the DHCP requests are reaching the qdhcp agent using the following commands on the OpenStack controller:

sudo ip netns
sudo ip netns exec qdhcp-xxxxx ifconfig # xxxx is the neutron network id
sudo ip netns exec qdhcp-xxxxx tcpdump -nei tapxxxxx # xxxxx is the neutron port id

Valid request and response:
15:08:41.684932 fa:16:3e:02:14:bb > ff:ff:ff:ff:ff:ff, ethertype IPv4 (0x0800), length 329: 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from fa:16:3e:02:14:bb, length 287
15:08:41.685152 fa:16:3e:79:07:98 > fa:16:3e:02:14:bb, ethertype IPv4 (0x0800), length 354: 10.0.123.2.67 > 10.0.123.3.68: BOOTP/DHCP, Reply, length 312

	If the requests aren’t reaching qdhcp:

	Verify VXLAN tunnels exist between compute and control nodes by using ovs-vsctl show

	
Run the following commands to debug the OVS processing of the DHCP request packet:

ovs-ofctl -OOpenFlow13 dump-ports-desc br-int # retrieve VMs ofport and MAC

ovs-appctl ofproto/trace br-int in_port=<ofport>,dl_src=<mac>,dl_dst=ff:ff:ff:ff:ff:ff,udp,ip_src=0.0.0.0,ip_dst=255.255.255.255 | grep "Rule\|action"

root@devstack:~# ovs-appctl ofproto/trace br-int in_port=1,dl_src=fe:16:3e:33:8b:d8,dl_dst=ff:ff:ff:ff:ff:ff,udp,ip_src=0.0.0.0,ip_dst=255.255.255.255 | grep "Rule\|action"
 Rule: table=0 cookie=0x8000000 priority=1,in_port=1
 OpenFlow actions=write_metadata:0x20000000001/0xffffff0000000001,goto_table:17
 Rule: table=17 cookie=0x8000001 priority=5,metadata=0x20000000000/0xffffff0000000000
 OpenFlow actions=write_metadata:0xc0000200000222e2/0xfffffffffffffffe,goto_table:19
 Rule: table=19 cookie=0x1080000 priority=0
 OpenFlow actions=resubmit(,17)
 Rule: table=17 cookie=0x8040000 priority=6,metadata=0xc000020000000000/0xffffff0000000000
 OpenFlow actions=write_metadata:0xe00002138a000000/0xfffffffffffffffe,goto_table:50
 Rule: table=50 cookie=0x8050000 priority=0
 OpenFlow actions=CONTROLLER:65535,goto_table:51
 Rule: table=51 cookie=0x8030000 priority=0
 OpenFlow actions=goto_table:52
 Rule: table=52 cookie=0x870138a priority=5,metadata=0x138a000001/0xffff000001
 OpenFlow actions=write_actions(group:210003)
 Datapath actions: drop

root@devstack:~# ovs-ofctl -OOpenFlow13 dump-groups br-int | grep 'group_id=210003'
 group_id=210003,type=all

	If the requests are reaching qdhcp, but the response isn’t arriving to the VM:

	Locate the compute the VM is residing on (can use nova show <vm>).

	
If the VM is on the same node as the qdhcp namespace, ofproto/trace can be used to track the packet:

ovs-appctl ofproto/trace br-int in_port=<dhcp_ofport>,dl_src=<dhcp_port_mac>,dl_dst=<vm_port_mac>,udp,ip_src=<dhcp_port_ip>,ip_dst=<vm_port_ip> | grep "Rule\|action"

root@devstack:~# ovs-appctl ofproto/trace br-int in_port=2,dl_src=fa:16:3e:79:07:98,dl_dst=fa:16:3e:02:14:bb,udp,ip_src=10.0.123.2,ip_dst=10.0.123.3 | grep "Rule\|action"
 Rule: table=0 cookie=0x8000000 priority=4,in_port=2
 OpenFlow actions=write_metadata:0x10000000000/0xffffff0000000001,goto_table:17
 Rule: table=17 cookie=0x8000001 priority=5,metadata=0x10000000000/0xffffff0000000000
 OpenFlow actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
 Rule: table=19 cookie=0x1080000 priority=0
 OpenFlow actions=resubmit(,17)
 Rule: table=17 cookie=0x8040000 priority=6,metadata=0x6000010000000000/0xffffff0000000000
 OpenFlow actions=write_metadata:0x7000011389000000/0xfffffffffffffffe,goto_table:50
 Rule: table=50 cookie=0x8051389 priority=20,metadata=0x11389000000/0xfffffffff000000,dl_src=fa:16:3e:79:07:98
 OpenFlow actions=goto_table:51
 Rule: table=51 cookie=0x8031389 priority=20,metadata=0x1389000000/0xffff000000,dl_dst=fa:16:3e:02:14:bb
 OpenFlow actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
 Rule: table=220 cookie=0x8000007 priority=7,reg6=0x300
 OpenFlow actions=output:3

	If the VM isn’t on the same node as the qdhcp namepsace:

	Check if the packet is arriving via VXLAN by running tcpdump -nei <vxlan_port> port 4789

	If it is arriving via VXLAN, the packet can be tracked on the compute node rules, using ofproto/trace
in a similiar manner to the previous section. Note that packets arriving from a tunnels have a unique
tunnel_id (VNI) that should be used as well in the trace, due to the special processing of packets arriving
from a VXLAN tunnel.

Floating IP Issues

	If you have assigned an external network and associated a floating IP to a VM but there is still no connectivity:

	Verify the external gateway IP is reachable through the provided provider network port.

	Verify OpenDaylight has successfully resolved the MAC address of the external gateway IP.
This can be verified by searching for the line “Installing ext-net group” in the karaf.log.

	Locate the compute the VM is residing on (can use nova show <vm>).

	Run a ping to the VM floating IP.

	If the ping fails, execute a flow dump of br-int, and search for the flows that are relevant to the VM’s floating IP address:
ovs-ofctl -OOpenFlow13 dump-flows br-int | grep "<floating_ip>"

	
Are there packets on the incoming flow (matching dst_ip=<floating_ip>)?

If not this probably means the provider network has not been set up properly, verify provider_mappings configuration and the configured external network physical_network value match. Also verify that the Flat/VLAN network configured is actually reachable via the configured port.

	
Are there packets on the outgoing flow (matching src_ip=<floating_ip>)?

If not, this probably means that OpenDaylight is failing to resolve the MAC of the provided external gateway, required for forwarding packets to the external network.

	
Are there packets being sent on the external network port?

This can be checked using tcpdump <port> or by viewing the appropriate OpenFlow rules. The mapping between the OpenFlow port number and the linux interface can be acquired using ovs-ofctl dump-ports-desc br-int

ovs-ofctl -OOpenFlow13 dump-flows br-int | grep "<floating_ip>"
cookie=0x8000003, duration=436.710s, table=21, n_packets=190, n_bytes=22602, priority=42,ip,metadata=0x222e2/0xfffffffe,nw_dst=10.64.98.17 actions=goto_table:25
cookie=0x8000004, duration=436.739s, table=25, n_packets=190, n_bytes=22602, priority=10,ip,nw_dst=10.64.98.17 actions=set_field:10.0.123.3->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27
cookie=0x8000004, duration=436.730s, table=26, n_packets=120, n_bytes=15960, priority=10,ip,metadata=0x222e0/0xfffffffe,nw_src=10.0.123.3 actions=set_field:10.64.98.17->ip_src,write_metadata:0x222e2/0xfffffffe,goto_table:28
cookie=0x8000004, duration=436.728s, table=28, n_packets=120, n_bytes=15960, priority=10,ip,metadata=0x222e2/0xfffffffe,nw_src=10.64.98.17 actions=set_field:fa:16:3e:ec:a8:84->eth_src,group:200000

Useful Links

	NetVirt Tables Pipeline [https://docs.google.com/presentation/d/15h4ZjPxblI5Pz9VWIYnzfyRcQrXYxA1uUoqJsgA53KM]

	NetVirt Wiki Page [https://wiki.opendaylight.org/view/NetVirt]

	NetVirt Basic Tutorial (OpenDaylight Summit 2016) [https://docs.google.com/presentation/d/1VLzRIOEptSOY1b0w4PezRIQ0gF5vx7GyLKECWXRV5mE]

	NetVirt Advanced Tutorial (OpenDaylight Summit 2016) [https://docs.google.com/presentation/d/13K8Z1kl5XFZrWqBToMwFISSAPOKfzd3m9BtVcb-YAWs]

	Other OpenDaylight Documentation [http://docs.opendaylight.org/]

OpenStack with GroupBasedPolicy

This section is for Application Developers and Network Administrators
who are looking to integrate Group Based Policy with OpenStack.

To enable the GBP Neutron Mapper feature, at the karaf console:

feature:install odl-groupbasedpolicy-neutronmapper

Neutron Mapper has the following dependencies that are automatically loaded:

odl-neutron-service

Neutron Northbound implementing REST API used by OpenStack

odl-groupbasedpolicy-base

Base GBP feature set, such as policy resolution, data model etc.

odl-groupbasedpolicy-ofoverlay

For this release, GBP has one renderer, hence this is loaded by default.

REST calls from OpenStack Neutron are by the Neutron NorthBound project.

GBP provides the implementation of the Neutron V2.0 API [http://developer.openstack.org/api-ref-networking-v2.html].

Features

List of supported Neutron entities:

	Port

	Network

	Standard Internal

	External provider L2/L3 network

	Subnet

	Security-groups

	Routers

	Distributed functionality with local routing per compute

	External gateway access per compute node (dedicated port required)

	Multiple routers per tenant

	FloatingIP NAT

	IPv4/IPv6 support

The mapping of Neutron entities to GBP entities is as follows:

Neutron Port

[image: ../_images/neutronmapper-gbp-mapping-port.png]
Neutron Port

The Neutron port is mapped to an endpoint.

The current implementation supports one IP address per Neutron port.

An endpoint and L3-endpoint belong to multiple EndpointGroups if the Neutron
port is in multiple Neutron Security Groups.

The key for endpoint is L2-bridge-domain obtained as the parent of
L2-flood-domain representing Neutron network. The MAC address is from the
Neutron port.
An L3-endpoint is created based on L3-context (the parent of the
L2-bridge-domain) and IP address of Neutron Port.

Neutron Network

[image: ../_images/neutronmapper-gbp-mapping-network.png]
Neutron Network

A Neutron network has the following characteristics:

	defines a broadcast domain

	defines a L2 transmission domain

	defines a L2 name space.

To represent this, a Neutron Network is mapped to multiple GBP entities.
The first mapping is to an L2 flood-domain to reflect that the Neutron network
is one flooding or broadcast domain.
An L2-bridge-domain is then associated as the parent of L2 flood-domain. This
reflects both the L2 transmission domain as well as the L2 addressing namespace.

The third mapping is to L3-context, which represents the distinct L3 address space.
The L3-context is the parent of L2-bridge-domain.

Neutron Subnet

[image: ../_images/neutronmapper-gbp-mapping-subnet.png]
Neutron Subnet

Neutron subnet is associated with a Neutron network. The Neutron subnet is
mapped to a GBP subnet where the parent of the subnet is L2-flood-domain
representing the Neutron network.

Neutron Security Group

[image: ../_images/neutronmapper-gbp-mapping-securitygroup.png]
Neutron Security Group and Rules

GBP entity representing Neutron security-group is EndpointGroup.

Infrastructure EndpointGroups

Neutron-mapper automatically creates EndpointGroups to manage key infrastructure
items such as:

	DHCP EndpointGroup - contains endpoints representing Neutron DHCP ports

	Router EndpointGroup - contains endpoints representing Neutron router
interfaces

	External EndpointGroup - holds L3-endpoints representing Neutron router
gateway ports, also associated with FloatingIP ports.

Neutron Security Group Rules

This mapping is most complicated among all others because Neutron
security-group-rules are mapped to contracts with clauses,
subjects, rules, action-refs, classifier-refs, etc.
Contracts are used between endpoint groups representing Neutron Security Groups.
For simplification it is important to note that Neutron security-group-rules are
similar to a GBP rule containing:

	classifier with direction

	action of allow.

Neutron Routers

[image: ../_images/neutronmapper-gbp-mapping-router.png]
Neutron Router

Neutron router is represented as a L3-context. This treats a router as a Layer3
namespace, and hence every network attached to it a part
of that Layer3 namespace.

This allows for multiple routers per tenant with complete isolation.

The mapping of the router to an endpoint represents the router’s interface or
gateway port.

The mapping to an EndpointGroup represents the internal infrastructure
EndpointGroups created by the GBP Neutron Mapper

When a Neutron router interface is attached to a network/subnet, that
network/subnet and its associated endpoints or Neutron Ports are seamlessly
added to the namespace.

Neutron FloatingIP

When associated with a Neutron Port, this leverages the GBP OfOverlay
renderer’s NAT capabilities.

A dedicated external interface on each Nova compute host allows for
disitributed external access. Each Nova instance associated with a
FloatingIP address can access the external network directly without having to
route via the Neutron controller, or having to enable any form
of Neutron distributed routing functionality.

Assuming the gateway provisioned in the Neutron Subnet command for the external
network is reachable, the combination of GBP Neutron Mapper and
OfOverlay renderer will automatically ARP for this default gateway, requiring
no user intervention.

Troubleshooting within GBP

Logging level for the mapping functionality can be set for package
org.opendaylight.groupbasedpolicy.neutron.mapper. An example of enabling TRACE
logging level on karaf console:

log:set TRACE org.opendaylight.groupbasedpolicy.neutron.mapper

Neutron mapping example

As an example for mapping can be used creation of Neutron network, subnet and
port. When a Neutron network is created 3 GBP entities are created:
l2-flood-domain, l2-bridge-domain, l3-context.

[image: ../_images/neutronmapper-gbp-mapping-network-example.png]
Neutron network mapping

After an subnet is created in the network mapping looks like this.

[image: ../_images/neutronmapper-gbp-mapping-subnet-example.png]
Neutron subnet mapping

If an Neutron port is created in the subnet an endpoint and l3-endpoint are
created. The endpoint has key composed from l2-bridge-domain and MAC address
from Neutron port. A key of l3-endpoint is compesed from l3-context and IP
address. The network containment of endpoint and l3-endpoint points to the
subnet.

[image: ../_images/neutronmapper-gbp-mapping-port-example.png]
Neutron port mapping

Configuring GBP Neutron

No intervention passed initial OpenStack setup is required by the user.

More information about configuration can be found in our DevStack demo
environment on the GBP wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)].

Administering or Managing GBP Neutron

For consistencies sake, all provisioning should be performed via the Neutron API. (CLI or Horizon).

The mapped policies can be augmented via the GBP UX,UX, to:

	Enable Service Function Chaining

	Add endpoints from outside of Neutron i.e. VMs/containers not provisioned in OpenStack

	Augment policies/contracts derived from Security Group Rules

	Overlay additional contracts or groupings

Tutorials

A DevStack demo environment can be found on the
GBP wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)].

Using Groupbasedpolicy’s Neutron VPP Mapper

Overview

Neutron VPP Mapper implements features for support policy-based routing for OpenStack Neutron interface involving VPP devices.
It allows using of policy-based schemes defined in GBP controller in a network consisting of OpenStack-provided nodes routed by a VPP node.

Architecture

Neutron VPP Mapper listens to Neutron data store change events, as well as being able to access directly the store.
If the data changed match certain criteria (see Processing Neutron Configuration),
Neutron VPP Mapper converts Neutron data specifically required to render a VPP node configuration with a given End Point,
e.g., the virtual host interface name assigned to a vhostuser socket.
Then the mapped data is stored in the VPP info data store.

Administering Neutron VPP Mapper

To use the Neutron VPP Mapper in Karaf, at least the following Karaf features must be installed:

	odl-groupbasedpolicy-neutron-vpp-mapper

	odl-vbd-ui

Initial pre-requisites

A topology should exist in config datastore, it is necessary to define a node with a particular node-id.
Later, node-id will be used as a physical location reference in VPP renderer’s bridge domain:

GET http://localhost:8181/restconf/config/network-topology:network-topology/

{
 "network-topology":{
 "topology":[
 {
 "topology-id":"datacentre",
 "node":[
 {
 "node-id":"dut2",
 "vlan-tunnel:super-interface":"GigabitEthernet0/9/0",
 "termination-point":[
 {
 "tp-id":"GigabitEthernet0/9/0",
 "neutron-provider-topology:physical-interface":{
 "interface-name":"GigabitEthernet0/9/0"
 }
 }
]
 }
]
 }
]
 }
}

Processing Neutron Configuration

NeutronListener listens to the changes in Neutron datatree in config datastore. It filters the changes, processing only network and port entities.

For a network entity it is checked that it has physical-network parameter set (i.e., it is backed-up by a physical network),
and that network-type is vlan-network or "flat", and if this check has passed, a related bridge domain is created
in VPP Renderer config datastore
(http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config), referenced to network by vlan field.

In case of "vlan-network", the vlan field contains the same value as neutron-provider-ext:segmentation-id of network created by Neutron.

In case of "flat", the VLAN specific parameters are not filled out.

Note

In case of VXLAN network (i.e. network-type is "vxlan-network"), no information is actually written
into VPP Renderer datastore, as VXLAN is used for tenant-network (so no packets are going outside). Instead, VPP Renderer looks up GBP flood domains corresponding to existing VPP bridge domains trying to establish a VXLAN tunnel between them.

For a port entity it is checked that vif-type contains "vhostuser" substring, and that device-owner contains a specific substring, namely "compute", "router" or "dhcp".

In case of "compute" substring, a vhost-user is written to VPP Renderer config datastore.

In case of "dhcp" or "router", a tap is written to VPP Renderer config datastore.

Input/output examples

OpenStack is creating network, and these data are being put into the data store:

PUT http://{{controller}}:{{port}}/restconf/config/neutron:neutron/networks

{
 "networks": {
 "network": [
 {
 "uuid": "43282482-a677-4102-87d6-90708f30a115",
 "tenant-id": "94836b88-0e56-4150-aaa7-60f1c2b67faa",
 "neutron-provider-ext:segmentation-id": "2016",
 "neutron-provider-ext:network-type": "neutron-networks:network-type-vlan",
 "neutron-provider-ext:physical-network": "datacentre",
 "neutron-L3-ext:external": true,
 "name": "drexternal",
 "shared": false,
 "admin-state-up": true,
 "status": "ACTIVE"
 }
]
 }
}

Checking bridge domain in VPP Renderer config data store.
Note that physical-location-ref is referring to "dut2", paired by neutron-provider-ext:physical-network -> topology-id:

GET http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config

{
 "config": {
 "bridge-domain": [
 {
 "id": "43282482-a677-4102-87d6-90708f30a115",
 "type": "vpp-renderer:vlan-network",
 "description": "drexternal",
 "vlan": 2016,
 "physical-location-ref": [
 {
 "node-id": "dut2",
 "interface": [
 "GigabitEthernet0/9/0"
]
 }
]
 }
]
 }
}

Port (compute):

PUT http://{{controller}}:{{port}}/restconf/config/neutron:neutron/ports

{
 "ports": {
 "port": [
 {
 "uuid": "3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
 "tenant-id": "94836b88-0e56-4150-aaa7-60f1c2b67faa",
 "device-id": "dhcp58155ae3-f2e7-51ca-9978-71c513ab02ee-a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "neutron-binding:vif-details": [
 {
 "details-key": "somekey"
 }
],
 "neutron-binding:host-id": "devstack-control",
 "neutron-binding:vif-type": "vhostuser",
 "neutron-binding:vnic-type": "normal",
 "mac-address": "fa:16:3e:4a:9f:c0",
 "name": "",
 "network-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "neutron-portsecurity:port-security-enabled": false,
 "device-owner": "network:compute",
 "fixed-ips": [
 {
 "subnet-id": "0a5834ed-ed31-4425-832d-e273cac26325",
 "ip-address": "10.1.1.3"
 }
],
 "admin-state-up": true
 }
]
 }
}

GET http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config

{
 "config": {
 "vpp-endpoint": [
 {
 "context-type": "l2-l3-forwarding:l2-bridge-domain",
 "context-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "address-type": "l2-l3-forwarding:mac-address-type",
 "address": "fa:16:3e:4a:9f:c0",
 "vpp-node-path": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='topology-netconf']/network-topology:node[network-topology:node-id='devstack-control']",
 "vpp-interface-name": "neutron_port_3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
 "socket": "/tmp/socket_3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
 "description": "neutron port"
 }
]
 }
}

Port (dhcp):

PUT http://{{controller}}:{{port}}/restconf/config/neutron:neutron/ports

{
 "ports": {
 "port": [
 {
 "uuid": "3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
 "tenant-id": "94836b88-0e56-4150-aaa7-60f1c2b67faa",
 "device-id": "dhcp58155ae3-f2e7-51ca-9978-71c513ab02ee-a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "neutron-binding:vif-details": [
 {
 "details-key": "somekey"
 }
],
 "neutron-binding:host-id": "devstack-control",
 "neutron-binding:vif-type": "vhostuser",
 "neutron-binding:vnic-type": "normal",
 "mac-address": "fa:16:3e:4a:9f:c0",
 "name": "",
 "network-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "neutron-portsecurity:port-security-enabled": false,
 "device-owner": "network:dhcp",
 "fixed-ips": [
 {
 "subnet-id": "0a5834ed-ed31-4425-832d-e273cac26325",
 "ip-address": "10.1.1.3"
 }
],
 "admin-state-up": true
 }
]
 }
}

GET http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config

{
 "config": {
 "vpp-endpoint": [
 {
 "context-type": "l2-l3-forwarding:l2-bridge-domain",
 "context-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "address-type": "l2-l3-forwarding:mac-address-type",
 "address": "fa:16:3e:4a:9f:c0",
 "vpp-node-path": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='topology-netconf']/network-topology:node[network-topology:node-id='devstack-control']",
 "vpp-interface-name": "neutron_port_3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
 "physical-address": "fa:16:3e:4a:9f:c0",
 "name": "tap3d5dff96-25",
 "description": "neutron port"
 }
]
 }
}

OpenStack with Virtual Tenant Network

This section describes using OpenDaylight with the VTN manager feature providing
network service for OpenStack. VTN manager utilizes the OVSDB southbound service
and Neutron for this implementation. The below diagram depicts the communication
of OpenDaylight and two virtual networks connected by an OpenFlow switch using
this implementation.

[image: ../_images/OpenStackDeveloperGuide.png]
OpenStack Architecture

Configure OpenStack to work with OpenDaylight(VTN Feature) using PackStack

Prerequisites to install OpenStack using PackStack

	Fresh CentOS 7.1 minimal install

	Use the below commands to disable and remove Network Manager in CentOS 7.1,

systemctl stop NetworkManager
systemctl disable NetworkManager

	To make SELINUX as permissive, please open the file “/etc/sysconfig/selinux” and change it as “SELINUX=permissive”.

	After making selinux as permissive, please restart the CentOS 7.1 machine.

Steps to install OpenStack PackStack in CentOS 7.1

	To install OpenStack juno, use the following command,

yum update -y
yum -y install https://repos.fedorapeople.org/repos/openstack/openstack-juno/rdo-release-juno-1.noarch.rpm

	To install the packstack installer, please use the below command,

yum -y install openstack-packstack

	To create all-in-one setup, please use the below command,

packstack --allinone --provision-demo=n --provision-all-in-one-ovs-bridge=n

	This will end up with Horizon started successfully message.

Steps to install and deploy OpenDaylight in CentOS 7.1

	Download the latest Boron distribution code in the below link,

wget https://nexus.opendaylight.org/content/groups/public/org/opendaylight/integration/distribution-karaf/0.5.0-Boron/distribution-karaf-0.5.0-Boron.zip

	Unzip the Boron distribution code by using the below command,

unzip distribution-karaf-0.5.0-Boron.zip

	Please do the below steps in the OpenDaylight to change jetty port,

	Change the jetty port from 8080 to something else as swift proxy of
OpenStack is using it.

	Open the file “etc/jetty.xml” and change the jetty port from 8080 to 8910
(we have used 8910 as jetty port you can use any other number).

	Start VTN Manager and install odl-vtn-manager-neutron in it.

	Ensure all the required ports(6633/6653,6640 and 8910) are in the listen
mode by using the command “netstat -tunpl” in OpenDaylight.

Steps to reconfigure OpenStack in CentOS 7.1

	Steps to stop Open vSwitch Agent and clean up ovs

sudo systemctl stop neutron-openvswitch-agent
sudo systemctl disable neutron-openvswitch-agent
sudo systemctl stop openvswitch
sudo rm -rf /var/log/openvswitch/*
sudo rm -rf /etc/openvswitch/conf.db
sudo systemctl start openvswitch
sudo ovs-vsctl show

	Stop Neutron Server

systemctl stop neutron-server

	Verify that OpenDaylight’s ML2 interface is working:

curl -v admin:admin http://{CONTROL_HOST}:{PORT}/controller/nb/v2/neutron/networks

{
 "networks" : []
}

If this does not work or gives an error, check Neutron’s log file in
/var/log/neutron/server.log. Error messages here should give
some clue as to what the problem is in the connection with OpenDaylight

	Configure Neutron to use OpenDaylight’s ML2 driver:

sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 mechanism_drivers opendaylight
sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 tenant_network_types local
sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 type_drivers local
sudo crudini --set /etc/neutron/dhcp_agent.ini DEFAULT ovs_use_veth True

cat <<EOT | sudo tee -a /etc/neutron/plugins/ml2/ml2_conf.ini > /dev/null
 [ml2_odl]
 password = admin
 username = admin
 url = http://{CONTROL_HOST}:{PORT}/controller/nb/v2/neutron
 EOT

	Reset Neutron’s ML2 database

sudo mysql -e "drop database if exists neutron_ml2;"
sudo mysql -e "create database neutron_ml2 character set utf8;"
sudo mysql -e "grant all on neutron_ml2.* to 'neutron'@'%';"
sudo neutron-db-manage --config-file /usr/share/neutron/neutron-dist.conf --config-file /etc/neutron/neutron.conf --config-file /etc/neutron/plugin.ini upgrade head

	Start Neutron Server

sudo systemctl start neutron-server

	Restart the Neutron DHCP service

system restart neutron-dhcp-agent.service

	At this stage, your Open vSwitch configuration should be empty:

[root@dneary-odl-compute2 ~]# ovs-vsctl show
686989e8-7113-4991-a066-1431e7277e1f
 ovs_version: "2.3.1"

	Set OpenDaylight as the manager on all nodes

ovs-vsctl set-manager tcp:127.0.0.1:6640

	You should now see a section in your Open vSwitch configuration
showing that you are connected to the OpenDaylight server, and OpenDaylight
will automatically create a br-int bridge:

[root@dneary-odl-compute2 ~]# ovs-vsctl show
686989e8-7113-4991-a066-1431e7277e1f
 Manager "tcp:127.0.0.1:6640"
 is_connected: true
 Bridge br-int
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 Port "ens33"
 Interface "ens33"
 ovs_version: "2.3.1"

	Add the default flow to OVS to forward packets to controller when there is a table-miss,

ovs-ofctl --protocols=OpenFlow13 add-flow br-int priority=0,actions=output:CONTROLLER

	Please see the VTN OpenStack PackStack support guide [https://wiki.opendaylight.org/view/Release/Lithium/VTN/User_Guide/Openstack_Packstack_Support]
on the wiki to create VM’s from OpenStack Horizon GUI.

Implementation details

VTN Manager

Install odl-vtn-manager-neutron feature which provides the integration with
Neutron interface.

feature:install odl-vtn-manager-neutron

It subscribes to the events from Open vSwitch and also implements the Neutron
requests received by OpenDaylight.

Functional Behavior

StartUp

	The ML2 implementation for OpenDaylight will ensure that when Open vSwitch is
started, the ODL_IP_ADDRESS configured will be set as manager.

	When OpenDaylight receives the update of the Open vSwitch on port 6640
(manager port), VTN Manager handles the event and adds a bridge with required
port mappings to the Open vSwitch at the OpenStack node.

	When Neutron starts up, a new network create is POSTed to OpenDaylight, for
which VTN Manager creates a Virtual Tenant Network.

	Network and Sub-Network Create: Whenever a new sub network is created, VTN
Manager will handle the same and create a vbridge under the VTN.

	VM Creation in OpenStack: The interface mentioned as integration bridge in
the configuration file will be added with more interfaces on creation of a
new VM in OpenStack and the network is provisioned for it by the VTN Neutron
feature. The addition of a new port is captured by the VTN Manager and it
creates a vbridge interface with port mapping for the particular port. When
the VM starts to communicate with other VMs, the VTN Manger will install flows
in the Open vSwitch and other OpenFlow switches to facilitate communication
between them.

Note

To use this feature, VTN feature should be installed

Reference

https://wiki.opendaylight.org/images/5/5c/Integration_of_vtn_and_ovsdb_for_helium.pdf

Developer Guide

Overview

	Gerrit Guide [http://docs.releng.linuxfoundation.org/en/latest/gerrit.html]

	Developing Apps on the OpenDaylight controller

Project-specific Developer Guides

	ALTO Developer Guide

	Authentication, Authorization and Accounting (AAA) Services

	BGP Developer Guide

	BGP Monitoring Protocol Developer Guide

	BIER Developer Guide

	CAPWAP Developer Guide

	Cardinal: OpenDaylight Monitoring as a Service

	Controller

	Data Export/Import Developer Guide

	DIDM Developer Guide

	Distribution Version reporting

	Distribution features

	DLUX

	eman Developer Guide

	Fabric As A Service

	Infrautils

	IoTDM Developer Guide

	L2Switch Developer Guide

	LACP Developer Guide

	LISP Flow Mapping User Guide

	NEtwork MOdeling (NEMO)

	NETCONF Developer Guide

	Network Intent Composition (NIC) Developer Guide

	NetIDE Developer Guide

	NetVirt Developer Guide

	Neutron Service Developer Guide

	Neutron Northbound

	ODL Parent Developer Guide

	OCP Plugin Developer Guide

	ODL-SDNi Developer Guide

	OF-CONFIG Developer Guide

	OpenFlow Protocol Library Developer Guide

	OpenFlow Plugin Project Developer Guide

	OpFlex agent-ovs Developer Guide

	OpFlex genie Developer Guide

	OpFlex libopflex Developer Guide

	OVSDB Developer Guide

	PCEP Developer Guide

	PacketCable Developer Guide

	Service Function Chaining

	SNMP4SDN Developer Guide

	SXP Developer Guide

	Topology Processing Framework Developer Guide

	TTP Model Developer Guide

	TTP CLI Tools Developer Guide

	User Network Interface Manager Plug-in (Unimgr) Developer Guide

	Unified Secure Channel

	Virtual Tenant Network (VTN)

	YANG Tools Developer Guide

Developing Apps on the OpenDaylight controller

This section provides information that is required to develop apps on
the OpenDaylight controller.

You can either develop apps within the controller using the model-driven
SAL (MD-SAL) archetype or develop external apps and use the RESTCONF to
communicate with the controller.

Overview

This section enables you to get started with app development within the
OpenDaylight controller. In this example, you perform the following
steps to develop an app.

	Create a local repository for the code using a simple build process.

	Start the OpenDaylight controller.

	Test a simple remote procedure call (RPC) which you have created
based on the principle of hello world.

Pre requisites

This example requires the following.

	A development environment with following set up and working correctly
from the shell:

	Maven 3.1.1 or later

	Java 7- or Java 8-compliant JDK

	An appropriate Maven settings.xml file. A simple way to get the
default OpenDaylight settings.xml file is:

cp -n ~/.m2/settings.xml{,.orig} ; \wget -q -O - https://raw.githubusercontent.com/opendaylight/odlparent/stable/boron/settings.xml > ~/.m2/settings.xml

Note

If you are using Linux or Mac OS X as your development OS, your
local repository is ~/.m2/repository. For other platforms the local
repository location will vary.

Building an example module

To develop an app perform the following steps.

	Create an Example project using Maven and an archetype called the
opendaylight-startup-archetype. If you are downloading this project
for the first time, then it will take sometime to pull all the code
from the remote repository.

mvn archetype:generate -DarchetypeGroupId=org.opendaylight.controller -DarchetypeArtifactId=opendaylight-startup-archetype \
-DarchetypeRepository=https://nexus.opendaylight.org/content/repositories/public/ \
-DarchetypeCatalog=https://nexus.opendaylight.org/content/repositories/public/archetype-catalog.xml

	Update the properties values as follows. Ensure that the groupid and
the artifactid is lower case.

Define value for property 'groupId': : org.opendaylight.example
Define value for property 'artifactId': : example
Define value for property 'version': 1.0-SNAPSHOT: : 1.0.0-SNAPSHOT
Define value for property 'package': org.opendaylight.example: :
Define value for property 'classPrefix': ${artifactId.substring(0,1).toUpperCase()}${artifactId.substring(1)}
Define value for property 'copyright': : Copyright (c) 2015 Yoyodyne, Inc.

	Accept the default value of classPrefix that is,
(${artifactId.substring(0,1).toUpperCase()}${artifactId.substring(1)}).
The classPrefix creates a Java Class Prefix by capitalizing the first
character of the artifactId.

Note

In this scenario, the classPrefix used is “Example”. Create a
top-level directory for the archetype.

${artifactId}/
example/
cd example/
api/
artifacts/
features/
impl/
karaf/
pom.xml

	Build the example project.

Note

Depending on your development machine’s specification this might
take a little while. Ensure that you are in the project’s root
directory, example/, and then issue the build command, shown
below.

mvn clean install

	Start the example project for the first time.

cd karaf/target/assembly/bin
ls
./karaf

	Wait for the karaf cli that appears as follows. Wait for OpenDaylight
to fully load all the components. This can take a minute or two after
the prompt appears. Check the CPU on your dev machine, specifically
the Java process to see when it calms down.

opendaylight-user@root>

	Verify if the “example” module is built and search for the log entry
which includes the entry ExampleProvider Session Initiated.

log:display | grep Example

	Shutdown the OpenDaylight through the console by using the following
command.

shutdown -f

Defining a Simple Hello World RPC

	
Run the maven archetype opendaylight-startup-archetype, and
create the hello project.

mvn archetype:generate -DarchetypeGroupId=org.opendaylight.controller -DarchetypeArtifactId=opendaylight-startup-archetype \
-DarchetypeRepository=http://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/ \
-DarchetypeCatalog=http://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/archetype-catalog.xml

	Update the Properties values as follows.

Define value for property 'groupId': : org.opendaylight.hello
Define value for property 'artifactId': : hello
Define value for property 'version': 1.0-SNAPSHOT: : 1.0.0-SNAPSHOT
Define value for property 'package': org.opendaylight.hello: :
Define value for property 'classPrefix': ${artifactId.substring(0,1).toUpperCase()}${artifactId.substring(1)}
Define value for property 'copyright': : Copyright(c) Yoyodyne, Inc.

	View the hello project.

cd hello/
ls -1
api
artifacts
features
impl
karaf
pom.xml

	Build hello project by using the following command.

mvn clean install

	Verify that the project is functioning by executing karaf.

cd karaf/target/assembly/bin
./karaf

	
The karaf cli appears as follows.

NOTE: Remember to wait for OpenDaylight to load completely. Verify
that the Java process CPU has stabilized.+

opendaylight-user@root>

	Verify that the hello module is loaded by checking the log.

log:display | grep Hello

	Shutdown karaf.

shutdown -f

	Return to the top of the directory structure:

cd ../../../../

	View the entry point to understand where the log line came from. The
entry point is in the impl project:

impl/src/main/java/org/opendaylight/hello/impl/HelloProvider.java

	Add any new things that you are doing in your implementation by
using the HelloProvider.onSessionInitiate method. Its analogous to
an Activator.

@Override
 public void onSessionInitiated(ProviderContext session) {
 LOG.info("HelloProvider Session Initiated");
 }

Add a simple HelloWorld RPC API

	Navigate to the file.

Edit
api/src/main/yang/hello.yang

	Edit this file as follows. In the following example, we are adding
the code in a YANG module to define the hello-world RPC:

	Return to the hello/api directory and build your API as follows.

cd ../../../
mvn clean install

Implement the HelloWorld RPC API

	Define the HelloService, which is invoked through the hello-world
API.

cd ../impl/src/main/java/org/opendaylight/hello/impl/

	Create a new file called HelloWorldImpl.java and add in the code
below.

package org.opendaylight.hello.impl;
import java.util.concurrent.Future;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.rev150105.HelloService;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.rev150105.HelloWorldInput;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.rev150105.HelloWorldOutput;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.rev150105.HelloWorldOutputBuilder;
import org.opendaylight.yangtools.yang.common.RpcResult;
import org.opendaylight.yangtools.yang.common.RpcResultBuilder;
public class HelloWorldImpl implements HelloService {
 @Override
 public Future<RpcResult<HelloWorldOutput>> helloWorld(HelloWorldInput input) {
 HelloWorldOutputBuilder helloBuilder = new HelloWorldOutputBuilder();
 helloBuilder.setGreating("Hello " + input.getName());
 return RpcResultBuilder.success(helloBuilder.build()).buildFuture();
 }
}

	The HelloProvider.java file is in the current directory. Register the
RPC that you created in the hello.yang file in the
HelloProvider.java file. You can either edit the HelloProvider.java
to match what is below or you can simple replace it with the code
below.

/*
 * Copyright(c) Yoyodyne, Inc. and others. All rights reserved.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License v1.0 which accompanies this distribution,
 * and is available at http://www.eclipse.org/legal/epl-v10.html
 */
package org.opendaylight.hello.impl;

import org.opendaylight.controller.sal.binding.api.BindingAwareBroker.ProviderContext;
import org.opendaylight.controller.sal.binding.api.BindingAwareBroker.RpcRegistration;
import org.opendaylight.controller.sal.binding.api.BindingAwareProvider;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.rev150105.HelloService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class HelloProvider implements BindingAwareProvider, AutoCloseable {
 private static final Logger LOG = LoggerFactory.getLogger(HelloProvider.class);
 private RpcRegistration<HelloService> helloService;
 @Override
 public void onSessionInitiated(ProviderContext session) {
 LOG.info("HelloProvider Session Initiated");
 helloService = session.addRpcImplementation(HelloService.class, new HelloWorldImpl());
 }
 @Override
 public void close() throws Exception {
 LOG.info("HelloProvider Closed");
 if (helloService != null) {
 helloService.close();
 }
 }
}

	Optionally, you can also build the Java classes which will register
the new RPC. This is useful to test the edits you have made to
HelloProvider.java and HelloWorldImpl.java.

cd ../../../../../../../
mvn clean install

	Return to the top level directory

cd ../

	Build the entire hello again, which will pickup the changes you
have made and build them into your project:

mvn clean install

Execute the hello project for the first time

	Run karaf

cd ../karaf/target/assembly/bin
./karaf

	Wait for the project to load completely. Then view the log to see the
loaded Hello Module:

log:display | grep Hello

Test the hello-world RPC via REST

There are a lot of ways to test your RPC. Following are some examples.

	Using the API Explorer through HTTP

	Using a browser REST client

Using the API Explorer through HTTP

	
Navigate to apidoc
UI [http://localhost:8181/apidoc/explorer/index.html] with your
web browser.

NOTE: In the URL mentioned above, Change localhost to the IP/Host
name to reflect your development machine’s network address.

	Select

hello(2015-01-05)

	Select

POST /operations/hello:hello-world

	Provide the required value.

{"hello:input": { "name":"Your Name"}}

	Click the button.

	Enter the username and password, by default the credentials are
admin/admin.

	In the response body you should see.

{
 "output": {
 "greating": "Hello Your Name"
 }
}

Using a browser REST client

For example, use the following information in the Firefox plugin
RESTClient
[https://github.com/chao/RESTClient}

POST: http://192.168.1.43:8181/restconf/operations/hello:hello-world

Header:

application/json

Body:

{"input": {
 "name": "Andrew"
 }
}

Troubleshooting

If you get a response code 501 while attempting to POST
/operations/hello:hello-world, check the file: HelloProvider.java and
make sure the helloService member is being set. By not invoking
“session.addRpcImplementation()” the REST API will be unable to map
/operations/hello:hello-world url to HelloWorldImpl.

ALTO Developer Guide

Overview

The topics of this guide are:

	How to add alto projects as dependencies;

	How to put/fetch data from ALTO;

	Basic API and DataType;

	How to use customized service implementations.

Adding ALTO Projects as Dependencies

Most ALTO packages can be added as dependencies in Maven projects by
putting the following code in the pom.xml file.

<dependency>
 <groupId>org.opendaylight.alto</groupId>
 <artifactId>${THE_NAME_OF_THE_PACKAGE_YOU_NEED}</artifactId>
 <version>${ALTO_VERSION}</version>
</dependency>

The current stable version for ALTO is 0.3.0-Boron.

Putting/Fetching data from ALTO

Using RESTful API

There are two kinds of RESTful APIs for ALTO: the one provided by
alto-northbound which follows the formats defined in RFC
7285 [https://tools.ietf.org/html/rfc7285], and the one provided by
RESTCONF whose format is defined by the YANG model proposed in this
draft [https://tools.ietf.org/html/draft-shi-alto-yang-model-03].

One way to get the URLs for the resources from alto-northbound is to
visit the IRD service first where there is a uri field for every
entry. However, the IRD service is not yet implemented so currently the
developers have to construct the URLs themselves. The base URL is
/alto and below is a list of the specific paths defined in
alto-core/standard-northbound-route using Jersey @Path
annotation:

	/ird/{rid}: the path to access IRD services;

	/networkmap/{rid}[/{tag}]: the path to access Network Map and
Filtered Network Map services;

	/costmap/{rid}[/{tag}[/{mode}/{metric}]]: the path to access
Cost Map and Filtered Cost Map services;

	/endpointprop: the path to access Endpoint Property services;

	/endpointcost: the path to access Endpoint Cost services.

Note

The segments in brackets are optional.

If you want to fetch the data using RESTCONF, it is highly recommended
to take a look at the apidoc page
(http://{controller_ip}:8181/apidoc/explorer/index.html)
after installing the odl-alto-release feature in karaf.

It is also worth pointing out that alto-northbound only supports
GET and POST operations so it is impossible to manipulate the
data through its RESTful APIs. To modify the data, use PUT and
DELETE methods with RESTCONF.

Note

The current implementation uses the configuration data store and
that enables the developers to modify the data directly through
RESTCONF. In the future this approach might be disabled in the core
packages of ALTO but may still be available as an extension.

Using MD-SAL

You can also fetch data from the datastore directly.

First you must get the access to the datastore by registering your
module with a data broker.

Then an InstanceIdentifier must be created. Here is an example of
how to build an InstanceIdentifier for a network map:

import org.opendaylight...alto...Resources;
import org.opendaylight...alto...resources.NetworkMaps;
import org.opendaylight...alto...resources.network.maps.NetworkMap;
import org.opendaylight...alto...resources.network.maps.NetworkMapKey;
...
protected
InstanceIdentifier<NetworkMap> getNetworkMapIID(String resource_id) {
 ResourceId rid = ResourceId.getDefaultInstance(resource_id);
 NetworkMapKey key = new NetworkMapKey(rid);
 InstanceIdentifier<NetworkMap> iid = null;
 iid = InstanceIdentifier.builder(Resources.class)
 .child(NetworkMaps.class)
 .child(NetworkMap.class, key)
 .build();
 return iid;
}
...

With the InstanceIdentifier you can use ReadOnlyTransaction,
WriteTransaction and ReadWriteTransaction to manipulate the data
accordingly. The simple-impl package, which provides some of the
AD-SAL APIs mentioned above, is using this method to get data from the
datastore and then convert them into RFC7285-compatible objects.

Basic API and DataType

	alto-basic-types: Defines basic types of ALTO protocol.

	alto-service-model-api: Includes the YANG models for the five basic
ALTO services defined in RFC
7285 [https://tools.ietf.org/html/rfc7285].

	alto-resourcepool: Manages the meta data of each ALTO service,
including capabilities and versions.

	alto-northbound: Provides the root of RFC7285-compatible services at
http://localhost:8080/alto.

	alto-northbound-route: Provides the root of the network map resources
at http://localhost:8080/alto/networkmap/.

How to customize service

Define new service API

Add a new module in alto-core/standard-service-models. For example,
we named our service model module as model-example.

Implement service RPC

Add a new module in alto-basic to implement a service RPC in
alto-core.

Currently alto-core/standard-service-models/model-base has defined a
template of the service RPC. You can define your own RPC using
augment in YANG. Here is an example in alto-simpleird.

Register northbound route

If necessary, you can add a northbound route module in
alto-core/standard-northbound-routes.

Authentication, Authorization and Accounting (AAA) Services

Overview

Authentication, Authorization and Accounting (AAA) is a term for a
framework controlling access to resources, enforcing policies to use
those resources and auditing their usage. These processes are the
fundamental building blocks for effective network management and security.

Authentication provides a way of identifying a user, typically by
having the user enter a valid user name and valid password before access
is granted. The process of authentication is based on each user having a unique
set of criteria for gaining access. The AAA framework compares a user’s
authentication credentials with other user credentials stored in a database.
If the credentials match, the user is granted access to the network.
If the credentials don’t match, authentication fails and access is denied.

Authorization is the process of finding out what an authenticated user is
allowed to do within the system, which tasks can do, which API can call, etc.
The authorization process determines whether the user has the authority
to perform such actions.

Accounting is the process of logging the activity of an authenticated user,
for example, the amount of data a user has sent and/or received during a
session, which APIs called, etc.

Terms And Definitions

	AAA

	Authentication, Authorization and Accounting.

	Token

	A claim of access to a group of resources on the controller.

	Domain

	A group of resources, direct or indirect, physical, logical, or
virtual, for the purpose of access control.

	User

	A person who either owns or has access to a resource or group of
resources on the controller.

	Role

	Opaque representation of a set of permissions, which is merely a
unique string as admin or guest.

	Credential

	Proof of identity such as user name and password, OTP, biometrics, or
others.

	Client

	A service or application that requires access to the controller.

	Claim

	A data set of validated assertions regarding a user, e.g. the role,
domain, name, etc.

	IdP

	Identity Provider.

Quick Start

Building

Get the code:

git clone https://git.opendaylight.org/gerrit/aaa

Build it:

cd aaa && mvn clean install

Installing

AAA is automatically installed upon installation of odl-restconf, but you can
install it yourself directly from the Karaf console through the following
command:

feature:install odl-aaa-shiro

Pushing changes

The following are basic instructions to push your contributions to the project’s
GIT repository:

git add .
git commit -s
make changes, add change id, etc.
git commit --amend
git push ssh://{username}@git.opendaylight.org:29418/aaa.git HEAD:refs/for/master

AAA Framework implementations

Since Boron release, the OpenDaylight’s AAA services are based on the
Apache Shiro [https://shiro.apache.org/] Java Security Framework. The main
configuration file for AAA is located at “etc/shiro.ini” relative to the
OpenDaylight Karaf home directory.

Known limitations

The database (H2) used by ODL AAA Authentication store is not-cluster enabled.
When deployed in a clustered environment each node needs to have its AAA user
file synchronized using out of band means.

How to enable AAA

AAA is enabled through installing the odl-aaa-shiro feature. The vast majority
of OpenDaylight’s northbound APIs (and all RESTCONF APIs) are protected by AAA
by default when installing the +odl-restconf+ feature, since the odl-aaa-shiro
is automatically installed as part of them.

How to disable AAA

Edit the “etc/shiro.ini” file and replace the following:

/** = authcBasic

with

/** = anon

Then, restart the Karaf process.

How application developers can leverage AAA to provide servlet security

In order to provide security to a servlet, add the following to the
servlet’s web.xml file as the first filter definition:

<context-param>
 <param-name>shiroEnvironmentClass</param-name>
 <param-value>org.opendaylight.aaa.shiro.web.env.KarafIniWebEnvironment</param-value>
</context-param>

<listener>
 <listener-class>org.apache.shiro.web.env.EnvironmentLoaderListener</listener-class>
</listener>

<filter>
 <filter-name>ShiroFilter</filter-name>
 <filter-class>org.opendaylight.aaa.shiro.filters.AAAShiroFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>AAAShiroFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Note

It is very important to place this AAAShiroFilter as the first
javax.servlet.Filter, as Jersey applies Filters in the order they
appear within web.xml. Placing the AAAShiroFilter first ensures
incoming HTTP/HTTPS requests have proper credentials before any
other filtering is attempted.

AAA Realms

AAA plugin utilizes the Shiro Realms to support pluggable authentication &
authorization schemes. There are two parent types of realms:

	AuthenticatingRealm

	Provides no Authorization capability.

	Users authenticated through this type of realm are treated
equally.

	AuthorizingRealm

	AuthorizingRealm is a more sophisticated AuthenticatingRealm,
which provides the additional mechanisms to distinguish users
based on roles.

	Useful for applications in which roles determine allowed
capabilities.

OpenDaylight contains five implementations:

	TokenAuthRealm

	An AuthorizingRealm built to bridge the Shiro-based AAA service
with the h2-based AAA implementation.

	Exposes a RESTful web service to manipulate IdM policy on a
per-node basis. If identical AAA policy is desired across a
cluster, the backing data store must be synchronized using an out
of band method.

	A python script located at “etc/idmtool” is included to help
manipulate data contained in the TokenAuthRealm.

	Enabled out of the box. This is the realm configured by default.

	ODLJndiLdapRealm

	An AuthorizingRealm built to extract identity information from IdM
data contained on an LDAP server.

	Extracts group information from LDAP, which is translated into
OpenDaylight roles.

	Useful when federating against an existing LDAP server, in which
only certain types of users should have certain access privileges.

	Disabled out of the box.

	ODLJndiLdapRealmAuthNOnly

	The same as ODLJndiLdapRealm, except without role extraction.
Thus, all LDAP users have equal authentication and authorization
rights.

	Disabled out of the box.

	ODLActiveDirectoryRealm

	Wraps the generic ActiveDirectoryRealm provided by Shiro. This allows for
enhanced logging as well as isolation of all realms in a single package,
which enables easier import by consuming servlets.

	Disabled out of the box.

	KeystoneAuthRealm

	This realm authenticates OpenDaylight users against the OpenStack’s
Keystone server by using the
Keystone’s Identity API v3 [https://developer.openstack.org/api-ref/identity/v3/]
or later.

	Disabled out of the box.

Note

More than one Realm implementation can be specified. Realms are attempted
in order until authentication succeeds or all realm sources are exhausted.
Edit the securityManager.realms = $tokenAuthRealm property in shiro.ini
and add all the realms needed separated by commas.

TokenAuthRealm

How it works

The TokenAuthRealm is the default Authorization Realm deployed in OpenDaylight.
TokenAuthRealm uses a direct authentication mechanism as shown in the following
picture:

[image: TokenAuthRealm direct authentication mechanism]
TokenAuthRealm direct authentication mechanism

A user presents some credentials (e.g., username/password) directly to the
OpenDaylight controller token endpoint /oauth2/token and receives an access
token, which then can be used to access protected resources on the controller.

How to access the H2 database

The H2 database provides an optional front-end Web interface, which can be very
useful for new users. From the KARAF_HOME directory, you can run the following
command to enable the user interface:

java -cp ./data/cache/org.eclipse.osgi/bundles/217/1/.cp/h2-1.4.185.jar
 org.h2.tools.Server -trace -pg -web -webAllowOthers -baseDir `pwd`

You can navigate to the following and login via the browser:

http://{IP}:8082/

ODLJndiLdapRealm

How it works

LDAP integration is provided in order to externalize identity management.
This configuration allows federation with an external LDAP server.
The user’s OpenDaylight role parameters are mapped to corresponding LDAP
attributes as specified by the groupRolesMap. Thus, an LDAP operator can
provision attributes for LDAP users that support different OpenDaylight role
structures.

ODLJndiLdapRealmAuthNOnly

How it works

This is useful for setups where all LDAP users are allowed equal access.

KeystoneAuthRealm

How it works

This realm authenticates OpenDaylight users against the OpenStack’s Keystone
server. This realm uses the
Keystone’s Identity API v3 [https://developer.openstack.org/api-ref/identity/v3/]
or later.

[image: KeystoneAuthRealm authentication mechanism]
KeystoneAuthRealm authentication/authorization mechanism

As can shown on the above diagram, once configured, all the RESTCONF APIs calls
will require sending user, password and optionally domain (1). Those
credentials are used to authenticate the call against the Keystone server (2) and,
if the authentication succeeds, the call will proceed to the MDSAL (3). The
credentials must be provisioned in advance within the Keystone Server. The user
and password are mandatory, while the domain is optional, in case it is not
provided within the REST call, the realm will default to (Default),
which is hard-coded. The default domain can be also configured through the
shiro.ini file (see the AAA User Guide).

The protocol between the Controller and the Keystone Server (2) can be either
HTTPS or HTTP. In order to use HTTPS the Keystone Server’s certificate
must be exported and imported on the Controller (see the Certificate Management section).

Authorization Configuration

OpenDaylight supports two authorization engines at present, both of which are
roughly similar in behavior:

	Shiro-Based Authorization

	MDSAL-Based Dynamic Authorization

Note

The preferred mechanism for configuring AAA Authentication is the
MDSAL-Based Dynamic Authorization. Read the following section.

Shiro-Based Static Authorization

OpenDaylight AAA has support for Role Based Access Control (RBAC) based
on the Apache Shiro permissions system. Configuration of the authorization
system is done off-line; authorization currently cannot be configured
after the controller is started. The Authorization provided by this mechanism
is aimed towards supporting coarse-grained security policies, the MDSAL-Based
mechanism allows for a more robust configuration capabilities. Shiro-based
Authorization [http://shiro.apache.org/web.html#Web-%7B%7B%5Curls%5C%7D%7D]
describes how to configure the Authentication feature in detail.

MDSAL-Based Dynamic Authorization

The MDSAL-Based Dynamic authorization uses the MDSALDynamicAuthorizationFilter
engine to restrict access to particular URL endpoint patterns. Users may define
a list of policies that are insertion-ordered. Order matters for that list of
policies, since the first matching policy is applied. This choice was made to
emulate behavior of the Shiro-Based Authorization mechanism.

A policy is a key/value pair, where the key is a resource
(i.e., a “URL pattern”) and the value is a list of permissions for the
resource. The following describes the various elements of a policy:

	Resource: the resource is a string URL pattern as outlined by
Apache Shiro. For more information, see http://shiro.apache.org/web.html.

	Description: an optional description of the URL endpoint and why it is
being secured.

	Permissions list: a list of permissions for a particular policy. If more
than one permission exists in the permissions list they are evaluated using
logical “OR”. A permission describes the prerequisites to perform HTTP
operations on a particular endpoint. The following describes the various
elements of a permission:

	Role: the role required to access the target URL endpoint.

	Actions list: a leaf-list of HTTP permissions that are allowed for a
Subject possessing the required role.

This an example on how to limit access to the modules endpoint:

HTTP Operation:
put URL: /restconf/config/aaa:http-authorization/policies

headers: Content-Type: application/json Accept: application/json

body:
 { "aaa:policies":
 { "aaa:policies":
 [{ "aaa:resource": "/restconf/modules/**",
 "aaa:permissions": [{ "aaa:role": "admin",
 "aaa:actions": ["get",
 "post",
 "put",
 "patch",
 "delete"
]
 }
]
 }
]
 }
 }

The above example locks down access to the modules endpoint (and any URLS
available past modules) to the “admin” role. Thus, an attempt from the OOB
admin user will succeed with 2XX HTTP status code, while an attempt from the
OOB user user will fail with HTTP status code 401, as the user user is not
granted the “admin” role.

Accounting Configuration

Accounting is handled through the standard slf4j logging mechanisms used by the
rest of OpenDaylight. Thus, one can control logging verbosity through
manipulating the log levels for individual packages and classes directly through
the Karaf console, JMX, or etc/org.ops4j.pax.logging.cfg. In normal operations,
the default levels exposed do not provide much information about AAA services;
this is due to the fact that logging can severely degrade performance.

All AAA logging is output to the standard karaf.log file. For debugging purposes
(i.e., to enable maximum verbosity), issue the following command:

log:set TRACE org.opendaylight.aaa

Enable Successful/Unsuccessful Authentication Attempts Logging

By default, successful/unsuccessful authentication attempts are NOT logged. This
is due to the fact that logging can severely decrease REST performance.

It is possible to add custom AuthenticationListener(s) to the Shiro-based
configuration, allowing different ways to listen for successful/unsuccessful
authentication attempts. Custom AuthenticationListener(s) must implement
the org.apache.shiro.authc.AuthenticationListener interface.

Certificate Management

The Certificate Management Service is used to manage the keystores and
certificates at the OpenDaylight distribution to easily provides the TLS
communication.

The Certificate Management Service managing two keystores:

	OpenDaylight Keystore which holds the OpenDaylight distribution
certificate self sign certificate or signed certificate from a root CA based
on generated certificate request.

	Trust Keystore which holds all the network nodes certificates that shall
to communicate with the OpenDaylight distribution through TLS communication.

The Certificate Management Service stores the keystores (OpenDaylight & Trust)
as .jks files under configuration/ssl/ directory. Also the keystores
could be stored at the MD-SAL datastore in case OpenDaylight distribution
running at cluster environment. When the keystores are stored at MD-SAL,
the Certificate Management Service rely on the Encryption-Service to encrypt
the keystore data before storing it to MD-SAL and decrypted at runtime.

How to use the Certificate Management Service to manage the TLS communication

The following are the steps to configure the TLS communication within your
feature or module:

	It is assumed that there exists an already created OpenDaylight distribution
project following this guide [https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype#Part_1_-_Build_with_a_simple_.27Example.27_module].

	In the implementation bundle the following artifact must be added to its
pom.xml file as dependency.

<dependency>
 <groupId>org.opendaylight.aaa</groupId>
 <artifactId>aaa-cert</artifactId>
 <version>0.5.0-SNAPSHOT</version>
</dependency>

	Using the provider class in the implementation bundle needs to define a
variable holding the Certificate Manager Service as in the following example:

import org.opendaylight.aaa.cert.api.ICertificateManager;
import org.opendaylight.controller.md.sal.binding.api.DataBroker;

public class UseCertManagerExampleProvider {
 private final DataBroker dataBroker;
 private final ICertificateManager caManager;

 public EncSrvExampleProvider(final DataBroker dataBroker, final ICertificateManager caManager) {
 this.dataBroker = dataBroker;
 this.caManager = caManager;
 }
 public SSLEngine createSSLEngine() {
 final SSLContext sslContext = caManager.getServerContext();
 if (sslContext != null) {
 final SSLEngine sslEngine = sslContext.createSSLEngine();
 sslEngine.setEnabledCipherSuites(caManager.getCipherSuites());
 // DO the Implementation
 return sslEngine;
 }
 }
 public void init() {
 // TODO
 }
 public void close() {
 // TODO
 }
}

	The Certificate Manager Service provides two main methods that are needed to
establish the SSLEngine object, getServerContext() and getCipherSuites()
as the above example shows. It also provides other methods such as
getODLKeyStore() and getTrustKeyStore() that gives access to the
OpenDaylight and Trust keystores.

	Now the ICertificateManager need to be passed as an argument to the
UseCertManagerExampleProvider within the implementation bundle blueprint
configuration. The following example shows how:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:odl="http://opendaylight.org/xmlns/blueprint/v1.0.0"
 odl:use-default-for-reference-types="true">
 <reference id="dataBroker"
 interface="org.opendaylight.controller.md.sal.binding.api.DataBroker"
 odl:type="default" />
 <reference id="aaaCertificateManager"
 interface="org.opendaylight.aaa.cert.api.ICertificateManager"
 odl:type="default-certificate-manager" />
 <bean id="provider"
 class="org.opendaylight.UseCertManagerExample.impl.UseCertManagerExampleProvider"
 init-method="init" destroy-method="close">
 <argument ref="dataBroker" />
 <argument ref="aaaCertificateManager" />
 </bean>
</blueprint>

	After finishing the bundle implementation the feature module needs to be
updated to include the aaa-cert feature in its feature bundle pom.xml file.

<properties>
 <aaa.version>0.5.0-SNAPSHOT</aaa.version>
</properties>
<dependency>
 <groupId>org.opendaylight.aaa</groupId>
 <artifactId>features-aaa</artifactId>
 <version>${aaa.version}</version>
 <classifier>features</classifier>
 <type>xml</type>
</dependency>

	Now, in the feature.xml file add the Certificate Manager Service feature and
its repository.

<repository>mvn:org.opendaylight.aaa/features-aaa/{VERSION}/xml/features</repository>

The Certificate Manager Service feature can be included inside the
implementation bundle feature as shown in the following example:

<feature name='odl-UseCertManagerExample' version='${project.version}'
 description='OpenDaylight :: UseCertManagerExample'>
 <feature version='${mdsal.version}'>odl-mdsal-broker</feature>
 <feature version='${aaa.version}'>odl-aaa-cert</feature>
 <bundle>mvn:org.opendaylight.UseCertManagerExample/UseCertManagerExample-impl/{VERSION}</bundle>
</feature>

	Now the project can be built and the OpenDaylight distribution started to
continue with the configuration process. See the User Guide for more details.

Encryption Service

The AAA Encryption Service is used to encrypt the OpenDaylight users’
passwords and TLS communication certificates. This section shows how to use the
AAA Encryption Service with an OpenDaylight distribution project to encrypt data.

	It is assumed that there exists an already created OpenDaylight distribution
project following this guide [https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype#Part_1_-_Build_with_a_simple_.27Example.27_module].

	In the implementation bundle the following artifact must be added to its
pom.xml file as dependency.

<dependency>
 <groupId>org.opendaylight.aaa</groupId>
 <artifactId>aaa-encrypt-service</artifactId>
 <version>0.5.0-SNAPSHOT</version>
</dependency>

	Using the provider class in the implementation bundle needs to define a
variable holding the Encryption Service as in the following example:

import org.opendaylight.aaa.encrypt.AAAEncryptionService;
import org.opendaylight.controller.md.sal.binding.api.DataBroker;

public class EncSrvExampleProvider {
private final DataBroker dataBroker;
 private final AAAEncryptionService encryService;

 public EncSrvExampleProvider(final DataBroker dataBroker, final AAAEncryptionService encryService) {
 this.dataBroker = dataBroker;
 this.encryService = encryService;
 }
 public void init() {
 // TODO
 }
 public void close() {
 // TODO
 }
}

The AAAEncryptionService can be used to encrypt and decrypt any data based on
project’s needs.

	Now the AAAEncryptionService needs to be passed as an argument to the
EncSrvExampleProvider within the implementation bundle blueprint
configuration. The following example shows how:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:odl="http://opendaylight.org/xmlns/blueprint/v1.0.0"
 odl:use-default-for-reference-types="true">
 <reference id="dataBroker"
 interface="org.opendaylight.controller.md.sal.binding.api.DataBroker"
 odl:type="default" />
 <reference id="encryService" interface="org.opendaylight.aaa.encrypt.AAAEncryptionService"/>
 <bean id="provider"
 class="org.opendaylight.EncSrvExample.impl.EncSrvExampleProvider"
 init-method="init" destroy-method="close">
 <argument ref="dataBroker" />
 <argument ref="encryService" />
 </bean>
</blueprint>

	After finishing the bundle implementation the feature module needs to be
updated to include the aaa-encryption-service feature in its feature bundle
pom.xml file.

<dependency>
 <groupId>org.opendaylight.aaa</groupId>
 <artifactId>features-aaa</artifactId>
 <version>${aaa.version}</version>
 <classifier>features</classifier>
 <type>xml</type>
</dependency>

It is also necessary to add the aaa.version in the properties section:

<properties>
 <aaa.version>0.5.0-SNAPSHOT</aaa.version>
</properties>

	Now, in the feature.xml file add the Encryption Service feature and its
repository.

<repository>mvn:org.opendaylight.aaa/features-aaa/{VERSION}/xml/features</repository>

The Encryption Service feature can be included inside the implementation bundle
feature as shown in the following example:

<feature name='odl-EncSrvExample' version='${project.version}' description='OpenDaylight :: EncSrvExample'>
 <feature version='${mdsal.version}'>odl-mdsal-broker</feature>
 <feature version='${aaa.version}'>odl-aaa-encryption-service</feature>
 <feature version='${project.version}'>odl-EncSrvExample-api</feature>
 <bundle>mvn:org.opendaylight.EncSrvExample/EncSrvExample-impl/{VERSION}</bundle>
</feature>

	Now the project can be built and the OpenDaylight distribution started to
continue with the configuration process. See the User Guide for more details.

BGP Developer Guide

Overview

This section provides an overview of the odl-bgpcep-bgp-all Karaf
feature. This feature will install everything needed for BGP (Border
Gateway Protocol) from establishing the connection, storing the data in
RIBs (Route Information Base) and displaying data in network-topology
overview.

BGP Architecture

Each feature represents a module in the BGPCEP codebase. The following
diagram illustrates how the features are related.

[image: BGP Dependency Tree]
BGP Dependency Tree

Key APIs and Interfaces

BGP concepts

This module contains the base BGP concepts contained in RFC
4271 [http://tools.ietf.org/html/rfc4271], RFC
4760 [http://tools.ietf.org/html/rfc4760], RFC
4456 [http://tools.ietf.org/html/rfc4456], RFC
1997 [http://tools.ietf.org/html/rfc1997] and RFC
4360 [http://tools.ietf.org/html/rfc4360].

All the concepts are described in one yang model:
bgp-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/concepts/src/main/yang/bgp-types.yang;hb=refs/heads/stable/boron].

Outside generated classes, there is just one class
NextHopUtil [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/concepts/src/main/java/org/opendaylight/bgp/concepts/NextHopUtil.java;hb=refs/heads/stable/boron]
that contains methods for serializing and parsing NextHop.

BGP parser

Base BGP parser includes messages and attributes from RFC
4271 [http://tools.ietf.org/html/rfc4271], RFC
4760 [http://tools.ietf.org/html/rfc4760], RFC
1997 [http://tools.ietf.org/html/rfc1997] and RFC
4360 [http://tools.ietf.org/html/rfc4360].

API module defines BGP messages in YANG.

IMPL module contains actual parsers and serializers for BGP messages
and
Activator [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/parser-impl/src/main/java/org/opendaylight/protocol/bgp/parser/impl/BGPActivator.java;hb=refs/heads/stable/boron]
class

SPI module contains helper classes needed for registering parsers into
activators

Registration

All parsers and serializers need to be registered into the Extension
provider. This Extension provider is configured in initial
configuration of the parser-spi module (31-bgp.xml).

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:parser:spi">prefix:bgp-extensions-impl</type>
 <name>global-bgp-extensions</name>
 <extension>
 <type xmlns:bgpspi="urn:opendaylight:params:xml:ns:yang:controller:bgp:parser:spi">bgpspi:extension</type>
 <name>base-bgp-parser</name>
 </extension>
 <extension>
 <type xmlns:bgpspi="urn:opendaylight:params:xml:ns:yang:controller:bgp:parser:spi">bgpspi:extension</type>
 <name>bgp-linkstate</name>
 </extension>
</module>

	base-bgp-parser - will register parsers and serializers implemented
in the bgp-parser-impl module

	bgp-linkstate - will register parsers and serializers implemented
in the bgp-linkstate module

The bgp-linkstate module is a good example of a BGP parser extension.

The configuration of bgp-parser-spi specifies one implementation of
Extension provider that will take care of registering mentioned parser
extensions:
SimpleBGPExtensionProviderContext [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/parser-spi/src/main/java/org/opendaylight/protocol/bgp/parser/spi/pojo/SimpleBGPExtensionProviderContext.java;hb=refs/heads/stable/boron].
All registries are implemented in package
bgp-parser-spi [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=tree;f=bgp/parser-spi/src/main/java/org/opendaylight/protocol/bgp/parser/spi;hb=refs/heads/stable/boron].

Serializing

The serializing of BGP elements is mostly done in the same way as in
PCEP, the only exception is the
serialization of path attributes, which is described here. Path
attributes are different from any other BGP element, as path attributes
don’t implement one common interface, but this interface contains
getters for individual path attributes (this structure is because update
message can contain exactly one instance of each path attribute). This
means, that a given PathAttributes object, you can only get to the
specific type of the path attribute through checking its presence.
Therefore method serialize() in AttributeRegistry, won’t look up the
registered class, instead it will go through the registrations and offer
this object to the each registered parser. This way the object will be
passed also to serializers unknown to module bgp-parser, for example to
LinkstateAttributeParser. RFC 4271 recommends ordering path attributes,
hence the serializers are ordered in a list as they are registered in
the Activator. In other words, this is the only case, where
registration ordering matters.

[image: PathAttributesSerialization]
PathAttributesSerialization

serialize() method in each Path Attribute parser contains check for
presence of its attribute in the PathAttributes object, which simply
returns, if the attribute is not there:

if (pathAttributes.getAtomicAggregate() == null) {
 return;
}
//continue with serialization of Atomic Aggregate

BGP RIB

The BGP RIB module can be divided into two parts:

	BGP listener and speaker session handling

	RIB handling.

Session handling

31-bgp.xml defines only bgp-dispatcher and the parser it should be
using (global-bgp-extensions).

<module>
 <type>prefix:bgp-dispatcher-impl</type>
 <name>global-bgp-dispatcher</name>
 <bgp-extensions>
 <type>bgpspi:extensions</type>
 <name>global-bgp-extensions</name>
 </bgp-extensions>
 <boss-group>
 <type>netty:netty-threadgroup</type>
 <name>global-boss-group</name>
 </boss-group>
 <worker-group>
 <type>netty:netty-threadgroup</type>
 <name>global-worker-group</name>
 </worker-group>
</module>

For user configuration of BGP, check User Guide.

Synchronization

Synchronization is a phase, where upon connection, a BGP speaker sends
all available data about topology to its new client. After the whole
topology has been advertised, the synchronization is over. For the
listener, the synchronization is over when the RIB receives End-of-RIB
(EOR) messages. There is a special EOR message for each AFI (Address
Family Identifier).

	IPv4 EOR is an empty Update message.

	Ipv6 EOR is an Update message with empty MP_UNREACH attribute where
AFI and SAFI (Subsequent Address Family Identifier) are set to Ipv6.
OpenDaylight also supports EOR for IPv4 in this format.

	Linkstate EOR is an Update message with empty MP_UNREACH attribute
where AFI and SAFI are set to Linkstate.

For BGP connections, where both peers support graceful restart, the EORs
are sent by the BGP speaker and are redirected to RIB, where the
specific AFI/SAFI table is set to true. Without graceful restart, the
messages are generated by OpenDaylight itself and sent after second
keepalive for each AFI/SAFI. This is done in
BGPSynchronization [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/BGPSynchronization.java;hb=refs/heads/stable/boron].

Peers

BGPPeer [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/BGPPeer.java;hb=refs/heads/stable/boron]
has various meanings. If you configure BGP listener, BGPPeer
represents the BGP listener itself. If you are configuring BGP speaker,
you need to provide a list of peers, that are allowed to connect to this
speaker. Unknown peer represents, in this case, a peer that is allowed
to be refused. BGPPeer represents in this case peer, that is supposed
to connect to your speaker. BGPPeer is stored in
BGPPeerRegistry [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/StrictBGPPeerRegistry.java;hb=refs/heads/stable/boron].
This registry controls the number of sessions. Our strict implementation
limits sessions to one per peer.

ApplicationPeer [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/ApplicationPeer.java;hb=refs/heads/stable/boron]
is a special case of peer, that has it’s own RIB. This RIB is populated
from RESTCONF. The RIB is synchronized with default BGP RIB. Incoming
routes to the default RIB are treated in the same way as they were from
a BGP peer (speaker or listener) in the network.

RIB handling

RIB (Route Information Base) is defined as a concept in RFC
4271 [http://tools.ietf.org/html/rfc4271#section-3.2]. RFC does not
define how it should be implemented. In our implementation, the routes
are stored in the MD-SAL datastore. There are four supported routes -
Ipv4Routes, Ipv6Routes, LinkstateRoutes and FlowspecRoutes.

Each route type needs to provide a
RIBSupport.java [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-spi/src/main/java/org/opendaylight/protocol/bgp/rib/spi/RIBSupport.java;hb=refs/heads/stable/boron]
implementation. RIBSupport tells RIB how to parse binding-aware data
(BGP Update message) to binding-independent (datastore format).

Following picture describes the data flow from BGP message that is sent
to BGPPeer to datastore and various types of RIB.

[image: RIB]
RIB

AdjRibInWriter [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/AdjRibInWriter.java;hb=refs/heads/stable/boron]
- represents the first step in putting data to datastore. This writer is
notified whenever a peer receives an Update message. The message is
transformed into binding-independent format and pushed into datastore to
adj-rib-in. This RIB is associated with a peer.

EffectiveRibInWriter [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/EffectiveRibInWriter.java;hb=refs/heads/stable/boron]
- this writer is notified whenever adj-rib-in is updated. It applies
all configured import policies to the routes and stores them in
effective-rib-in. This RIB is also associated with a peer.

LocRibWriter [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/LocRibWriter.java;hb=refs/heads/stable/boron]
- this writer is notified whenever any effective-rib-in is updated
(in any peer). Performs best path selection filtering and stores the
routes in loc-rib. It also determines which routes need to be
advertised and fills in adj-rib-out that is per peer as well.

AdjRibOutListener [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/AdjRibOutListener.java;h=a14fd54a29ea613b381a36248f67491d968963b8;hb=refs/heads/stable/boron]
- listens for changes in adj-rib-out, transforms the routes into
BGPUpdate messages and sends them to its associated peer.

BGP inet

This module contains only one YANG model
bgp-inet.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/inet/src/main/yang/bgp-inet.yang;hb=refs/heads/stable/boron]
that summarizes the ipv4 and ipv6 extensions to RIB routes and BGP
messages.

BGP flowspec

BGP flowspec is a module that implements RFC
5575 [http://tools.ietf.org/html/rfc5575] for IPv4 AFI and
draft-ietf-idr-flow-spec-v6-06 [https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-06]
for IPv6 AFI. The RFC defines an extension to BGP in form of a new
subsequent address family, NLRI and extended communities. All of those
are defined in the
bgp-flowspec.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/flowspec/src/main/yang/bgp-flowspec.yang;hb=refs/heads/stable/boron]
model. In addition to generated sources, the module contains parsers for
newly defined elements and RIBSupport for flowspec-routes. The route key
of flowspec routes is a string representing human-readable flowspec
request.

BGP linkstate

BGP linkstate is a module that implements
draft-ietf-idr-ls-distribution [http://tools.ietf.org/html/draft-ietf-idr-ls-distribution-04]
version 04. The draft defines an extension to BGP in form of a new
address family, subsequent address family, NLRI and path attribute. All
of those are defined in the
bgp-linkstate.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/linkstate/src/main/yang/bgp-linkstate.yang;hb=refs/heads/stable/boron]
model. In addition to generated sources, the module contains
LinkstateAttributeParser [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/linkstate/src/main/java/org/opendaylight/protocol/bgp/linkstate/attribute/LinkstateAttributeParser.java;hb=refs/heads/stable/boron],
LinkstateNlriParser [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/linkstate/src/main/java/org/opendaylight/protocol/bgp/linkstate/nlri/LinkstateNlriParser.java;hb=refs/heads/stable/boron],
activators for both, parser and RIB, and RIBSupport handler for
linkstate address family. As each route needs a key, in case of
linkstate, the route key is defined as a binary string, containing all
the NLRI serialized to byte format. The BGP linkstate extension also
supports distribution of MPLS TE state as defined in
draft-ietf-idr-te-lsp-distribution-03 [https://tools.ietf.org/html/draft-ietf-idr-te-lsp-distribution-03],
extension for Segment Routing
draft-gredler-idr-bgp-ls-segment-routing-ext-00 [https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-00]
and Segment Routing Egress Peer Engineering
draft-ietf-idr-bgpls-segment-routing-epe-02 [https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-02].

BGP labeled-unicast

BGP labeled unicast is a module that implements RFC
3107 [https://tools.ietf.org/html/rfc3107]. The RFC defines an
extension to the BGP MP to carry Label Mapping Information as a part of
the NLRI. The AFI indicates, as usual, the address family of the
associated route. The fact that the NLRI contains a label is indicated
by using SAFI value 4. All of those are defined in
bgp-labeled-unicast.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob_plain;f=bgp/labeled-unicast/src/main/yang/bgp-labeled-unicast.yang;hb=refs/heads/stable/boron]
model. In addition to the generated sources, the module contains new
NLRI codec and RIBSupport. The route key is defined as a binary, where
whole NLRI information is encoded.

BGP topology provider

BGP data besides RIB, is stored in network-topology view. The format of
how the data is displayed there conforms to
draft-clemm-netmod-yang-network-topo [https://tools.ietf.org/html/draft-clemm-netmod-yang-network-topo-01].

API Reference Documentation

Javadocs are generated while creating mvn:site and they are located in
target/ directory in each module.

BGP Monitoring Protocol Developer Guide

Overview

This section provides an overview of feature odl-bgpcep-bmp. This
feature will install everything needed for BMP (BGP Monitoring Protocol)
including establishing the connection, processing messages, storing
information about monitored routers, peers and their Adj-RIB-In
(unprocessed routing information) and Post-Policy Adj-RIB-In and
displaying data in BGP RIBs overview. The OpenDaylight BMP plugin plays
the role of a monitoring station.

Key APIs and Interfaces

Session handling

32-bmp.xml defines only bmp-dispatcher the parser should be using
(global-bmp-extensions).

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">prefix:bmp-dispatcher-impl</type>
 <name>global-bmp-dispatcher</name>
 <bmp-extensions>
 <type xmlns:bmp-spi="urn:opendaylight:params:xml:ns:yang:controller:bmp:spi">bmp-spi:extensions</type>
 <name>global-bmp-extensions</name>
 </bmp-extensions>
 <boss-group>
 <type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-threadgroup</type>
 <name>global-boss-group</name>
 </boss-group>
 <worker-group>
 <type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-threadgroup</type>
 <name>global-worker-group</name>
 </worker-group>
</module>

For user configuration of BMP, check User Guide.

Parser

The base BMP parser includes messages and attributes from
https://tools.ietf.org/html/draft-ietf-grow-bmp-15

Registration

All parsers and serializers need to be registered into Extension
provider. This Extension provider is configured in initial
configuration of the parser (32-bmp.xml).

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bmp:spi">prefix:bmp-extensions-impl</type>
 <name>global-bmp-extensions</name>
 <extension>
 <type xmlns:bmp-spi="urn:opendaylight:params:xml:ns:yang:controller:bmp:spi">bmp-spi:extension</type>
 <name>bmp-parser-base</name>
 </extension>
</module>

	bmp-parser-base - will register parsers and serializers implemented
in bmp-impl module

Parsing

Parsing of BMP elements is mostly done equally to BGP. Some of the BMP
messages includes wrapped BGP messages.

BMP Monitoring Station

The BMP application (Monitoring Station) serves as message processor
incoming from monitored routers. The processed message is transformed
and relevant information is stored. Route information is stored in a BGP
RIB data structure.

BMP data is displayed only through one URL that is accessible from the
base BMP URL:

`http://<controllerIP>:8181/restconf/operational/bmp-monitor:bmp-monitor <http://<controllerIP>:8181/restconf/operational/bmp-monitor:bmp-monitor>`__

Each Monitor station will be displayed and it may contains multiple
monitored routers and peers within:

<bmp-monitor xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor">
 <monitor>
 <monitor-id>example-bmp-monitor</monitor-id>
 <router>
 <router-id>127.0.0.11</router-id>
 <status>up</status>
 <peer>
 <peer-id>20.20.20.20</peer-id>
 <as>72</as>
 <type>global</type>
 <peer-session>
 <remote-port>5000</remote-port>
 <timestamp-sec>5</timestamp-sec>
 <status>up</status>
 <local-address>10.10.10.10</local-address>
 <local-port>220</local-port>
 </peer-session>
 <pre-policy-rib>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <prefix>10.10.10.0/24</prefix>
 <attributes>
 ...
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes>
 <uptodate>true</uptodate>
 </attributes>
 </tables>
 </pre-policy-rib>
 <address>10.10.10.10</address>
 <post-policy-rib>
 ...
 </post-policy-rib>
 <bgp-id>20.20.20.20</bgp-id>
 <stats>
 <timestamp-sec>5</timestamp-sec>
 <invalidated-cluster-list-loop>53</invalidated-cluster-list-loop>
 <duplicate-prefix-advertisements>16</duplicate-prefix-advertisements>
 <loc-rib-routes>100</loc-rib-routes>
 <duplicate-withdraws>11</duplicate-withdraws>
 <invalidated-as-confed-loop>55</invalidated-as-confed-loop>
 <adj-ribs-in-routes>10</adj-ribs-in-routes>
 <invalidated-as-path-loop>66</invalidated-as-path-loop>
 <invalidated-originator-id>70</invalidated-originator-id>
 <rejected-prefixes>8</rejected-prefixes>
 </stats>
 </peer>
 <name>name</name>
 <description>description</description>
 <info>some info;</info>
 </router>
 </monitor>
</bmp-monitor>
</source>

API Reference Documentation

Javadocs are generated while creating mvn:site and they are located in
target/ directory in each module.

BIER Developer Guide

BIER Architecture

	Channel

	Channel (multicast flow) configuration and deploying information management.

	Common

	Common YANG models collection.

	Drivers

	South-bound NETCONF interface for BIER, it has implemented standard interface (ietf-bier).
If your BFR’s NETCONF interface is Non-standard, you should add your own interface for driver.

	Sbi-Adapter

	Adapter for different BIER south-bound NETCONF interfaces.

	Service

	Major processor function for BIER.

	Bierman

	BIER topology management, and BIER information (BIER, BIER-TE, lable info) configuration.

	Pce

	Path computation element for BIER-TE.

	Bierapp

	BIER UI, show topology and configure BIER/BIER-TE and channel.

APIs in BIER

The sections below give details about the configuration settings for
the components that can be configured.

BIER Information Manager

API Description

	bier/bierman/api/src/main/yang/bier-topology-api.yang

	load-topology

	Load BIER topology, and list all topo-name in all BIER topologies.

	configure-domain

	Configure domain in given BIER topology.

	configure-subdomain

	Configure sub-domain in given BIER domain and topology.

	delete-domain

	Delete given domain in given topology.

	delete-subdomain

	Delete given sub-domain in given domain and topology.

	query-topology

	Query given topology in BIER topology, and then display this
topology’s detail, such as information of node and link.

	query-node

	Query given nodes in given topology, and then display these nodes’
detail, such as information of node-name, router-id,
termination-point list, BIER domain and sub-domain list, etc.

	query-link

	Query given link in given topology, and then display this link’s detail.

	query-domain

	Query domain in given BIER topology, and then display the domain-id list.

	query-subdomain

	Query sub-domain in given domain and given topology, and then display
the sub-domain-id list.

	query-subdomain-node

	Query nodes which have been assigned to given sub-domain and domain in given
topology, and then display these nodes’ details.

	query-subdomain-link

	Query links which have been assigned to given sub-domain and domain in given
topology, and then display these links’ details.

	query-te-subdomain-node

	Query te-nodes which have been assigned to given sub-domain and domain in given
topology, and then display these te-nodes’ details.

	query-te-subdomain-link

	Query te-links which have been assigned to given sub-domain and domain in given
topology, and then display these te-links’ details.

	bier/bierman/api/src/main/yang/bier-config-api.yang

	configure-node

	Configure node information in given topology, which defined in ietf-bier,
such as domains, sub-domains, bitstringlength, bfr-id, encapsulation-type, etc.

	delete-node

	Delete given node which be assigned to given sub-domain and domain in
given topology.

	delete-ipv4

	Delete bier mapping entry of ipv4.

	delete-ipv6

	Delete bier mapping entry of ipv6.

	bier/bierman/api/src/main/yang/bier-te-config-api.yang

	configure-te-node

	Configure adjancency information for node, such as domains, sub-domains, si,
bitstringlength, tpid, bitposition, etc.

	configure-te-label

	Configure BIER-TE label range for node.

	delete-te-babel

	Delete BIER-TE label range of node.

	delete-te-bsl

	Delete BIER-TE bitstringlength, including all SIs which belongs to this bitstringlenght.

	delete-te-si

	Delete BIER-TE SI, including all bitpositions which belongs to this SI.

	delete-te-bp

	Delete BIER-TE bitposition of an adjancency.

Parameters Description

	topology-id

	BIER topology identifier.

	node-id

	Node identifier in network topology.

	latitude

	Node’s latitude, default value is 0.

	longitude

	Node’s longitude, default value is 0.

	tp-id

	Termination point identifier.

	domain-id

	BIER domain identifier.

	encapsulation-type

	Base identity for BIER encapsulation. Default value is “bier-encapsulation-mpls”.

	bitstringlength

	The bitstringlength type for imposition mode. It’s value can be chosen from 64,
128, 256, 512, 1024, 2048, and 4096.

	The BitStringLength (“Imposition BitStringLength”) and sub-domain (“Imposition
sub-domain”) to use when it imposes (as a BFIR) a BIER encapsulation on a
particular set of packets.

	bfr-id

	BIER bfr identifier. BFR-id is a number in the range [1, 65535].

	Bfr-id is unique within the sub-domain. A BFR-id is a small unstructured positive
integer. For instance, if a particular BIER sub-domain contains 1, 374 BFRs, each
one could be given a BFR-id in the range 1-1374.

	If a given BFR belongs to more than one sub-domain, it may (though it need not)
have a different BFR-id for each sub-domain.

	ipv4-bfr-prefix

	BIER BFR IPv4 prefix.

	A BFR’s BFR-Prefix MUST be an IP address (either IPv4 or IPv6) of the BFR, and MUST be
unique and routable within the BIER domain. It is RECOMMENDED that the BFR-prefix be a
loopback address of the BFR. Two BFRs in the same BIER domain MUST NOT be assigned the
same BFR-Prefix. Note that a BFR in a given BIER domain has the same BFR-prefix in all
the sub-domains of that BIER domain.

	ipv6-bfr-prefix

	BIER BFR IPv6 prefix.

	sub-domain-id

	Sub-domain identifier. Each sub-domain is identified by a sub-domain-id in the range [0, 255].

	A BIER domain may contain one or more sub-domains. Each BIER domain MUST contain at least one
sub-domain, the “default sub-domain” (also denoted “sub-domain zero”). If a BIER domain
contains more than one sub-domain, each BFR in the domain MUST be provisioned to know the set
of sub-domains to which it belongs.

	igp-type

	The IGP type. Enum type contains OSPF and ISIS.

	mt-id

	Multi-topology associated with BIER sub-domain.

	bitstringlength

	Disposition bitstringlength.

	The BitStringLengths (“Disposition BitStringLengths”) that it will process when
(as a BFR or BFER) it receives packets from a particular sub-domain.

	bier-mpls-label-base

	BIER mpls-label, range in [0, 1048575].

	bier-mpls-label-range-size

	BIER mpls-label range size.

	link-id

	The identifier of a link in the topology.

	A link is specific to a topology to which it belongs.

	source-node

	Source node identifier, must be in same topology.

	source-tp

	Termination point within source node that terminates the link.

	dest-node

	Destination node identifier and must be in same topology.

	dest-tp

	Termination point within destination node that terminates the link.

	delay

	The link delay, default value is 0.

	loss

	The number of packet loss on the link and default value is 0.

Channel Manager

API Description

	bier/channel/api/src/main/yang/bier-channel-api.yang

	get-channel

	Display all channel’s names in given BIER topology.

	query-channel

	Query specific channel in given topology and display this channel’s information (multicast
flow information and related BFIR,BFER information).

	add-channel

	Create channel with multicast information in given BIER topology.

	modify-channel

	Modify the channel’s information which created above.

	remove-channel

	Remove given channel in given topology.

	deploy-channel

	Deploy channel, and configure BFIR and BFERs about this multicast flow in given topology.

Parameters Description

	topology-id

	BIER topology identifier.

	channel-name

	BIER channel (multicast flow information) name.

	src-ip

	The IPv4 of multicast source. The value set to zero means that the receiver interests in
all source that relevant to one group.

	dst-group

	The IPv4 of multicast group.

	domain-id

	BIER domain identifier.

	sub-domain-id

	BIER sub-domain identifier.

	source-wildcard

	The wildcard information of source, in the range [1, 32].

	group-wildcard

	The wildcard information of multi-cast group, in the range [1, 32].

	ingress-node

	BFIR (Bit-Forwarding Ingress Router).

	ingress-bfr-id

	The bfr-id of BRIR.

	egress-node

	BFER (Bit-Forwarding Egress Router).

	egress-bfr-id

	The bfr-id of BRER.

	bier-forwarding-type

	The forwarding type, enum type contains BIER and BIER-TE.

Note

For more information about BIER terminology, see YANG Data Model for BIER Protocol [https://datatracker.ietf.org/doc/draft-ietf-bier-bier-yang/?include_text=1].

Sample Configurations

1. Configure Domain And Sub-domain

1.1. Configure Domain

REST API : POST /restconf/operations/bier-topology-api:configure-domain

Sample JSON Data

{
 "input": {
 "topo-id": " bier-topo" ,
 "domain ":[
 {
 "domain-id": " 1",
 },
 {
 "domain-id": " 2",
 }
]
 }
}

1.2. Configure Sub-domain

REST API : POST /restconf/operations/bier-topology-api:configure-subdomain

Sample JSON Data

{
 "input": {
 "topo-id": " bier-topo" ,
 "domain-id":" 1",
 "sub-domain":[
 {
 "sub-domain-id":" 0",
 },
 {
 "sub-domain-id":"1",
 }
]
 }
}

2. Configure Node

2.1. Configure BIER Parameters

REST API : POST /restconf/operations/bier-config-api:configure-node

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "node-id": "node1",
 "domain": [
 {
 "domain-id": "2",
 "bier-global": {
 "sub-domain": [
 {
 "sub-domain-id": "0",
 "igp-type": "ISIS",
 "mt-id": "1",
 "bfr-id": "3",
 "bitstringlength": "64-bit",
 "af": {
 "ipv4": [
 {
 "bitstringlength": "64",
 "bier-mpls-label-base": "56",
 "bier-mpls-label-range-size": "100"
 }
]
 }
 }
],
 "encapsulation-type": "bier-encapsulation-mpls",
 "bitstringlength": "64-bit",
 "bfr-id": "33",
 "ipv4-bfr-prefix": "192.168.1.1/24",
 "ipv6-bfr-prefix": "1030:0:0:0:C9B4:FF12:48AA:1A2B/60"
 }
 }
]
 }
}

2.2. Configure BIER-TE label

REST API : POST /restconf/operations/bier-te-config-api:configure-te-label

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "node-id": "node1",
 "label-base": "100",
 "label-range-size": "20"
 }
}

2.3. Configure BIER-TE Parameters

REST API : POST /restconf/operations/bier-te-config-api:configure-te-node

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "node-id": "node1",
 "te-domain": [
 {
 "domain-id": "1",
 "te-sub-domain": [
 {
 "sub-domain-id": "0",
 "te-bsl": [
 {
 "bitstringlength": "64-bit",
 "te-si": [
 {
 "si": "1",
 "te-bp": [
 {
 "tp-id":"tp1",
 "bitposition": "1"
 }
]
 }
]
 }
]
 }
]
 }
]
 }
}

3. Query BIER Topology Information

3.1. Load Topology

REST API : POST /restconf/operations/bier-topology-api:load-topology

no request body.

3.2. Query Topology

REST API : POST /restconf/operations/bier-topology-api:query-topology

Sample JSON Data

{
 "input": {
 "topo-id": "bier-topo"
 }
}

3.3. Query BIER Node

REST API : POST /restconf/operations/bier-topology-api:query-node

Sample JSON Data

{
 "input": {
 "topo-id": "bier-topo",
 "node-id": "node1"
 }
}

3.4. Query BIER Link

REST API : POST /restconf/operations/bier-topology-api:query-link

Sample JSON Data

{
 "input": {
 "topo-id": "bier-topo",
 "node-id": "node1"
 }
}

3.5. Query Domain

REST API : POST /restconf/operations/bier-topology-api:query-domain

Sample JSON Data

{
 "input": {
 "topo-id": "bier-topo"
 }
}

3.6. Query Sub-domain

REST API : POST /restconf/operations/bier-topology-api:query-subdomain

Sample JSON Data

{
 "input": {
 "topo-id": "bier-topo",
 "domain-id": "1"
 }
}

3.7. Query Sub-domain Node

REST API : POST /restconf/operations/bier-topology-api:query-subdomain-node

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "domain-id": "1",
 "sub-domain-id": "0"
 }
}

3.8. Query Sub-domain Link

REST API : POST /restconf/operations/bier-topology-api:query-subdomain-link

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "domain-id": "1",
 "sub-domain-id": "0"
 }
}

3.9. Query BIER-TE Sub-domain Node

REST API : POST /restconf/operations/bier-topology-api:query-te-subdomain-node

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "domain-id": "1",
 "sub-domain-id": "0"
 }
}

3.10. Query BIER-TE Sub-domain Link

REST API : POST /restconf/operations/bier-topology-api:query-te-subdomain-link

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "domain-id": "1",
 "sub-domain-id": "0"
 }
}

4. BIER Channel Configuration

4.1. Configure Channel

REST API : POST /restconf/operations/bier-channel-api:add-channel

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "name": "channel-1",
 "src-ip": "1.1.1.1",
 "dst-group": "224.1.1.1",
 "domain-id": "1",
 "sub-domain-id": "11",
 "source-wildcard": "24",
 "group-wildcard": "30"
 }
}

4.2. Modify Channel

REST API : POST /restconf/operations/bier-channel-api:modify-channel

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "name": "channel-1",
 "src-ip": "2.2.2.2",
 "dst-group": "225.1.1.1",
 "domain-id": "1",
 "sub-domain-id": "11",
 "source-wildcard": "24",
 "group-wildcard": "30"
 }
}

5. Deploy Channel

REST API : POST /restconf/operations/bier-channel-api:deploy-channel

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "channel-name": "channel-1",
 "bier-forwarding-type":"bier-te"
 "ingress-node": "node1",
 "egress-node": [
 {
 "node-id": "node2"
 },
 {
 "node-id": "node3"
 }
]
 }
}

6. Query Channel Information

6.1. Get Channel

REST API : POST /restconf/operations/bier-channel-api:get-channel

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo"
 }
}

6.2. Query Channel

REST API : POST /restconf/operations/bier-channel-api:query-channel

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "channel-name": [
 "channel-1",
 "channel-2"
]
 }
}

7. Remove Channel

REST API : POST /restconf/operations/bier-channel-api:remove-channel

Sample JSON Data

{
 "input": {
 "topology-id": "bier-topo",
 "channel-name": "channel-1"
 }
}

8. Delete BIER and BIER-TE Configuration

8.1. Delete BIER Node

REST API : POST /restconf/operations/bier-config-api:delete-node

Sample JSON Data

{
 "input": {
 "topo-id": "bier-topo",
 "node-id": "node3",
 "domain-id": "1",
 "subdomain-id": "0"
 }
}

8.2. Delete IPv4 of BIER Node

REST API : POST /restconf/operations/bier-config-api:delete-ipv4

Sample JSON Data

{
 input: {
 "topology-id": "bier-topo",
 "domain-id": "1",
 "sub-domain-id": "0",
 "node-id": "node1",
 "ipv4": {
 "bier-mpls-label-base": "10",
 "bier-mpls-label-range-size": "16",
 "bitstringlength": "64"
 }
 }
}

8.3. Delete IPv6 of BIER Node

REST API : POST /restconf/operations/bier-config-api:delete-ipv6

Sample JSON Data

{
 input: {
 "topology-id": "bier-topo",
 "domain-id": "1",
 "sub-domain-id": "0",
 "node-id": "node1",
 "ipv6": {
 "bier-mpls-label-base": "10",
 "bier-mpls-label-range-size": "16",
 "bitstringlength": "64"
 }
 }
}

8.4. Delete BIER-TE BSL

REST API : POST /restconf/operations/bier-te-config-api:delete-te-bsl

Sample JSON Data

{
 input:{
 "topology-id": "bier-topo",
 "node-id": "node1",
 "domain-id": "1",
 "sub-domain-id": "0",
 "bitstringlength": "64-bit"
 }
}

8.5. Delete BIER-TE SI

REST API : POST /restconf/operations/bier-te-config-api:delete-te-si

Sample JSON Data

{
 input:{
 "topology-id": "bier-topo",
 "node-id": "node1",
 "domain-id": "1",
 "sub-domain-id": "0",
 "bitstringlength": "64-bit",
 "si": "1"
 }
}

8.6. Delete BIER-TE BP

REST API : POST /restconf/operations/bier-te-config-api:delete-te-bp

Sample JSON Data

{
 input: {
 "topology-id": "bier-topo",
 "node-id": "node1",
 "domain-id": "1",
 "sub-domain-id": "0",
 "bitstringlength": "64-bit",
 "si": "1",
 "tp-id": "tp1"
 }
}

8.7. Delete BIER-TE Label

REST API : POST /restconf/operations/bier-te-config-api:delete-te-label

Sample JSON Data

{
 "input": {
 "topo-id": "bier-topo",
 "node-id": "node1"
 }
}

8.8. Delete Sub-domain

REST API : POST /restconf/operations/bier-topology-api:delete-subdomian

Sample JSON Data

{
 "input": {
 "topo-id": "bier-topo",
 "domain-id": "1",
 "subdomain-id": "0"
 }
}

8.9. Delete Domain

REST API : POST /restconf/operations/bier-topology-api:delete-domian

Sample JSON Data

{
 "input": {
 "topo-id": "bier-topo",
 "domain-id": "1"
 }
}

CAPWAP Developer Guide

Overview

The Control And Provisioning of Wireless Access Points (CAPWAP) plugin
project aims to provide new southbound interface for controller to be
able to monitor and manage CAPWAP compliant wireless termination point
(WTP) network devices. The CAPWAP feature will provide REST based
northbound APIs.

CAPWAP Architecture

The CAPWAP feature is implemented as an MD-SAL based provider module,
which helps discover WTP devices and update their states in the MD-SAL
operational datastore.

CAPWAP APIs and Interfaces

This section describes the APIs for interacting with the CAPWAP plugin.

Discovered WTPs

The CAPWAP project maintains list of discovered CAPWAP WTPs that is
YANG-based in MD-SAL. These models are available via RESTCONF.

	Name: Discovered-WTPs

	URL:
http://${ipaddress}:8181/restconf/operational/capwap-impl:capwap-ac-root/

	Description: Displays list of discovered WTPs and their basic
attributes

API Reference Documentation

Go to
http://${ipaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the capwap-impl panel. From there, users can execute
various API calls to test their CAPWAP deployment.

Cardinal: OpenDaylight Monitoring as a Service

Overview

Cardinal (OpenDaylight Monitoring as a Service) enables OpenDaylight and
the underlying software defined network to be remotely monitored by
deployed Network Management Systems (NMS) or Analytics suite. In the
Boron release, Cardinal adds:

	OpenDaylight MIB.

	Enable ODL diagnostics/monitoring to be exposed across SNMP (v2c, v3)
and REST north-bound.

	Extend ODL System health, Karaf parameter and feature info, ODL
plugin scalability and network parameters.

	Support autonomous notifications (SNMP Traps).

Cardinal Architecture

The Cardinal architecture can be found at the below link:

https://wiki.opendaylight.org/images/8/89/Cardinal-ODL_Monitoring_as_a_Service_V2.pdf

Key APIs and Interfaces

There are 6 main APIs for requesting snmpget request of the Karaf info,
System info, Openflow devices and Netconf Devices. To expose these APIs,
it assumes that you already have the odl-cardinal and odl-restconf
features installed. You can do that by entering the following at the Karaf console:

feature:install odl-cardinal
feature:install odl-restconf-all
feature:install odl-l2switch-switch
feature:install odl-netconf-all
feature:install odl-netconf-connector-all
feature:install odl-netconf-mdsal
feature:install cardinal-features4
feature:install odl-cardinal-api
feature:install odl-cardinal-ui
feature:install odl-cardinal-rest

System Info APIs

Open the REST interface and using the basic authentication, execute REST
APIs for system info as:

http://localhost:8181/restconf/operational/cardinal:CardinalSystemInfo/

You should get the response code of the same as 200 OK with the
following output as:

{
 "CardinalSystemInfo": {
 "odlSystemMemUsage": " 9",
 "odlSystemSysInfo": " OpenDaylight Node Information",
 "odlSystemOdlUptime": " 00:29",
 "odlSystemCpuUsage": " 271",
 "odlSystemHostAddress": " Address of the Host should come up"
 }
}

Karaf Info APIs

Open the REST interface and using the basic authentication, execute REST
APIs for system info as:

http://localhost:8181/restconf/operational/cardinal-karaf:CardinalKarafInfo/

You should get the response code of the same as 200 OK with the
following output as:

 {
 "CardinalKarafInfo": {
 "odlKarafBundleListActive1": " org.ops4j.pax.url.mvn_2.4.5 [1]",
 "odlKarafBundleListActive2": " org.ops4j.pax.url.wrap_2.4.5 [2]",
 "odlKarafBundleListActive3": " org.ops4j.pax.logging.pax-logging-api_1.8.4 [3]",
 "odlKarafBundleListActive4": " org.ops4j.pax.logging.pax-logging-service_1.8.4 [4]",
 "odlKarafBundleListActive5": " org.apache.karaf.service.guard_3.0.6 [5]",
 "odlKarafBundleListActive6": " org.apache.felix.configadmin_1.8.4 [6]",
 "odlKarafBundleListActive7": " org.apache.felix.fileinstall_3.5.2 [7]",
 "odlKarafBundleListActive8": " org.objectweb.asm.all_5.0.3 [8]",
 "odlKarafBundleListActive9": " org.apache.aries.util_1.1.1 [9]",
 "odlKarafBundleListActive10": " org.apache.aries.proxy.api_1.0.1 [10]",
 "odlKarafBundleListInstalled1": " org.ops4j.pax.url.mvn_2.4.5 [1]",
 "odlKarafBundleListInstalled2": " org.ops4j.pax.url.wrap_2.4.5 [2]",
 "odlKarafBundleListInstalled3": " org.ops4j.pax.logging.pax-logging-api_1.8.4 [3]",
 "odlKarafBundleListInstalled4": " org.ops4j.pax.logging.pax-logging-service_1.8.4 [4]",
 "odlKarafBundleListInstalled5": " org.apache.karaf.service.guard_3.0.6 [5]",
 "odlKarafFeatureListInstalled1": " config",
 "odlKarafFeatureListInstalled2": " region",
 "odlKarafFeatureListInstalled3": " package",
 "odlKarafFeatureListInstalled4": " http",
 "odlKarafFeatureListInstalled5": " war",
 "odlKarafFeatureListInstalled6": " kar",
 "odlKarafFeatureListInstalled7": " ssh",
 "odlKarafFeatureListInstalled8": " management",
 "odlKarafFeatureListInstalled9": " odl-netty",
 "odlKarafFeatureListInstalled10": " odl-lmax",
 "odlKarafBundleListResolved1": " org.ops4j.pax.url.mvn_2.4.5 [1]",
 "odlKarafBundleListResolved2": " org.ops4j.pax.url.wrap_2.4.5 [2]",
 "odlKarafBundleListResolved3": " org.ops4j.pax.logging.pax-logging-api_1.8.4 [3]",
 "odlKarafBundleListResolved4": " org.ops4j.pax.logging.pax-logging-service_1.8.4 [4]",
 "odlKarafBundleListResolved5": " org.apache.karaf.service.guard_3.0.6 [5]",
 "odlKarafFeatureListUnInstalled1": " aries-annotation",
 "odlKarafFeatureListUnInstalled2": " wrapper",
 "odlKarafFeatureListUnInstalled3": " service-wrapper",
 "odlKarafFeatureListUnInstalled4": " obr",
 "odlKarafFeatureListUnInstalled5": " http-whiteboard",
 "odlKarafFeatureListUnInstalled6": " jetty",
 "odlKarafFeatureListUnInstalled7": " webconsole",
 "odlKarafFeatureListUnInstalled8": " scheduler",
 "odlKarafFeatureListUnInstalled9": " eventadmin",
 "odlKarafFeatureListUnInstalled10": " jasypt-encryption"
 }
}

OpenFlowInfo Apis

Open the REST interface and using the basic authentication, execute REST APIs for system info as:

http://localhost:8181/restconf/operational/cardinal-openflow:Devices

You should get the response code of the same as 200 OK with the following output as:

{
 "Devices": {
 "openflow": [
 {
 "macAddress": "6a:80:ef:06:d3:46",
 "status": "Connected",
 "flowStats": " ",
 "interface": "s1",
 "manufacturer": "Nicira, Inc.",
 "nodeName": "openflow:1:LOCAL",
 "meterStats": " "
 },
 {
 "macAddress": "32:56:c7:41:5d:9a",
 "status": "Connected",
 "flowStats": " ",
 "interface": "s2-eth2",
 "manufacturer": "Nicira, Inc.",
 "nodeName": "openflow:2:2",
 "meterStats": " "
 },
 {
 "macAddress": "36:a8:3b:fe:e2:21",
 "status": "Connected",
 "flowStats": " ",
 "interface": "s3-eth1",
 "manufacturer": "Nicira, Inc.",
 "nodeName": "openflow:3:1",
 "meterStats": " "
 }
]
 }
}

Configuration for Netconf Devices:-

	To configure or update a netconf-connector via topology you need to send following request to Restconf:

Method: PUT
URI: http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device
Headers:
Accept: application/xml
Content-Type: application/xml

Payload:

<node xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <node-id>new-netconf-device</node-id>
 <host xmlns="urn:opendaylight:netconf-node-topology">127.0.0.1</host>
 <port xmlns="urn:opendaylight:netconf-node-topology">17830</port>
 <username xmlns="urn:opendaylight:netconf-node-topology">admin</username>
 <password xmlns="urn:opendaylight:netconf-node-topology">admin</password>
 <tcp-only xmlns="urn:opendaylight:netconf-node-topology">false</tcp-only>
 <keepalive-delay xmlns="urn:opendaylight:netconf-node-topology">0</keepalive-delay>
</node>

2. To delete a netconf connector issue a DELETE request to the following url:
URI:http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device

NetConf Info Apis
Open the REST interface and using the basic authentication, execute REST APIs for system info as:

http://localhost:8181/restconf/operational/cardinal-netconf:Devices

You should get the response code of the same as 200 OK with the following output as:

{
 "Devices": {
 "netconf": [
 {
 "status": "connecting",
 "host": "127.0.0.1",
 "nodeId": "new-netconf-device1",
 "port": "17830"
 },
 {
 "status": "connecting",
 "host": "127.0.0.1",
 "nodeId": "new-netconf-device",
 "port": "17830"
 },
 {
 "status": "connecting",
 "host": "127.0.0.1",
 "nodeId": "controller-config",
 "port": "1830"
 }
]
 }
}

Controller

Overview

OpenDaylight Controller is Java-based, model-driven controller using
YANG as its modeling language for various aspects of the system and
applications and with its components serves as a base platform for other
OpenDaylight applications.

The OpenDaylight Controller relies on the following technologies:

	OSGI - This framework is the back-end of OpenDaylight as it
allows dynamically loading of bundles and packages JAR files, and
binding bundles together for exchanging information.

	Karaf - Application container built on top of OSGI, which
simplifies operational aspects of packaging and installing
applications.

	YANG - a data modeling language used to model configuration and
state data manipulated by the applications, remote procedure calls,
and notifications.

The OpenDaylight Controller provides following model-driven subsystems
as a foundation for Java applications:

	Config Subsystem - an activation,
dependency-injection and configuration framework, which allows
two-phase commits of configuration and dependency-injection, and
allows for run-time rewiring.

	MD-SAL - messaging and data storage
functionality for data, notifications and RPCs modeled by application
developers. MD-SAL uses YANG as the modeling for both interface and
data definitions, and provides a messaging and data-centric runtime
for such services based on YANG modeling.

	MD-SAL Clustering - enables cluster support for core MD-SAL
functionality and provides location-transparent accesss to
YANG-modeled data.

The OpenDaylight Controller supports external access to applications and
data using following model-driven protocols:

	NETCONF - XML-based RPC protocol, which provides abilities for
client to invoke YANG-modeled RPCs, receive notifications and to
read, modify and manipulate YANG modeled data.

	RESTCONF - HTTP-based protocol, which provides REST-like APIs to
manipulate YANG modeled data and invoke YANG modeled RPCs, using XML
or JSON as payload format.

MD-SAL Overview

The Model-Driven Service Adaptation Layer (MD-SAL) is message-bus
inspired extensible middleware component that provides messaging and
data storage functionality based on data and interface models defined by
application developers (i.e. user-defined models).

The MD-SAL:

	Defines a common-layer, concepts, data model building blocks and
messaging patterns and provides infrastructure / framework for
applications and inter-application communication.

	Provide common support for user-defined transport and payload
formats, including payload serialization and adaptation (e.g. binary,
XML or JSON).

The MD-SAL uses YANG as the modeling language for both interface and
data definitions, and provides a messaging and data-centric runtime for
such services based on YANG modeling.

The MD-SAL provides two different API types (flavours):

	MD-SAL Binding: MD-SAL APIs which extensively uses APIs and
classes generated from YANG models, which provides compile-time
safety.

	MD-SAL DOM: (Document Object Model) APIs which uses DOM-like
representation of data, which makes them more powerful, but provides
less compile-time safety.

Note

Model-driven nature of the MD-SAL and DOM-based APIs allows for
behind-the-scene API and payload type mediation and transformation
to facilitate seamless communication between applications - this
enables for other components and applications to provide connectors
/ expose different set of APIs and derive most of its functionality
purely from models, which all existing code can benefit from without
modification. For example RESTCONF Connector is an application
built on top of MD-SAL and exposes YANG-modeled application APIs
transparently via HTTP and adds support for XML and JSON payload
type.

Basic concepts

Basic concepts are building blocks which are used by applications, and
from which MD-SAL uses to define messaging patterns and to provide
services and behavior based on developer-supplied YANG models.

	Data Tree

	All state-related data are modeled and represented as data tree,
with possibility to address any element / subtree

	Operational Data Tree - Reported state of the system,
published by the providers using MD-SAL. Represents a feedback
loop for applications to observe state of the network / system.

	Configuration Data Tree - Intended state of the system or
network, populated by consumers, which expresses their intention.

	Instance Identifier

	Unique identifier of node / subtree in data tree, which provides
unambiguous information, how to reference and retrieve node /
subtree from conceptual data trees.

	Notification

	Asynchronous transient event which may be consumed by subscribers
and they may act upon it

	RPC

	asynchronous request-reply message pair, when request is triggered
by consumer, send to the provider, which in future replies with
reply message.

Note

In MD-SAL terminology, the term RPC is used to define the
input and output for a procedure (function) that is to be
provided by a provider, and mediated by the MD-SAL, that means
it may not result in remote call.

Messaging Patterns

MD-SAL provides several messaging patterns using broker derived from
basic concepts, which are intended to transfer YANG modeled data between
applications to provide data-centric integration between applications
instead of API-centric integration.

	Unicast communication

	Remote Procedure Calls - unicast between consumer and
provider, where consumer sends request message to provider,
which asynchronously responds with reply message

	Publish / Subscribe

	Notifications - multicast transient message which is published
by provider and is delivered to subscribers

	Data Change Events - multicast asynchronous event, which is
sent by data broker if there is change in conceptual data tree,
and is delivered to subscribers

	Transactional access to Data Tree

	Transactional reads from conceptual data tree - read-only
transactions with isolation from other running transactions.

	Transactional modification to conceptual data tree - write
transactions with isolation from other running transactions.

	Transaction chaining

MD-SAL Data Transactions

MD-SAL Data Broker provides transactional access to conceptual
data trees representing configuration and operational state.

Note

Data tree usually represents state of the modeled data, usually
this is state of controller, applications and also external systems
(network devices).

Transactions provide stable and isolated
view from other currently running
transactions. The state of running transaction and underlying data tree
is not affected by other concurrently running transactions.

	Write-Only

	Transaction provides only modification capabilities, but does not
provide read capabilities. Write-only transaction is allocated using
newWriteOnlyTransaction().

Note

This allows less state tracking for write-only transactions and
allows MD-SAL Clustering to optimize internal representation of
transaction in cluster.

	Read-Write

	Transaction provides both read and write capabilities. It is
allocated using newReadWriteTransaction().

	Read-Only

	Transaction provides stable read-only view based on current data
tree. Read-only view is not affected by any subsequent write
transactions. Read-only transaction is allocated using
newReadOnlyTransaction().

Note

If an application needs to observe changes itself in data tree,
it should use data tree listeners instead of read-only
transactions and polling data tree.

Transactions may be allocated using the data broker itself or using
transaction chain. In the case of transaction chain, the new
allocated transaction is not based on current state of data tree, but
rather on state introduced by previous transaction from the same chain,
even if the commit for previous transaction has not yet occurred (but
transaction was submitted).

Write-Only & Read-Write Transaction

Write-Only and Read-Write transactions provide modification capabilities
for the conceptual data trees.

	application allocates new transactions using
newWriteOnlyTransaction() or newReadWriteTransaction().

	application modifies data tree
using put, merge and/or delete.

	application finishes transaction using
submit(), which seals transaction
and submits it to be processed.

	application observes the result of the transaction commit using
either blocking or asynchronous calls.

The initial state of the write transaction is a stable snapshot
of the current data tree state captured when transaction was created and
it’s state and underlying data tree are not affected by other
concurrently running transactions.

Write transactions are isolated from other concurrent write
transactions. All writes are local
to the transaction and represents only a proposal of state change
for data tree and are not visible to any other concurrently running
transactions (including read-only transactions).

The transaction commit may fail due
to failing verification of data or concurrent transaction modifying and
affected data in an incompatible way.

Modification of Data Tree

Write-only and read-write transaction provides following methods to
modify data tree:

	put

	<T> void put(LogicalDatastoreType store, InstanceIdentifier<T> path, T data);

Stores a piece of data at a specified path. This acts as an add /
replace operation, which is to say that whole subtree will be
replaced by the specified data.

	merge

	<T> void merge(LogicalDatastoreType store, InstanceIdentifier<T> path, T data);

Merges a piece of data with the existing data at a specified path.
Any pre-existing data which are not explicitly overwritten
will be preserved. This means that if you store a container, its
child subtrees will be merged.

	delete

	void delete(LogicalDatastoreType store, InstanceIdentifier<?> path);

Removes a whole subtree from a specified path.

Submitting transaction

Transaction is submitted to be processed and committed using following
method:

CheckedFuture<Void,TransactionCommitFailedException> submit();

Applications publish the changes proposed in the transaction by calling
submit() on the transaction. This seals the transaction
(preventing any further writes using this transaction) and submits it to
be processed and applied to global conceptual data tree. The
submit() method does not block, but rather returns
ListenableFuture, which will complete successfully once processing
of transaction is finished and changes are applied to data tree. If
commit of data failed, the future will fail with
TransactionFailedException.

Application may listen on commit state asynchronously using
ListenableFuture.

Futures.addCallback(writeTx.submit(), new FutureCallback<Void>() {
 public void onSuccess(Void result) {
 LOG.debug("Transaction committed successfully.");
 }

 public void onFailure(Throwable t) {
 LOG.error("Commit failed.",e);
 }
 });

	Submits writeTx and registers application provided
FutureCallback on returned future.

	Invoked when future completed successfully - transaction writeTx
was successfully committed to data tree.

	Invoked when future failed - commit of transaction writeTx
failed. Supplied exception provides additional details and cause of
failure.

If application need to block till commit is finished it may use
checkedGet() to wait till commit is finished.

try {
 writeTx.submit().checkedGet();
} catch (TransactionCommitFailedException e) {
 LOG.error("Commit failed.",e);
}

	Submits writeTx and blocks till commit of writeTx is
finished. If commit fails TransactionCommitFailedException will
be thrown.

	Catches TransactionCommitFailedException and logs it.

Transaction local state

Read-Write transactions maintain transaction-local state, which renders
all modifications as if they happened, but this is only local to
transaction.

Reads from the transaction returns data as if the previous modifications
in transaction already happened.

Let assume initial state of data tree for PATH is A.

ReadWriteTransaction rwTx = broker.newReadWriteTransaction();

rwRx.read(OPERATIONAL,PATH).get();
rwRx.put(OPERATIONAL,PATH,B);
rwRx.read(OPERATIONAL,PATH).get();
rwRx.put(OPERATIONAL,PATH,C);
rwRx.read(OPERATIONAL,PATH).get();

	Allocates new ReadWriteTransaction.

	Read from rwTx will return value A for PATH.

	Writes value B to PATH using rwTx.

	Read will return value B for PATH, since previous write
occurred in same transaction.

	Writes value C to PATH using rwTx.

	Read will return value C for PATH, since previous write
occurred in same transaction.

Transaction isolation

Running (not submitted) transactions are isolated from each other and
changes done in one transaction are not observable in other currently
running transaction.

Lets assume initial state of data tree for PATH is A.

ReadOnlyTransaction txRead = broker.newReadOnlyTransaction();
ReadWriteTransaction txWrite = broker.newReadWriteTransaction();

txRead.read(OPERATIONAL,PATH).get();
txWrite.put(OPERATIONAL,PATH,B);
txWrite.read(OPERATIONAL,PATH).get();
txWrite.submit().get();
txRead.read(OPERATIONAL,PATH).get();
txAfterCommit = broker.newReadOnlyTransaction();
txAfterCommit.read(OPERATIONAL,PATH).get();

	Allocates read only transaction, which is based on data tree which
contains value A for PATH.

	Allocates read write transaction, which is based on data tree which
contains value A for PATH.

	Read from read-only transaction returns value A for PATH.

	Data tree is updated using read-write transaction, PATH contains
B. Change is not public and only local to transaction.

	Read from read-write transaction returns value B for PATH.

	Submits changes in read-write transaction to be committed to data
tree. Once commit will finish, changes will be published and PATH
will be updated for value B. Previously allocated transactions
are not affected by this change.

	Read from previously allocated read-only transaction still returns
value A for PATH, since it provides stable and isolated view.

	Allocates new read-only transaction, which is based on data tree,
which contains value B for PATH.

	Read from new read-only transaction return value B for PATH
since read-write transaction was committed.

Note

Examples contain blocking calls on future only to illustrate that
action happened after other asynchronous action. The use of the
blocking call ListenableFuture#get() is discouraged for most
use-cases and you should use
Futures#addCallback(ListenableFuture, FutureCallback) to listen
asynchronously for result.

Commit failure scenarios

A transaction commit may fail because of following reasons:

	Optimistic Lock Failure

	Another transaction finished earlier and modified the same node in
a non-compatible way. The commit (and the returned future) will
fail with an OptimisticLockFailedException.

It is the responsibility of the caller to create a new transaction
and submit the same modification again in order to update data tree.

Warning

OptimisticLockFailedException usually exposes multiple
writers to the same data subtree, which may conflict on same
resources.

In most cases, retrying may result in a probability of success.

There are scenarios, albeit unusual, where any number of retries
will not succeed. Therefore it is strongly recommended to limit
the number of retries (2 or 3) to avoid an endless loop.

	Data Validation

	The data change introduced by this transaction did not pass
validation by commit handlers or data was incorrectly structured.
The returned future will fail with a
DataValidationFailedException. User should not retry to
create new transaction with same data, since it probably will fail
again.

Example conflict of two transactions

This example illustrates two concurrent transactions, which derived from
same initial state of data tree and proposes conflicting modifications.

WriteTransaction txA = broker.newWriteTransaction();
WriteTransaction txB = broker.newWriteTransaction();

txA.put(CONFIGURATION, PATH, A);
txB.put(CONFIGURATION, PATH, B);

CheckedFuture<?,?> futureA = txA.submit();
CheckedFuture<?,?> futureB = txB.submit();

	Updates PATH to value A using txA

	Updates PATH to value B using txB

	Seals & submits txA. The commit will be processed asynchronously
and data tree will be updated to contain value A for PATH.
The returned ‘ListenableFuture’ will complete successfully once state
is applied to data tree.

	Seals & submits txB. Commit of txB will fail, because
previous transaction also modified path in a concurrent way. The
state introduced by txB will not be applied. The returned
ListenableFuture will fail with OptimisticLockFailedException
exception, which indicates that concurrent transaction prevented the
submitted transaction from being applied.

Example asynchronous retry-loop

private void doWrite(final int tries) {
 WriteTransaction writeTx = dataBroker.newWriteOnlyTransaction();

 MyDataObject data = ...;
 InstanceIdentifier<MyDataObject> path = ...;
 writeTx.put(LogicalDatastoreType.OPERATIONAL, path, data);

 Futures.addCallback(writeTx.submit(), new FutureCallback<Void>() {
 public void onSuccess(Void result) {
 // succeeded
 }

 public void onFailure(Throwable t) {
 if(t instanceof OptimisticLockFailedException && ((tries - 1) > 0)) {
 doWrite(tries - 1);
 }
 }
 });
}
...
doWrite(2);

Concurrent change compatibility

There are several sets of changes which could be considered incompatible
between two transactions which are derived from same initial state.
Rules for conflict detection applies recursively for each subtree level.

Following table shows state changes and failures between two concurrent
transactions, which are based on same initial state, tx1 is
submitted before tx2.

INFO: Following tables stores numeric values and shows data using
toString() to simplify examples.

	Initial state

	tx1

	tx2

	Observable Result

	Empty

	put(A,1)

	put(A,2)

	tx2 will fail,
value of A is
1

	Empty

	put(A,1)

	merge(A,2)

	value of A is
2

	Empty

	merge(A,1)

	put(A,2)

	tx2 will fail,
value of A is
1

	Empty

	merge(A,1)

	merge(A,2)

	A is 2

	A=0

	put(A,1)

	put(A,2)

	tx2 will fail,
A is 1

	A=0

	put(A,1)

	merge(A,2)

	A is 2

	A=0

	merge(A,1)

	put(A,2)

	tx2 will fail,
value of A is
1

	A=0

	merge(A,1)

	merge(A,2)

	A is 2

	A=0

	delete(A)

	put(A,2)

	tx2 will fail,
A does not
exists

	A=0

	delete(A)

	merge(A,2)

	A is 2

Table: Concurrent change resolution for leaves and leaf-list items

	Initial state

	tx1

	tx2

	Result

	Empty

	put(TOP,[])

	put(TOP,[])

	tx2 will fail,
state is TOP=[]

	Empty

	put(TOP,[])

	merge(TOP,[])

	TOP=[]

	Empty

	put(TOP,[FOO=1])

	put(TOP,[BAR=1])

	tx2 will fail,
state is
TOP=[FOO=1]

	Empty

	put(TOP,[FOO=1])

	merge(TOP,[BAR=1])

	TOP=[FOO=1,BAR=1]

	Empty

	merge(TOP,[FOO=1])

	put(TOP,[BAR=1])

	tx2 will fail,
state is
TOP=[FOO=1]

	Empty

	merge(TOP,[FOO=1])

	merge(TOP,[BAR=1])

	TOP=[FOO=1,BAR=1]

	TOP=[]

	put(TOP,[FOO=1])

	put(TOP,[BAR=1])

	tx2 will fail,
state is
TOP=[FOO=1]

	TOP=[]

	put(TOP,[FOO=1])

	merge(TOP,[BAR=1])

	state is
TOP=[FOO=1,BAR=1]

	TOP=[]

	merge(TOP,[FOO=1])

	put(TOP,[BAR=1])

	tx2 will fail,
state is
TOP=[FOO=1]

	TOP=[]

	merge(TOP,[FOO=1])

	merge(TOP,[BAR=1])

	state is
TOP=[FOO=1,BAR=1]

	TOP=[]

	delete(TOP)

	put(TOP,[BAR=1])

	tx2 will fail,
state is empty
store

	TOP=[]

	delete(TOP)

	merge(TOP,[BAR=1])

	state is
TOP=[BAR=1]

	TOP=[]

	put(TOP/FOO,1)

	put(TOP/BAR,1])

	state is
TOP=[FOO=1,BAR=1]

	TOP=[]

	put(TOP/FOO,1)

	merge(TOP/BAR,1)

	state is
TOP=[FOO=1,BAR=1]

	TOP=[]

	merge(TOP/FOO,1)

	put(TOP/BAR,1)

	state is
TOP=[FOO=1,BAR=1]

	TOP=[]

	merge(TOP/FOO,1)

	merge(TOP/BAR,1)

	state is
TOP=[FOO=1,BAR=1]

	TOP=[]

	delete(TOP)

	put(TOP/BAR,1)

	tx2 will fail,
state is empty
store

	TOP=[]

	delete(TOP)

	merge(TOP/BAR,1]

	tx2 will fail,
state is empty
store

	TOP=[FOO=1]

	put(TOP/FOO,2)

	put(TOP/BAR,1)

	state is
TOP=[FOO=2,BAR=1]

	TOP=[FOO=1]

	put(TOP/FOO,2)

	merge(TOP/BAR,1)

	state is
TOP=[FOO=2,BAR=1]

	TOP=[FOO=1]

	merge(TOP/FOO,2)

	put(TOP/BAR,1)

	state is
TOP=[FOO=2,BAR=1]

	TOP=[FOO=1]

	merge(TOP/FOO,2)

	merge(TOP/BAR,1)

	state is
TOP=[FOO=2,BAR=1]

	TOP=[FOO=1]

	delete(TOP/FOO)

	put(TOP/BAR,1)

	state is
TOP=[BAR=1]

	TOP=[FOO=1]

	delete(TOP/FOO)

	merge(TOP/BAR,1]

	state is
TOP=[BAR=1]

Table: Concurrent change resolution for containers, lists, list items

MD-SAL RPC routing

The MD-SAL provides a way to deliver Remote Procedure Calls (RPCs) to a
particular implementation based on content in the input as it is modeled
in YANG. This part of the the RPC input is referred to as a context
reference.

The MD-SAL does not dictate the name of the leaf which is used for this
RPC routing, but provides necessary functionality for YANG model author
to define their context reference in their model of RPCs.

MD-SAL routing behavior is modeled using following terminology and its
application to YANG models:

	Context Type

	Logical type of RPC routing. Context type is modeled as YANG
identity and is referenced in model to provide scoping
information.

	Context Instance

	Conceptual location in data tree, which represents context in which
RPC could be executed. Context instance usually represent logical
point to which RPC execution is attached.

	Context Reference

	Field of RPC input payload which contains Instance Identifier
referencing context instance in which the RPC should be
executed.

Modeling a routed RPC

In order to define routed RPCs, the YANG model author needs to declare
(or reuse) a context type, set of possible context instances and
finally RPCs which will contain context reference on which they will
be routed.

Declaring a routing context type

This declares an identity named node-context, which is used as
marker for node-based routing and is used in other places to reference
that routing type.

Declaring possible context instances

In order to define possible values of context instances for routed
RPCs, we need to model that set accordingly using context-instance
extension from the yang-ext model.

The statement ext:context-instance "node-context"; marks any element
of the list node as a possible valid context instance in
node-context based routing.

Note

The existence of a context instance node in operational or
config data tree is not strongly tied to existence of RPC
implementation.

For most routed RPC models, there is relationship between the data
present in operational data tree and RPC implementation
availability, but this is not enforced by MD-SAL. This provides some
flexibility for YANG model writers to better specify their routing
model and requirements for implementations. Details when RPC
implementations are available should be documented in YANG model.

If user invokes RPC with a context instance that has no
registered implementation, the RPC invocation will fail with the
exception DOMRpcImplementationNotAvailableException.

Declaring a routed RPC

To declare RPC to be routed based on node-context we need to add
leaf of instance-identifier type (or type derived from
instance-identifier) to the RPC and mark it as context
reference.

This is achieved using YANG extension context-reference from
yang-ext model on leaf, which will be used for RPC routing.

The statement ext:context-reference "node-context" marks
leaf node as context reference of type node-context. The
value of this leaf, will be used by the MD-SAL to select the particular
RPC implementation that registered itself as the implementation of the
RPC for particular context instance.

Using routed RPCs

From a user perspective (e.g. invoking RPCs) there is no difference
between routed and non-routed RPCs. Routing information is just an
additional leaf in RPC which must be populated.

Implementing a routed RPC

Implementation

Registering implementations

Implementations of a routed RPC (e.g., southbound plugins) will specify
an instance-identifier for the context reference (in this case a
node) for which they want to provide an implementation during
registration. Consumers, e.g., those calling the RPC are required to
specify that instance-identifier (in this case the identifier of a node)
when invoking RPC.

Simple code which showcases that for add-flow via Binding-Aware APIs
(RoutedServiceTest.java [https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/md-sal/sal-binding-it/src/test/java/org/opendaylight/controller/test/sal/binding/it/RoutedServiceTest.java;h=d49d6f0e25e271e43c8550feb5eef63d96301184;hb=HEAD]
):

61 @Override
62 public void onSessionInitiated(ProviderContext session) {
63 assertNotNull(session);
64 firstReg = session.addRoutedRpcImplementation(SalFlowService.class, salFlowService1);
65 }

Line 64: We are registering salFlowService1 as implementation of
SalFlowService RPC

107 NodeRef nodeOne = createNodeRef("foo:node:1");
109 /**
110 * Provider 1 registers path of node 1
111 */
112 firstReg.registerPath(NodeContext.class, nodeOne);

Line 107: We are creating NodeRef (encapsulation of InstanceIdentifier)
for “foo:node:1”.

Line 112: We register salFlowService1 as implementation for nodeOne.

The salFlowService1 will be executed only for RPCs which contains
Instance Identifier for foo:node:1.

RPCs and cluster

In case there is is only a single provider of an RPC in the cluster
the RPC registration is propagated to other nodes via Gossip protocol
and the RPC calls from other nodes are correctly routed to the
provider. Since the registrations are not expected to change rapidly
there is a latency of about 1 second until the registration is reflected
on the remote nodes.

OpenDaylight Controller MD-SAL: RESTCONF

RESTCONF operations overview

RESTCONF allows access to datastores in the controller.

There are two datastores:

	Config: Contains data inserted via controller

	Operational: Contains other data

Note

Each request must start with the URI /restconf.

RESTCONF listens on port 8080 for HTTP requests.

RESTCONF supports OPTIONS, GET, PUT, POST, and
DELETE operations. Request and response data can either be in the
XML or JSON format. XML structures according to yang are defined at:
XML-YANG [http://tools.ietf.org/html/rfc6020]. JSON structures are
defined at:
JSON-YANG [http://tools.ietf.org/html/draft-lhotka-netmod-yang-json-02].
Data in the request must have a correctly set Content-Type field in
the http header with the allowed value of the media type. The media type
of the requested data has to be set in the Accept field. Get the
media types for each resource by calling the OPTIONS operation. Most of
the paths of the pathsRestconf endpoints use Instance
Identifier [https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Concepts#Instance_Identifier].
<identifier> is used in the explanation of the operations.

<identifier>

	It must start with <moduleName>:<nodeName> where <moduleName> is a
name of the module and <nodeName> is the name of a node in the
module. It is sufficient to just use <nodeName> after
<moduleName>:<nodeName>. Each <nodeName> has to be separated by /.

	<nodeName> can represent a data node which is a list or container
yang built-in type. If the data node is a list, there must be defined
keys of the list behind the data node name for example,
<nodeName>/<valueOfKey1>/<valueOfKey2>.

	
The format <moduleName>:<nodeName> has to be used in this case as
well:

Module A has node A1. Module B augments node A1 by adding node X.
Module C augments node A1 by adding node X. For clarity, it has to
be known which node is X (for example: C:X). For more details about
encoding, see: RESTCONF 02 - Encoding YANG Instance Identifiers in
the Request
URI. [http://tools.ietf.org/html/draft-bierman-netconf-restconf-02#section-5.3.1]

Mount point

A Node can be behind a mount point. In this case, the URI has to be in
format <identifier>/yang-ext:mount/<identifier>. The first
<identifier> is the path to a mount point and the second <identifier>
is the path to a node behind the mount point. A URI can end in a mount
point itself by using <identifier>/yang-ext:mount.

More information on how to actually use mountpoints is available at:
OpenDaylight
Controller:Config:Examples:Netconf [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf].

HTTP methods

OPTIONS /restconf

	Returns the XML description of the resources with the required
request and response media types in Web Application Description
Language (WADL)

GET /restconf/config/<identifier>

	Returns a data node from the Config datastore.

	<identifier> points to a data node which must be retrieved.

GET /restconf/operational/<identifier>

	Returns the value of the data node from the Operational datastore.

	<identifier> points to a data node which must be retrieved.

PUT /restconf/config/<identifier>

	Updates or creates data in the Config datastore and returns the state
about success.

	<identifier> points to a data node which must be stored.

Example:

PUT http://<controllerIP>:8080/restconf/config/module1:foo/bar
Content-Type: applicaton/xml
<bar>
 …
</bar>

Example with mount point:

PUT http://<controllerIP>:8080/restconf/config/module1:foo1/foo2/yang-ext:mount/module2:foo/bar
Content-Type: applicaton/xml
<bar>
 …
</bar>

POST /restconf/config

	Creates the data if it does not exist

For example:

POST URL: http://localhost:8080/restconf/config/
content-type: application/yang.data+json
JSON payload:

 {
 "toaster:toaster" :
 {
 "toaster:toasterManufacturer" : "General Electric",
 "toaster:toasterModelNumber" : "123",
 "toaster:toasterStatus" : "up"
 }
 }

POST /restconf/config/<identifier>

	Creates the data if it does not exist in the Config datastore, and
returns the state about success.

	<identifier> points to a data node where data must be stored.

	The root element of data must have the namespace (data are in XML) or
module name (data are in JSON.)

Example:

POST http://<controllerIP>:8080/restconf/config/module1:foo
Content-Type: applicaton/xml/
<bar xmlns=“module1namespace”>
 …
</bar>

Example with mount point:

http://<controllerIP>:8080/restconf/config/module1:foo1/foo2/yang-ext:mount/module2:foo
Content-Type: applicaton/xml
<bar xmlns=“module2namespace”>
 …
</bar>

POST /restconf/operations/<moduleName>:<rpcName>

	Invokes RPC.

	<moduleName>:<rpcName> - <moduleName> is the name of the module and
<rpcName> is the name of the RPC in this module.

	The Root element of the data sent to RPC must have the name “input”.

	The result can be the status code or the retrieved data having the
root element “output”.

Example:

POST http://<controllerIP>:8080/restconf/operations/module1:fooRpc
Content-Type: applicaton/xml
Accept: applicaton/xml
<input>
 …
</input>

The answer from the server could be:
<output>
 …
</output>

An example using a JSON payload:

POST http://localhost:8080/restconf/operations/toaster:make-toast
Content-Type: application/yang.data+json
{
 "input" :
 {
 "toaster:toasterDoneness" : "10",
 "toaster:toasterToastType":"wheat-bread"
 }
}

Note

Even though this is a default for the toasterToastType value in the
yang, you still need to define it.

DELETE /restconf/config/<identifier>

	Removes the data node in the Config datastore and returns the state
about success.

	<identifier> points to a data node which must be removed.

More information is available in the RESTCONF
RFC [http://tools.ietf.org/html/draft-bierman-netconf-restconf-02].

How RESTCONF works

RESTCONF uses these base classes:

	InstanceIdentifier

	Represents the path in the data tree

	ConsumerSession

	Used for invoking RPCs

	DataBrokerService

	Offers manipulation with transactions and reading data from the
datastores

	SchemaContext

	Holds information about yang modules

	MountService

	Returns MountInstance based on the InstanceIdentifier pointing to a
mount point

	MountInstace

	Contains the SchemaContext behind the mount point

	DataSchemaNode

	Provides information about the schema node

	SimpleNode

	Possesses the same name as the schema node, and contains the value
representing the data node value

	CompositeNode

	Can contain CompositeNode-s and SimpleNode-s

GET in action

Figure 1 shows the GET operation with URI restconf/config/M:N where M is
the module name, and N is the node name.

[image: Get]
Get

	The requested URI is translated into the InstanceIdentifier which
points to the data node. During this translation, the DataSchemaNode
that conforms to the data node is obtained. If the data node is
behind the mount point, the MountInstance is obtained as well.

	RESTCONF asks for the value of the data node from DataBrokerService
based on InstanceIdentifier.

	DataBrokerService returns CompositeNode as data.

	StructuredDataToXmlProvider or StructuredDataToJsonProvider is called
based on the Accept field from the http request. These two
providers can transform CompositeNode regarding DataSchemaNode to an
XML or JSON document.

	XML or JSON is returned as the answer on the request from the client.

PUT in action

Figure 2 shows the PUT operation with the URI restconf/config/M:N where
M is the module name, and N is the node name. Data is sent in the
request either in the XML or JSON format.

[image: Put]
Put

	Input data is sent to JsonToCompositeNodeProvider or
XmlToCompositeNodeProvider. The correct provider is selected based on
the Content-Type field from the http request. These two providers can
transform input data to CompositeNode. However, this CompositeNode
does not contain enough information for transactions.

	The requested URI is translated into InstanceIdentifier which points
to the data node. DataSchemaNode conforming to the data node is
obtained during this translation. If the data node is behind the
mount point, the MountInstance is obtained as well.

	CompositeNode can be normalized by adding additional information from
DataSchemaNode.

	RESTCONF begins the transaction, and puts CompositeNode with
InstanceIdentifier into it. The response on the request from the
client is the status code which depends on the result from the
transaction.

Something practical

	Create a new flow on the switch openflow:1 in table 2.

HTTP request

Operation: POST
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>1</order>
 <apply-actions>
 <action>
 <order>1</order>
 <flood-all-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>111</id>
 <cookie_mask>10</cookie_mask>
 <out_port>10</out_port>
 <installHw>false</installHw>
 <out_group>2</out_group>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.0.1/24</ipv4-destination>
 </match>
 <hard-timeout>0</hard-timeout>
 <cookie>10</cookie>
 <idle-timeout>0</idle-timeout>
 <flow-name>FooXf22</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

HTTP response

Status: 204 No Content

	Change strict to true in the previous flow.

HTTP request

Operation: PUT
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/111
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <strict>true</strict>
 <instructions>
 <instruction>
 <order>1</order>
 <apply-actions>
 <action>
 <order>1</order>
 <flood-all-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>111</id>
 <cookie_mask>10</cookie_mask>
 <out_port>10</out_port>
 <installHw>false</installHw>
 <out_group>2</out_group>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.0.1/24</ipv4-destination>
 </match>
 <hard-timeout>0</hard-timeout>
 <cookie>10</cookie>
 <idle-timeout>0</idle-timeout>
 <flow-name>FooXf22</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

HTTP response

Status: 200 OK

	Show flow: check that strict is true.

HTTP request

Operation: GET
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/111
Accept: application/xml

HTTP response

Status: 200 OK

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <strict>true</strict>
 <instructions>
 <instruction>
 <order>1</order>
 <apply-actions>
 <action>
 <order>1</order>
 <flood-all-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>111</id>
 <cookie_mask>10</cookie_mask>
 <out_port>10</out_port>
 <installHw>false</installHw>
 <out_group>2</out_group>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.0.1/24</ipv4-destination>
 </match>
 <hard-timeout>0</hard-timeout>
 <cookie>10</cookie>
 <idle-timeout>0</idle-timeout>
 <flow-name>FooXf22</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

	Delete the flow created.

HTTP request

Operation: DELETE
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/111

HTTP response

Status: 200 OK

Websocket change event notification subscription tutorial

Subscribing to data change notifications makes it possible to obtain
notifications about data manipulation (insert, change, delete) which are
done on any specified path of any specified datastore with
specific scope. In following examples {odlAddress} is address of
server where ODL is running and {odlPort} is port on which
OpenDaylight is running.

Websocket notifications subscription process

In this section we will learn what steps need to be taken in order to
successfully subscribe to data change event notifications.

Create stream

In order to use event notifications you first need to call RPC that
creates notification stream that you can later listen to. You need to
provide three parameters to this RPC:

	path: data store path that you plan to listen to. You can
register listener on containers, lists and leaves.

	datastore: data store type. OPERATIONAL or CONFIGURATION.

	scope: Represents scope of data change. Possible options are:

	BASE: only changes directly to the data tree node specified in the
path will be reported

	ONE: changes to the node and to direct child nodes will be
reported

	SUBTREE: changes anywhere in the subtree starting at the node will
be reported

The RPC to create the stream can be invoked via RESTCONF like this:

	URI:
http://{odlAddress}:{odlPort}/restconf/operations/sal-remote:create-data-change-event-subscription

	HEADER: Content-Type=application/json

	OPERATION: POST

	DATA:

{
 "input": {
 "path": "/toaster:toaster/toaster:toasterStatus",
 "sal-remote-augment:datastore": "OPERATIONAL",
 "sal-remote-augment:scope": "ONE"
 }
}

The response should look something like this:

{
 "output": {
 "stream-name": "data-change-event-subscription/toaster:toaster/toaster:toasterStatus/datastore=CONFIGURATION/scope=SUBTREE"
 }
}

stream-name is important because you will need to use it when you
subscribe to the stream in the next step.

Note

Internally, this will create a new listener for stream-name if it
did not already exist.

Subscribe to stream

In order to subscribe to stream and obtain WebSocket location you need
to call GET on your stream path. The URI should generally be
http://{odlAddress}:{odlPort}/restconf/streams/stream/{streamName},
where {streamName} is the stream-name parameter contained in
response from create-data-change-event-subscription RPC from the
previous step.

	URI:
http://{odlAddress}:{odlPort}/restconf/streams/stream/data-change-event-subscription/toaster:toaster/datastore=CONFIGURATION/scope=SUBTREE

	OPERATION: GET

The subscription call may be modified with the following query parameters defined in the RESTCONF RFC:

	filter [https://tools.ietf.org/html/draft-ietf-netconf-restconf-05#section-4.8.6]

	start-time [https://tools.ietf.org/html/draft-ietf-netconf-restconf-05#section-4.8.7]

	end-time [https://tools.ietf.org/html/draft-ietf-netconf-restconf-05#section-4.8.8]

In addition, the following ODL extension query parameter is supported:

	odl-leaf-nodes-only

	If this parameter is set to “true”, create and update notifications will only
contain the leaf nodes modified instead of the entire subscription subtree.
This can help in reducing the size of the notifications.

The expected response status is 200 OK and response body should be
empty. You will get your WebSocket location from Location header of
response. For example in our particular toaster example location header
would have this value:
ws://{odlAddress}:8185/toaster:toaster/datastore=CONFIGURATION/scope=SUBTREE

Note

During this phase there is an internal check for to see if a
listener for the stream-name from the URI exists. If not, new a
new listener is registered with the DOM data broker.

Receive notifications

You should now have a data change notification stream created and have
location of a WebSocket. You can use this WebSocket to listen to data
change notifications. To listen to notifications you can use a
JavaScript client or if you are using chrome browser you can use the
Simple WebSocket
Client [https://chrome.google.com/webstore/detail/simple-websocket-client/pfdhoblngboilpfeibdedpjgfnlcodoo].

Also, for testing purposes, there is simple Java application named
WebSocketClient. The application is placed in the
-sal-rest-connector-classes.class project. It accepts a WebSocket URI
as and input parameter. After starting the utility (WebSocketClient
class directly in Eclipse/InteliJ Idea) received notifications should be
displayed in console.

Notifications are always in XML format and look like this:

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2014-09-11T09:58:23+02:00</eventTime>
 <data-changed-notification xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:remote">
 <data-change-event>
 <path xmlns:meae="http://netconfcentral.org/ns/toaster">/meae:toaster</path>
 <operation>updated</operation>
 <data>
 <!-- updated data -->
 </data>
 </data-change-event>
 </data-changed-notification>
</notification>

Example use case

The typical use case is listening to data change events to update web
page data in real-time. In this tutorial we will be using toaster as the
base.

When you call make-toast RPC, it sets toasterStatus to “down” to
reflect that the toaster is busy making toast. When it finishes,
toasterStatus is set to “up” again. We will listen to this toaster
status changes in data store and will reflect it on our web page in
real-time thanks to WebSocket data change notification.

Simple javascript client implementation

We will create simple JavaScript web application that will listen
updates on toasterStatus leaf and update some element of our web page
according to new toaster status state.

Create stream

First you need to create stream that you are planing to subscribe to.
This can be achieved by invoking “create-data-change-event-subscription”
RPC on RESTCONF via AJAX request. You need to provide data store
path that you plan to listen on, data store type and scope.
If the request is successful you can extract the stream-name from
the response and use that to subscribe to the newly created stream. The
{username} and {password} fields represent your credentials that you
use to connect to OpenDaylight via RESTCONF:

Note

The default user name and password are “admin”.

function createStream() {
 $.ajax(
 {
 url: 'http://{odlAddress}:{odlPort}/restconf/operations/sal-remote:create-data-change-event-subscription',
 type: 'POST',
 headers: {
 'Authorization': 'Basic ' + btoa('{username}:{password}'),
 'Content-Type': 'application/json'
 },
 data: JSON.stringify(
 {
 'input': {
 'path': '/toaster:toaster/toaster:toasterStatus',
 'sal-remote-augment:datastore': 'OPERATIONAL',
 'sal-remote-augment:scope': 'ONE'
 }
 }
)
 }).done(function (data) {
 // this function will be called when ajax call is executed successfully
 subscribeToStream(data.output['stream-name']);
 }).fail(function (data) {
 // this function will be called when ajax call fails
 console.log("Create stream call unsuccessful");
 })
}

Subscribe to stream

The Next step is to subscribe to the stream. To subscribe to the stream
you need to call GET on
http://{odlAddress}:{odlPort}/restconf/streams/stream/{stream-name}.
If the call is successful, you get WebSocket address for this stream in
Location parameter inside response header. You can get response
header by calling getResponseHeader(*Location)* on HttpRequest
object inside done() function call:

function subscribeToStream(streamName) {
 $.ajax(
 {
 url: 'http://{odlAddress}:{odlPort}/restconf/streams/stream/' + streamName;
 type: 'GET',
 headers: {
 'Authorization': 'Basic ' + btoa('{username}:{password}'),
 }
 }
).done(function (data, textStatus, httpReq) {
 // we need function that has http request object parameter in order to access response headers.
 listenToNotifications(httpReq.getResponseHeader('Location'));
 }).fail(function (data) {
 console.log("Subscribe to stream call unsuccessful");
 });
}

Receive notifications

Once you got WebSocket server location you can now connect to it and
start receiving data change events. You need to define functions that
will handle events on WebSocket. In order to process incoming events
from OpenDaylight you need to provide a function that will handle
onmessage events. The function must have one parameter that represents
the received event object. The event data will be stored in
event.data. The data will be in an XML format that you can then easily
parse using jQuery.

function listenToNotifications(socketLocation) {
 try {
 var notificatinSocket = new WebSocket(socketLocation);

 notificatinSocket.onmessage = function (event) {
 // we process our received event here
 console.log('Received toaster data change event.');
 $($.parseXML(event.data)).find('data-change-event').each(
 function (index) {
 var operation = $(this).find('operation').text();
 if (operation == 'updated') {
 // toaster status was updated so we call function that gets the value of toasterStatus leaf
 updateToasterStatus();
 return false;
 }
 }
);
 }
 notificatinSocket.onerror = function (error) {
 console.log("Socket error: " + error);
 }
 notificatinSocket.onopen = function (event) {
 console.log("Socket connection opened.");
 }
 notificatinSocket.onclose = function (event) {
 console.log("Socket connection closed.");
 }
 // if there is a problem on socket creation we get exception (i.e. when socket address is incorrect)
 } catch(e) {
 alert("Error when creating WebSocket" + e);
 }
}

The updateToasterStatus() function represents function that calls
GET on the path that was modified and sets toaster status in some web
page element according to received data. After the WebSocket connection
has been established you can test events by calling make-toast RPC via
RESTCONF.

Note

for more information about WebSockets in JavaScript visit Writing
WebSocket client
applications [https://developer.mozilla.org/en-US/docs/WebSockets/Writing_WebSocket_client_applications]

Config Subsystem

Overview

The Controller configuration operation has three stages:

	First, a Proposed configuration is created. Its target is to replace
the old configuration.

	Second, the Proposed configuration is validated, and then committed.
If it passes validation successfully, the Proposed configuration
state will be changed to Validated.

	Finally, a Validated configuration can be Committed, and the affected
modules can be reconfigured.

In fact, each configuration operation is wrapped in a transaction. Once
a transaction is created, it can be configured, that is to say, a user
can abort the transaction during this stage. After the transaction
configuration is done, it is committed to the validation stage. In this
stage, the validation procedures are invoked. If one or more validations
fail, the transaction can be reconfigured. Upon success, the second
phase commit is invoked. If this commit is successful, the transaction
enters the last stage, committed. After that, the desired modules are
reconfigured. If the second phase commit fails, it means that the
transaction is unhealthy - basically, a new configuration instance
creation failed, and the application can be in an inconsistent state.

[image: Configuration states]
Configuration states

[image: Transaction states]
Transaction states

Validation

To secure the consistency and safety of the new configuration and to
avoid conflicts, the configuration validation process is necessary.
Usually, validation checks the input parameters of a new configuration,
and mostly verifies module-specific relationships. The validation
procedure results in a decision on whether the proposed configuration is
healthy.

Dependency resolver

Since there can be dependencies between modules, a change in a module
configuration can affect the state of other modules. Therefore, we need
to verify whether dependencies on other modules can be resolved. The
Dependency Resolver acts in a manner similar to dependency injectors.
Basically, a dependency tree is built.

APIs and SPIs

This section describes configuration system APIs and SPIs.

SPIs

Module org.opendaylight.controller.config.spi. Module is the common
interface for all modules: every module must implement it. The module is
designated to hold configuration attributes, validate them, and create
instances of service based on the attributes. This instance must
implement the AutoCloseable interface, owing to resources clean up. If
the module was created from an already running instance, it contains an
old instance of the module. A module can implement multiple services. If
the module depends on other modules, setters need to be annotated with
@RequireInterface.

Module creation

	The module needs to be configured, set with all required attributes.

	The module is then moved to the commit stage for validation. If the
validation fails, the module attributes can be reconfigured.
Otherwise, a new instance is either created, or an old instance is
reconfigured. A module instance is identified by ModuleIdentifier,
consisting of the factory name and instance name.

ModuleFactory org.opendaylight.controller.config.spi. The
ModuleFactory interface must be implemented by each module factory.

A module factory can create a new module instance in two ways:

	From an existing module instance

	
An entirely new instance

ModuleFactory can also return default modules, useful for
populating registry with already existing configurations. A module
factory implementation must have a globally unique name.

APIs

	ConfigRegistry

	Represents functionality provided by
a configuration transaction (create,
destroy module, validate, or abort
transaction).

	ConfigTransactionController

	Represents functionality for
manipulating with configuration
transactions (begin, commit config).

	RuntimeBeanRegistratorAwareConfiBean

	The module implementing this
interface will receive
RuntimeBeanRegistrator before
getInstance is invoked.

Runtime APIs

	RuntimeBean

	Common interface for all runtime
beans

	RootRuntimeBeanRegistrator

	Represents functionality for root
runtime bean registration, which
subsequently allows hierarchical
registrations

	HierarchicalRuntimeBeanRegistration

	Represents functionality for runtime
bean registration and
unreregistration from hierarchy

JMX APIs

JMX API is purposed as a transition between the Client API and the JMX
platform.

	ConfigTransactionControllerMXBean

	Extends ConfigTransactionController,
executed by Jolokia clients on
configuration transaction.

	ConfigRegistryMXBean

	Represents entry point of
configuration management for
MXBeans.

	Object names

	Object Name is the pattern used in
JMX to locate JMX beans. It consists
of domain and key properties (at
least one key-value pair). Domain is
defined as
“org.opendaylight.controller”. The
only mandatory property is “type”.

Use case scenarios

A few samples of successful and unsuccessful transaction scenarios
follow:

Successful commit scenario

	The user creates a transaction calling creteTransaction() method on
ConfigRegistry.

	ConfigRegisty creates a transaction controller, and registers the
transaction as a new bean.

	Runtime configurations are copied to the transaction. The user can
create modules and set their attributes.

	The configuration transaction is to be committed.

	The validation process is performed.

	After successful validation, the second phase commit begins.

	Modules proposed to be destroyed are destroyed, and their service
instances are closed.

	Runtime beans are set to registrator.

	The transaction controller invokes the method getInstance on each
module.

	The transaction is committed, and resources are either closed or
released.

Validation failure scenario

The transaction is the same as the previous case until the validation
process.

	If validation fails, (that is to day, illegal input attributes values
or dependency resolver failure), the validationException is thrown
and exposed to the user.

	The user can decide to reconfigure the transaction and commit again,
or abort the current transaction.

	On aborted transactions, TransactionController and JMXRegistrator are
properly closed.

	Unregistration event is sent to ConfigRegistry.

Default module instances

The configuration subsystem provides a way for modules to create default
instances. A default instance is an instance of a module, that is
created at the module bundle start-up (module becomes visible for
configuration subsystem, for example, its bundle is activated in the
OSGi environment). By default, no default instances are produced.

The default instance does not differ from instances created later in the
module life-cycle. The only difference is that the configuration for the
default instance cannot be provided by the configuration subsystem. The
module has to acquire the configuration for these instances on its own.
It can be acquired from, for example, environment variables. After the
creation of a default instance, it acts as a regular instance and fully
participates in the configuration subsystem (It can be reconfigured or
deleted in following transactions.).

Data Export/Import Developer Guide

Overview

This feature is used to export the system data tree state, or part of,
to the system’s file system. It may also be used to import the system
data tree state, or part of, from the system’s file system.

Data Export/Import Architecture

The daexim feature consists of a single feature, which interacts with
MD-SAL to export and import the system data.

Key APIs and Interfaces

The APIs are available via REST. The details are provided are in user-guide.

API Reference Documentation

The details of the API are also available in the YANG model for this
feature. This model is accessiable via the APIDOC explorer interface.

DIDM Developer Guide

Overview

The Device Identification and Driver Management (DIDM) project addresses
the need to provide device-specific functionality. Device-specific
functionality is code that performs a feature, and the code is
knowledgeable of the capability and limitations of the device. For
example, configuring VLANs and adjusting FlowMods are features, and
there may be different implementations for different device types.
Device-specific functionality is implemented as Device Drivers. Device
Drivers need to be associated with the devices they can be used with. To
determine this association requires the ability to identify the device
type.

DIDM Architecture

The DIDM project creates the infrastructure to support the following
functions:

	Discovery - Determination that a device exists in the controller
management domain and connectivity to the device can be established.
For devices that support the OpenFlow protocol, the existing
discovery mechanism in OpenDaylight suffices. Devices that do not
support OpenFlow will be discovered through manual means such as the
operator entering device information via GUI or REST API.

	Identification – Determination of the device type.

	Driver Registration – Registration of Device Drivers as routed
RPCs.

	Synchronization – Collection of device information, device
configuration, and link (connection) information.

	Data Models for Common Features – Data models will be defined to
perform common features such as VLAN configuration. For example,
applications can configure a VLAN by writing the VLAN data to the
data store as specified by the common data model.

	RPCs for Common Features – Configuring VLANs and adjusting
FlowMods are example of features. RPCs will be defined that specify
the APIs for these features. Drivers implement features for specific
devices and support the APIs defined by the RPCs. There may be
different Driver implementations for different device types.

Key APIs and Interfaces

FlowObjective API

Following are the list of the APIs to create the flow objectives to
install the flow rule in OpenFlow switch in pipeline agnostic way.
Currently these APIs are getting consumed by Atrium project.

Install the Forwarding Objective:

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:forward

Install the Filter Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:filter

Install the Next Objective:

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:next

Flow mod driver API

This release includes a flow mod driver for the HP 3800. This
driver adjusts the flows and push the same to the device. This API takes
the flow to be adjusted as input and displays the adjusted flow as
output in the REST output container. Here is the REST API to adjust and
push flows to HP 3800 device:

http://<CONTROLLER-IP:8181>/restconf/operations/openflow-feature:adjust-flow

Here is an example of an ARP flow and how it gets adjusted and pushed to
device HP3800:

adjust-flow input.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<input xmlns="urn:opendaylight:params:xml:ns:yang:didm:drivers:openflow" xmlns:opendaylight-inventory="urn:opendaylight:inventory">
 <node>/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:673249119553088']</node>
 <flow>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2054</type>
 </ethernet-type>
 </ethernet-match>
 </match>
 <flags>SEND_FLOW_REM</flags>
 <priority>0</priority>
 <flow-name>ARP_FLOW</flow-name>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>CONTROLLER</output-node-connector>
 <max-length>65535</max-length>
 </output-action>
 </action>
 <action>
 <order>1</order>
 <output-action>
 <output-node-connector>NORMAL</output-node-connector>
 <max-length>65535</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <idle-timeout>180</idle-timeout>
 <hard-timeout>1800</hard-timeout>
 <cookie>10</cookie>
 </flow>
</input>

In the output, you can see that the table ID has been identified for the
given flow and two flow mods are created as a result of adjustment. The
first one is to catch ARP packets in Hardware table 100 with an action
to goto table 200. The second flow mod is in table 200 with actions:
output normal and output controller.

adjust-flow output.

{
 "output": {
 "flow": [
 {
 "idle-timeout": 180,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 1,
 "output-action": {
 "output-node-connector": "NORMAL",
 "max-length": 65535
 }
 },
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "CONTROLLER",
 "max-length": 65535
 }
 }
]
 }
 }
]
 },
 "strict": false,
 "table_id": 200,
 "flags": "SEND_FLOW_REM",
 "cookie": 10,
 "hard-timeout": 1800,
 "match": {
 "ethernet-match": {
 "ethernet-type": {
 "type": 2054
 }
 }
 },
 "flow-name": "ARP_FLOW",
 "priority": 0
 },
 {
 "idle-timeout": 180,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "go-to-table": {
 "table_id": 200
 }
 }
]
 },
 "strict": false,
 "table_id": 100,
 "flags": "SEND_FLOW_REM",
 "cookie": 10,
 "hard-timeout": 1800,
 "match": {},
 "flow-name": "ARP_FLOW",
 "priority": 0
 }
]
 }
}

API Reference Documentation

Go to
http://${controller-ip}:8181/apidoc/explorer/index.html,
and look under DIDM section to see all the available REST calls and
tables

Distribution Version reporting

Overview

This section provides an overview of odl-distribution-version feature.

A remote user of OpenDaylight usually has access to RESTCONF and NETCONF
northbound interfaces, but does not have access to the system
OpenDaylight is running on. OpenDaylight has released multiple versions
including Service Releases, and there are incompatible changes between them.
In order to know which YANG modules to use, which bugs to expect
and which workarounds to apply, such user would need to know the exact version
of at least one OpenDaylight component.

There are indirect ways to deduce such version, but the direct way is enabled
by odl-distribution-version feature. Administrator can specify version strings,
which would be available to users via NETCONF, or via RESTCONF
if OpenDaylight is configured to initiate NETCONF connection
to its config subsystem northbound interface.

By default, users have write access to config subsystem,
so they can add, modify or delete any version strings present there.
Admins can only influence whether the feature is installed, and initial values.

Config subsystem is local only, not cluster aware,
so each member reports versions independently. This is suitable for heterogeneous clusters.
On homogeneous clusters, make sure you set and check every member.

Key APIs and Interfaces

Current implementation relies heavily on config-parent parent POM file from Controller project.

YANG model for config subsystem

Throughout this chapter, model denotes YANG module, and module denotes item
in config subsystem module list.

Version functionality relies on config subsystem and its config YANG model.
The YANG model odl-distribution-version adds an identity odl-version
and augments /config:modules/module/configuration adding new case for odl-version type.
This case contains single leaf version, which would hold the version string.

Config subsystem can hold multiple modules, the version string should contain
version of OpenDaylight component corresponding to the module name.
As this is pure metadata with no consequence on OpenDaylight behavior,
there is no prescribed scheme for chosing config module names.
But see the default configuration file for examples.

Java API

Each config module needs to come with java classes which override customValidation()
and createInstance(). Version related modules have no impact on OpenDaylight internal behavior,
so the methods return void and dummy closeable respectively, without any side effect.

Default config file

Initial version values are set via config file odl-version.xml which is created in
$KARAF_HOME/etc/opendaylight/karaf/ upon installation of odl-distribution-version feature.
If admin wants to use different content, the file with desired content has to be created
there before feature installation happens.

By default, the config file defines two config modules, named odl-distribution-version
and odl-odlparent-version.

Currently the default version values are set to Maven property strings
(as opposed to valid values), as the needed new functionality did not make it
into Controller project in Boron. See Bug number 6003.

Karaf Feature

The odl-distribution-version feature is currently the only feature defined
in feature repository of artifactId features-distribution,
which is available (transitively) in OpenDaylight Karaf distribution.

RESTCONF usage

Opendaylight config subsystem NETCONF northbound is not made available just by installing
odl-distribution-version, but most other feature installations would enable it.
RESTCONF interfaces are enabled by installing odl-restconf feature,
but that do not allow access to config subsystem by itself.

On single node deployments, installation of odl-netconf-connector-ssh is recommended,
which would configure controller-config device and its MD-SAL mount point.
See documentation for clustering on how to create similar devices for member modes,
as controller-config name is not unique in that context.

Assuming single node deployment and user located on the same system,
here is an example curl command accessing odl-odlparent-version config module:

curl 127.0.0.1:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-distribution-version:odl-version/odl-odlparent-version

Distribution features

Overview

This section provides an overview of odl-integration-compatible-with-all
and odl-integration-all features.

Integration/Distribution project produces a Karaf 4 distribution
which gives users access to many Karaf features provided by upstream OpenDaylight projects.
Users are free to install arbitrary subset of those features,
but not every feature combination is expected to work properly.

Some features are pro-active, which means OpenDaylight in contact with othe network elements
starts diving changes in the network even without prompting by users,
in order to satisfy initial conditions their use case expects.
Such activity from one feature may in turn affect behavior of another feature.

In some cases, there exists features which offer diferent implementation of the same service,
they may fail to initialize properly (e.g. failing to bind a port already bound by the other feature).

Integration/Test project is maintaining system tests (CSIT) jobs.
Aside of testing scenarios with only a minimal set of features installed (-only- jobs),
the scenarios are also tested with a large set of features installed (-all- jobs).

In order to define a proper set of features to test with, Integration/Distribution project
defines two “aggregate” features. Note that these features are not intended for production use,
so the feature repository which defines them is not enabled by default.

The content of these features is determined by upstream OpenDaylight contributions,
with Integration/Test providing insight on observed compatibuility relations.
Integration/Distribution team is focused only on making sure the build process is reliable.

Feature repositories

features-index

This feature repository is enabled by default.
It does not refer to any new features directly, instead it refers to upstream feature repositories,
enabling any feature contained therein to be available for installation.

features-test

This feature repository defines the two aggregate features.
To enable this repository, change the featuresRepositories line of org.apache.karaf.features.cfg file,
by copy-pasting the feature-index value and editing the name.

Karaf features

The two aggregate features, defining sets of user-facing features defined by compatibility requirements.
Note that is the compatibility relation differs between single node an cluster deployments,
single node point of view takes precedence.

odl-integration-all

This feature contains the largest set of user-facing features which may affect each others operation,
but the set does not affect usability of Karaf infrastructure.

Note that port binding conflicts and “server is unhealthy” status of config subsystem
are considered to affect usability, as is a failure of Restconf
to respond to GET on /restconf/modules with HTTP status 200.

This feature is used in verification process for Integration/Distribution contributions.

odl-integration-compatible-with-all

This feature contains the largest set of user-facing features which are not pro-active
and do not affect each others operation.

Installing this set together with just one of odl-integration-all features should still result
in fully operational installation, as one pro-active feature should not lead to any conflicts.
This should also hold if the single added feature is outside odl-integration-all,
if it is one of conflicting implementations (and no such implementations is in odl-integration-all).

This feature is used in the aforementioned -all- CSIT jobs.

DLUX

Setup and Run

Required Technology Stack

	AngularJS (JavaScript client-side framework, http://www.angularjs.org
)

Run DLUX

To turn on the DLUX UI, install DLUX core feature via running following
command on the Karaf console -

feature:install odl-dlux-core

The above command will install odl-restconf along with core DLUX components. Once this
feature is successfully installed, access the UI at
http://localhost:8181/index.html. The default credentials for login are
admin/admin. After successful login you’ll see empty page.
For applications, continue with DluxApps project.

DLUX Modules

DLUX modules are the individual features such as nodes and topology.
Each module has a defined structure and you can find all existing
modules at
https://github.com/opendaylight/dlux/tree/stable/boron/modules.

Module Structure

	module_folder

	<module_name>.module.js

	<module_name>.controller.js

	<module_name>.services.js

	<module_name>.directives.js

	<module_name>.filter.js

	index.tpl.html

	<a_stylesheet>.css

Create New Module

Define the module

	Create an empty maven project and create your module folder under
src/main/resources.

	Create an empty file with pattern <module_name>.module.js.

	Next, you need to surround the angular module with a define function.
This allows RequireJs to see our module.js files. The first argument
is an array which contains all the module’s dependencies. The second
argument is a callback function, whose body contain the AngularJS
code base. The function parameters correspond with the order of
dependencies. Each dependency is injected into a parameter, if it is
provided.

	Finally, you will return the angular module to be able to inject it
as a parameter in others modules.

For each new module, you must have at least these two dependencies :

	angularAMD : It’s a wrapper around AngularJS to provide an AMD
(Asynchronous Module Definition) support, which is used by RequireJs.
For more information see the AMD
documentation [https://github.com/amdjs/amdjs-api/blob/master/AMD.md].

	app/core/core.services : This one is mandatory, if you want to add
content in the navigation menu, the left bar or the top bar.

The following are not mandatory, but very often used.

	angular-ui-router : A library to provide URL routing.

	routingConfig : To set the level access to a page.

Your module.js file might look like this:

define(['angularAMD','app/routingConfig', 'angular-ui-router','app/core/core.services'], function(ng) {
 var module = angular.module('app.a_module', ['ui.router.state', 'app.core']);
 // module configuration
 module.config(function() {
 [...]
 });
 return module;
});

Set the register function

AngularJS allows lazy registration of a module’s components such as
controller, factory etc. Once you will install your application, DLUX
will load your module javascript, but not your angular component during
bootstrap phase. You have to register your angular components to make
sure they are available at the runtime.

Here is how to register your module’s component for lazy initialization
-

module.config(function($compileProvider, $controllerProvider, $provide) {
 module.register = {
 controller : $controllerProvider.register,
 directive : $compileProvider.directive,
 factory : $provide.factory,
 service : $provide.service
 };
});

Set the route

The next step is to set up the route for your module. This part is also
done in the configuration method of the module. We have to add
$stateProvider as a parameter.

module.config(function($stateProvider) {
 var access = routingConfig.accessLevels;
 $stateProvider.state('main.module', {
 url: 'module',
 views : {
 'content' : {
 templateUrl: 'src/app/module/module.tpl.html',
 controller: 'ModuleCtrl'
 }
 }
 });
});

Adding element to the navigation menu

To be able to add item to the navigation menu, the module requires the
NavHelperProvider parameter in the configuration method.
addToMenu method in NavMenuHelper helper allows an item addition
to the menu.

var module = angular.module('app.a_module', ['app.core']);
module.config(function(NavMenuHelper) {
 NavMenuHelper.addToMenu('myFirstModule', {
 "link" : "#/module/index",
 "active" : "module",
 "title" : "My First Module",
 "icon" : "icon-sitemap",
 "page" : {
 "title" : "My First Module",
 "description" : "My first module"
 }
 });
});

The first parameter is an ID that refers to the level of your menu and
the second is a object. For now, The ID parameter supports two levels of
depth. If your ID looks like rootNode.childNode, the helper will look
for a node named rootNode and it will append the childNode to it. If
the root node doesn’t exist, it will create it.

Link the AngularJS module’s controller file

To include the module’s controller file, you can use the
NavHelperProvider. It contains a method that will load the given file.

[...]
 NavHelperProvider.addControllerUrl('<path_to_module_folder>/<module_name>.controller');

This completes your module.js file.

Create the controller, factory, directive, etc

Creating the controller and other components is similar to the module.

	First, add the define method.

	Second, add the relative path to the module definition.

	Last, create your methods as you usually do it with AngularJS.

For example -

define(['<relative_path_to_module>/<module_name>.module'], function(module) {
 module.register.controller('ModuleCtrl', function($rootScope, $scope) {
 });
});

Add new application using DLUX modularity

DLUX works as a Karaf based UI platform, where you can create a new
Karaf feature of your UI component and install that UI applications in
DLUX using blueprint. This page will help you to create and load a new
application for DLUX. You don’t have to add new module in DLUX
repository.

Add a new OSGi blueprint bundle

The OSGi Blueprint Container specification allows us to use dependency
injection in our OSGi environment. Each DLUX application module
registers itself via blueprint configuration. Each application will have
its own blueprint.xml to place its configuration.

	Create a maven project to place blueprint configuration. For
reference, take a look at topology bundle, present at
https://github.com/opendaylight/dlux/tree/stable/boron/bundles/topology.
All the existing DLUX modules’ configurations are available under
bundles directory of DLUX code.

	In pom.xml, you have to add a maven plugin to unpack your module code
under generated-resources of this project. For reference, you can
check pom.xml of dlux/bundles/topology at
https://github.com/opendaylight/dlux/tree/stable/boron/bundles/topology.
Your bundle will eventually get deployed in Karaf as feature, so your
bundle should contain all your module code. If you want to combine
module and bundle project, that should not be an issue either.

	Create a blueprint.xml configuration file under
src/main/resources/OSGI-INF/blueprint. Below is the content of the
blueprint.xml taken from topology bundles’s blueprint.xml. Any new
application should create a blueprint.xml in following format -

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <reference id="httpService" availability="mandatory" activation="eager" interface="org.osgi.service.http.HttpService"/>
 <reference id="loader" availability="mandatory" activation="eager" interface="org.opendaylight.dlux.loader.DluxModuleLoader"/>

 <bean id="bundle" init-method="initialize" destroy-method="clean" class="org.opendaylight.dlux.loader.DluxModule">
 <property name="httpService" ref="httpService"/>
 <property name="loader" ref="loader"/>
 <property name="moduleName" value="topology "/>
 <property name="url" value="/src/app/topology"/>
 <property name="directory" value="/topology"/>
 <property name="requireJs" value="app/topology/topology.module"/>
 <property name="angularJs" value="app.topology"/>
 <property name="cssDependencies">
 <list>
 <value>http://yui.yahooapis.com/3.18.1/build/cssreset/cssreset-min.css</value>
 <value>src/app/topology/topology-custom.css</value>
 </list>
 </property>
 </bean>
</blueprint>

In above configuration, there are two references with id httpService and
loader. These two beans will already be initialized by dlux-core, so any
new application can use them. Without these two bean references, a new
application will not be able to register.

Next is the initialization of your application bean, which will be an
instance of class org.opendaylight.dlux.loader.DluxModule. There are 5
properties that you should provide in this bean besides the references
of httpService and loader. Lets talk about those bean properties in
little more detail.

moduleName : Name of your module. This name should be unique in
DLUX.

url: This is the url via which RequireJS in DLUX will try to load
your module JS/HTML files. Also, this is the url that browser will use
to load the static HTML, JS or CSS files. RequireJS in DLUX has a base
path of src, so all the url should start with /src so RequireJS and
the browser can correctly find the files.

directory: In your bundle’s pom.xml, you unpack your module code.
This is the directory where your actual static files will reside. The
above mentioned url is registered with httpService, so when browser
makes a call to that url, it will be redirected to the directory
mentioned here. In the above example, all the topology files are present
under /topology directory and the browser/RequireJS can access those
files with uri /src/app/topology.

requireJS: This is the path to your RequireJS module. If you notice
closely, you will see the initial path of RequireJS app/topology in the
above example matches with the last part of url. This path will be be
used by RequireJS. As mentioned above, we have kept src as base path
in RequireJS, that is the exact reason that url start with /src.

angularJS: name of your AngularJS module.

cssDependencies: If the application has any external/internal css
dependencies, then those can be added here. If you create your own css
files, just point to those css files here. Use the url path that you
mentioned above, so the browser can find your css file.

OSGi understands blueprint.xml, once you will deploy your bundle in
karaf (or you can create a new feature for your application), karaf will
read your blueprint.xml and it will try to register your application
with dlux. Once successful, if you refresh your dlux UI, you will see
your application in left hand navigation bar of dlux.

Yang Utils

Yang Utils are used by UI to perform all CRUD operations. All of these
utilities are present in yangutils.services.js file. It has following
AngularJS factories -

	arrayUtils – defines functions for working with arrays.

	pathUtils – defines functions for working with xpath (paths to
APIs and subAPIs). It divides xpath string to array of elements, so
this array can be later used for search functions.

	syncFact – provides synchronization between requests to and from
OpenDaylight when it’s needed.

	custFunct – it is linked with
apiConnector.createCustomFunctionalityApis in yangui controller in
yangui.controller.js. That function makes it possible to create some
custom function called by the click on button in index.tpl.html. All
custom functions are stored in array and linked to specific subAPI.
When particular subAPI is expanded and clicked, its inputs (linked
root node with its child nodes) are displayed in the bottom part of
the page and its buttons with custom functionality are displayed
also.

	reqBuilder – Builds object in JSON format from input fields of
the UI page. Show Preview button on Yang UI use this builder.
This request is sent to OpenDaylight when button PUT or POST is
clicked.

	yinParser – factory for reading .xml files of yang models and
creating object hierarchy. Every statement from yang is represented
by a node.

	nodeWrapper – adds functions to objects in tree hierarchy created
with yinParser. These functions provide functionality for every type
of node.

	apiConnector – the main functionality is filling the main
structures and linking them. Structure of APIs and subAPIs which is
two level array - first level is filled by main APIs, second level is
filled by others sub APIs. Second main structure is array of root
nodes, which are objects including root node and its children nodes.
Linking these two structures is creating links between every subAPI
(second level of APIs array) and its root node, which must be
displayed like inputs when subAPI is expanded.

	yangUtils – some top level functions which are used by yangui
controller for creating the main structures.

eman Developer Guide

Overview

The OpenDaylight Energy Management (eman) plugin implements an abstract
Information Model that describes energy measurement and control features
that may be supported by a variety of device types. The eman plugin may
support a number of southbound interfaces to accommodate a set of
protocols, including but not limited to SNMP, NETCONF, IPDR. The plugin
presents a northbound REST API. This framework enables any number of
applications to interoperate with any number of devices in order to
measure and optimize energy usage. The Information Model will be
inherited from the SCTE 216 standard – Adaptive Power Systems Interface
Specification (APSIS) [http://www.scte.org/SCTEDocs/Standards/ANSI_SCTE%20216%202015.pdf],
which in turn inherits definitions within the IETF eman document set [https://datatracker.ietf.org/wg/eman/documents/].

This documentation is directed to developers who may use the eman features
to build other OpenDaylight features or applications.

	eman is composed of 3 Karaf features:

	
	eman incudes the YANG model and its implementation

	eman-api adds support for REST

	eman-ui adds support for DLUX.

Developers will typically interface with eman-api.

eman Architecture

eman defines a YANG model that represents the IETF energy management
Information Model, and includes RPCs. The implementation of the model
currently supports an SNMP ‘binding’ via interfacing with the
OpenDaylight SNMP module. In the future, other Southbound protocols may
be supported.

Developers my use the eman-api feature to read and write energy
related data and commands to devices that support the IETF eman MIBS.

Key APIs and Interfaces

The eman API currently supports a subset of the IETF eman Information Model,
including the EnergyObjectPowerMeasurement table. Users of the API may
get individual attributes or the entire table. When querying the table, the
results are written into the MD-SAL, for subsequent access. For example,
a developer may periodically poll a device for its powerMeasurements,
and fetch a collection of measurements to discover a history of measurements.

Operational API

Via MD-SAL, the following endpoint provides access to previously
captured power measurements.

Note

“eo” indicates “energy object” as per the IETF Information Model

operational:

eman:eoDevices/eoDevice{id}/eoPowerMeasurement{id}

 id indicates an index into a collection

EoDevices may contain a collection of individual eoDevice objects, which
in turn may contain a collection of eoPowerMeasurement objects

Operations API

A set of RPCs enable interactions with devices.

get-eoAttribute enables query on an individual attribute of a energy object:

get-eoAttribute

 deviceIP indicates IP address of target device
 attribute indicates name of requested attribute

Note

Future releases will provide a enumeration of allowed names.

The supported name are:

	eoPower

	eoPowerNameplate

	eoPowerUnitMultiplier

	eoPowerAccuracy

	eoPowerMeasurementCaliber

	eoPowerCurrentType

	eoPowerMeasurementLocal

	eoPowerAdminState

	eoPowerOperState

	eoPowerStateEnterReason

set-eoAttribute enables sending a command to an energy object:

set-eoAttribute

 deviceIP. IP address of target device
 attribute. string indicating name of attribute. Currently, no attributes

get-eoDevicePowerMeasures reads an eoPowerMEasurements table from a device
and stores the result in MD-SAL, making it available vie the operational API:

get-eoDevicePowerMeasures

 deviceIP. IP address of target device

API Reference Documentation

See eman project page for additional information:
https://wiki.opendaylight.org/view/eman:Main

Fabric As A Service

FaaS (Fabric As A service) has two layers of APIs. We describe the top
level API in the user guide. This document focuses on the Fabric level
API and describes each API’s semantics and example implementation. The
second layer defines an abstraction layer called ‘’Fabric’’ API. The
idea is to abstract network into a topology formed by a collections of
fabric objects other than varies of physical devices.Each Fabric object
provides a collection of unified services.The top level API enables
application developers or users to write applications to map high level
model such as GBP, Intent etc… into a logical network model, while the
lower level gives the application more control to individual fabric
object level. More importantly the Fabric API is more like SP (Service
Provider API) a fabric provider or vendor can implement the SPI based on
its own Fabric technique such as TRILL, SPB etc …

For how to use first level API operation, please refer to user guide for
more details.

FaaS Architecture

FaaS Architecture is an 3 layered architecture, on the top is the FaaS
Application layer, in the middle is the Fabric manager and at the bottom
are different types of fabric objects. From bottom up, it is

	Fabric and its controller (Fabric Controller)

	The Fabric object provides an abstraction of a homogeneous network
or portion of the network and also has a built in Fabric controller
which provides management plane and control plane for the fabric.
The fabric controller implements the services required in Fabric
Service and monitor and control the fabric operation.

	Fabric Manager

	Fabric Manager manages all the fabric objects. also Fabric manager
acts as a Unified Fabric Controller which provides inter-connect
fabric control and configuration Also Fabric Manager is FaaS API
service via Which FaaS user level logical network API (the top level
API as mentioned previously) exposed and implemented.

	FaaS renderer for GBP (Group Based Policy)

	FaaS renderer for GBP is an application of FaaS and provides the
rendering service between GBP model and logical network model
provided by Fabric Manager.

Fabric APIs and Interfaces

FaaS APIs have 4 groups as defined below

	Fabric Provisioning API

	This set of APIs is used to create and remove Fabric Abstractions,
in other words, those APIs is to provision the underlay networks and
prepare to create overlay network(the logical network) on top of it.

	Fabric Service API

	This set of APIs is used to create logical network over the Fabrics.

	EndPoint API

	EndPoint API is used to bind a physical port which is the location
of the attachment of an EndPoint happens or will happen.

	OAM API

	Those APIs are for Operations, Administration and Maintenance
purpose and In current release, OAM API is not implemented yet.

Fabric Provisioning API

	http://${ipaddress}:8181/restconf/operations/fabric:compose-fabric

	http://${ipaddress}:8181/restconf/operations/fabric:decompose-fabric

	http://${ipaddress}:8181/restconf/operations/fabric:get-all-fabrics

Fabric Service API

	RESTCONF for creating Logical port, switch, router, routing entries
and link. Among them, both switches and routers have ports. links
connect ports.these 5 logical elements are basic building blocks of a
logical network.

	http://${ipaddress}:8181/restconf/operations/fabric-service:create-logical-switch

	http://${ipaddress}:8181/restconf/operations/fabric-service:rm-logical-switch

	http://${ipaddress}:8181/restconf/operations/fabric-service:create-logical-router

	http://${ipaddress}:8181/restconf/operations/fabric-service:rm-logical-router

	http://${ipaddress}:8181/restconf/operations/fabric-service:add-static-route

	http://${ipaddress}:8181/restconf/operations/fabric-service:create-logic-port

	http://${ipaddress}:8181/restconf/operations/fabric-service:rm-logic-port

	http://${ipaddress}:8181/restconf/operations/fabric-service:create-gateway

	http://${ipaddress}:8181/restconf/operations/fabric-service:rm-gateway

	http://${ipaddress}:8181/restconf/operations/fabric-service:port-binding-logical-to-fabric

	http://${ipaddress}:8181/restconf/operations/fabric-service:port-binding-logical-to-device

	http://${ipaddress}:8181/restconf/operations/fabric-service:add-port-function

	http://${ipaddress}:8181/restconf/operations/fabric-service:add-acl

	http://${ipaddress}:8181/restconf/operations/fabric-service:del-acl

EndPoint API

The following APIs is to bind the physical ports to the logical ports on
the logical switches:

	http://${ipaddress}:8181/restconf/operations/fabric-endpoint:register-endpoint

	http://${ipaddress}:8181/restconf/operations/fabric-endpoint:unregister-endpoint

	http://${ipaddress}:8181/restconf/operations/fabric-endpoint:locate-endpoint

Others API

	http://${ipaddress}:8181/restconf/operations/fabric-resource:create-fabric-port

API Reference Documentation

Go to
http://${ipaddress}:8181/restconf/apidoc/index.html
and expand on ‘’FaaS’’ related panel for more APIs.

Infrautils

Overview

Infrautils offer various utilities and infrastructures for other projects to use:

Counters Infrastructure

Create, update and output counters is a basic tool for debugging and generating statistics in any system.
We have developed a counter infrastructure integrated into ODL which has already been successfully used with
multiple products, and more recently in debugging and fixing the OpenFlow plugin/Java and LACP modules.
Getting started with Counters [https://wiki.opendaylight.org/view/Getting_started_with_Counters]

Async Infrastructure

The decision to split a service into one or more threads with asynchronous interactions between them is
frequently dependent on constraints learned late in the development and even the deployment cycle.
In order to allow flexibility in making these decisions we have developed an infrastructure which is
configuration driven allowing agnostic code to be written under generic constrains which can then later
be customized according to the required constraints.
Getting started with Async [https://git.opendaylight.org/gerrit/gitweb?p=infrautils.git;a=tree;f=samples/sample-async;h=dedd664da4a1bcfbe62261df73d19044d334f0b9;hb=refs/heads/master]

IoTDM Developer Guide

Overview

The Internet of Things Data Management (IoTDM) on OpenDaylight project
is about developing a data-centric middleware that will act as a oneM2M
compliant IoT Data Broker and enable authorized applications to retrieve
IoT data uploaded by any device. The OpenDaylight platform is used to
implement the oneM2M data store which models a hierarchical containment
tree, where each node in the tree represents an oneM2M resource.
Typically, IoT devices and applications interact with the resource tree
over standard protocols such as CoAP, MQTT, and HTTP. Initially, the
oneM2M resource tree is used by applications to retrieve data. Possible
applications are inventory or device management systems or big data
analytic systems designed to make sense of the collected data. But, at
some point, applications will need to configure the devices. Features
and tools will have to be provided to enable configuration of the
devices based on applications responding to user input, network
conditions, or some set of programmable rules or policies possibly
triggered by the receipt of data collected from the devices. The
OpenDaylight platform, with its rich unique cross-section of SDN
capabilities, NFV, and now IoT device and application management, can be
bundled with a targeted set of features and deployed anywhere in the
network to give the network service provider ultimate control. Depending
on the use case, the OpenDaylight IoT platform can be configured with
only IoT data collection capabilities where it is deployed near the IoT
devices and its footprint needs to be small, or it can be configured to
run as a highly scaled up and out distributed cluster with IoT, SDN and
NFV functions enabled and deployed in a high traffic data center.

oneM2M Architecture

The architecture provides a framework that enables the support of the
oneM2M resource containment tree. The onem2m-core implements the MDSAL
RPCs defined in the onem2m-api YANG files. These RPCs enable oneM2M
resources to be created, read, updated, and deleted (CRUD), and also
enables the management of subscriptions. When resources are CRUDed, the
onem2m-notifier issues oneM2M notification events to interested
subscribers. TS0001: oneM2M Functional Architecture and TS0004: oneM2M
Service Layer Protocol are great reference documents to learn details of
oneM2M resource types, message flow, formats, and CRUD/N semantics. Both
of these specifications can be found at
http://onem2m.org/technical/published-documents

The oneM2M resource tree is modeled in YANG and essentially is a
meta-model for the tree. The oneM2M wire protocols allow the resource
tree to be constructed via HTTP or CoAP messages that populate nodes in
the tree with resource specific attributes. Each oneM2M resource type
has semantic behaviour associated with it. For example: a container
resource has attributes which control quotas on how many and how big the
collection of data or content instance objects that can exist below it
in the tree. Depending on the resource type, the oneM2M core software
implements and enforces the resource type specific rules to ensure a
well-behaved resource tree.

The resource tree can be simultaneously accessed by many concurrent
applications wishing to manage or access the tree, and also many devices
can be reporting in new data or sensor readings into their appropriate
place in the tree.

Key APIs and Interfaces

The API’s to access the oneM2M datastore are well documented in TS0004
(referred above) found on onem2m.org

RESTCONF is available too but generally HTTP and CoAP are used to access
the oneM2M data tree.

L2Switch Developer Guide

Overview

The L2Switch project provides Layer2 switch functionality.

L2Switch Architecture

	Packet Handler

	Decodes the packets coming to the controller and dispatches them
appropriately

	Loop Remover

	Removes loops in the network

	Arp Handler

	Handles the decoded ARP packets

	Address Tracker

	Learns the Addresses (MAC and IP) of entities in the network

	Host Tracker

	Tracks the locations of hosts in the network

	L2Switch Main

	Installs flows on each switch based on network traffic

Key APIs and Interfaces

	Packet Handler

	Loop Remover

	Arp Handler

	Address Tracker

	Host Tracker

	L2Switch Main

Packet Dispatcher

Classes

	AbstractPacketDecoder

	Defines the methods that all decoders must implement

	EthernetDecoder

	The base decoder which decodes the packet into an Ethernet packet

	ArpDecoder, Ipv4Decoder, Ipv6Decoder

	Decodes Ethernet packets into the either an ARP or IPv4 or IPv6
packet

Further development

There is a need for more decoders. A developer can write

	A decoder for another EtherType, i.e. LLDP.

	A higher layer decoder for the body of the IPv4 packet or IPv6
packet, i.e. TCP and UDP.

How to write a new decoder

	extends AbstractDecoder<A, B>

	A refers to the notification that the new decoder consumes

	B refers to the notification that the new decoder produces

	implements xPacketListener

	The new decoder must specify which notification it is listening to

	canDecode method

	This method should examine the consumed notification to see
whether the new decoder can decode the contents of the packet

	decode method

	This method does the actual decoding of the packet

Loop Remover

Classes

	LoopRemoverModule

	Reads config subsystem value for is-install-lldp-flow

	If is-install-lldp-flow is true, then an
InitialFlowWriter is created

	Creates and initializes the other LoopRemover classes

	InitialFlowWriter

	Only created when is-install-lldp-flow is true

	Installs a flow, which forwards all LLDP packets to the
controller, on each switch

	TopologyLinkDataChangeHandler

	Listens to data change events on the Topology tree

	When these changes occur, it waits graph-refresh-delay seconds
and then tells NetworkGraphImpl to update

	Writes an STP (Spanning Tree Protocol) status of “forwarding” or
“discarding” to each link in the Topology data tree

	Forwarding links can forward packets.

	Discarding links cannot forward packets.

	NetworkGraphImpl

	Creates a loop-free graph of the network

Configuration

	graph-refresh-delay

	Used in TopologyLinkDataChangeHandler

	A higher value has the advantage of doing less graph updates, at
the potential cost of losing some packets because the graph didn’t
update immediately.

	A lower value has the advantage of handling network topology
changes quicker, at the cost of doing more computation.

	is-install-lldp-flow

	Used in LoopRemoverModule

	“true” means a flow that sends all LLDP packets to the controller
will be installed on each switch

	“false” means this flow will not be installed

	lldp-flow-table-id

	The LLDP flow will be installed on the specified flow table of
each switch

	lldp-flow-priority

	The LLDP flow will be installed with the specified priority

	lldp-flow-idle-timeout

	The LLDP flow will timeout (removed from the switch) if the flow
doesn’t forward a packet for x seconds

	lldp-flow-hard-timeout

	The LLDP flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

Further development

No suggestions at the moment.

Validating changes to Loop Remover

STP Status information is added to the Inventory data tree.

	A status of “forwarding” means the link is active and packets are
flowing on it.

	A status of “discarding” means the link is inactive and packets are
not sent over it.

The STP status of a link can be checked through a browser or a REST
Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/node-connector/openflow:1:2

The STP status should still be there after changes are made.

Arp Handler

Classes

	ArpHandlerModule

	Reads config subsystem value for is-proactive-flood-mode

	If is-proactive-flood-mode is true, then a
ProactiveFloodFlowWriter is created

	If is-proactive-flood-mode is false, then an
InitialFlowWriter is created

	ProactiveFloodFlowWriter

	Only created when is-proactive-flood-mode is true

	Installs a flood flow on each switch. With this flood flow, a
packet that doesn’t match any other flows will be
flooded/broadcast from that switch.

	InitialFlowWriter

	Only created when is-proactive-flood-mode is false

	Installs a flow, which sends all ARP packets to the controller, on
each switch

	ArpPacketHandler

	Only created when is-proactive-flood-mode is false

	Handles and processes the controller’s incoming ARP packets

	Uses PacketDispatcher to send the ARP packet back into the
network

	PacketDispatcher

	Only created when is-proactive-flood-mode is false

	Sends packets out to the network

	Uses InventoryReader to determine which node-connector to a
send a packet on

	InventoryReader

	Only created when is-proactive-flood-mode is false

	Maintains a list of each switch’s node-connectors

Configuration

	is-proactive-flood-mode

	“true” means that flood flows will be installed on each switch.
With this flood flow, each switch will flood a packet that doesn’t
match any other flows.

	Advantage: Fewer packets are sent to the controller because
those packets are flooded to the network.

	Disadvantage: A lot of network traffic is generated.

	“false” means the previously mentioned flood flows will not be
installed. Instead an ARP flow will be installed on each switch
that sends all ARP packets to the controller.

	Advantage: Less network traffic is generated.

	Disadvantage: The controller handles more packets (ARP requests
& replies) and the ARP process takes longer than if there were
flood flows.

	flood-flow-table-id

	The flood flow will be installed on the specified flow table of
each switch

	flood-flow-priority

	The flood flow will be installed with the specified priority

	flood-flow-idle-timeout

	The flood flow will timeout (removed from the switch) if the flow
doesn’t forward a packet for x seconds

	flood-flow-hard-timeout

	The flood flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

	arp-flow-table-id

	The ARP flow will be installed on the specified flow table of each
switch

	arp-flow-priority

	The ARP flow will be installed with the specified priority

	arp-flow-idle-timeout

	The ARP flow will timeout (removed from the switch) if the flow
doesn’t forward a packet for x seconds

	arp-flow-hard-timeout

	The ARP flow will timeout (removed from the switch) after
arp-flow-hard-timeout seconds, regardless of how many packets it
is forwarding

Further development

The ProactiveFloodFlowWriter needs to be improved. It does have the
advantage of having less traffic come to the controller; however, it
generates too much network traffic.

Address Tracker

Classes

	AddressTrackerModule

	Reads config subsystem value for observe-addresses-from

	If observe-addresses-from contains “arp”, then an
AddressObserverUsingArp is created

	If observe-addresses-from contains “ipv4”, then an
AddressObserverUsingIpv4 is created

	If observe-addresses-from contains “ipv6”, then an
AddressObserverUsingIpv6 is created

	AddressObserverUsingArp

	Registers for ARP packet notifications

	Uses AddressObservationWriter to write address observations
from ARP packets

	AddressObserverUsingIpv4

	Registers for IPv4 packet notifications

	Uses AddressObservationWriter to write address observations
from IPv4 packets

	AddressObserverUsingIpv6

	Registers for IPv6 packet notifications

	Uses AddressObservationWriter to write address observations
from IPv6 packets

	AddressObservationWriter

	Writes new Address Observations to the Inventory data tree

	Updates existing Address Observations with updated “last seen”
timestamps

	Uses the timestamp-update-intervval configuration variable to
determine whether or not to update

Configuration

	timestamp-update-interval

	A last-seen timestamp is associated with each address. This
last-seen timestamp will only be updated after
timestamp-update-interval milliseconds.

	A higher value has the advantage of performing less writes to the
database.

	A lower value has the advantage of knowing how fresh an address
is.

	observe-addresses-from

	IP and MAC addresses can be observed/learned from ARP, IPv4, and
IPv6 packets. Set which packets to make these observations from.

Further development

Further improvements can be made to the AddressObservationWriter so
that it (1) doesn’t make any unnecessary writes to the DB and (2) is
optimized for multi-threaded environments.

Validating changes to Address Tracker

Address Observations are added to the Inventory data tree.

The Address Observations on a Node Connector can be checked through a
browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/node-connector/openflow:1:1

The Address Observations should still be there after changes.

Developer’s Guide for Host Tracker

Validationg changes to Host Tracker

Host information is added to the Topology data tree.

	Host address

	Attachment point (link) to a node/switch

This host information and attachment point information can be checked
through a browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/network-topology:network-topology/topology/flow:1/

Host information should still be there after changes.

L2Switch Main

Classes

	L2SwitchMainModule

	Reads config subsystem value for is-install-dropall-flow

	If is-install-dropall-flow is true, then an
InitialFlowWriter is created

	Reads config subsystem value for is-learning-only-mode

	If is-learning-only-mode is false, then a
ReactiveFlowWriter is created

	InitialFlowWriter

	Only created when is-install-dropall-flow is true

	Installs a flow, which drops all packets, on each switch. This
flow has low priority and means that packets that don’t match any
higher-priority flows will simply be dropped.

	ReactiveFlowWriter

	Reacts to network traffic and installs MAC-to-MAC flows on
switches. These flows have matches based on MAC source and MAC
destination.

	Uses FlowWriterServiceImpl to write these flows to the
switches

	FlowWriterService / FlowWriterServiceImpl

	Writes flows to switches

Configuration

	is-install-dropall-flow

	“true” means a drop-all flow will be installed on each switch, so
the default action will be to drop a packet instead of sending it
to the controller

	“false” means this flow will not be installed

	dropall-flow-table-id

	The dropall flow will be installed on the specified flow table of
each switch

	This field is only relevant when “is-install-dropall-flow” is set
to “true”

	dropall-flow-priority

	The dropall flow will be installed with the specified priority

	This field is only relevant when “is-install-dropall-flow” is set
to “true”

	dropall-flow-idle-timeout

	The dropall flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-install-dropall-flow” is set
to “true”

	dropall-flow-hard-timeout

	The dropall flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-install-dropall-flow” is set
to “true”

	is-learning-only-mode

	“true” means that the L2Switch will only be learning addresses. No
additional flows to optimize network traffic will be installed.

	“false” means that the L2Switch will react to network traffic and
install flows on the switches to optimize traffic. Currently,
MAC-to-MAC flows are installed.

	reactive-flow-table-id

	The reactive flow will be installed on the specified flow table of
each switch

	This field is only relevant when “is-learning-only-mode” is set to
“false”

	reactive-flow-priority

	The reactive flow will be installed with the specified priority

	This field is only relevant when “is-learning-only-mode” is set to
“false”

	reactive-flow-idle-timeout

	The reactive flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-learning-only-mode” is set to
“false”

	reactive-flow-hard-timeout

	The reactive flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-learning-only-mode” is set to
“false”

Further development

The ReactiveFlowWriter needs to be improved to install the
MAC-to-MAC flows faster. For the first ping, the ARP request and reply
are successful. However, then the ping packets are sent out. The first
ping packet is dropped sometimes because the MAC-to-MAC flow isn’t
installed quickly enough. The second, third, and following ping packets
are successful though.

API Reference Documentation

Further documentation can be found by checking out the L2Switch project.

Checking out the L2Switch project

git clone https://git.opendaylight.org/gerrit/p/l2switch.git

The above command will create a directory called “l2switch” with the
project.

Testing your changes to the L2Switch project

Running the L2Switch project

To run the base distribution, you can use the following command

./distribution/base/target/distributions-l2switch-base-0.1.0-SNAPSHOT-osgipackage/opendaylight/run.sh

If you need additional resources, you can use these command line
arguments:

-Xms1024m -Xmx2048m -XX:PermSize=512m -XX:MaxPermSize=1024m'

To run the karaf distribution, you can use the following command:

./distribution/karaf/target/assembly/bin/karaf

Create a network using mininet

sudo mn --controller=remote,ip=<Controller IP> --topo=linear,3 --switch ovsk,protocols=OpenFlow13
sudo mn --controller=remote,ip=127.0.0.1 --topo=linear,3 --switch ovsk,protocols=OpenFlow13

The above command will create a virtual network consisting of 3
switches. Each switch will connect to the controller located at the
specified IP, i.e. 127.0.0.1

sudo mn --controller=remote,ip=127.0.0.1 --mac --topo=linear,3 --switch ovsk,protocols=OpenFlow13

The above command has the “mac” option, which makes it easier to
distinguish between Host MAC addresses and Switch MAC addresses.

Generating network traffic using mininet

h1 ping h2

The above command will cause host1 (h1) to ping host2 (h2)

pingall

pingall will cause each host to ping every other host.

Miscellaneous mininet commands

link s1 s2 down

This will bring the link between switch1 (s1) and switch2 (s2) down

link s1 s2 up

This will bring the link between switch1 (s1) and switch2 (s2) up

link s1 h1 down

This will bring the link between switch1 (s1) and host1 (h1) down

LACP Developer Guide

LACP Overview

The OpenDaylight LACP (Link Aggregation Control Protocol) project can be
used to aggregate multiple links between OpenDaylight controlled network
switches and LACP enabled legacy switches or hosts operating in active
LACP mode.

OpenDaylight LACP passively negotiates automatic bundling of multiple
links to form a single LAG (Link Aggregation Group). LAGs are realised
in the OpenDaylight controlled switches using OpenFlow 1.3+ group table
functionality.

LACP Architecture

	inventory

	Maintains list of OpenDaylight controlled switches and port
information

	List of LAGs created and physical ports that are part of the LAG

	Interacts with MD-SAL to update LACP related information

	inventorylistener

	This module interacts with MD-SAL for receiving
node/node-connector notifications

	flow

	Programs the switch to punt LACP PDU (Protocol Data Unit) to
controller

	packethandler

	Receives and transmits LACP PDUs to the LACP enabled endpoint

	Provides infrastructure services for group table programming

	core

	Performs LACP state machine processing

How LAG programming is implemented

The LAG representing the aggregated multiple physical ports are realized
in the OpenDaylight controlled switches by creating a group table entry
(Group table supported from OpenFlow 1.3 onwards). The group table entry
has a group type Select and action referring to the aggregated
physical ports. Any data traffic to be sent out through the LAG can be
sent through the group entry available for the LAG.

Suppose there are ports P1-P8 in a node. When LACP project is installed,
a group table entry for handling broadcast traffic is automatically
created on all the switches that have registered to the controller.

	GroupID

	GroupType

	EgressPorts

	<B’castgID>

	ALL

	P1,P2,…P8

Now, assume P1 & P2 are now part of LAG1. The group table would be
programmed as follows:

	GroupID

	GroupType

	EgressPorts

	<B’castgID>

	ALL

	P3,P4,…P8

	<LAG1>

	SELECT

	P1,P2

When a second LAG, LAG2, is formed with ports P3 and P4,

	GroupID

	GroupType

	EgressPorts

	<B’castgID>

	ALL

	P5,P6,…P8

	<LAG1>

	SELECT

	P1,P2

	<LAG2>

	SELECT

	P3,P4

How applications can program OpenFlow flows using LACP-created LAG groups

OpenDaylight controller modules can get the information of LAG by
listening/querying the LACP Aggregator datastore.

When any application receives packets, it can check, if the ingress port
is part of a LAG by verifying the LAG Aggregator reference
(lacp-agg-ref) for the source nodeConnector that OpenFlow plugin
provides.

When applications want to add flows to egress out of the LAG, they must
use the group entry corresponding to the LAG.

From the above example, for a flow to egress out of LAG1,

add-flow eth_type=<xxxx>,ip_dst=<x.x.x.x>,actions=output:<LAG1>

Similarly, when applications want traffic to be broadcasted, they should
use the group table entries <B’castgID>,<LAG1>,<LAG2> in output
action.

For all applications, the group table information is accessible from
LACP Aggregator datastore.

LISP Flow Mapping User Guide

Overview

Locator/ID Separation Protocol

Locator/ID Separation Protocol
(LISP) [http://tools.ietf.org/html/rfc6830] is a technology that
provides a flexible map-and-encap framework that can be used for overlay
network applications such as data center network virtualization and
Network Function Virtualization (NFV).

LISP provides the following name spaces:

	Endpoint Identifiers
(EIDs) [http://tools.ietf.org/html/rfc6830#page-6]

	Routing Locators
(RLOCs) [http://tools.ietf.org/html/rfc6830#section-3]

In a virtualization environment EIDs can be viewed as virtual address
space and RLOCs can be viewed as physical network address space.

The LISP framework decouples network control plane from the forwarding
plane by providing:

	A data plane that specifies how the virtualized network addresses are
encapsulated in addresses from the underlying physical network.

	A control plane that stores the mapping of the virtual-to-physical
address spaces, the associated forwarding policies and serves this
information to the data plane on demand.

Network programmability is achieved by programming forwarding policies
such as transparent mobility, service chaining, and traffic engineering
in the mapping system; where the data plane elements can fetch these
policies on demand as new flows arrive. This chapter describes the LISP
Flow Mapping project in OpenDaylight and how it can be used to enable
advanced SDN and NFV use cases.

LISP data plane Tunnel Routers are available at
OpenOverlayRouter.org [http://www.openoverlayrouter.org/] in the open source community on
the following platforms:

	Linux

	Android

	OpenWRT

For more details and support for LISP data plane software please visit
the OOR web site [http://www.openoverlayrouter.org/].

LISP Flow Mapping Service

The LISP Flow Mapping service provides LISP Mapping System services.
This includes LISP Map-Server and LISP Map-Resolver services to store
and serve mapping data to data plane nodes as well as to OpenDaylight
applications. Mapping data can include mapping of virtual addresses to
physical network address where the virtual nodes are reachable or hosted
at. Mapping data can also include a variety of routing policies
including traffic engineering and load balancing. To leverage this
service, OpenDaylight applications and services can use the northbound
REST API to define the mappings and policies in the LISP Mapping
Service. Data plane devices capable of LISP control protocol can
leverage this service through a southbound LISP plugin. LISP-enabled
devices must be configured to use this OpenDaylight service as their Map
Server and/or Map Resolver.

The southbound LISP plugin supports the LISP control protocol
(Map-Register, Map-Request, Map-Reply messages), and can also be used to
register mappings in the OpenDaylight mapping service.

LISP Flow Mapping Architecture

The following figure shows the various LISP Flow Mapping modules.

[image: LISP Mapping Service Internal Architecture]
LISP Mapping Service Internal Architecture

A brief description of each module is as follows:

	DAO (Data Access Object): This layer separates the LISP logic
from the database, so that we can separate the map server and map
resolver from the specific implementation of the mapping database.
Currently we have an implementation of this layer with an in-memory
HashMap, but it can be switched to any other key/value store and you
only need to implement the ILispDAO interface.

	Map Server: This module processes the adding or registration of
authentication tokens (keys) and mappings. For a detailed
specification of LISP Map Server, see
LISP [http://tools.ietf.org/search/rfc6830].

	Map Resolver: This module receives and processes the mapping
lookup queries and provides the mappings to requester. For a detailed
specification of LISP Map Server, see
LISP [http://tools.ietf.org/search/rfc6830].

	RPC/RESTCONF: This is the auto-generated RESTCONF-based
northbound API. This module enables defining key-EID associations as
well as adding mapping information through the Map Server. Key-EID
associations and mappings can also be queried via this API.

	GUI: This module enables adding and querying the mapping service
through a GUI based on ODL DLUX.

	Neutron: This module implements the OpenDaylight Neutron Service
APIs. It provides integration between the LISP service and the
OpenDaylight Neutron service, and thus OpenStack.

	Java API: The API module exposes the Map Server and Map Resolver
capabilities via a Java API.

	LISP Proto: This module includes LISP protocol dependent data
types and associated processing.

	In Memory DB: This module includes the in memory database
implementation of the mapping service.

	LISP Southbound Plugin: This plugin enables data plane devices
that support LISP control plane protocol (see
LISP [http://tools.ietf.org/search/rfc6830]) to register and
query mappings to the LISP Flow Mapping via the LISP control plane
protocol.

Configuring LISP Flow Mapping

In order to use the LISP mapping service for registering EID to RLOC
mappings from northbound or southbound, keys have to be defined for the
EID prefixes first. Once a key is defined for an EID prefix, it can be
used to add mappings for that EID prefix multiple times. If the service
is going to be used to process Map-Register messages from the southbound
LISP plugin, the same key must be used by the data plane device to
create the authentication data in the Map-Register messages for the
associated EID prefix.

The etc/custom.properties file in the Karaf distribution allows
configuration of several OpenDaylight parameters. The LISP service has
the following properties that can be adjusted:

	lisp.smr (default: false)

	Enables/disables the Solicit-Map-Request
(SMR) [http://tools.ietf.org/html/rfc6830#section-6.6.2]
functionality. SMR is a method to notify changes in an EID-to-RLOC
mapping to “subscribers”. The LISP service considers all
Map-Request’s source RLOC as a subscriber to the requested EID
prefix, and will send an SMR control message to that RLOC if the
mapping changes.

	lisp.elpPolicy (default: default)

	Configures how to build a Map-Reply southbound message from a
mapping containing an Explicit Locator Path (ELP) RLOC. It is used
for compatibility with dataplane devices that don’t understand the
ELP LCAF format. The default setting doesn’t alter the mapping,
returning all RLOCs unmodified. The both setting adds a new RLOC
to the mapping, with a lower priority than the ELP, that is the next
hop in the service chain. To determine the next hop, it searches the
source RLOC of the Map-Request in the ELP, and chooses the next hop,
if it exists, otherwise it chooses the first hop. The replace
setting adds a new RLOC using the same algorithm as the both
setting, but using the origin priority of the ELP RLOC, which is
removed from the mapping.

	lisp.lookupPolicy (default: northboundFirst)

	Configures the mapping lookup algorithm. When set to
northboundFirst mappings programmed through the northbound API
will take precedence. If no northbound programmed mappings exist,
then the mapping service will return mappings registered through the
southbound plugin, if any exists. When set to
northboundAndSouthbound the mapping programmed by the northbound
is returned, updated by the up/down status of these mappings as
reported by the southbound (if existing).

	lisp.mappingMerge (default: false)

	Configures the merge policy on the southbound registrations through
the LISP SB Plugin. When set to false, only the latest mapping
registered through the SB plugin is valid in the southbound mapping
database, independent of which device it came from. When set to
true, mappings for the same EID registered by different devices
are merged together and a union of the locators is maintained as the
valid mapping for that EID.

Textual Conventions for LISP Address Formats

In addition to the more common IPv4, IPv6 and MAC address data types,
the LISP control plane supports arbitrary Address Family
Identifiers [http://www.iana.org/assignments/address-family-numbers]
assigned by IANA, and in addition to those the LISP Canoncal Address
Format (LCAF) [https://tools.ietf.org/html/draft-ietf-lisp-lcaf].

The LISP Flow Mapping project in OpenDaylight implements support for
many of these different address formats, the full list being summarized
in the following table. While some of the address formats have well
defined and widely used textual representation, many don’t. It became
necessary to define a convention to use for text rendering of all
implemented address types in logs, URLs, input fields, etc. The below
table lists the supported formats, along with their AFI number and LCAF
type, including the prefix used for disambiguation of potential overlap,
and examples output.

	Name

	AFI

	LCAF

	Prefix

	Text Rendering

	No Address

	0

	
	

	no:

	No Address Present

	IPv4 Prefix

	1

	
	

	ipv4:

	192.0.2.0/24

	IPv6 Prefix

	2

	
	

	ipv6:

	2001:db8::/32

	MAC Address

	16389

	
	

	mac:

	00:00:5E:00:53:00

	Distinguished
Name

	17

	
	

	dn:

	stringAsIs

	AS Number

	18

	
	

	as:

	AS64500

	AFI List

	16387

	1

	list:

	{192.0.2.1,192.0.2.2,2001:db8::1
}

	Instance ID

	16387

	2

	
	

	[223] 192.0.2.0/24

	Application
Data

	16387

	4

	appdata:

	192.0.2.1!128!17!80-81!6667-7000

	Explicit
Locator Path

	16387

	10

	elp:

	{192.0.2.1→192.0.2.2|lps→192.0.
2.3}

	Source/Destina
tion
Key

	16387

	12

	srcdst:

	192.0.2.1/32|192.0.2.2/32

	Key/Value
Address Pair

	16387

	15

	kv:

	192.0.2.1⇒192.0.2.2

	Service Path

	16387

	N/A

	sp:

	42(3)

Table: LISP Address Formats

Please note that the forward slash character / typically separating
IPv4 and IPv6 addresses from the mask length is transformed into %2f
when used in a URL.

Karaf commands

In this section we will discuss two types of Karaf commands: built-in,
and LISP specific. Some built-in commands are quite useful, and are
needed for the tutorial, so they will be discussed here. A reference of
all LISP specific commands, added by the LISP Flow Mapping project is
also included. They are useful mostly for debugging.

Useful built-in commands

	help

	Lists all available command, with a short description of each.

	help <command_name>

	Show detailed help about a specific command.

	feature:list [-i]

	Show all locally available features in the Karaf container. The
-i option lists only features that are currently installed. It
is possible to use | grep to filter the output (for all
commands, not just this one).

	feature:install <feature_name>

	Install feature feature_name.

	log:set <level> <class>

	Set the log level for class to level. The default log level
for all classes is INFO. For debugging, or learning about LISP
internals it is useful to run
log:set TRACE org.opendaylight.lispflowmapping right after Karaf
starts up.

	log:display

	Outputs the log file to the console, and returns control to the
user.

	log:tail

	Continuously shows log output, requires Ctrl+C to return to the
console.

LISP specific commands

The available lisp commands can always be obtained by
help mappingservice. Currently they are:

	mappingservice:addkey

	Add the default password password for the IPv4 EID prefix
0.0.0.0/0 (all addresses). This is useful when experimenting with
southbound devices, and using the REST interface would be combersome
for whatever reason.

	mappingservice:mappings

	Show the list of all mappings stored in the internal non-persistent
data store (the DAO), listing the full data structure. The output is
not human friendly, but can be used for debugging.

LISP Flow Mapping Karaf Features

LISP Flow Mapping has the following Karaf features that can be installed
from the Karaf console:

	odl-lispflowmapping-msmr

	This includes the core features required to use the LISP Flow
Mapping Service such as mapping service and the LISP southbound
plugin.

	odl-lispflowmapping-ui

	This includes the GUI module for the LISP Mapping Service.

	odl-lispflowmapping-neutron

	This is the experimental Neutron provider module for LISP mapping
service.

Tutorials

This section provides a tutorial demonstrating various features in this
service. We have included tutorials using two forwarding platforms:

	Using Open Overlay Router (OOR) [https://github.com/OpenOverlayRouter/oor#overview]

	Using FD.io [https://wiki.fd.io/view/ONE]

Both have different approaches to create the overlay but ultimately do the
same job. Details of both approaches have been explained below.

Creating a LISP overlay with OOR

This section provides instructions to set up a LISP network of three
nodes (one “client” node and two “server” nodes) using OOR as data
plane LISP nodes and the LISP Flow Mapping project from OpenDaylight as
the LISP programmable mapping system for the LISP network.

Overview

The steps shown below will demonstrate setting up a LISP network between
a client and two servers, then performing a failover between the two
“server” nodes.

Prerequisites

	The OpenDaylight Karaf Distribution (download [https://www.opendaylight.org/downloads])

	The Postman Chrome App: the most convenient way to follow along
this tutorial is to use the Postman
App [https://www.getpostman.com/apps]
to edit and send the requests. The project git repository hosts a
collection of the requests that are used in this tutorial in the
resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection
file. You can import this file to Postman by clicking Import at the
top, choosing Download from link and then entering the following
URL:
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection;hb=refs/heads/stable/nitrogen.
Alternatively, you can save the file on your machine, or if you have
the repository checked out, you can import from there. You will need
to create a new Postman Environment and define some variables within:
controllerHost set to the hostname or IP address of the machine
running the OpenDaylight instance, and restconfPort to 8181, if you didn’t
modify the default controller settings.

	OOR version 1.0 or later The README.md lists the dependencies needed
to build it from source.

	A virtualization platform

Target Environment

The three LISP data plane nodes and the LISP mapping system are assumed
to be running in Linux virtual machines, which have the eth0
interface in NAT mode to allow outside internet access and eth1
connected to a host-only network, with the following IP addresses
(please adjust configuration files, JSON examples, etc. accordingly if
you’re using another addressing scheme):

	Node

	Node Type

	IP Address

	controller

	OpenDaylight

	192.168.16.11

	client

	OOR

	192.168.16.30

	server1

	OOR

	192.168.16.31

	server2

	OOR

	192.168.16.32

	service-node

	OOR

	192.168.16.33

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

[image: Network architecture of the tutorial]

In LISP terminology client, server1 and server2 are mobile nodes (MN in OOR),
controller is a MS/MR and service-node is a RTR.

Instructions

The below steps use the command line tool cURL to talk to the LISP Flow
Mapping RPC REST API. This is so that you can see the actual request
URLs and body content on the page.

	Install and run the OpenDaylight distribution on the controller VM.
Please follow the general OpenDaylight Installation Guide
for this step. Once the OpenDaylight controller is running install
the odl-lispflowmapping-msmr feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It takes quite a while to load and initialize all features and their
dependencies. It’s worth running the command log:tail in the
Karaf console to see when the log output is winding down, and
continue with the tutorial after that.

	Install OOR on the client, server1, server2, and
service-node VMs following the installation instructions from
the OOR README
file [https://github.com/OpenOverlayRouter/oor#software-prerequisites].

	Configure the OOR installations from the previous step. Take a look
at the oor.conf.example to get a general idea of the structure
of the conf file. First, check if the file /etc/oor.conf exists.
If the file doesn’t exist, create the file /etc/oor.conf. Set the
EID in /etc/oor.conf file from the IP address space selected
for your virtual/LISP network. In this tutorial the EID of the
client is set to 1.1.1.1/32, and that of server1 and
server2 to 2.2.2.2/32.

	Set the RLOC interface to eth1 in each oor.conf file. LISP
will determine the RLOC (IP address of the corresponding VM) based
on this interface.

	Set the Map-Resolver address to the IP address of the
controller, and on the client the Map-Server too. On
server1 and server2 remove the Map-Server configuration, so
that it doesn’t interfere with the mappings on the controller, since
we’re going to program them manually.

	Modify the “key” parameter in each oor.conf file to a
key/password of your choice (password in this tutorial).

Note

The resources/tutorial/OOR directory in the project git repository
has the files used in the tutorial checked in [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/OOR;hb=refs/heads/stable/nitrogen],
so you can just copy the files to /etc/oor.conf on the respective
VMs. You will also find the JSON files referenced below in the same
directory.

	Define a key and EID prefix association in OpenDaylight using the
RPC REST API for the client EID (1.1.1.1/32) to allow
registration from the southbound. Since the mappings for the server
EID will be configured from the REST API, no such association is
necessary. Run the below command on the controller (or any
machine that can reach controller, by replacing localhost with
the IP address of controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/ \
 --data @add-key.json

where the content of the add-key.json file is the following:

{
 "authentication-key": {
 "eid-uri": "ipv4:1.1.1.1/32",
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "1.1.1.1/32"
 },
 "mapping-authkey": {
 "key-string": "password",
 "key-type": 1
 }
 }
}

	Verify that the key is added properly by requesting the following
URL:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/

The output the above invocation should look like this:

{
 "authentication-key":[
 {
 "eid-uri":"ipv4:1.1.1.1/32",
 "eid":{
 "ipv4-prefix":"1.1.1.1/32",
 "address-type":"ietf-lisp-address-types:ipv4-prefix-afi"
 },
 "mapping-authkey":{
 "key-string":"password"
 ,"key-type":1
 }
 }
]
}

	Run the oor OOR daemon on all VMs:

oor -f /etc/oor.conf

For more information on accessing OOR logs, take a look at
OOR README [https://github.com/OpenOverlayRouter/oor#readme]

	The client OOR node should now register its EID-to-RLOC
mapping in OpenDaylight. To verify you can lookup the corresponding
EIDs via the REST API

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/operational/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:1.1.1.1%2f32/southbound/

An alternative way for retrieving mappings from OpenDaylight using the
southbound interface is using the
lig [https://github.com/davidmeyer/lig] open source tool.

	Register the EID-to-RLOC mapping of the server EID 2.2.2.2/32 to the
controller, pointing to server1 and server2 with a higher
priority for server1

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
 --data @mapping.json

where the mapping.json file looks like this:

{
 "mapping": {
 "eid-uri": "ipv4:2.2.2.2/32",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "2.2.2.2/32"
 },
 "LocatorRecord": [
 {
 "locator-id": "server1",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:ipv4-afi",
 "ipv4": "192.168.16.31"
 }
 },
 {
 "locator-id": "server2",
 "priority": 2,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:ipv4-afi",
 "ipv4": "192.168.16.32"
 }
 }
]
 }
 }
}

Here the priority of the second RLOC (192.168.16.32 - server2)
is 2, a higher numeric value than the priority of 192.168.16.31,
which is 1. This policy is saying that server1 is preferred to
server2 for reaching EID 2.2.2.2/32. Note that lower priority
value has higher preference in LISP.

	Verify the correct registration of the 2.2.2.2/32 EID:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/

	Now the LISP network is up. To verify, log into the client VM
and ping the server EID:

ping 2.2.2.2

	Let’s test fail-over now. Suppose you had a service on server1
which became unavailable, but server1 itself is still reachable.
LISP will not automatically fail over, even if the mapping for
2.2.2.2/32 has two locators, since both locators are still reachable
and uses the one with the higher priority (lowest priority value).
To force a failover, we need to set the priority of server2 to a
lower value. Using the file mapping.json above, swap the priority
values between the two locators (lines 14 and 28 in mapping.json)
and repeat the request from step 11. You can also repeat step 12 to
see if the mapping is correctly registered. If you leave the ping
on, and monitor the traffic using wireshark, you can see that the
ping traffic to 2.2.2.2 will be diverted from the server1 RLOC
to the server2 RLOC.

With the default OpenDaylight configuration the failover should be
near instantaneous (we observed 3 lost pings in the worst case),
because of the LISP Solicit-Map-Request (SMR)
mechanism [http://tools.ietf.org/html/rfc6830#section-6.6.2] that
can ask a LISP data plane element to update its mapping for a
certain EID (enabled by default). It is controlled by the
lisp.smr variable in etc/custom.porperties. When enabled,
any mapping change from the RPC interface will trigger an SMR packet
to all data plane elements that have requested the mapping in the
last 24 hours (this value was chosen because it’s the default TTL of
Cisco IOS xTR mapping registrations). If disabled, ITRs keep their
mappings until the TTL specified in the Map-Reply expires.

	To add a service chain into the path from the client to the server,
we can use an Explicit Locator Path, specifying the service-node
as the first hop and server1 (or server2) as the second hop.
The following will achieve that:

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
 --data @elp.json

where the elp.json file is as follows:

{
 "mapping": {
 "eid-uri": "ipv4:2.2.2.2/32",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "2.2.2.2/32"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "service-node",
 "address": "192.168.16.33",
 "lrs-bits": "strict"
 },
 {
 "hop-id": "server1",
 "address": "192.168.16.31",
 "lrs-bits": "strict"
 }
]
 }
 }
 }
]
 }
 }
}

After the mapping for 2.2.2.2/32 is updated with the above, the ICMP
traffic from client to server1 will flow through the
service-node. You can confirm this in the OOR logs, or by
sniffing the traffic on either the service-node or server1.
Note that service chains are unidirectional, so unless another ELP
mapping is added for the return traffic, packets will go from
server1 to client directly.

	Suppose the service-node is actually a firewall, and traffic is
diverted there to support access control lists (ACLs). In this
tutorial that can be emulated by using iptables firewall rules
in the service-node VM. To deny traffic on the service chain
defined above, the following rule can be added:

iptables -A OUTPUT --dst 192.168.16.31 -j DROP

The ping from the client should now have stopped.

In this case the ACL is done on the destination RLOC. There is an
effort underway in the OOR community to allow filtering on EIDs,
which is the more logical place to apply ACLs.

	To delete the rule and restore connectivity on the service chain,
delete the ACL by issuing the following command:

iptables -D OUTPUT --dst 192.168.16.31 -j DROP

which should restore connectivity.

Creating a simple LISP overlay with FD.io

In this section, we use the Overlay Network Engine (ONE) project in FD.io
to facilitate fully scripted setup and testing of a LISP/VXLAN-GPE network.
Overlay Network Engine (ONE) is a FD.io [https://fd.io/] project that enables programmable
dynamic software defined overlays. Details about this project can be
found in ONE wiki [https://wiki.fd.io/view/ONE].

The steps shown below will demonstrate setting up a LISP network between
a client and a server using VPP. We demonstrate how to use VPP lite to
build a IP4 LISP overlay on an Ubuntu host using namespaces and af_packet
interfaces. All configuration files used in the tutorials can be found
here [https://gerrit.fd.io/r/gitweb?p=one.git;a=tree;f=tutorial].

Prerequisites

	The OpenDaylight Karaf Distribution (download [https://www.opendaylight.org/downloads])

	The Postman Chrome App: Please follow the instructions and import
postman collection from the following URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=resources/tutorial/FD_io/lfm_vpp.postman_collection.json;hb=refs/heads/stable/nitrogen.

	Vagrant (optional): Download it from Vagrant website [https://www.vagrantup.com/downloads.html]
and follow the setup instructions.

Target Environment

Unlike the case with OOR, we use network namespace functionality of Linux
to create the overlay in this case. The following table contains ip addresses
of nodes in the overlay topology used in the tutorial. Our objective will be to
create this topology and be able to ping from client to server through an
intermediary hop, service node, which is a rtr node providing the
service of re-encapsulation. So, all the packets from client to server
will be through this service node.

	Node

	Node Type

	IP Address

	controller

	OpenDaylight

	6.0.3.100

	client

	VPP

	6.0.2.2

	server

	VPP

	6.0.4.4

	service node

	VPP

	6.0.3.3

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

[image: Network architecture of the tutorial for FD.io]

Instructions

Follow the instructions below sequentially.

	Pull the VPP code anonymously using:

git clone https://gerrit.fd.io/r/vpp

	Then, use the vagrant file from repository to build virtual machine
with proper environment.

cd vpp/build-root/vagrant/
vagrant up
vagrant ssh

	In case there is any error from vagrant up, try vargant ssh. if
it works, no worries. If it still doesn’t work, you can try any Ubuntu virtual
machine. Or sometimes there is an issue with the Vagrant properly copying
the VPP repo code from the host VM after the first installation. In that
case /vpp doesn’t exist. In both cases, follow the instructions
from below.

	Clone the code in / directory. So, the codes will be in /vpp.

	
	Run the following commands:

	cd /vpp/build-root
make distclean
./bootstrap.sh
make V=0 PLATFORM=vpp TAG=vpp install-deb
sudo dpkg -i /vpp/build-root/*.deb

Alternative and more detailed build instructions can be found in
VPP’s wiki [https://wiki.fd.io/view/VPP/Build,_install,_and_test_images]

	By now, you should have a Ubuntu VM with VPP repository in /vpp
with sudo access. Now, we need VPP Lite build. The following commands
builds VPP Lite.

cd /vpp
export PLATFORM=vpp_lite
make build

Successful build create the binary in /vpp/build-root/install-vpp_lite_debug-native/vpp/bin

	Install bridge-utils and ethtool if needed by using following commands:

sudo apt-get install bridge-utils ethtool

	Now, install and run OpenDaylight on the VM. Please follow the general
OpenDaylight Installation Guide for this step from Installing OpenDaylight.
Before running OpenDaylight, we need to change the configuration for RTR
to work. Update etc/custom.properties with the lisp.elpPolicy to
be replace.

lisp.elpPolicy = replace

Then, run OpenDaylight. For details regarding configuring LISP
Flow Mapping, please take a look at Configuring LISP Flow Mapping.
Once the OpenDaylight controller is running install the odl-lispflowmapping-msmr
feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It may take quite a while to load and initialize all features and their
dependencies. It’s worth running the command log:tail in the
Karaf console to see when the log output is winding down, and
continue with the tutorial after that.

	For setting up VPP, get the files from resources/tutorial/FD_io
folder of the lispflowmapping repo. The files can also be found here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/nitrogen].
Copy the vpp1.config, vpp2.config and rtr.config files in
/etc/vpp/lite/.

	In this example, VPP doesn’t make any southbound map registers to OpenDaylight.
So, we add the mappings directly from northbound. For that, we need
to add the mappings to OpenDaylight via RESTCONF API.

Register EID-to-RLOC mapping of the Client EID 6.0.2.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:6.0.2.0%2f24/northbound/ \
 --data @epl1.json

Content of epl1.json:

{
 "mapping": {
 "eid-uri": "ipv4:6.0.2.0/24",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "6.0.2.0/24"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": false,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "Hop 1",
 "address": "6.0.3.3",
 "lrs-bits": "lookup rloc-probe strict"
 },
 {
 "hop-id": "Hop 2",
 "address": "6.0.3.1",
 "lrs-bits": "lookup strict"
 }
]
 }
 }
 }
]
 }
 }
}

Similarly add EID-to-RLOC mapping of the Server EID 6.0.4.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:6.0.4.0%2f24/northbound/ \
 --data @epl2.json

Content of elp2.json:

{
 "mapping": {
 "eid-uri": "ipv4:6.0.4.0/24",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "6.0.4.0/24"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": false,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "Hop 1",
 "address": "6.0.3.3",
 "lrs-bits": "lookup rloc-probe strict"
 },
 {
 "hop-id": "Hop 2",
 "address": "6.0.3.2",
 "lrs-bits": "lookup strict"
 }
]
 }
 }
 }
]
 }
 }
}

The JSON files regarding these can be found in here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/nitrogen].
Even though there is no southbound registration for mapping to OpenDaylight, using
northbound policy we can specify mappings, when Client requests for
the Server eid, Client gets a reply from OpenDaylight.

	Assuming all files have been created and OpenDaylight has been configured as
explained above, execute the host script you’ve created or the topology_setup.sh
script from here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/nitrogen].

	If all goes well, you can now test connectivity between the namespaces with:

sudo ip netns exec vpp-ns1 ping 6.0.4.4

	Traffic and control plane message exchanges can be checked with a wireshark
listening on the odl interface.

	
Important

Delete the topology by running the topology_setup.sh with clean argument.

sudo ./topology_setup.sh clean

Creating a LISP overlay with Cisco IOS-XE

This section describes how to create a simple LISP overlay using the Cisco
IOS-XE network operating system as the data plane software running on the
Cisco CSR 1000v Series Cloud Services Router [http://www.cisco.com/c/en/us/support/routers/cloud-services-router-1000v/model.html].

Prerequisites

	The OpenDaylight Karaf Distribution (download [https://www.opendaylight.org/downloads])

	CSR1Kv image with Cisco IOS-XE version 03.13.00.S or later (download [http://www.cisco.com/c/en/us/support/routers/cloud-services-router-1000v/model.html#~tab-downloads];
the instructions have been tested on version 03.15.00.S).

	A virtualization platform supported by CSR1Kv images (VMware ESXi,
Citrix XenServer, KVM, and Microsoft Hyper-V).

Target Environment

The CSR1Kv images are configured with one management interface
(GigabitEthernet1), and another interface (GigabitEthernet2) connected
to a host-only network on the virtualization platform, while the LISP mapping
system is assumed to be running in a Linux virtual machine, which has the
eth0 interface in NAT mode to allow outside internet access and eth1
connected to the host-only network, with the following IP addresses (please
adjust configuration files, JSON examples, etc. accordingly if you’re using
another addressing scheme):

	Node

	Node Type

	IP Address

	controller

	OpenDaylight

	192.168.16.11

	client

	CSR1Kv

	192.168.16.30

	server

	CSR1Kv

	192.168.16.31

Table: Nodes in the tutorial

The scenario and EID allocation is the same as the OOR scenario, except that
there is no server2 and service-node (for now).

Before this tutorial can be followed, basic connectivity between the Linux VM
and the CSRs should work on the host-only network.

Instructions

The below steps use the command line tool cURL to talk to the LISP Flow
Mapping RPC REST API. This is so that you can see the actual request
URLs and body content on the page. The easy way is to just use Postman.

	Install and run the OpenDaylight distribution on the controller VM.
Please follow the general OpenDaylight Installation Guide from
Installing OpenDaylight for this step. Once the OpenDaylight controller is
running install the odl-lispflowmapping-msmr feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It takes quite a while to load and initialize all features and their
dependencies. It’s worth running the command log:tail in the
Karaf console to see when the log output is winding down, and
continue with the tutorial after that.

	Create the client and server VMs following the installation
instructions from the CSR1Kv Configuration Guide [http://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/configuration/b_CSR1000v_Configuration_Guide.html].

	Define a key and EID prefix association in OpenDaylight using the RPC REST
API for the client and server EIDs (1.1.1.1/32 and 2.2.2.2/32
respectively) to allow registration from the southbound. Run the below
command on the controller (or any machine that can reach
controller, by replacing localhost with the IP address of
controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/ \
 --data @add-key.json

where the content of the add-key.json file is the following:

{
 "authentication-key": {
 "eid-uri": "ipv4:1.1.1.1/32",
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "1.1.1.1/32"
 },
 "mapping-authkey": {
 "key-string": "password",
 "key-type": 1
 }
 }
}

The same should be done for 2.2.2.2/32 too.

	Verify that the key is added properly by requesting the following
URL:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/

The output the above invocation should look like this:

{
 "authentication-key":[
 {
 "eid-uri":"ipv4:1.1.1.1/32",
 "eid":{
 "ipv4-prefix":"1.1.1.1/32",
 "address-type":"ietf-lisp-address-types:ipv4-prefix-afi"
 },
 "mapping-authkey":{
 "key-string":"password"
 ,"key-type":1
 }
 }
]
}

	Configure the CSR installations from the previous step. The EID needs to
be configured on a loopback interface (except when the CSR is used as a
router not a simple client like in this tutorial and the EID is assigned
to a real interface).

interface Loopback0
 ip address 1.1.1.1 255.255.255.255

	The LISP specific configuration goes to a router lisp section in the
configuration. A locator-set defines the list of locators with their
priorities and weights, either statically, or better yet, as an interface
name:

locator-set rloc-network
 IPv4-interface GigabitEthernet2 priority 1 weight 1
 exit

	To make sure a Map-Request is using the above defined rloc-network
locator set, the following configuration is used:

map-request itr-rlocs rloc-network

	Each Instance ID needs its own configuration. For the default Instance ID
of 0, the following configuration is needed for a besic setup:

eid-table default instance-id 0
 database-mapping 1.1.1.1/32 locator-set rloc-network
 map-cache 0.0.0.0/0 map-request
 no ipv4 map-cache-persistent
 ipv4 itr map-resolver 192.168.16.11
 ipv4 itr
 ipv4 etr map-server 192.168.16.11 key password
 ipv4 etr
 exit

database-mapping defines the EID prefix the router will register in
the mapping system and which locator set it will use (rloc-network in
this case, which was defined in step 6).

The next line creates a static map-cache entry for the whole IPv4 EID
space, causing a Map-Request to be triggered for every destination (that
is not directly connected on some interface).

LISP routers save their map cache to a fie which is used to restore
previous state on reboot. To avoid confusion due to state restored from a
previous run, no ipv4 map-cache-persistent can be used to disable this
behavior for non-production testing environments.

A map-resolver is then defined, where Map-Requests will be directed to
for mapping lookups, and then a map-server association with a shared
secret key.

	Here’s the full configuration that needs to be pasted into the
configuration of the client to follow this tutorial:

interface Loopback0
 ip address 1.1.1.1 255.255.255.255
!
router lisp
 locator-set rloc-network
 IPv4-interface GigabitEthernet2 priority 1 weight 1
 exit
 !
 map-request itr-rlocs rloc-network
 eid-table default instance-id 0
 database-mapping 1.1.1.1/32 locator-set rloc-network
 map-cache 0.0.0.0/0 map-request
 no ipv4 map-cache-persistent
 ipv4 itr map-resolver 192.168.16.11
 ipv4 itr
 ipv4 etr map-server 192.168.16.11 key password
 ipv4 etr
 exit
 !
 exit

Configuring the server is done by replacing 1.1.1.1 with
2.2.2.2 in the above configuration snippet.

	The CSR nodes should now register their EID-to-RLOC mappings to
OpenDaylight. To verify, the corresponding EIDs can be looked up via the
REST API:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/operational/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:1.1.1.1%2f32/southbound/

An alternative way for retrieving mappings from OpenDaylight using the
southbound interface is using the
lig [https://github.com/davidmeyer/lig] open source tool.

Yet another different way is to use the OpenDaylight mappingservice CLI,
and type the following at the Karaf prompt:

mappingservice:mappings

This needs the odl-lispflowmapping-mappingservice-shell feature to be
loaded. The output is intended for debugging purposes and shows the full
Java objects stored in the map-cache.

	Now the LISP network is up. It can be verified by pinging the server
EID from the client CSR EID:

ping 2.2.2.2 source 1.1.1.1

LISP Flow Mapping Support

For support the lispflowmapping project can be reached by emailing the
developer mailing list: lispflowmapping-dev@lists.opendaylight.org or on
the #opendaylight-lispflowmapping IRC channel on irc.freenode.net.

Additional information is also available on the Lisp Flow Mapping
wiki [https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Main]

Clustering in LISP Flow Mapping

Documentation regarding setting up a 3-node OpenDaylight cluster is
described at following odl wiki
page [https://wiki.opendaylight.org/view/Running_and_testing_an_OpenDaylight_Cluster#Three-node_cluster].

To turn on clustering in LISP Flow Mapping it is necessary:

	run script deploy.py script. This script is in
integration-test [https://git.opendaylight.org/gerrit/integration/test]
project placed at tools/clustering/cluster-deployer/deploy.py. A
whole deploy.py command can looks like:

{path_to_integration_test_project}/tools/clustering/cluster-deployer/deploy.py

–distribution {path_to_distribution_in_zip_format}

–rootdir {dir_at_remote_host_where_copy_odl_distribution}

–hosts {ip1},{ip2},{ip3}

–clean

–template lispflowmapping

–rf 3

–user {user_name_of_remote_hosts}

–password {password_to_remote_hosts}

Running this script will cause that specified distribution to be
deployed to remote hosts specified through their IP adresses with
using credentials (user and password). The distribution will
be copied to specified rootdir. As part of the deployment, a
template which contains a set of controller files which are
different from standard ones. In this case it is specified in

{path_to_integration_test_project}/tools/clustering/cluster-deployer/lispflowmapping
directory.

Lispflowmapping templates are part of integration-test project. There
are 5 template files:

	akka.conf.template

	jolokia.xml.template

	module-shards.conf.template

	modules.conf.template

	org.apache.karaf.features.cfg.template

After copying the distribution, it is unzipped and started on all of
specified hosts in cluster aware manner.

Remarks

It is necessary to have:

	unzip program installed on all of the host

	set all remote hosts /etc/sudoers files to not requiretty (should
only matter on debian hosts)

NEtwork MOdeling (NEMO)

Overview

The NEMO engine provides REST APIs to express intent, and manage it. With this
northbound API, user could query what intents have been handled successfully, and
what types have been predefined.

NEMO Architecture

In NEMO project, it provides three features facing developer.

	odl-nemo-engine: it is a whole model to handle intent.

	odl-nemo-openflow-renderer: it is a southbound render to translate intent to flow
table in devices supporting for OpenFlow protocol.

	odl-nemo-cli-render: it is also a southbound render to translate intent into forwarding
table in devices supporting for traditional protocol.

Key APIs and Interfaces

NEMO projects provide four basic REST methods for user to use.

	PUT: store the information expressed in NEMO model directly without handled by NEMO engine.

	POST: the information expressed in NEMO model will be handled by NEMO engine, and will
be translated into southbound configuration.

	GET: obtain the data stored in data store.

	DELETE: delete the data in data store.

NEMO Intent API

NEMO provides several RPCs to handle user’s intent. All RPCs use POST method.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:register-user: a REST API
to register a new user. It is the first and necessary step to express intent.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:transaction-begin: a REST
type to start a transaction. The intent exist in the transaction will be handled together.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:transaction-end: a REST API
to end a transaction. The intent exist in the transaction will be handled together.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:structure-style-nemo-update: a
REST API to create, import or update intent in a structure style, that is, user could express the
structure of intent in json body.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:structure-style-nemo-delete: a
REST API to delete intent in a structure style.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:language-style-nemo-request: a REST
API to create, import, update and delete intent in a language style, that is, user could express
intent with NEMO script. On the other hand, with this interface, user could query which intent have
been handled successfully.

API Reference Documentation

Go to http://${IPADDRESS}:8181/apidoc/explorer/index.html. User could see many useful APIs to
deploy or query intent.

NETCONF Developer Guide

Note

Reading the NETCONF section in the User Guide is likely useful as it
contains an overview of NETCONF in OpenDaylight and a how-to for
spawning and configuring NETCONF connectors.

This chapter is recommended for application developers who want to
interact with mounted NETCONF devices from their application code. It
tries to demonstrate all the use cases from user guide with RESTCONF but
now from the code level. One important difference would be the
demonstration of NETCONF notifications and notification listeners. The
notifications were not shown using RESTCONF because RESTCONF does not
support notifications from mounted NETCONF devices.

Note

It may also be useful to read the generic OpenDaylight MD-SAL app
development
tutorial [https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:MD-SAL_App_Tutorial]
before diving into this chapter. This guide assumes awareness of
basic OpenDaylight application development.

Sample app overview

All the examples presented here are implemented by a sample OpenDaylight
application called ncmount in the coretutorials OpenDaylight
project. It can be found on the github mirror of OpenDaylight’s
repositories:

	https://github.com/opendaylight/coretutorials/tree/stable/boron/ncmount

or checked out from the official OpenDaylight repository:

	https://git.opendaylight.org/gerrit/#/admin/projects/coretutorials

The application was built using the project startup maven
archetype [https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype]
and demonstrates how to:

	preconfigure connectors to NETCONF devices

	retrieve MountPointService (registry of available mount points)

	listen and react to changing connection state of netconf-connector

	add custom device YANG models to the app and work with them

	read data from device in binding aware format (generated java APIs
from provided YANG models)

	write data into device in binding aware format

	trigger and listen to NETCONF notifications in binding aware format

Detailed information about the structure of the application can be found
at:
https://wiki.opendaylight.org/view/Controller_Core_Functionality_Tutorials:Tutorials:Netconf_Mount

Note

The code in ncmount is fully binding aware (works with generated
java APIs from provided YANG models). However it is also possible to
perform the same operations in binding independent manner.

NcmountProvider

The NcmountProvider class (found in NcmountProvider.java) is the central
point of the ncmount application and all the application logic is
contained there. The following sections will detail its most interesting
pieces.

Retrieve MountPointService

The MountPointService is a central registry of all available mount
points in OpenDaylight. It is just another MD-SAL service and is
available from the session attribute passed by
onSessionInitiated callback:

@Override
public void onSessionInitiated(ProviderContext session) {
 LOG.info("NcmountProvider Session Initiated");

 // Get references to the data broker and mount service
 this.mountService = session.getSALService(MountPointService.class);

 ...

 }
}

Listen for connection state changes

It is important to know when a mount point appears, when it is fully
connected and when it is disconnected or removed. The exact states of a
mount point are:

	Connected

	Connecting

	Unable to connect

To receive this kind of information, an application has to register
itself as a notification listener for the preconfigured netconf-topology
subtree in MD-SAL’s datastore. This can be performed in the
onSessionInitiated callback as well:

@Override
public void onSessionInitiated(ProviderContext session) {

 ...

 this.dataBroker = session.getSALService(DataBroker.class);

 // Register ourselves as the REST API RPC implementation
 this.rpcReg = session.addRpcImplementation(NcmountService.class, this);

 // Register ourselves as data change listener for changes on Netconf
 // nodes. Netconf nodes are accessed via "Netconf Topology" - a special
 // topology that is created by the system infrastructure. It contains
 // all Netconf nodes the Netconf connector knows about. NETCONF_TOPO_IID
 // is equivalent to the following URL:
 // .../restconf/operational/network-topology:network-topology/topology/topology-netconf
 if (dataBroker != null) {
 this.dclReg = dataBroker.registerDataChangeListener(LogicalDatastoreType.OPERATIONAL,
 NETCONF_TOPO_IID.child(Node.class),
 this,
 DataChangeScope.SUBTREE);
 }
}

The implementation of the callback from MD-SAL when the data change can
be found in the
onDataChanged(AsyncDataChangeEvent<InstanceIdentifier<?>, DataObject>
change) callback of NcmountProvider
class [https://github.com/opendaylight/coretutorials/blob/stable/boron/ncmount/impl/src/main/java/ncmount/impl/NcmountProvider.java].

Reading data from the device

The first step when trying to interact with the device is to get the
exact mount point instance (identified by an instance identifier) from
the MountPointService:

@Override
public Future<RpcResult<ShowNodeOutput>> showNode(ShowNodeInput input) {
 LOG.info("showNode called, input {}", input);

 // Get the mount point for the specified node
 // Equivalent to '.../restconf/<config | operational>/opendaylight-inventory:nodes/node/<node-name>/yang-ext:mount/'
 // Note that we can read both config and operational data from the same
 // mount point
 final Optional<MountPoint> xrNodeOptional = mountService.getMountPoint(NETCONF_TOPO_IID
 .child(Node.class, new NodeKey(new NodeId(input.getNodeName()))));

 Preconditions.checkArgument(xrNodeOptional.isPresent(),
 "Unable to locate mountpoint: %s, not mounted yet or not configured",
 input.getNodeName());
 final MountPoint xrNode = xrNodeOptional.get();

}

Note

The triggering method in this case is called showNode. It is a
YANG-defined RPC and NcmountProvider serves as an MD-SAL RPC
implementation among other things. This means that showNode an
be triggered using RESTCONF.

The next step is to retrieve an instance of the DataBroker API from
the mount point and start a read transaction:

@Override
public Future<RpcResult<ShowNodeOutput>> showNode(ShowNodeInput input) {

 ...

 // Get the DataBroker for the mounted node
 final DataBroker xrNodeBroker = xrNode.getService(DataBroker.class).get();
 // Start a new read only transaction that we will use to read data
 // from the device
 final ReadOnlyTransaction xrNodeReadTx = xrNodeBroker.newReadOnlyTransaction();

 ...
}

Finally, it is possible to perform the read operation:

@Override
public Future<RpcResult<ShowNodeOutput>> showNode(ShowNodeInput input) {

 ...

 InstanceIdentifier<InterfaceConfigurations> iid =
 InstanceIdentifier.create(InterfaceConfigurations.class);

 Optional<InterfaceConfigurations> ifConfig;
 try {
 // Read from a transaction is asynchronous, but a simple
 // get/checkedGet makes the call synchronous
 ifConfig = xrNodeReadTx.read(LogicalDatastoreType.CONFIGURATION, iid).checkedGet();
 } catch (ReadFailedException e) {
 throw new IllegalStateException("Unexpected error reading data from " + input.getNodeName(), e);
 }

 ...
}

The instance identifier is used here again to specify a subtree to read
from the device. At this point application can process the data as it
sees fit. The ncmount app transforms the data into its own format and
returns it from showNode.

Note

More information can be found in the source code of ncmount sample
app + on wiki:
https://wiki.opendaylight.org/view/Controller_Core_Functionality_Tutorials:Tutorials:Netconf_Mount

Network Intent Composition (NIC) Developer Guide

Overview

The Network Intent Composition (NIC) provides four features:

	odl-nic-core-hazelcast: Provides a distributed intent mapping
service, implemented using hazelcast, that stores metadata needed by
odl-nic-core feature.

	odl-nic-core-mdsal: Provides an intent rest API to external
applications for CRUD operations on intents, conflict resolution and
event handling. Uses MD-SAL as backend.

	odl-nic-console: Provides a karaf CLI extension for intent CRUD
operations and mapping service operations.

	odl-nic-renderer-of - Generic OpenFlow Renderer.

	odl-nic-renderer-vtn - a feature that transforms an intent to a
network modification using the VTN project

	odl-nic-renderer-gbp - a feature that transforms an intent to a
network modification using the Group Policy project

	odl-nic-renderer-nemo - a feature that transforms an intent to a
network modification using the NEMO project

	odl-nic-listeners - adds support for event listening. (depends on:
odl-nic-renderer-of)

	odl-nic-neutron-integration - allow integration with openstack
neutron to allow coexistence between existing neutron security rules
and intents pushed by ODL applications.

Only a single renderer feature should be installed at a time for the
Boron release.

odl-nic-core-mdsal XOR odl-nic-core-hazelcast

This feature supplies the base models for the Network Intent Composition
(NIC) capability. This includes the definition of intent as well as the
configuration and operational data trees.

This feature only provides an information model. The interface for NIC
is to modify the information model via the configuraiton data tree,
which will trigger the renderer to make the appropriate changes in the
controlled network.

Installation

First you need to install one of the core installations:

feature:install odl-nic-core-service-mdsal odl-nic-console

OR

feature:install odl-nic-core-service-hazelcast odl-nic-console

Then pick a renderer:

feature:install odl-nic-listeners (will install odl-nic-renderer-of)

OR

feature:install odl-nic-renderer-vtn

OR

feature:install odl-nic-renderer-gbp

OR

feature:install odl-nic-renderer-nemo

REST Supported operations

POST / PUT (configuration)

This operations create instances of an intent in the configuration data
tree and trigger the creation or modification of an intent.

GET (configuration / operational)

This operation lists all or fetches a single intent from the data tree.

DELETE (configuration)

This operation will cause an intent to be removed from the system and
trigger any configuration changes on the network rendered from this
intent to be removed.

odl-nic-cli user guide

This feature provides karaf console CLI command to manipulate the intent
data model. The CLI essentailly invokes the equivalent data operations.

intent:add

Creates a new intent in the configuration data tree

DESCRIPTION
 intent:add

 Adds an intent to the controller.

Examples: --actions [ALLOW] --from <subject> --to <subject>
 --actions [BLOCK] --from <subject>

SYNTAX
 intent:add [options]

OPTIONS
 -a, --actions
 Action to be performed.
 -a / --actions BLOCK/ALLOW
 (defaults to [BLOCK])
 --help
 Display this help message
 -t, --to
 Second Subject.
 -t / --to <subject>
 (defaults to any)
 -f, --from
 First subject.
 -f / --from <subject>
 (defaults to any)

intent:delete

Removes an existing intent from the system

DESCRIPTION
 intent:remove

 Removes an intent from the controller.

SYNTAX
 intent:remove id

ARGUMENTS
 id Intent Id

intent:list

Lists all the intents in the system

DESCRIPTION
 intent:list

 Lists all intents in the controller.

SYNTAX
 intent:list [options]

OPTIONS
 -c, --config
 List Configuration Data (optional).
 -c / --config <ENTER>
 --help
 Display this help message

intent:show

Displays the details of a single intent

DESCRIPTION
 intent:show

 Shows detailed information about an intent.

SYNTAX
 intent:show id

ARGUMENTS
 id Intent Id

intent:map

List/Add/Delete current state from/to the mapping service.

DESCRIPTION
 intent:map

 List/Add/Delete current state from/to the mapping service.

SYNTAX
 intent:map [options]

 Examples: --list, -l [ENTER], to retrieve all keys.
 --add-key <key> [ENTER], to add a new key with empty contents.
 --del-key <key> [ENTER], to remove a key with it's values."
 --add-key <key> --value [<value 1>, <value 2>, ...] [ENTER],
 to add a new key with some values (json format).
OPTIONS
 --help
 Display this help message
 -l, --list
 List values associated with a particular key.
 -l / --filter <regular expression> [ENTER]
 --add-key
 Adds a new key to the mapping service.
 --add-key <key name> [ENTER]
 --value
 Specifies which value should be added/delete from the mapping service.
 --value "key=>value"... --value "key=>value" [ENTER]
 (defaults to [])
 --del-key
 Deletes a key from the mapping service.
 --del-key <key name> [ENTER]

Sample Use case: MPLS

Description

The scope of this use-case is to add MPLS intents between two MPLS
endpoints. The use-case tries to address the real-world scenario
illustrated in the diagram below:

[image: MPLS VPN Service Diagram]
MPLS VPN Service Diagram

where PE (Provider Edge) and P (Provider) switches are managed by
OpenDaylight. In NIC’s terminology the endpoints are the PE switches.
There could be many P switches between the PEs.

In order for NIC to recognize endpoints as MPLS endpoints, the user is
expected to add mapping information about the PE switches to NIC’s
mapping service to include the below properties:

	MPLS Label to identify a PE

	IPv4 Prefix for the customer site that are connected to a PE

	Switch-Port: Ingress (or Egress) for source (or Destination) endpoint
of the source (or Destination) PE

An intent:add between two MPLS endpoints renders OpenFlow rules for: 1.
push/pop labels to the MPLS endpoint nodes after an IPv4 Prefix match.
2. forward to port rule after MPLS label match to all the switches that
form the shortest path between the endpoints (calculated using Dijkstra
algorithm).

Additionally, we have also added constraints to Intent model for
protection and failover mechanism to ensure end-to-end connectivity
between endpoints. By specifying these constraints to intent:add the
use-case aims to reduces the risk of connectivity failure due to a
single link or port down event on a forwarding device.

	Protection constraint: Constraint that requires an end-to-end
connectivity to be protected by providing redundant paths.

	Failover constraint: Constraint that specifies the type of failover
implementation. slow-reroute: Uses disjoint path calculation
algorithms like Suurballe to provide alternate end-to-end routes.
fast-reroute: Uses failure detection feature in hardware forwarding
device through OF group table features (Future plans) When no
constraint is requested by the user we default to offering a since
end-to-end route using Dijkstra shortest path.

How to use it?

	Start Karaf and install related features:

feature:install odl-nic-core-service-mdsal odl-nic-core odl-nic-console odl-nic-listeners
feature:install odl-dlux-core odl-dluxapps-applications

	Start mininet topology and verify in DLUX Topology page for the nodes
and link.

mn --controller=remote,ip=$CONTROLLER_IP --custom ~/shortest_path.py --topo shortest_path --switch ovsk,protocols=OpenFlow13

cat shortest.py -->
from mininet.topo import Topo
from mininet.cli import CLI
from mininet.net import Mininet
from mininet.link import TCLink
from mininet.util import irange,dumpNodeConnections
from mininet.log import setLogLevel

class Fast_Failover_Demo_Topo(Topo):

def __init__(self):
 # Initialize topology and default options
 Topo.__init__(self)

s1 = self.addSwitch('s1',dpid='0000000000000001')
s2a = self.addSwitch('s2a',dpid='000000000000002a')
s2b = self.addSwitch('s2b',dpid='000000000000002b')
s2c = self.addSwitch('s2c',dpid='000000000000002c')
s3 = self.addSwitch('s3',dpid='0000000000000003')
self.addLink(s1, s2a)
self.addLink(s1, s2b)
self.addLink(s2b, s2c)
self.addLink(s3, s2a)
self.addLink(s3, s2c)
host_1 = self.addHost('h1',ip='10.0.0.1',mac='10:00:00:00:00:01')
host_2 = self.addHost('h2',ip='10.0.0.2',mac='10:00:00:00:00:02')
self.addLink(host_1, s1)
self.addLink(host_2, s3)

topos = { 'shortest_path': (lambda: Demo_Topo()) }

	Update the mapping service with required information

Sample payload:

{
 "mappings": {
 "outer-map": [
 {
 "id": "uva",
 "inner-map": [
 {
 "inner-key": "ip_prefix",
 "value": "10.0.0.1/32"
 },
 {
 "inner-key": "mpls_label",
 "value": "15"
 },
 {
 "inner-key": "switch_port",
 "value": "openflow:1:1"
 }
]
 },
 {
 "id": "eur",
 "inner-map": [
 {
 "inner-key": "ip_prefix",
 "value": "10.0.0.2/32"
 },
 {
 "inner-key": "mpls_label",
 "value": "16"
 },
 {
 "inner-key": "switch_port",
 "value": "openflow:3:1"
 }
]
 }
]
 }
}

	Create bidirectional Intents using Karaf command line or RestCONF:

Example:

intent:add -f uva -t eur -a ALLOW
intent:add -f eur -t uva -a ALLOW

	Verify by running ovs-ofctl command on mininet if the flows were pushed
correctly to the nodes that form the shortest path.

Example:

ovs-ofctl -O OpenFlow13 dump-flows s1

NetIDE Developer Guide

Overview

The NetIDE Network Engine enables portability and cooperation inside a
single network by using a client/server multi-controller SDN
architecture. Separate “Client SDN Controllers” host the various SDN
Applications with their access to the actual physical network abstracted
and coordinated through a single “Server SDN Controller”, in this
instance OpenDaylight. This allows applications written for
Ryu/Floodlight/Pyretic to execute on OpenDaylight managed
infrastructure.

The “Network Engine” is modular by design:

	An OpenDaylight plugin, “shim”, sends/receives messages to/from
subscribed SDN Client Controllers. This consumes the ODL OpenFlow
Plugin

	An initial suite of SDN Client Controller “Backends”: Floodlight,
Ryu, Pyretic. Further controllers may be added over time as the
engine is extensible.

The Network Engine provides a compatibility layer capable of translating
calls of the network applications running on top of the client
controllers, into calls for the server controller framework. The
communication between the client and the server layers is achieved
through the NetIDE intermediate protocol, which is an application-layer
protocol on top of TCP that transmits the network control/management
messages from the client to the server controller and vice-versa.
Between client and server controller sits the Core Layer which also
“speaks” the intermediate protocol. The core layer implements three main
functions:

	interfacing with the client backends and server shim, controlling
the lifecycle of controllers as well as modules in them,

	orchestrating the execution of individual modules (in one client
controller) or complete applications (possibly spread across
multiple client controllers),

	interfacing with the tools.

[image: NetIDE Network Engine Architecture]
NetIDE Network Engine Architecture

NetIDE Intermediate Protocol

The Intermediate Protocol serves several needs, it has to:

	carry control messages between core and shim/backend, e.g., to
start up/take down a particular module, providing unique
identifiers for modules,

	carry event and action messages between shim, core, and backend,
properly demultiplexing such messages to the right module based on
identifiers,

	encapsulate messages specific to a particular SBI protocol version
(e.g., OpenFlow 1.X, NETCONF, etc.) towards the client controllers
with proper information to recognize these messages as such.

The NetIDE packages can be added as dependencies in Maven projects by
putting the following code in the pom.xml file.

<dependency>
 <groupId>org.opendaylight.netide</groupId>
 <artifactId>api</artifactId>
 <version>${NETIDE_VERSION}</version>
</dependency>

The current stable version for NetIDE is 0.2.0-Boron.

Protocol specification

Messages of the NetIDE protocol contain two basic elements: the NetIDE
header and the data (or payload). The NetIDE header, described below, is
placed before the payload and serves as the communication and control
link between the different components of the Network Engine. The payload
can contain management messages, used by the components of the Network
Engine to exchange relevant information, or control/configuration
messages (such as OpenFlow, NETCONF, etc.) crossing the Network Engine
generated by either network application modules or by the network
elements.

The NetIDE header is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| netide_ver | type | length |
+-+
| xid |
+-+
| module_id |
+-+
| |
+ datapath_id +
| |
+-+

where each tick mark represents one bit position. Alternatively, in a
C-style coding format, the NetIDE header can be represented with the
following structure:

struct netide_header {
 uint8_t netide_ver ;
 uint8_t type ;
 uint16_t length ;
 uint32_t xid
 uint32_t module_id
 uint64_t datapath_id
};

	netide_ver is the version of the NetIDE protocol (the current
version is v1.2, which is identified with value 0x03).

	length is the total length of the payload in bytes.

	type contains a code that indicates the type of the message
according with the following values:

enum type {
 NETIDE_HELLO = 0x01 ,
 NETIDE_ERROR = 0x02 ,
 NETIDE_MGMT = 0x03 ,
 MODULE_ANNOUNCEMENT = 0x04 ,
 MODULE_ACKNOWLEDGE = 0x05 ,
 NETIDE_HEARTBEAT = 0x06 ,
 NETIDE_OPENFLOW = 0x11 ,
 NETIDE_NETCONF = 0x12 ,
 NETIDE_OPFLEX = 0x13
};

	datapath_id is a 64-bit field that uniquely identifies the
network elements.

	module_id is a 32-bits field that uniquely identifies Backends
and application modules running on top of each client controller. The
composition mechanism in the core layer leverages on this field to
implement the correct execution flow of these modules.

	xid is the transaction identifier associated to the each message.
Replies must use the same value to facilitate the pairing.

Module announcement

The first operation performed by a Backend is registering itself and the
modules that it is running to the Core. This is done by using the
MODULE_ANNOUNCEMENT and MODULE_ACKNOWLEDGE message types. As a
result of this process, each Backend and application module can be
recognized by the Core through an identifier (the module_id) placed
in the NetIDE header. First, a Backend registers itself by using the
following schema: backend-<platform name>-<pid>.

For example,odule a Ryu Backend will register by using the following
name in the message backend-ryu-12345 where 12345 is the process ID of
the registering instance of the Ryu platform. The format of the message
is the following:

struct NetIDE_message {
 netide_ver = 0x03
 type = MODULE_ANNOUNCEMENT
 length = len(" backend -< platform_name >-<pid >")
 xid = 0
 module_id = 0
 datapath_id = 0
 data = " backend -< platform_name >-<pid >"
}

The answer generated by the Core will include a module_id number and
the Backend name in the payload (the same indicated in the
MODULE_ANNOUNCEMENT message):

struct NetIDE_message {
 netide_ver = 0x03
 type = MODULE_ACKNOWLEDGE
 length = len(" backend -< platform_name >-<pid >")
 xid = 0
 module_id = MODULE_ID
 datapath_id = 0
 data = " backend -< platform_name >-<pid >"
}

Once a Backend has successfully registered itself, it can start
registering its modules with the same procedure described above by
indicating the name of the module in the data (e.g. data=”Firewall”).
From this point on, the Backend will insert its own module_id in the
header of the messages it generates (e.g. heartbeat, hello messages,
OpenFlow echo messages from the client controllers, etc.). Otherwise, it
will encapsulate the control/configuration messages (e.g. FlowMod,
PacketOut, FeatureRequest, NETCONF request, etc.) generated by network
application modules with the specific +module_id+s.

Heartbeat

The heartbeat mechanism has been introduced after the adoption of the
ZeroMQ messaging queuing library to transmit the NetIDE messages.
Unfortunately, the ZeroMQ library does not offer any mechanism to find
out about disrupted connections (and also completely unresponsive
peers). This limitation of the ZeroMQ library can be an issue for the
Core’s composition mechanism and for the tools connected to the Network
Engine, as they cannot understand when an client controller disconnects
or crashes. As a consequence, Backends must periodically send (let’s say
every 5 seconds) a “heartbeat” message to the Core. If the Core does not
receive at least one “heartbeat” message from the Backend within a
certain timeframe, the Core considers it disconnected, removes all the
related data from its memory structures and informs the relevant tools.
The format of the message is the following:

struct NetIDE_message {
 netide_ver = 0x03
 type = NETIDE_HEARTBEAT
 length = 0
 xid = 0
 module_id = backend -id
 datapath_id = 0
 data = 0
}

Handshake

Upon a successful connection with the Core, the client controller must
immediately send a hello message with the list of the control and/or
management protocols needed by the applications deployed on top of it.

struct NetIDE_message {
 struct netide_header header ;
 uint8 data [0]
};

The header contains the following values:

	netide ver=0x03

	type=NETIDE_HELLO

	length=2*NR_PROTOCOLS

	data contains one 2-byte word (in big endian order) for each
protocol, with the first byte containing the code of the protocol
according to the above enum, while the second byte in- dictates the
version of the protocol (e.g. according to the ONF specification,
0x01 for OpenFlow v1.0, 0x02 for OpenFlow v1.1, etc.). NETCONF
version is marked with 0x01 that refers to the specification in the
RFC6241, while OpFlex version is marked with 0x00 since this protocol
is still in work-in-progress stage.

The Core relays hello messages to the server controller which responds
with another hello message containing the following:

	netide ver=0x03

	type=NETIDE_HELLO

	length=2*NR_PROTOCOLS

If at least one of the protocols requested by the client is supported.
In particular, data contains the codes of the protocols that match
the client’s request (2-bytes words, big endian order). If the hand-
shake fails because none of the requested protocols is supported by the
server controller, the header of the answer is as follows:

	netide ver=0x03

	type=NETIDE_ERROR

	length=2*NR_PROTOCOLS

	data contains the codes of all the protocols supported by the
server controller (2-bytes words, big endian order). In this case,
the TCP session is terminated by the server controller just after the
answer is received by the client. `

NetVirt Developer Guide

	NetVirt Design Specifications
	Design Specification Template

	ACLs - ACL Statistics

	ACLs - Remote ACL - Indirection Table to Improve Scale

	ACLs - ACL reflection on existing traffic

	Conntrack Based SNAT

	Cross site connectivity with Federation service

	DHCP Server with Dynamic Allocation Pool

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	ECMP Support for BGP based L3VPN

	Element Counters

	Hairpinning of floating IPs in flat/VLAN provider networks

	IPv6 Data Center to internet connectivity using L3VPN

	IPv6 Inter Data Center connectivity using L3VPN

	IPv6 L3 North-South support for Flat/VLAN based Provider Networks

	L3VPN Dual Stack for VMs

	Listener Dependency Helper, avoids waiting for dependent IID

	Migrate the SFC classifier from the old to the new netvirt

	Netvirt counters

	Policy based path selection for multiple VxLAN tunnels

	QoS Alert

	Quality of Service

	Setup Source-MAC-Address for routed packets to virtual endpoints

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Support of VXLAN based L2 connectivity across Datacenters

	Support of VXLAN based connectivity across Datacenters

	Temporary SMAC Learning

	VLAN provider network enhancement

	VNI based L2 switching, L3 forwarding and NATing

	Neutron Port Allocation For DHCP Service

NetVirt Design Specifications

Starting from Carbon, NetVirt uses an RST format Design Specification document
for all new features. These specifications are a perfect way to understand
various NetVirt features.

Contents:

	Design Specification Template

	ACLs - ACL Statistics

	ACLs - Remote ACL - Indirection Table to Improve Scale

	ACLs - ACL reflection on existing traffic

	Conntrack Based SNAT

	Cross site connectivity with Federation service

	DHCP Server with Dynamic Allocation Pool

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	ECMP Support for BGP based L3VPN

	Element Counters

	Hairpinning of floating IPs in flat/VLAN provider networks

	IPv6 Data Center to internet connectivity using L3VPN

	IPv6 Inter Data Center connectivity using L3VPN

	IPv6 L3 North-South support for Flat/VLAN based Provider Networks

	L3VPN Dual Stack for VMs

	Listener Dependency Helper, avoids waiting for dependent IID

	Migrate the SFC classifier from the old to the new netvirt

	Netvirt counters

	Policy based path selection for multiple VxLAN tunnels

	QoS Alert

	Quality of Service

	Setup Source-MAC-Address for routed packets to virtual endpoints

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Support of VXLAN based L2 connectivity across Datacenters

	Support of VXLAN based connectivity across Datacenters

	Temporary SMAC Learning

	VLAN provider network enhancement

	VNI based L2 switching, L3 forwarding and NATing

	Neutron Port Allocation For DHCP Service

Table of Contents

	Title of the feature

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Title of the feature

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:cool-topic]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

example.yang

 module example {
 namespace "urn:opendaylight:netvirt:example";
 prefix "example";

 import ietf-yang-types {prefix yang; revision-date "2013-07-15";}

 description "An example YANG model.";

 revision 2017-02-14 { description "Initial revision"; }
 }

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

e.g. For most netvirt features this will include OpenStack APIs.

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-netvirt-openstack

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assignee and other contributors.

	Primary assignee:

	<developer-a>, <irc nick>, <email>

	Other contributors:

	<developer-b>, <irc nick>, <email>
<developer-c>, <irc nick>, <email>

Work Items

Break up work into individual items. This should be a checklist on a
Trello card for this feature. Provide the link to the trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc]. This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing projects that depend on Netvirt.

	Following projects currently depend on Netvirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is the impact on documentation for this change? If documentation
changes are needed call out one of the <contributors> who will work with
the Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	ACL Statistics

	Problem description

	Use Cases

	Proposed change

	ACL Changes

	Drop packets statistics support

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL Statistics

https://git.opendaylight.org/gerrit/#/q/topic:acl-stats

This feature is to provide additional operational support for ACL through statistical counters.
ACL rules provide security to VMs by filtering packets in either directions (ingress/egress).
Using OpenFlow statistical counters, ODL will provide additional information on the number of
packets dropped by the ACL rules. This information is made available to the operator “on demand”.

Drop statistics will be provided for below cases:

	Packets dropped due to ACL rules

	Packets dropped due to INVALID state. The INVALID state means that the packet can’t be identified
or that it does not have any state. This may be due to several reasons, such as the system
running out of memory or ICMP error messages that do not respond to any known connections.

The packet drop information provided through the statistical counters enable operators to
trouble shoot any misbehavior and take appropriate actions through automated or manual
intervention.

Collection and retrieval of information on the number of packets dropped by the SG rules

	Done for all (VM) ports in which SG is configured

	Flow statistical counters (in OpenFlow) are used for this purpose

	The information in these counters are made available to the operator, on demand, through an API

This feature will only be supported with Stateful ACL mode.

Problem description

With only ACL support, operators would not be able to tell how many packets dropped by ACL rules.
This enhancement planned is about ACL module supporting aforementioned limitation.

Use Cases

Collection and retrieval of information on the number of packets dropped by the ACL rules

	Done for all (VM) ports in which ACL is configured

	The information in these counters are made available to the operator, on demand, through an API

	Service Orchestrator/operator can also specify ports selectively where ACL rules are configured

Proposed change

ACL Changes

Current Stateful ACL implementation has drop flows for all ports combined for a device. This needs
to be modified to have drop flows for each of the OF ports connected to VMs (Neutron Ports).

With the current implementation, drop flows are as below:

cookie=0x6900000, duration=938.964s, table=252, n_packets=0, n_bytes=0, priority=62020,
 ct_state=+inv+trk actions=drop

cookie=0x6900000, duration=938.969s, table=252, n_packets=0, n_bytes=0, priority=50,
 ct_state=+new+trk actions=drop

Now, for supporting Drop packets statistics per port, ACL will be updated to replace above
flows with new DROP flows with lport tag as metadata for each of the VM (Neutron port) being
added to OVS as specified below:

cookie=0x6900001, duration=938.964s, table=252, n_packets=0, n_bytes=0, priority=62015,
 metadata=0x10000000000/0xffffff0000000000, ct_state=+inv+trk actions=drop

cookie=0x6900001, duration=938.969s, table=252, n_packets=0, n_bytes=0, priority=50,
 metadata=0x10000000000/0xffffff0000000000, ct_state=+new+trk actions=drop

Drop flows details explained above are for pipeline egress direction. For ingress side,
similar drop flows would be added with table=41.

Also, new cookie value 0x6900001 would be added with drop flows to identify it uniquely and
priority 62015 would be used with +inv+trk flows to give higher priority for +est and +rel
flows.

Drop packets statistics support

ODL Controller will be updated to provide a new RPC/NB REST API <get-acl-port-statistics> in
ACL module with ACL Flow Stats Request and ACL Flow Stats Response messages. This RPC/API
will retrieve details of dropped packets by Security Group rules for all the neutron ports
specified as part of ACL Flow Stats Request. The retrieved information (instantaneous) received
in the OF reply message is formatted as ACL Flow Stats Response message before sending it as a
response towards the NB.

<get-acl-port-statistics> RPC/API implementation would be triggering
opendaylight-direct-statistics:get-flow-statistics request of OFPlugin towards OVS to get the
flow statistics of ACL tables (ingress / egress) for the required ports.

ACL Flow Stats Request/Response messages are explained in subsequent sections.

Pipeline changes

No changes needed in OF pipeline. But, new flows as specified in above section would be added for
each of the Neutron ports being added.

Yang changes

New yang file will be created with RPC as specified below:

acl-live-statistics.yang

 module acl-live-statistics {
 namespace "urn:opendaylight:netvirt:acl:live:statistics";

 prefix "acl-stats";

 import ietf-interfaces {prefix if;}
 import aclservice {prefix aclservice; revision-date "2016-06-08";}

 description "YANG model describes RPC to retrieve ACL live statistics.";

 revision "2016-11-29" {
 description "Initial revision of ACL live statistics";
 }

 typedef direction {
 type enumeration {
 enum ingress;
 enum egress;
 enum both;
 }
 }

 grouping acl-drop-counts {
 leaf drop-count {
 description "Packets/Bytes dropped by ACL rules";
 type uint64;
 }
 leaf invalid-drop-count {
 description "Packets/Bytes identified as invalid";
 type uint64;
 }
 }

 grouping acl-stats-output {
 description "Output for ACL port statistics";
 list acl-interface-stats {
 key "interface-name";
 leaf interface-name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 list acl-drop-stats {
 max-elements "2";
 min-elements "0";
 leaf direction {
 type identityref {
 base "aclservice:direction-base";
 }
 }
 container packets {
 uses acl-drop-counts;
 }
 container bytes {
 uses acl-drop-counts;
 }
 }
 container error {
 leaf error-message {
 type string;
 }
 }
 }
 }

 grouping acl-stats-input {
 description "Input parameters for ACL port statistics";

 leaf direction {
 type identityref {
 base "aclservice:direction-base";
 }
 mandatory "true";
 }
 leaf-list interface-names {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 max-elements "unbounded";
 min-elements "1";
 }
 }

 rpc get-acl-port-statistics {
 description "Get ACL statistics for given list of ports";

 input {
 uses acl-stats-input;
 }
 output {
 uses acl-stats-output;
 }
 }
 }

Configuration impact

No configuration parameters being added/deprecated for this feature

Clustering considerations

No additional changes required to be done as only one RPC is being supported as part of
this feature.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

N.A.

Targeted Release

Carbon

Alternatives

Dispatcher table (table 17 and table 220) based approach of querying drop packets count was
considered. ie., arriving drop packets count by below rule:

<total packets entered ACL tables> - <total packets entered subsequent service>

This approach was not selected as this only provides total packets dropped count per port by ACL
services and does not provide details of whether it’s dropped by ACL rules or for some other
reasons.

Usage

Features to Install

odl-netvirt-openstack

REST API

Get ACL statistics

Following API gets ACL statistics for given list of ports.

Method: POST

URI: /operations/acl-live-statistics:get-acl-port-statistics

Parameters:

	Parameter

	Type

	Possible Values

	Comments

	“direction”

	Enum

	ingress/egress/both

	Required

	“interface-names”

	Array [UUID String]

	[<UUID String>,<UUID String>,..]

	Required (1,N)

Example:

{
 "input":
 {
 "direction": "both",
 "interface-names": [
 "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "6c53df3a-3456-11e5-a151-feff819cdc9f"
]
 }
}

Possible Responses:

RPC Success:

{
 "output": {
 "acl-port-stats": [
 {
 "interface-name": "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "0",
 "drop-count": "300"
 },
 "packets": {
 "invalid-drop-count": "0",
 "drop-count": "4"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "168",
 "drop-count": "378"
 },
 "packets": {
 "invalid-drop-count": "2",
 "drop-count": "9"
 }
 }]
 },
 {
 "interface-name": "6c53df3a-3456-11e5-a151-feff819cdc9f",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "1064",
 "drop-count": "1992"
 },
 "packets": {
 "invalid-drop-count": "18",
 "drop-count": "23"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "462",
 "drop-count": "476"
 },
 "packets": {
 "invalid-drop-count": "11",
 "drop-count": "6"
 }
 }]
 }]
}

RPC Success (with error for one of the interface):

{
 "output":
 {
 "acl-port-stats": [
 {
 "interface-name": "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "0",
 "drop-count": "300"
 },
 "packets": {
 "invalid-drop-count": "0",
 "drop-count": "4"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "168",
 "drop-count": "378"
 },
 "packets": {
 "invalid-drop-count": "2",
 "drop-count": "9"
 }
 },
 {
 "interface-name": "6c53df3a-3456-11e5-a151-feff819cdc9f",
 "error": {
 "error-message": "Interface not found in datastore."
 }
 }]
 }]
 }
}

Note

Below are error messages for the interface:

	“Interface not found in datastore.”

	“Failed to find device for the interface.”

	“Unable to retrieve drop counts due to error: <<error message>>”

	“Unable to retrieve drop counts as interface is not configured for statistics collection.”

	“Operation not supported for ACL <<Stateless/Transparent/Learn>> mode”

CLI

No CLI being added for this feature

Implementation

Assignee(s)

	Primary assignee:

	<Somashekar Byrappa>

	Other contributors:

	<Shashidhar R>

Work Items

	Adding new drop rules per port (in table 41 and 252)

	Yang changes

	Supporting new RPC

Dependencies

This doesn’t add any new dependencies.

This feature has dependency on below bug reported in OF Plugin:

Bug 7232 - Problem observed with “get-flow-statistics” RPC call [https://bugs.opendaylight.org/show_bug.cgi?id=7232]

Testing

Unit Tests

Following test cases will need to be added/expanded

	Verify ACL STAT RPC with single Neutron port

	Verify ACL STAT RPC with multiple Neutron ports

	Verify ACL STAT RPC with invalid Neutron port

	Verify ACL STAT RPC with mode set to “transparent/learn/stateless”

Also, existing unit tests will be updated to include new drop flows.

Integration Tests

Integration tests will be added, once IT framework is ready

CSIT

Following test cases will need to be added/expanded

	Verify ACL STAT RPC with single Neutron port with different directions (ingress, egress, both)

	Verify ACL STAT RPC with multiple Neutron ports with different
directions (ingress, egress, both)

	Verify ACL STAT RPC with invalid Neutron port

	Verify ACL STAT RPC with combination of valid and invalid Neutron ports

	Verify ACL STAT RPC with combination of Neutron ports with few having port-security-enabled as
true and others having false

Documentation Impact

This will require changes to User Guide. User Guide needs to be updated with details about new RPC
being supported and also about its REST usage.

References

N.A.

Note

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	ACL Remote ACL - Indirection Table to Improve Scale

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL Remote ACL - Indirection Table to Improve Scale

ACL Remote ACL Indirection patches:
https://git.opendaylight.org/gerrit/#/q/topic:remote_acl_indirection

This spec is to enhance the initial implementation of ACL remote ACLs filtering which was released
in Boron. The Boron release added full support for remote ACLs, however the current implementation
does not scale well in terms of flows. The Carbon release will update the implementation to
introduce a new indirection table for ACL rules with remote ACLs, to reduce the number of necessary
flows, in cases where the port is associated with a single ACL. Due to the complication of
supporting multiple ACLs on a single port, the current implementation will stay the same for these
cases.

Problem description

Today, for each logical port, an ACL rule results in a flow in the ACL table (ACL2). When a remote
ACL is configured on this rule, this flow is multiplied for each VM in the remote ACL, resulting in
a very large number of flows.

For example, consider we have:

	100 computes

	50 VMs on each compute (5000 VMs total),

	All VMs are in a SG (SG1)

	This SG has a security rule configured on it with remote SG=SG1
(it is common to set the remote SG as itself, to set rules within the SG).

This would result in 50*5000 = 250,000 flows on each compute, and 25M flows in ODL MDSAL (!).

Use Cases

Neutron configuration of security rules, configured with remote SGs. This optimization will be
relevant only when there is a single security group that is associated with the port. In case
more than one security group is associated with the port - we will fallback to the current
implementation which allows full functionality but with possible flow scaling issues.

Rules with a remote ACL are used to allow certain types of packets only between VMs in certain
security groups. For example, configuring rules with the parent security group also configured
as a remote security group, allows to configure rules applied only for traffic between VMs in
the same security group.

This will be done in the ACL implementation, so any ACL configured with a remote ACL via a different
northbound or REST would also be handled.

Proposed change

This blueprint proposes adding a new indirection table in the ACL service in each direction, which
will attempt to match the “remote” IP address associated with the packet (“dst_ip” in Ingress ACL,
“src_ip” in Egress ACL), and set the ACL ID as defined by the ietf-access-control-list in the
metadata. This match will also include the ELAN ID to handle ports with overlapping IPs.

These flows will be added to the ACL2 table. In addition, for each such ip->SG flow inserted in
ACL2, we will insert a single SG metadata match in ACL3 for each SG rule on the port configured with
this remote SG.

If the IP is associated with multiple SGs - it is impossible to do a 1:1 matching of the SG, so we
will not set the metadata at this time and fallback to the current implementation of matching all
possible IPs in the ACL table - for this ACL2 will have a default flow passing the unmatched packets
to ACL3 with an empty metadata SG_ID write (e.g. 0x0), to prevent potential garbage in the metadata
SG ID.

This means that on transition from a single SG on the port to multiple SG (and back), we would need
to remove/add these flows from ACL2, and insert the correct rules into ACL3.

ACL1 (211/241):

	This is the ACL that has default allow rules - it is left untouched, and usually goes to ACL2.

ACL2 (212/242):

	For each port with a single SG - we will match on the IPs and the ELAN ID (for tenant awareness)
here, and set the SG ID in the metadata, before going to the ACL3 table.

	For any port with multiple SGs (or with no SG) - an empty value (0x0) will be set as the SG ID in
the metadata, to avoid potential garbage in the SG ID, and goto ACL3 table.

ACL3 (213/243):

	For each security rule that doesn’t have a remote SG, we keep the behavior the same: ACL3
matches on rule, and resubmits to dispatcher if there is a match (Allow). The SG ID in the metadata
will not be matched.

	For each security rule that does have a remote SG, we have two options:

	For ports belonging to the remote SG that are associated with a single SG - there will be a
single flow per rule, matching the SG ID from the metadata (in addition to the other rule matches)
and allowing the packet.

	For ports belonging to the remote SG that are associated with multiple SGs - the existing
implementation will stay the same, multiplying the rule with all possible IP matches from the
remote security groups.

Considering the example from the problem description above, the new implementation would result in a
much reduced number of flows:

5000+50 = 5050 flows on each compute, and 505,000 flows in ODL MDSAL.

As noted above, this would require using part of the metadata for writing/matching of an ACL ID. We
would likely require at least 12 bits for this, to support up to 4K SGs, where 16 bits to support up
to 65K would be ideal. If the metadata bits are not available, we can use a register for this
purpose (16 bits).

In addition, the dispatcher will set the ELAN ID in the metadata before entering the ACL services,
to allow tenant aware IP to SG detection, supporting multi-tenants with IP collisions.

Pipeline changes

ACL3 will be added, and the flows in ACL2/ACL3 will be modified as noted above in the proposed change:

	Table

	Match

	Action

	Dispatcher

	metadata=service_id:ACL

	write_metadata:(elan_id=ELAN, service_id=NEXT), goto_table:ACL1

	ACL1 (211/241)

	goto_table:ACL2

	

	ACL2 (212/242)

	metadata=ELAN_ID, ip_src/dst=VM1_IP

	write_metadata:(remote_acl=id), goto_table:ACL3

	ACL2 (212/242)

	metadata=ELAN_ID, ip_src/dst=VM2_IP

	write_metadata:(remote_acl=id), goto_table:ACL3

	…

	
	

	ACL2 (212/242)

	
	goto_table:ACL3

	ACL3 (213/243)

	metadata=lport, <acl_rule>

	resubmit(,DISPATCHER) (X)

	ACL3 (213/243)

	metadata=lport+remote_acl, <acl_rule>

	resubmit(,DISPATCHER) (XX)

	ACL3 (213/243)

	metadata=lport,ip_src/dst=VM1_IP, <acl_rule>

	resubmit(,DISPATCHER) (XXX)

	ACL3 (213/243)

	metadata=lport,ip_src/dst=VM2_IP, <acl_rule>

	resubmit(,DISPATCHER) (XXX)

	…

	
	

(X) These are the regular rules, not configured with any remote SG.

(XX) These are the proposed rules with the optimization - assuming the lport is using a single ACL.

(XXX) These are the remote SG rules in the current implementation, which we will fall back to if the lport has multiple ACLs.

Table Numbering:

Currently the Ingress ACLs use tables 40,41,42 and the Egress ACLs use tables 251,252,253.

Table 43 is already proposed to be taken by SNAT, and table 254 is considered invalid by OVS.
To overcome this and align Ingress/Egress with symmetric numbering, I propose the following change:

	Ingress ACLs: 211, 212, 213, 214

	Egress ACLs: 241, 242, 243, 244

ACL1: INGRESS/EGRESS_ACL_TABLE
ACL2: INGRESS/EGRESS_ACL_REMOTE_ACL_TABLE
ACL3: INGRESS/EGRESS_ACL_FILTER_TABLE

ACL4 is used only for Learn implementation for which an extra table is required.

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

See example in description.
The scale of the flows will be drastically reduced when using remote ACLs.

Targeted Release

Carbon

Alternatives

For fully optimized support in all scenarios for remote SGs, meaning including support for ports
with multiple ACLs on them, we did consider implementing a similar optimization.

However, for this to happen due to OpenFlow limitations we would need to introduce an internal
dispatcher inside the ACL services, meaning we loop the ACL service multiple times, each time
setting a different metadata SG value for the port.

For another approach we could use a bitmask, but this would limit the number of possible SGs to be
the number of bits in the mask, which is much too low for any reasonable use case.

Usage

Any configuration of ACL rules with remote ACLs will receive this optimization if the port is using
a single SG.

Functionality should remain as before in any case.

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 1 for the Neutron CLI command syntax for managing Security
Rules with Remote Security Groups.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other
contributors.

Primary assignee:

	Alon Kochba <alonko@hpe.com>

	Aswin Suryanarayanan <asuryana@redhat.com>

Other contributors:

	?

Work Items

Task list in Carbon Trello [https://trello.com/c/6WBbSSkr/145-acl-remote-acls-indirection-table-to-improve-scale-remote-acl-indirection]

Dependencies

None.

Testing

Unit Tests

Integration Tests

CSIT

We should add tests verifying remote SG configuration functionality.
There should be at least:

	One security rule allowing ICMP traffic between VMs in the same SG.

	One positive test, checking ICMP connectivity works between two VMs using the same SG.

	One negative test, checking ICMP connectivity does not work between two VMs, one using the SG
configured with the rule above, and the other using a separate security group with all directions
allowed.

Documentation Impact

None.

References

	1

	Neutron Security Groups http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

Table of Contents

	ACL - Reflecting the ACL changes on existing traffic

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL - Reflecting the ACL changes on existing traffic

ACL patches:
https://git.opendaylight.org/gerrit/#/q/topic:acl-reflection-on-existing-traffic

This spec describes the new implementation for applying ACL changes on existing traffic.

In current ACL implementation, once a connection had been committed to the connection tracker, the connection would
continue to be allowed, even if the policy defined in the ACL table has changed. This spec will explain the new approach
that ensures ACL policy changes will affect existing connections as well. This approach will
improve the pipeline behaviour in terms of reliable traffic between the VMs.

Problem description

When the traffic between two VMs starts, the first packet will match the actual SG flow, which commits the packets
in connection tracker. It changes the state of the packets to established. Further traffic will match
the global conntrack flow and go through the connection tracker straightly. This will continue until we terminate the
established traffic.

When a rule is removed from the VM, the ACL flow getting removed from the respective tables. But, the already
established traffic is still working, because the connection still exists as ‘committed’ in the conntrack tracker.

For example, consider the below scenario which explains the problem in detail,

	Create a VM and associate the rule which allows ICMP

	Ping the DHCP server from the VM

	Remove the ICMP rule and check the ongoing traffic

When we remove the ICMP rule, the respective ICMP flow getting removed from the respective
table (For egress, table 213 and For Ingress, table 243). But, Since the conntrack flow having high priority than
the SG flow, the packets are matched by the conntrack flow and the live traffic is unaware of the flow removal.

The traffic between the VMs should be reliable and it should be succeeded accordance with SG flow. When a SG rule is
removed from the VM, the packets of ongoing traffic should be dropped.

Use Cases

	The new ACL implementation will affect the below use cases,

	
	VM Creation/Deletion with SG

	SG Rule addition and removal to/from existing SG associated to ports

Proposed change

This spec proposes the fix that requires a new table (210/240) in the existing pipeline.

In this approach, we will use the “ct_mark” flag of connection tracker. The default value of ct_mark is zero.

	ct_mark=0 matches the packet in new state

	ct_mark=1 matches the packet in established state

For every new traffic, the ct_mark value will be zero. When the traffic begins, the first packet of every
new traffic will be matched by the respective SG flow which commits the packets into the connection tracker and
changes the ct_mark value to 1. So, every packets of established traffic will have the ct_mark value as 1.

In conntrack flow, we will have a ct_mark=1 match condition. After first packet committed
to the connection tracker, further packets of established traffic will be matched by the conntrack flow straightly.

	In every SG flow, we will have below changes,

	“table=213/243, priority=3902, ct_state=+trk ,icmp,reg6=0x200/0xfffff00 actions=ct(commit,zone=6001,
exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	The SG flow will match the packets which are in tracked state. It will commit
the packet into the connection tracker. It will change the ct_mark value to 1.

	When a VM having duplicate flows, the removal of one flow should not affect the
existing traffic.

For example, consider a VM having ingress ICMP and Other protocol (ANY) rule. Ping the VM from the DHCP server. Removal of ingress ICMP rule
from the VM should not affect the existing traffic. Because the Other protocol ANY flow will match
the established packets of existing ICMP traffic and should make the communication possible.
To make the communication possible in above specific scenarios, we should match the established
packets in every SG flow. So, We will remove the “+new” check from the ct_state condition of every ACL flow to
recommit the established packets again into the conntrack.

	In conntrack flow,

	“table=213/243, priority=62020,ct_state=-new+est-rel-inv+trk, ct_mark=0x1 actions=resubmit(,17/220)”
“table=213/243, priority=62020,ct_state=-new-est+rel-inv+trk, ct_mark=0x1 actions=resubmit(,17/220)”

	The conntrack flow will match the packet which are in established state.

	For every new traffic, the first packet will be matched by the SG flow, which will change the ct_mark value to 1.
So, further packets will match the conntrack flow straightly.

	In default drop flow of table 213/243,

	“table=213, n_packets=0, n_bytes=0, priority=50, ct_state=+trk ,metadata=0x20000000000/0xfffff0000000000 actions=drop”
“table=243, n_packets=6, n_bytes=588, priority=50, ct_state=+trk ,reg6=0x300/0xfffff00 actions=drop”

	For every VM, we are having a default drop flow to measure the drop statistics of particular VM. So, we will remove
the “+new” state check from the ct_state to measure the drop counts accurately.

Deletion of SG flow will add the below flow with configured hard time out in the table 212/242.

[1] “table=212/242, n_packets=73, n_bytes=7154, priority=40,icmp,reg6=0x200/0xfffff00,ct_mark=1
actions=ct(commit, zone=5500, exec(set_field:0x0->ct_mark)),goto_table:ACL4”

	It will match the ct_mark value with the one and change the ct_mark to zero.

The below tables describes the default hard time out of each protocol as configured in the conntrack.

	Protocol

	Time out (secs)

	ICMP

	30

	TCP

	18000

	UDP

	180

Please refer the Pipeline Changes for table information.

For Egress, Dispatcher table (table 17) will forward the packets to the new table 210 where we will check the source match.
It will forward the packet to 211 to match the destination of the packets. After the destination of the packet verified,
The packets will forward to the table 212. New flow in the table, will match the ct_mark value and forward
the packets to the 213 table.

	Similarly, for Ingress, the packets will be forwarded through,

	Dispatcher table (220) >> New table (240) >> 241 >> 242 >> 243.

In dispatcher flows, we will have the below changes which will change the table 211/241 from the goto_table action to
the new table 210/240.

“table=17, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x900002157f000000/0xfffffffffffffffe, goto_table:210”

“table=220, priority=6,reg6=0x200 actions=load:0x90000200->NXM_NX_REG6[],write_metadata:0x157f000000/0xfffffffffe, goto_table:240”

Deletion of SG rule will add a new flow in the table 212/242 as mentioned above. The first packet after SG got deleted,
will match the above new flow and will change the ct_mark value to zero. So this packet will not match the conntrack
flow and will check the ACL4 table whether it having any other flows to match this packet. If the SG flow found, the packet
will be matched and change the ct_mark value 1.

If we restore the SG rule again, we will delete the added flow [1] from the 212/242 table, so the packets of
existing traffic will match the newly added SG flow in ACL4 table and proceed successfully.

Sample flows to be installed in each scenario,

	SG rule addition

	
	SG flow: [ADD]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk, icmp,
reg6=0x200/0xfffff00 actions=ct(commit,zone=6001, exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	Conntrack flow: [DEFAULT]

	“table=213/243, n_packets=105, n_bytes=10290, priority=62020,ct_state=-new+est-rel-inv+trk, ct_mark=0x1
actions=resubmit(,17/220)”

	SG Rule deletion

	
	SG flow: [DELETE]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk,icmp,reg6=0x200/0xfffff00
actions=ct(commit,zone=6001,exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	New flow: [ADD]

	“table=212/242, n_packets=73, n_bytes=7154, priority=62021, ct_mark=0x1,icmp,reg6=0x200/0xfffff00
actions=ct(commit, exec(set_field:0x0->ct_mark)),goto_table:213/243”

	Rule Restore

	
	SG flow: [ADD]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk, icmp,reg6=0x200/0xfffff00
actions=ct(commit,zone=6001,exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	New flow: [DELETE]

	“table=212/242, n_packets=73, n_bytes=7154, priority=62021,ct_mark=0x1,icmp,reg6=0x200/0xfffff00
actions=ct(commit,exec(set_field:0x0->ct_mark)),goto_table:213/243”

The new tables (210/240) will matches the source and the destination of the packets respectively. So, a default flow will be added in
the table 210/240 with least priority to drop the packets.

“table=210/240, n_packets=1, n_bytes=98, priority=0 actions=drop”

	Flow Sample:

	
Egress flows before the changes,

cookie=0x6900000, duration=30.590s, table=17, n_packets=108, n_bytes=10624, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x9000021389000000/0xfffffffffffffffe,goto_table:211
cookie=0x6900000, duration=30.247s, table=211, n_packets=0, n_bytes=0, priority=61010,ipv6,dl_src=fa:16:3e:93:dc:92,ipv6_src=fe80::f816:3eff:fe93:dc92 actions=ct(table=212,zone=5001)
cookie=0x6900000, duration=30.236s, table=211, n_packets=96, n_bytes=9312, priority=61010,ip,dl_src=fa:16:3e:93:dc:92,nw_src=10.100.5.3 actions=ct(table=212,zone=5001)
cookie=0x6900000, duration=486.527s, table=211, n_packets=2, n_bytes=180, priority=0 actions=drop
cookie=0x6900000, duration=30.157s, table=212, n_packets=0, n_bytes=0, priority=50,ipv6,metadata=0x1389000000/0xffff000000,ipv6_dst=fe80::f816:3eff:fe93:dc92 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=30.152s, table=212, n_packets=0, n_bytes=0, priority=50,ip,metadata=0x1389000000/0xffff000000,nw_dst=10.100.5.3 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=486.527s, table=212, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:212
cookie=0x6900000, duration=486.056s, table=213, n_packets=80, n_bytes=8128, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x6900000, duration=485.948s, table=213, n_packets=0, n_bytes=0, priority=62020,ct_state=-new-est+rel-inv+trk actions=resubmit(,17)
cookie=0x6900001, duration=30.184s, table=213, n_packets=0, n_bytes=0, priority=62015,ct_state=+inv+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop
cookie=0x6900000, duration=30.177s, table=213, n_packets=16, n_bytes=1184, priority=1000,ct_state=+new+trk,ip,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900000, duration=30.168s, table=213, n_packets=0, n_bytes=0, priority=1001,ct_state=+new+trk,ipv6,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900001, duration=30.207s, table=213, n_packets=0, n_bytes=0, priority=50,ct_state=+new+trk,metadata=0x20000000000/0xfffff0000000000 actions=dro

After the changes, flows will be,

cookie=0x6900000, duration=30.590s, table=17, n_packets=108, n_bytes=10624, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x9000021389000000/0xfffffffffffffffe,goto_table:210
cookie=0x6900000, duration=30.247s, table=210, n_packets=0, n_bytes=0, priority=61010,ipv6,dl_src=fa:16:3e:93:dc:92,ipv6_src=fe80::f816:3eff:fe93:dc92 actions=ct(table=211,zone=5001)
cookie=0x6900000, duration=30.236s, table=210, n_packets=96, n_bytes=9312, priority=61010,ip,dl_src=fa:16:3e:93:dc:92,nw_src=10.100.5.3 actions=ct(table=211,zone=5001)
cookie=0x6900000, duration=486.527s, table=210, n_packets=2, n_bytes=180, priority=0 actions=drop
cookie=0x6900000, duration=30.157s, table=211, n_packets=0, n_bytes=0, priority=50,ipv6,metadata=0x1389000000/0xffff000000,ipv6_dst=fe80::f816:3eff:fe93:dc92 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=30.152s, table=211, n_packets=0, n_bytes=0, priority=50,ip,metadata=0x1389000000/0xffff000000,nw_dst=10.100.5.3 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=486.527s, table=211, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:212
cookie=0x6900000, duration=486.527s, table=212, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:213
cookie=0x6900000, duration=486.056s, table=213, n_packets=80, n_bytes=8128, priority=62020,ct_state=-new+est-rel-inv+trk,ct_mark=0x1 actions=resubmit(,17)
cookie=0x6900000, duration=485.948s, table=213, n_packets=0, n_bytes=0, priority=62020,ct_state=-new-est+rel-inv+trk,ct_mark=0x1 actions=resubmit(,17)
cookie=0x6900001, duration=30.184s, table=213, n_packets=0, n_bytes=0, priority=62015,ct_state=+inv+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop
cookie=0x6900000, duration=30.177s, table=213, n_packets=16, n_bytes=1184, priority=1000,ct_state=+trk,ip,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001,exec(set_field:0x1->ct_mark)),resubmit(,17)
cookie=0x6900000, duration=30.168s, table=213, n_packets=0, n_bytes=0, priority=1001,ct_state=+new+trk,ipv6,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900001, duration=30.207s, table=213, n_packets=0, n_bytes=0, priority=50,ct_state=+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop

	New flow will be installed in table 212 when we delete SG rule,

	“cookie=0x6900000, duration=30.177s, table=212, n_packets=16, n_bytes=1184, priority=1000,ct_state=+trk,ip,metadata=0x20000000000/0xfffff0000000000,ct_mark=1,idle_timeout=1800 actions=ct(commit,zone=5001,exec(set_field:0x0->ct_mark)),goto_table:213”

Similarly, the ingress related flows will have the same changes as mentioned above.

Pipeline changes

	The propose changes includes:

	
	New tables 210 and 240

	Re-purposed tables 211, 212, 241, 242

The propose will re-purpose the table 211 and 212 of egress, table 241 and 242 of ingress.

Currently, for egress, we are using the table 211 for source match and 212 for destination match.
In new propose, we will use the new table 210 for source match, table 211 for destination match and table 212 for new
flow installation when we delete the SG flow.

	For Egress, the traffic will use the tables in following order,

	17 >> 210 >> 211 >> 212 >> 213.

Similarly, for ingress, currently we are using the table 241 for destination match and 242 for source match.
In new propose, we will use the new table 240 for destination match, table 241 for source match and table 242 for new
flow installation when we delete the SG flow.

	For Ingress, the traffic will use the tables in following order,

	220 >> 240 >> 241 >> 242 >> 243

flow will be added in table 212/242, and the match condition of ACL4 flows will be modified as noted above in the proposed change:

	Table

	Match

	Action

	Dispatcher

	metadata=service_id:ACL

	write_metadata:(elan_id=ELAN, service_id=NEXT), goto_table:210/240 (ACL1)

	ACL1 (210/240)

	
	goto_table:ACL2

	…

	
	

	ACL2 (211/241)

	
	goto_table:ACL3

	ACL3 (212/242)

	ip,ct_mark=0x1,reg6=0x200/0xfffff00

	(set_field:0x0->ct_mark), goto_table:ACL4

	ACL3 (212/242)

	
	goto_table:ACL4

	ACL4 (213/243)

	ct_state=-new+est-rel-inv+trk,ct_mark=0x1

	resubmit(,DISPATCHER)

	ACL4 (213/243)

	ct_state=+trk,priority=3902,ip,reg6=0x200/0xfffff00

	set_field:0x1>ct_mark, resubmit(,DISPATCHER)

	ACL4 (213/243)

	ct_state=+trk, reg6=0x200/0xfffff00

	drop

	…

	
	

Yang changes

The nicira-action.yang and the openflowplugin-extension-nicira-action.yang needs to be updated
with ct_mark action. The action structure shall be

grouping ofj-nx-action-conntrack-grouping {
 container nx-action-conntrack {
 leaf flags {
 type uint16;
 }
 leaf zone-src {
 type uint32;
 }
 leaf conntrack-zone {
 type uint16;
 }
 leaf recirc-table {
 type uint128;
 }
 leaf experimenter-id {
 type oft:experimenter-id;
 }
 list ct-actions{
 uses ofpact-actions;
 }
 }
 }

The nicira-match.yang and the openflowplugin-extension-nicira-match.yang needs to be updated
with the ct_mark match.

grouping ofj-nxm-nx-match-ct-mark-grouping{
 container ct-mark-values {
 leaf ct-mark {
 type uint32;
 }
 leaf mask {
 type uint32;
 }
 }
 }

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

When we delete the SG rule from the VM, A new flow will be added in the flow table 212 to flip
the value of ct_mark of ongoing traffics. This flow will have a time out based on the protocol as mentioned in the
proposed changes section. The packets of ongoing traffic will be recommitted and will do the set filed of ct_mark until
the flow reaches the time out.

Targeted Release

Carbon

Alternatives

While deleting a SG flow from the flow table, we will add a DROP flow with the highest priority in the ACL4 table.
This DROP flow will drop the packets and it will stop the existing traffic. Similarly, when we restore the
same rule again, we will delete the DROP flow from the ACL4 table which will enable the existing traffic.

But this approach will be effective only if the VM do not have any duplicate flows. With the current ACL
implementation, if we associate two SGs which having similar set of SG rule, netvirt will install the two set of
flows with different priority for the same VM.

As per above approach, if we dissociate any one of SG from the VM, It will add the DROP flow in ACL4 table which
will stops the existing traffic irrespective of there is still another flow available in ACL4, to make the
traffic possible.

Usage

Traffic between VMs will work accordance with the SG flow existence in the flow table.

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 1 for the Neutron CLI command syntax for managing Security
Rules.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assignee and other
contributors.

Primary assignee:

	VinothB <vinothb@hcl.com>

	Balakrishnan Karuppasamy <balakrishnan.ka@hcl.com>

Other contributors:

	?

Work Items

None

Dependencies

None.

Testing

Unit Tests

Integration Tests

CSIT

We should add tests verifying ACL change reflection on existing traffic.
There should be at least:

	One security rule allowing ICMP traffic between VMs in the same SG.

	One positive test, checking ICMP connectivity works between two VMs using the same SG. Delete all the rules from
the SG without disturbing the already established traffic. It should stop the traffic.

	One positive test, checking ICMP connectivity works between two VMs,one using the SG,
configured with the ICMP rule, Delete and restore the ICMP rule immediately. This should stop and resume the ICMP traffic after
restoring the ICMP rule.

	One positive test, checking ICMP connectivity between VMs, using the SG,
configured with ICMP ALL and Other protocol ANY rule. Delete the ICMP rule from the SG, It should not stop the ICMP traffic.

	One negative test, checking ICMP connectivity between two VMs, one using the SG,
configured with the ICMP and TCP rules above, and delete the TCP rule. This should not affect the ICMP traffic.

Documentation Impact

None.

References

	1

	Neutron Security Groups http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

Table of Contents

	Conntrack Based SNAT

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create External Network

	Create Internal Network

	Create Router

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Conntrack Based SNAT

https://git.opendaylight.org/gerrit/#/q/topic:snat_conntrack

The ovs conntrack based SNAT implements Source Network Address Translation using openflow rules by
leveraging ovs-netfilter integration.

Problem description

Today SNAT is done in Opendaylight netvirt using controller punting and thus controller installing
the rules for inbound and outbound NAPT. This causes significant delay as the first packet of all
the new connections needs to go through the controller.The number of flows grows linearly with the
increase in the vms. Also the current implementation does not support ICMP.

The current algorithm for selecting the NAPT switch does not work well with conntrack based SNAT.
For a NAPT switch to remain as designated NAPT switch, it requires at least one port from any of
the subnets present in the router. When such a port cease to exist a new NAPT switch will be
elected. With the controller based implementation the failover is faster as the NAT flows are
reinstalled to the new NAPT switch and should not lead to termination of existing connection.
With the conntrack based approach, the translation will be lost and the newly elected switch will
have to redo the translation. This will lead to connection timeout for TCP like connections. So
the re-election needs to be prevented unless switch is down. Also the current implementation
tends to select the node running the DHCP agent as the designated NAPT switch as the DHCP port is
the first port created for a subnet.

Use Cases

The following use case will be realized by the implementation

External Network Access
The SNAT enables the VM in a tenant network access the external network without using a floating ip. It
uses NAPT for sharing the external ip address across multiple VMs that share the same router
gateway.

Proposed change

The proposed implementation uses linux netfilter framework to do the NAPT (Network Address Port
Translation) and for tracking the connection. The first packet of a traffic will be committed to
the netfilter for translation along with the external ip. The subsequent packets will use the entry
in the netfilter for inbound and outbound translation. The router id will be used as the zone id in
the netfilter. Each zone tracks the connection in its own table. The rest of the implementation for
selecting the designated NAPT switch and non designated switches will remain the same. The pipeline
changes will happen in the designated switch. With this implementation we will be able to do
translation for icmp as well.

The openflow plugin needs to support new set of actions for conntrack based NAPT. This shall be
added in the nicira plugin extension of OpenFlow plugin.

The new implementation will not re-install the existing NAT entries to the new NAPT switch during
fail-over. Also spec does not cover the use case of having multiple external subnets in the same
router.

The HA framework will have a new algorithm to elect the designated NAPT switch. The
new logic will be applicable only if the conntrack mode is selected. The switch selection logic
will also be modified to use round robin logic with weights associated with each switch. It will
not take into account whether a port belonging to a subnet in the router is present in the switch.
The initial weight of all the switches shall be 0 and will be incremented by 1 when the switch is
selected as the designated NAPT. The weights shall be decremented by 1 when the router is deleted.
At any point of time the switch with the lowest weight will be selected as the designated NAPT
switch for a new router. If there are multiple the first one with the lowest weight will be
selected. A pseudo port will be added in the switch which is selected as the designated NAPT
switch. This port will be deleted only when the switch cease to be a designated NAPT switch. This
helps the switch to maintain the remote flows even when there are no ports in the router subnet in
the switch. Only if the switch hosting the designated NAPT switch is down a new NAPT switch will be
elected.

Pipeline changes

The ovs based NAPT flows will replace the controller based NAPT flows. The changes are limited
to the designated switch for the router. Below is the illustration for flat external network.

Outbound NAPT

Table 26 (PSNAT Table) => submits the packet to netfilter to check whether it is an existing
connection. Resubmits the packet back to 46.

Table 46 (NAPT OUTBOUND TABLE) => if it is an established connection, it indicates the
translation is done and the packet is forwarded to table 47 after writing the external network
metadata.

If it is a new connection the connection will be committed to netfilter and this entry will be
used for NAPT. The translated packet will be resubmitted to table 47. The external network
metadata will be written before sending the packet to netfilter.

Table 47 (NAPT FIB TABLE) => The translated packet will be sent to the egress group.

Sample Flows

table=26, priority=5,ip,metadata=0x222e2/0xfffffffe actions=ct(table=46,zone=5003,nat)
table=46, priority=6,ct_state=+snat,ip,metadata=0x222e2/0xfffffffe actions=set_field:0x222e0->metadata,resubmit(,47)
table=46, priority=5,ct_state=+new+trk,ip,metadata=0x222e2/0xfffffffe actions=set_field:0x222e0->metadata,ct(commit,table=47,zone=5003,nat(src=192.168.111.21))
table=47, n_packets=0, n_bytes=0, priority=6,ct_state=+snat,ip,nw_src=192.168.111.21 actions=group:200000

Inbound NAPT

Table 44 (NAPT INBOUND Table)=> submits the packet to netfilter to check for an existing
connection after changing the metadata to that of the internal network. The packet will be
submitted back to table 47.

Table 47 (NAPT FIB TABLE) => The translated packet will be submitted back to table 21.

Sample Flows

table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=192.168.111.21 actions=resubmit(,44)
table=44, priority=10,ip,metadata=0x222e0/0xfffffffe,nw_dst=192.168.111.21 actions=set_field:0x222e2->metadata,ct(table=47,zone=5003,nat)
table=47, priority=5,ct_state=+dnat,ip actions=resubmit(,21)

Yang changes

The nicira-action.yang and the openflowplugin-extension-nicira-action.yang needs to be updated
with nat action. The action structure shall be

typedef nx-action-nat-range-present {
 type enumeration {
 enum NX_NAT_RANGE_IPV4_MIN {
 value 1;
 description "IPV4 minimum value is present";
 }
 enum NX_NAT_RANGE_IPV4_MAX {
 value 2;
 description "IPV4 maximum value is present";
 }
 enum NX_NAT_RANGE_IPV6_MIN {
 value 4;
 description "IPV6 minimum value is present in range";
 }
 enum NX_NAT_RANGE_IPV6_MAX {
 value 8;
 description "IPV6 maximum value is present in range";
 }
 enum NX_NAT_RANGE_PROTO_MIN {
 value 16;
 description "Port minimum value is present in range";
 }
 enum NX_NAT_RANGE_PROTO_MAX {
 value 32;
 description "Port maximum value is present in range";
 }
 }
 }

typedef nx-action-nat-flags {
 type enumeration {
 enum NX_NAT_F_SRC {
 value 1;
 description "Source nat is selected ,Mutually exclusive with NX_NAT_F_DST";
 }
 enum NX_NAT_F_DST {
 value 2;
 description "Destination nat is selected";
 }
 enum NX_NAT_F_PERSISTENT {
 value 4;
 description "Persistent flag is selected";
 }
 enum NX_NAT_F_PROTO_HASH {
 value 8;
 description "Hash mode is selected for port mapping, Mutually exclusive with
 NX_NAT_F_PROTO_RANDOM ";
 }
 enum NX_NAT_F_PROTO_RANDOM {
 value 16;
 description "Port mapping will be randomized";
 }
 }
 }

grouping ofj-nx-action-conntrack-grouping {
 container nx-action-conntrack {
 leaf flags {
 type uint16;
 }
 leaf zone-src {
 type uint32;
 }
 leaf conntrack-zone {
 type uint16;
 }
 leaf recirc-table {
 type uint8;
 }
 leaf experimenter-id {
 type oft:experimenter-id;
 }
 list ct-actions{
 uses ofpact-actions;
 }
 }
 }

grouping ofpact-actions {
 description
 "Actions to be performed with conntrack.";
 choice ofpact-actions {
 case nx-action-nat-case {
 container nx-action-nat {
 leaf flags {
 type uint16;
 }
 leaf range_present {
 type uint16;
 }
 leaf ip-address-min {
 type inet:ip-address;
 }
 leaf ip-address-max {
 type inet:ip-address;
 }
 leaf port-min {
 type uint16;
 }
 leaf port-max {
 type uint16;
 }
 }
 }
 }
}

For the new configuration knob a new yang natservice-config shall be added in NAT service, with the
container for holding the NAT mode configured. It will have two options controller and conntrack,
with controller being the default.

container natservice-config {
 config true;
 leaf nat-mode {
 type enumeration {
 enum "controller";
 enum "conntrack";
 }
 default "controller";
 }
}

Configuration impact

The proposed change requires the NAT service to provide a configuration knob to switch between the
controller based/conntrack based implementation. A new configuration file
netvirt-natservice-config.xml shall be added with default value controller.

<natservice-config xmlns="urn:opendaylight:netvirt:natservice-config">
 <nat-mode>controller</nat-mode>
</natservice-config>

The dynamic update of nat-mode will not be supported. To change the nat-mode the controller cluster
needs to be restarted after changing the nat-mode. On restart the NAT translation lifecycle will be
reset and after the controller comes up in the updated nat-mode, a new set of switches will be
elected as designated NAPT switches and it can be different from the ones that were forwarding
traffic earlier.

Clustering considerations

NA

Other Infra considerations

The implementation requires ovs2.6 with the kernel module installed. OVS currently does not support
SNAT connection tracking for dpdk datapath. It would be supported in some future release.

Security considerations

NA

Scale and Performance Impact

The new SNAT implementation is expected to improve the performance when compared to the existing
one and will reduce the flows in ovs pipeline.

Targeted Release

Carbon

Alternatives

An alternative implementation of X NAPT switches was discussed, which will not be a part of this
document but will be considered as a further enhancement.

Usage

Create External Network

Create an external flat network and subnet

neutron net-create ext1 --router:external --provider:physical_network public --provider:network_type flat
neutron subnet-create --allocation-pool start=<start-ip>,end=<end-ip> --gateway=<gw-ip> --disable-dhcp --name subext1 ext1 <subnet-cidr>

Create Internal Network

Create an internal n/w and subnet

neutron net-create vx-net1 --provider:network_type vxlan
neutron subnet-create vx-net1 <subnet-cidr> --name vx-subnet1

Create Router

Create a router and add an interface to internal n/w. Set the external n/w as the router gateway.

neutron router-create router1
neutron router-interface-add router1 vx-subnet1
neutron router-gateway-set router1 ext1
nova boot --poll --flavor m1.tiny --image $(nova image-list | grep 'uec\s' | awk '{print $2}' | tail -1) --nic net-id=$(neutron net-list | grep -w vx-net1 | awk '{print $2}') vmvx2

Features to Install

odl-netvirt-openstack

REST API

NA

CLI

A new command line, display-napt-switch, will be added to display the current designated NAPT
switch selected for each router. It shall show the below info.

router id | Host Name of designated NAPT switch | Management Ip of the designated NAPT switch

Implementation

Assignee(s)

Aswin Suryanarayanan <asuryana@redhat.com>

Work Items

https://trello.com/c/DMLsrLfq/9-snat-decentralized-ovs-nat-based

	Write a framework which can support multiple modes of NAT implementation.

	Add support in openflow plugin for conntrack nat actions.

	Add support in genius for conntrack nat actions.

	Add a config parameter to select between controller based and conntrack based.

	Add the flow programming for SNAT in netvirt.

	Add the new HA framework.

	Add the command to display the designated NAPT switch.

	Write Unit tests for conntrack based snat.

Dependencies

NA

Testing

Unit Tests

Unit test needs to be added for the new snat mode. It shall use the component tests framework

Integration Tests

Integration tests needs to be added for the conntrack snat flows.

CSIT

Run the CSIT with conntrack based SNAT configured.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

Table of Contents

	Cross site connectivity with federation service

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Cross site connectivity with federation service

https://git.opendaylight.org/gerrit/#/q/topic:federation-plugin

Enabling neutron networks to expand beyond a single OpenStack instance to allow L2 switching and L3 routing
between sites. Sites may be geographically remote or partitioned in a single data center.

Each site is deployed with independent local ODL cluster. The clusters communicate using the federation
infrastructure [2] in order to publish MDSAL events whenever routable entities e.g. VM instances are added/removed
from remote sites.

VxLAN tunnels are used to form the overlay for cross site communication between OpenStack compute nodes.

Problem description

Today, communication between VMs in remote sites is based on BGP control plane and requires DC-GW.
Overlay network between data centers is based on MPLSoverGRE or VxLAN if the DC-GW supports EVPN RT5 [4].
The purpose of this feature is to allow inter-DC communication independent from BGP control plane and DC-GW.

Use Cases

This feature will cover the following use cases:

L2 switching use cases

	L2 Unicast frames exchanged between VMs sharing federated neutron network between OVS datapaths in
remote sites

	L2 Unicast frames exchanged between VM and PNF sharing federated neutron network between OVS and HWVTEP
datapath in remote sites

	L2 Broadcast frames exchanged between VMs sharing federated neutron network between OVS datapaths in
remote sites

	L2 Broadcast frames exchanged between VM and PNF sharing federated neutron network between OVS and HWVTEP
datapath in remote sites

L3 forwarding use cases

	L3 traffic exchanged between VMs sharing federated neutron router between OVS datapaths in
remote sites

Proposed change

For Carbon release, cross-site connectivity will be based on the current HPE downstream federation plugin codebase.
This plugin implements the federation service API [3] to synchronize the following MDSAL subtrees between connected
sites:

	config/ietf-interfaces:interfaces

	config/elan:elan-interfaces

	config/l3vpn:vpn-interfaces

	config/network-topology:network-topology/topology/ovsdb:1

	operational/network-topology:network-topology/topology/ovsdb:1

	config/network-topology:network-topology/topology/hwvtep:1

	operational/network-topology:network-topology/topology/hwvtep:1

	config/opendaylight-inventory:nodes

	operational/opendaylight-inventory:nodes

	config/neutron:neutron/l2gateways

	config/neutron:neutron/l2gatewayConnections

The provisioning of connected networks between remote sites is out of the scope of this spec and described in [6].

Upon receiving a list of shared neutron networks and subnets, the federation plugin will propagate MDSAL entities from
all of the subtrees detailed above to remote sites based on the federation connection definitions.
The federated entities will be transformed to match the target network/subnet/router details in each remote site.

For example, ELAN interface will be federated with elan-instance-name set to the remote site elan-instance-name.
VPN interface will be federated with the remote site vpn-instance-name i.e. router-id and remote subnet-id contained
in the primary VPN interface adjacency.

This would allow remotely federated entities a.k.a shadow entities to be handled the same way local entities are handled
thus shadow entities will appear as if they were local entities in remote sites.
As a result, the following pipeline elements will be added for shadow entities on all compute nodes in each connected
remote site:

	ELAN remote DMAC flow for L2 unicast packets to remote site

	ELAN remote broadcast group buckets for L2 multicast packets to remote site

	FIB remote nexthop flow for L3 packet to remote site

The following limitations exist for the current federation plugin implementation:

	Federated networks use VxLAN network type and the same VNI is used across sites.

	The IP addresses allocated to VM instances in federated subnets do not overlap across sites.

	The neutron-configured VNI will be passed on the wire for inter-DC L2/L3 communication between VxLAN networks.
The implementation is described in [5].

As part of Nitrogen, the federation plugin is planned to go through major redesign. The scope and internals have not
been finalized yet but this spec might be a good opportunity to agree on an alternate solution.

Some initial thoughts:

	For L3 cross site connectivity, it seems that federating the FIB vrf-entry associated with VMs in connected
networks should be sufficient to form remote nexthop connectivity across sites.

	In order to create VxLAN tunnels to remote sites, it may be possible to use the external tunnel concept instead
of creating internal tunnels that are dependent on federation of the OVS topology nodes from remote sites.

	L2 cross site connectivity is the most challenging part for federation of MAC addresses of both VM
instances and PNFs connected to HWVTEP.
If the ELAN model could be enhanced to have remote-mac-entry model containing MAC address, ELAN instance name
and remote TEP ip, it would be possible to federate such entity to remote sites in order to create remote DMAC
flows for cases of remote VM instances and PNFs connected HWVTEP in remote sites.

Pipeline changes

No new pipeline changes are introduced as part of this feature. The pipeline flow between VM instances in
remote sites is similar to the current implementation of cross compute intra-DC traffic since the
realization of remote compute nodes is similar to local ones.

Yang changes

The following new yang models will be introduced as part of the federation plugin API bundle:

Federation Plugin Yang

Marking for each federated entity using shadow-properties augmentation

module federation-plugin {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin";
 prefix "federation-plugin";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import network-topology {
 prefix topo;
 }

 import opendaylight-inventory {
 prefix inv;
 }

 import ietf-interfaces {
 prefix if;
 }

 import elan {
 prefix elan;
 }

 import l3vpn {
 prefix l3vpn;
 }

 import neutronvpn {
 prefix nvpn;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 grouping shadow-properties {
 leaf shadow {
 type boolean;
 description "Represents whether this is a federated entity";
 }
 leaf generation-number {
 type int32;
 description "The current generation number of the federated entity";
 }
 leaf remote-ip {
 type string;
 description "The IP address of the original site of the federated entity";
 }
 }

 augment "/topo:network-topology/topo:topology/topo:node" {
 ext:augment-identifier "topology-node-shadow-properties";
 uses shadow-properties;
 }

 augment "/inv:nodes/inv:node" {
 ext:augment-identifier "inventory-node-shadow-properties";
 uses shadow-properties;
 }

 augment "/if:interfaces/if:interface" {
 ext:augment-identifier "if-shadow-properties";
 uses shadow-properties;
 }

 augment "/elan:elan-interfaces/elan:elan-interface" {
 ext:augment-identifier "elan-shadow-properties";
 uses shadow-properties;
 }

 augment "/l3vpn:vpn-interfaces/l3vpn:vpn-interface" {
 ext:augment-identifier "vpn-shadow-properties";
 uses shadow-properties;
 }
}

Federation Plugin Manager Yang

Management of federated networks and routed RPCs subscription

module federation-plugin-manager {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:manager";
 prefix "federation-plugin-manager";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 identity mgr-context {
 description "Identity for a routed RPC";
 }

 container routed-container {
 list route-key-item {
 key "id";
 leaf id {
 type string;
 }

 ext:context-instance "mgr-context";
 }
 }

 container federated-networks {
 list federated-network {
 key self-net-id;
 uses federated-nets;
 }
 }

 container federation-generations {
 description
 "Federation generation information for a remote site.";
 list remote-site-generation-info {
 max-elements "unbounded";
 min-elements "0";
 key "remote-ip";
 leaf remote-ip {
 mandatory true;
 type string;
 description "Remote site IP address.";
 }
 leaf generation-number {
 type int32;
 description "The current generation number used for the remote site.";
 }
 }
 }

 grouping federated-nets {
 leaf self-net-id {
 type string;
 description "UUID representing the self net";
 }
 leaf self-subnet-id {
 type yang:uuid;
 description "UUID representing the self subnet";
 }
 leaf self-tenant-id {
 type yang:uuid;
 description "UUID representing the self tenant";
 }
 leaf subnet-ip {
 type string;
 description "Specifies the subnet IP in CIDR format";
 }

 list site-network {
 key id;
 leaf id {
 type string;
 description "UUID representing the site ID (from xsite manager)";
 }
 leaf site-ip {
 type string;
 description "Specifies the site IP";
 }
 leaf site-net-id {
 type string;
 description "UUID of the network in the site";
 }
 leaf site-subnet-id {
 type yang:uuid;
 description "UUID of the subnet in the site";
 }
 leaf site-tenant-id {
 type yang:uuid;
 description "UUID of the tenant holding this network in the site";
 }
 }
 }
}

Federation Plugin RPC Yang

FederationPluginRpcService yang definition for update-federated-networks RPC

module federation-plugin-rpc {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:rpc";
 prefix "federation-plugin-rpc";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import federation-plugin-manager {
 prefix federation-plugin-manager;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 rpc update-federated-networks {
 input {
 list federated-networks-in {
 key self-net-id;
 uses federation-plugin-manager:federated-nets;
 description "Contain all federated networks in this site that are still
 connected, a federated network that does not appear will be considered
 disconnected";
 }
 }
 }
}

Federation Plugin routed RPC Yang

Routed RPCs will be used only within the cluster to route connect/disconnect requests to the federation cluster singleton.

module federation-plugin-routed-rpc {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:routed:rpc";
 prefix "federation-plugin-routed-rpc";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import federation-plugin-manager {
 prefix federation-plugin-manager;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 rpc update-federated-networks {
 input {
 leaf route-key-item {
 type instance-identifier;
 ext:context-reference federation-plugin-manager:mgr-context;
 }

 list federated-networks-in {
 key self-net-id;
 uses federation-plugin-manager:federated-nets;
 }
 }
 }
}

Configuration impact

None.

Clustering considerations

The federation plugin will be active only on one of the ODL instances in the cluster. The cluster singleton service
infrastructure will be used in order to register the federation plugin routed RPCs only on the selected ODL instance.

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Features to Install

odl-netvirt-federation

This is a new feature that will load odl-netvirt-openstack and the federation service features.
It will not be installed by default and requires manual startup using karaf feature:install command.

REST API

Connecting neutron networks from remote sites

URL: restconf/operations/federation-plugin-manager:update-federated-networks

Sample JSON data

{
 "input": {
 "federated-networks-in": [
 {
 "self-net-id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7920",
 "self-subnet-id": "93dee7cb-ba25-4318-b60c-19a15f2c079a",
 "subnet-ip": "10.0.123.0/24",
 "site-network": [
 {
 "id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7922",
 "site-ip": "10.0.43.146",
 "site-net-id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7921",
 "site-subnet-id": "93dee7cb-ba25-4318-b60c-19a15f2c079b",
 }
]
 }
]
 }
}

CLI

None.

Implementation

Assignee(s)

	Primary assignee:

	Tali Ben-Meir <tali@hpe.com>

	Other contributors:

	Guy Sela <guy.sela@hpe.com>

Shlomi Alfasi <shlomi.alfasi@hpe.com>

Yair Zinger <yair.zinger@hpe.com>

Work Items

Trello card https://trello.com/c/mgdUO6xx/154-federation-plugin-for-netvirt

Since the code was already implemented in downstream no work items will be defined

Dependencies

This feature will be implemented in 2 new bundles - federation-plugin-api and federation-plugin-impl
the implementation will be dependent on federation-service-api [3] bundle from OpenDaylight federation project.

The new karaf feature odl-netvirt-federation will encapsulate the federation-plugin api and impl bundles
and will be dependant on the followings features:

	federation-with-rabbit from federation project

	odl-netvirt-openstack from netvirt project

Testing

Unit Tests

End-to-end component service will test the federation plugin on top of the federation service.

Integration Tests

None

CSIT

The CSIT infrastructure will be enhanced to support connect/disconnect operations between sites using
update-federated-networks RPC call.

A new federation suite will test L2 and L3 connectivity between remote sites and will be based on the
existing L2/L3 connectivity suites.
CSIT will load sites A,B and C in 1-node/3-node deployment options to run the following tests:

1 Install odl-netvirt-federation feature

	Basic L2 connectivity test within the site

	Basic L3 connectivity test within the site

	L2 connectivity between sites - expected to fail since sites are not connected

	L3 connectivity between sites - expected to fail since sites are not connected

2 Connect sites A,B

	Basic L2 connectivity test within the site

	L2 connectivity test between VMs in sites A,B

	L2 connectivity test between VMs in sites A,C and B,C - expected to fail since sites are not connected

	Basic L3 connectivity test within the site

	L3 connectivity test between VMs in sites A,B

	L3 connectivity test between VMs in sites A,C and B,C - expected to fail since sites are not connected

3 Connect site C to A,B

	L2 connectivity test between VMs in sites A,B B,C and A,C

	L3 connectivity test between VMs in sites A,B B,C and A,C

	Connectivity test between VMs in non-federated networks in sites A,B,C - expected to fail

4 Disconnect site C from A,B

	Repeat the test steps from 2 after C disconnect. Identical results expected.

5 Disconnect sites A,B

	Repeat the test steps from 1 after A,B disconnect. Identical results expected.

6 Federation cluster test

	Repeat test steps 1-5 while rebooting the ODLs between the steps similarly to the existing cluster suite.

Documentation Impact

None.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] Federation project [https://wiki.opendaylight.org/view/Federation:Main]

[3] Federation service API [https://github.com/opendaylight/federation/tree/master/federation-service/api]

[4] Support of VxLAN based connectivity across Datacenters [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/l3vpn-over-vxlan-with-evpn-rt5.html]

[5] VNI based L2 switching, L3 forwarding and NATing [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/vni-based-l2-switching-l3-forwarding-and-NATing.html]

[6] Cross site manager presentation ODL Summit 2016 [https://www.youtube.com/watch?v=wDdP6ONg8wU&list=PL8F5jrwEpGAiRCzJIyboA8Di3_TAjTT-2]

Table of Contents

	DHCP Server Dynamic Allocation Pool

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

DHCP Server Dynamic Allocation Pool

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:dhcp_server_pool]

Extension of the ODL based DHCP server, which add support for dynamic address allocation to end
point users, that are not controlled (known) by OpenStack Neutron. Each DHCP pool can be configured
with additional information such as DNS servers, lease time (not yet), static allocations based on
MAC address, etc.

The feature supports IPv4 only.

Problem description

In a non-neutron northbounds environment e.g. SD-WAN solution (unimgr), there is currently no
dynamic DHCP service for end-points or networks that are connected to OVS. Every DHCP packet that is
received by the controller, the controller finds the neutron port based on the inport of the packet,
extracts the ip which was allocated by neutron for that vm, and replies using that info. If the dhcp
packet is from a non-neutron port, the packet won’t even reach the controller.

Use Cases

a DHCP packet that is received by the odl, from a port that is managed by Netvirt and was configured
using the netvirt API, rather then the neutron API, in a way that there is no pre-allocated IP for
network interfaces behind that port - will be handled by the DHCP dynamic allocation pool that is
configured on the network associated with the receiving OVS port.

Proposed change

We wish to forward to the controller, every dhcp packet coming from a non-neutron port as well (as
long as it is configured to use the controller dhcp). Once a DHCP packet is recieved by the
controller, the controller will check if there is already a pre-allocated address by checking if
packet came from a neutron port. if so, the controller will reply using the information from the
neutron port. Otherwise, the controller will find the allocation pool for the network which the
packet came from and will allocate the next free ip. The operation of each allocation pool will
be managed through the Genius ID Manager service that will support the allocation and release of IP
addresses (ids), persistent mapping across controller restarts and more. Neutron IP allocations will
be added to the relevant pools to avoid allocation of the same addresses.

The allocation pool DHCP server will support:

	DHCP methods: Discover, Request, Release, Decline and Inform (future)

	Allocation of a dynamic or specific (future) available IP address from the pool

	(future) Static IP address allocations

	(future) IP Address Lease Time + Rebinding and Renewal Time

	Classless Static Routes for each pool

	Domain names (future) and DNS for each pool

	(future) Probe an address before allocation

	(future) Relay agents

Pipeline changes

This new rule in table 60 will be responsible for forwarding dhcp packets to the controller:

cookie=0x6800000, duration=121472.576s, table=60, n_packets=1, n_bytes=342, priority=49,udp,tp_src=68,tp_dst=67 actions=CONTROLLER:65535

Yang changes

New YANG model to support the configuration of the DHCP allocation pools and allocations, per
network and subnet.

	Allocation-Pool: configuration of allocation pool parameters like range, gateway and dns servers.

	Allocation-Instance: configuration of static IP address allocation and Neutron pre-allocated addresses, per MAC address.

dhcp_allocation_pool.yang

 container dhcp_allocation_pool {
 config true;
 description "contains DHCP Server dynamic allocations";

 list network {
 key "network-id";
 leaf network-id {
 description "network (elan-instance) id";
 type string;
 }
 list allocation {
 key "subnet";
 leaf subnet {
 description "subnet for the dhcp to allocate ip addresses";
 type inet:ip-prefix;
 }

 list allocation-instance {
 key "mac";
 leaf mac {
 description "requesting mac";
 type yang:phys-address;
 }
 leaf allocated-ip {
 description "allocated ip address";
 type inet:ip-address;
 }
 }
 }
 list allocation-pool {
 key "subnet";
 leaf subnet {
 description "subnet for the dhcp to allocate ip addresses";
 type inet:ip-prefix;
 }
 leaf allocate-from {
 description "low allocation limit";
 type inet:ip-address;
 }
 leaf allocate-to {
 description "high allocation limit";
 type inet:ip-address;
 }
 leaf gateway {
 description "default gateway for dhcp allocation";
 type inet:ip-address;
 }
 leaf-list dns-servers {
 description "dns server list";
 type inet:ip-address;
 }
 list static-routes {
 description "static routes list for dhcp allocation";
 key "destination";
 leaf destination {
 description "destination in CIDR format";
 type inet:ip-prefix;
 }
 leaf nexthop {
 description "router ip address";
 type inet:ip-address;
 }
 }
 }
 }
 }

Configuration impact

The feature is activated in the configuration (disabled by default).

adding dhcp-dynamic-allocation-pool-enabled leaf to dhcpservice-config:

dhcpservice-config.yang

 container dhcpservice-config {
 leaf controller-dhcp-enabled {
 description "Enable the dhcpservice on the controller";
 type boolean;
 default false;
 }

 leaf dhcp-dynamic-allocation-pool-enabled {
 description "Enable dynamic allocation pool on controller dhcpservice";
 type boolean;
 default false;
 }
 }

and netvirt-dhcpservice-config.xml:

<dhcpservice-config xmlns="urn:opendaylight:params:xml:ns:yang:dhcpservice:config">
 <controller-dhcp-enabled>false</controller-dhcp-enabled>
 <dhcp-dynamic-allocation-pool-enabled>false</dhcp-dynamic-allocation-pool-enabled>
</dhcpservice-config>

Clustering considerations

Support clustering.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release

Carbon.

Alternatives

Implement and maintain an external DHCP server.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

Introducing a new REST API for the feature

Dynamic allocation pool

URL: /config/dhcp_allocation_pool:dhcp_allocation_pool/

Sample JSON data

{"dhcp_allocation_pool": {
 "network": [
 {
 "network-id": "d211a14b-e5e9-33af-89f3-9e43a270e0c8",
 "allocation-pool": [
 {
 "subnet": "10.1.1.0/24",
 "dns-servers": [
 "8.8.8.8"
],
 "gateway": "10.1.1.1",
 "allocate-from": "10.1.1.2",
 "allocate-to": "10.1.1.200"
 "static-routes": [
 {
 "destination": "5.8.19.24/16",
 "nexthop": "10.1.1.254"
 }
]
]}]}}

Static address allocation

URL: /config/dhcp_allocation_pool:dhcp_allocation_pool/

Sample JSON data

{"dhcp_allocation_pool": {
 "network": [
 {
 "network-id": "d211a14b-e5e9-33af-89f3-9e43a270e0c8",
 "allocation": [
 {
 "subnet": "10.1.1.0/24",
 "allocation-instance": [
 {
 "mac": "fa:16:3e:9d:c6:f5",
 "allocated-ip": "10.1.1.2"
 }
]}]}]}}

CLI

None.

Implementation

Assignee(s)

	Primary assignee:

	Shai Haim (shai.haim@hpe.com)

	Other contributors:

	Alex Feigin (alex.feigin@hpe.com)

Work Items

Here is the link for the Trello Card:
https://trello.com/c/0mgGyJuV/153-dhcp-server-dynamic-allocation-pool

Dependencies

None.

Testing

Unit Tests

N.A.

Integration Tests

N.A.

CSIT

N.A.

Documentation Impact

??

References

Table of Contents

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	Problem description

	Subnet-Route

	Aliveness monitor

	Use Cases

	Proposed change

	Subnet-route

	Communication between VMs in tenant networks and PNFs in provider networks.

	Communication between VMs and PNFs in different tenant networks.

	ARP messages

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create external network with a subnet

	Create internal networks with subnets

	Create a router instance and connect it to an internal subnet and an external subnet

	Create a router instance and connect to it to two internal subnets

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Discovery of directly connected PNFs in Flat/VLAN provider networks

https://git.opendaylight.org/gerrit/#/q/topic:directly_connected_pnf_discovery

This features enables discovering and directing traffic to Physical Network Functions (PNFs)
in Flat/VLAN provider and tenant networks, by leveraging Subnet-Route feature.

Problem description

PNF is a device which has not been created by Openstack but connected to the hypervisors
L2 broadcast domain and configured with ip from one of the neutron subnets.

Ideally, L2/L3 communication between VM instances and PNFs on flat/VLAN networks
would be routed similarly to inter-VM communication. However, there are two main issues
preventing direct communication to PNFs.

	L3 connectivity of tenant network and VLAN provider network, between VMs and PNFs.
A VM is located in a tenant network, A PNF is located in a provider network (external network).
Both networks are connected via a router.
The only way for VMs to communicate with a PNF is via additional hop which is the external gateway,
instead of directly.

	L3 connectivity between VMs and PNFs in a two diffrent tenant networks,
connected by a router, which is not supported and have two problems.
First, traffic initiated from a VMs towards a PNF is dropped because there isn’t
an appropriate rule in FIB table (table 21) to route that traffic.
Second, in the other direction, PNFs are not able to resolve their default gateway.

We want to leverage the Subnet-Route and Aliveness-Monitor features in order to address
the above issues.

Subnet-Route

Today, Subnet-Route feature enables ODL to route traffic to a destination IP address,
even for ip addresses that have not been statically configured by OpenStack,
in the FIB table.
To achieve that, the FIB table contains a flow that match all IP packets in a given subnet range.
How that works?

	A flow is installed in the FIB table, matching on subnet prefix and vpn-id of the network,
with a goto-instruction directing packets to table 22. There, packets are punted to the controller.

	ODL hold the packets, and initiate an ARP request towards the destination IP.

	Upon receiving ARP reply, ODL installs exact IP match flow in FIB table to direct
all further traffic towards the newly learnt MAC of the destination IP

Current limitations of Subnet-Route feature:

	Works for BGPVPN only

	May cause traffic lost due to “swallowing” the packets punted from table 22.

	Uses the source MAC and source IP from the punted packet.

Aliveness monitor

After ODL learns a mac that is associated with an ip address,
ODL schedule an arp monitor task, with the purpose of verifying that the device is still alive
and responding. This is done by periodically sending arp requests to the device.

Current limitation:
Aliveness monitor was not designed for monitoring devices behind flat/VLAN provider network ports.

Use Cases

	
	L3 connectivity of tenant network and VLAN provider network, between VMs and PNFs.

	
	VMs in a private network, PNFs in external network

	L3 connectivity between VMs and PNFs in a two diffrent tenant networks.

Proposed change

Subnet-route

	Upon OpenStack configuration of a Subnet in a provider network,
a new vrf entry with subnet-route augmentation will be created.

	Upon associataion of neutron router with a subnet in a tenant network,
a new vrf entry with subnet-route augmentation will be created.

	Upon receiving ARP reply, install exact IP match flow in FIB table to direct all
further traffic towards the newly resolved PNF, on all relevant computes nodes,
which will be discussed later

	Packets that had been punted to controller will be resubmitted to the openflow pipeline
after installation of exact match flow.

Communication between VMs in tenant networks and PNFs in provider networks.

In this scenario a VM in a private tenant network wants to communicate with a PNF in the
(external) provider network

	The controller will hold the packets, and initiate an ARP request towards the PNF IP.
an ARP request will have source MAC and IP the router gateway
and will be sent from the NAPT switch.

	ARP packets will be punted from the NAPT switch only.

	Upon receiving ARP reply, install exact IP match flow in FIB table to direct all further
traffic towards the newly resolved PNF, on all compute nodes that are associated
with the external network.

	leveraging Aliveness monitor feature to monitor PNFs.
The controller will send ARP requests from the NAPT switch.

Communication between VMs and PNFs in different tenant networks.

In this scenario a VM and a PNF, in different private networks of the same tenant, wants to communicate.
For each subnet prefix, a designated switch will be chosen to communicate directly with the PNFs
in that subnet prefix. That means sending ARP requests to the PNFs and receiving their traffic.

Note: IP traffic from VM instances will retain the src MAC of the VM instance,
instead of replacing it with the router-interface-mac, in order to prevent MAC momvements
in the underlay switches.
This is a limitation until NetVirt supports a MAC per hypervisor implementation.

	A subnet flow will be installed in the FIB table,
matching the subnet prefix and vpn-id of the router.

	ARP request will have a source MAC and IP of the router interface, and will be sent via the provider port
in the designated switch.

	ARP packets will be punted from the designated switch only.

	Upon receiving an ARP reply, install exact IP match flow in FIB table to direct all
further traffic towards the newly resolved PNF, on all computes related to the router

	ARP responder flow: a new ARP responder flow will be installed in the designated switch
This flow will response for ARP requests from a PNF and the response MAC
will be the router interface MAC. This flow will use the LPort-tag of the provider port.

	Split Horizon protection disabling: traffic from PNFs,
arrives to the primary switch(via a provider port) due to the ARP responder rule described above,
and will need to be directed to the proper compute of the designated VM (via a provider port).
This require disabling the split horizon protection.
In order to protects against infinite loops, the packet TTL will be decreased.

	leveraging Aliveness monitor, the controller will send ARP requests from the designated switch.

ARP messages

ARP messages in the Flat/Vlan provider and tenant networks will be punted from
a designated switch, in order to avoid a performance issue in the controller,
of dealing with broadcast packets that may be received in multiple provider ports.
In external networks this switch is the NAPT switch.

Pipeline changes

First use-case depends on hairpinning spec [2], the flows presented here reflects that dependency.

Egress traffic from VM with floating IP to an unresolved PNF in external network

	Packets in FIB table after translation to FIP, will match on subnet flow
and will be punted to controller from Subnet Route table.
Then, ARP request will be generated and be sent to the PNF.
No flow changes are required in this part.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip
set vpn-id=ext-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=ext-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=ext-subnet-ip =>

Subnet Route table (22): => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.
No other flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip
set vpn-id=ext-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=ext-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=pnf-ip,
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Egress traffic from VM using NAPT to an unresolved PNF in external network

	Ingress-DPN is not the NAPT switch, no changes required.
Traffic will be directed to NAPT switch and directed to the outbound NAPT table straight
from the internal tunnel table

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group output to tunnel port of NAPT switch

	Ingress-DPN is the NAPT switch. Packets in FIB table after translation to NAPT,
will match on subnet flow and will be punted to controller from Subnet Route table.
Then, ARP request will be generated and be sent to the PNF. No flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port
set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB tabl (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=ext-subnet-ip =>

Subnet Route table (22) => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.
No other changes required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: vpn-id=router-id TBD set vpn-id=external-net-id =>

NAPT PFIB table (47) match: vpn-id=external-net-id =>

FIB table (21) match: vpn-id=ext-network-id, dst-ip=pnf-ip
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Egress traffic from VM in private network to an unresolved PNF in another private network

	Packet from a VM is punted to the controller, no flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id dst-ip=subnet-ip =>

Subnet Route table (22): => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id dst-ip=pnf-ip
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Ingress traffic to VM in private network from a PNF in another private network

	New flow in table 19, to distinguish our new use-case,
in which we want to decrease the TTL of the packet

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: lport-tag=provider-port, vpn-id=router-id, dst-mac=router-interface-mac,
set split-horizon-bit = 0, decrease-ttl =>

FIB table (21) match: vpn-id=router-id dst-ip=vm-ip
set dst-mac=vm-mac reg6=provider-lport-tag =>

Egress table (220) output to provider port

Yang changes

In odl-l3vpn module, adjacency-list grouping will be enhanced with the following field

 grouping adjacency-list {
 list adjacency {
 key "ip_address";
 ...
 leaf phys-network-func {
 type boolean;
 default false;
 description "Value of True indicates this is an adjacency of a device in a provider network";
 }
 }
}

An adjacency that is added as a result of a PNF discovery, is a primary adjacency with
an empty next-hop-ip list. This is not enough to distinguish PNF at all times.
This new field will help us identify this use-case in a more robust way.

Configuration impact

A configuration mode will be available to turn this feature ON/OFF.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

All traffic of PNFs in each subnet-prefix sends their traffic to a designated switch.

Targeted Release

Carbon

Alternatives

None

Usage

Create external network with a subnet

neutron net-create public-net -- --router:external --is-default --provider:network_type=flat
--provider:physical_network=physnet1
neutron subnet-create --ip_version 4 --gateway 10.64.0.1 --name public-subnet1 <public-net-uuid> 10.64.0.0/16
-- --enable_dhcp=False

Create internal networks with subnets

neutron net-create private-net1
neutron subnet-create --ip_version 4 --gateway 10.0.123.1 --name private-subnet1 <private-net1-uuid>
10.0.123.0/24
neutron net-create private-net2
neutron subnet-create --ip_version 4 --gateway 10.0.124.1 --name private-subnet2 <private-net2-uuid>
10.0.124.0/24

Create a router instance and connect it to an internal subnet and an external subnet

This will allow communication with PNFs in provider network

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> <router1-uuid> <public-net-uuid>

Create a router instance and connect to it to two internal subnets

This will allow East/West communication between VMs and PNFs

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-interface-add <router1-uuid> <private-subnet2-uuid>

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Tomer Pearl <tomer.pearl@hpe.com>

	Other contributors:

	Yakir Dorani <yakir.dorani@hpe.com>

Work Items

	Configure subnet-route flows upon ext-net configuration / router association

	Solve traffic lost issues of punted packets from table 22

	Enable aliveness monitoring on external interfaces.

	Add ARP responder flow for L3-PNF

	Add ARP packet-in from primary switch only

	Disable split-horizon and enable TTL decrease for L3-PNF

Dependencies

This feature depends on hairpinning feature [2]

Testing

Unit Tests

Unit tests will be added for the new functionality

Integration Tests

CSIT

Will need to see if a PNF could be simulated in CSIT

Documentation Impact

References

[1] https://docs.google.com/presentation/d/1ByvEQXUtIyH-H7Bin6OBJNrHjOv-3hpHYzU6Sf6hDbA/edit#slide=id.g11657174d1_0_31
[2] http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/hairpinning-flat-vlan.html

Table of Contents

	ECMP Support for BGP based L3VPN

	Problem description

	Use Cases

	High-Level Components:

	Proposed change

	Pipeline changes

	Local FIB entry/Nexthop Group programming:

	Remote FIB entry/Nexthop Group programming:

	YANG changes

	L3VPN YANG changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	ECMP forwarding through multiple Compute Node and VMs

	ECMP forwarding for dispersed VMs

	ECMP forwarding for co-located VMs

	ECMP forwarding through two DC-Gateways

	ECMP for Intra-DC L3VPN communication

	ECMP Path decision based on Internal/External Tunnel Monitoring

	GRE tunnel state handling

	VxLAN tunnel state handling

	Assumptions

	Reboot Scenarios

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ECMP Support for BGP based L3VPN

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn_ecmp

This Feature is needed for load balancing of traffic in a cloud and also
redundancy of paths for resiliency in cloud.

Problem description

The current L3VPN implementation for BGP VPN doesn’t support load balancing
behavior for external routes through multiple DC-GWs and reaching starting
route behind Nova VMs through multiple compute nodes.

This spec provides implementation details about providing traffic load
balancing using ECMP for L3 routing and forwarding. The load balancing of
traffic can be across virtual machines with each connected to the different
compute nodes, DC-Gateways. ECMP also enables fast failover of traffic
The ECMP forwarding is required for both inter-DC and intra-DC data traffic
types. For inter-DC traffic, spraying from DC-GW to compute nodes & VMs for
the traffic entering DC and spraying from compute node to DC-GWs for the
traffic exiting DC is needed. For intra-DC traffic, spraying of traffic
within DC across multiple compute nodes & VMs is needed. There should be
tunnel monitoring (e.g. GRE-KA or BFD) logic implemented to monitor DC-GW
/compute node GRE tunnels which helps to determine available ECMP paths to
forward the traffic.

Use Cases

	ECMP forwarding of traffic entering a DC (i.e. Spraying of
DC-GW -> OVS traffic across multiple Compute Nodes & VMs).
In this case, DC-GW can load balance the traffic if a static route can be reachable
through multiple NOVA VMs (say VM1 and VM2 connected on different compute nodes)
running some networking application (example: vRouter).

	ECMP forwarding of traffic exiting a DC (i.e. Spraying of
OVS -> DC-GW traffic across multiple DC Gateways).
In this case, a Compute Node can LB the traffic if external route can be
reachable from multiple DC-GWs.

	ECMP forwarding of intra-DC traffic (i.e. Spraying of traffic within DC
across multiple Compute Nodes & VMs)
This is similar to UC1, but load balancing behavior is applied on remote Compute
Node for intra-DC communication.

	OVS -> DC-GW tunnel status based ECMP for inter and intra-DC traffic.
Tunnel status based on monitoring (BFD) is considered in ECMP path set determination.

High-Level Components:

The following components of the Openstack - ODL solution need to be enhanced to provide
ECMP support:

	OpenStack Neutron BGPVPN Driver (for supporting multiple RDs)

	OpenDaylight Controller (NetVirt VpnService)

We will review enhancements that will be made to each of the above components in following
sections.

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager and VPN Interface Manager)

	FIB Manager

Pipeline changes

Local FIB entry/Nexthop Group programming:

A static route (example: 100.0.0.0/24) reachable through two VMs connected
with same compute node.

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>Local VM Group=>Table 220

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=100.0.0.0/24 actions=write_actions(group:150002)
group_id=150002,type=select,bucket=weight:50,actions=group:150001,bucket=weight:50,actions=group:150000
group_id=150001,type=all,bucket=actions=set_field:fa:16:3e:34:ff:58->eth_dst,load:0x200->NXM_NX_REG6[],resubmit(,220)
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:eb:61:39->eth_dst,load:0x100->NXM_NX_REG6[],resubmit(,220)

Remote FIB entry/Nexthop Group programming:

	A static route (example: 10.0.0.1/32) reachable through two VMs connected with
different compute node.

on remote compute node,

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>VxLAN port

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=10.0.0.1 actions=set_field:0xEF->tun_id, group:150003
group_id=150003,type=select,bucket=weight:50,actions=output:1,bucket=weight:50,actions=output:2

on local compute node,

Here, From LB group, packets flow through local VM and VxLAN port

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>Local VM Group=>Table 220

………………………………………………………………………………=> VxLAN port

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=10.0.0.1 actions=group:150003
group_id=150003,type=select,bucket=weight:50,group=150001,bucket=weight:50,actions=set_field:0xEF->tun_id, output:2
group_id=150001,type=all,bucket=actions=set_field:fa:16:3e:34:ff:58->eth_dst,load:0x200->NXM_NX_REG6[],resubmit(,220)

	An external route (example: 20.0.0.1/32) reachable through two DC-GWs.

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>GRE port

cookie=0x8000003, duration=13.044s, table=21, n_packets=0, n_bytes=0,priority=42,ip,metadata=0x222ec/0xfffffffe,nw_dst=20.0.0.1 actions=load:0x64->NXM_NX_REG0[0..19],load:0xc8->NXM_NX_REG1[0..19],group:150111
group_id=150111,type=select,bucket=weight:50,actions=push_mpls:0x8847, move:NXM_NX_REG0[0..19]->OXM_OF_MPLS_LABEL[],output:3, bucket=weight:50,actions=push_mpls:0x8847,move:NXM_NX_REG1[0..19]->OXM_OF_MPLS_LABEL[],output:4

YANG changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang and odl-fib.yang
to support ECMP functionality.

L3VPN YANG changes

route-distinguisher type is changed from leaf to leaf-list in vpn-af-config grouping in l3vpn.yang.

l3vpn.yang

 grouping vpn-af-config {
 description "A set of configuration parameters that is applicable to both IPv4 and
 IPv6 address family for a VPN instance .";

 leaf-list route-distinguisher {
 description "The route-distinguisher command configures a route distinguisher (RD)
 for the IPv4 or IPv6 address family of a VPN instance.
 Format is ASN:nn or IP-address:nn.";
 config "true";
 type string{
 length "3..21";
 }
 }
 }

ODL-L3VPN YANG changes

	Add vrf-id (RD) in adjacency list in odl-l3vpn.yang.

odl-l3vpn.yang

 grouping adjacency-list {
 list adjacency{
 key "ip_address";
 leaf-list next-hop-ip-list { type string; }
 leaf ip_address {type string;}
 leaf primary-adjacency {
 type boolean;
 default false;
 description "Value of True indicates this is a primary adjacency";
 }

 leaf label { type uint32; config "false"; } /*optional*/
 leaf mac_address {type string;} /*optional*/
 leaf vrf-id {type string;}
 }
 }

	vpn-to-extraroute have to be updated with multiple RDs (vrf-id) when extra route from VMs
connected with different compute node and when connected on same compute node, just use
same RD and update nexthop-ip-list with new VM IP address like below.

odl-l3vpn.yang

 container vpn-to-extraroutes {
 config false;
 list vpn-extraroutes {
 key "vpn-name";
 leaf vpn-name {
 type uint32;
 }

 list extra-routes {
 key "vrf-id";
 leaf vrf-id {
 description "The vrf-id command configures a route distinguisher (RD) for the IPv4
 or IPv6 address family of a VPN instance or vpn instance name for
 internal vpn case.";
 type string;
 }

 list route-paths {
 key "prefix";
 leaf prefix {type string;}
 leaf-list nexthop-ip-list {
 type string;
 }
 }
 }
 }
 }

	To manage RDs for extra with multiple next hops, the following YANG
model is required to advertise (or) withdraw the extra routes with
unique NLRI accordingly.

odl-l3vpn.yang

 container extraroute-routedistinguishers-map {
 config true;
 list extraroute-routedistingueshers {
 key "vpnid";
 leaf vpnid {
 type uint32;
 }

 list dest-prefixes {
 key "dest-prefix";
 leaf dest-prefix {
 type string;
 mandatory true;
 }

 leaf-list route-distinguishers {
 type string;
 }
 }
 }
 }

ODL-FIB YANG changes

	When Quagga BGP announces route with multiple paths, then it is ODL responsibility
to program Fib entries in all compute nodes where VPN instance blueprint is present,
so that traffic can be load balanced between these two DC gateways. It requires
changes in existing odl-fib.yang model (like below) to support multiple
routes for same destination IP prefix.

odl-fib.yang

 grouping vrfEntries {
 list vrfEntry {
 key "destPrefix";
 leaf destPrefix {
 type string;
 mandatory true;
 }

 leaf origin {
 type string;
 mandatory true;
 }

 list route-paths {
 key "nexthop-address";
 leaf nexthop-address {
 type string;
 mandatory true;
 }

 leaf label {
 type uint32;
 }
 }
 }
 }

	New YANG model to update load balancing next hop group buckets according
to VxLAN/GRE tunnel status [Note that these changes are required only if
watch_port in group bucket is not working based on tunnel port liveness
monitoring affected by the BFD status]. When one of the VxLAN/GRE tunnel
is going down, then retrieve nexthop-key from dpid-l3vpn-lb-nexthops by
providing tep-device-ids from src-info and dst-info of StateTunnelList
while handling its update DCN. After retrieving next hop key, fetch
target-device-id list from l3vpn-lb-nexthops and reprogram
VxLAN/GRE load balancing group in each remote Compute Node based
on tunnel state between source and destination Compute Node. Similarly,
when tunnel comes up, then logic have to be rerun to add its
bucket back into Load balancing group.

odl-fib.yang

 container l3vpn-lb-nexthops {
 config false;
 list nexthops {
 key "nexthop-key";
 leaf group-id { type string; }
 leaf nexhop-key { type string; }
 leaf-list target-device-id { type string;
 //dpId or ip-address }
 }
 }

 container dpid-l3vpn-lb-nexthops {
 config false;
 list dpn-lb-nexthops {
 key "src-dp-id dst-device-id";
 leaf src-dp-id { type uint64; }
 leaf dst-device-id { type string;
 //dpId or ip-address }
 leaf-list nexthop-keys { type string; }
 }
 }

ECMP forwarding through multiple Compute Node and VMs

In some cases, extra route can be added which can have reachability through
multiple Nova VMs. These VMs can be either connected on same compute node
(or) different Compute Nodes. When VMs are in different compute nodes, DC-GW
should learn all the route paths such that ECMP behavior can be applied for
these multi path routes. When VMs are co-located in same compute node, DC-GW
will not perform ECMP and compute node performs traffic splitting instead.

ECMP forwarding for dispersed VMs

When configured extra route are reached through nova VMs which are connected
with different compute node, then it is ODL responsibility to advertise these
multiple route paths (but with same MPLS label) to Quagga BGP which in turn
sends these routes into DC-GW. But DC-GW replaces the existing route with a new
route received from the peer if the NLRI (prefix) is same in the two routes.

This is true even when multipath is enabled on the DC-GW and it is as per standard
BGP RFC 4271, Section 9 UPDATE Message Handling. Hence the route is lost in DC-GW
even before path computation for multipath is applied.This scenario is solved by
adding multiple route distinguisher (RDs) for the vpn instance and let ODL uses
the list of RDs to advertise the same prefix with different BGP NHs. Multiple RDs
will be supported only for BGP VPNs.

ECMP forwarding for co-located VMs

When extra routes on VM interfaces are connected with same compute node, LFIB/FIB
and Terminating service table flow entries should be programmed so that traffic can
be load balanced between local VMs. This can be done by creating load balancing next
hop group for each vpn-to-extraroute (if nexthop-ip-list size is greater than 1) with
buckets pointing to the actual VMs next hop group on source Compute Node. Even for the
co-located VMs, VPN interface manager should assign separate RDs for each adjacency of
same dest IP prefix and let route can be advertised again to Quagga BGP with same next
hop (TEP IP address). This will enable DC-Gateway to realize ECMP behavior when an IP
prefix can be reachable through multiple co located VMs on one Compute Node and an
another VM connected on different Compute Node.

To create load balancing next hop group, the dest IP prefix is used as the key to
generate group id. When any of next hop is removed, then adjust load balancing nexthop
group so that traffic can be sent through active next hops.

ECMP forwarding through two DC-Gateways

The current ITM implementation provides support for creating multiple GRE tunnels for
the provided list of DC-GW IP addresses from compute node. This should help in creating
corresponding load balancing group whenever Quagga BGP is advertising two routes on same
IP prefix pointing to multiple DC GWs. The group id of this load balancing group can be
derived from sorted order of DC GW TEP IP addresses with the following format dc_gw_tep_ip
_address_1: dc_gw_tep_ip_address_2. This will be useful when multiple external IP prefixes
share the same next hops. The load balancing next hop group buckets is programmed according
to sorted remote end point DC-Gateway IP address. The support of action move:NXM_NX_REG0(1)
-> MPLS label is not supported in ODL openflowplugin. It has to be implemented. Since there
are two DC gateways present for the data center, it is possible that multiple equal cost
routes are supplied to ODL by Quagga BGP like Fig 2. The current Quagga BGP doesn’t have
multipath support and it will be done. When Quagga BGP announces route with multiple
paths, then it is ODL responsibility to program Fib entries in all compute nodes where
VPN instance blueprint is present, so that traffic can be load balanced between these
two DC gateways. It requires changes in existing odl-fib.yang model (like below) to
support multiple routes for same destination IP prefix.

BGPManager should be able to create vrf entry for the advertised IP prefix with multiple
route paths. VrfEntryListener listens to DCN on these vrf entries and program Fib entries
(21) based on number route paths available for given IP prefix. For the given (external)
destination IP prefix, if there is only one route path exists, use the existing approach
to program FIB table flow entry matches on (vpnid, ipv4_dst) and actions with push MPLS
label and output to gre tunnel port. For the given (external) destination IP prefix, if
there are two route paths exist, then retrieve next hop ip address from routes list in
the same sorted order (i.e. using same logic which is used to create buckets for load
balancing next hop group for DC- Gateway IP addresses), then program FIB table flow entry
with an instruction like Fig 3. It should have two set field actions where first action sets
MPLS label to NX_REG0 for first sorted DC-GW IP address and second action sets MPLS label
to NX_REG1 for the second sorted DC-GW IP address. When more than two DC Gateways are used,
then more number of NXM Registries have to be used to push appropriate MPLS label before
sending it to next hop group. It needs operational DS container to have mapping between DC
Gateway IP address and NXM_REG. When one of the route is withdrawn for the IP prefix, then
modify the FIB table flow entry with with push MPLS label and output to the available
gre tunnel port.

ECMP for Intra-DC L3VPN communication

ECMP within data center is required to load balance the data traffic when extra route can
be reached through multiple next hops (i.e. Nova VMs) when these are connected with different
compute nodes. It mainly deals with how Compute Nodes can spray the traffic when dest IP prefix
can be reached through two or more VMs (next hops) which are connected with multiple compute
nodes.

When there are multiple RDs (if VPN is of type BGP VPN) assigned to VPN instance so that VPN
engine can be advertise IP route with different RDs to achieve ECMP behavior in DC-GW as
mentioned before. But for intra-DC, this doesn’t make any more sense since it’s all about
programming remote FIB entries on computes nodes to achieve data traffic
spray behavior.

Irrespective of RDs, when multiple next hops (which are from different Compute Nodes) are
present for the extra-route adjacency, then FIB Manager has to create load balancing next
hop group in remote compute node with buckets pointing with targeted Compute Node VxLAN
tunnel ports.

To allocate group id for this load balancing next hop, the same destination IP prefix is
used as the group key. The remote FIB table flow should point to this next hop group after
writing prefix label into tunnel_id. The bucket weight of remote next hop is adjusted
according to number of VMs associated to given extra route and on which compute node
the VMs are connected. For example, two compute node having one VM each, then bucket
weight is 50 each. One compute node having two VMs and another compute node having one
VM, then bucket weight is 66 and 34 each. The hop-count property in vrfEntry data store
helps to decide what is the bucket weight for each bucket.

ECMP Path decision based on Internal/External Tunnel Monitoring

ODL will use GRE-KA or BFD protocol to implement monitoring of GRE external tunnels.
This implementation detail is out of scope in this document. Based on the tunnel state,
GRE Load Balancing Group is adjusted accordingly as mentioned like below.

GRE tunnel state handling

As soon as GRE tunnel interface is created in ODL, interface manager uses alivenessmonitor
to monitor the GRE tunnels for its liveness using GRE Keep-alive protocol. When tunnel state
changes, it has to handled accordingly to adjust above load balancing group so that data
traffic is sent to only active DC-GW tunnel. This can be done with listening to update
StateTunnelList DCN.

When one GRE tunnel is operationally going down, then retrieve the corresponding bucket
from the load balancing group and delete it.
When GRE tunnel comes up again, then add bucket back into load balancing group and
reprogram it.

When both GRE tunnels are going down, then just recreate load balancing group with empty.
Withdraw the routes from that particular DC-GW.
With the above implementation, there is no need of modifying Fib entries for GRE tunnel
state changes.

But when BGP Quagga withdrawing one of the route for external IP prefix, then reprogram
FIB flow entry (21) by directly pointing to output=<gre_port> after pushing MPLS label.

VxLAN tunnel state handling

Similarly, when VxLAN tunnel state changes, the Load Balancing Groups in Compute Nodes have
to be updated accordingly so that traffic can flow through active VxLAN tunnels. It can be
done by having config mapping between target data-path-id to next hop group Ids
and vice versa.

For both GRE and VxLAN tunnel monitoring, L3VPN has to implement the following YANG model
to update load balancing next hop group buckets according to tunnel status.

When one of the VxLAN/GRE tunnel is going down, then retrieve nexthop-key from
dpid-l3vpn-lb-nexthops by providing tep-device-ids from src-info and dst-info of
StateTunnelList while handling its update DCN.

After retrieving next hop key, fetch target-device-id list from l3vpn-lb-nexthops
and reprogram VxLAN/GRE load balancing group in each remote Compute Node based on
tunnel state between source and destination Compute Node. Similarly, when tunnel
comes up, then logic have to be rerun to add its bucket back into
Load balancing group.

Assumptions

The support for action move:NXM_NX_REG0(1) -> MPLS label is already available
in Compute Node.

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Implementation

Assignee(s)

	Primary assignee(s):

	
	Manu B <manu.b@ericsson.com>

	Kency Kurian <kency.kurian@ericsson.com>

	Gobinath <gobinath@ericsson.com>

	P Govinda Rajulu <p.govinda.rajulu@ericsson.com>

	Other contributors:

	
	Periyasamy Palanisamy <periyasamy.palanisamy@ericsson.com>

Work Items

The Trello cards have already been raised for this feature
under l3vpn_ecmp.

Link for the Trello Card: https://trello.com/c/8E3LWIkq/121-ecmp-support-for-bgp-based-l3vpn-l3vpn-ecmp

Dependencies

Quagga BGP multipath support and APIs. This is needed to support when two DC-GW advertises
routes for same external prefix with different route labels
GRE tunnel monitoring. This is need to implement ECMP forwarding based on MPLSoGRE tunnel state.
Support for action move:NXM_NX_REG0(1) -> MPLS label in ODL openflowplugin

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

	https://docs.google.com/document/d/1KRxrIGCLCBuz2D8f8IhU2I84VrM5EMa1Y7Scjb6qEKw

Table of Contents

	Element Counters

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Element Counters

https://git.opendaylight.org/gerrit/#/q/element-counters

This feature depends on the Netvirt statistics feature.

This feature enables collecting statistics on filtered traffic passed from/to a network element. For example: traffic outgoing/incoming from a specific IP, tcp traffic, udp traffic, incoming/outgoing traffic only.

Problem description

Collecting statistics on filtered traffic sent to/from a VM is currently not possible.

Use Cases

	Tracking East/West communication between local VMs.

	Tracking East/West communication between VMs that are located in different compute nodes.

	Tracking communication between a local VM and an IP located in an external network.

	Tracking TCP/UDP traffic sent from/to a VM.

	Tracking dropped packets between 2 VMs.

Proposed change

The Netvirt Statistics Plugin will receive requests regarding element filtered counters.
A new service will be implemented (“CounterService”), and will be associated with the relevant interfaces (either ingress side, egress sides or both of them).

	Ingress traffic: The service will be the first one in the pipeline after the Ingress ACL service.

	Egress traffic: The service will be the last one after the Egress ACL service.

	The input for counters request regarding VM A, and incoming and outgoing traffic from VM B, will be VM A interface uuid and VM B IP.

	The input can also include other filters like TCP only traffic, UDP only traffic, incoming/outgoing traffic.

	In order to track dropped traffic between VM A and VM B, the feature should be activated on both VMS (either in the same compute node or in different compute nodes). service binding will be done on both VMs relevant interfaces.

	If the counters request involves an external IP, service binding will be done only on the VM interface.

	Adding/Removing the “CounterService” should be dynamic and triggered by requesting element counters.

The Statistics Plugin will use OpenFlow flow statistic requests for these new rules,
allowing it to gather statistics regarding the traffic between the 2 elements.
It will be responsible to validate and filter the counters results.

Pipeline changes

Two new tables will be used: table 219 for outgoing traffic from the VM, and table 249 for incoming traffic from the VM.
In both ingress and egress pipelines, the counter service will be just after the appropriate ACL service.
The default rule will resubmit traffic to the appropriate dispatcher table.

Assuming we want statistics on VM A traffic, received or sent from VM B.

VM A Outgoing Traffic (vm interface)

In table 219 traffic will be matched against dst-ip and lport tag.

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: dst-ip=vmB-ip, lport-tag=vmA-interface, actions: resubmit to table 17 =>

VM A Incoming Traffic (vm interface)

In table 249 traffic will be matched against src-ip and lport tag.

Egress dispatcher table (220): match: lport-tag=vmA-interface, actions: go to table 249 =>

Egress counters table (249): match: lport-tag=vmA-interface, src-ip=vmB-ip, actions: resubmit to table 220 =>

Assuming we want statistics on VM A incoming TCP traffic.

VM A Outgoing Traffic (vm interface)

Egress dispatcher table (220): match: lport-tag=vmA-interface, actions: go to table 249 =>

Egress counters table (249): match: lport-tag=vmA-interface, tcp, actions: resubmit to table 220 =>

Assuming we want statistics on VM A outgoing UDP traffic.

VM A Incoming traffic (vm interface)

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: lport-tag=vmA-interface, udp, actions: resubmit to table 17 =>

Assuming we want statistics on all traffic sent to VM A port.

VM A Incoming traffic (vm interface)

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: lport-tag=vmA-interface, actions: resubmit to table 17 =>

Yang changes

Netvirt Statistics module will be enhanced with the following RPC:

grouping result {
 list counterResult {
 key id;
 leaf id {
 type string;
 }
 list groups {
 key name;
 leaf name {
 type string;
 }
 list counters {
 key name;
 leaf name {
 type string;
 }
 leaf value {
 type uint64;
 }
 }
 }
 }
}

grouping filters {
 leaf-list groupFilters {
 type string;
 }
 leaf-list counterFilter {
 type string;
 }
}

grouping elementRequestData {
 container filters {
 container tcpFilter {
 leaf on {
 type boolean;
 }
 leaf srcPort {
 type int32;
 default -1;
 }
 leaf dstPort {
 type int32;
 default -1;
 }
 }

 container udpFilter {
 leaf on {
 type boolean;
 }
 leaf dstPort {
 type int32;
 default -1;
 }
 leaf srcPort {
 type int32;
 default -1;
 }
 }

 container ipFilter {
 leaf ip {
 type string;
 default "";
 }
 }
 }
}

container elementCountersRequestConfig {
 list counterRequests {
 key "requestId";
 leaf requestId {
 type string;
 }
 leaf lportTag {
 type int32;
 }
 leaf dpn {
 type uint64;
 }
 leaf portId {
 type string;
 }
 leaf trafficDirection {
 type string;
 }
 uses elementRequestData;
 }
}

rpc acquireElementCountersRequestHandler {
 input {
 leaf portId {
 type string;
 }
 container incomingTraffic {
 uses elementRequestData;
 }
 container outgoingTraffic {
 uses elementRequestData;
 }
 uses filters;
 }
 output {
 leaf incomingTrafficHandler {
 type string;
 }
 leaf outcoingTrafficHandler {
 type string;
 }
 }
}

rpc releaseElementCountersRequestHandler {
 input {
 leaf handler {
 type string;
 }
 }
 output {
 }
}

rpc getElementCountersByHandler {
 input {
 leaf handler {
 type string;
 }
 }
 output {
 uses result;
 }
}

Configuration impact

The described above YANG model will be saved in the data store.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Since adding the new service is done by a request (as well as removing it), not all packets will be sent to the new tables described above.

Targeted Release

Carbon

Alternatives

None

Usage

	Create router, network, 2 VMS, VXLAN tunnel.

	Connect to each one of the VMs and send ping to the other VM.

	Use REST to get the statistics.

Run the following to get interface ids:

http://10.0.77.135:8181/restconf/operational/ietf-interfaces:interfaces-state/

Choose VM B interface and use the following REST in order to get the statistics:
Assuming VM A IP = 1.1.1.1, VM B IP = 2.2.2.2

Acquire counter request handler:

10.0.77.135:8181/restconf/operations/statistics-plugin:acquireElementCountersRequestHandler, {"input":{"portId":"4073b4fe-a3d5-47c0-b37d-4fb9db4be9b1", "incomingTraffic":{"filters":{"ipFilter":{"ip":"1.1.3.9"}}}}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Release handler:

10.0.77.135:8181/restconf/operations/statistics-plugin:releaseElementCountersRequestHandler, input={"input":{"handler":"1"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Get counters:

10.0.77.135:8181/restconf/operations/statistics-plugin:getElementCountersByHandler, input={"input":{"handler":"1"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Example counters output:

 {
"output": {
 "counterResult": [
 {
 "id": "SOME UNIQUE ID",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 298000000
 },
 {
 "name": "durationSecondCount",
 "value": 10369
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesTransmittedCount",
 "value": 648
 },
 {
 "name": "bytesReceivedCount",
 "value": 0
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsTransmittedCount",
 "value": 8
 },
 {
 "name": "packetsReceivedCount",
 "value": 0
 }
]
 }
]
 }
]
}

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Guy Regev <guy.regev@hpe.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/88MnwGwb/129-element-to-element-counters

	Add new service in Genius.

	Implement new rules installation.

	Update Netvirt Statistics module to support the new counters request.

Dependencies

None

Testing

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Netvirt statistics feature: https://git.opendaylight.org/gerrit/#/c/50164/8

Table of Contents

	Hairpinning of floating IPs in flat/VLAN provider networks

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create external network with two subnets

	Create internal networks with subnets

	Create two router instances and connect each router to one internal subnet and one external subnet

	Create router instance connected to both external subnets and the remaining internal subnets

	Create floating ips from both subnets

	Create 2 VM instance in each subnet and associate with floating ips

	Connectivity tests

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Hairpinning of floating IPs in flat/VLAN provider networks

https://git.opendaylight.org/gerrit/#/q/topic:hairpinning

This feature enables VM instances connected to the same router to communicate with each other using their
floating ip addresses directly without traversing via the external gateway.

Problem description

Local and East/West communication between VMs using floating ips for flat/VLAN provider types is not
handled internally by the pipeline currently. As a result, this type of traffic is mistakenly classified
as North/South and routed to the external network gateway.

Today, SNATted traffic to flat/VLAN network is routed directly to the external gateway after traversing
the SNAT/outbound NAPT pipeline using OF group per external network subnet.
The group itself sets the destination mac as the mac address of the external gw associated with the floating ip/
router gw and output to the provider network port via the egress table.
This workflow would be changed to align with the VxLAN provider type and direct SNATted traffic back to the FIB
where the destination can then resolved to be floating ip on local or remote compute node.

Use Cases

	Local and East/West communication between VMs co-located on the same compute node using associated floating ip.

	Local and East/West communication between VMs located on different compute nodes using associated floating ip.

Proposed change

	The vpn-id used for classification of floating ips and router gateway external addresses in flat/VLAN
provider networks is based on the external network id. It will be changed to reflect the subnet id
associated with the floating ip/router gateway. This will allow traffic from the SNAT/outbound NAPT
table to be resubmitted back to the FIB while preserving the subnet id.

	Each floating ip already has VRF entry in the fib table. The vpn-id of this entry will also be based
on the subnet id of the floating ip instead of the external network id. If the VM associated with the
floating ip is located on remote compute node, the traffic will be routed to the remote compute based
on the provider network of the subnet from which the floating ip was allocated e.g. if the private
network is VxLAN and the external network is VLAN provider, traffic to floating ip on remote compute
node will be routed to the provider port associated with the VLAN provider and not the tunnel
associated with the VxLAN provider.

	In the FIB table of the egress node, the destination mac will be replaced with the mac address
of the floating ip in case of routing to remote compute node. This will allow traffic from flat/VLAN
provider enter the L3 pipeline for DNAT of the floating ip.

	Default flow will be added to the FIB table for each external subnet-id. If no floating ip match
was found in the FIB table for the subnet id, the traffic will be sent to the group of the external
subnet. Each group entry will perform the following:
(a) replace the destination mac address to the external gateway mac address
(b) send the traffic to the provider network via the egress table.

	Ingress traffic from flat/VLAN provider network is bounded to L3VPN service using vpn-id of the
external network id. To allow traffic classification based on subnet id for floating ips and router
gateway ips, the GW MAC table will replace the vpn-id of the external network with
the vpn-id of the subnet id of the floating ip. For ingress traffic to router gateway mac, the vpn-id
of the correct subnet will be deterined at the FIB table based on the router gateway fixed ip.

	A new model will be introduced to contain the new vpn/subnet associations - odl-nat:subnets-networks.
This model will be filled only for external flat/VLAN provider networks and will take precedence over
odl-nat:external-networks model for selection of vpn-id. BGPVPN use cases won’t be affected by these
changes as this model will not be applicable for these scenarios.

Pipeline changes

Egress traffic from VM with floating IP to the internet

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ip

	Packets from SNAT table resubmitted back to the FIB rather than straight to the external network subnet-id group.
In the FIB table it should be matched against a new flow with lower priority than any other flow containing
dst-ip match. Traffic will be redirected based on the vpn-id of the floating ip subnet to the external network
subnet-id group.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip set vpn-id=fip-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id =>

Subnet-id group: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

Ingress traffic from the internet to VM with floating IP

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=floating-ip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=fip =>

Pre DNAT table (25) match: dst-ip=fip set vpn-id=router-id,dst-ip=vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm-ip =>

Local Next-Hop group: set dst-mac=vm-mac, reg6=vm-lport-tag =>

Egress table (220) output to VM port

Egress traffic from VM with no associated floating IP to the internet - NAPT switch

	For Outbound NAPT, NAPT PFIB and FIB tables the vpn-id will be based on the subnet-id of the router gateway

	Packets from NAPT PFIB table resubmitted back to the FIB rather than straight to the external network subnet-id group.
In the FIB table it should be matched against a new flow with lower priority than any other flow containing
dst-ip match. Traffic will be redirected based on the vpn-id of the router gateway subnet to the external network
subnet-id group.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB table (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=router-gw-subnet-id =>

Subnet-id group: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

Ingress traffic from the internet to VM with no associated floating IP - NAPT switch

	For FIB table the vpn-id will be based on the subnet-id of the router gateway

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match vpn-id=ext-net-id,dst-mac=router-gw mac =>

FIB table (21) match: vpn-id=ext-net-id,dst-ip=router-gw set vpn-id=router-gw-subnet-id =>

Inbound NAPT table (44) match: dst-ip=router-gw,port=ext-port set dst-ip=vm-ip,vpn-id=router-id,port=int-port =>

PFIB table (47) match: vpn-id=router-id =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm-ip =>

Local Next-Hop group: set dst-mac=vm-mac,reg6=vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - VM traffic to floating ip on the same compute node

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ips

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=src-vm-ip set vpn-id=fip-subnet-id,src-ip=src-fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=src-fip set src-mac=src-fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,reg6=dst-vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - VM traffic to floating ip on remote compute node

VM originating the traffic (Ingress DPN):

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ip

	The destination mac is updated by the FIB table to be the floating ip mac. Traffic is sent to the egress DPN over
the port of the flat/VLAN provider network.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=src-vm-ip set vpn-id=fip-subnet-id,src-ip=src-fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=src-fip set src-mac=src-fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip set dst-mac=dst-fip-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

VM receiving the traffic (Egress DPN):

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=dst-fip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,lport-tag=dst-vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - traffic from VM with no associated floating IP to floating ip on remote compute node

VM originating the traffic (Ingress DPN) is non-NAPT switch:

	No flow changes required. Traffic will be directed to NAPT switch and directed to the outbound NAPT table straight
from the internal tunnel table

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group output to tunnel port of NAPT switch =>

VM originating the traffic (Ingress DPN) is the NAPT switch:

	For Outbound NAPT, NAPT PFIB, Pre DNAT, DNAT and FIB tables the vpn-id will be based on the common subnet-id of the
router gateway and the floating-ip.

	Packets from NAPT PFIB table resubmitted back to the FIB where they will be matched against the destnation floating ip.

	The destination mac is updated by the FIB table to be the floating ip mac. Traffic is sent to the egress DPN over
the port of the flat/VLAN provider network.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB table (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=router-gw-subnet-id dst-ip=dst-fip set dst-mac=dst-fip-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

VM receiving the traffic (Egress DPN):

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=dst-fip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,lport-tag=dst-vm-lport-tag =>

Egress table (220) output to VM port

Yang changes

odl-nat module will be enhanced with the following container

container external-subnets {
 list subnets {
 key id;
 leaf id {
 type yang:uuid;
 }
 leaf vpnid {
 type yang:uuid;
 }
 leaf-list router-ids {
 type yang:uuid;
 }
 leaf external-network-id {
 type yang:uuid;
 }
 }
}

This model will be filled out only for flat/VLAN external network provider types.
If this model is missing, vpn-id will be taken from odl-nat:external-networks model
to maintain compatibility with BGPVPN models.

odl-nat:ext-routers container will be enhanced with the list of the external subnet-ids
associated with the router.

container ext-routers {
 list routers {
 key router-name;
 leaf router-name {
 type string;
 }
 ...

 leaf-list external-subnet-id {
 type yang:uuid; }
 }
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Create external network with two subnets

neutron net-create public-net -- --router:external --is-default --provider:network_type=flat
--provider:physical_network=physnet1
neutron subnet-create --ip_version 4 --gateway 10.64.0.1 --name public-subnet1 <public-net-uuid> 10.64.0.0/16
-- --enable_dhcp=False
neutron subnet-create --ip_version 4 --gateway 10.65.0.1 --name public-subnet2 <public-net-uuid> 10.65.0.0/16
-- --enable_dhcp=False

Create internal networks with subnets

neutron net-create private-net1
neutron subnet-create --ip_version 4 --gateway 10.0.123.1 --name private-subnet1 <private-net1-uuid>
10.0.123.0/24
neutron net-create private-net2
neutron subnet-create --ip_version 4 --gateway 10.0.124.1 --name private-subnet2 <private-net2-uuid>
10.0.124.0/24
neutron net-create private-net3
neutron subnet-create --ip_version 4 --gateway 10.0.125.1 --name private-subnet3 <private-net3-uuid>
10.0.125.0/24
neutron net-create private-net4
neutron subnet-create --ip_version 4 --gateway 10.0.126.1 --name private-subnet4 <private-net4-uuid>
10.0.126.0/24

Create two router instances and connect each router to one internal subnet and one external subnet

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> <router1-uuid> <public-net-uuid>
neutron router-create router2
neutron router-interface-add <router2-uuid> <private-subnet2-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet2-uuid> <router2-uuid> <public-net-uuid>

Create router instance connected to both external subnets and the remaining internal subnets

neutron router-create router3
neutron router-interface-add <router3-uuid> <private-subnet3-uuid>
neutron router-interface-add <router3-uuid> <private-subnet4-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> --fixed-ip subnet_id=<public-subnet2-uuid>
<router3-uuid> <public-net-uuid>

Create floating ips from both subnets

neutron floatingip-create --subnet <public-subnet1-uuid> public-net
neutron floatingip-create --subnet <public-subnet1-uuid> public-net
neutron floatingip-create --subnet <public-subnet2-uuid> public-net

Create 2 VM instance in each subnet and associate with floating ips

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net1-uuid> VM1
nova floating-ip-associate VM1 <fip1-public-subnet1>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net1-uuid> VM2
nova floating-ip-associate VM2 <fip2-public-subnet1>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net2-uuid> VM3
nova floating-ip-associate VM3 <fip1-public-subnet2>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net2-uuid> VM4
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net3-uuid> VM5
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net4-uuid> VM6

Connectivity tests

	Connect to the internet from all VMs. VM1 and VM2 will route traffic through external gateway 10.64.0.1
VM3 and VM4 route traffic through external gateway 10.65.0.1.

	Connect to the internet from VM5 and VM6. Each connection will be routed to different external gateway
with the corresponding subnet router-gateway ip.

	Hairpinning when source VM is associated with floating ip - ping between VM1 and VM2 using their floating ips.

	Hairpinning when source VM is not associated with floating ip - ping from VM4 to VM3 using floating ip.
Since VM4 has no associated floating ip a NAPT entry will be allocated using the router-gateway ip.

Features to Install

odl-netvirt-openstack

REST API

N/A

CLI

N/A

Implementation

Assignee(s)

	Primary assignee:

	Yair Zinger <yair.zinger@hpe.com>

	Other contributors:

	Tali Ben-Meir <tali@hpe.com>

Work Items

https://trello.com/c/uDcQw95v/104-pipeline-changes-fip-w-multiple-subnets-in-ext-net-hairpinning

	Add external-subnets model

	Add vpn-instances for external flat/VLAN sunbets

	Change pipeline to prefer vpn-id from external-subnets over vpn-id from external-networks

	Add write metadata to GW MAC table for floating ip/router gw mac addresses

	Add default subnet-id match in FIB table to external subnet group entry

	
	Changes in remote next-hop flow for floating ip in FIB table

	
	Set destination mac to floating ip mac

	Set egress actions to provider port of the network attached to the floating ip subnet

	Resubmit SNAT + Outbound NAPT flows to FIB table

Dependencies

None

Testing

Unit Tests

Integration Tests

CSIT

	Hairpinning between VMs in the same subnet

	Hairpinning between VMs in different subnets connected to the same router

	Hairpinning with NAPT - source VM is not associated with floating ip

	Traffic to external network with multiple subnets

Documentation Impact

None

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

Table of Contents

	IPv6 DC-Internet L3 North-South connectivity using L3VPN provider network types.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Fib Manager changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 DC-Internet L3 North-South connectivity using L3VPN provider network types.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-l3vpn-internet

In this specification we will be discussing the high level design of
IPv6 Datacenter to Internet North-South connectivity support in OpenDaylight
using L3VPN provider network type use-case.

Problem description

Provide IPv6 connectivity to virtual machines located in different subnets
spread over multiple sites or Data center can be achieved through use of
Globally Unique Addresses and capacity to update enough routing tables to
forge a path between the two. Even if IPv6 is made to interconnect hosts
without the help of any NAT mechanisms, routing with the best efficienty
(shortest path) or policy (route weight, commercial relationships) must
be configured using only few parameters, automatically updating routes
for each VM spawned in new network.

Keep in mind that key aspects of L3VPN connectivity is Route Targets and
VPN-IPv6 address family.
Assuming an operator can configure data center gateways with a
Route Distinguisher dedicated to Internet connectivity and a set of imported
Route Targets, each time a virtual machine is spawned within a data center subnet
associated with that Route Distinguisher, it will trigger the send of a BGP UPDATE
message containing MP-BGP attributes required for reaching the VM outside the
datacenter. In the same manner, adding extra-route or declaring subnetworks will
trigger the same.
Such behavior can be achieved by configuring a neutron router an internet public
VPN address. For the following of the document, we focus to GUA/128 addresses that
are advertised, when one VM start. Indeed, most of the requirements are dealing with
VM access to internet.

Only IPv6 Globally Unique Address (eg /128) are advertised, this is not a scaling
architecture since it implies as much routes to process as the number of spawned
VMs, but with such BGP routing information base, DCGW can select the Compute Node
to which a packet coming from the WAN should be forwarded to.

The following covers the case where a VM connects to a host located in the internet,
and the destination ip address of packets is not part of the list of advertised
prefixes (see spec [6]).

Following schema could help :

 OVS A flow:
 IP dst not in advertised list
 VPN configuration explained in use case chapter
 +-----------------+
 | +-------------+ |
 +---+ |VM1 | |
 BGP table | | | Subnet A::2 | |
 Prefix Subnet A::2 |OVS| +-------------+ |
+-------+ Label L2 | A | +-------------+ |
| | Next Hop OVS A | | |VM2 | |
| Host | +-+-+ | Subnet B::2 | |
+---+---+ +-------+ | | +-------------+ |
 | | | | +-----------------+
 | | +-----------------+
 +--Internet-----+ DCGW |
 | +-----------------+ +-----------------+
 | | | | +-------------+ |
 +-------+ +-+-+ |VM3 | |
 | | | Subnet A::3 | |
 |OVS| +-------------+ |
 | B | +-------------+ |
 | | |VM4 | |
 +---+ | Subnet B::2 | |
 | +-------------+ |
 +-----------------+

Use Cases

Datacenter IPv6 external connectivity to/from Internet for VMs spawned on tenant
networks.

There are several techniques for VPNs to access the Internet. Those methods are
described in [8], on section 11.
Also a note describes in [8] the different techniques that could be applied to
the DC-GW case. Note that not all solutions are compliant with the RFC. Also,
we make the hypothesis of using GUA.

The method that will be described more in detail below is the option 2. Option 2
is external network connectivity option 2 from [8]). That method implies 2 VPNs.
One VPN will be dedicated to Internet access, and will contain the Internet Routes,
but also the VPNs routes. The Internet VPN can also contain default route to a gateway.
Having a separated VPN brings some advantages:
- the VPN that do not need to get Internet access get the private characteristic

of VPNs.

	using a VPN internet, instead of default forwarding table is enabling
flexibility, since it coud permit creating more than one internet VPN.
As consequence, it could permit applying different rules (different gateway
for example).

Having 2 VPNs implies the following for one packet going from VPN to the internet.
The FIB table will be used for that. If the packet’s destination address does no
match any route in the first VPN, then it may be matched against the internet VPN
forwarding table.
Reversely, in order for traffic to flow natively in the opposite direction, some
of the routes from the VPN will be exported to the internet VPN.

Configuration steps in a datacenter:

	Configure ODL and Devstack networking-odl for BGP VPN.

	Create a tenant network with IPv6 subnet using GUA prefix or an

admin-created-shared-ipv6-subnet-pool.
- This tenant network is connected to an external network where the DCGW is

connected. Separation between both networks is done by DPN located on compute
nodes. The subnet on this external network is using the same tenant as an IPv4
subnet used for MPLS over GRE tunnels endpoints between DCGW and DPN on
Compute nodes. Configure one GRE tunnel between DPN on compute node and DCGW.

	Create a Neutron Router and connect its ports to all internal subnets

	Create a transport zone to declare that a tunneling method is planned to reach an external IP:

the IPv6 interface of the DC-GW

	The neutron router subnetworks will be associated to two L3 BGPVPN instance.

The step create the L3VPN instances and associate the instances to the router.
Especially, two VPN instances will be created, one for the VPN, and one for the
internetVPN.

	operations:neutronvpn:createL3VPN (“route-distinguisher” = “vpn1”

	“import-RT” = [“vpn1”,”internetvpn”]
“export-RT” = [“vpn1”,”internetvpn”])

	operations:neutronvpn:createL3VPN (“route-distinguisher” = “internetvpn”

	“import-RT” = “internetvpn”
“export-RT” = “internetvpn”)

	The DC-GW configuration will also include 2 BGP VPN instances.
Below is a configuration from QBGP using vty command interface.

vrf rd “internetvpn”
vrf rt both “internetvpn”
vrf rd “vpn1”
vrf rt both “vpn1” “internetvpn”

	Spawn VM and bind its network interface to a subnet, L3 connectivty between

VM in datacenter and a host on WAN must be successful.
More precisely, a route belonging to VPN1 will be associated to VM GUA.
and will be sent to remote DC-GW. DC-GW will import the entry to both “vpn1” and “internetvpn”
so that the route will be known on both vpns.
Reversely, because DC-GW knows internet routes in “internetvpn”, those routes will be sent to
QBGP. ODL will get those internet routes, only in the “internetvpn” vpn.
For example, when a VM will try to reach a remote, a first lookup will be done in “vpn1” FIB
table. If none is found, a second lookup will be found in the “internetvpn” FIB table. The
second lookup should be successfull, thus trigerring the encapsulation of packet to the DC-GW.

	When the data centers is set up, there are 2 use cases:

	
	Traffic from Local DPN to DC-Gateway

	Traffic from DC-Gateway to Local DPN

The use cases are slightly different from [6], on the Tx side.

Proposed change

Similar as with [6], plus a specific processing on Tx side.
An additionnal processing in DPN is required. When a packet is received by a
neutron router associated with L3VPN, with destination mac address is the subnet
gateway mac address, and the destination ip is not in the FIB (default gateway)
of local DPN, then the packet should do a second lookup in the second VPN configured.
So that the packet can enter the L3VPN netvirt pipeline.
The MPLS label pushed on the IPv6 packet is the one configured to provide access
to Internet at DCGW level.

Pipeline changes

No pipeline changes, compared with [6]. However, FIB Manager will be modified so as to
implement the fallback mechanism. The FIB tables of the import-RTs VPNs from the default
VPN created will be parsed. In our case, a match will be found in the “internetVPN”
FIB table. If not match is found, the drop rule will be applied.

Regarding the pipeline changes, we can use the same BGPVPNv4 pipeline
(Tables Dispatcher (17), DMAC (19), LFIB (20), L3FIB (21), and NextHop Group
tables) and enhance those tables to support IPv6 North-South communication
through MPLS/GRE.
For understanding, the pipeline is written below: l3vpn-id is the ID associated to the initial VPN,
while l3vpn-internet-id is the ID associated to the internet VPN.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

When a packet is coming from DC-Gateway, the label will help finding out the associated VPN. The first one is l3vpn-id.

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

When a packet is going out from a dedicated VM, the l3vpn-id attached to that subnetwork will be used.
Theorically, in L3 FIB, there will be no match for dst IP with this l3vpn-id.
However, because ODL know the relationship between both VPNs, then the dst IP will be attached
with the first l3vpn-id.

However, since the gateway IP for inter-DC and external access is the same, the same MPLS label will be used for both VPNs.

Classifier Table (0) =>

Lport Dispatcher Table (17) ``match: LportTag l3vpn service: set vpn-id=l3vpn-id` =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=internet-l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=<alternate-ip> set tun-id=mpls_label output to MPLSoGRE tunnel port =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Fib Manager changes

Ingress traffic from internet to VM

The FIB Manager is being configured with 2 entries for different RDs : l3vpn-id and internetvpn-id.
The LFIB will be matched first.
In our case, label NH and prefix are the same, whereas we have 2 VPN instances.
So, proposed change is to prevent LFIB from adding entries if a label is already registered for that compute node.

Egress traffic from VM to internet

The FIB Manager is being configured with the internet routes on one RD only : internetvpn-id.
As packets that are emitted from the VM with vpn=l3vpn-id, the internet route will not be matched in l3vpn, if implementation remains as it is.
In FIB Manager, solution is the following:
- The internetvpn is not attached to any local subnetwork.
so, any eligible VPNs are looked up in the list of VPN instances.
for each VPN instance, for each RD, if an imported RT matches the internetvpnID, then a new rule will be appended.

Yang changes

None

Configuration impact

The configuration will require to create 2 VPN instances.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

The number of entries will be duplicated, compared with [6].
This is the cost in order to keep some VPNs private, and others kind of public.
Another impact is the double lookup that may result, when emitting a packet.
This is due to the fact that the whole fib should be parsed to fallback
to the next VPN, in order to make an other search, so that the packet can enter
in the L3VPN flow.

Targeted Release

Carbon

Alternatives

None

Usage

	Configure MPLS/GRE tunnel endpoint on DCGW connected to public-net network

	Configure neutron networking-odl plugin

	Configure BGP speaker in charge of retrieving prefixes for/from data center
gateway in ODL through the set of vpnservice.bgpspeaker.host.name in
etc/custom.properties. No REST API can configure that parameter.
Use config/ebgp:bgp REST api to start BGP stack and configure VRF, address
family and neighboring. In our case, as example, following values will be used:

	rd=”100:2” # internet VPN
- import-rts=”100:2”
- export-rts=”100:2”

	rd=”100:1” # vpn1
- import-rts=”100:1 100:2”
- export-rts=”100:1 100:2”

POST config/ebgp:bgp
{
 "ebgp:as-id": {
 "ebgp:stalepath-time": "360",
 "ebgp:router-id": "<ip-bgp-stack>",
 "ebgp:announce-fbit": "true",
 "ebgp:local-as": "<as>"
 },
 "ebgp:neighbors": [
 {
 "ebgp:remote-as": "<as>",
 "ebgp:address-families": [
 {
 "ebgp:afi": "2",
 "ebgp:peer-ip": "<neighbor-ip-address>",
 "ebgp:safi": "128"
 }
],
 "ebgp:address": "<neighbor-ip-address>"
 }
],
}

* Configure BGP speaker on DCGW to exchange prefixes with ODL BGP stack. Since
 DCGW should be a vendor solution, the configuration of such equipment is out of
 the scope of this specification.

	Create an internal tenant network with an IPv6 (or dual-stack) subnet.

neutron net-create private-net
neutron subnet-create --name ipv6-int-subnet --ip-version 6
--ipv6-ra-mode slaac --ipv6-address-mode slaac private-net 2001:db8:0:2::/64

	Use neutronvpn:createL3VPN REST api to create L3VPN

POST /restconf/operations/neutronvpn:createL3VPN

{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid_1",
 "name":"internetvpn",
 "route-distinguisher": [100:2],
 "export-RT": [100:2],
 "import-RT": [100:2],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

POST /restconf/operations/neutronvpn:createL3VPN

{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid_2",
 "name":"vpn1",
 "route-distinguisher": [100:1],
 "export-RT": [100:1, 100:2],
 "import-RT": [100:1, 100:2],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

	Associate L3VPN To Network

POST /restconf/operations/neutronvpn:associateNetworks

{
 "input":{
 "vpn-id":"vpnid_uuid_1",
 "network-id":"network_uuid"
 }
}

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net> VM1

	Dump ODL BGP FIB

GET /restconf/config/odl-fib:fibEntries

{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid_1>
 },
 {
 "routeDistinguisher": <rd_vpn1>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
 {
 "routeDistinguisher": <rd-uuid_2>
 },
 {
 "routeDistinguisher": <rd_vpninternet>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Julien Courtat <julien.courtat@6wind.com>

	Other contributors:

	Noel de Prandieres <prandieres@6wind.com>
Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>
Philippe Guibert <philippe.guibert@6wind.com>

Work Items

	Validate proposed setup so that each VM entry is duplicated in 2 VPN instances

	Implement FIB-Manager fallback mechanism for output packets

Dependencies

[6]

Testing

Unit Tests

Unit tests related to fallback mechanism when setting up 2 VPN instances configured
as above.

Integration Tests

TBD

CSIT

CSIT provided for the BGPVPNv6 versions will be enhanced to also support
connectivity to Internet.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] IPv6 Distributed Router for Flat/VLAN based Provider Networks. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-distributed-router]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

[6] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN. [https://git.opendaylight.org/gerrit/#/c/50359]

[7] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/c/49909/]

[8] External Network connectivity in IPv6 networks. [https://drive.google.com/file/d/0BxAspfn9mEi8OEtvVFpsZXo0ZlE/view]

[9] BGP/MPLS IP Virtual Private Networks (VPNs) [https://tools.ietf.org/html/rfc4364#section-11]

Table of Contents

	IPv6 Inter-DC L3 North-South connectivity using L3VPN provider network types.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 Inter-DC L3 North-South connectivity using L3VPN provider network types.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-interdc-l3vpn

In this specification we will be discussing the high level design of
IPv6 Inter-Datacenter North-South connectivity support in OpenDaylight
using L3VPN provider network type use-case.

Problem description

Provide IPv6 connectivity to virtual machines located in different subnets
spread over multiple sites or Data center can be achieved through use of
Globally Unique Addresses and capacity to update enough routing tables to
forge a path between the two. Even if IPv6 is made to interconnect hosts
without the help of any NAT mechanisms, routing with the best efficienty
(shortest path) or policy (route weight, commercial relationships) must
be configured using only few parameters, automatically updating routes
for each VM spawned in new network.

Keep in mind that key aspects of L3VPN connectivity is Route Targets and
VPN-IPv6 address family.
Assuming an operator can configure both data center gateways with same
Route Distinguisher or set of imported Route Targets, each time a virtual
machine is spawned within a new subnet, it will trigger the send of a BGP UPDATE
message containing MP-BGP attributes required for reaching the VM.
Such behavior can be achieved by configuring a neutron router a default gateway.

Only IPv6 Globally Unique Address (eg /128) are advertised, this is not a scaling
architecture since it implies as much routes to process as the number of spawned
VMs, but with such BGP routing information base, DCGW can select the Compute Node
to which a packet coming from the WAN should be forwarded to.

Following schema could help :

+-----------------+ +-----------------+
+-------------+		+-------------+						
	VM1	+---+ +---+	VM1					
	Subnet C::4			BGP table			Subnet A::2	
+-------------+	OVS	Prefix Subnet A::2	OVS	+-------------+				
+-------------+	A	Label L1	A	+-------------+				
	VM2			Next Hop OVS A			VM2	
	Subnet D::4	+-+-+ +-+-+	Subnet B::2					
+-------------+		+------+ +-------+		+-------------+				
+-----------------+ | | | | | | +-----------------+
 +-----+ | | +--------+
 | DCGW +--WAN--+ DCGW |
+-----------------+ +-----+ | | +--------+ +-----------------+
+-------------+								+-------------+
	VM3	+-+-+ +------+ +-------+ +-+-+	VM3					
	Subnet C::5						Subnet A::3	
+-------------+	OVS		OVS	+-------------+				
+-------------+	B		B	+-------------+				
	VM4						VM4	
	Subnet D::5	+---+ +---+	Subnet B::3					
+-------------+		+-------------+						
+-----------------+ +-----------------+

BGP protocol and its MP-BGP extension would do the job as long as all BGP
speakers are capable of processing UPDATE messages containing VPN-IPv6 address
family, which AFI value is 2 and SAFI is 128. It is not required that BGP
speakers peers using IPv6 LLA or GUA, IPv4 will be used to peer speakers
together.

Opendaylight is already able to support the VPN-IPv4 address family (AFI=1,
SAFI=128), and this blueprint focuses on specific requirements to VPN-IPv6.

One big question concerns the underlying transport IP version used with MPLS/GRE
tunnels established between Data center Gateway (DCGW), and compute nodes
(CNs). There is one MPLS/GRE tunnel setup from DCGW to each Compute Node involved
in the L3VPN topology. Please note that this spec doesn’t covers the case of
VxLAN tunnels between DCGW and Compute Nodes.

According to RFC 4659 §3.2.1, the encoding of the nexthop attribute in
MP-BGP UPDATE message differs if the tunneling transport version required is
IPv4 or IPv6. In this blueprint spec, the assumption of transport IP version of
IPv4 is prefered. This implies that any nexthop set for a prefix in FIB will be
IPv4.

Within BGP RIB table, for each L3VPN entry, the nexthop and label are key
elements for creating MPLS/GRE tunnel endpoints, and the prefix is used for
programming netvirt pipeline. When a VM is spawned, the prefix advertised by BGP
is 128 bits long and the nexthop carried along within UPDATE message is the ip
address of the DPN interface used for DCGW connection.
Since DCGW can be proprietary device, it may not support MPLS/GRE tunnel endpoint
setup according to its internal BGP table. A static configuration of such tunnel
endpoint may be required.

Use Cases

Inter Datacenter IPv6 external connectivity for VMs spawned on tenant networks,
routes exchanged between BGP speakers using same Route Distinguisher.

Steps in both data centers :

	Configure ODL and Devstack networking-odl for BGP VPN.

	Create a tenant network with IPv6 subnet using GUA prefix or an
admin-created-shared-ipv6-subnet-pool.

	This tenant network is separated to an external network where the DCGW is
connected. Separation between both networks is done by DPN located on compute
nodes. The subnet on this external network is using the same tenant as an IPv4
subnet used for MPLS over GRE tunnels endpoints between DCGW and DPN on
Compute nodes. Configure one GRE tunnel between DPN on compute node and
DCGW.

	Create a Neutron Router and connect its ports to all internal subnets that
will belong to the same L3 BGPVPN identified by a Route Distinguisher.

	Start BGP stack managed by ODL, possibly on same host as ODL.

	Create L3VPN instance.

	Associate the Router with the L3VPN instance.

	Spawn VM on the tenant network, L3 connectivity between VMs located on
different datacenter sharing same Route Distinguisher must be successful.

When both data centers are set up, there are 2 use cases per data center:

	Traffic from DC-Gateway to Local DPN (VMS on compute node)

	Traffic from Local DPN to DC-Gateway

Proposed change

ODL Controller would program the necessary pipeline flows to support IPv6
North South communication through MPLS/GRE tunnels out of compute node.

BGP manager would be updated to process BGP RIB when entries are IPv6 prefixes.

FIB manager would be updated to take into acount IPv6 prefixes.

Thrift interface between ODL and BGP implementation (Quagga BGP) must be
enhanced to support new AFI=2. Thrift interface will still carry IPv4 Nexthops,
and it will be the Quagga duty to transform this IPv4 Nexthop address into an
IPv4-mapped IPv6 address in every NLRI fields. Here is the new api proposed :

enum af_afi {
 AFI_IP = 1,
 AFI_IPV6 = 2,
}
i32 pushRoute(1:string prefix, 2:string nexthop, 3:string rd, 4:i32 label,
 5:af_afi afi)
i32 withdrawRoute(1:string prefix, 2:string rd, 3:af_afi afi)
oneway void onUpdatePushRoute(1:string rd, 2:string prefix,
 3:i32 prefixlen, 4:string nexthop,
 5:i32 label, 6:af_afi afi)
oneway void onUpdateWithdrawRoute(1:string rd, 2:string prefix,
 3:i32 prefixlen, 4:string nexthop,
 5:af_afi afi)
Routes getRoutes(1:i32 optype, 2:i32 winSize, 3:af_afi afi)

BGP implementation (Quagga BGP) announcing (AFI=2,SAFI=128) capability as well
as processing UPDATE messages with such address family. Note that the required
changes in Quagga is not part of the design task covered by this blueprint.

Pipeline changes

Regarding the pipeline changes, we can use the same BGPVPNv4 pipeline
(Tables Dispatcher (17), DMAC (19), LFIB (20), L3FIB (21), and NextHop Group
tables) and enhance those tables to support IPv6 North-South communication
through MPLS/GRE.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Please note that vpn-subnet-gateway-mac-address stands for MAC address of
the neutron port of the internal subnet gateway router.

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) match: LportTag l3vpn service: set vpn-id=l3vpn-id =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Please note that router-internal-interface-mac stands for MAC address of
the neutron port of the internal subnet gateway router.

Yang changes

Changes will be needed in ebgp.yang to start supporting IPv6 networks
advertisements.

A new leaf afi will be added to container networks

ebgp.yang

list networks {
 key "rd prefix-len";

 leaf rd {
 type string;
 }

 leaf prefix-len {
 type string;
 }

 leaf afi {
 type uint32;
 mandatory "false";
 }

 leaf nexthop {
 type inet:ipv4-address;
 mandatory "false";
 }

 leaf label {
 type uint32;
 mandatory "false";
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Impact on scaling inside datacenter essentially grow with the number of VM
connected to subnets associated with the L3VPN.
Since Globally Unique Address are used and there is no NAT involved in the
datapath, it implies prefixes advertised are all /128.
At the end, it means that every prefix advertised will have its entry
in BGP RIB of all ODL controllers and DCGW involved in L3VPN (ie all bgp aware
equipment will handle all prefixes advertised wihtin a Route Distinguisher).

This may imply BGP table with very high number of entries. This also implies a
high number of entries in ODL routing table and equivalent number of flows
inserted in OVS, since prefix advertised add matching ip destination in OVS
tables.

This fact also impact the scaling of the BGP speaker implementation (Quagga
BGP) with many thousands of BGPVPNv4 and BGPVPNv6 prefixes (as much as number
of spawned VMs) with best path selection algorithm on route updates, graceful
restart procedure, and multipath.

Targeted Release

Carbon

Alternatives

None

Usage

	Configure MPLS/GRE tunnel endpoint on DCGW connected to public-net network

	Configure neutron networking-odl plugin

	Configure BGP speaker in charge of retrieving prefixes for/from data center
gateway in ODL through the set of vpnservice.bgpspeaker.host.name in
etc/custom.properties. No REST API can configure that parameter.
Use config/ebgp:bgp REST api to start BGP stack and configure VRF, address
family and neighboring

POST config/ebgp:bgp
{
 "ebgp:as-id": {
 "ebgp:stalepath-time": "360",
 "ebgp:router-id": "<ip-bgp-stack>",
 "ebgp:announce-fbit": "true",
 "ebgp:local-as": "<as>"
 },
 "ebgp:vrfs": [
 {
 "ebgp:export-rts": [
 "<export-rts>"
],
 "ebgp:rd": "<RD>",
 "ebgp:import-rts": [
 "<import-rts>"
]
 }
],
 "ebgp:neighbors": [
 {
 "ebgp:remote-as": "<as>",
 "ebgp:address-families": [
 {
 "ebgp:afi": "2",
 "ebgp:peer-ip": "<neighbor-ip-address>",
 "ebgp:safi": "128"
 }
],
 "ebgp:address": "<neighbor-ip-address>"
 }
],
}

	Configure BGP speaker on DCGW to exchange prefixes with ODL BGP stack. Since
DCGW should be a vendor solution, the configuration of such equipment is out of
the scope of this specification.

	Create an internal tenant network with an IPv6 (or dual-stack) subnet and
connect ports.

neutron net-create private-net
neutron subnet-create private-net 2001:db8:0:2::/64 --name ipv6-int-subnet
--ip-version 6 --ipv6-ra-mode slaac --ipv6-address-mode slaac
neutron port-create private-net --name port1_private1

	Create a router and associate it to internal subnets.

neutron router-create router1
neutron router-interface-add router1 ipv6-int-subnet

	Use neutronvpn:createL3VPN REST api to create L3VPN

POST /restconf/operations/neutronvpn:createL3VPN
{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid",
 "name":"vpn1",
 "route-distinguisher": [100:1],
 "export-RT": [100:1],
 "import-RT": [100:1],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

	Associate L3VPN To Routers

POST /restconf/operations/neutronvpn:associateRouter
{
 "input":{
 "vpn-id":"vpnid_uuid",
 "router-id":["router_uuid"]
 }
}

	Create MPLSoGRE tunnel between DPN and DCGW

POST /restconf/operations/itm-rpc:add-external-tunnel-endpoint
{
 "itm-rpc:input": {
 "itm-rpc:destination-ip": "dcgw_ip",
 "itm-rpc:tunnel-type": "odl-interface:tunnel-type-mpls-over-gre"
 }
}

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> \
 --nic net-id=port1_private1_uuid VM1

	Dump ODL BGP FIB

GET /restconf/config/odl-fib:fibEntries
{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid>
 },
 {
 "routeDistinguisher": <rd>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

A new option --afi will be added to command odl:bgp-network:

opendaylight-user@root>
odl:bgp-network --prefix 2001:db8::1/128 --rd 100:1 --nexthop 192.168.0.2
 --label 700 --afi 2 add/del

Implementation

Assignee(s)

	Primary assignee:

	Julien Courtat <julien.courtat@6wind.com>

	Other contributors:

	Noel de Prandieres <prandieres@6wind.com>
Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>
Philippe Guibert <philippe.guibert@6wind.com>

Work Items

	Implement necessary APIs to allocate a transport over IPv6 requirement
configuration for a given Route Target as the primary key.

	Support of BGPVPNv6 prefixes within MD-SAL. Enhance RIB-manager to support
routes learned from other bgp speakers, [un]set static routes.

	BGP speaker implementation, Quagga BGP, to support BGPVPN6 prefixes exchanges
with other BGP speakers (interoperability), and thrift interface updates.

	Program necessary pipeline flows to support IPv6 to MPLS/GRE (IPv4) communication.

Dependencies

Quagga from 6WIND is publicly available at the following url

	https://github.com/6WIND/quagga

	https://github.com/6WIND/zrpcd

Testing

Unit Tests

Unit tests provided for the BGPVPNv4 versions will be enhanced to also support
BGPVPNv6. No additional unit tests will be proposed.

Integration Tests

TBD

CSIT

CSIT provided for the BGPVPNv4 versions will be enhanced to also support
BGPVPNv6. No additional CSIT will be proposed.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	IPv6 L3 North-South support for Flat/VLAN Provider Networks.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 L3 North-South support for Flat/VLAN Provider Networks.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south

In this specification we will be discussing the high level design of
IPv6 North-South support in OpenDaylight for VLAN/FLAT provider network
use-case.

Problem description

OpenDaylight currently supports IPv6 IPAM (IP Address Management) and a fully
distributed east-west router. IPv6 external connectivity is not yet supported.
This SPEC captures the implementation details of IPv6 external connectivity for
VLAN/FLAT provider network use-cases.

We have a separate SPEC [3] that captures external connectivity for L3VPN use-case.

The expectation in OpenStack is that Tenant IPv6 subnets are created with Globally
Unique Addresses (GUA) that are routable by the external physical IPv6 gateway in
the datacenter for external connectivity. So, there is no concept of NAT or
Floating-IPs for IPv6 addresses in Neutron. An IPv6 router is hence expected to do
a plain forwarding.

Initially, we would like to pursue a Centralized IPv6 router (CVR) use-case and
look into a fully distributed router via a future spec. One of the main reasons
for pursuing the CVR over DVR is that OpenStack Neutron creates only a single
router gateway port (i.e., port with device owner as network:router_gateway)
when the router is associated with the external network. When implementing
a distributed router, we cannot use the same router gateway port MAC address
from multiple Compute nodes as it could create issues in the underlying physical
switches. In order to implement a fully distributed router, we would ideally
require a router-gateway-port per compute node. We will be addressing the
distributed router in a future spec taking into consideration both IPv4 and IPv6
use-cases.

Use Cases

IPv6 external connectivity (north-south) for VMs spawned on tenant networks,
when the external network is of type FLAT/VLAN based.

Steps:

	Create a tenant network with IPv6 subnet using GUA/ULA prefix or an
admin-created-shared-ipv6-subnet-pool.

	Create an external network of type FLAT/VLAN with an IPv6 subnet where the
gateway_ip points to the Link Local Address (LLA) of external/physical IPv6
gateway.

	Create a Neutron Router and associate it with the internal subnets and external
network.

	Spawn VMs on the tenant network.

 +------------------+
 | |
 | +------->Internet
 | External IPv6 |
 | Gateway |
 | |
 | |
 +------------------+
 |LLA of IPv6 GW
 |
 | Flat/VLAN External Network: 2001:db8:0:1::/64
 +--+
 | | |
 | | |
 | ---+
 | | Internal Tenant N/W | | | |
router-gw-port| | | | | |
 +------------------------+ +-------------------------+ +-------------------------+
+--------------------+										
	Virtual IPv6 Router									
	using OVS Flows									
+--------------------+										
+--------------------+		+---------------------+		+---------------------+						
	VM1				VM2				VM3	
	Tenant IPv6 Subnet									
	2001:db8:0:2::10/64				2001:db8:0:2::20/64				2001:db8:0:2::30/64	
+--------------------+		+---------------------+		+---------------------+						
 +------------------------+ +-------------------------+ +-------------------------+
 Compute Node-1 designated Compute Node-2 Compute Node-3
 as NAPT Switch for router1

Proposed change

ODL Controller would implement the following.

	Program the necessary pipeline flows to support IPv6 forwarding

	Support Neighbor Discovery for Router Gateway port-ips on the external network.
i.e., When the upstream/external IPv6 Gateway does a Neighbor Solicitation for the
router-gateway-ip, ODL-Controller/ipv6service would respond with a Neighbor Advertisement
providing the target link layer address.

	Enhance IPv6Service to learn the MAC-address of external-subnet-gateway-ip by framing
the necessary Neighbor Solicitation messages and parsing the corresponding response.
The APIs in IPv6Service would be triggered from Gateway MAC resolver code and the
information obtained will be used while programming the ProviderNetworkGroup entries.

The implementation would be aligned with the existing IPv4 SNAT support we have
in Netvirt. ODL controller would designate one of the compute nodes (also referred
as NAPT Switch), one per router, to act as an IPv6/IPv4-SNAT router, from where the
tenant traffic is routed to the external network. External traffic from VMs hosted
on the NAPT switch is forwarded directly, whereas traffic from VMs hosted on other
compute nodes would have to do an extra hop to NAPT switch before hitting the
external network. If a router has both IPv4 and IPv6 subnets, the same NAPT Switch
for the router will be used for IPv4-SNAT and IPV6 external-packet forwarding.

Pipeline changes

Flows on NAPT Switch for Egress traffic from VM to the internet

Classifier Table (0) =>

LPORT_DISPATCHER_TABLE (17) l3vpn service: set: vpn-id=router-id =>

L3_GW_MAC_TABLE (19) priority=20, match: vpn-id=router-id, dst-mac=router-internal-interface-mac =>

L3_FIB_TABLE (21) priority=10, match: ipv6, vpn-id=router-id, default-route-flow =>

PSNAT_TABLE (26) priority=5, match: ipv6, vpn-id=router-id, unknown-sip =>

OUTBOUND_NAPT_TABLE (46) priority=10, match: ipv6, vpn-id=router-id, ip-src=vm-ip set: src-mac=external-router-gateway-mac-address, vpn-id=external-net-id, =>

NAPT_PFIB_TABLE (47) priority=6, match: ipv6, vpn-id=external-net-id, src-ip=vm-ip =>

ProviderNetworkGroup: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

EGRESS_LPORT_DISPATCHER_TABLE (220) output to provider network

Flows on NAPT Switch for Ingress traffic from internet to VM

Classifier Table (0) =>

LPORT_DISPATCHER_TABLE (17) l3vpn service: set: vpn-id=ext-net-id =>

L3_GW_MAC_TABLE (19) priority=20, match: vpn-id=ext-net-id, dst-mac=router-gateway-mac =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=ext-net-id, dst-ip=vm-ip =>

INBOUND_NAPT_TABLE (44) priority=10, match: ipv6, vpn-id=ext-net-id, dst-ip=vm-ip set: vpn-id=router-id =>

NAPT_PFIB_TABLE (47) priority=5, match: ipv6, vpn-id=router-id set: in_port=0 =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=router-id, dst-ip=vm-ip =>

Local Next-Hop group: set: src-mac=router-intf-mac, dst-mac=vm-mac,reg6=vm-lport-tag =>

Egress table (220) output to VM port

Flows for VMs hosted on Compute node that is not acting as an NAPT Switch

Same egress pipeline flows as above until L3_FIB_TABLE (21).

PSNAT_TABLE (26) priority=5, match: ipv6, vpn-id=router-id set: tun_id=<tunnel-id> =>

TunnelOutputGroup: output to tunnel-port =>

OnNAPTSwitch (for Egress Traffic from VM)

INTERNAL_TUNNEL_TABLE (36): priority=10, match: ipv6, tun_id=<tunnel-id-set-on-compute-node> set: vpn-id=router-id, goto_table:46

Rest of the flows are common.

OnNAPTSwitch (for Ingress Traffic from Internet to VM)

Same flows in ingress pipeline shown above until NAPT_PFIB_TABLE (47) =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=router-id, dst-ip=vm-ip set: tun_id=<tunnel-id>, dst-mac=vm-mac, output: <tunnel-port> =>

Yang changes

IPv6Service would implement the following YANG model.

module ipv6-ndutil {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:ipv6service:ipv6util";
 prefix "ipv6-ndutil";

 import ietf-interfaces {
 prefix if;
 }

 import ietf-inet-types {
 prefix inet; revision-date 2013-07-15;
 }

 import ietf-yang-types {
 prefix yang;
 }

 revision "2017-02-10" {
 description "IPv6 Neighbor Discovery Util module";
 }

 grouping interfaces {
 list interface-address {
 key interface;
 leaf interface {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf src-ip-address {
 type inet:ipv6-address;
 }
 leaf src-mac-address {
 type yang:phys-address;
 }
 }
 }

 rpc send-neighbor-solicitation {
 input {
 leaf target-ip-address {
 type inet:ipv6-address;
 }
 uses interfaces;
 }
 }
}

neighbor-solicitation-packet container in neighbor-discovery.yang would be enhanced
with Source Link Layer optional header.

container neighbor-solicitation-packet {
 uses ethernet-header;
 uses ipv6-header;
 uses icmp6-header;
 leaf reserved {
 type uint32;
 }
 leaf target-ip-address {
 type inet:ipv6-address;
 }
 leaf option-type {
 type uint8;
 }
 leaf source-addr-length {
 type uint8;
 }
 leaf source-ll-address {
 type yang:mac-address;
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

Scale and Performance Impact

	In the proposed implementation, we have to configure a static route
on the external IPv6 Gateway with next-hop as the router-gateway-ip.
In a future patch, we would enhance the implementation to use BGP for
advertising the necessary routes.

	When the external IPv6 Gateway wants to contact the tenant VMs, it
forwards all the traffic to the router-gateway-port on the designated
NAPT Switch. To know the target-link-layer address of the router-gw-port,
the external IPv6 Gateway would send out a Neighbor Solicitation for the
router-gateway-port-ip. This request would be punted to the Controller
and ipv6service would respond with the corresponding Neighbor Advertisement.
In large deployments this can become a bottleneck.
Note: Currently, OpenFlow does not have support to auto-respond to Neighbor
Solicitation packets like IPv4 ARP. When the corresponding support is added
in OpenFlow, we would program the necessary ovs flows to auto-respond to
the Neighbor Soliciation requests for router-gateway-ports.

Targeted Release

Carbon

Alternatives

An alternate solution is to implement a fully distributed IPv6 router and
would be pursued in a future SPEC.

Usage

	Create an external FLAT/VLAN network with an IPv6 (or dual-stack) subnet.

neutron net-create public-net -- --router:external --is-default
--provider:network_type=flat --provider:physical_network=public

neutron subnet-create --ip_version 6 --name ipv6-public-subnet
--gateway <LLA-of-external-ipv6-gateway> <public-net-uuid> 2001:db8:0:1::/64

	Create an internal tenant network with an IPv6 (or dual-stack) subnet.

neutron net-create private-net
neutron subnet-create --name ipv6-int-subnet --ip-version 6
--ipv6-ra-mode slaac --ipv6-address-mode slaac private-net 2001:db8:0:2::/64

	Create a router and associate the external and internal subnets.
Explicitly specify the fixed_ip of router-gateway-port, as it would help us
when manually configuring the downstream route on the external IPv6 Gateway.

neutron router-create router1
neutron router-gateway-set --fixed-ip subnet_id=<ipv6-public-subnet-id>,ip_address=2001:db8:0:10 router1 public-net
neutron router-interface-add router1 ipv6-int-subnet

	Manually configure a downstream route in the external IPv6 gateway
for the IPv6 subnet “2001:db8:0:2::/64” with next hop address as the
router-gateway-ip.

Example (on Linux host acting as an external IPv6 gateway):
ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:10

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net> VM1

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Sridhar Gaddam <sgaddam@redhat.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/cqjOFmow/147-ipv6-centralized-router-l3-north-south-support-for-flat-vlan-provider-networks

	Program necessary pipeline flows to support IPv6 North-South communication.

	Enhance ipv6service to send out Neighbor Solicitation requests
for the external/physical IPv6 gateway-ip and parse the response.

	Support controller based Neighbor Advertisement for router-gateway-ports
on the external network.

	Implement Unit and Integration tests to validate the use-case.

Dependencies

None

Testing

Unit Tests

Necessary Unit tests would be added to validate the use-case.

Integration Tests

Necessary Integration tests would be added to validate the use-case.

CSIT

We shall explore the possibility to validate this use-case in CSIT.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/50359/]

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Dual Stack VM support in OpenDaylight

	Problem description

	Setup Presentation

	Known Limitations

	Use Cases

	Inter DC Access

	External Internet Connectivity

	Proposed changes

	Pipeline changes

	Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

	Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

	Configuration impact

	ECMP impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Dual Stack VM support in OpenDaylight

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn-dual-stack-vms

In this specification we will introduce a support of basic L3 forwarding for
dualstack VMs connectivity over L3 in NetVirt. Dualstack VM is a virtual machine
that has at least two IP addresses with different ethertypes: IPv4 address and
IPv6 address.

In addition to this, the specification ensures initial support of dualstack VMs
inside L3 BGPVPN. L3 forwarding for dualstack VMs connectivity inside L3 BGPVPN
will be provided for the following variations of L3 BGPVPN:

	L3 BGPVPN constructed purely using networks;

	L3 BGPVPN constructed purely using a router;

	L3 BGPVPN constructed using multiple networks and a router.

Problem description

As a dualstack VM, we assume a VM which has one Neutron Port, i.e. one VNIC,
that inherits two IPs addresses with different ethertypes: one IPv4 address and
one IPv6 address. We also will use in this document a term singlestack VM to
describe a VM, which VNIC possesses either IPv4 or IPv6 address, but not both
simultaneously.

So, dualstack VM has two IP addresses with different ethertypes. This could be
achieved by two ways:

1. VM was initially created with one VNIC, i.e. one Neutron Port from network
with IPv4 subnet. Second VNIC, corresponded to a Neutron Port from another
network with IPv6 subnet, was added to this machine after its creation.

2. VM has one Neutron Port from a network, which contains 2 subnets: IPv4 subnet
and IPv6 subnet.

OpenDaylight has already provided a support for the first way, so this use-case
is not in the scope of the specification. For the second way the specification
doesn’t intend to cover a use-case when, Neutron Port will possess several IPv4
and several IPv6 addresses. More specifically this specification covers only the
use-case, when Neutron Port has only one IPv4 and one IPv6 address.

Since there are more and more services that use IPv6 by default, support of
dualstack VMs is important. Usage of IPv6 GUA addresses has increased during the
last couple years. Administrators want to deploy services, which will be
accessible from traditional IPv4 infrastructures and from new IPv6 networks as
well.

Dualstack VM should be able to connect to other VMs, be they are of IPv4 (or)
IPv6 ethertypes.
So in this document we can handle following use cases:

	Intra DC, Inter-Subnet basic L3 Forwarding support for dualstack VMs;

	Intra DC, Inter-Subnet L3 Forwarding support for dualstack VMs within L3 BGPVPN.

Current L3 BGPVPN allocation scheme picks up only the first IP address of
dualstack VM Neutron Port. That means that the L3 BGPVPN allocation scheme will
not apply both IPv4 and IPv6 network configurations for a port. For example, if
the first allocated IP address is IPv4 address, then L3 BGPVPN allocation scheme
will only apply to IPv4 network configuration. The second IPv6 address will be
ignored.

Separate VPN connectivity for singlestack VMs within IPv4 subnetworks and within
IPv6 subnetworks is already achieved by using distinct L3 BGPVPN instances. What
we want is to support a case, when the same L3 BGPVPN instance will handle both
IPV4 and IPv6 VM connectivity.

Regarding the problem description above, we would propose to implement in
OpenDaylight two following solutions, applying to two setups

	two-router setup solution

One router belongs to IPv4 subnetwork, another one belongs to IPv6 subnetwork.
This setup brings flexibility to manage access to external networks. More
specifically, by having two routers, where one is holding IPv4 subnet and
another is holding IPv6 subnet, customer can tear-down access to external
network for IPv4 subnet ONLY or for IPv6 subnet ONLY by doing a
router-gateway-clear on a respective router.

Now this kind of orchestration step entail us to put a Single VPN Interface
(representing the VNIC of DualStack VM) in two different Internal-VPNs, where
each VPN represents one of the routers. To achive this we will use L3 BGPVPN
concept. We will extend existing L3 BGPVPN instance implementation to give it an
ability to be associated with two routers. As consequence, IPv4 and IPv6
subnetworks, added as ports in associated routers and, hence, IPv4 and IPv6 FIB
entries, would be gathered in one L3 BGPVPN instance.

L3 BGPVPN concept is the easiest solution to federate two routers in a single L3
BGPVPN entity. From the orchestration point of view and from the networking
point of view, there is no any reason to provide IPv4 L3VPN and IPv6 L3VPN
access separately for dualstack VMs. It makes sense to have the same L3 BGPVPN
entity that can handle both IPv4 and IPv6 subnetworks.

The external network connectivity using L3 BGPVPN is not in scope of this
specification. Please, find more details about this in [6]. Right now, this
configuration will be useful for inter-subnet and intra-dc routing.

	dualstack-router setup solution

The router with 2 ports (one port for IPv4 subnet and another one for IPv6
subnet) is attached to a L3 BGPVPN instance.

The external network connectivity using L3 BGPVPN is not in the scope of this
specification.

Setup Presentation

Following drawing could help :

+---------------------+
| +-----------------+ |
| |VM1 | +---+
	Subnet C::4/64		
	Subnet a.b.c.1/i		
+-----------------+	OVS		
+-----------------+	A		
	VM2		
	Subnet C::5/64		
	Subnet a.b.c.2/i	+-+-+	
+-----------------+		+------+	
+---------------------+ | | |
 | +-MPLSoGRE tunnel for IPv4/IPv6-+ |
 | | |
 Vxlan | |
 Tunnel | |
 | | DCGW +--WAN--
+---------------------+ +-MPLSoGRE tunnel for IPv4/IPV6-+ |
| +-----------------+ | | | |
| |VM3 | +-+-+ +------+
	Subnet C::6/64		
	Subnet a.b.c.3/i		
+-----------------+	OVS		
+-----------------+	B		
	VM4		
	Subnet C::7/64		
	Subnet a.b.c.4/i	+---+	
+-----------------+			
+---------------------+

	We identify there 2 subnets:

	
	IPv4 subnet: a.b.c.x/i

	IPv6 subnet: C::x/64

Each VM will receive IPs from these two defined subnets.

Following schemes stand for conceptual representation of used neutron
configurations for each proposed solution.

setup 1: two singlestack routers, associated with one BGPVPN
 ("two-router" solution)

 +---------------+
 | Network N3 |
 +---------------+
 +-----+ +---------------+ | Subnet C IPv4 |
 | VM1 |-----| Network N | +---------------+
 +-----+ +--| | |
 | +---------------+ +---------------+
 | | Subnet A IPv4 |----| Router 1 |-----+
 | +---------------+ +---------------+ |
 | | Subnet B IPv6 | | | +--------+
 | +---------------+ +---------------+ | | | | |
 | | | Subnet E IPv4 | |---+ BGPVPN |
 | | +---------------+ | | |
 | | | Network N2 | | +--------+
 | | +---------------+ |
 | +---------------+ |
 | | Router 2 |--------------------------+
 +-----+ | +---------------+
 | VM2 |--+ |
 +-----+ +---------------+
 | Subnet D IPv6 |
 +---------------+
 | Network N1 |
 +---------------+

Network N gathers 2 subnetworks, subnet A IPv4 and subnet B IPv6. This makes
possible to create Neutron Ports, which will have 2 IP addresses and whose
attributes will inherit information (extraroutes, etc) from these 2 subnets A
and B.

Router1 and Router2 are connected to Subnet A and Subnet B respectively and will
be attached to a same L3 BGPVPN instance. Routers 1 and 2 can also have other
ports, but they always should stay singlestack routers, otherwise this
configuration will not be still supported. See the chapter “Configuration
impact” for more details.

setup 2: one dualstack router associated with one BGPVPN
 ("dualstack-router" solution)

 +-----+ +---------------+
 | VM1 |-----| Network N |
 +-----+ +--| |
 | +---------------+ +----------+ +--------+
 | | Subnet A IPv4 |---------| | | |
 | +---------------+ | Router 1 |---+ BGPVPN |
 | | Subnet B IPv6 |---------| | | |
 | +---------------+ +----------+ +--------+
 +-----+ |
 | VM2 |--+
 +-----+

Network N gathers 2 subnetworks, subnet A IPv4 and subnet B IPv6. This makes
possible to create Neutron Ports, which will have 2 IP addresses and whose
attributes will inherit information (extraroutes, etc) from these 2 subnets A
and B.

Router 1 is connected to Subnet A and Subnet B, and it will be attached to a L3
BGPVPN instance X. Other subnets can be added to Router 1, but this
configurations will not be still supported. See the chapter “Configuration
impact” for more details.

setup 3: networks associated with one BGPVPN

 +-----+ +------------------+ +--------+
 | VM1 |-----| Network N1 |------| BGPVPN |
 +-----+ +--| | | |
 | +------------------+ +--------+
 | | Subnet A IPv4 (1)| |
 +-----+ | +------------------+ |
 | VM2 |--+ | Subnet B IPv6 (2)| |
 +-----+ +------------------+ |
 |
 |
 +-----+ +------------------+ |
 | VM3 |-----+ Network N2 |----------+
 +-----+ | |
 +------------------+
 | Subnet C IPv4 (3)|
 +------------------+
 | Subnet D IPv6 (4)|
 +------------------+

Network N1 gathers 2 subnets, subnet A with IPv4 ethertype and subnet B with
IPv6 ethertype. When Neutron Port was created in the network N1, it has 1 IPv4
address and 1 IPv6 address. If user lately will add others subnets to the
Network N1 and will create the second Neutron Port, anyway the second VPN port,
constructed for a new Neutron Port will keep only IP addresses from subnets (1)
and (2). So valid network configuration in this case is a network with only 2
subnets: IPv4 and IPv6. See the chapter “Configuration impact” for more details.
Second dualstack network N2 can be added to the same L3 BGPVPN instance.

It is valid for all schemes: in dependency of chosen ODL configuration, either
ODL, or Neutron Dhcp Agent will provide IPv4 addresses for launched VMs. Please
note, that currently DHCPv6 is supported only by Neutron Dhcp Agent. ODL
provides only SLAAC GUA IPv6 address allocation for VMs launched in IPv6 private
subnets attached to a Neutron router.

It is to be noted that today, setup 3 can not be executed for VPNv6 with the above
allocation scheme previously illustrated. Indeed, only a neutron router is able to
send router advertisements, which is the corner stone for DHCPv6 allocation. Either
IPv6 fixed IPs will have to be used for this setup, or an extra enhancement for providing
router advertisements for such a configuration will have to be done. The setup 3 will be
revisited in future.

Known Limitations

Currently, from Openstack-based Opendaylight Bgpvpn driver point-of-view, there
is a check, where it does not allow more than one router to be associated to a
single L3 BGPVPN. This was done in Openstack, because actually entire ODL
modeling and enforcement supported only one router per L3 BGPVPN by design.

From Netvirt point of view, there are some limitations as well:

	We can not associate VPN port with both IPv4 and IPv6 Neutron Port addresses
at the same time. Currently, any first Neutron Port IP address is using to
create a VPN interface. If a Neutron Port possesses multiple IP Addresses,
regardless of ethertype, this port might not work properly with ODL.

	It is not possible to associate a single L3 BGPVPN instance with two different
routers.

Use Cases

There is no change in the use cases described in [6] and [7], except that the
single L3 BGPVPN instance serves both IPv4 and IPv6 subnets.

Inter DC Access

	two-router solution

IPv4 subnet Subnet A is added as a port in Router 1, IPv6 subnet Subnet B is
added as a port in Router 2. The same L3 BGPVPN instance will be associated with
both Router 1 and Router 2.

The L3 BGPVPN instance will distinguish ethertype of router ports and will
create appropriate FIB entries associated to its own VPN entry, so IPv4 and IPv6
enries will be gathered in the same L3 BGPVPN.

	dualstack-router solution

IPv4 subnet Subnet A is added as a port in Router 1, IPv6 subnet Subnet B is
added as a port in Router 1 as well. L3 BGPVPN instance will be associated with
Router 1.

The L3 BGPVPN instance will distinguish ethertype of routers ports and will
create appropriate FIB entries associated to its own VPN entry as well.
Appropriate BGP VRF context for IPv4 or IPv6 subnets will be also created.

External Internet Connectivity

External Internet Connectivity is not in the scope of this specification.

Proposed changes

All changes we can split in two main parts.

	Distinguish IPv4 and IPv6 VRF tables with the same RD/iRT/eRT

1.1 Changes in neutronvpn

To support a pair of IPv4 and IPv6 prefixes for each launched dualstack VM we
need to obtain information about subnets, where dualstack VM was spawned and
information about extraroutes, enabled for these subnets. Obtained information
will be stored in vmAdj and erAdjList objects respectively. These objects are
attributes of created for new dualstack VM VPN interface. Created VPN port
instance will be stored as part of already existed L3 BGPVPN node instance in
MDSAL DataStore.

When we update L3 BGPVPN instance node (associate/dissociated router or
network), we need to provide information about ethertype of new
attached/detached subnets, hence, Neutron Ports. New argument flags ipv4On
and ipv6On will be introduced for that in NeutronvpnManager function
API, called to update current L3 BGPVPN instance (updateVpnInstanceNode()
method). UpdateVpnInstanceNode() method is also called, when we create a new
L3 BGPVPN instance. So, to provide appropriate values for ipv4On, ipv6On
flags we need to parse subnets list. Then in dependency of these flags values we
will set either Ipv4Family attribute for the new L3 BGPVPN instance or
Ipv6Family attribute, or both attributes. Ipv4Family, Ipv6Family
attributes allow to create ipv4 or/and ipv6 VRF context for underlayed
vpnmanager and bgpmanager APIs.

1.2. Changes in vpnmanager

When L3 BGPVPN instance is created or updated, VRF tables must be created for
QBGP as well. What we want, is to introduce separate VRF tables, created
according to IPv4Family/IPv6Family VPN attributes, i.e. we want to
distinguish IPv4 and IPv6 VRF tables, because this will bring flexibility in
QBGP. For example, if QBGP receives an entry IPv6 MPLSVPN on a router, which is
expecting to receive only IPv4 entries, this entry will be ignored. The same for
IPv4 MPLSVPN entries respectively.

So, for creating VrfEntry objects, we need to provide information about L3
BGPVPN instance ethertype (Ipv4Family/Ipv6Family attribute), route
distinguishers list, route imports list and route exports lists
(RD/iRT/eRT). RD/iRT/eRT lists will be simply obtained from subnetworks,
attached to the chosen L3 BGPVPN. Presence of IPv4Family, IPv6Family in
VPN will be translated in following VpnInstanceListener class attributes:
afiIpv4, afiIpv6, safiMplsVpn, safiEvpn, which will be passed to
addVrf() and deleteVrf() bgpmanager methods for creating/deleting either
IPv4 VrfEntry or IPv6 VrfEntry objects.

RD/iRT/eRT lists will be the same for both IPv4 VrfEntry and IPv6
VrfEntry in case, when IPv4 and IPv6 subnetworks are attached to the same L3
BGPVPN instance.

1.3 Changes in bgpmanager

In bgpmanager we need to change signatures of addVrf() and deleteVrf()
methods, which will trigger signature changes of underlying API methods
addVrf() and delVrf() from BgpConfigurationManager class.

This allows BgpConfigurationManager class to create needed IPv4 VrfEntry and
IPv6 VrfEntry objects with appropriate AFI and SAFI values and finally
pass this appropriate AFI and SAFI values to BgpRouter.

BgpRouter represents client interface for thrift API and will create needed
IPv4 and IPv6 VRF tables in QBGP.

1.4 Changes in yang model

To support new attributes AFI and SAFI in bgpmanager classes, it should
be added in ebgp.yang model:

list address-families {
 key "afi safi";
 leaf afi {
 type uint32;
 mandatory "true";
 }
 leaf safi {
 type uint32;
 mandatory "true";
 }
}

1.5 Changes in QBGP thrift interface

To support separate IPv4 and IPv6 VRF tables in QBGP we need to change
signatures of underlying methods addvrf() and delvrf() in thrift API as
well. They must include the address family and subsequent address families
informations:

enum af_afi {
 AFI_IP = 1,
 AFI_IPV6 = 2,
}

i32 addVrf(1:layer_type l_type, 2:string rd, 3:list<string> irts, 4:list<string> erts,
 5:af_afi afi, 6:af_safi afi),
i32 delVrf(1:string rd, 2:af_afi afi, 3:af_safi safi)

	Support of two routers, attached to the same L3 BGPVPN

2.1 Changes in neutronvpn

two-router solution assumes, that all methods, which are using to create,
update, delete VPN interface or/and VPN instance must be adapted to a case, when
we have a list of subnetworks and/or list of router IDs to attach. Due to this,
appropriate changes need to be done in nvpnManager method APIs.

To support two-router solution properly, we also should check, that we do
not try to associate to L2 BGPVPN a router, that was already associated to that
VPN instance. Attached to L3 BGPVPN router list must contain maximum 2 router
IDs. Routers, which IDs are in the list must be only singlestack routers. More
information about supported router configurations is available below in chapter
“Configuration Impact”.

For each created in dualstack network Neutron Port we take only the last
received IPv4 address and the last received IPv6 address. So we also limit a
length of subnets list, which could be attached to a L3 BGPVPN instance, to two
elements. (More detailed information about supported network configurations is
available below in chapter “Configuration Impact”.) Two corresponding
Subnetmap objects will be created in NeutronPortChangeListener class for
attached subnets. A list with created subnetmaps will be passed as argument,
when createVpnInterface method will be called.

2.2 Changes in vpnmanager

VpnMap structure must be changed to support a list with router IDs. This
change triggers modifications in all methods, which retry router ID from
VpnMap object.

VpnInterfaceManager structure must be also changed, to support a list of VPN
instance name. So all methods, which gives VPN router ID from VpnInterfaceManager
should be modified as well.

As consequence, in operDS, a VpnInterfaceOpDataEntry structure is created, inherited
from VpnInterface in configDS. While the latter structure has a list of VPN instance
name, the former will be instantiated in operDS as many times as there are VPN instances.
The services that were handling VPNInterface in operDS, will be changed to handle
VPNInterfaceOpDataEntry. That structure will be indexed by InterfaceName and by VPNName.
The services include natservice, fibmanager, vpnmanager, cloud service chain.

Also, an augment structure will be done for VPNInterfaceOpDataEntry to contain the list
of operational adjacencies. As for VpnInterfaceOpDataEntry, the new AdjacenciesOp
structure will replace Adjacencies that are in operDS. Similarly, the services will be
modified for that.

Also, VPNInterfaceOpDataEntry will contain a VPNInterfaceState that stands for the
state of the VPN Interface. Code change will be done to reflect the state of the interface.
For instance, if VPNInstance is not ready, associated VPNInterfaceOpDataEntries will have
the state changed to INACTIVE. Reversely, the state will be changed to ACTIVE.

2.3 Changes in yang model

To provide change in VpnMap and in VpnInterfaceManager structures, described
above, we need to modify following yang files.

2.3.1 neutronvpn.yang

	Currently, container vpnMap holds one router-id for each L3 BGPVPN instance ID. A
change consists in replacing one router-id leaf by a leaf-list of router-ids.
Obviously, no more than two router-ids will be used.

	Container vpnMaps is used internally for describing a L3 BGPVPN. Change router-id
leaf by router-ids leaf-list in this container is also necessary.

--- a/vpnservice/neutronvpn/neutronvpn-api/src/main/yang/neutronvpn.yang
+++ b/vpnservice/neutronvpn/neutronvpn-api/src/main/yang/neutronvpn.yang
@@ -1,4 +1,3 @@
-
module neutronvpn {

namespace "urn:opendaylight:netvirt:neutronvpn";
@@ -120,7 +119,7 @@ module neutronvpn {
Format is ASN:nn or IP-address:nn.";
}

- leaf router-id {
+ leaf-list router-ids {
 type yang:uuid;
 description "UUID router list";
 }
@@ -173,7 +172,7 @@ module neutronvpn {
description "The UUID of the tenant that will own the subnet.";
}

- leaf router-id {
+ leaf-list router_ids {
 type yang:uuid;
 description "UUID router list";
 }

2.3.2 l3vpn.yang

	Currently, list vpn-interface holds a leaf vpn-instance-name, which is a
container for VPN router ID. A change consists in replacing leaf
vpn-instance-name by a leaf-list of VPN router IDs, because L3 BGPVPN instance can
be associated with two routers.
Obviously, no more than two VPN router-IDs will be stored in leaf-list
vpn-instance-name.

--- a/vpnservice/vpnmanager/vpnmanager-api/src/main/yang/l3vpn.yang
+++ b/vpnservice/vpnmanager/vpnmanager-api/src/main/yang/l3vpn.yang
 @@ -795,21 +795,21 @@

 list vpn-interface {
 key "name";
 max-elements "unbounded";
 min-elements "0";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
- leaf vpn-instance-name {
+ leaf-list vpn-instance-name {
 type string {
 length "1..40";
 }
 }
 leaf dpn-id {
 type uint64;
 }
 leaf scheduled-for-remove {
 type boolean;
 }

2.3.3 odl-l3vpn.yang

 augment "/odl-l3vpn:vpn-interface-op-data/odl-l3vpn:vpn-interface-op-data-entry" {
 ext:augment-identifier "adjacencies-op";
 uses adjacency-list;
 }

 container vpn-interface-op-data {
 config false;
 list vpn-interface-op-data-entry {
 key "name vpn-instance-name";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf vpn-instance-name {
 type string {
 length "1..40";
 }
 }
 max-elements "unbounded";
 min-elements "0";
 leaf dpn-id {
 type uint64;
 }
 leaf scheduled-for-remove {
 type boolean;
 }
 leaf router-interface {
 type boolean;
 }
 leaf vpn-interface-state {
 description
 "This flag indicates the state of this interface in the VPN identified by vpn-name.
 ACTIVE state indicates that this vpn-interface is currently associated to vpn-name
 available as one of the keys.
 INACTIVE state indicates that this vpn-interface has already been dis-associated
 from vpn-name available as one of the keys.";

 type enumeration {
 enum active {
 value "0";
 description
 "Active state";
 }
 enum inactive {
 value "1";
 description
 "Inactive state";
 }
 }
 default "active";
 }
 }
}

Pipeline changes

There is no change in the pipeline, regarding the changes already done in [6]
and [7].

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

The DC-GW has the information, that permits to detect an underlay destination IP
and MPLS label for a packet coming from the Internet or from anotherr DC-GW.

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) match: LportTag l3vpn service: set vpn-id=l3vpn-id =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ipv4-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ipv6-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Please, note that router-internal-interface-mac stands for MAC address of
the internal subnet gateway router port.

Configuration impact

	Limitations for router configurations

	1.1 Maximum number of singlestack routers that can be associated to a

	L3BGPVPN is limited to 2. Maximum number of dualstack routers that can be
associated with a BGPVPN is limited to 1.

	1.2 If a L3 BGPVPN has already associated with a one singlestack router and we

	try to associate this VPN instance again with a dualstack router, exception will
not be raised. But this configuration will not be valid.

	1.3 If a singlestack router is already associated to a L3 BGPVPN instance, and

	it has more than one port and we try to add a port to this router with another
ethertype, i.e. we try to make this router dualstack, exception will not be
raised. But this configuration will not be valid and supported.

	1.4 When a different ethertype port is added to a singlestack router, which already

	has only one port and which is already associated to a L3 BGPVPN instance,
singlestack router in this case becomes dualstack router with only two ports.
This router configuration is allowed by current specification.

	Limitations for subnetworks configurations

	2.1 Maximum numbers of different ethertype subnetworks associated to a one L3

	BGPVPN instance is limited to two. If a network contains more than two different
ethertype subnetworks, exception won’t be raised, but this configuration isn’t
supported.

	2.2 When we associate a network with a L3 BGPVPN instance, we do not care if

	subnetworks from this network are ports in some routers and these routers were
associated with other VPNs. This configuration is not considered as supported as
well.

	Limitations for number of IP addresses for a Neutron Port

The specification only targets dual-stack networks, that is to say with 1 IPv4 address and
one IPv6 address only.
For other cases, that is to say, adding subnetworks IPv4 or IPv6, will lead to undefined or
untested use cases. The multiple subnets test case would be handled in a future spec.

ECMP impact

ECMP - Equal Cost multiple path.

ECMP feature is currently provided for Neutron BGPVPN networks and described in
the specification [10]. 3 cases have been cornered to use ECMP feature for
BGPVPN usability.

	ECMP of traffic from DC-GW to OVS (inter-DC case)

	ECMP of traffic from OVS to DC-GW (inter-DC case)

	ECMP of traffic from OVS to OVS (intra-DC case)

In each case, traffic begins either at DC-GW or OVS node. Then it is sprayed to
end either at OVS node or DC-GW.

ECMP feature for Neutron BGPVPN networks was successfully (OK) tested with IPv4
L3 BGPVPN and IPv6 L3 BGPVPN (OK). the dual stack VM connectivity should embrace
ECMP

We’ve included this chapter to remind, that code changes for supporting
dualstack VMs should be tested against ECMP scenario as well.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Assume, that in the same provider network we have OpenStack installed with 1
controller and 2 compute nodes, DC-GW node and OpenDaylight node.

	create private tenant networks and subnetworks

	create Network N;

	declare Subnet A IPv4 for Network N;

	declare Subnet B IPv6 for Network N;

	create two ports in Network N;

	each port will inherit a dual IP configuration.

	create routers

	two-router solution
+ create two routers A and B, each router will be respectively connected to

IPv4 and IPv6 subnets;

	add subnet A as a port to router A;

	add subnet B as a port to router B.

	dualstack-router solution
+ create router A;
+ add subnet A as a port to router A;
+ add subnet B as a port to router A.

	Create MPLSoGRE tunnel between DPN and DCGW

POST /restconf/operations/itm-rpc:add-external-tunnel-endpoint
{
 "itm-rpc:input": {
 "itm-rpc:destination-ip": "dcgw_ip",
 "itm-rpc:tunnel-type": "odl-interface:tunnel-type-mpls-over-gre"
 }
}

	create the DC-GW VPN settings

	Create a L3 BGPVPN context. This context will have the same settings as in
[7].In dualstack case both IPv4 and IPv6 prefixes will be injected in the same
L3 BGPVPN.

	create the ODL L3 BGPVPN settings

	Create a BGP context. This step permits to start QBGP module depicted in [8]
and [9]. ODL has an API, that permits interfacing with that external software.
The BGP creation context handles the following:

	start of BGP protocol;

	declaration of remote BGP neighbor with the AFI/SAFI affinities. In our
case, VPNv4 and VPNv6 address families will be used.

	Create a L3 BGPVPN, this L3 BGPVPN will have a name and will contain VRF
settings.

	associate created L3 BGPVPN to router

	two-router solution: associate routers A and B with a created L3 BGPVPN;

	dualstack-router solution: associate router A with a created L3 BGPVPN.

	Spawn a VM in a created tenant network:

The VM will possess IPv4 and IPv6 addresses from subnets A and B.

	Observation: dump ODL BGP FIB entries

At ODL node, we can dump ODL BGP FIB entries and we should see entries for
both IPv4 and IPv6 subnets prefixes:

GET /restconf/config/odl-fib:fibEntries
{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid>
 },
 {
 "routeDistinguisher": <rd>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

A new option --afi and --safi will be added to command odl:bgp-vrf:

odl:bgp-vrf --rd <> --import-rt <> --export-rt <> --afi <1|2> --safi <value> add|del

Implementation

Assignee(s)

	Primary assignee:

	Philippe Guibert <philippe.guibert@6wind.com>

	Other contributors:

	
	Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>

	Noel de Prandieres <prandieres@6wind.com>

Work Items

	QBGP Changes

	BGPManager changes

	VPNManager changes

	NeutronVpn changes

Dependencies

Quagga from 6WIND is available at the following urls:

	https://github.com/6WIND/quagga

	https://github.com/6WIND/zrpcd

Testing

Unit Tests

Some L3 BGPVPN testing may have be done.
Complementary specification for other tests will be done.

Integration Tests

TBD

CSIT

Basically, IPv4 and IPv6 vpnservice functionality have to be validated by
regression tests with a single BGPVRF.

CSIT specific testing will be done to check dualstack VMs connectivity with
network configurations for two-router and dualstack-router solutions.

Two-router solution test suite:

	Create 2 Neutron Networks NET_1_2RT and NET_2_2RT.

	1.1 Query ODL restconf API to check that both Neutron Network objects were

	successfully created in ODL.

1.2 Update NET_1_2RT with a new description attribute.

	In each Neutron Network create one Subnet IPv4 and one Subnet IPv6:
SUBNET_V4_1_2RT, SUBNET_V6_1_2RT, SUBNET_V4_2_2RT, SUBNET_V6_2_2RT,
respectively.

	2.1 Query ODL restconf API to check that all Subnetwork objects were

	successfully created in ODL.

2.2 Update SUBNET_V4_2RT, SUBNET_V6_2RT with a new description attribute.

	Create 2 Routers: ROUTER_1 and ROUTER_2.

	3.1 Query ODL restconf API to check that all Router objects were successfully

	created in ODL.

	Add SUBNET_V4_1_2RT, SUBNET_V4_2_2RT to ROUTER_1 and SUBNET_V6_1_2RT,
SUBNET_V6_2_2RT to ROUTER_2.

	Create 2 security-groups: SG6_2RT and SG4_2RT. Add appropriate rules to allow
IPv6 and IPv4 traffic from/to created subnets, respectively.

	In network NET_1_2RT create Neutron Ports: PORT_11_2RT, PORT_12_2RT, attached
with security groups SG6_2RT and SG4_2RT; in network NET_2_2RT: PORT_21_2RT,
PORT_22_2RT, attached with security groups SG6_2RT and SG4_2RT.

	6.1 Query ODL restconf API to check, that all Neutron Port objects were

	successfully created in ODL.

6.2 Update Name attribute of PORT_11_2RT.

	Use each created Neutron Port to launch a VM with it, so we should have 4 VM
instances: VM_11_2RT, VM_12_2RT, VM_21_2RT, VM_22_2RT.

	7.1 Connect to NET_1_2RT and NET_2_2RT dhcp-namespaces, check that subnet

	routes were successfully propagated.

7.2 Check that all VMs have: one IPv4 address and one IPv6 addresses.

	Check IPv4 and IPv6 VMs connectivity within NET_1_2RT and NET_2_2RT.

	Check IPv4 and IPv6 VMs connectivity across NET_1_2RT and NET_2_2RT with
ROUTER_1 and ROUTER_2.

9.1 Check that FIB entries were created for spawned Neutron Ports.

	9.2 Check that all needed tables (19, 17, 81, 21) are presented in OVS

	pipelines and VMs IPs, gateways MAC and IP addresses are taken in account.

	Connect to VM_11_2RT and VM_21_2RT and add extraroutes to other IPv4 and
IPv6 subnets.

	10.1 Check other IPv4 and IPv6 subnets reachability from VM_11_2RT and

	VM_21_2RT.

	Delete created extraroutes.

	Delete and recreate extraroutes and check its reachability again.

	Create L3VPN and check with ODL REST API, that it was successfully created.

	Associate ROUTER_1 and ROUTER_2 with created L3VPN and check the presence of
router IDs in VPN instance with ODL REST API.

	Check IPv4 and IPv6 connectivity accross NET_1_2RT and NET_2_2RT with
associated to L3VPN routers.

	15.1 Check with ODL REST API, that VMs IP addresses are presented in VPN

	interfaces entries.

15.2 Verify OVS pipelines at compute nodes.

	15.3 Check the presence of VMs IP addresses in vrfTables objects with

	ODL REST API query.

	Dissociate L3VPN from ROUTER_1 and ROUTER_2.

	Delete ROUTER_1 and ROUTER_2 and its interfaces from L3VPN.

	Try to delete router with NonExistentRouter name.

	Associate L3VPN to NET_1_2RT.

	Dissociate L3VPN from NET_1_2RT.

	Delete L3VPN.

	Create multiple L3VPN.

	Delete multiple L3VPN.

Documentation Impact

Necessary documentation would be added if needed.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

[6] Spec to support IPv6 DC to Internet L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/54050/]

[7] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/50359/]

[8] Zebra Remote Procedure Call [https://github.com/6WIND/zrpcd/]

[9] Quagga BGP protocol [https://github.com/6WIND/zrpcd/]

Listener Dependency Helper

https://git.opendaylight.org/gerrit/#/q/topic:ListenerDepedencyHelper

Listener Dependency Helper makes “Data Store Listeners” independent from dependency
resolution.

Problem description

When a DataStore-Listener is fired with config add/update/delete event, as
part of listener processing it may try to read the other data store objects,
at times those datastore objects are not yet populated. In this scenario,
listener event processing has to be delayed (or) discarded, as the required
information is NOT entirely available. Later when the dependant data objects
are available, this listener event will not be triggered again by DataStore.

This results in some events not getting processed resulting in possible
data-path, bgp control and data plane failures.

Example: VpnInterface add() callback triggered by MD-SAL on vpnInterface
add. While processing add() callback, the corresponding vpnInstance is
expected to be present in MD-SAL operational DS; which means that vpnInstance
creation is complete (updating the vpn-targets in Operational DS and BGP).

Information: vpnInstance Config-DS listener thread has to process vpnInstance
creation and update vpnInstance in operational DS. vpnInstance creation
listener callback is handled by different listener thread.

Use Cases

Use Case 1: VPNInterfaces may get triggered before VPNInstance Creation.

Current implementation: Delay based waits for handling VPNInterfaces that may
get triggered before VPNInstance Creation(waitForVpnInstance()).

Use Case 2: VPNManager to handle successful deletion of VPN which has a
large number of BGP Routes (internal/external):

Current implementation: Delay-based logic on VPNInstance delete in
VPNManager (waitForOpRemoval()).

Use Case 3: VpnSubnetRouteHandler that may get triggered before VPNInstance
Creation.

Current implementation: Delay based waits in VpnSubnetRouteHandler which may
get triggered before VPNInstance Creation(waitForVpnInstance()).

Use Case 4: VPN Swaps (Internal to External and vice-versa)

Current implementation: Currently we support max of 100 VM’s for swap
(VpnInterfaceUpdateTimerTask, waitForFibToRemoveVpnPrefix()).

Proposed change

During Listener event call-back (AsyncDataTreeChangeListenerBase) from
DataStore, check for pending events in “Listener-Dependent-Queue” with
same InstanceIdentifier to avoid re-ordering.

Generic Queue Event Format:

key : Instance Identifier
eventType : Type of event (ADD/UPDATE/DELETE)
oldData : Data before modification (for Update event);
newData : Newly populated data
queuedTime : at which the event is queued to LDH.
lastProcessedTime : latest time at which dependency list verified
expiryTime : beyond which processing for event is useless
waitBetweenDependencyCheckTime : wait time between each dependency check
dependentIIDs : list of dependent InstanceIdentifiers
retryCount : max retries allowed.
databroker : data broker.
deferTimerBased : flag to choose between (timer/listener based).

For Use Case - 1: deferTimerBased shall be set to TRUE (as per the specification).

During processing of events (either directly from DataStore or from
“Listener-Dependent-Queue”), if there any dependent objects are yet to
populated; queue them to “Listener-Dependent-Queue”.

Expectations from Listener: Listener will push the callable instance to
“Listener-Dependent-Queue” if it cannot proceed with processing of the
event due to dependent objects/InstanceIdentifier and list of dependent IID’s.

There are two approaches the Listener Dependency check can be verified.

approach-1 Get the list of dependent-IID’s, query DataStore/Cache for

depenedency resolution at regular intervals using “timer-task-pool”. Once
all the dependent IID’s are resolved, call respective listener for
processing.

LDH-task-pool : pool of threads which query for dependency resolution READ
ONLY operation in DataStore. These threads are part of LDH common for all
listeners.

hasDependencyResolved(<InstanceIdentifier iid, Boolean shouldDataExist,
DataStoreType DSType> List), this shall return either Null list (or) the list
which has dependencies yet to be resolved. In case Listener has local-cache
implemented for set of dependencies, it can look at cache and identify. This
api will be called from LDH-task-pool of thread(s).

instanceIdentifier is the MD-SAL key value which need to be verified for
existence/non-existence of data.
Boolean shouldDataExist: shall be TRUE, if the Listener expects to have the
information exists in MD-SAL; False otherwise.

approach-2 Register Listener for wild-card path of IID’s.

When a Listener gets queued to “”Listener-Dependent-Queue”, LDH shall register
itself as Listener for the dependent IID’s (using wild-card-path/parent-node).
Once the listener gets fired, identify the dependent listeners waiting for the
Data. Once the dependent Listener is identified, if the dependent-IID list is
NULL. Trigger listener for processing the event.
LDH-task-pool shall unregister itself from wild-card-path/parent-node once there
are no dependent listeners on child-nodes.

Re-Ordering

The following scenario, when re-ordering can happen and avoidance of the same:

	Example: Key1 and Value1 are present in MD-SAL Data Store under Tree1, SubTree1

	(for say). Update-Listener for Key1 is dependent on Dependency1.

Key1 received UPDATE event (UPDATE-1) with value=x, at the time of processing
UPDATE-1, dependency is not available. So Listener Queued ‘UPDATE-1’ event to
“UnProcessed-EventQueue”.
same key1 received UPDATE event (UPDATE-2) with value=y, at the time of
processing UPDATE-2, dependency is available (Dependency1 is resolved), so it
goes and processes the event and updates value of Key1 to y.

	After WaitTime, event Key1, UPDATE-1 is de-queued from “UnProcessed-EventQueue”

	and put for processing in Lister. Listener processes it and updates the Key1
value to x. (which is incorrect, happened due to re-ordering of events).

To avoid reordering of events within listener, every listener call back shall
peek into “UnProcessed-EventQueue” to identify if there exists a pending event
with same key value; if so, either suppress (or)
queue the event. Below are event ordering expected from MD-SAL and respective
actions:

what to consider before processing the event to avoid re-ordering of events:

	Current Event| Queued Event| Action

	ADD | ADD | NOT EXPECTED

	ADD | REMOVE | QUEUE THE EVENT

	ADD | UPDATE | NOT EXPECTED

	UPDATE | ADD | QUEUE EVENT

	UPDATE | UPDATE | QUEUE EVENT

	UPDATE | REMOVE | NOT EXPECTED

	REMOVE | ADD | SUPPRESS BOTH

	REMOVE | UPDATE | EXECUTE REMOVE SUPPRESS UPDATE

	REMOVE | REMOVE | NOT EXPECTED

Pipeline changes

none

Yang changes

none

Configuration impact

none

Clustering considerations

In the two approaches mentioned:
1 - Timer: polling MD-SAL for dependency resolution may incur in more
number of reads.

2 - RegisterListener: RegisterListener may some impact at the time of
registering listener after which a notification message to cluser nodes.

Predined List of Listeners

perational/odl-l3vpn:vpn-instance-op-data/vpn-instance-op-data-entry/*
operational/odl-l3vpn:vpn-instance-op-data/vpn-instance-op-data-entry/

vpn-id/vpn-to-dpn-list/*

config/l3vpn:vpn-instances/*

Other Infra considerations

Security considerations

none

Scale and Performance Impact

this infra, shall improve scaling of application without having to wait for
dependent data store gets populated.
Performance shall remain intact.

Targeted Release

Alternatives

	use polling/wait mechanisms

Features to Install

REST API

CLI

CLI will be added for debugging purpose.

Implementation

Assignee(s)

Primary assignee:
Siva Kumar Perumalla (sivakumar.perumalla@ericsson.com)

Other contributors:
Suneelu Verma K.

Work Items

Dependencies

Testing

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Acronyms

IID: InstanceIdentifier

Table of Contents

	New SFC Classifier

	Terminology

	Problem description

	Use Cases

	Proposed change

	Integration with Genius

	Classifier and SFC Genius Services

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

New SFC Classifier

https://git.opendaylight.org/gerrit/#/q/topic:new-sfc-classifier

The current SFC Netvirt classifier only exists in the old Netvirt.
This blueprint explains how to migrate the old Netvirt classifier
to a new Netvirt classifier.

Terminology

	NSH - Network Service Headers, used as Service Chaining encapsulation. NSH RFC Draft [1]

	NSI - Network Service Index, a field in the NSH header used to indicate the next hop

	NSP - Network Service Path, a field in the NSH header used to indicate the service chain

	RSP - Rendered Service Path, a service chain.

	SFC - Service Function Chaining. SFC RFC [2] ODL SFC Wiki [3].

	SF - Service Function

	SFF - Service Function Forwarder

	VXGPE - VXLAN GPE (Generic Protocol Encapsulation)
Used as transport for NSH. VXGPE uses the same header format as traditional
VXLAN, but adds a Next Protocol field to indicate NSH will be the next header.
Traditional VXLAN implicitly expects the next header to be ethernet. VXGPE RFC
Draft [4].

Problem description

In the Boron release, an SFC classifier was implemented, but in the
old Netvirt. This blueprint intends to explain how to migrate the
old Netvirt classifier to a new Netvirt classifier, which includes
integrating the classifier and SFC with Genius.

The classifier is an integral part of Service Function Chaining (SFC).
The classifier maps client/tenant traffic to a service chain by matching
the packets using an ACL, and once matched, the classifier encapsulates
the packets using some sort of Service Chaining encapsulation. Currently,
the only supported Service Chaining encapsulation is NSH using VXGPE as
the transport. Very soon (possibly in the Carbon release) Vxlan will be
added as another encapsulation/transport, in which case NSH is not used.
The transport and encapsulation information to be used for the service
chain is obtained by querying the Rendered Service Path (RSP) specified
in the ACL action.

The transport and encapsulation used between the classifier and the SFF,
and also between SFFs will be VXGPE+NSH. The transport and encapsulation
used between the SFF and the SF will be Ethernet+NSH.

The following image details the packet headers used for Service Chaining
encapsulation with VXGPE+NSH.

[image: VXGPE+NSH and Eth+NSH packet headers]

Diagram source [5].

The problem was originally discussed using the slides in this link [12]
as a guideline. These slides are only intended for reference, and are not
to be used for implementation.

Use Cases

The main use case addressed by adding an SFC classifier to Netvirt
is to integrate SFC with Netvirt, thus allowing for Service Chaining
to be used in an OpenStack virtual deployment, such as the OPNFV
SFC project [6].

SFC works with both OVS and VPP virtual switches, and its even possible
to have a hybrid setup whereby Netvirt is hosted on OVS and SFC is hosted
on VPP switches. This blueprint only addresses the use of SFC with NetVirt
and OVS.

As mentioned previously, currently SFC works with VXGPE+NSH and Eth+NSH
transport/encapsulation, and soon SFC will work with VXLAN as the transport and
encapsulation. The first version of this implementation will focus on VXGPE+NSH
and Eth+NSH. In the future, when VXLAN is implemented in SFC, VXLAN can be added
to the Netvirt SFC classifier. Changes in the transport and encapsulation
used for service chains will have no affect on the Netvirt ACL model, since
the transport and encapsulation information is obtained via the RSP specified
in the RSP.

Proposed change

The existing old Netvirt SFC code can be found here:

	netvirt/openstack/net-virt-sfc/{api,impl}

Once the new Netvirt SFC classifier is implemented and working, the old
Netvirt SFC classifier code will be left in place for at least one release
cycle.

The new Netvirt SFC code base will be located here:

	netvirt/vpnservice/sfc/classifier/{api,impl}

The new Netvirt SFC classifier implementation will be new code. This
implementation is not to be confused with the existing Netvirt aclservice,
which is implemented for Security Groups. More details about the Genius
integration can be found in the following section, but the Netvirt SFC
classifier will be in a new Genius classifier service. The SFC
implementation is already integrated with Genius and is managed via
the Genius SFC service.

Integration with Genius

Genius [7], [8] is an OpenDaylight project that provides generic
infrastructure services to other OpenDaylight projects. New Netvirt makes
use of Genius and the new Netvirt classifier will also make use of Genius
services. Among these services, the interface manager, tunnel manager
and service binding services are of special relevance for the new
Netvirt classifier.

Genius interface manager handles an overlay of logical interfaces on
top of the data plane physical ports. Based on these logical interfaces,
different services/applications may be bound to them with certain
priority ensuring that there is no interference between them. Avoiding
interference between services/applications is called Application Coexistence
in Genius terminology. Typically, the effect of an application binding to
a logical interface is that downstream traffic from that interface will be
handed off to that application pipeline. Each application is then responsible
to either perform a termination action with the packet (i.e output or drop
action) or to return the packet back to Genius so that another application
can handle the packet. There is a predefined set of types of services that
can bind, and Classifier is one of them.

For OpenStack environments, Netvirt registers Neutron ports as logical
interfaces in the Genius interface manager. Classifying traffic for a
client/tenant ultimately relies on classifying traffic downstream from
their corresponding Neutron ports. As such, the Netvirt classifier will
bind on these interfaces as a newly defined Genius Classifier service
through the Genius interface manager. It was considered integrating the
Netvirt classifier with the existing Netvirt security groups, but the idea
was discarded due to the possible conflicts and other complications this
could cause.

Netvirt also keeps track of the physical location of these Neutron
ports in the data plane and updates the corresponding Genius logical
interface with this information. Services integrated with Genius may
consume this information to be aware of the physical location of a
logical interface in the data plane and it’s changes when a VM migrates
from one location to another. New Netvirt classifier will install the
classification rules based on the data plane location of the client/tenant
Neutron ports whose traffic is to be classified. On VM migration, the
classifier has to remove or modify the corresponding classification rules
accounting for this location change, which can be a physical node
change or a physical port change.

The classifier is responsible for forwarding packets to the first
service function forwarder (SFF) in the chain. This SFF may or may
not be on the same compute host as the classifier. If the classifier
and SFF are located on the same compute host, then the encapsulated
packet is sent to the SFF via the Genius Dispatcher and OpenFlow
pipelines. The packets can be forwarded to the SFF locally via the
ingress or egress classifier, and it will most likely be performed
by the egress classifier, but this decision will be determined at
implementation time.

In scenarios where the first SFF is on a different compute host than
the client node, the encapsulated packet needs to be forwarded to that
SFF through a tunnel port. Tunnels are handled by the Genius tunnel
manager (ITM) with an entity called transport zone: all nodes in a
transport zone will be connected through a tunnel mesh. Thus the
netvirt classifier needs to ensure that the classifier and the SFF
are included in a transport zone. The transport type is also specified
at the transport zone level and for NSH it needs to be VXGPE. The
classifier needs to make sure that this transport zone is handled
for location changes of client VMs. Likewise, SFC needs to make sure
the transport zone is handled for SF location changes.

The afore-mentioned Genius ITM is different than the tunnels currently
used by Netvirt. SFC uses VXGPE tunnels, and requests they be created
via the Genius ITM.

Classifier and SFC Genius Services

There will be 2 new Genius services created in Netvirt for the new
Netvirt SFC classifier, namely an “Ingress SFC Classifier” and an
“Egress SFC Classifier”. There will also be a Genius service for
the SFC SFF functionality that has already been created in the SFC
project.

The priorites of the services will be as follows:

Ingress Dispatcher:

	SFC - P1

	IngressACL - P2

	Ingress SFC Classifier - P3

	IPv6, IPv4, L2 - P4…

Egress Dispatcher:

	EgressACL - P1

	Egress SFC Classifier - P2

The Ingress SFC classifier will bind on all the Neutron VM ports of
the Neutron Network configured in the ACL. All packets received from
these Neutron ports will be sent to the Ingress SFC classifier via the
Genius Ingress Dispatcher, and will be subjected to ACL matching.
If there is no match, then the packets will be returned to the Genius
dispatcher so they can be sent down the rest of the Netvirt pipeline.
If there is an ACL match, then the classifier will encapsulate NSH,
set the NSP and NSI accordingly, initialize C1 and C2 to 0, and send
the packet down the rest of the pipeline. Since the SFC service (SFF)
will most likely not be bound to this same Neutron port, the packet
wont be processed by the SFF on the ingress pipeline. If the classifier
and first SFF are in the same node, when the packet is processed by
the egress SFC classifier, it will be resubmitted back to the Ingress SFC
service (SFC SFF) for SFC processing. If not, the packet will be sent to
the first SFF.

The Ingress SFC service (SFF) will bind on the Neutron ports for the Service
Functions and on the VXGPE ports. The Ingress SFC service will receive
packets from these Neutron and VXGPE ports, and also those that have
been resubmitted from the Egress SFC Classifier. It may be possible that
packets received from the SFs are not NSH encapsulated, so any packets
received by the Ingress SFC service that are not NSH encapsulated will
not be processed and will be sent back to the Ingress Dispatcher. For
the NSH packets that are received, the Ingress SFC service will calculate
the Next-Hop and modify either the VXGPE header if the next hop is a
different SFF, or modify the Ethernet encapsulation header if the next
hop is an SF on this same SFF. Once NSH packets are processed by the
Ingress SFC service, they will be sent to the Egress Dispatcher.

The Egress SFC classifier service is the final phase of what the Ingress
SFC classifier service started when an ACL match happens. The packet needed
to go down the rest of the pipeline so the original packet destination
can be calculated. The Egress SFC classifier will take the information
prepared by the rest of the Netvirt pipeline and store the TunIPv4Dst and
VNID of the destination compute host in C1 and C2 respectively. If the
packet is not NSH encapsulated, then it will be sent back to the Egress
Dispatcher. If the packet does have NSH encapsulation, then if C1/C2 is
0, then the fields will be populated as explained above. If the C1/C2
fields are already set, the packet will be sent out to either the Next
Hop SF or SFF.

At the last hop SFF, when the packet egresses the Service Chain, the
SFF will pop the NSH encapsulation and use the NSH C1 and C2 fields to
tunnel the packet to its destination compute host. If the destination
compute host is the same as the last hop SFF, then the packet will be
sent down the rest of the Netvirt pipeline so it can be sent to its
destination VM on this compute host. When the destination is local,
then the inport will probably have to be adjusted.

An example of how the last hop SFF routing works, imagine the following
diagram where packet from the Src VM would go from br-int1 to br-int3 to
reach the Dst VM when there is no service chaining employed. When the
packets from the Src VM are subjected to service chaining, the pipeline
in br-int1 need to calculate the the final destination is br-int3, and
the appropriate information needs to be set in the NSH C1/C2 fields.
Then the SFC SFF on br-int2, upon chain egress will use C1/C2 to send
the packets to br-int3 so they can ultimately reach the Dst VM.

 +----+
 | SF |
 +--+-+
 Route with SFC |
 C1/C2 has tunnel +-------+-----+
 info to br-int3 | |
 +------------>| br-int2 |----+
+-----+ | | SFF | | +-----+
| Src | | +-------------+ | | Dst |
| VM | | | | VM |
+--+--+ | | +--+--+
 | | v |
 | +-----+-------+ +-------------+ |
 +------>| | | |<-+
 | br-int1 +----------------->| br-int3 |
 | | Original route | |
 +-------------+ with no SFC +-------------+

Pipeline changes

The existing Netvirt pipeline will not change as a result of adding the
new classifier, other than the fact that the Ingress SFC classifier and
Egress SFC classifier Genius Services will be added, which will change
the Genius Service priorities as explained previously. The Genius
pipelines can be found here [10].

Ingress Classifier Flows:

The following flows are an approximation of what the Ingress Classifier
service pipeline will look like. Notice there are 2 tables defined as
follows:

	
	table 100: Ingress Classifier Filter table.

	
	Only allows Non-NSH packets to proceed in the classifier

	
	table 101: Ingress Classifier ACL table.

	
	Performs the ACL classification, and sends packets to Ingress Dispatcher

The final table numbers may change depending on how they are assigned
by Genius.

 // Pkt has NSH, send back to Ingress Dispatcher
cookie=0xf005ball00000101 table=100, n_packets=11, n_bytes=918,
 priority=550,nsp=42 actions=resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

 // Pkt does NOT have NSH, send to GENIUS_INGRESS_DISPATCHER_TABLE
cookie=0xf005ball00000102 table=100, n_packets=11, n_bytes=918,
 priority=5 actions=goto_table:GENIUS_INGRESS_DISPATCHER_TABLE

 // ACL match: if TCP port=80
 // Action: encapsulate NSH and set NSH NSP, NSI, C1, C2, first SFF
 // IP in Reg0, and send back to Ingress Dispatcher to be sent down
 // the Netvirt pipeline. The in_port in the match is derived from
 // the Neutron Network specified in the ACL match and identifies
 // the tenant/Neutron Network the packet originates from
cookie=0xf005ball00000103, table=101, n_packets=11, n_bytes=918,
 tcp,tp_dst=80, in_port=10
 actions=push_nsh,
 load:0x1->NXM_NX_NSH_MDTYPE[],
 load:0x0->NXM_NX_NSH_C1[],
 load:0x0->NXM_NX_NSH_C2[],
 load:0x2a->NXM_NX_NSP[0..23],
 load:0xff->NXM_NX_NSI[],
 load:0x0a00010b->NXM_NX_REG0[],
 resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

Egress Classifier Flows:

The following flows are an approximation of what the Egress Classifier
service pipeline will look like. Notice there are 3 tables defined as
follows:

	
	table 221: Egress Classifier Filter table.

	
	Only allows NSH packets to proceed in the egress classifier

	
	table 222: Egress Classifier NextHop table.

	
	Set C1/C2 accordingly

	
	table 223: Egress Classifier TransportEgress table.

	
	Final egress processing and egress packets

	Determines if the packet should go to a local or remote SFF

The final table numbers may change depending on how they are assigned
by Genius.

 // If pkt has NSH, goto table 222 for more processing
cookie=0x14 table=221, n_packets=11, n_bytes=918,
 priority=260,md_type=1
 actions=goto_table:222

 // Pkt does not have NSH, send back to Egress Dispatcher
cookie=0x14 table=110, n_packets=0, n_bytes=0,
 priority=250
 actions=resubmit(,GENIUS_EGRESS_DISPATCHER_TABLE)

 // Pkt has NSH, if NSH C1/C2 = 0, Set C1/C2 and overwrite TunIpv4Dst
 // with SFF IP (Reg0) and send to table 223 for egress
cookie=0x14 table=222, n_packets=11, n_bytes=918,
 priority=260,nshc1=0,nshc2=0
 actions=load:NXM_NX_TUN_IPV4_DST[]->NXM_NX_NSH_C1[],
 load:NXM_NX_TUN_ID[]->NXM_NX_NSH_C2[],
 load:NXM_NX_REG0[]->NXM_NX_TUN_IPV4_DST[]
 goto_table:223

 // Pkt has NSH, but NSH C1/C2 aleady set,
 // send to table 223 for egress
cookie=0x14 table=222, n_packets=11, n_bytes=918,
 priority=250
 actions=goto_table:223

 // Checks if the first SFF (IP stored in reg0) is on this node,
 // if so resubmit to SFC SFF service
cookie=0x14 table=223, n_packets=0, n_bytes=0,
 priority=260,nsp=42,reg0=0x0a00010b
 actions=resubmit(, SFF_TRANSPORT_INGRESS_TABLE)

cookie=0x14 table=223, n_packets=0, n_bytes=0,
 priority=250,nsp=42
 actions=outport:6

Ingress SFC Service (SFF) Flows:

The following flows are an approximation of what the Ingress SFC
service (SFF) pipeline will look like. Notice there are 3 tables
defined as follows:

	
	table 83: SFF TransportIngress table.

	
	Only allows NSH packets to proceed into the SFF

	tables 84 and 85 are not used for NSH

	
	table 86: SFF NextHop table.

	
	Set the destination of the next SF

	
	table 87: SFF TransportEgress table.

	
	Prepare the packet for egress

The final table numbers may change depending on how they are assigned
by Genius.

 // Pkt has NSH, send to table 86 for further processing
cookie=0x14 table=83, n_packets=11, n_bytes=918,
 priority=250,nsp=42
 actions=goto_table:86
 // Pkt does NOT have NSH, send back to Ingress Dispatcher
cookie=0x14 table=83, n_packets=0, n_bytes=0,
 priority=5
 actions=resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

 // Table not used for NSH, shown for completeness
cookie=0x14 table=84, n_packets=0, n_bytes=0,
 priority=250
 actions=goto_table:86

 // Table not used for NSH, shown for completeness
cookie=0x14 table=85, n_packets=0, n_bytes=0,
 priority=250
 actions=goto_table:86

 // Match on specific NSH NSI/NSP, Encapsulate outer Ethernet
 // transport. Send to table 87 for further processing.
cookie=0x14 table=86, n_packets=11, n_bytes=918,
 priority=550,nsi=255,nsp=42
 actions=load:0xb00000c->NXM_NX_TUN_IPV4_DST[],
 goto_table:87
 // The rest of the packets are sent to
 // table 87 for further processing
cookie=0x14 table=86, n_packets=8, n_bytes=836,
 priority=5
 actions=goto_table:87

 // Match on specific NSH NSI/NSP, C1/C2 set
 // prepare pkt for egress, send to Egress Dispatcher
cookie=0xba5eba1100000101 table=87, n_packets=11, n_bytes=918,
 priority=650,nsi=255,nsp=42
 actions=move:NXM_NX_NSH_MDTYPE[]->NXM_NX_NSH_MDTYPE[],
 move:NXM_NX_NSH_NP[]->NXM_NX_NSH_NP[],
 move:NXM_NX_TUN_ID[0..31]->NXM_NX_TUN_ID[0..31],
 load:0x4->NXM_NX_TUN_GPE_NP[],
 resubmit(,GENIUS_EGRESS_DISPATCHER_TABLE)

Yang changes

The api YANGs used for the classifier build on the ietf acl models from
the mdsal models.

Multiple options can be taken, depending on the desired functionality.
Depending on the option chosen, YANG changes might be required.

Assuming no YANG changes, SFC classification will be performed on all VMs
in the same neutron-network - this attribute is already present in the
YANG model. This is the proposed route, since it hits a sweet-spot
in the trade-off between functionality and risk.

If classifying the traffic from specific interfaces is desired, then the
YANG model would need to be updated, possibly by adding a list of interfaces
on which to classify.

Configuration impact

None

Clustering considerations

None

Other Infra considerations

Since SFC uses NSH, and the new Netvirt Classifier will need to add NSH
encapsulation, a version of OVS that supports NSH must be used. NSH has not
been officially accepted into the OVS project, so a branched version of OVS is
used. Details about the branched version of OVS can be found here [9].

Security considerations

None

Scale and Performance Impact

None

Targeted Release

This change is targeted for the ODL Carbon release.

Alternatives

None

Usage

The new Netvirt Classifier will be configured via the REST JSON configuration
mentioned in the REST API section below.

Features to Install

The existing old Netvirt SFC classifier is implemented in the following Karaf
feature:

odl-ovsdb-sfc

When the new Netvirt SFC classifier is implemented, the previous Karaf feature
will no longer be needed, and the following will be used:

odl-netvirt-sfc

REST API

The classifier REST API wont change from the old to the new Netvirt. The
following example is how the old Netvirt classifier is configured.

Defined in netvirt/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang

An ACL is created which specifies the matching criteria and the action,
which is to send the packets to an SFC RSP. Notice the “network-uuid” is
set. This is for binding the Netvirt classifier service to a logical port.
The procedure will be to query Genius for all the logical ports in that
network uuid, and bind the Netvirt classifier service to each of them.

If the RSP has not been created yet, then the classification can not
be created, since there wont be any information available about the
RSP. In this case, the ACL information will be buffered, and there
will be a separate listener for RSPs. When the referenced RSP is
created, then the classifier processing will continue.

URL: /restconf/config/ietf-access-control-list:access-lists/

{
 "access-lists": {
 "acl": [
 {
 "acl-name": "ACL1",
 "acl-type": "ietf-access-control-list:ipv4-acl",
 "access-list-entries": {
 "ace": [
 {
 "rule-name": "ACE1",
 "actions": {
 "netvirt-sfc-acl:rsp-name": "RSP1"
 },
 "matches": {
 "network-uuid" : "eccb57ae-5a2e-467f-823e-45d7bb2a6a9a",
 "source-ipv4-network": "192.168.2.0/24",
 "protocol": "6",
 "source-port-range": {
 "lower-port": 0
 },
 "destination-port-range": {
 "lower-port": 80
 }
 }
 }
]
 }
 }]}}

CLI

None.

Implementation

Assignee(s)

Primary assignee:

	<brady.allen.johnson@ericsson.com>

Other contributors:

	<brady.allen.johnson@ericsson.com>

	<david.suarez.fuentes@ericsson.com

	<jaime.camaano.ruiz@ericsson.com>

	<miguel.duarte.de.mora.barroso@ericsson.com>

Work Items

Simple scenario:

	Augment the provisioned ACL with the ‘neutron-network’ augmentation - [11]

	From the neutron-network, get a list of neutron-ports - the interfaces
connecting the VMs to that particular neutron-network. For each interface, do
as follows:

	Extract the DPN-ID of the node hosting the VM having that neutron-port

	Extract the DPN-ID of the node hosting the first SF of the RSP

	The forwarding logic to implement depends on the co-location of the client’s
VM with the first SF in the chain.

	When the VMs are co-located (i.e. located in the same host), the output
actions are to forward the packet to the first table of the SFC pipeline.

	When the VMs are not co-located (i.e. hosted on different nodes) it
is necessary to:

	Use genius RPCs to get the interface connecting 2 DPN-IDs. This will
return the tunnel endpoint connecting the compute nodes.

	Use genius RPCs to get the list of actions to reach the tunnel
endpoint.

Enabling VM mobility:

	Handle first SF mobility

Listen to RSP updates, where the only relevant
migration is when the first SF moves to another node (different DPN-IDs).
In this scenario, we delete the flows from the old node, and install the
newly calculated flows in the new one. This happens for each node having
an interface to classify attached to the provisioned neutron-network.

	Handle client VM mobility

Listen to client’s InterfaceState changes,
re-evaluating the Forwarding logic, since the tunnel interface used to reach
the target DPN-ID is different. This means the action list to implement it,
will also be different. The interfaces to listen to will be ones attached to
the provisioned neutron-network.

	Must keep all the nodes having interfaces to classify (i.e. nodes
having neutron-ports attached to the neutron-network) and the first SF host
node within the same transport zone. By listening to InterfaceState changes
of clients within the neutron-network & the first SF neutron ports, the
transport zone rendering can be redone.

TODO: is there a better way to identify when the transport zone
needs to be updated?

Dependencies

No dependency changes will be introduced by this change.

Testing

Unit Tests

Unit tests for the new Netvirt classifier will be modeled on the existing
old Netvirt classifier unit tests, and tests will be removed and/or added
appropriately.

Integration Tests

The existing old Netvirt Classifier Integration tests will need to be
migrated to use the new Netvirt classifier.

CSIT

The existing Netvirt CSIT tests for the old classifier will need to be
migrated to use the new Netvirt classifier.

Documentation Impact

User Guide documentation will be added by one of the following contributors:

	<brady.allen.johnson@ericsson.com>

	<david.suarez.fuentes@ericsson.com

	<jaime.camaano.ruiz@ericsson.com>

	<miguel.duarte.de.mora.barroso@ericsson.com>

References

[1] https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/

[2] https://datatracker.ietf.org/doc/rfc7665/

[3] https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

[4] https://datatracker.ietf.org/doc/draft-ietf-nvo3-vxlan-gpe/

[5] https://docs.google.com/presentation/d/1kBY5PKPETEtRA4KRQ-GvVUSLbJoojPsmJlvpKyfZ5dU/edit?usp=sharing

[6] https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home

[7] http://docs.opendaylight.org/en/stable-boron/user-guide/genius-user-guide.html

[8] https://wiki.opendaylight.org/view/Genius:Design_doc

[9] https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#Building_Open_vSwitch_with_VxLAN-GPE_and_NSH_support

[10] http://docs.opendaylight.org/en/latest/submodules/genius/docs/pipeline.html

[11] https://github.com/opendaylight/netvirt/blob/master/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang

[12] https://docs.google.com/presentation/d/1gN8GnpVGwku4mp1on7EBZiE41RI7lZ-FFmFS2QlUTKk/edit?usp=sharing

Table of Contents

	Netvirt Statistics

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Netvirt Statistics

https://git.opendaylight.org/gerrit/#/q/topic:netvirt-counters

The feature enables getting statistics on ports and switches.

Problem description

Being able to ask for statistics, given as input Netvirt identifiers.
It will enable filtering the results and having aggregated result.
In a later stage, it will be also used to get element to element counters.
Examples for possible filters: RX only, TX only, port + VLAN counters…

Use Cases

	Getting port counters, given its interface id (ietf interface name).

	Getting node counters, given its node id.

Port counters can be useful also to get statistics on traffic going into tunnels
when requesting it from the tunnel endpoint port.
In addition, there will also be support in aggregated results. For example:
Getting the total number of transmitted packets from a given switch.

Proposed change

Adding a new bundle named “statistics-plugin” to Netvirt.
This bundle will be responsible for converting the Netvirt unique identifiers into OpenFlow ones,
and will get the relevant statistics by using OpenFlowPlugin capabilities.
It will also be responsible of validating and filtering the results.
It will be able to provide a wide range of aggregated results in the future.

Work flow description: Once a port statistics request is received, it is translated to a port statistics request from openflow plugin. Once the transaction is received, the data is validated and translated to a user friendly data. The user will be notified if a timeout occurs.
In case of a request for aggregated counters, the user will receive a single counter result divided to groups (such as “bits”, “packets”…). The counters in each group will be the sum of all of the matching counters for all ports.
Neither one of the counter request nor the counter response will not be stored in the configuration database. Moreover, requests are not periodic and they are on demand only.

Pipeline changes

None

Yang changes

The new plugin introduced will have the following models:

 grouping result {
 list counterResult {
 key id;
 leaf id {
 type string;
 }
 list groups {
 key name;
 leaf name {
 type string;
 }
 list counters {
 key name;
 leaf name {
 type string;
 }
 leaf value {
 type uint64;
 }
 }
 }
 }
}

grouping filters {
 leaf-list groupFilters {
 type string;
 }
 leaf-list counterFilter {
 type string;
 }
}

rpc getNodeConnectorCounters {
 input {
 leaf portId {
 type string;
 }
 uses filters;
 }
 output {
 uses result;
 }
}

rpc getNodeCounters {
 input {
 leaf nodeId {
 type uint64;
 }
 }
 output {
 uses result;
 }
}

rpc getNodeAggregatedCounters {
 input {
 leaf nodeId {
 type uint64;
 }
 uses filters;
 }
 output {
 uses result;
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

Getting the statistics from OpenFlow flows: it would be possible to target the appropriate rules in ingress/egress tables, and count the hits on these flows. The reason we decided to work with ports instead is because we don’t want to be dependent on flow structure changes.

Usage

	Create router, network, VMS, VXLAN tunnel.

	Connect to one of the VMs, send ping ping to the other VM.

	Use REST to get the statistics.

Port statistics:

http://10.0.77.135:8181/restconf/operational/ietf-interfaces:interfaces-state/

Choose a port id and use the following REST in order to get the statistics:

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeConnectorCounters, input={"input":{"portId":"b99a7352-1847-4185-ba24-9ecb4c1793d9"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Node statistics:

http://10.0.77.135:8181/restconf/config/odl-interface-meta:bridge-interface-info/

Choose a node dpId and use the following REST in order to get the statistics:

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeCounters, input=
 {"input": { "portId": "b99a7352-1847-4185-ba24-9ecb4c1793d9","groups": [{ "name": "byte*",
 "counters": [{
 "name": "rec*",
 }, {
 "name": "transmitted*",
 }]
 }]
 }},
headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeAggregatedCounters, input=
 {"input": { "portId": "b99a7352-1847-4185-ba24-9ecb4c1793d9","groups": [{ "name": "byte*",
 "counters": [{
 "name": "rec*",
 }, {
 "name": "transmitted*",
 }]
 }]
 }},
headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Example for a filtered request:

10.0.77.135:8181/restconf/operations/statistics-plugin:getPortCounters, input={"input": {"portId":"b99a7352-1847-4185-ba24-9ecb4c1793d9"} }, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

An example for node connector counters result:

 {
 "output": {
 "counterResult": [
 {
 "id": "openflow:194097926788804:5",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 471000000
 },
 {
 "name": "durationSecondCount",
 "value": 693554
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 1455
 },
 {
 "name": "bytesTransmittedCount",
 "value": 14151299
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 9
 },
 {
 "name": "packetsTransmittedCount",
 "value": 9
 }
]
 }
]
 }
]
 }
}

An example for node counters result:

 {
 "output": {
 "counterResult": [
 {
 "id": "openflow:194097926788804:3",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 43000000
 },
 {
 "name": "durationSecondCount",
 "value": 694674
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 648
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:2",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 882000000
 },
 {
 "name": "durationSecondCount",
 "value": 698578
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 648
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:1",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 978000000
 },
 {
 "name": "durationSecondCount",
 "value": 698627
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 6896336558
 },
 {
 "name": "bytesTransmittedCount",
 "value": 161078765
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 35644913
 },
 {
 "name": "packetsTransmittedCount",
 "value": 35644913
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:LOCAL",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 339000000
 },
 {
 "name": "durationSecondCount",
 "value": 698628
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 0
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:5",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 787000000
 },
 {
 "name": "durationSecondCount",
 "value": 693545
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 1455
 },
 {
 "name": "bytesTransmittedCount",
 "value": 14151073
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 9
 },
 {
 "name": "packetsTransmittedCount",
 "value": 9
 }
]
 }
]
 }
]
 }
}

Features to Install

odl-netvirt-openflowplugin-genius-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Guy Regev <guy.regev@hpe.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/ZdoLQWoV/126-netvirt-statistics

	Support port counters.

	Support node counters.

	Support aggregated results.

	Support filters on results.

Dependencies

	Genius

	OpenFlow Plugin

	Infrautils

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Policy based path selection for multiple VxLAN tunnels

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Policy based path selection for multiple VxLAN tunnels

https://git.opendaylight.org/gerrit/#/q/topic:policy-based-path-selection

The purpose of this feature is to allow selection of primary and backup VxLAN tunnels for different types of VxLAN
encapsulated traffic between a pair of OVS nodes based on some predefined policy.

Egress traffic can be classified using different characteristics e.g. 5-tuple, ingress port+VLAN, service-name
to determine the best available path when multiple VxLAN endpoints are configured for the same destination.

Problem description

Today, netvirt is not able to classify traffic and route it over different tunnel endpoints based on a set of
predefined characteristics. This is an essential infrastructure for applications on top of netvirt
offering premium and personalized services.

Use Cases

	Forwarding of VxLAN traffic between hypervisors with multiple physical/logical ports.

Proposed change

The current implementation of transport-zone creation generates vtep elements based on the local_ip
definition in the other-config column of the Open_vSwitch schema where the local_ip value represents
the tunnel interface ip.
This feature will introduce a new other-config property local_ips.
local_ips will express the association between multiple tunnel ip addresses and multiple underlay networks using the following format:

local_ips=<tun1-ip>:<underlay1-net>,<tun2-ip>:<underlay2-net>,..,<tunN-ip>:<underlayN-net>

Upon transport-zone creation, if the local_ips configuration is present, full tunnel mesh will be created between
all TEP ips in the same underlay network considering the existing transport-zone optimizations i.e. tunnels will be created
only between compute nodes with at least one spawned VM in the same VxLAN network or between networks connected to
the same router if at least one of the networks is VxLAN-based.

Note that configuration of multiple tunnel IPs for the same DPN in the same underlay network is not a supported
as part of this feature and requires further enhancements in both ITM and the transport-zone model.

The underlay networks are logical entities that will be used to distigush between multiple uplinks for routing of egress
VxLAN traffic. They have no relation to Openstack and neutron networks definition.
A new yang module is introduced to model the association between different types of OVS egress VxLAN traffic and the
selected underlay network paths to output the traffic.

Policy-based path selection will be defined as a new egress tunnel service and depends on tunnel service binding
functionality detailed in [3].

The policy service will be bounded only for tunnels of type logical tunnel group defined in [2].

The service will classify different types of traffic based on a predefined set of policy rules to find the best
available path to route each type of traffic. The policy model will be agnostic to the specific topology details
including DPN ids, tunnel interface and logical interface names. The only reference from the policy model
to the list of preferred paths is made using underlay network-ids described earlier in this document.

Each policy references an ordered set of policy-routes. Each policy-route can be a basic-route
referencing single underlay-network or route-group composed of multiple underlay networks.
This set will get translated in each DPN to OF fast-failover group. The content of the buckets in each DPN depends
on the existing underlay networks configured as part of the local_ips in the specific DPN.

The order of the buckets in the fast-failover group depends on the order of the underlay networks in the policy-routes model.
policy-routes with similar set of routes in different order will be translated to different groups.

Each bucket in the fast-failover group can either reference a single tunnel or an additional OF select group
depending on the type of policy route as detailed in the following table:

	Policy route type

	Bucket actions

	OF Watch type

	Basic route

	load reg6(tun-lport)
resubmit(220)

	watch_port(tun-port)

	Route group

	goto_group(select-grp)

	watch_group(select-grp)

This OF select group does not have the same content as the select groups defined in [2] and the content of its’
buckets is based on the defined route-group elements and weights.

Logical tunnel will be bounded to the policy service if and only if there is at least one policy-route referencing
one or more of the underlay networks in the logical group.

This service will take precedence over the default weighted LB service defined in [2] for logical tunnel group interfaces.

Policy-based path selection and weighted LB service pipeline example:

cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,reg6=0x500
actions=load:0xe000500->NXM_NX_REG6[],write_metadata:0xe000500000000000/0xffffffff00000000,goto_table:230
cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,reg6=0xe000500
actions=load:0xf000500->NXM_NX_REG6[],write_metadata:0xf000500000000000/0xffffffff00000000,group:800002
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x600 actions=output:3
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x700 actions=output:4
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x800 actions=output:5
cookie=0x9000007, duration=0.546s, table=230, n_packets=0, n_bytes=0,priority=7,ip,
metadata=0x222e0/0xfffffffe,nw_dst=10.0.123.2,tp_dst=8080 actions=write_metadata:0x200/0xfffffffe,goto_table:231
cookie=0x9000008, duration=0.546s, table=230, n_packets=0, n_bytes=0,priority=0,resubmit(,220)
cookie=0x7000007, duration=0.546s, table=231, n_packets=0, n_bytes=0,priority=7,metadata=0x500000000200/0xfffff00fffffffe,
actions=group:800000
cookie=0x9000008, duration=0.546s, table=231, n_packets=0, n_bytes=0,priority=0,resubmit(,220)
group_id=800000,type=ff,
bucket=weight:0,watch_group=800001,actions=group=800001,
bucket=weight:0,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
group_id=800001,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:50,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
group_id=800002,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)

Each bucket in the fast-failover group will set the watch_port or watch_group property to monitor the
liveness of the OF port in case of basic-route and underlay group in case of route-group.
This will allow the OVS to route egress traffic only to the first live bucket in each fast-failover group.

The policy model rules will be based on IETF ACL data model [4]. The following enhancements are proposed for
this model to support policy-based path selection:

	
	Name

	Attributes

	Description

	OF implementation

	ACE matches

	ingress-interface

	name

	Policy match based on the
ingress port and optionally
the VLAN id

	Match lport-tag
metadata bits

	vlan-id

	service

	service-type

	Policy match based on the
service-name of L2VPN/L3VPN
e.g. ELAN name/VPN instance
name

	Match service/vrf-id
metadata bits depending
on the service-type

	service-name

	ACE actions

	set
policy-classifier

	policy-classifier

	Set ingress/egress classifier
that can be later used for
policy routing etc.
Only the egress classifier
will be used in this feature

	Set policy classifier
in the metadata service
bits

	direction

To enable matching on previous services in the pipeline e.g. L2/L3VPN, the egress service binding for tunnel interfaces
will be changed to preserve the metadata of preceding services rather than override it as done in the current
implementation.

Each policy-classifier will be associated with policy-route. The same route can be shared by multiple classifiers.

The policy service will also maintain counters on number of policy rules assigned to underlay network per dpn
in the operational DS.

Pipeline changes

	The following new tables will be added to support the policy-based path selection service:

	Table Name

	Matches

	Actions

	Policy classifier table (230)

	ACE matches

	ACE policy actions:
set policy-classifier

	Policy routing table (231)

	match
policy-classifier

	set FF group-id

	Each Access List Entry (ACE) composed of standard and/or policy matches and policy actions will be translated
to a flow in the policy classifier table.

Each policy-classifier name will be allocated with id from a new pool - POLICY_SERVICE_POOL.
Once a policy classifier has been determined for a given ACE match, the classifier-id will be set in the service
bits of the metadata.

	Classified traffic will be sent from the policy classifier table to the policy routing table where the classifier-id
will be matched to select the preferred tunnel using OF fast-failover group. Multiple classifiers can point to a
single group.

	The default flow in the policy tables will resubmit traffic with no predefined policy/set of routes back to the
egress dispatcher table in order to continue processing in the next bounded egress service.

	For all the examples below it is assumed that a logical tunnel group was configured for both ingress and egress DPNs.
The logical tunnel group is composed of { tun1, tun2, tun3 } and bound to a policy service.

Traffic between VMs on the same DPN

No pipeline changes required

L3 traffic between VMs on different DPNs

VM originating the traffic (Ingress DPN):

	Remote next hop group in the FIB table references the logical tunnel group.

	Policy service on the logical group selects the egress interface by classifying the traffic e.g. based on
destination ip and port.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm2-ip set dst-mac=vm2-mac tun-id=vm2-label reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: vpn-id=router-id,dst-ip=vm2-ip,dst-tcp-port=8080 set egress-classifier=clf1 =>

Egress policy indirection table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf1 =>

Logical tunnel tun1 FF group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tun1

VM receiving the traffic (Ingress DPN):

	No pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vm2-label =>

Local Next-Hop group: set dst-mac=vm2-mac,reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

SNAT traffic from non-NAPT switch

VM originating the traffic is non-NAPT switch:

	NAPT group references the logical tunnel group.

	Policy service on the logical group selects the egress interface by classifying the traffic based on
the L3VPN service id.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group set tun-id=router-id reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: vpn-id=router-id set egress-classifier=clf2 =>

Policy routing table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf2 =>

Logical tunnel tun2 FF group set reg6=tun2-lport-tag =>

Egress table (220) match: reg6=tun2-lport-tag output to tun2

Traffic from NAPT switch punted to controller:

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=router-id =>

Outbound NAPT table (46) set vpn-id=router-id, punt-to-controller

L2 unicast traffic between VMs in different DPNs

VM originating the traffic (Ingress DPN):

	ELAN DMAC table references the logical tunnel group

	Policy service on the logical group selects the egress interface by classifying the traffic based on
the ingress port.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set tun-id=vm2-lport-tag reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: lport-tag=vm1-lport-tag set egress-classifier=clf3 =>

Policy routing table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf3 =>

Logical tunnel tun1 FF group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tun1

VM receiving the traffic (Ingress DPN):

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

L2 multicast traffic between VMs in different DPNs with undefined policy

VM originating the traffic (Ingress DPN):

	ELAN broadcast group references the logical tunnel group.

	Policy service on the logical group has no classification for this type of traffic. Fallback to the default
logical tunnel service - weighted LB [2].

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) =>

ELAN DMAC table (52) match: elan-tag=vxlan-net-tag =>

ELAN BC group goto_group=elan-local-group, set tun-id=vxlan-net-tag reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag set reg6=default-egress-service&logical-tun-lport-tag =>

Policy classifier table (230) =>

Egress table (220) match: reg6=default-egress-service&logical-tun-lport-tag =>

Logical tunnel LB select group set reg6=tun2-lport-tag =>

Egress table (220) match: reg6=tun2-lport-tag output to tun2

VM receiving the traffic (Ingress DPN):

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vxlan-net-tag =>

ELAN local BC group set tun-id=vm2-lport-tag =>

ELAN filter equal table (55) match: tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

Yang changes

The following yang modules will be added to support policy-based routing:

Policy Service Yang

policy-service.yang define policy profiles and add augmentations on top of
ietf-access-control-list:access-lists to apply policy classifications on access control entries.

module policy-service {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:policy";
 prefix "policy";

 import ietf-interfaces { prefix if; }

 import ietf-access-control-list { prefix ietf-acl; }

 import aclservice { prefix acl; }

 import yang-ext { prefix ext; }

 import opendaylight-l2-types { prefix ethertype; revision-date "2013-08-27"; }

 description
 "Policy Service module";

 revision "2017-02-07" {
 description
 "Initial revision";
 }

 identity policy-acl {
 base ietf-acl:acl-base;
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches" {
 ext:augment-identifier "ingress-interface";
 leaf name {
 type if:interface-ref;
 }

 leaf vlan-id {
 type ethertype:vlan-id;
 }
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches" {
 ext:augment-identifier "service";
 leaf service-type {
 type identityref {
 base service-type-base;
 }
 }

 leaf service-name {
 type string;
 }
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:actions" {
 ext:augment-identifier "set-policy-classifier";
 leaf policy-classifier {
 type leafref {
 path "/policy-profiles/policy-profile/policy-classifier";
 }
 }

 leaf direction {
 type identityref {
 base acl:direction-base;
 }
 }
 }

 container underlay-networks {
 list underlay-network {
 key "network-name";
 leaf network-name {
 type string;
 }

 leaf network-access-type {
 type identityref {
 base access-network-base;
 }
 }

 leaf bandwidth {
 type uint64;
 description "Maximum bandwidth. Units in byte per second";
 }

 list dpn-to-interface {
 config false;
 key "dp-id";
 leaf dp-id {
 type uint64;
 }

 list tunnel-interface {
 key "interface-name";
 leaf interface-name {
 type string;
 }
 }
 }

 list policy-profile {
 config false;
 key "policy-classifier";
 leaf policy-classifier {
 type string;
 }
 }
 }
 }

 container underlay-network-groups {
 list underlay-network-group {
 key "group-name";
 leaf group-name {
 type string;
 }

 list underlay-network {
 key "network-name";
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }

 leaf weight {
 type uint16;
 default 1;
 }
 }

 leaf bandwidth {
 type uint64;
 description "Maximum bandwidth of the group. Units in byte per second";
 }
 }
 }

 container policy-profiles {
 list policy-profile {
 key "policy-classifier";
 leaf policy-classifier {
 type string;
 }

 list policy-route {
 key "route-name";
 leaf route-name {
 type string;
 }

 choice route {
 case basic-route {
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }
 }

 case route-group {
 leaf group-name {
 type leafref {
 path "/underlay-network-groups/underlay-network-group/group-name";
 }
 }
 }
 }
 }

 list policy-acl-rule {
 config false;
 key "acl-name";
 leaf acl-name {
 type leafref {
 path "/ietf-acl:access-lists/ietf-acl:acl/ietf-acl:acl-name";
 }
 }

 list ace-rule {
 key "rule-name";
 leaf rule-name {
 type leafref {
 path "/ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:rule-name";
 }
 }
 }
 }
 }
 }

 container policy-route-counters {
 config false;

 list underlay-network-counters {
 key "network-name";
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }

 list dpn-counters {
 key "dp-id";
 leaf dp-id {
 type uint64;
 }

 leaf counter {
 type uint32;
 }
 }

 list path-counters {
 key "source-dp-id destination-dp-id";
 leaf source-dp-id {
 type uint64;
 }

 leaf destination-dp-id {
 type uint64;
 }

 leaf counter {
 type uint32;
 }
 }
 }
 }

 identity service-type-base {
 description "Base identity for service type";
 }

 identity l3vpn-service-type {
 base service-type-base;
 }

 identity l2vpn-service-type {
 base service-type-base;
 }

 identity access-network-base {
 description "Base identity for access network type";
 }

 identity mpls-access-network {
 base access-network-base;
 }

 identity docsis-access-network {
 base access-network-base;
 }

 identity pon-access-network {
 base access-network-base;
 }

 identity dsl-access-network {
 base access-network-base;
 }

 identity umts-access-network {
 base access-network-base;
 }

 identity lte-access-network {
 base access-network-base;
 }
}

Policy service tree view

module: policy-service
 +--rw underlay-networks
 | +--rw underlay-network* [network-name]
 | +--rw network-name string
 | +--rw network-access-type? identityref
 | +--rw bandwidth? uint64
 | +--ro dpn-to-interface* [dp-id]
 | | +--ro dp-id uint64
 | | +--ro tunnel-interface*
 | | +--ro interface-name? string
 | +--ro policy-profile* [policy-classifier]
 | +--ro policy-classifier string
 +--rw underlay-network-groups
 | +--rw underlay-network-group* [group-name]
 | +--rw group-name string
 | +--rw underlay-network* [network-name]
 | | +--rw network-name -> /underlay-networks/underlay-network/network-name
 | | +--rw weight? uint16
 | +--rw bandwidth? uint64
 +--rw policy-profiles
 | +--rw policy-profile* [policy-classifier]
 | +--rw policy-classifier string
 | +--rw policy-route* [route-name]
 | | +--rw route-name string
 | | +--rw (route)?
 | | +--:(basic-route)
 | | | +--rw network-name? -> /underlay-networks/underlay-network/network-name
 | | +--:(route-group)
 | | +--rw group-name? -> /underlay-network-groups/underlay-network-group/group-name
 | +--ro policy-acl-rule* [acl-name]
 | +--ro acl-name -> /ietf-acl:access-lists/acl/acl-name
 | +--ro ace-rule* [rule-name]
 | +--ro rule-name -> /ietf-acl:access-lists/acl/access-list-entries/ace/rule-name
 +--ro policy-route-counters
 +--ro underlay-network-counters* [network-name]
 +--ro network-name -> /underlay-networks/underlay-network/network-name
 +--ro dpn-counters* [dp-id]
 | +--ro dp-id uint64
 | +--ro counter? uint32
 +--ro path-counters* [source-dp-id destination-dp-id]
 +--ro source-dp-id uint64
 +--ro destination-dp-id uint64
 +--ro counter? uint32
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches:
 +--rw name? if:interface-ref
 +--rw vlan-id? ethertype:vlan-id
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches:
 +--rw service-type? identityref
 +--rw service-name? string
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:actions:
 +--rw policy-classifier? -> /policy-profiles/policy-profile/policy-classifier
 +--rw direction? identityref

Configuration impact

This feature introduces a new other_config parameter local_ips to support multiple ip:network
associations as detailed above.
Compatibility with the current local_ip parameter will be maintained but if both are present, local_ips
would take presedence over local_ip.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Features to Install

odl-netvirt-openstack

REST API

Sample JSON data

Create policy rule

URL: restconf/config/ietf-access-control-list:access-lists

The following REST will create rule to classify all http traffic to ports 8080-8181 from specific vpn-id

{
 "access-lists": {
 "acl": [
 {
 "acl-type": "policy-service:policy-acl",
 "acl-name": "http-policy",
 "access-list-entries": {
 "ace": [
 {
 "rule-name": "http-ports",
 "matches": {
 "protocol": 6,
 "destination-port-range": {
 "lower-port": 8080,
 "upper-port": 8181
 },
 "policy-service:service-type": "l3vpn",
 "policy-service:service-name": "71f7eb47-59bc-4760-8150-e5e408d2ba10"
 },
 "actions": {
 "policy-service:policy-classifier" : "classifier1",
 "policy-service:direction" : "egress"
 }
 }
]
 }
 }
]
 }
 }
 }

Create underlay networks

URL: restconf/config/policy-service:underlay-networks

The following REST will create multiple underlay networks with different access types

{
 "underlay-networks": {
 "underlay-network": [
 {
 "network-name": "MPLS",
 "network-access-type": "policy-service:mpls-access-network"
 },
 {
 "network-name": "DLS1",
 "network-access-type": "policy-service:dsl-access-network"
 },
 {
 "network-name": "DSL2",
 "network-access-type": "policy-service:dsl-access-network"
 }
]
 }
}

Create underlay group

URL: restconf/config/policy-service:underlay-network-groups

The following REST will create group for the DSL underlay networks

{
 "underlay-network-groups": {
 "underlay-network-group": [
 {
 "group-name": "DSL",
 "underlay-network": [
 {
 "network-name": "DSL1",
 "weight": 75
 },
 {
 "network-name": "DSL2",
 "weight": 25
 }
]
 }
]
 }
}

Create policy profile

URL: restconf/config/policy-service:policy-profiles

The following REST will create profile for classifier1 with multiple policy-routes

{
 "policy-profiles": {
 "policy-profile": [
 {
 "policy-classifier": "classifier1",
 "policy-route": [
 {
 "route-name": "primary",
 "network-name": "MPLS"
 },
 {
 "route-name": "backup",
 "group-name": "DSL"
 }
]
 }
]
 }
}

CLI

None

Implementation

Assignee(s)

	Primary assignee:

	Tali Ben-Meir <tali@hpe.com>

	Other contributors:

	Yair Zinger <yair.zinger@hpe.com>

Work Items

Trello card: https://trello.com/c/Uk3yrjUG/25-multiple-vxlan-endpoints-for-compute

	Transport-zone creation for multiple tunnels based on underlay network definitions

	Extract ACL flow programming to common location so it can be used by the policy service

	Create policy OF groups based on underlay network/group definitions

	Create policy classifier table based on ACL rules

	Create policy routing table

	Bind policy service to logical tunnels

	Maintain policy-route-counters per dpn/dpn-path

Dependencies

None

Testing

Unit Tests

Integration Tests

The test plan defined for CSIT below could be reused for integration tests.

CSIT

Adding multiple ports to the CSIT setups is challenging due to rackspace limitations.
As a result, the test plan defined for this feature uses white-box methodology and not verifying actual traffic was
sent over the tunnels.

Policy routing with single tunnel per access network type

	Set local_ips to contain tep ips for networks underlay1 and underlay2

	Each underlay network will be defined with different access-network-type

	Create the following policy profiles

	Profile1: policy-classifier=clf1, policy-routes=underlay1, underlay2

	Profile2: policy-classifier=clf2, policy-routes=underlay2, underlay1

	Create the following policy rules

	Policy rule 1: dst_ip=vm2_ip,dst_port=8080 set_policy_classifier=clf1

	Policy rule 2: src_ip=vm1_ip set_policy_classifier=clf2

	Policy rule 3: service-type=l2vpn service-name=elan-name set_policy_classifier=clf1

	Policy rule 4: service-type=l3vpn service-name=router-name set_policy_classifier=clf2

	Policy rule 5: ingress-port=vm3_port set_policy_classifier=clf1

	Policy rule 6: ingress-port=vm4_port vlan=vlan-id set_policy_classifier=clf2

	Verify policy service flows/groups for all policy rules

	Verify flows/groups removal after the profiles were deleted

Policy routing with multiple tunnels per access network type

	Set local_ips to contain tep ips for networks underlay1..``underlay4``

	underlay1, underlay2 and underlay3, underlay4 are from the same access-network-type

	Create the following policy profiles where each route can be either group or basic route

	Profile1: policy-classifier=clf1, policy-routes={underlay1, underlay2}, {underlay3,underlay4}

	Profile2: policy-classifier=clf2, policy-routes={underlay3,underlay4}, {underlay1, underlay2}

	Profile3: policy-classifier=clf3, policy-routes=underlay1, {underlay3,underlay4}

	Profile4: policy-classifier=clf4, policy-routes={underlay1, underlay2}, underlay3

	Profile5: policy-classifier=clf5, policy-routes={underlay1, underlay2}

	Profile6: policy-classifier=clf6, policy-routes=underlay4

	Create the following policy rules

	Policy rule 1: dst_ip=vm2_ip,dst_port=8080 set_policy_classifier=clf1

	Policy rule 2: src_ip=vm1_ip set_policy_classifier=clf2

	Policy rule 3: service-type=l2vpn service-name=elan-name set_policy_classifier=clf3

	Policy rule 4: service-type=l3vpn service-name=router-name set_policy_classifier=clf4

	Policy rule 5: ingress-port=vm3_port set_policy_classifier=clf5

	Policy rule 6: ingress-port=vm4_port vlan=vlan-id set_policy_classifier=clf6

	Verify policy service flows/groups for all policy rules

	Verify flows/groups removal after the profiles were deleted

Documentation Impact

Netvirt documentation needs to be updated with description and examples of policy service configuration

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] Load balancing and high availability of multiple VxLAN tunnels [https://git.opendaylight.org/gerrit/#/c/50779]

[3] Service Binding On Tunnels [https://git.opendaylight.org/gerrit/#/c/51270]

[4] Network Access Control List (ACL) YANG Data Model [https://tools.ietf.org/html/draft-ietf-netmod-acl-model-09]

Table of Contents

	Support for QoS Alert

	Problem description

	Use Cases

	Proposed change

	Log file format

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support for QoS Alert

https://git.opendaylight.org/gerrit/#/q/topic:qos-alert

This feature adds support to monitor the per port packet drop counts when QoS rate limit rule is
applied.

Problem description

If QoS bandwidth policy is applied on a neutron port, all packets exceeding the rate limit are
dropped by the switch. This spec proposes a new service to monitor the packet drop ratio and log
the alert message if packet drop ratio is greater than the configured threshold value.

Use Cases

Periodically monitor the port statistics of neutron ports having bandwidth limit rule and log an
alert message in a log file if packet drop ratio cross the threshold value. Log file can be
analyzed offline later to check the health/diagnostics of the network.

Proposed change

Proposed new service will use the RPC
/operations/opendaylight-direct-statistics:get-node-connector-statistics provided by
openflowplugin to retrieve port statistics directly from switch by polling at regular interval.
Polling interval is configurable with default value of 2 minutes.

Port packet drop ratio is calculated using delta of two port statistics counters
rx_dropped and rx_received between the sample interval.

packet drop ratio = 100 * (rx_dropped / (rx_received + rx_dropped))

An message is logged if packet drop ratio is greater than the configured threshold value.

Existing logging framework log4j shall be used to log the alert messages in the log file.
A new appender qosalertmsg shall be added in org.ops4j.pax.logging.cfg to define the
logging properties.

Log file format

2017-01-17 01:17:49,550 Packet drop threshold hit for qos policy qospolicy1 with qos-id qos-2dbf02f6-dcd1-4c13-90ee-6f727e21fe8d for port port-3afde68d-1103-4b8a-a38d-9cae631f7d67 on network network-563f9610-dd91-4524-ae23-8ec3c32f328e rx_received 4831 rx_dropped 4969
2017-01-17 01:17:49,550 Packet drop threshold hit for qos policy qospolicy2 with qos-id qos-cb7e5f67-2552-4d49-b534-0ce90ebc8d97 for port port-09d3a437-f4a4-43eb-8655-85df8bbe4793 on network network-389532a1-2b48-4ba9-9bcd-c1705d9e28f9 rx_received 3021 rx_dropped 4768
2017-01-17 01:19:49,339 Packet drop threshold hit for qos policy qospolicy1 with qos-id qos-2dbf02f6-dcd1-4c13-90ee-6f727e21fe8d for port port-3afde68d-1103-4b8a-a38d-9cae631f7d67 on network network-563f9610-dd91-4524-ae23-8ec3c32f328e rx_received 3837 rx_dropped 3961
2017-01-17 01:19:49,339 Packet drop threshold hit for qos policy qospolicy2 with qos-id qos-cb7e5f67-2552-4d49-b534-0ce90ebc8d97 for port port-09d3a437-f4a4-43eb-8655-85df8bbe4793 on network network-389532a1-2b48-4ba9-9bcd-c1705d9e28f9 rx_received 2424 rx_dropped 2766

Pipeline changes

None.

Yang changes

A new yang file shall be created for qos-alert configuration as specified below:

qos-alert-config.yang

module qosalert-config {

 yang-version 1;
 namespace "urn:opendaylight:params:xml:ns:yang:netvirt:qosalert:config";
 prefix "qosalert";

 revision "2017-01-03" {
 description "Initial revision of qosalert model";
 }

 description "This YANG module defines QoS alert configuration.";

 container qosalert-config {

 config true;

 leaf qos-alert-enabled {
 description "QoS alert enable-disable config knob";
 type boolean;
 default false;
 }

 leaf qos-drop-packet-threshold {
 description "QoS Packet drop threshold config. Specified as % of rx packets";
 type uint8 {
 range "1..100";
 }
 default 5;
 }

 leaf qos-alert-poll-interval {
 description "Polling interval in minutes";
 type uint16 {
 range "1..3600";
 }
 default 2;
 }

 }
}

Configuration impact

Following new parameters shall be made available as configuration. Initial or default configuration
is specified in netvirt-qosservice-config.xml

	Sl No.

	configuration

	Description

	
	

	qos-alert-enabled

	configuration parameter to enable/disable the alerts

	
	

	qos-drop-packet-threshold

	Drop percentage threshold configuration.

	
	

	qos-alert-poll-interval

	Polling interval in minutes

Logging properties like log file name, location, size and maximum number of backup files are
configured in file org.ops4j.pax.logging.cfg

Clustering considerations

In cluster setup, only one instance of qosalert service shall poll for port statistics.
Entity owner service (EOS) shall be used to determine the owner of service.

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

QoS Alert Service minimizes scale and performance impact by following:

	Proposed service uses the direct-statistics RPC instead of OpenflowPlugin statistics-manager. This
is lightweight because only node-connector statistics are queried instead of all statistics.

	Polling frequency is quite slow. Default polling interval is two minutes and minimum allowed
value is 1 minute.

Targeted Release

Carbon.

Alternatives

N.A.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

Put Qos Alert Config

Following API puts Qos Alert Config.

Method: POST

URI: /config/qosalert-config:qosalert-config

Parameters:

	Parameter

	Type

	Value range

	Comments

	qos-alert-enabled

	Boolean

	true/false

	Optional (default false)

	qos-drop-packet-threshold

	Uint16

	1..100

	Optional (default 5)

	qos-alert-poll-interval

	Uint16

	1..65535

	Optional time interval in minute(s) (default 2)

Example:
.. code-block:: json

	{

	
“input”:
{

“qos-alert-enabled”: true,

“qos-drop-packet-threshold”: 35,

“qos-alert-poll-interval”: 5

}

}

CLI

Following new karaf CLIs are added

qos:enable-qos-alert <true|false>

qos:drop-packet-threshold <threshold value in %>

qos:alert-poll-interval <polling interval in minutes>

Implementation

Assignee(s)

	Primary assignee:

	
	Arun Sharma (arun.e.sharma@ericsson.com)

	Other contributors:

	
	Ravi Sundareswaran (ravi.sundareswaran@ericsson.com)

	Mukta Rani (mukta.rani@tcs.com)

Work Items

Trello Link <https://trello.com/c/780v28Yw/148-netvirt-qos-alert>

	Adding new yang file and listener.

	Adding new log4j appender in odlparent org.ops4j.pax.logging.cfg file.

	Retrieval of port statistics data using the openflowplugin RPC.

	Logging alert message into the log file.

	UT and CSIT

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

Unit Tests

Standard UTs will be added.

Integration Tests

N.A.

CSIT

Following new CSIT tests shall be added

	Verify that alerts are generated if drop packets percentage is more than the configured threshold
value.

	Verify that alerts are not generated if drop packets percentage is less than threshold value.

	Verify that alerts are not generated when qos-alert-enabled if false irrespective of drop
packet percentage.

Documentation Impact

This will require changes to User Guide.

User Guide will need to add information on how qosalert service can
be used.

References

[1] Neutron QoS [http://docs.openstack.org/developer/neutron/devref/quality_of_service.html]

[2] Spec for NetVirt QoS [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/qos.html]

[3] Openflowplugin port statistics [https://github.com/opendaylight/openflowplugin/blob/master/model/model-flow-statistics/src/main/yang/opendaylight-direct-statistics.yang]

Table of Contents

	Neutron Quality of Service API Enhancements for NetVirt

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Neutron Quality of Service API Enhancements for NetVirt

QoS patches: https://git.opendaylight.org/gerrit/#/q/topic:qos

The Carbon release will enhance the initial implementation of Neutron
QoS API 1 support for NetVirt which was released in Boron. The
Boron released added support for Neutron QoS policies and the
Egress bandwidth rate limiting rule. The Carbon release will update the
QoS feature set of NetVirt by providing support for the DSCP Marking
rule and QoS Rule capability reporting.

Problem description

It is important to be able to configure QoS attributes of workloads on
virtual networks. The Neutron QoS API provides a method for defining
QoS policies and associated rules which can be applied to Neutron Ports
and Networks. These rules include:

	Egress Bandwidth Rate Limiting

	DSCP Marking

(Note that for the Neutron API, the direction of traffic flow (ingress, egress)
is from the perspective of the OpenStack instance.)

As a Neutron provider for ODL, NetVirt will provide the ability to report
back to Neutron its QoS rule capabilties and provide the ability to
configure and manage the supported QoS rules on supported backends
(e.g. OVS, …). The key changes in the Carbon release will be the
addition of support for the DSCP Marking rule.

Use Cases

Neutron QoS API support, including:

	Egress rate limiting -
Drop traffic that exceeeds the specified rate parameters for a
Neutron Port or Network.

	DSCP Marking -
Set the DSCP field for IP packets arriving from Neutron Ports
or Networks.

	Reporting of QoS capabilities -
Report to Neutron which QoS Rules are supported.

Proposed change

To handle DSCP marking, listener support will be added to the
neutronvpn service to respond to changes in DSCP Marking
Rules in QoS Policies in the Neutron Northbound QoS models 2 3 .

To implement DSCP marking support, a new ingress (from vswitch
perspective) QoS Service is defined in Genius. When DSCP Marking rule
changes are detected, a rule in a new OpenFlow table for
QoS DSCP marking rules will be updated.

The QoS service will be bound to an interface when a DSCP Marking
rule is added and removed when the DSCP Marking rule is deleted.
The QoS service follows the DHCP service and precedes the IPV6
service in the sequence of Genius ingress services.

Some use cases for DSCP marking require that the DSCP mark set on the inner packet
be replicated to the DSCP marking in the outer packet. Therefore, for packets egressing out
of OVS through vxlan/gre tunnels the option to copy the DSCP bits from the inner IP header
to the outer IP header is needed.
Marking of the inner header is done via OpenFlow rules configured on the corresponding Neutron port
as described above. For cases where the outer tunnel header should have a copy of the inner
header DSCP marking, the tos option on the tunnel interface in OVSDB must be configured
to the value inherit.
The setting of the tos option is done with a configurable parameter defined in the ITM module.
By default the tos option is set to 0 as specified in the OVSDB specification 4 .

On the creation of new tunnels, the tos field will be set to either the user provided value
or to the default value, which may be controlled via configuration. This will result in
the tunnel-options field in the IFM (Interface Manager) to be set which will in turn cause
the options field for the tunnel interface on the OVSDB node to be configured.

To implement QoS rule capability reporting back towards Neutron, code will
be added to the neutronvpn service to populate the operational qos-rule-types
list in the Neutron Northbound Qos model 3 with a list of the supported
QoS rules - which will be the bandwidth limit rule and DSCP marking rule for
the Carbon release.

Pipeline changes

A new QoS DSCP table is added to support the new QoS Service:

	Table

	Match

	Action

	QoS DSCP [90]

	Ethtype == IPv4 or IPv6 AND LPort tag

	Mark packet with DSCP value

Yang changes

A new leaf option-tunnel-tos is added to tunnel-end-points in itm-state.yang and to
vteps in itm.yang.

itm-state.yang

list tunnel-end-points {
 ordered-by user;
 key "portname VLAN-ID ip-address tunnel-type";

 leaf portname {
 type string;
 }
 leaf VLAN-ID {
 type uint16;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 leaf subnet-mask {
 type inet:ip-prefix;
 }
 leaf gw-ip-address {
 type inet:ip-address;
 }
 list tz-membership {
 key "zone-name";
 leaf zone-name {
 type string;
 }
 }
 leaf interface-name {
 type string;
 }
 leaf tunnel-type {
 type identityref {
 base odlif:tunnel-type-base;
 }
 }
 leaf option-of-tunnel {
 description "Use flow based tunnels for remote-ip";
 type boolean;
 default false;
 }
 leaf option-tunnel-tos {
 description "Value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 }
}

itm.yang

list vteps {
 key "dpn-id portname";
 leaf dpn-id {
 type uint64;
 }
 leaf portname {
 type string;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 leaf option-of-tunnel {
 description "Use flow based tunnels for remote-ip";
 type boolean;
 default false;
 }
 leaf option-tunnel-tos {
 description "Value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 }
}

A configurable parameter default-tunnel-tos is added to itm-config.yang which
defines the default ToS value to be applied to tunnel ports.

itm-config.yang

container itm-config {
 config true;

 leaf default-tunnel-tos {
 description "Default value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 default 0;
 }
}

Configuration impact

A configurable parameter default-tunnel-tos is added to
genius-itm-config.xml which specifies the default ToS to
use on a tunnel if it is not specified by the user when a
tunnel is created. This value may be set to inherit for
some DSCP Marking use cases.

genius-itm-config.xml

<itm-config xmlns="urn:opendaylight:genius:itm:config">
 <default-tunnel-tos>0</default-tunnel-tos>
</itm-config>

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

Additional OpenFlow packets will be generated to configure DSCP marking rules in response
to QoS Policy changes coming from Neutron.

Targeted Release

Carbon

Alternatives

Use of OpenFlow meters was desired, but the OpenvSwitch datapath implementation
does not support meters (although the OpenvSwitch OpenFlow protocol implementation
does support meters).

Usage

The user will use the QoS support by enabling and configuring the
QoS extension driver for networking-odl. This will allow QoS Policies and
Rules to be configured for Neuetron Ports and Networks using Neutron.

Perform the following configuration steps:

	In neutron.conf enable the QoS service by appending qos to
the service_plugins configuration:

/etc/neutron/neutron.conf

service_plugins = odl-router, qos

	Add the QoS notification driver to the neutron.conf file as follows:

/etc/neutron/neutron.conf

[qos]
notification_drivers = odl-qos

	Enable the QoS extension driver for the core ML2 plugin.
In file ml2.conf.ini append qos to extension_drivers

/etc/neutron/plugins/ml2/ml2.conf.ini

[ml2]
extensions_drivers = port_security,qos

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 5 for the Neutron CLI command syntax
for managing QoS policies and rules for Neutron networks and ports.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assigne and other contributors.

Primary assignee:

	Poovizhi Pugazh <poovizhi.p@ericsson.com>

Other contributors:

	Ravindra Nath Thakur <ravindra.nath.thakur@ericsson.com>

	Eric Multanen <eric.w.multanen@intel.com>

	Praveen Mala <praveen.mala@intel.com> (including CSIT)

Work Items

Task list in Carbon Trello: https://trello.com/c/bLE2n2B1/14-qos

Dependencies

Genius project - Code 6 to support QoS Service needs to be added.

Neutron Northbound - provides the Neutron QoS models for policies and rules (already done).

	Following projects currently depend on NetVirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

Documentation to describe use of Neutron QoS support with NetVirt
will be added.

OpenFlow pipeline documentation updated to show QoS service table.

References

http://specs.openstack.org/openstack/neutron-specs/specs/newton/ml2-qos-with-dscp.html

ODL gerrit adding QoS models to Neutron Northbound: https://git.opendaylight.org/gerrit/#/c/37165/

	1

	Neutron QoS http://docs.openstack.org/developer/neutron/devref/quality_of_service.html

	2

	Neutron Northbound QoS Model Extensions https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos-ext.yang

	3

	Neutron Northbound QoS Model https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos.yang

	4

	OVSDB Schema http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

	5

	Neutron CLI Reference http://docs.openstack.org/cli-reference/neutron.html#neutron-qos-available-rule-types

	6

	Genius code supporting QoS service https://git.opendaylight.org/gerrit/#/c/49084/

Table of Contents

	Setup Source-MAC-Address for routed packets destined to virtual endpoints

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Setup Source-MAC-Address for routed packets destined to virtual endpoints

https://git.opendaylight.org/gerrit/#/q/topic:SMAC_virt_endpoints

All L3 Routed packets destined to virtual endpoints in the datacenter managed by ODL
do not carry a proper source-mac address in such frames put out to virtual endpoints.

This spec makes sure a proper source-mac is updated in the packet at the point where the
packet is delivered to the VM, regardless of the tenant network type. On the actual datapath,
there will be no change in the source mac-addresses and packets continue to use the same
mechanism that is used today.

Addressing the datapath requires unique MAC allocation per OVS Datapath, so that it can be
used as the source MAC for all distributively routed packets of an ODL enabled cloud. It
would be handled in some future spec.

Problem description

Today all L3 Routed packets destined to virtual endpoints in the datacenter either

	Incorrectly carry the source mac-address of the originator (regardless of which network the originator is in)

	Incorrectly carry sometimes the reserved source mac address of 00:00:00:00:00:00

This spec is intended to setup a source-mac-address in the frame of L3 Routed packets just before
such frames are directed into the virtual endpoints themselves. This enables use-cases where certain
virtual endpoints which are VNFs in the datacenter that are source-mac conscious (or mandate that src-mac
in frames be valid) can become functional on their instantiation in an OpenDaylight enabled cloud.

Use Cases

	Intra-Datacenter L3 forwarded packets within a hypervisor.

	Intra-Datacenter L3 forwarded packets over Internal VXLAN Tunnels between two hypervisors in the datacenter.

	Inter-Datacenter L3 forwarded packets :

	Destined to VMs associated floating IP over External VLAN Provider Networks.

	Destined to VMs associated floating IP over External MPLSOverGRE Tunnels.

	SNAT traffic from VMs over External MPLSOverGRE Tunnels.

	SNAT traffic from VMS over External VLAN Provider Networks.

Proposed change

All the L3 Forwarded traffic today reaches the VM via a LocalNextHopGroup managed by
the VPN Engine (including FIBManager).

Currently the LocalNextHopGroup sets-up the destination MAC Address of the VM and forwards the traffic
to EGRESS_LPORT_DISPATCHER_TABLE (Table 220). In that LocalNextHopGroup we will additionally setup
source-mac-address for the frame. There are two cases to decide what source-mac-address should go
into the frame:

	If the VM is on a subnet (on a network) for which a subnet gatewayip port exists, then the
source-mac address of that subnet gateway port will be setup as the frame’s source-mac
inside the LocalNextHop group.This is typical of the case when a subnet is added to a router,
as the router interface port created by neutron will be representing the subnet’s gateway-ip address.

	If the VM is on a subnet (on a network), for which there is no subnet gatewayip port but that network
is part of a BGPVPN , then the source-mac address would be that of the connected mac-address of the
VM itself. The connected mac-address is nothing but the mac-address on the ovs-datapath for the VMs
tapxxx/vhuxxx port on that hypervisor itself.

The implementation also applies to Extra-Routes (on a router) and Discovered Routes as they both use the
LocalNextHopGroup in their last mile to send packets into their Nexthop VM.

We need to note that when a network is already part of a BGPVPN, adding a subnet on such a network to
a router is disallowed currently by NeutronVPN. And so the need to swap the mac-addresses inside
the LocalNextHopGroup to reflect the subnet gatewayip port here does not arise.

For all the use-cases listed in the USE-CASES section above, proper source mac address will be filled-up
in the frame before it enters the virtual endpoint.

Pipeline changes

There are no pipeline changes.

The only change is in the NextHopGroup created by VPN Engine (i.e., VRFEntryListener). In the NextHopGroup we
will additionally fill up the ethernet source mac address field with proper mac-address as outlined in the
‘Proposed change’ section.

Currently the LocalNextHopGroup is used in the following tables of VPN Pipeline:

	L3_LFIB_TABLE (Table 20) - Lands all routed packets from MPLSOverGRE tunnel into the virtual endpoint.

	INTERNAL_TUNNEL_TABLE (Table 36) - Lands all routed packets on Internal VXLAN Tunnel within the DC into the
virtual end point.

	L3_FIB_TABLE (Table 21) - Lands all routed packets within a specific hypervisor into the virtual endpoint.

cookie=0x8000002, duration=50.676s, table=20, n_packets=0, n_bytes=0, priority=10,mpls,mpls_label=70006 actions=write_actions(pop_mpls:0x0800,group:150000)
cookie=0x8000003, duration=50.676s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222f2/0xfffffffe,nw_dst=10.1.1.3 actions=write_actions(group:150000)
cookie=0x9011176, duration=50.676s, table=36, n_packets=0, n_bytes=0, priority=5,tun_id=0x11176 actions=write_actions(group:150000)

NEXTHOP GROUP:
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:01:1a:40->eth_src,set_field:fa:16:3e:8b:c5:51->eth_dst,load:0x300->NXM_NX_REG6[],resubmit(,220)

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None

Targeted Release

Carbon/Boron

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Primary assignee:

	Achuth Maniyedath (achuth.m@altencalsoftlabs.com)

Other contributors:

	Karthik Prasad (karthik.p@altencalsoftlabs.com)

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

https://trello.com/c/IfAmnFFr/110-add-source-macs-in-frames-for-l3-routed-packets-before-such-frames-get-to-the-virtual-endpoint

	Determine the smac address to be used for L3 packets forwarded to VMs.

	Update the LocalNextHopGroup table with proper ethernet source-mac parameter.

Dependencies

No new dependencies.

Testing

Verify the Source-MAC-Address setting on frames forwarded to Virtual endpoints in following cases.

Intra-Datacenter traffic to VMs (Intra/Inter subnet).

	VM to VM traffic within a hypervisor.

	VM to VM traffic across hypervisor over Internal VXLAN tunnel.

Inter-Datacenter traffic to/from VMs.

	External access to VMs using Floating IPs on MPLSOverGRE tunnels.

	External access to VMs using Floating IPs over VLAN provider networks.

	External access from VMs using SNAT over VLAN provider networks.

	External access from VMs using SNAT on MPLSOverGRE tunnels.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

	Validate that router-interface src-mac is available on received frames within the VM when that VM is on a router-arm.

	Validate that connected-mac as src-mac available on received frames within the VM when that VM is on a network-driven L3 BGPVPN.

Documentation Impact

N/A

References

N/A

Table of Contents

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	API changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Internal

	External

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support for TCP MD5 Signature Option configuration of Quagga BGP

https://git.opendaylight.org/gerrit/#/q/topic:qbgp-tcp-md5-signature-option

This functionality adds support to odl-netvirt-impl feature to configure the TCP MD5 Signature Option
[RFC2385] password in Quagga BGPs [QBGP].

Problem description

Quagga [QBGP] supports TCP MD5 Signature Option [RFC2385] in BGP traffic but current odl-netvirt-impl feature
implementation lacks support to configure the required passwords.

Use Cases

UC1: Protect (Quagga [QBGP]) BGP and DC gateway BGP interface using
TCP MD5 Signature Option [RFC2385].

Proposed change

The following components need to be enhanced:

	BGP Manager

Pipeline changes

No pipeline changes.

API changes

Changes will be needed in ebgp.yang, and qbgp.thrift.

YANG changes

A new optional leaf with the TCP MD5 Signature Option [RFC2385] password is added (by means of a
choice) to list neighbors.

ebgp.yang additions

typedef tcp-md5-signature-password-type {
 type string {
 length 1..80;
 } // subtype string
 description
 "The shared secret used by TCP MD5 Signature Option. The length is
 limited to 80 chars because A) it is identified by the RFC as current
 practice and B) it is the maximum length accepted by Quagga
 implementation.";
 reference "RFC 2385";
} // typedef tcp-md5-signature-password-type

grouping tcp-security-option-grouping {
 description "TCP security options.";
 choice tcp-security-option {
 description "The tcp security option in use, if any.";

 case tcp-md5-signature-option {
 description "The connection uses TCP MD5 Signature Option.";
 reference "RFC 2385";
 leaf tcp-md5-signature-password {
 type tcp-md5-signature-password-type;
 description "The shared secret used to sign the packets.";
 } // leaf tcp-md5-signature-password
 } // case tcp-md5-signature-option

 } // choice tcp-security-option
} // grouping tcp-security-option-grouping

ebgp.yang modifications

 list neighbors {
 key "address";
 leaf address {
 type inet:ipv4-address;
 mandatory "true";
 }
 leaf remote-as {
 type uint32;
 mandatory "true";
 }
 + use tcp-security-option-grouping;

Thrift changes

A new function setPeerSecret is added to the service BgpConfigurator.

qbgp.thrift modifications

--- a/vpnservice/bgpmanager/bgpmanager-impl/src/main/java/org/opendaylight/netvirt/bgpmanager/thrift/idl/qbgp.thrift
+++ b/vpnservice/bgpmanager/bgpmanager-impl/src/main/java/org/opendaylight/netvirt/bgpmanager/thrift/idl/qbgp.thrift
@@ -31,6 +31,8 @@ const i32 GET_RTS_NEXT = 1
 * ERR_NOT_ITER when GET_RTS_NEXT is called without
 * initializing with GET_RTS_INIT
 * ERR_PARAM when there is an issue with params
+ * ERR_NOT_SUPPORTED when the server does not support
+ * the operation.
 */

 const i32 BGP_ERR_FAILED = 1
@@ -38,6 +40,7 @@ const i32 BGP_ERR_ACTIVE = 10
 const i32 BGP_ERR_INACTIVE = 11
 const i32 BGP_ERR_NOT_ITER = 15
 const i32 BGP_ERR_PARAM = 100
+const i32 BGP_ERR_NOT_SUPPORTED = 200

 // these are the supported afi-safi combinations
 enum af_afi {
@@ -122,6 +125,33 @@ service BgpConfigurator {
 6:i32 stalepathTime, 7:bool announceFlush),
 i32 stopBgp(1:i64 asNumber),
 i32 createPeer(1:string ipAddress, 2:i64 asNumber),
+
+ /* 'setPeerSecret' sets the shared secret needed to protect the peer
+ * connection using TCP MD5 Signature Option (see rfc 2385).
+ *
+ * Params:
+ *
+ * 'ipAddress' is the peer (neighbour) address. Mandatory.
+ *
+ * 'rfc2385_sharedSecret' is the secret. Mandatory. Length must be
+ * greater than zero.
+ *
+ * Return codes:
+ *
+ * 0 on success.
+ *
+ * BGP_ERR_FAILED if 'ipAddress' is missing or unknown.
+ *
+ * BGP_ERR_PARAM if 'rfc2385_sharedSecret' is missing or invalid (e.g.
+ * it is too short or too long).
+ *
+ * BGP_ERR_INACTIVE when there is no session.
+ *
+ * BGP_ERR_NOT_SUPPORTED when TCP MD5 Signature Option is not supported
+ * (e.g. the underlying TCP stack does not support it)
+ *
+ */
+ i32 setPeerSecret(1:string ipAddress, 2:string rfc2385_sharedSecret),
 i32 deletePeer(1:string ipAddress)
 i32 addVrf(1:layer_type l_type, 2:string rd, 3:list<string> irts, 4:list<string> erts),
 i32 delVrf(1:string rd),

An old server (i.e. using a previous version of qbgp.thrift) will return
a TApplicationException with type UNKNOWN_METHOD. See
[TBaseProcessor].

Configuration impact

No configuration parameters deprecated.

New optional leaf tcp-md5-signature-password does not impact existing
deployments.

The recommended AAA configuration (See Security considerations) may impact
existing deployments.

Clustering considerations

NA

Other Infra considerations

Signature mismatch

On signature mismatch TCP MD5 Signature Option [RFC2385] (page 2) specifies the following
behaviour:

RFC 2385 page 2

Upon receiving a signed segment, the receiver must validate it by
calculating its own digest from the same data (using its own key) and
comparing the two digest. A failing comparison must result in the
segment being dropped and must not produce any response back to the
sender. Logging the failure is probably advisable.

A BGP will be unable to connect with a neighbor with a wrong password because
the TCP SYN,ACK will be dropped. The neighbor state will bounce between
“Active” and “Connect” while it retries.

Security considerations

tcp-md5-signature-password is stored in clear in the datastore. This is
a limitation of the proposed change.

Because tcp-md5-signature-password is stored in clear the REST access to
neighbors list should be restricted. See the following AAA
configuration examples:

etc/shiro.ini example

#
DISCOURAGED since Carbon
#
/config/ebgp:bgp/neighbors/** = authBasic, roles[admin]

AAA MDSALDynamicAuthorizationFilter example

{ "aaa:policies":
 { "aaa:policies": [
 { "aaa:resource": "/restconf/config/ebgp:bgp/neighbors/**",
 "aaa:permissions": [
 { "aaa:role": "admin",
 "aaa:actions": ["get","post","put","patch","delete"]
 }]
 }]
 }
}

If BgpConfigurator thrift service is not secured then
tcp-md5-signature-password goes clear on the wire.

Quagga [QBGP] (up to version 1.0) keeps the password in memory in clear.
The password can be retrieved through Quagga’s configuration interface.

Scale and Performance Impact

Negligible scale or performance impacts.

	datastore: A bounded (<=80) string per configured neighbor.

	Traffic (thrift BgpConfigurator service): A bounded (<=80) string field
per neighbor addition operation.

Targeted Release

Carbon

Alternatives

Three alternatives have been considered in order to avoid storing the plain
password in datastore: RPC, post-update, and transparent encryption.
They are briefly described below.

The best alternative is transparent encryption, but in Carbon time-frame
is not feasible.

The post-update alternative does not actually solve the limitation.

The RPC alternative is feasible in Carbon time-frame but, given that
currently BgpConfigurator thrift service is not secured, to add an RPC
does not pull its weight.

RPC encryption

A new RPC add-neighbor(address, as-number[, tcp-md5-signature-password])
is in charge of create neighbors elements.
The password is salted and encrypted with aaa-encryption-service.
Both the salt and the encrypted password are stored in the neighbors
element.

Post-update encryption

The neighbors element contains both a plain-password leaf and a
encrypted-password-with-salt leaf.
The listener BgpConfigurationManager.NeighborsReactor is in charge of
encrypt and remove the plain-password leaf when it is present (and the
encrypted one is not).

This alternative does not really solve the limitation because during a
brief period the password is stored in plain.

Transparent encryption

A plain value is provided in REST write operations but it is automagically
encrypted before it reaches MD-SAL.
Read operations never decrypts the encrypted values.

This alternative impacts at least aaa, yangtools, and netconf
projects. It can not possibly be done in Carbon.

Usage

Features to Install

odl-netvirt-openstack

REST API

The RESTful API for neighbors creation
(/restconf/config/ebgp:bgp/neighbors/{address}) will be enhanced to
accept an additional tcp-md5-signature-password attribute:

{ "neighbors": {
 "address": "192.168.50.2",
 "remote-as": "2791",
 "tcp-md5-signature-password": "password"
}}

CLI

A new option --tcp-md5-password will be added to commands
odl:configure-bgp and odl:bgp-nbr.

opendaylight-user@root> odl:configure-bgp -op add-neighbor --ip 192.168.50.2 --as-num 2791 --tcp-md5-password password
opendaylight-user@root> odl:bgp-nbr --ip-address 192.168.50.2 --as-number 2791 --tcp-md5-password password add

Implementation

Assignee(s)

	Primary assignee:

	Jose-Santos Pulido, JoseSantos, jose.santos.pulido.garcia@ericsson.com

	Other contributors:

	TBD

Work Items

	https://trello.com/c/87MAFjRf

	Spec

	ebgp.yang

	BgpConfigurator thrift service (both idl and client)

	BgpConfigurationManager.NeighborsReactor

	ConfigureBgpCli

Dependencies

Internal

No internal dependencies are added or removed.

External

To enable TCP MD5 Signature Option [RFC2385] in a BGP the following conditions need to be
met:

	BgpConfigurator thrift service provider (e.g. Zebra Remote Procedure
Call [ZRPC]) must support the new function setPeerSecret.

	BGP’s TCP stack must support TCP MD5 Signature Option (e.g. in linux the kernel option
CONFIG_TCP_MD5SIG must be set).

Testing

Unit Tests

Currently bgpmanager has no unit tests related to configuration.

Integration Tests

Currently bgpmanager has no integration tests.

CSIT

Currently there is no CSIT test exercising bgpmanager.

Documentation Impact

Currently there is no documentation related to bgpmanager.

References

	QBGP(1,2,3,4)

	Quagga Routing Suite [http://www.nongnu.org/quagga]

	RFC2385(1,2,3,4,5,6)

	IETF RFC 2385: Protection of BGP Sessions via the TCP MD5 Signature Option [https://tools.ietf.org/html/rfc2385]

	TBaseProcessor

	thrift java library’s TBaseProcessor.process [https://github.com/apache/thrift/blob/0.9.1/lib/java/src/org/apache/thrift/TBaseProcessor.java#L25-L41]

	ZRPC

	Zebra Remote Procedure Call [https://github.com/6WIND/zrpcd/]

Table of Contents

	Support of VXLAN based L2 connectivity across Datacenters

	Problem description

	In scope

	Out of scope

	Use Cases

	Datacenter access from another Datacenter over WAN via respective DC-Gateways (L2 DCI)

	Proposed change

	Pipeline changes

	INTRA DC

	Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

	Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	INTER DC

	Intra subnet Traffic from DC-Gateway to Local DPN

	Intra subnet Traffic from Local DPN to DC-Gateway

	Inter subnet Traffic from Local DPN to DC-Gateway (Symmetric IRB)

	Inter subnet Traffic from DC-Gateway to Local DPN (Symmetric IRB)

	Inter subnet Traffic from Local DPN to DC-Gateway (ASymmetric IRB)

	Intra subnet Traffic from DC-Gateway to Local DPN (ASymmetric IRB)

	ARP Pipeline changes

	Local DPN: VMs on the same subnet, same DPN

	Intra Subnet, Local DPN: VMs on the same subnet, on remote DC

	Yang changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	NEUTRONVPN YANG changes

	ELAN YANG changes

	Solution considerations

	Proposed change in Openstack Neutron BGPVPN Driver

	Proposed change in BGP Quagga Stack

	Proposed change in OpenDaylight-specific features

	Reboot Scenarios

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support of VXLAN based L2 connectivity across Datacenters

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT2

Enable realization of L2 connectivity over VXLAN tunnels using L2 BGPVPNs,
internally taking advantage of EVPN as the BGP Control Plane mechanism.

Problem description

OpenDaylight NetVirt service today supports L3VPN connectivity over VXLAN tunnels.
L2DCI communication is not possible so far.

This spec attempts to enhance the BGPVPN service in NetVirt to
embrace inter-DC L2 connectivity over external VXLAN tunnels.

In scope

The scope primarily includes providing ability to support intra-subnet
connectivity across DataCenters over VXLAN tunnels using BGP EVPN with type L2.

When we mention that we are using EVPN BGP Control plane, this
spec proposes using the RouteType 2 as the primary
means to provision the control plane to enable inter-DC connectivity
over external VXLAN tunnels.

With this inplace we will be able to support the following.

	Intra-subnet connectivity across dataCenters over VXLAN tunnels.

The following are already supported as part of the other spec(RT5)
and will continue to function.

	Intra-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity across dataCenters over VXLAN tunnels.

Out of scope

Use Cases

The following high level use-cases will be realized by the implementation of this Spec.

Datacenter access from another Datacenter over WAN via respective DC-Gateways (L2 DCI)

This use-case involves providing intra-subnet connectivity between two DataCenters.
Tenant VMs in one datacenter will be able to communicate with tenant VMs on the other
datacenter provided they are part of the same BGP EVPN and they are on same subnets.

The dataplane between the tenant VMs themselves and between the tenant VMs
towards the DC-Gateway will be over VXLAN Tunnels.

The dataplane between the DC-Gateway to its other WAN-based BGP Peers is
transparent to this spec. It is usually MPLS-based EPVPN.

The BGP Control plane between the ODL Controller and the DC-Gateway will be
via EVPN RouteType 2 as defined in EVPN_RT2.

The control plane between the DC-Gateway and it other BGP Peers in the WAN
is transparent to this spec, but can be EVPN IP-MPLS.

In this use-case:

	We will have only a single DCGW for WAN connectivity

	MAC IP prefix exchange between ODL controller and DC-GW (iBGP) using EVPN RT2

	WAN control plane may use EVPN IP-MPLS for route exchange.

	On the DC-Gateway, the VRF instance will be configured with two sets of import/export targets. One set of import/export route targets belong to EVPN inside DataCenter (realized using EVPN RT2) and the second set of import/export route target belongs to WAN control plane.

	EVPN single homing to be used in all RT2 exchanges inside the DataCenter i.e., ESI=0 for all prefixes sent from DataCenter to the DC-Gateway.

Proposed change

The following components of an Openstack-ODL-based solution need to be enhanced to provide
intra-subnet and inter-subnet connectivity across DCs using EVPN MAC IP Advertisement
(Route Type 2) mechanism (refer EVPN_RT2):

	Openstack Neutron BGPVPN Driver

	OpenDaylight Controller (NetVirt)

	BGP Quagga Stack to support EVPN with RouteType 2 NLRI

	DC-Gateway BGP Neighbour that supports EVPN with RouteType 2 NLRI

The changes required in Openstack Neutron BGPVPN Driver and BGP Quagga Stack
are captured in the Solution considerations section down below.

Pipeline changes

INTRA DC

Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

There are no explicit pipeline changes for this use-case.

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

INTER DC

Intra subnet Traffic from DC-Gateway to Local DPN

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L2VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (24) => match tunnel-id=l2vni, set elan-tag

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set reg6=vm-lport-tag =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

Intra subnet Traffic from Local DPN to DC-Gateway

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=external-vm-mac set tun-id=vxlan-net-tag group=next-hop-group

Next Hop Group bucket0 :set reg6=tunnel-lport-tag bucket1 :set reg6=tunnel2-lport-tag

Egress table (220) match: reg6=tunnel2-lport-tag output to tunnel2

Inter subnet Traffic from Local DPN to DC-Gateway (Symmetric IRB)

Classifier Table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set tun-id=l3vni output to nexthopgroup =>

NextHopGroup: set-eth-dst router-gw-vm, reg6=tunnel-lport-tag =>

Lport Egress Table (220) Output to tunnel port

Inter subnet Traffic from DC-Gateway to Local DPN (Symmetric IRB)

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (23) => match tunnel-id=l3vni, set l3vpn-id =>

L3 Gateway MAC Table (19) => match dst-mac=vpn-subnet-gateway-mac-address =>

FIB table (21) match: l3vpn-tag=l3vpn-id,dst-ip=vm2-ip set reg6=vm-lport-tag goto=local-nexthop-group =>

local nexthop group set dst-mac=vm2-mac table=220 =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

Inter subnet Traffic from Local DPN to DC-Gateway (ASymmetric IRB)

Classifier Table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set tun-id=l2vni output to nexthopgroup =>

NextHopGroup: set-eth-dst dst-vm-mac, reg6=tunnel-lport-tag =>

Lport Egress Table (220) Output to tunnel port

Intra subnet Traffic from DC-Gateway to Local DPN (ASymmetric IRB)

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L2VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (24) => match tunnel-id=l2vni, set elan-tag

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set reg6=vm-lport-tag =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

ARP Pipeline changes

Local DPN: VMs on the same subnet, same DPN

a. Introducing a new Table aka ELAN_ARP_SERVICE_TABLE (Table 81).
This table will be the first table in elan pipeline.

Classifier table (0) =>

Dispatcher table (17) elan service: set elan-id=vxlan-net-tag =>

Arp Service table (81) => match: arp-op=req, dst-ip=vm-ip, ela-id=vxlan-net-tag inline arp reply

Intra Subnet, Local DPN: VMs on the same subnet, on remote DC

Classifier table (0) =>

Dispatcher table (17) elan service: set elan-id=vxlan-net-tag =>

Arp Service table (81) => match: arp-op=req, dst-ip=vm-ip, ela-id=vxlan-net-tag inline arp reply

Yang changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang , odl-fib.yang and
neutronvpn.yang to start supporting EVPN functionality.

ODL-L3VPN YANG changes

A new container evpn-rd-to-networks is added
This holds the rd to networks mapping
This will be useful to extract in which elan the received RT2 route can be injected into.

odl-l3vpn.yang

 container evpn-rd-to-networks {
 config false;
 description "Holds the networks to which given evpn is attached to";
 list evpn-rd-to-network {
 key rd;
 leaf rd {
 type string;
 }
 list evpn-networks {
 key network-id;
 leaf network-id {
 type string;
 }
 }
 }
 }

ODL-FIB YANG changes

A new field macVrfEntries is added to the container fibEntries
This holds the RT2 routes received for the given rd

odl-fib.yang

 grouping vrfEntryBase {
 list vrfEntry{
 key "destPrefix";
 leaf destPrefix {
 type string;
 mandatory true;
 }
 leaf origin {
 type string;
 mandatory true;
 }
 leaf encap-type {
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 }
 default "mplsgre";
 }
 leaf l3vni {
 type uint32;
 }
 list route-paths {
 key "nexthop-address";
 leaf nexthop-address {
 type string;
 }
 leaf label {
 type uint32;
 }
 leaf gateway_mac_address {
 type string;
 }
 }
 }
 }

 grouping vrfEntries{
 list vrfEntry{
 key "destPrefix";
 uses vrfEntryBase;
 }
 }

 grouping macVrfEntries{
 list MacVrfEntry {
 key "mac_address";
 uses vrfEntryBase;
 leaf l2vni {
 type uint32;
 }
 }
 }

container fibEntries {
 config true;
 list vrfTables {
 key "routeDistinguisher";
 leaf routeDistinguisher {type string;}
 uses vrfEntries;
 uses macVrfEntries;//new field
 }
 container ipv4Table{
 uses ipv4Entries;
 }
 }

NEUTRONVPN YANG changes

A new rpc createEVPN is added
Existing rpc associateNetworks is reused to attach a network to EVPN assuming
uuid of L3VPN and EVPN does not collide with each other.

neutronvpn.yang

 rpc createEVPN {
 description "Create one or more EVPN(s)";
 input {
 list evpn {
 uses evpn-instance;
 }
 }
 output {
 leaf-list response {
 type string;
 description "Status response for createVPN RPC";
 }
 }
 }

 rpc deleteEVPN{
 description "delete EVPNs for specified Id list";
 input {
 leaf-list id {
 type yang:uuid;
 description "evpn-id";
 }
 }
 output {
 leaf-list response {
 type string;
 description "Status response for deleteEVPN RPC";
 }
 }
 }

 grouping evpn-instance {

 leaf id {
 mandatory "true";
 type yang:uuid;
 description "evpn-id";
 }

 leaf name {
 type string;
 description "EVPN name";
 }

 leaf tenant-id {
 type yang:uuid;
 description "The UUID of the tenant that will own the subnet.";
 }

 leaf-list route-distinguisher {
 type string;
 description
 "configures a route distinguisher (RD) for the EVPN instance.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf-list import-RT {
 type string;
 description
 "configures a list of import route target.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf-list export-RT{
 type string;
 description
 "configures a list of export route targets.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf l2vni {
 type uint32;
 }
 }

ELAN YANG changes

Existing container elan-instances is augmented with evpn information.

A new list external-teps is added to elan container.
This captures the broadcast domain of the given network/elan.
When the first RT2 route is received from the dc gw,
it’s tep ip is added to the elan to which this RT2 route belongs to.

elan.yang

 augment "/elan:elan-instances/elan:elan-instance" {
 ext:augment-identifier "evpn";
 leaf evpn-name {
 type string;
 }
 leaf l3vpn-name {
 type string;
 }
 }

 container elan-instances {
 list elan-instance {
 key "elan-instance-name";
 leaf elan-instance-name {
 type string;
 }
 //omitted other existing fields
 list external-teps {
 key tep-ip;
 leaf tep-ip {
 type inet:ip-address;
 }
 }
 }
 }

 container elan-interfaces {
 list elan-interface {
 key "name";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf elan-instance-name {
 mandatory true;
 type string;
 }
 list static-mac-entries {
 key "mac";
 leaf mac {
 type yang:phys-address;
 }
 leaf prefix {//new field
 mandatory false;
 type inet:ip-address;
 }
 }
 }
 }

 grouping forwarding-entries {
 list mac-entry {
 key "mac-address";
 leaf mac-address {
 type yang:phys-address;
 }
 leaf interface {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf controllerLearnedForwardingEntryTimestamp {
 type uint64;
 }
 leaf isStaticAddress {
 type boolean;
 }
 leaf prefix {//new field
 mandatory false;
 type inet:ip-address;
 }
 }
 }

Solution considerations

Proposed change in Openstack Neutron BGPVPN Driver

The Openstack Neutron BGPVPN’s ODL driver in Newton release is changed (mitaka release), so that
it is able to relay the configured L2 BGPVPNs, to the OpenDaylight Controller.

The Newton changes for the BGPVPN Driver has merged and is here:
https://review.openstack.org/#/c/370547/

Proposed change in BGP Quagga Stack

The BGP Quagga Stack is a component that interfaces with ODL Controller to enable ODL Controller itself
to become a BGP Peer. This BGP Quagga Stack need to be enhanced so that it is able to embrace EVPN
with Route Type 5 on the following two interfaces:

	Thrift Interface where ODL pushes routes to BGP Quagga Stack

	Route exchanges from BGP Quagga Stack to other BGP Neighbors (including DC-GW).

Proposed change in OpenDaylight-specific features

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager)

	ELAN Manager

	FIB Manager

	BGP Manager

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Configuration impact

The following parameters have been initially made available as configurable for EVPN. These
configurations can be made via the RESTful interface:

1.Multi-homing-mode – For multi-homing use cases where redundant DCGWs are used ODL can be configured with ‘none’, ‘all-active’ or ‘single-active’ multi-homing mode. Default will be ‘none’.

2.IRB-mode – Depending upon the support on DCGW, ODL can be configured with either ‘Symmetric’ or ‘Asymmetric’ IRB mode. Default is ‘Symmetric’.

There is another important parameter though it won’t be configurable:

MAC Address Prefix for EVPN – This MAC Address prefix represents the MAC Address prefix that will be hardcoded and that MACAddress will be used as the gateway mac address if it is not supplied from Openstack. This will usually be the case when networks are associated to an L3VPN with no gateway port yet configured in Openstack for such networks.

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

A new rpc is added to create and delete evpn:

{'input': {
 'evpn': [
 {'name': 'EVPN1',
 'export-RT': ['50:2'],
 'route-distinguisher': ['50:2'],
 'import-RT': ['50:2'],
 'id': '4ae8cd92-48ca-49b5-94e1-b2921a260007',
 ‘l2vni’: ‘200’,
 'tenant-id': 'a565b3ed854247f795c0840b0481c699'
}]}}

There is no change in the REST API for associating networks to the EVPN.

On the Openstack-side configuration, the vni_ranges configured in Openstack Neutron ml2_conf.ini
should not overlap with the L3VNI provided in the ODL RESTful API.
In an inter-DC case, where both the DCs are managed by two different Openstack Controller
Instances, the workflow will be to do the following:

	Configure the DC-GW2 facing OSC2 (Openstack) and DC-GW1 facing OSC1 with the same BGP configuration parameters.

	On first Openstack Controller (OSC1) create an L3VPN1 with RD1 and L3VNI1

	On first Openstack Controller (OSC1) create an EVPN1 with RD2 and L2VNI1

	Create a network Net1 and Associate that Network Net1 to L3VPN1

	Create a network Net1 and Associate that Network Net1 to EVPN1

	On second Openstack Controller (OSC2) create an L3VPN2 with RD1 with L3VNI1

	On second Openstack Controller (OSC2) create an EVPN2 with RD2 with L2VNI1

	Create a network Net2 on OSC2 with same cidr as the first one with a different allocation pool and associate that Network Net2 to L3VPN2.

	Associate that Network Net2 to EVPN2.

	Spin-off VM1 on Net1 in OSC1.

	Spin-off VM2 on Net2 in OSC2.

	Now VM1 and VM2 should be able to communicate.

Implementation

Assignee(s)

	Primary assignee:

	Vyshakh Krishnan C H <vyshakh.krishnan.c.h@ericsson.com>

Yugandhar Reddy Kaku <yugandhar.reddy.kaku@ericsson.com>

Riyazahmed D Talikoti <riyazahmed.d.talikoti@ericsson.com>

	Other contributors:

	K.V Suneelu Verma <k.v.suneelu.verma@ericsson.com>

Work Items

Trello card details https://trello.com/c/PysPZscm/150-evpn-evpn-rt2.

Dependencies

Requires a DC-GW that is supporting EVPN RT2 on BGP Control plane.

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

[1] EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

[2] Network Virtualization using EVPN [https://www.ietf.org/id/draft-ietf-bess-evpn-overlay-07.txt]

[3] Integrated Routing and Bridging in EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-inter-subnet-forwarding-04]

[4] VXLAN DCI using EVPN [https://tools.ietf.org/html/draft-boutros-bess-vxlan-evpn-02]

[5] BGP MPLS-Based Ethernet VPN [https://tools.ietf.org/html/rfc7432]

[6] Trello card details [https://trello.com/c/PysPZscm/150-evpn-evpn-rt2]

Table of Contents

	Support of VXLAN based connectivity across Datacenters

	Problem description

	In scope

	Out of scope

	Use Cases

	DataCenter access from a WAN-client via DC-Gateway (Single Homing)

	Datacenter access from another Datacenter over WAN via respective DC-Gateways (L3 DCI)

	Proposed change

	Pipeline changes

	INTRA DC

	Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

	Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	Inter Subnet, Remote DPN: VMs on two different DPNs, both VMs on different subnet, but same VPN

	INTER DC

	Intra Subnet

	Inter Subnet

	SNAT pipeline (Access to External Network Access over VXLAN)

	DNAT pipeline (Access from External Network over VXLAN)

	Yang changes

	L3VPN YANG changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	NEUTRONVPN YANG changes

	Solution considerations

	Proposed change in Openstack Neutron BGPVPN Driver

	Proposed change in BGP Quagga Stack

	Proposed change in OpenDaylight-specific features

	Import Export RT support for EVPN

	SubnetRoute support on EVPN

	NAT Service support for EVPN

	ARP request/response and MIP handling Support for EVPN

	Tunnel state handling Support

	InterVPNLink support for EVPN

	Supporting VLAN Aware VMs (Trunk and SubPorts)

	VM Mobility with RT5

	Reboot Scenarios

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support of VXLAN based connectivity across Datacenters

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT5

Enable realization of L3 connectivity over VXLAN tunnels using L3 BGPVPNs,
internally taking advantage of EVPN as the BGP Control Plane mechanism.

Problem description

OpenDaylight NetVirt service today supports VLAN-based,
VXLAN-based connectivity and MPLSOverGRE-based overlays.

In this VXLAN-based underlay is supported only for traffic
within the DataCenter. For all the traffic that need to
go via the DC-Gateway the only supported underlay is MPLSOverGRE.

Though there is a way to provision an external VXLAN tunnel
via the ITM service in Genius, the BGPVPN service in
NetVirt does not have the ability to take advantage of such
a tunnel to provide inter-DC connectivity.

This spec attempts to enhance the BGPVPN service (runs on
top of the current L3 Forwarding service) in NetVirt to
embrace inter-DC L3 connectivity over external VXLAN tunnels.

In scope

The scope primarily includes providing ability to support Inter-subnet
connectivity across DataCenters over VXLAN tunnels by modeling a
new type of L3VPN which will realize this connectivity using
EVPN BGP Control plane semantics.

When we mention that we are using EVPN BGP Control plane, this
spec proposes using the RouteType 5 explained in EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] as the primary
means to provision the control plane en enable inter-DC connectivity
over external VXLAN tunnels.

This new type of L3VPN will also inclusively support:

	Intra-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity within a DataCenter over VXLAN tunnels.

Out of scope

	Does not cover providing VXLAN connectivity between hypervisors (with OVS Datapath) and Top-Of-Rack switches that might be positioned within such DataCenters.

	Does not cover providing intra-subnet connectivity across DCs.

Both the points above will be covered by another spec that will be Phase 2 of realizing intra-subnet inter-DC connectivity.

Use Cases

The following high level use-cases will be realized by the implementation of this Spec.

DataCenter access from a WAN-client via DC-Gateway (Single Homing)

This use case involves communication within the DataCenter by tenant VMs and also
communication between the tenant VMs to a remote WAN-based client via DC-Gateway.
The dataplane between the tenant VMs themselves and between the tenant VMs
towards the DC-Gateway will be over VXLAN Tunnels.

The dataplane between the DC-Gateway to its other WAN-based BGP Peers is
transparent to this spec. It is usually MPLS-based IPVPN.

The BGP Control plane between the ODL Controller and the DC-Gateway will be
via EVPN RouteType 5 as defined in EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03].

The control plane between the DC-Gateway and it other BGP Peers in the WAN
is transparent to this spec, but can be IP-MPLS.

In this use-case:

	We will have only a single DCGW for WAN connectivity

	IP prefix exchange between ODL controller and DC-GW (iBGP) using EVPN RT5

	WAN control plane will use L3VPN IP-MPLS route exchange.

	On the DC-Gateway, the VRF instance will be configured with two sets of import/export targets. One set of import/export route targets belong to L3VPN inside DataCenter (realized using EVPN RT5) and the second set of import/export route target belongs to WAN control plane.

	EVPN single homing to be used in all RT5 exchanges inside the DataCenter i.e., ESI=0 for all prefixes sent from DataCenter to the DC-Gateway.

	Inter AS option B is used at DCGW, route regeneration at DCGW

Datacenter access from another Datacenter over WAN via respective DC-Gateways (L3 DCI)

This use-case involves providing inter-subnet connectivity between two DataCenters.
Tenant VMs in one datacenter will be able to communicate with tenant VMs on the other
datacenter provided they are part of the same L3VPN and they are on different subnets.

Both the Datacenters can be managed by different ODL Controllers, but the L3VPN configured on
both ODL Controllers will use identical RDs and RTs.

Proposed change

The following components of an Openstack-ODL-based solution need to be enhanced to provide
intra-subnet and inter-subnet connectivity across DCs using EVPN IP Prefix Advertisement
(Route Type 5) mechanism (refer EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]):

	Openstack Neutron BGPVPN Driver

	OpenDaylight Controller (NetVirt)

	BGP Quagga Stack to support EVPN with RouteType 5 NLRI

	DC-Gateway BGP Neighbour that supports EVPN with RouteType 5 NLRI

The changes required in Openstack Neutron BGPVPN Driver and BGP Quagga Stack
are captured in the Solution considerations section down below.

Pipeline changes

For both the use-cases above, we have put together the required pipeline changes here.
For ease of understanding, we have made subsections that talk about Intra-DC
traffic and Inter-DC traffic.

INTRA DC

Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) tablemiss: goto_table=17 =>

Lport Dispatcher Table (17) elan service: set elan-id=elan-tag =>

ELAN Source MAC Table (50) match: elan-id=elan-tag, src-mac=source-vm-mac =>

ELAN Destination MAC Table (51) match: elan-id=elan-tag, dst-mac=dst-vm-mac set output to port-of-dst-vm

Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

VM sourcing the traffic (Ingress DPN)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) l3vpn service: tablemiss: goto_table=17 =>

Lport Dispatcher Table (17) elan service: set elan-id=elan-tag =>

ELAN Source MAC Table (50) match: elan-id=elan-tag, src-mac=source-vm-mac =>

ELAN Destination MAC Table (51) match: elan-id=elan-tag, dst-mac=dst-vm-mac set tun-id=dst-vm-lport-tag, output to vxlan-tun-port

VM receiving the traffic (Egress DPN)

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=lport-tag set reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000000, table=0, priority=4,in_port=1 actions=write_metadata:0x10000000000/0xffffff0000000001,goto_table:17
cookie=0x8000001, table=17, priority=5,metadata=0x5000010000000000/0xffffff0000000000 actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, table=19, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=de:ad:be:ef:00:01 actions=goto_table:21
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)

Inter Subnet, Remote DPN: VMs on two different DPNs, both VMs on different subnet, but same VPN

For this use-case there is a change in the remote flow rule to L3 Forward the traffic to the remote VM.
The flow-rule will use the LPortTag as the vxlan-tunnel-id, in addition to setting the destination mac address of the
remote destination vm.

VM sourcing the traffic (Ingress DPN)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set eth-dst-mac=dst-vm-mac, tun-id=dst-vm-lport-tag, output to vxlan-tun-port

cookie=0x8000000, table=0, priority=4,in_port=1 actions=write_metadata:0x10000000000/0xffffff0000000001,goto_table:17
cookie=0x8000001, table=17, priority=5,metadata=0x5000010000000000/0xffffff0000000000 actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, table=19, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=de:ad:be:ef:00:01 actions=goto_table:21
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

As you can notice 0x2 set in the above flow-rule as tunnel-id is the LPortTag assigned to VM holding IP Address 10.0.0.3.

VM receiving the traffic (Egress DPN)

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=lport-tag set reg6=lport-tag-dst-vm =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000001, table=0, priority=5,in_port=2 actions=write_metadata:0x40000000001/0xfffff0000000001,goto_table:36
cookie=0x9000001, table=36, priority=5,tun_id=0x2 actions=load:0x400->NXM_NX_REG6[],resubmit(,220)

As you notice, 0x2 tunnel-id match in the above flow-rule in INTERNAL_TUNNEL_TABLE (Table 36), is the LPortTag assigned
to VM holding IP Address 10.0.0.3.

INTER DC

Intra Subnet

Not supported in this Phase

Inter Subnet

For this use-case we are doing a couple of pipeline changes:

a. Introducing a new Table aka L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (Table 23).
L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (Table 23) - This table is a new table in the L3VPN pipeline and will be
responsible only to process VXLAN packets coming from External VXLAN tunnels.

The packets coming from External VXLAN Tunnels (note: not Internal VXLAN Tunnels), would be directly punted
to this new table from the CLASSIFIER TABLE (Table 0) itself. Today when multiple services bind to a
tunnel port on GENIUS, the service with highest priority binds directly to Table 0 entry for the tunnel port.
So such a service should make sure to provide a fallback to Dispatcher Table so that subsequent service interested
in that tunnel traffic would be given the chance.

The new table L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE will have flows to match on VXLAN
VNIs that are L3VNIs. On a match, their action is to fill the metadata with the VPNID, so that further
tables in the L3VPN pipeline would be able to continue and operate with the VPNID metadata seamlessly.
After filling the metadata, the packets are resubmitted from this new table to the L3_GW_MAC_TABLE (Table 19).
The TableMiss in L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE will resubmit the packet to LPORT_DISPATCHER_TABLE to enable
next service if any to process the packet ingressing from the external VXLAN tunnel.

b. For all packets going from VMs within the DC, towards the external gateway device via the External VXLAN Tunnel,
we are setting the VXLAN Tunnel ID to the L3VNI value of VPNInstance to which the VM belongs to.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=l3vni set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000001, table=0, priority=5,in_port=9 actions=write_metadata:0x70000000001/0x1fffff0000000001,goto_table:23
cookie=0x8000001, table=19, priority=20,metadata=0x222e0/0xffffffff,dl_dst=de:ad:be:ef:00:06 actions=goto_table:21
cookie=0x8000001, table=23, priority=5,tun_id=0x16 actions= write_metadata:0x222e0/0xfffffffe,resubmit(19)
cookie=0x8000001, table=23, priority=0,resubmit(17)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

In the above flow rules, Table 23 is the new L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE. The in_port=9 reprsents an
external VXLAN Tunnel port.

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set eth-dst-mac=dst-mac-address, tun-id=l3vni, output to ext-vxlan-tun-port

cookie=0x7000001, table=0, priority=5,in_port=8, actions=write_metadata:0x60000000001/0x1fffff0000000001,goto_table:17
cookie=0x7000001, table=17, priority=5,metadata=0x60000000001/0x1fffff0000000001 actions=goto_table:19
cookie=0x7000001, table=19, priority=20,metadata=0x222e0/0xffffffff,dl_dst=de:ad:be:ef:00:06 actions=goto_table:21
cookie=0x7000001, table=23, priority=5,tun_id=0x16 actions= write_metadata:0x222e0/0xfffffffe,resubmit(19)
cookie=0x7000001, table=23, priority=0,resubmit(17)
cookie=0x7000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x7000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

SNAT pipeline (Access to External Network Access over VXLAN)

SNAT Traffic from Local DPN to External IP (assuming this DPN is NAPT Switch)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-entity-ip set eth-dst=external-entity-mac tun-id=external-l3vni, output to ext-vxlan-tun-port

SNAT Reverse Traffic from External IP to Local DPN (assuming this DPN is NAPT Switch)

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, dst-mac=external-router-gateway-mac-address =>

Inbound NAPT Table (44) match: vpn-id=external-vpn-id nw-dst=router-gateway-ip port=ext-port set vpn-id=l3vpn-id, dst-ip=vm-ip

NAPT PFIB Table (47) match: vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

DNAT pipeline (Access from External Network over VXLAN)

DNAT Traffic from External IP to Local DPN

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, eth-dst=floating-ip-dst-vm-mac-address =>

PDNAT Table (25) match: nw-dst=floating-ip,eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

DNAT Reverse Traffic from Local DPN to External IP

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-floating-ip set eth-dst=external-mac-address tun-id=external-l3vni, output to ext-vxlan-tun-port

DNAT to DNAT Traffic (Intra DC)

	FIP VM to FIP VM on Different Hypervisor

DPN1:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst=floating-ip-dst-vm-mac-address tun-id=external-l3vni, output to vxlan-tun-port

DPN2:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id= external-l3vni =>

PDNAT Table (25) match: nw-dst=floating-ip eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

In the above flow rules INTERNAL_TUNNEL_TABLE (table=36) will take the packet to the PDNAT_TABLE
(table 25) for an exact match with floating-ip and floating-ip-dst-vm-mac-address in PDNAT_TABLE.

In case of a successful floating-ip and floating-ip-dst-vm-mac-address match, PDNAT_TABLE will set IP destination as VM IP and VPN ID as internal l3 VPN ID then it will pointing to DNAT_TABLE (table=27)

In case of no match, the packet will be redirected to the SNAT pipeline towards the
INBOUND_NAPT_TABLE (table=44). This is the use-case where DPN2 also acts as
the NAPT DPN.

In summary, on an given NAPT switch, if both DNAT and SNAT are configured, the incoming traffic
will first be sent to the PDNAT_TABLE and if there is no FIP and FIP Mac match found, then it will be
forwarded to INBOUND_NAPT_TABLE for SNAT translation.
As part of the response, the external-l3vni will be used as tun_id to reach floating
IP VM on DPN1.

	FIP VM to FIP VM on same Hypervisor

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst= floating-ip-dst-vm-mac-address =>

PDNAT Table (25) match: nw-dst=floating-ip eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

SNAT to DNAT Traffic (Intra DC)

SNAT Hypervisor:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst=floating-ip-dst-vm-mac-address tun-id=external-l3vni, output to vxlan-tun-port

DNAT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id= external-l3vni =>

PDNAT Table (25) ``match: nw-dst=floating-ip eth-dst= floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id``=>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Non-NAPT to NAPT Forward Traffic (Intra DC)

Non-NAPT Hypervisor:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id set tun-id=router-lport-tag,group =>

group: output to NAPT vxlan-tun-port

NAPT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=router-lport-tag =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-entity-ip set eth-dst=external-entity-mac tun-id=external-l3vni, output to ext-vxlan-tun-port

For forwarding the traffic from Non-NAPT to NAPT DPN the tun-id will be setting with “router-lport-tag” which will be carved out per router.

NAPT to Non-NAPT Reverse Traffic (Intra DC)

NAPT Hypervisor:

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, dst-mac=external-router-gateway-mac-address =>

Inbound NAPT Table (44) match: vpn-id=external-vpn-id nw-dst=router-gateway-ip port=ext-port set vpn-id=l3vpn-id, dst-ip=vm-ip =>

NAPT PFIB Table (47) match: vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set eth-dst-mac=dst-vm-mac, tun-id=dst-vm-lport-tag, output to vxlan-tun-port

Non-NAPT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=dst-vm-lport-tag =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

More details of the NAT pipeline changes are in the NAT Service section of this spec.

Yang changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang , odl-fib.yang and
neutronvpn.yang to start supporting EVPN functionality.

L3VPN YANG changes

A new leaf l3vni and a new leaf type will be added to container vpn-instances

l3vpn.yang

 leaf type {
 description
 "The type of the VPN Instance.
 ipvpn indicates it is an L3VPN.
 evpn indicates it is EVPN”;

 type enumeration {
 enum ipvpn {
 value "0";
 description “L3VPN";
 }
 enum evpn {
 value "1";
 description "EVPN";
 }
 }
 default "ipvpn";
 }

 leaf l3vni {
 description
 "The L3 VNI to use for this L3VPN Instance.
 If this attribute is non-zero, it indicates
 this L3VPN will do L3Forwarding over VXLAN.
 If this value is non-zero, and the type field is ‘l2’,
 it is an error.
 If this value is zero, and the type field is ‘l3’, it is
 the legacy L3VPN that will do L3Forwarding
 with MPLSoverGRE.
 If this value is zero, and the type field is ‘l2’, it
 is an EVPN that will provide L2 Connectivity with
 Openstack supplied VNI”.

 type uint24;
 mandatory false;
 }

 The **type** value comes from Openstack BGPVPN ODL Driver based on what type of BGPVPN is
 orchestrated by the tenant. That same **type** value must be retrieved and stored into
 VPNInstance model above maintained by NeutronvpnManager.

ODL-L3VPN YANG changes

A new leaf l3vni and a new leaf type will be added to container vpn-instance-op-data

odl-l3vpn.yang

leaf type {
 description
 "The type of the VPN Instance.
 ipvpn indicates it is an L3VPN.
 evpn indicates it is EVPN”;

 type enumeration {
 enum ipvpn {
 value "0";
 description “L3VPN";
 }
 enum evpn {
 value "1";
 description "EVPN";
 }
 }
 default "ipvpn";
}

leaf l3vni {
 description
 "The L3 VNI to use for this L3VPN Instance.
 If this attribute is non-zero, it indicates
 this L3VPN will do L3Forwarding over VXLAN.
 If this value is non-zero, and the type field is ‘l2’,
 it is an error.
 If this value is zero, and the type field is ‘l3’, it is
 the legacy L3VPN that will do L3Forwarding
 with MPLSoverGRE.
 If this value is zero, and the type field is ‘l2’, it
 is an EVPN that will provide L2 Connectivity with
 Openstack supplied VNI”.

 type uint24;
 mandatory false;
}

For every interface in the cloud that is part of an L3VPN which has an L3VNI setup, we should
extract that L3VNI from the config VPNInstance and use that to both program the flows as well
as advertise to BGP Neighbour using RouteType 5 BGP Route exchange.
Fundamentally, what we are accomplishing is L3 Connectivity over VXLAN tunnels by using the
EVPN RT5 mechanism.

ODL-FIB YANG changes

Few new leafs like mac_address , gateway_mac_address , l2vni, l3vni and a leaf encap-type will
be added to container fibEntries

odl-fib.yang

leaf encap-type {
 description
 "This flag indicates how to interpret the existing label field.
 A value of mpls indicates that the label will continue to
 be considered as an MPLS Label.
 A value of vxlan indicates that vni should be used to
 advertise to bgp.
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 }
 default "mplsgre";
}

leaf mac_address {
 type string;
 mandatory false;
}

leaf l3vni {
 type uint24;
 mandatory false;
}

leaf l2vni {
 type uint24;
 mandatory false;
}

leaf gateway_mac_address {
 type string;
 mandatory false;
}
Augment:parent_rd {
 type string;
 mandatory false;
}

The encaptype indicates whether an MPLSOverGre or VXLAN encapsulation should be used
for this route. If the encapType is MPLSOverGre then the usual label field will carry
the MPLS Label to be used in datapath for traffic to/from this VRFEntry IP prefix.

If the encaptype is VXLAN, the VRFEntry implicitly refers that this route is reachable
via a VXLAN tunnel. The L3VNI will carry the VRF VNI and there will also be an L2VNI which
represents the VNI of the network to which the VRFEntry belongs to.

Based on whether Symmetric IRB (or) Asymmetric IRB is configured to be used by the CSC
(see section on Configuration Impact below). If Symmetric IRB is configured, then the L3VNI
should be used to program the flows rules. If Asymmetric IRB is configured, then L2VNI should
be used in the flow rules.

The mac_address field must be filled for every route in an EVPN. This mac_address field
will be used for support intra-DC communication for both inter-subnet and intra-subnet routing.

The gateway_mac_address must always be filled for every route in an EVPN.[AKMA7] [NV8]
This gateway_mac_address will be used for all packet exchanges between DC-GW and the
DPN in the DC to support L3 based forwarding with Symmetric IRB.

NEUTRONVPN YANG changes

One new leaf l3vni will be added to container grouping vpn-instance

odl-fib.yang

leaf l3vni {
 type uint32;
 mandatory false;
}

Solution considerations

Proposed change in Openstack Neutron BGPVPN Driver

The Openstack Neutron BGPVPN’s ODL driver in Newton release needs to be changed, so that
it is able to relay the configured L2 BGPVPNs, to the OpenDaylight Controller.
As of Mitaka release, only L3 BGPVPNs configured in Openstack are being relayed to the
OpenDaylight Controller. So in addition to addressing the ODL BGPVPN Driver changes in
Newton, we will provide a Mitaka based patch that will integrate into Openstack.

The Newton changes for the BGPVPN Driver has merged and is here:
https://review.openstack.org/#/c/370547/

Proposed change in BGP Quagga Stack

The BGP Quagga Stack is a component that interfaces with ODL Controller to enable ODL Controller itself
to become a BGP Peer. This BGP Quagga Stack need to be enhanced so that it is able to embrace EVPN
with Route Type 5 on the following two interfaces:

	Thrift Interface where ODL pushes routes to BGP Quagga Stack

	Route exchanges from BGP Quagga Stack to other BGP Neighbors (including DC-GW).

Proposed change in OpenDaylight-specific features

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager and VPN Interface Manager)

	FIB Manager

	BGP Manager

	VPN SubnetRoute Handler

	NAT Service

Import Export RT support for EVPN

Currently Import/Export logic for L3VPN uses a LabelRouteInfo structure to build information
about imported prefixes using MPLS Label as the key. However, this structure cannot be used
for EVPN as the L3VNI will be applicable for an entire EVPN Instance instead of the MPLS Label.
In lieu of LabelRouteInfo, we will maintain an IPPrefixInfo keyed structure that can be used
for facilitating Import/Export of VRFEntries across both EVPNs and L3VPNs.

odl-fib.yang

list ipprefix-info {

 key "prefix, parent-rd"
 leaf prefix {
 type string;
 }

 leaf parent-rd {
 type string;
 }

 leaf label {
 type uint32;
 }

 leaf dpn-id {
 type uint64;
 }

 leaf-list next-hop-ip-list {
 type string;
 }

 leaf-list vpn-instance-list {
 type string;
 }

 leaf parent-vpnid {
 type uint32;
 }

 leaf vpn-interface-name {
 type string;
 }

 leaf elan-tag {
 type uint32;
 }

 leaf is-subnet-route {
 type boolean;
 }

 leaf encap-type {
 description
 "This flag indicates how to interpret the existing label field.
 A value of mpls indicates that the l3label should be considered as an MPLS
 Label.
 A value of vxlan indicates that l3label should be considered as an VNI.
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 default "mplsgre";
 }
 }

 leaf l3vni {
 type uint24;
 mandatory false;
 }

 leaf l2vni {
 type uint24;
 mandatory false;
 }

 leaf gateway_mac_address {
 type string;
 mandatory false;
 }
}

SubnetRoute support on EVPN

The subnetRoute feature will continue to be supported on EVPN and we will use RT5 to publish
subnetRoute entries with either the router-interface-mac-address if available (or) if not
available use the pre-defined hardcoded MAC Address described in section Configuration Impact.
For both ExtraRoutes and MIPs (invisible IPs) discovered via subnetroute, we will continue
to use RT5 to publish those prefixes.[AKMA9] [NV10]
On the dataplane, VXLAN packets from the DC-GW will carry the MAC Address of the gateway-ip
for the subnet in the inner DMAC.

NAT Service support for EVPN

However, since external network NAT should continue to be supported on VXLAN, making NAT
service work on L3VPNs that use VXLAN as the tunnel type becomes imperative.

Existing SNAT/DNAT design assumed internetVpn to be using mplsogre as the connectivity
from external network towards DCGW. This needs to be changed such that it can handle even
EVPN case with VXLAN connectivity as well.

As of the implementation required for this specification, the workflow will be to create
InternetVPN with and associate a single external network to that is of VXLAN Provider Type.
The Internet VPN itself will be an L3VPN that will be created via the ODL RESTful API and
during creation an L3VNI parameter will be supplied to enable this L3VPN to operate on a
VXLAN dataplane. The L3VNI provided to the Internet VPN can be different from the VXLAN
segmentation ID associated to the external network.

However, it will be a more viable use-case in the community if we mandate in our workflow
that both the L3VNI configured for Internet VPN and the VXLAN segmentation id of the
associated external network to the Internet VPN be the same.
NAT service can use vpninstance-op-data model to classify the DCGW connectivity for internetVpn.

For the Pipeline changes for NAT Service, please refer to ‘Pipeline changes’ section.

SNAT to start using Router Gateway MAC, in translated entry in table 46 (Outbound SNAT table)
and in table 19 (L3_GW_MAC_Table). Presently Router gateway mac is already stored in odl-nat model
in External Routers.

DNAT to start using Floating MAC, in table 28 (SNAT table) and in table 19 (L3_GW_MAC Table).
Change in pipeline mainly reverse traffic for SNAT and DNAT so that when packet arrives from DCGW,
it goes to 0->38->17->19 and based on Vni and MAC matching, take it back to SNAT or DNAT pipelines.

Also final Fib Entry pointing to DCGW in forward direction also needs modification where we should
start using VXLAN’s vni, FloatingIPMAC (incase of DNAT) and ExternalGwMacAddress(incase of SNAT)
and finally encapsulation type as VXLAN.

For SNAT advertise to BGP happens during external network association to Vpn and during High
availability scenarios where you need to re-advertise the NAPT switch. For DNAT we need to
advertise when floating IP is associated to the VM.
For both SNAT and DNAT this IS mandates that we do only RT5 based advertisement. That RT5
advertisement must carry the external gateway mac address assigned for the respective Router
for SNAT case while for DNAT case the RT5 will carry the floating-ip-mac address.

ARP request/response and MIP handling Support for EVPN

Will not support ARP across DCs, as we donot support intra-subnet inter-DC scenarios.

	For intra-subnet intra-DC scenarios, the ARPs will be serviced by existing ELAN pipeline.

	For inter-subnet intra-DC scenarios, the ARPs will be processed by ARP Responder implementation that is already pursued in Carbon.

	For inter-subnet inter-DC scenarios, ARP requests won’t be generated by DC-GW. Instead the DC-GW will use ‘gateway mac’ extended attribute MAC Address information and put that directly into DSTMAC field of Inner MAC Header by the DC-GW for all packets sent to VMs within the DC.

	As quoted, intra-subnet inter-DC scenario is not a supported use-case as per this Implementation Spec.

Tunnel state handling Support

We have to handle both the internal and external tunnel events for L3VPN (with L3VNI) the same way
it is handled for current L3VPN.

InterVPNLink support for EVPN

Not supported as this is not a requirement for this Spec.

Supporting VLAN Aware VMs (Trunk and SubPorts)

Not supported as this is not a requirement for this Spec.

VM Mobility with RT5

We will continue to support cold migration of VMs across hypervisors across L3VPNs as supported
already in current ODL Carbon Release.

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Configuration impact

The following parameters have been initially made available as configurable for EVPN. These
configurations can be made via the RESTful interface:

1.Multi-homing-mode – For multi-homing use cases where redundant DCGWs are used ODL can be configured with ‘none’, ‘all-active’ or ‘single-active’ multi-homing mode. Default will be ‘none’.

2.IRB-mode – Depending upon the support on DCGW, ODL can be configured with either ‘Symmetric’ or ‘Asymmetric’ IRB mode. Default is ‘Symmetric’.

There is another important parameter though it won’t be configurable:

MAC Address Prefix for EVPN – This MAC Address prefix represents the MAC Address prefix that will be hardcoded and that MACAddress will be used as the gateway mac address if it is not supplied from Openstack. This will usually be the case when networks are associated to an L3VPN with no gateway port yet configured in Openstack for such networks.

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

The creational RESTful API for the L3VPN will be enhanced to accept
the L3VNI as an additional attribute as in the below request format:

{'input': {
 'l3vpn': [
 {'name': 'L3VPN2',
 'export-RT': ['50:2'],
 'route-distinguisher': ['50:2'],
 'import-RT': ['50:2'],
 'id': '4ae8cd92-48ca-49b5-94e1-b2921a260007',
 ‘l3vni’: ‘200’,
 'tenant-id': 'a565b3ed854247f795c0840b0481c699'
}]}}

There is no change in the REST API for associating networks, associating routers (or) deleting
the L3VPN.

On the Openstack-side configuration, the vni_ranges configured in Openstack Neutron ml2_conf.ini
should not overlap with the L3VNI provided in the ODL RESTful API.
In an inter-DC case, where both the DCs are managed by two different Openstack Controller
Instances, the workflow will be to do the following:

	Configure the DC-GW2 facing OSC2 and DC-GW1 facing OSC1 with the same BGP configuration parameters.

	On first Openstack Controller (OSC1) create an L3VPN1 with RD1 and L3VNI1

	Create a network Net1 and Associate that Network Net1 to L3VPN1

	On second Openstack Controller (OSC2) create an L3VPN2 with RD1 with L3VNI2

	Create a network Net2 on OSC2 and associate that Network Net2 to L3VPN2.

	Spin-off VM1 on Net1 in OSC1.

	Spin-off VM2 on Net2 in OSC2.

	Now VM1 and VM2 should be able to communicate.

Implementation

Assignee(s)

	Primary assignee:

	Kiran N Upadhyaya (kiran.n.upadhyaya@ericsson.com)

Sumanth MS (sumanth.ms@ericsson.com)

Basavaraju Chickmath (basavaraju.chickmath@ericsson.com)

	Other contributors:

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

The Trello cards have already been raised for this feature
under the EVPN_RT5.

Here is the link for the Trello Card:
https://trello.com/c/Tfpr3ezF/33-evpn-evpn-rt5

New tasks into this will be added to cover Java UT and
CSIT.

Dependencies

Requires a DC-GW that is supporting EVPN RT5 on BGP Control plane.

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

User Guide will need to add information on how OpenDaylight can
be used to deploy L3 BGPVPNs and enable communication across
datacenters between virtual endpoints in such L3 BGPVPN.

Developer Guide will capture the ODL L3VPN API changes to enable
management of an L3VPN that can use VXLAN overlay to enable
communication across datacenters.

References

[1] EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

[2] Network Virtualization using EVPN [https://www.ietf.org/id/draft-ietf-bess-evpn-overlay-07.txt]

[3] Integrated Routing and Bridging in EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-inter-subnet-forwarding-04]

[4] VXLAN DCI using EVPN [https://tools.ietf.org/html/draft-boutros-bess-vxlan-evpn-02]

[5] BGP MPLS-Based Ethernet VPN [https://tools.ietf.org/html/rfc7432]

	http://docs.opendaylight.org/en/latest/documentation.html

	https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

Temporary Source MAC Learning

https://git.opendaylight.org/gerrit/#/q/topic:temp-smac-learning

Temporary source MAC learning introduces two new tables to the ELAN service, for OVS-based source MAC learning using a learn action,
to reduce a large scale of packets punted to the controller for an unlearned source MAC.

Problem description

Currently any packet originating from an unknown source MAC address is punted to the controller from the ELAN service (L2 SMAC table 50).

This behavior continues for each packet from this source MAC until ODL properly processes this packet and adds an explicit source MAC rule to this table.

During the time that is required to punt a packet, process it by the ODL and create an appropriate flow, it is not necessary to punt any other packet from this source MAC, as it causes an unnecessary load.

Use Cases

Any L2 traffic from unknown source MACs passing through the ELAN service.

Proposed change

A preliminary logic will be added prior to the SMAC learning table,
that will use OpenFlow learn action to add a temporary rule for each
source MAC after the first packet is punted.

Pipeline changes

Two new tables will be introduced to the ELAN service:

Table 48 for resubmitting to tables 49 and 50 (trick required to use the learned flows, similar to the ACL implementation).

Table 49 for setting a register value to mark that this SMAC was already punted to the ODL for learning. The flows in this table will be generated automatically by OVS.

Table 50 will be modified, with a new flow, which has a lower priority than the existing known SMAC flows but a higher priority than the default flow. This flow passes packets marked with the register directly to the DMAC table 51 without punting to the controller, as it is already being processed. In addition, the default flow that punts packets to the controller, will also have a new learn action, temporarily adding a flow matching this source MAC to table 49.

Example of flows after change:

cookie=0x8040000, duration=1575.755s, table=17, n_packets=7865, n_bytes=1451576, priority=6,metadata=0x6000020000000000/0xffffff0000000000 actions=write_metadata:0x7000021389000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=1129.530s, table=48, n_packets=4149, n_bytes=729778, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x8600000, duration=6.875s, table=49, n_packets=0, n_bytes=0, hard_timeout=60, priority=0,dl_src=fa:16:3e:2f:73:61 actions=load:0x1->NXM_NX_REG4[0..7]
cookie=0x8051389, duration=7.078s, table=50, n_packets=0, n_bytes=0, priority=20,metadata=0x21389000000/0xfffffffff000000,dl_src=fa:16:3e:2f:73:61 actions=goto_table:51
cookie=0x8050000, duration=440.925s, table=50, n_packets=49, n_bytes=8030, priority=10,reg4=0x1 actions=goto_table:51
cookie=0x8050000, duration=124.209s, table=50, n_packets=68, n_bytes=15193, priority=0 actions=CONTROLLER:65535,learn(table=49,hard_timeout=60,priority=0,cookie=0x8600000,NXM_OF_ETH_SRC[],load:0x1->NXM_NX_REG4[0..7]),goto_table:51

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

This change should substantially reduce the packet in load from SMAC learning, resulting in a reduced load of the ODL in high performance traffic scenarios.

Targeted Release

Due to scale and performance criticality, and the low risk of this feature, suggest to target this functionality for Boron.

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other contributors.

	Primary assignee:

	Olga Schukin (olga.schukin@hpe.com)

	Other contributors:

	Alon Kochba (alonko@hpe.com)

Work Items

N/A.

Dependencies

No new dependencies.
Learn action is already in use in netvirt pipeline and has been available in OVS since early versions. However this is a non-standard OpenFlow feature.

Testing

Existing source MAC learning functionality should be verified.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

N/A.

Documentation Impact

Pipeline documentation should be updated accordingly to reflect the changes to the ELAN service.

Table of Contents

	Enhancement to VLAN Provider Network Support

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Enhancement to VLAN Provider Network Support

https://git.opendaylight.org/gerrit/#/q/topic:vlan-provider-network

This feature aims to enhance the support for VLAN provider networks that are not of type
external.As part of this enhancement, ELAN pipeline processing for the network will be
done on the switch only if there is at least one VM port in the network on the switch.
The behavior of VLAN provider networks of type external and flat networks will remain
unchanged as of now. The optimization for external network is out of scope of this spec
and will be handled as part of future releases.

Problem description

Current ODL implementation supports all configured VLAN segments corresponding to VLAN
provider networks on a particular patch port on all Open vSwitch which are part of the
network. This could have adverse performance impacts because every provider patch port
will receive and processes broadcast traffic for all configured VLAN segments even in
cases when the switch doesn’t have a VM port in the network. Furthermore, for unknown
SMACs it leads to unnecessary punts from ELAN pipeline to controller for source MAC
learning from all the switches.

Use Cases

L2 forwarding between OVS switches using provider type VLAN over L2 segment of the
underlay fabric

Proposed change

Instead of creating the VLAN member interface on the patch port at the time of network
creation, VLAN member interface creation will be deferred until a VM port comes up in the
switch in the VLAN provider network. Switch pipeline will not process broadcast traffic on
this switch in a VLAN provider network until VM port is added to the network. This will be
applicable to VLAN provider network without external router attribute set.

Elan service binding will also be done at the time of VLAN member interface
creation. Since many neutron ports on same switch can belong to a single VLAN provider
network, the flow rule should be created only once when first VM comes up and should be
deleted when there are no more neutron ports in the switch for the VLAN provider network.

Pipeline changes

None.

Yang changes

elan:elan-instances container will be enhanced with information whether an external
router is attached to VLAN provider network.

elan.yang

container elan-instances {
 description
 "elan instances configuration parameters. Elan instances support both the VLAN and VNI based elans.";

 list elan-instance {
 max-elements "unbounded";
 min-elements "0";
 key "elan-instance-name";
 description
 "Specifies the name of the elan instance. It is a string of 1 to 31
 case-sensitive characters.";
 leaf elan-instance-name {
 type string;
 description "The name of the elan-instance.";
 }
 ...

 leaf external {
 description "indicates whether the network has external router attached to it";
 type boolean;
 default "false";
 }
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

Performance will improve because of the following:

	Switch will drop packets if it doesn’t have a VM port in the VLAN on which packet is
received.

	Unnecessary punts to the controller from ELAN pipeline for source mac learning will be
prevented.

Targeted Release

Carbon.

Alternatives

N.A.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	
	Ravindra Nath Thakur (ravindra.nath.thakur@ericsson.com)

	Naveen Kumar Verma (naveen.kumar.verma@ericsson.com)

	Other contributors:

	
	Ravi Sundareswaran (ravi.sundareswaran@ericsson.com)

Work Items

N.A.

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

This feature will not require any change in User Guide.

References

[1] https://trello.com/c/A6Km6J3D/110-flat-and-vlan-network-type

Table of Contents

	VNI based L2 switching, L3 forwarding and NATing

	Problem description

	In Scope

	Out of Scope

	Use Cases

	L2 switching use cases

	L3 forwarding use cases

	NAT use cases

	Proposed change

	Pipeline changes

	L2 Switching

	Unicast

	Within hypervisor

	Across hypervisors

	Broadcast

	Across hypervisors

	L3 Forwarding

	Between VMs on a single OVS

	Between VMs on two different OVS

	VM sourcing the traffic (Ingress OVS)

	VM receiving the traffic (Egress OVS)

	NAT Service

	Inter DC

	SNAT

	DNAT

	Intra DC

	DNAT to DNAT

	SNAT to DNAT

	YANG changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release(s)

	Known Limitations

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

VNI based L2 switching, L3 forwarding and NATing

https://git.opendaylight.org/gerrit/#/q/topic:vni-based-l2-l3-nat

Important: All gerrit links raised for this feature will have topic name as vni-based-l2-l3-nat

This feature attempts to realize the use of VxLAN VNI (Virtual Network Identifier) for VxLAN
tenant traffic flowing on the cloud data-network. This is applicable to L2 switching, L3
forwarding and NATing for all VxLAN based provider networks. In doing so, it eliminates the
presence of LPort tags, ELAN tags and MPLS labels on the wire and instead, replaces
them with VNIs supplied by the tenant’s OpenStack.

This will be selectively done for the use-cases covered by this spec and hence, its
implementation won’t completely remove the usage of the above entities. The usage of LPort tags
and ELAN tags within an OVS datapath (not on the wire) of the hypervisor will be retained, as
eliminating it completely is a large redesign and can be pursued incrementally later.

This spec is the first step in the direction of enforcing datapath semantics that uses tenant
supplied VNI values on VxLAN Type networks created by tenants in OpenStack Neutron.

Note: The existing L3 BGPVPN control-path and data-path semantics will continue to use L3
labels on the wire as well as inside the OVS datapaths of the hypervisor to realize both intra-dc
and inter-dc connectivity.

Problem description

OpenDaylight NetVirt service today supports the following types of networks:

	Flat

	VLAN

	VxLAN

	GRE

Amongst these, VxLAN-based overlay is supported only for traffic within the DataCenter. External
network accesses over the DC-Gateway are supported via VLAN or GRE type external networks.
For rest of the traffic over the DC-Gateway, the only supported overlay is GRE.

Today, for VxLAN enabled networks by the tenant, the labels are generated by L3 forwarding service
and used. Such labels are re-used for inter-DC use-cases with BGPVPN as well. This does not honor
and is not in accordance with the datapath semantics from an orchestration point of view.

This spec attempts to change the datapath semantics by enforcing the VNIs (unique for every VxLAN
enabled network in the cloud) as dictated by the tenant’s OpenStack configuration for L2
switching, L3 forwarding and NATing.

This implementation will remove the reliance on using the following (on the wire) within the
DataCenter:

	Labels for L3 forwarding

	LPort tags for L2 switching

More specifically, the traffic from source VM will be routed in source OVS by the L3VPN / ELAN
pipeline. After that, the packet will travel as a switched packet in the VxLAN underlay within the
DC, containing the VNI in the VxLAN header instead of MPLS label / LPort tag. In the destination
OVS, the packet will be collected and sent to the destination VM through the existing ELAN
pipeline.

In the nodes themselves, the LPort tag will continue to be used when pushing the packet from
ELAN / L3VPN pipeline towards the VM as ACLService continues to use LPort tags.

Simiarly ELAN tags will continue to be used for handling L2 broadcast packets:

	locally generated in the OVS datapath

	remotely received from another OVS datapath via internal VxLAN tunnels

LPort tag uses 8 bits and ELAN tag uses 21 bits in the metadata. The existing use of both in the
metadata will remain unaffected.

In Scope

Since VNIs are provisioned only for VxLAN based underlays, this feature has in its scope the
use-cases pertaining to intra-DC connectivity over internal VxLAN tunnels only.

On the cloud data network wire, all the VxLAN traffic for basic L2 switching within a VxLAN
network and L3 forwarding across VxLAN-type networks using routers will use tenant supplied VNI
values for such VXLAN networks.

Inter-DC connectivity over external VxLAN tunnels is covered by the EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec.

Out of Scope

	Complete removal of use of LPort tags everywhere in ODL: Use of LPort tags within the OVS
Datapath of a hypervisor, for streaming traffic to the right virtual endpoint on that hypervisor
(note: not on the wire) will be retained

	Complete removal of use of ELAN tags everywhere in ODL: Use of ELAN tags within the OVS
Datapath to handle local/remote L2 broadcasts (note: not on the wire) will be retained

	Complete removal of use of MPLS labels everywhere in ODL: Use of MPLS labels for
realizing an L3 BGPVPN (regardless of type of networks put into such BGPVPN that may include
networks of type VxLAN) both on the wire and within the OVS Datapaths will be retained.

	Addressing or testing IPv6 use-cases

	Intra DC NAT usecase where no explicit Internet VPN is created for VxLAN based external provider
networks: Detailed further in Intra DC subsection in NAT section below.

Complete removal of use of LPort tags, ELAN tags and MPLS labels for VxLAN-type
networks has large scale design/pipeline implications and thus need to be attempted as future
initiatives via respective specs.

Use Cases

This feature involves amendments/testing pertaining to the following:

L2 switching use cases

	L2 Unicast frames exchanged within an OVS datapath

	L2 Unicast frames exchanged over OVS datapaths that are on different hypervisors

	L2 Broadcast frames transmitted within an OVS datapath

	L2 Broadcast frames received from remote OVS datapaths

L3 forwarding use cases

	Router realized using VNIs for networks attached to a new router (with network having
pre-created VMs)

	Router realized using VNIs for networks attached to a new router (with new VMs booted later on
the network)

	Router updated with one or more extra route(s) to an existing VM.

	Router updated to remove previously added one/more extra routes.

NAT use cases

The provider network types for external networks supported today are:

	External VLAN Provider Networks (transparent Internet VPN)

	External Flat Networks (transparent Internet VPN)

	Tenant-orchestrated Internet VPN of type GRE (actually MPLSOverGRE)

Following are the SNAT/DNAT use-cases applicable to the network types listed above:

	SNAT functionality.

	DNAT functionality.

	DNAT to DNAT functionality (Intra DC)

	FIP VM to FIP VM on same hypervisor

	FIP VM to FIP VM on different hypervisors

	SNAT to DNAT functionality (Intra DC)

	Non-FIP VM to FIP VM on the same NAPT hypervisor

	Non-FIP VM to FIP VM on the same hypervisor, but NAPT on different hypervisor

	Non-FIP VM to FIP VM on different hypervisors (with NAPT on FIP VM hypervisor)

	Non-FIP VM to FIP VM on different hypervisors (with NAPT on Non-FIP VM hypervisor)

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronVPN Manager

	ELAN Manager

	VPN Engine (VPN Manager, VPN Interface Manager and VPN Subnet Route Handler)

	FIB Manager

	NAT Service

Pipeline changes

L2 Switching

Unicast

Within hypervisor

There are no explicit pipeline changes for this use-case.

Across hypervisors

	Ingress OVS

Instead of setting the destination LPort tag, destination network VNI will be set in the
tun_id field in L2_DMAC_FILTER_TABLE (table 51) while egressing the packet on the tunnel
port.

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=65.484s, table=0, n_packets=23, n_bytes=2016, priority=4,in_port=6actions=write_metadata:0x30000000000/0xffffff0000000001,goto_table:17
cookie=0x6900000, duration=63.106s, table=17, n_packets=23, n_bytes=2016, priority=1,metadata=0x30000000000/0xffffff0000000000 actions=write_metadata:0x2000030000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=64.135s, table=40, n_packets=4, n_bytes=392, priority=61010,ip,dl_src=fa:16:3e:86:59:fd,nw_src=12.1.0.4 actions=ct(table=41,zone=5002)
cookie=0x6900000, duration=5112.542s, table=41, n_packets=21, n_bytes=2058, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x8040000, duration=62.125s, table=17, n_packets=15, n_bytes=854, priority=6,metadata=0x6000030000000000/0xffffff0000000000 actions=write_metadata:0x700003138a000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=5113.124s, table=48, n_packets=24, n_bytes=3044, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x805138a, duration=62.163s, table=50, n_packets=15, n_bytes=854, priority=20,metadata=0x3138a000000/0xfffffffff000000,dl_src=fa:16:3e:86:59:fd actions=goto_table:51
cookie=0x803138a, duration=62.163s, table=51, n_packets=6, n_bytes=476, priority=20,metadata=0x138a000000/0xffff000000,dl_dst=fa:16:3e:31:fb:91 actions=set_field:**0x710**->tun_id,output:1

	Egress OVS

On the egress OVS, for the packets coming in via the internal VxLAN tunnel (OVS - OVS),
INTERNAL_TUNNEL_TABLE currently matches on destination LPort tag for unicast packets. Since
the incoming packets will now contain the network VNI in the VxLAN header, the
INTERNAL_TUNNEL_TABLE will match on this VNI, set the ELAN tag in the metadata and forward
the packet to L2_DMAC_FILTER_TABLE so as to reach the destination VM via the ELAN pipeline.

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=5136.996s, table=0, n_packets=12601, n_bytes=899766, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=1145.594s, table=36, n_packets=15, n_bytes=476, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x803138a, duration=62.163s, table=51, n_packets=9, n_bytes=576, priority=20,metadata=0x138a000001/0xffff000000,dl_dst=fa:16:3e:86:59:fd actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

Broadcast

Across hypervisors

The ARP broadcast by the VM will be a (local + remote) broadcast.

For the local broadcast on the VM’s OVS itself, the packet will continue to get flooded to all the
VM ports by setting the destination LPort tag in the local broadcast group. Hence, there are no
explicit pipeline changes for when a packet is transmitted within the source OVS via a local
broadcast.

The changes in pipeline for the remote broadcast are illustrated below:

	Ingress OVS

Instead of setting the ELAN tag, network VNI will be set in the tun_id field as part of
bucket actions in remote broadcast group while egressing the packet on the tunnel port.

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=65.484s, table=0, n_packets=23, n_bytes=2016, priority=4,in_port=6actions=write_metadata:0x30000000000/0xffffff0000000001,goto_table:17
cookie=0x6900000, duration=63.106s, table=17, n_packets=23, n_bytes=2016, priority=1,metadata=0x30000000000/0xffffff0000000000 actions=write_metadata:0x2000030000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=64.135s, table=40, n_packets=4, n_bytes=392, priority=61010,ip,dl_src=fa:16:3e:86:59:fd,nw_src=12.1.0.4 actions=ct(table=41,zone=5002)
cookie=0x6900000, duration=5112.542s, table=41, n_packets=21, n_bytes=2058, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x8040000, duration=62.125s, table=17, n_packets=15, n_bytes=854, priority=6,metadata=0x6000030000000000/0xffffff0000000000 actions=write_metadata:0x700003138a000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=5113.124s, table=48, n_packets=24, n_bytes=3044, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x805138a, duration=62.163s, table=50, n_packets=15, n_bytes=854, priority=20,metadata=0x3138a000000/0xfffffffff000000,dl_src=fa:16:3e:86:59:fd actions=goto_table:51
cookie=0x8030000, duration=5112.911s, table=51, n_packets=18, n_bytes=2568, priority=0 actions=goto_table:52
cookie=0x870138a, duration=62.163s, table=52, n_packets=9, n_bytes=378, priority=5,metadata=0x138a000000/0xffff000001 actions=write_actions(group:210004)

group_id=210004,type=all,bucket=actions=group:210003,bucket=actions=set_field:**0x710**->tun_id,output:1

	Egress OVS

On the egress OVS, for the packets coming in via the internal VxLAN tunnel (OVS - OVS),
INTERNAL_TUNNEL_TABLE currently matches on ELAN tag for broadcast packets. Since the
incoming packets will now contain the network VNI in the VxLAN header, the
INTERNAL_TUNNEL_TABLE will match on this VNI, set the ELAN tag in the metadata and forward
the packet to L2_DMAC_FILTER_TABLE to be broadcasted via the local broadcast groups
traversing the ELAN pipeline.

The TUNNEL_INGRESS_BIT being set in the CLASSIFIER_TABLE (table 0) ensures that the
packet is always sent to the local broadcast group only and hence, remains within the OVS. This
is necessary to avoid switching loop back to the source OVS.

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=5136.996s, table=0, n_packets=12601, n_bytes=899766, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=1145.594s, table=36, n_packets=15, n_bytes=476, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x8030000, duration=5137.609s, table=51, n_packets=9, n_bytes=1293, priority=0 actions=goto_table:52
cookie=0x870138a, duration=1145.592s, table=52, n_packets=0, n_bytes=0, priority=5,metadata=0x138a000001/0xffff000001 actions=apply_actions(group:210003)

group_id=210003,type=all,bucket=actions=set_field:0x4->tun_id,resubmit(,55)

cookie=0x8800004, duration=1145.594s, table=55, n_packets=9, n_bytes=378, priority=9,tun_id=0x4,actions=load:0x400->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

The ARP response will be a unicast packet, and as indicated above, for unicast packets, there
are no explicit pipeline changes.

L3 Forwarding

Between VMs on a single OVS

There are no explicit pipeline changes for this use-case.
The destination LPort tag will continue to be set in the nexthop group since when
The EGRESS_DISPATCHER_TABLE sends the packet to EGRESS_ACL_TABLE, it is used by the ACL
service.

Between VMs on two different OVS

L3 forwarding between VMs on two different hypervisors is asymmetric forwarding since the traffic
is routed in the source OVS datapath while it is switched over the wire and then all the way to
the destination VM on the destination OVS datapath.

VM sourcing the traffic (Ingress OVS)

L3_FIB_TABLE will set the destination network VNI in the tun_id field instead of the MPLS
label.

CLASSIFIER_TABLE => DISPATCHER_TABLE => INGRESS_ACL_TABLE =>
DISPATCHER_TABLE => L3_GW_MAC_TABLE =>
L3_FIB_TABLE (set destination MAC, **set tunnel-ID as destination network VNI**)
=> Output to tunnel port

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=128.140s, table=0, n_packets=25, n_bytes=2716, priority=4,in_port=5 actions=write_metadata:0x50000000000/0xffffff0000000001,goto_table:17
cookie=0x8000000, duration=4876.599s, table=17, n_packets=0, n_bytes=0, priority=0,metadata=0x5000000000000000/0xf000000000000000 actions=write_metadata:0x6000000000000000/0xf000000000000000,goto_table:80
cookie=0x1030000, duration=4876.563s, table=80, n_packets=0, n_bytes=0, priority=0 actions=resubmit(,17)
cookie=0x6900000, duration=123.870s, table=17, n_packets=25, n_bytes=2716, priority=1,metadata=0x50000000000/0xffffff0000000000 actions=write_metadata:0x2000050000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=126.056s, table=40, n_packets=15, n_bytes=1470, priority=61010,ip,dl_src=fa:16:3e:63:ea:0c,nw_src=10.1.0.4 actions=ct(table=41,zone=5001)
cookie=0x6900000, duration=4877.057s, table=41, n_packets=17, n_bytes=1666, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x6800001, duration=123.485s, table=17, n_packets=28, n_bytes=3584, priority=2,metadata=0x2000050000000000/0xffffff0000000000 actions=write_metadata:0x5000050000000000/0xfffffffffffffffe,goto_table:60
cookie=0x6800000, duration=3566.900s, table=60, n_packets=24, n_bytes=2184, priority=0 actions=resubmit(,17)
cookie=0x8000001, duration=123.456s, table=17, n_packets=17, n_bytes=1554, priority=5,metadata=0x5000050000000000/0xffffff0000000000 actions=write_metadata:0x60000500000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, duration=124.815s, table=19, n_packets=15, n_bytes=1470, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=fa:16:3e:51:da:ee actions=goto_table:21
cookie=0x8000003, duration=125.568s, table=21, n_packets=9, n_bytes=882, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=12.1.0.3 actions=**set_field:0x710->tun_id**,set_field:fa:16:3e:31:fb:91->eth_dst,output:1

VM receiving the traffic (Egress OVS)

On the egress OVS, for the packets coming in via the VxLAN tunnel, INTERNAL_TUNNEL_TABLE
currently matches on MPLS label and sends it to the nexthop group to be taken to the destination
VM via EGRESS_ACL_TABLE.
Since the incoming packets will now contain network VNI in the VxLAN header, the INTERNAL_TUNNEL_TABLE
will match on the VNI, set the ELAN tag in the metadata and forward the packet to
L2_DMAC_FILTER_TABLE, from where it will be taken to the destination VM via the ELAN pipeline.

CLASSIFIER_TABLE => INTERNAL_TUNNEL_TABLE (Match on network VNI, set ELAN tag in the metadata)
=> L2_DMAC_FILTER_TABLE (Match on destination MAC) => EGRESS_DISPATCHER_TABLE
=> EGRESS_ACL_TABLE => Output to destination VM port

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=4918.647s, table=0, n_packets=12292, n_bytes=877616, priority=5,in_port=1actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=927.245s, table=36, n_packets=8234, n_bytes=52679, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x803138a, duration=62.163s, table=51, n_packets=9, n_bytes=576, priority=20,metadata=0x138a000001/0xffff000000,dl_dst=fa:16:3e:86:59:fd actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

NAT Service

For NAT, we need VNIs to be used in two scenarios:

	When packet is forwarded from non-NAPT to NAPT hypervisor (VNI per router)

	Between hypervisors (intra DC) over Internet VPN (VNI per Internet VPN)

Hence, a pool titled opendaylight-vni-ranges, non-overlapping with the OpenStack Neutron
vni_ranges configuration, needs to be configured by the OpenDaylight Controller Administrator.

This opendaylight-vni-ranges pool will be used to carve out a unique VNI per router to be then
used in the datapath for traffic forwarding from non-NAPT to NAPT switch for this router.

Similarly, for MPLSOverGRE based external networks, the opendaylight-vni-ranges pool will be
used to carve out a unique VNI per Internet VPN (GRE-provider-type) to be then used in the
datapath for traffic forwarding for SNAT-to-DNAT and DNAT-to-DNAT cases within the
DataCenter. Only one external network can be associated to Internet VPN today and this spec
doesn’t attempt to address that limitation.

A NeutronVPN configuration API will be exposed to the administrator to configure the lower and
higher limit for this pool.
If the administrator doesn’t configure this explicitly, then the pool will be created with default
values of lower limit set to 70000 and upper limit set to 100000, during the first NAT session
configuration.

FIB Manager changes: For external network of type GRE, it is required to use
Internet VPN VNI for intra-DC communication, but we still require MPLS labels to reach
SNAT/DNAT VMs from external entities via MPLSOverGRE. Hence, we will make use of the l3vni
attribute added to fibEntries container as part of EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec. NAT will populate both
label and l3vni values for fibEntries created for floating-ips and external-fixed-ips with
external network of type GRE. This l3vni value will be used while programming remote FIB flow
entries (on all the switches which are part of the same VRF). But still, MPLS label will be used
to advertise prefixes and in L3_LFIB_TABLE taking the packet to INBOUND_NAPT_TABLE and
PDNAT_TABLE.

For SNAT/DNAT use-cases, we have following provider network types for External Networks:

	VLAN - not VNI based

	Flat - not VNI based

	VxLAN - VNI based (covered by the EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec)

	GRE - not VNI based (will continue to use MPLS labels)

Inter DC

SNAT

	From a VM on a NAPT switch to reach Internet, and reverse traffic reaching back to the VM

There are no explicit pipeline changes.

	From a VM on a non-NAPT switch to reach Internet, and reverse traffic reaching back to the VM

On the non-NAPT switch, PSNAT_TABLE (table 26) will be set with tun_id field as
Router Based VNI allocated from the pool and send to group to reach NAPT switch.

On the NAPT switch, INTERNAL_TUNNEL_TABLE (table 36) will match on the tun_id field
which will be Router Based VNI and send the packet to OUTBOUND_NAPT_TABLE (table 46) for
SNAT Translation and to be taken to Internet.

	Non-NAPT switch

cookie=0x8000006, duration=2797.179s, table=26, n_packets=47, n_bytes=3196, priority=5,ip,metadata=0x23a50/0xfffffffe actions=**set_field:0x710->tun_id**,group:202501

group_id=202501,type=all,bucket=actions=output:1

	NAPT switch

cookie=0x8000001, duration=4918.647s, table=0, n_packets=12292, n_bytes=877616, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=927.245s, table=36, n_packets=8234, n_bytes=52679, priority=10,ip,**tun_id=0x710**,actions=write_metadata:0x23a50/0xfffffffe,goto_table:46

As part of the response from NAPT switch, the packet will be taken to the Non-NAPT switch
after SNAT reverse translation using destination VMs Network VNI.

DNAT

There is no NAT specific explicit pipeline change for DNAT traffic to DC-gateway.

Intra DC

	VLAN Provider External Networks: VNI is not applicable on the external VLAN Provider network.
However, the Router VNI will be used for datapath traffic from non-NAPT switch to NAPT-switch
over the internal VxLAN tunnel.

	VxLAN Provider External Networks:

	Explicit creation of Internet VPN: An L3VNI, mandatorily falling within the
opendaylight-vni-ranges, will be provided by the Cloud admin (or tenant). This VNI will be
used uniformly for all packet transfer over the VxLAN wire for this Internet VPN (uniformly
meaning all the traffic on Internal or External VXLAN Tunnel, except the non-NAPT to NAPT
communication). This usecase is covered by EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec

	No explicit creation of Internet VPN: A transparent Internet VPN having UUID same as that
of the corresponding external network UUID is created implicitly and the VNI configured for
this external network should be used on the VxLAN wire. This usecase is out of scope from
the perspective of this spec, and the same is indicated in Out of Scope section.

	GRE Provider External Networks: Internet VPN VNI will be carved per Internet VPN using
opendaylight-vni-ranges to be used on the wire.

DNAT to DNAT

	FIP VM to FIP VM on different hypervisors

After DNAT translation on the first hypervisor DNAT-OVS-1, the traffic will be sent to the
L3_FIB_TABLE (table=21) in order to reach the floating IP VM on the second hypervisor
DNAT-OVS-2. Here, the tun_id action field will be set as the INTERNET VPN VNI value.

	DNAT-OVS-1

cookie=0x8000003, duration=518.567s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222e8/0xfffffffe,nw_dst=172.160.0.200 actions=**set_field:0x11178->tun_id**,output:9

	DNAT-OVS-2

cookie=0x9011177, duration=411685.075s, table=36, n_packets=2, n_bytes=196, priority=**6**,**tun_id=0x11178**actions=resubmit(,25)
cookie=0x9011179, duration=478573.171s, table=36, n_packets=2, n_bytes=140, priority=5,**tun_id=0x11178**,actions=goto_table:44

cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ip,nw_dst=172.160.0.100,**eth_dst=fa:16:3e:e6:e3:c6** actions=set_field:10.0.0.5->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27
cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ipactions=goto_table:44

First, the INTERNAL_TUNNEL_TABLE (table=36) will take the packet to the PDNAT_TABLE
(table 25) for an exact FIP match in PDNAT_TABLE.

	In case of a successful FIP match, PDNAT_TABLE will further match on floating IP MAC.
This is done as a security prerogative since in DNAT usecases, the packet can land to the
hypervisor directly from the external world. Hence, better to have a second match criteria.

	In case of no match, the packet will be redirected to the SNAT pipeline towards the
INBOUND_NAPT_TABLE (table=44). This is the use-case where DNAT-OVS-2 also acts as
the NAPT switch.

In summary, on an given NAPT switch, if both DNAT and SNAT are configured, the incoming traffic
will first be sent to the PDNAT_TABLE and if there is no FIP match found, then it will be
forwarded to INBOUND_NAPT_TABLE for SNAT translation.

As part of the response, the Internet VPN VNI will be used as tun_id to reach floating
IP VM on DNAT-OVS-1.

	FIP VM to FIP VM on same hypervisor

The pipeline changes will be similar as are for different hypervisors, the only difference being
that INTERNAL_TUNNEL_TABLE will never be hit in this case.

SNAT to DNAT

	Non-FIP VM to FIP VM on different hypervisors (with NAPT elected as the FIP VM hypervisor)

The packet will be sent to the NAPT hypervisor from non-FIP VM (for SNAT translation) using
Router VNI (similar to as described in SNAT section). As part of the response from the
NAPT switch after SNAT reverse translation, the packet is forwarded to non-FIP VM using
destination VM’s Network VNI.

	Non-FIP VM to FIP VM on the same NAPT hypervisor

There are no explicit pipeline changes for this use-case.

	Non-FIP VM to FIP VM on the same hypervisor, but a different hypervisor elected as NAPT switch

	NAPT hypervisor

The packet will be sent to the NAPT hypervisor from non-FIP VM (for SNAT translation) using
Router VNI (similar to as described in SNAT section). On the NAPT switch, the
INTERNAL_TUNNEL_TABLE will match on the Router VNI in the tun_id field and send the
packet to OUTBOUND_NAPT_TABLE for SNAT translation (similar to as described in SNAT
section).

cookie=0x8000005, duration=5073.829s, table=36, n_packets=61, n_bytes=4610, priority=10,ip,**tun_id=0x11170**,actions=write_metadata:0x222e0/0xfffffffe,goto_table:46

The packet will later be sent back to the FIP VM hypervisor from L3_FIB_TABLE with tun_id
field set as the Internet VPN VNI.

cookie=0x8000003, duration=518.567s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222e8/0xfffffffe,nw_dst=172.160.0.200 actions=**set_field:0x11178->tun_id**,output:9

	FIP VM hypervisor

On reaching the FIP VM Hypervisor, the packet will be sent for DNAT translation. The
INTERNAL_TUNNEL_TABLE will match on the Internet VPN VNI in the tun_id field and
send the packet to PDNAT_TABLE.

cookie=0x9011177, duration=411685.075s, table=36, n_packets=2, n_bytes=196, priority=**6**,**tun_id=0x11178**,actions=resubmit(,25)
cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ip,nw_dst=172.160.0.100,**eth_dst=fa:16:3e:e6:e3:c6** actions=set_field:10.0.0.5->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27

Upon FIP VM response, DNAT reverse translation happens and traffic is sent back to the NAPT
switch for SNAT translation. The L3_FIB_TABLE will be set with Internet VPN VNI in the
tun_id field.

cookie=0x8000003, duration=95.300s, table=21, n_packets=2, n_bytes=140, priority=42,ip,metadata=0x222ea/0xfffffffe,nw_dst=172.160.0.3 actions=**set_field:0x11178->tun_id**,output:5

	NAPT hypervisor

On NAPT hypervisor, the INTERNAL_TUNNEL_TABLE will match on the Internet VPN VNI in
the tun_id field and send the packet to `` INBOUND_NAPT_TABLE`` for SNAT reverse
translation (external fixed IP to VM IP). The packet will then be sent back to the non-FIP VM
using destination VM’s Network VNI.

	Non-FIP VM to FIP VM on different hypervisors (with NAPT elected as the non-FIP VM hypervisor)

After SNAT Translation, Internet VPN VNI will be used to reach FIP VM. On FIP VM hypervisor,
the INTERNAL_TUNNEL_TABLE will take the packet to the PDNAT_TABLE to match on
Internet VPN VNI in the tun_id field for DNAT translation.

Upon response from FIP, DNAT reverse translation happens and uses Internet VPN VNI to reach
back to the non-FIP VM.

YANG changes

	opendaylight-vni-ranges and enforce-openstack-semantics leaf elements will be added to
neutronvpn-config container in neutronvpn-config.yang:

	opendaylight-vni-ranges will be introduced to accept inputs for the VNI range pool from
the configurator via the corresponding exposed REST API. In case this is not defined, the
default value defined in netvirt-neutronvpn-config.xml will be used to create this pool.

	enforce-openstack-semantics will be introduced to have the flexibility to enable
or disable OpenStack semantics in the dataplane for this feature. It will be defaulted to
true, meaning these semantics will be enforced by default. In case it is set to false, the
dataplane will continue to be programmed with LPort tags / ELAN tags for switching and with
labels for routing use-cases. Once this feature gets stabilized and the semantics are in place
to use VNIs on the wire for BGPVPN based forwarding too, this config can be permanently
removed if deemed fit.

neutronvpn-config.yang

container neutronvpn-config {
 config true;
 ...
 ...
 leaf opendaylight-vni-ranges {
 type string;
 default "70000:99999";
 }
 leaf enforce-openstack-semantics {
 type boolean;
 default true;
 }
}

	Provider network-type and provider segmentation-ID need to be propagated to FIB Manager to manipulate
flows based on the same. Hence:

	A new grouping network-attributes will be introduced in neutronvpn.yang to hold
network type and segmentation ID. This grouping will replace the leaf-node
network-id in subnetmaps MD-SAL configuration datastore:

neutronvpn.yang

grouping network-attributes {
 leaf network-id {
 type yang:uuid;
 description "UUID representing the network";
 }
 leaf network-type {
 type enumeration {
 enum "FLAT";
 enum "VLAN";
 enum "VXLAN";
 enum "GRE";
 }
 }
 leaf segmentation-id {
 type uint32;
 description "Optional. Isolated segment on the physical network.
 If segment-type is vlan, this ID is a vlan identifier.
 If segment-type is vxlan, this ID is a vni.
 If segment-type is flat/gre, this ID is set to 0";
 }
}

container subnetmaps {
 ...
 ...
 uses network-attributes;
}

	These attributes will be propagated upon addition of a router-interface or addition of a
subnet to a BGPVPN to VPN Manager module via the subnet-added-to-vpn notification
modelled in neutronvpn.yang. Hence, the following node will be added:

neutronvpn.yang

notification subnet-added-to-vpn {
 description "new subnet added to vpn";
 ...
 ...
 uses network-attributes;
}

	VpnSubnetRouteHandler will act on these notifications and store these attributes in
subnet-op-data MD-SAL operational datastore as described below. FIB Manager will get to
retrieve the subnetID from the primary adjacency of the concerned VPN interface. This
subnetID will be used as the key to retrieve network-attributes from subnet-op-data
datastore.

odl-l3vpn.yang

import neutronvpn {
 prefix nvpn;
 revision-date "2015-06-02";
}

container subnet-op-data {
 ...
 ...
 uses nvpn:network-attributes;
}

	subnetID and nat-prefix leaf elements will be added to prefix-to-interface
container in odl-l3vpn.yang:

	For NAT use-cases where the VRF entry is not always associated with a VPN interface (eg. for
NAT entries such as floating IP and router-gateway-IPs for external VLAN / flat networks),
subnetID leaf element will be added to make it possible to retrieve the
network-attributes.

	To distinguish a non-NAT prefix from a NAT prefix, nat-prefix leaf element will be
added. This is a boolean attribute indicating whether the prefix is a NAT prefix (meaning a
floating IP, or an external-fixed-ip of a router-gateway). The VRFEntry corresponding to
the NAT prefix entries here may carry both the MPLS label and the Internet VPN VNI.
For SNAT-to-DNAT within the datacenter, where the Internet VPN contains an MPLSOverGRE
based external network, this VRF entry will publish the MPLS label to BGP while the
Internet VPN VNI (also known as L3VNI) will be used to carry intra-DC traffic on
the external segment within the datacenter.

odl-l3vpn.yang

container prefix-to-interface {
 config false;
 list vpn-ids {
 key vpn-id;
 leaf vpn-id {type uint32;}
 list prefixes {
 key ip_address;
 ...
 ...
 leaf subnet-id {
 type yang:uuid;
 }
 leaf nat-prefix {
 type boolean;
 default false;
 }
 }
 }
}

Configuration impact

	We have to make sure that we do not accept configuration of VxLAN type provider networks without
the segmentation-ID available in them since we are using it to represent the VNI on the wire
and in the flows/groups.

Clustering considerations

No specific additional clustering considerations to be adhered to.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release(s)

Carbon.

Known Limitations

None.

Alternatives

N.A.

Usage

Features to Install

odl-netvirt-openstack

REST API

No new changes to the existing REST APIs.

CLI

No new CLI is being added.

Implementation

Assignee(s)

	Primary assignee:

	Abhinav Gupta <abhinav.gupta@ericsson.com>
Vivekanandan Narasimhan <n.vivekanandan@ericsson.com>

	Other contributors:

	Chetan Arakere Gowdru <chetan.arakere@altencalsoftlabs.com>
Karthikeyan Krishnan <karthikeyan.k@altencalsoftlabs.com>
Yugandhar Sarraju <yugandhar.s@altencalsoftlabs.com>

Work Items

Trello card: https://trello.com/c/PfARbEmU/84-enforce-vni-on-the-wire-for-l2-switching-l3-forwarding-and-nating-on-vxlan-overlay-networks

	Code changes to alter the pipeline and e2e testing of the use-cases mentioned.

	Add Documentation

Dependencies

This doesn’t add any new dependencies.

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

No new testcases to be added, existing ones should continue to succeed.

Documentation Impact

This will require changes to the Developer Guide.

Developer Guide needs to capture how this feature modifies the existing Netvirt L3 forwarding
service implementation.

References

	http://docs.opendaylight.org/en/latest/documentation.html

	https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

	EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

Table of Contents

	Neutron Port Allocation For DHCP Service

	Problem description

	Problem - 1: L2 Deployment with 3PP gateway

	Problem - 2: Designated DHCP for SR-IOV VMs via HWVTEP

	High-Level Components:

	Proposed change

	ODL Driver Changes:

	Pipeline changes

	ARP Changes for DHCP port

	Assumptions

	Reboot Scenarios

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	CSIT

	Documentation Impact

	References

Neutron Port Allocation For DHCP Service

https://git.opendaylight.org/gerrit/#/q/topic:neutron_port_dhcp

This feature will enable the Neutron DHCP proxy service within controller
to reserve and use a Neutron port per subnet for communication with
Neutron endpoints.

Problem description

The DHCP service currently assumes availability of the subnet gateway IP address
and its mac address for its DHCP proxy service, which may or may not be available
to the controller. This can lead to service unavailability.

Problem - 1: L2 Deployment with 3PP gateway

There can be deployment scenario in which L2 network is created with no distributed
Router/VPN functionality. This deployment can have a separate gateway for the network
such as a 3PP LB VM, which acts as a TCP termination point and this LB VM is
configured with a default gateway IP. It means all inter-subnet traffic is terminated
on this VM which takes the responsibility of forwarding the traffic.

But the current DHCP proxy service in controller hijacks gateway IP address for
serving DHCP discover/request messages. If the LB is up, this can continue to work,
DHCP broadcasts will get hijacked by the ODL, and responses
sent as PKT_OUTs with SIP = GW IP.

However, if the LB is down, and the VM ARPs for the same IP as part of a DHCP renew
workflow, the ARP resolution can fail, due to which renew request will not be
generated. This can cause the DHCP lease to lapse.

Problem - 2: Designated DHCP for SR-IOV VMs via HWVTEP

In this Deployment scenario, L2 network is created with no distributed Router/VPN
functionality, and HWVTEP for SR-IOV VMs. DHCP flood requests from SR-IOV VMs
(DHCP discover, request during bootup), are flooded by the HWVTEP on the ELAN,
and punted to the controller by designated vswitch. DHCP offers are sent as unicast
responses from Controller, which are forwarded by the HWVTEP to the VM. DHCP renews
can be unicast requests, which the HWVTEP may forward to an external Gateway VM (3PP
LB VM) as unicast packets. Designated vswitch will never receive these pkts, and thus
not be able to punt them to the controller, so renews will fail.

High-Level Components:

The following components of the Openstack - ODL solution need to be enhanced to provide
port allocation for DHCP service.

	Openstack ODL Mechanism Driver

	OpenDaylight Controller (NetVirt VpnService/DHCP Service/Elan Service)

We will review enhancements that will be made to each of the above components in following
sections.

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	Neutron VPN module

	DHCP module

	ELAN and L3VPN modules

OpenDaylight controller needs to preserve a Neutron port for every subnet so that DHCP proxy
service can be enabled in Openstack deployment. The Neutron port’s device owner property is
set to network:dhcp and uses this port for all outgoing DHCP messages. Since this port gets
a distinct IP address and MAC address from the subnet, both problem-1 and problem-2 will be
solved.

ODL Driver Changes:

ODL driver will need a config setting when ODL DHCP service is in use, as against when Neutron
DHCP agent is deployed (Community ODL default setting). This needs to be enabled for ODL deployment

ODL driver will insert an async call in subnet create/update workflow in POST_COMMIT for subnets
with DHCP set to ‘enabled’, with a port create request, with device owner set to network:dhcp,
and device ID set to controller hostname/IP (from ml2_conf.ini file)

ODL driver will insert an async call in subnet delete, and DHCP ‘disable’ workflow to ensure
the allocated port is deleted

ODL driver needs to ensure at any time no more than a single port is allocated per subnet
for these requirements

Pipeline changes

For example, If a VM interface is having 30.0.0.1/de:ad:be:ef:00:05 as its Gateway (or) Router
Interface IP/MAC address and its subnet DHCP neutron port is created with IP/MAC address
30.0.0.4/de:ad:be:ef:00:04. The ELAN pipeline is changed like below.

LPort Dispatcher Table (17)=>ELAN ARP Check Table(43) => ARP Responder Group (5000) => ARP Responder Table (81) => Egress dispatcher Table(220)

cookie=0x8040000, duration=627.038s, table=17, n_packets=0, n_bytes=0, priority=6, metadata=0xc019a00000000000/0xffffff0000000000 actions=write_metadata:0xc019a01771000000/0xfffffffffffffffe,goto_table:43
cookie=0x1080000, duration=979.712s, table=43, n_packets=0, n_bytes=0, priority=100,arp,arp_op=1 actions=group:5000
cookie=0x1080000, duration=979.713s, table=43, n_packets=0, n_bytes=0, priority=100,arp,arp_op=2 actions=CONTROLLER:65535,resubmit(,48)
cookie=0x8030000, duration=979.717s, table=43, n_packets=0, n_bytes=0, priority=0 actions=goto_table:48
cookie=0x262219a4, duration=312.151s, table=81, n_packets=0, n_bytes=0, priority=100,arp,metadata=0xc019a000000/0xfffffffff000000,arp_tpa=30.0.0.1,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:de:ad:be:ef:00:05->eth_src,load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xdeadbeef0005->NXM_NX_ARP_SHA[],load:0x1e000001->NXM_OF_ARP_SPA[],load:0->NXM_OF_IN_PORT[],load:0x19a000->NXM_NX_REG6[],resubmit(,220)
cookie=0x262219a4, duration=312.151s, table=81, n_packets=0, n_bytes=0, priority=100,arp,metadata=0xc019a000000/0xfffffffff000000,arp_tpa=30.0.0.4,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:de:ad:be:ef:00:04->eth_src,load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xdeadbeef0004->NXM_NX_ARP_SHA[],load:0x1e000001->NXM_OF_ARP_SPA[],load:0->NXM_OF_IN_PORT[],load:0x19a000->NXM_NX_REG6[],resubmit(,220)

group_id=5000,type=all,bucket=actions=CONTROLLER:65535,bucket=actions=resubmit(,48),bucket=actions=resubmit(,81)

ARP Changes for DHCP port

1. Client VM ARP requests for DHCP server IP need to be answered in L2 as well
as L3 deployment.
2. Create ARP responder table flow entry for DHCP server IP in computes nodes
on which ELAN footprint is available.
3. Currently ARP responder is part of L3VPN pipeline, however no L3 service
may be available in an L2 deployment to leverage the current ARP pipeline,
for DHCP IP ARP responses. To ensure ARP responses are sent in L2 deployment,
ARP processing needs to be migrated to the ELAN pipeline.
4. ELAN service to provide API to other services needing ARP responder entries
including L3VPN service (for router MAC, router-gw MAC and floating IPs,
and EVPN remote MAC entries).
5. ELAN service will be responsible for punting a copy of each ARP packet to the
controller if the source MAC address is not already learned.

Assumptions

Support for providing port allocation for DHCP service is available from
Openstack Pike release.

Reboot Scenarios

	This feature support all the following Reboot Scenarios for EVPN:

	
	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Nitrogen, Carbon

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Implementation

The programming of flow rules in Table 43 and Table 81 is handled in ELAN module and
following APIs are exposed from IElanService so that L3VPN and DHCP modules can
use it to program ARP responder table flow entries for Gateway/Router Interface,
floating IPs and DHCP port.

void addArpResponderEntry(BigIneger dpId, String ingressInterfaceName,
 String ipAddress, String macAddress, Optional<Integer> lportTag);
void removeArpResponderEntry(BigIneger dpId, String ingressInterfaceName,
 String ipAddress, String macAddress, Optional<Integer> lportTag);

A new container is introduced to hold the subnet DHCP port information.

dhcpservice-api.yang

 container subnet-dhcp-port-data {
 config true;
 list subnet-to-dhcp-port {
 key "subnet-id";
 leaf subnet-id {
 type string;
 }
 leaf port-name {
 type string;
 }
 leaf port-fixedip {
 type string;
 }
 leaf port-macaddress {
 type string;
 }
 }
 }

When no DHCP port is available for the subnet we will flag an error to indicate
DHCP service failure for virtual endpoints on such subnets which are dhcp-enabled
in Openstack neutron.

Assignee(s)

	Primary assignee:

	Karthik Prasad <karthik.p@altencalsoftlabs.com>
Achuth Maniyedath <achuth.m@altencalsoftlabs.com>
Vijayalakshmi CN <vijayalakshmi.c@altencalsoftlabs.com>

	Other contributors:

	Dayavanti Gopal Kamath <dayavanti.gopal.kamath@ericsson.com>
Vivekanandan Narasimhan <n.vivekanandan@ericsson.com>
Periyasamy Palanisamy <periyasamy.palanisamy@ericsson.com>

Work Items

Dependencies

Testing

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

	OpenStack Spec - https://review.openstack.org/#/c/453160

Neutron Service Developer Guide

Overview

This Karaf feature (odl-neutron-service) provides integration
support for OpenStack Neutron via the OpenDaylight ML2 mechanism driver.
The Neutron Service is only one of the components necessary for
OpenStack integration. It defines YANG models for OpenStack Neutron data
models and northbound API via REST API and YANG model RESTCONF.

Those developers who want to add new provider for new OpenStack Neutron
extensions/services (Neutron constantly adds new extensions/services and
OpenDaylight will keep up with those new things) need to communicate
with this Neutron Service or add models to Neutron Service. If you want
to add new extensions/services themselves to the Neutron Service, new
YANG data models need to be added, but that is out of scope of this
document because this guide is for a developer who will be using the
feature to build something separate, but not somebody who will be
developing code for this feature itself.

Neutron Service Architecture

[image: Neutron Service Architecture]
Neutron Service Architecture

The Neutron Service defines YANG models for OpenStack Neutron
integration. When OpenStack admins/users request changes
(creation/update/deletion) of Neutron resources, e.g., Neutron network,
Neutron subnet, Neutron port, the corresponding YANG model within
OpenDaylight will be modified. The OpenDaylight OpenStack will subscribe
the changes on those models and will be notified those modification
through MD-SAL when changes are made. Then the provider will do the
necessary tasks to realize OpenStack integration. How to realize it (or
even not realize it) is up to each provider. The Neutron Service itself
does not take care of it.

How to Write a SB Neutron Consumer

In Boron, there is only one options for SB Neutron Consumers:

	Listening for changes via the Neutron YANG model

Until Beryllium there was another way with the legacy I*Aware
interface. From Boron, the interface was eliminated. So all the SB
Neutron Consumers have to use Neutron YANG model.

Neutron YANG models

Neutron service defines YANG models for Neutron. The details can be
found at

	https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=tree;f=model/src/main/yang;hb=refs/heads/stable/boron

Basically those models are based on OpenStack Neutron API definitions.
For exact definitions, OpenStack Neutron source code needs to be
referred as the above documentation doesn’t always cover the necessary
details. There is nothing special to utilize those Neutron YANG models.
The basic procedure will be:

	subscribe for changes made to the the model

	respond on the data change notification for each models

Note

Currently there is no way to refuse the request configuration at
this point. That is left to future work.

public class NeutronNetworkChangeListener implements DataChangeListener, AutoCloseable {
 private ListenerRegistration<DataChangeListener> registration;
 private DataBroker db;

 public NeutronNetworkChangeListener(DataBroker db){
 this.db = db;
 // create identity path to register on service startup
 InstanceIdentifier<Network> path = InstanceIdentifier
 .create(Neutron.class)
 .child(Networks.class)
 .child(Network.class);
 LOG.debug("Register listener for Neutron Network model data changes");
 // register for Data Change Notification
 registration =
 this.db.registerDataChangeListener(LogicalDatastoreType.CONFIGURATION, path, this, DataChangeScope.ONE);

 }

 @Override
 public void onDataChanged(
 AsyncDataChangeEvent<InstanceIdentifier<?>, DataObject> changes) {
 LOG.trace("Data changes : {}",changes);

 // handle data change notification
 Object[] subscribers = NeutronIAwareUtil.getInstances(INeutronNetworkAware.class, this);
 createNetwork(changes, subscribers);
 updateNetwork(changes, subscribers);
 deleteNetwork(changes, subscribers);
 }
}

Neutron configuration

From Boron, new models of configuration for OpenDaylight to tell
OpenStack neutron/networking-odl its configuration/capability.

hostconfig

This is for OpenDaylight to tell per-node configuration to Neutron.
Especially this is used by pseudo agent port binding heavily.

The model definition can be found at

	https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=model/src/main/yang/neutron-hostconfig.yang;hb=refs/heads/stable/boron

How to populate this for pseudo agent port binding is documented at

	http://git.openstack.org/cgit/openstack/networking-odl/tree/doc/source/devref/hostconfig.rst

Neutron extension config

In Boron this is experimental. The model definition can be found at

	https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=model/src/main/yang/neutron-extensions.yang;hb=refs/heads/stable/boron

Each Neutron Service provider has its own feature set. Some support the
full features of OpenStack, but others support only a subset. With same
supported Neutron API, some functionality may or may not be supported.
So there is a need for a way that OpenDaylight can tell networking-odl
its capability. Thus networking-odl can initialize Neutron properly
based on reported capability.

Neutorn Logger

There is another small Karaf feature, odl-neutron-logger, which logs
changes of Neutron YANG models. which can be used for debug/audit.

It would also help to understand how to listen the change.

	https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=neutron-logger/src/main/java/org/opendaylight/neutron/logger/NeutronLogger.java;hb=refs/heads/stable/boron

API Reference Documentation

The OpenStack Neutron API references

	http://developer.openstack.org/api-ref-networking-v2.html

	http://developer.openstack.org/api-ref-networking-v2-ext.html

Neutron Northbound

How to add new API support

OpenStack Neutron is a moving target. It is continuously adding new
features as new rest APIs. Here is a basic step to add new API support:

In the Neutron Northbound project:

	Add new YANG model for it under neutron/model/src/main/yang and
update neutron.yang

	Add northbound API for it, and neutron-spi

	Implement Neutron<New API>Request.java and
Neutron<New API>Norhtbound.java under
neutron/northbound-api/src/main/java/org/opendaylight/neutron/northbound/api/

	Implement INeutron<New API>CRUD.java and new data structure if
any under
neutron/neutron-spi/src/main/java/org/opendaylight/neutron/spi/

	update
neutron/neutron-spi/src/main/java/org/opendaylight/neutron/spi/NeutronCRUDInterfaces.java
to wire new CRUD interface

	Add unit tests, Neutron<New structure>JAXBTest.java under
neutron/neutron-spi/src/test/java/org/opendaylight/neutron/spi/

	update
neutron/northbound-api/src/main/java/org/opendaylight/neutron/northbound/api/NeutronNorthboundRSApplication.java
to wire new northbound api to RSApplication

	Add transcriber, Neutron<New API>Interface.java under
transcriber/src/main/java/org/opendaylight/neutron/transcriber/

	update
transcriber/src/main/java/org/opendaylight/neutron/transcriber/NeutronTranscriberProvider.java
to wire a new transcriber

	Add integration tests Neutron<New API>Tests.java under
integration/test/src/test/java/org/opendaylight/neutron/e2etest/

	update
integration/test/src/test/java/org/opendaylight/neutron/e2etest/ITNeutronE2E.java
to run a newly added tests.

In OpenStack networking-odl

	Add new driver (or plugin) for new API with tests.

In a southbound Neutron Provider

	implement actual backend to realize those new API by listening
related YANG models.

How to write transcriber

For each Neutron data object, there is an Neutron*Interface defined
within the transcriber artifact that will write that object to the
MD-SAL configuration datastore.

All Neutron*Interface extend AbstractNeutronInterface, in which
two methods are defined:

	one takes the Neutron object as input, and will create a data object
from it.

	one takes an uuid as input, and will create a data object containing
the uuid.

protected abstract T toMd(S neutronObject);
protected abstract T toMd(String uuid);

In addition the AbstractNeutronInterface class provides several
other helper methods (addMd, updateMd, removeMd), which
handle the actual writing to the configuration datastore.

The semantics of the toMD() methods

Each of the Neutron YANG models defines structures containing data.
Further each YANG-modeled structure has it own builder. A particular
toMD() method instantiates an instance of the correct builder, fills
in the properties of the builder from the corresponding values of the
Neutron object and then creates the YANG-modeled structures via the
build() method.

As an example, one of the toMD code for Neutron Networks is
presented below:

protected Network toMd(NeutronNetwork network) {
 NetworkBuilder networkBuilder = new NetworkBuilder();
 networkBuilder.setAdminStateUp(network.getAdminStateUp());
 if (network.getNetworkName() != null) {
 networkBuilder.setName(network.getNetworkName());
 }
 if (network.getShared() != null) {
 networkBuilder.setShared(network.getShared());
 }
 if (network.getStatus() != null) {
 networkBuilder.setStatus(network.getStatus());
 }
 if (network.getSubnets() != null) {
 List<Uuid> subnets = new ArrayList<Uuid>();
 for(String subnet : network.getSubnets()) {
 subnets.add(toUuid(subnet));
 }
 networkBuilder.setSubnets(subnets);
 }
 if (network.getTenantID() != null) {
 networkBuilder.setTenantId(toUuid(network.getTenantID()));
 }
 if (network.getNetworkUUID() != null) {
 networkBuilder.setUuid(toUuid(network.getNetworkUUID()));
 } else {
 logger.warn("Attempting to write neutron network without UUID");
 }
 return networkBuilder.build();
}

ODL Parent Developer Guide

Parent POMs

Overview

The ODL Parent component for OpenDaylight provides a number of Maven
parent POMs which allow Maven projects to be easily integrated in the
OpenDaylight ecosystem. Technically, the aim of projects in OpenDaylight
is to produce Karaf features, and these parent projects provide common
support for the different types of projects involved.

These parent projects are:

	odlparent-lite — the basic parent POM for Maven modules which
don’t produce artifacts (e.g. aggregator POMs)

	odlparent — the common parent POM for Maven modules containing
Java code

	bundle-parent — the parent POM for Maven modules producing OSGi
bundles

The following parent projects are deprecated, but still used in Carbon:

	feature-parent — the parent POM for Maven modules producing
Karaf 3 feature repositories

	karaf-parent — the parent POM for Maven modules producing Karaf 3
distributions

The following parent projects are new in Carbon, for Karaf 4 support (which
won’t be complete until Nitrogen):

	single-feature-parent — the parent POM for Maven modules producing
a single Karaf 4 feature

	feature-repo-parent — the parent POM for Maven modules producing
Karaf 4 feature repositories

	karaf4-parent — the parent POM for Maven modules producing Karaf 4
distributions

odlparent-lite

This is the base parent for all OpenDaylight Maven projects and
modules. It provides the following, notably to allow publishing
artifacts to Maven Central:

	license information;

	organization information;

	issue management information (a link to our Bugzilla);

	continuous integration information (a link to our Jenkins setup);

	default Maven plugins (maven-clean-plugin,
maven-deploy-plugin, maven-install-plugin,
maven-javadoc-plugin with HelpMojo support,
maven-project-info-reports-plugin, maven-site-plugin with
Asciidoc support, jdepend-maven-plugin);

	distribution management information.

It also defines two profiles which help during development:

	q (-Pq), the quick profile, which disables tests, code
coverage, Javadoc generation, code analysis, etc. — anything which
isn’t necessary to build the bundles and features (see this blog
post [http://blog2.vorburger.ch/2016/06/improve-maven-build-speed-with-q.html]
for details);

	addInstallRepositoryPath
(-DaddInstallRepositoryPath=…/karaf/system) which can be used to
drop a bundle in the appropriate Karaf location, to enable
hot-reloading of bundles during development (see this blog
post [http://blog2.vorburger.ch/2016/06/maven-install-into-additional.html]
for details).

For modules which don’t produce any useful artifacts (e.g. aggregator
POMs), you should add the following to avoid processing artifacts:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-deploy-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-install-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 </plugin>
 </plugins>
</build>

odlparent

This inherits from odlparent-lite and mainly provides dependency and
plugin management for OpenDaylight projects.

If you use any of the following libraries, you should rely on
odlparent to provide the appropriate versions:

	Akka (and Scala)

	Apache Commons:

	commons-codec

	commons-fileupload

	commons-io

	commons-lang

	commons-lang3

	commons-net

	Apache Shiro

	Guava

	JAX-RS with Jersey

	JSON processing:

	GSON

	Jackson

	Logging:

	Logback

	SLF4J

	Netty

	OSGi:

	Apache Felix

	core OSGi dependencies (core, compendium…)

	Testing:

	Hamcrest

	JSON assert

	JUnit

	Mockito

	Pax Exam

	PowerMock

	XML/XSL:

	Xerces

	XML APIs

Note

This list isn’t exhaustive. It’s also not cast in stone; if you’d
like to add a new dependency (or migrate a dependency), please
contact the mailing
list [https://lists.opendaylight.org/mailman/listinfo/odlparent-dev].

odlparent also enforces some Checkstyle verification rules. In
particular, it enforces the common license header used in all
OpenDaylight code:

/*
 * Copyright © ${year} ${holder} and others. All rights reserved.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License v1.0 which accompanies this distribution,
 * and is available at http://www.eclipse.org/legal/epl-v10.html
 */

where “${year}” is initially the first year of publication, then
(after a year has passed) the first and latest years of publication,
separated by commas (e.g. “2014, 2016”), and “${holder}” is
the initial copyright holder (typically, the first author’s employer).
“All rights reserved” is optional.

If you need to disable this license check, e.g. for files imported
under another license (EPL-compatible of course), you can override the
maven-checkstyle-plugin configuration. features-test does this
for its CustomBundleUrlStreamHandlerFactory class, which is
ASL-licensed:

<plugin>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <executions>
 <execution>
 <id>check-license</id>
 <goals>
 <goal>check</goal>
 </goals>
 <phase>process-sources</phase>
 <configuration>
 <configLocation>check-license.xml</configLocation>
 <headerLocation>EPL-LICENSE.regexp.txt</headerLocation>
 <includeResources>false</includeResources>
 <includeTestResources>false</includeTestResources>
 <sourceDirectory>${project.build.sourceDirectory}</sourceDirectory>
 <excludes>
 <!-- Skip Apache Licensed files -->
 org/opendaylight/odlparent/featuretest/CustomBundleUrlStreamHandlerFactory.java
 </excludes>
 <failsOnError>false</failsOnError>
 <consoleOutput>true</consoleOutput>
 </configuration>
 </execution>
 </executions>
</plugin>

bundle-parent

This inherits from odlparent and enables functionality useful for
OSGi bundles:

	maven-javadoc-plugin is activated, to build the Javadoc JAR;

	maven-source-plugin is activated, to build the source JAR;

	maven-bundle-plugin is activated (including extensions), to build
OSGi bundles (using the “bundle” packaging).

In addition to this, JUnit is included as a default dependency in “test”
scope.

features-parent

This inherits from odlparent and enables functionality useful for
Karaf features:

	karaf-maven-plugin is activated, to build Karaf features — but
for OpenDaylight, projects need to use “jar” packaging (not
“feature” or “kar”);

	features.xml files are processed from templates stored in
src/main/features/features.xml;

	Karaf features are tested after build to ensure they can be activated
in a Karaf container.

The features.xml processing allows versions to be ommitted from
certain feature dependencies, and replaced with “{{version}}”.
For example:

<features name="odl-mdsal-${project.version}" xmlns="http://karaf.apache.org/xmlns/features/v1.2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://karaf.apache.org/xmlns/features/v1.2.0 http://karaf.apache.org/xmlns/features/v1.2.0">

 <repository>mvn:org.opendaylight.odlparent/features-odlparent/{{VERSION}}/xml/features</repository>

 [...]
 <feature name='odl-mdsal-broker-local' version='${project.version}' description="OpenDaylight :: MDSAL :: Broker">
 <feature version='${yangtools.version}'>odl-yangtools-common</feature>
 <feature version='${mdsal.version}'>odl-mdsal-binding-dom-adapter</feature>
 <feature version='${mdsal.model.version}'>odl-mdsal-models</feature>
 <feature version='${project.version}'>odl-mdsal-common</feature>
 <feature version='${config.version}'>odl-config-startup</feature>
 <feature version='${config.version}'>odl-config-netty</feature>
 <feature version='[3.3.0,4.0.0)'>odl-lmax</feature>
 [...]
 <bundle>mvn:org.opendaylight.controller/sal-dom-broker-config/{{VERSION}}</bundle>
 <bundle start-level="40">mvn:org.opendaylight.controller/blueprint/{{VERSION}}</bundle>
 <configfile finalname="${config.configfile.directory}/${config.mdsal.configfile}">mvn:org.opendaylight.controller/md-sal-config/{{VERSION}}/xml/config</configfile>
 </feature>

As illustrated, versions can be ommitted in this way for repository
dependencies, bundle dependencies and configuration files. They must be
specified traditionally (either hard-coded, or using Maven properties)
for feature dependencies.

karaf-parent

This allows building a Karaf 3 distribution, typically for local testing
purposes. Any runtime-scoped feature dependencies will be included in the
distribution, and the karaf.localFeature property can be used to
specify the boot feature (in addition to standard).

single-feature-parent

This inherits from odlparent and enables functionality useful for
Karaf 4 features:

	karaf-maven-plugin is activated, to build Karaf features, typically
with “feature” packaging (“kar” is also supported);

	feature.xml files are generated based on the compile-scope dependencies
defined in the POM, optionally initialised from a stub in
src/main/feature/feature.xml.

	Karaf features are tested after build to ensure they can be activated
in a Karaf container.

The feature.xml processing adds transitive dependencies by default, which
allows features to be defined using only the most significant dependencies
(those that define the feature); other requirements are determined
automatically as long as they exist as Maven dependencies.

“configfiles” need to be defined both as Maven dependencies (with the
appropriate type and classifier) and as <configfile> elements in the
feature.xml stub.

Other features which a feature depends on need to be defined as Maven
dependencies with type “xml” and classifier “features” (note the plural here).

feature-repo-parent

This inherits from odlparent and enables functionality useful for
Karaf 4 feature repositories. It follows the same principles as
single-feature-parent, but is designed specifically for repositories
and should be used only for this type of artifacts.

It builds a feature repository referencing all the (feature) dependencies
listed in the POM.

karaf4-parent

This allows building a Karaf 4 distribution, typically for local testing
purposes. Any runtime-scoped feature dependencies will be included in the
distribution, and the karaf.localFeature property can be used to
specify the boot feature (in addition to standard).

Features (for Karaf 3)

The ODL Parent component for OpenDaylight provides a number of Karaf 3
features which can be used by other Karaf 3 features to use certain
third-party upstream dependencies.

These features are:

	Akka features (in the features-akka repository):

	odl-akka-all — all Akka bundles;

	odl-akka-scala-2.11 — Scala runtime for OpenDaylight;

	odl-akka-system-2.4 — Akka actor framework bundles;

	odl-akka-clustering-2.4 — Akka clustering bundles and
dependencies;

	odl-akka-leveldb-0.7 — LevelDB;

	odl-akka-persistence-2.4 — Akka persistence;

	general third-party features (in the features-odlparent
repository):

	odl-netty-4 — all Netty bundles;

	odl-guava-18 — Guava 18;

	odl-guava-21 — Guava 21 (not indended for use in Carbon);

	odl-lmax-3 — LMAX Disruptor;

	odl-triemap-0.2 — Concurrent Trie HashMap.

To use these, you need to declare a dependency on the appropriate
repository in your features.xml file:

<repository>mvn:org.opendaylight.odlparent/features-odlparent/{{VERSION}}/xml/features</repository>

and then include the feature, e.g.:

<feature name='odl-mdsal-broker-local' version='${project.version}' description="OpenDaylight :: MDSAL :: Broker">
 [...]
 <feature version='[3.3.0,4.0.0)'>odl-lmax</feature>
 [...]
</feature>

You also need to depend on the features repository in your POM:

<dependency>
 <groupId>org.opendaylight.odlparent</groupId>
 <artifactId>features-odlparent</artifactId>
 <classifier>features</classifier>
 <type>xml</type>
</dependency>

assuming the appropriate dependency management:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.opendaylight.odlparent</groupId>
 <artifactId>odlparent-artifacts</artifactId>
 <version>1.8.0-SNAPSHOT</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>

(the version number there is appropriate for Carbon). For the time being
you also need to depend separately on the individual JARs as
compile-time dependencies to build your dependent code; the relevant
dependencies are managed in odlparent’s dependency management.

The suggested version ranges are as follows:

	odl-netty: [4.0.37,4.1.0) or [4.0.37,5.0.0);

	odl-guava: [18,19) (if your code is ready for it, [19,20)
is also available, but the current default version of Guava in
OpenDaylight is 18);

	odl-lmax: [3.3.4,4.0.0)

Features (for Karaf 4)

There are equivalent features to all the Karaf 3 features, for Karaf 4.
The repositories use “features4” instead of “features”, and the features
use “odl4” instead of “odl”.

The following new features are specific to Karaf 4:

	Karaf wrapper features (also in the features4-odlparent
repository) — these can be used to pull in a Karaf feature
using a Maven dependency in a POM:

	odl-karaf-feat-feature — the Karaf feature feature;

	odl-karaf-feat-jdbc — the Karaf jdbc feature;

	odl-karaf-feat-jetty — the Karaf jetty feature;

	odl-karaf-feat-war — the Karaf war feature.

To use these, all you need to do now is add the appropriate dependency
in your feature POM; for example:

<dependency>
 <groupId>org.opendaylight.odlparent</groupId>
 <artifactId>odl4-guava-18</artifactId>
 <classifier>features</classifier>
 <type>xml</type>
</dependency>

assuming the appropriate dependency management:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.opendaylight.odlparent</groupId>
 <artifactId>odlparent-artifacts</artifactId>
 <version>1.8.0-SNAPSHOT</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>

(the version number there is appropriate for Carbon). We no longer use version
ranges, the feature dependencies all use the odlparent version (but you
should rely on the artifacts POM).

OCP Plugin Developer Guide

This document is intended for both OCP (ORI [Open Radio Interface] C&M
[Control and Management] Protocol) agent developers and OpenDaylight
service/application developers. It describes essential information
needed to implement an OCP agent that is capable of interoperating with
the OCP plugin running in OpenDaylight, including the OCP connection
establishment and state machines used on both ends of the connection. It
also provides a detailed description of the northbound/southbound APIs
that the OCP plugin exposes to allow automation and programmability.

Overview

OCP is an ETSI standard protocol for control and management of Remote
Radio Head (RRH) equipment. The OCP Project addresses the need for a
southbound plugin that allows applications and controller services to
interact with RRHs using OCP. The OCP southbound plugin will allow
applications acting as a Radio Equipment Control (REC) to interact with
RRHs that support an OCP agent.

[image: OCP southbound plugin]
OCP southbound plugin

Architecture

OCP is a vendor-neutral standard communications interface defined to
enable control and management between RE and REC of an ORI architecture.
The OCP Plugin supports the implementation of the OCP specification; it
is based on the Model Driven Service Abstraction Layer (MD-SAL)
architecture.

The OCP Plugin project consists of three main components: OCP southbound
plugin, OCP protocol library and OCP service. For details on each of
them, refer to the OCP Plugin User Guide.

[image: Overall architecture]
Overall architecture

Connection Establishment

The OCP layer is transported over a TCP/IP connection established
between the RE and the REC. OCP provides the following functions:

	Control & Management of the RE by the REC

	Transport of AISG/3GPP Iuant Layer 7 messages and alarms between REC
and RE

Hello Message

Hello message is used by the OCP agent during connection setup. It is
used for version negotiation. When the connection is established, the
OCP agent immediately sends a Hello message with the version field set
to highest OCP version supported by itself, along with the verdor ID and
serial number of the radio head it is running on.

The combinaiton of the verdor ID and serial number will be used by the
OCP plugin to uniquely identify a managed radio head. When not receiving
reply from the OCP plugin, the OCP agent can resend Hello message with
pre-defined Hello timeout (THLO) and Hello resend times (NHLO).

According to ORI spec, the default value of TCP Link Monitoring Timer
(TTLM) is 50 seconds. The RE shall trigger an OCP layer restart while
TTLM expires in RE or the RE detects a TCP link failure. So we may
define NHLO * THLO = 50 seconds (e.g. NHLO = 10, THLO = 5 seconds).

By nature the Hello message is a new type of indication, and it contains
supported OCP version, vendor ID and serial number as shown below.

Hello message.

<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns="http://uri.etsi.org/ori/002-2/v4.1.1">
 <header>
 <msgType>IND</msgType>
 <msgUID>0</msgUID>
 </header>
 <body>
 <helloInd>
 <version>4.1.1</version>
 <vendorId>XYZ</vendorId>
 <serialNumber>ABC123</serialNumber>
 </helloInd>
 </body>
</msg>

Ack Message

Hello from the OCP agent will always make the OCP plugin respond with
ACK. In case everything is OK, it will be ACK(OK). In case something is
wrong, it will be ACK(FAIL).

If the OCP agent receives ACK(OK), it goes to Established state. If the
OCP agent receives ACK(FAIL), it goes to Maintenance state. The failure
code and reason of ACK(FAIL) are defined as below:

	FAIL_OCP_VERSION (OCP version not supported)

	FAIL_NO_MORE_CAPACITY (OCP plugin cannot control any more radio
heads)

The result inside Ack message indicates OK or FAIL with different
reasons.

Ack message.

<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns="http://uri.etsi.org/ori/002-2/v4.1.1">
 <header>
 <msgType>ACK</msgType>
 <msgUID>0</msgUID>
 </header>
 <body>
 <helloAck>
 <result>FAIL_OCP_VERSION</result>
 </helloAck>
 </body>
</msg>

State Machines

The following figures illustrate the Finite State Machine (FSM) of the
OCP agent and OCP plugin for new connection procedure.

[image: OCP agent state machine]
OCP agent state machine

[image: OCP plugin state machine]
OCP plugin state machine

Northbound APIs

There are ten exposed northbound APIs: health-check, set-time, re-reset,
get-param, modify-param, create-obj, delete-obj, get-state, modify-state
and get-fault

health-check

The Health Check procedure allows the application to verify that the OCP
layer is functioning correctly at the RE.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:health-check-nb

POST Input

	Field Name

	Type

	Description

	Example

	Required
?

	nodeId

	String

	Inventory node
reference for OCP
radio head

	ocp:MTI-101-200

	Yes

	tcpLinkMonTimeout

	unsigned
Short

	TCP Link
Monitoring Timeout
(unit: seconds)

	50

	Yes

Example.

{
 "health-check-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "tcpLinkMonTimeout": "50"
 }
 }
}

POST Output

	Field Name

	Type

	Description

	result

	String, enumerated

	Common default result codes

Example.

{
 "output": {
 "result": "SUCCESS"
 }
}

set-time

The Set Time procedure allows the application to set/update the absolute
time reference that shall be used by the RE.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:set-time-nb

POST Input

	Field Name

	Type

	Description

	Example

	Required?

	nodeId

	String

	Inventory node
reference for OCP
radio head

	ocp:MTI-101-200

	Yes

	newTime

	dateTime

	New datetime setting
for radio head

	2016-04-26T10:23:00-
05:00

	Yes

Example.

{
 "set-time-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "newTime": "2016-04-26T10:23:00-05:00"
 }
 }
}

POST Output

	Field Name

	Type

	Description

	result

	String, enumerated

	Common default result codes +
FAIL_INVALID_TIMEDATA

Example.

{
 "output": {
 "result": "SUCCESS"
 }
}

re-reset

The RE Reset procedure allows the application to reset a specific RE.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:re-reset-nb

POST Input

	Field Name

	Type

	Description

	Example

	Required?

	nodeId

	String

	Inventory node
reference for OCP
radio head

	ocp:MTI-101-200

	Yes

Example.

{
 "re-reset-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200"
 }
 }
}

POST Output

	Field Name

	Type

	Description

	result

	String, enumerated

	Common default result codes

Example.

{
 "output": {
 "result": "SUCCESS"
 }
}

get-param

The Object Parameter Reporting procedure allows the application to
retrieve the following information:

	the defined object types and instances within the Resource Model of
the RE

	the values of the parameters of the objects

Default URL:
http://localhost:8181/restconf/operations/ocp-service:get-param-nb

POST Input

	Field Name

	Type

	Description

	Example

	Required?

	nodeId

	String

	Inventory node
reference for OCP
radio head

	ocp:MTI-101-200

	Yes

	objId

	String

	Object ID

	RxSigPath_5G:1

	Yes

	paramName

	String

	Parameter name

	dataLink

	Yes

Example.

{
 "get-param-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objId": "RxSigPath_5G:1",
 "paramName": "dataLink"
 }
 }
}

POST Output

	Field Name

	Type

	Description

	id

	String

	Object ID

	name

	String

	Object parameter name

	value

	String

	Object parameter value

	result

	String, enumerated

	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_UNKNOWN_PARAM”

Example.

{
 "output": {
 "obj": [
 {
 "id": "RxSigPath_5G:1",
 "param": [
 {
 "name": "dataLink",
 "value": "dataLink:1"
 }
]
 }
],
 "result": "SUCCESS"
 }
}

modify-param

The Object Parameter Modification procedure allows the application to
configure the values of the parameters of the objects identified by the
Resource Model.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:modify-param-nb

POST Input

	Field Name

	Type

	Description

	Example

	Required?

	nodeId

	String

	Inventory node
reference for OCP
radio head

	ocp:MTI-101-200

	Yes

	objId

	String

	Object ID

	RxSigPath_5G:1

	Yes

	name

	String

	Object parameter
name

	dataLink

	Yes

	value

	String

	Object parameter
value

	dataLink:1

	Yes

Example.

{
 "modify-param-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objId": "RxSigPath_5G:1",
 "param": [
 {
 "name": "dataLink",
 "value": "dataLink:1"
 }
]
 }
 }
}

POST Output

	Field Name

	Type

	Description

	objId

	String

	Object ID

	globResult

	String, enumerated

	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_PARAMETER_FAIL”,
“FAIL_NOSUCH_RESOURCE”

	name

	String

	Object parameter name

	result

	String, enumerated

	“SUCCESS”, “FAIL_UNKNOWN_PARAM”,
“FAIL_PARAM_READONLY”,
“FAIL_PARAM_LOCKREQUIRED”,
“FAIL_VALUE_OUTOF_RANGE”,
“FAIL_VALUE_TYPE_ERROR”

Example.

{
 "output": {
 "objId": "RxSigPath_5G:1",
 "globResult": "SUCCESS",
 "param": [
 {
 "name": "dataLink",
 "result": "SUCCESS"
 }
]
 }
}

create-obj

The Object Creation procedure allows the application to create and
initialize a new instance of the given object type on the RE.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:create-obj-nb

POST Input

	Field Name

	Type

	Description

	Example

	Required?

	nodeId

	String

	Inventory node
reference for OCP
radio head

	ocp:MTI-101-200

	Yes

	objType

	String

	Object type

	RxSigPath_5G

	Yes

	name

	String

	Object parameter
name

	dataLink

	No

	value

	String

	Object parameter
value

	dataLink:1

	No

Example.

{
 "create-obj-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objType": "RxSigPath_5G",
 "param": [
 {
 "name": "dataLink",
 "value": "dataLink:1"
 }
]
 }
 }
}

POST Output

	Field Name

	Type

	Description

	objId

	String

	Object ID

	globResult

	String, enumerated

	Common default result codes +
“FAIL_UNKNOWN_OBJTYPE”,
“FAIL_STATIC_OBJTYPE”,
“FAIL_UNKNOWN_OBJECT”,
“FAIL_CHILD_NOTALLOWED”,
“FAIL_OUTOF_RESOURCES”
“FAIL_PARAMETER_FAIL”,
“FAIL_NOSUCH_RESOURCE”

	name

	String

	Object parameter name

	result

	String, enumerated

	“SUCCESS”, “FAIL_UNKNOWN_PARAM”,
“FAIL_PARAM_READONLY”,
“FAIL_PARAM_LOCKREQUIRED”,
“FAIL_VALUE_OUTOF_RANGE”,
“FAIL_VALUE_TYPE_ERROR”

Example.

{
 "output": {
 "objId": "RxSigPath_5G:0",
 "globResult": "SUCCESS",
 "param": [
 {
 "name": "dataLink",
 "result": "SUCCESS"
 }
]
 }
}

delete-obj

The Object Deletion procedure allows the application to delete a given
object instance and recursively its entire child objects on the RE.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:delete-obj-nb

POST Input

	Field Name

	Type

	Description

	Example

	Required?

	nodeId

	String

	Inventory node
reference for OCP
radio head

	ocp:MTI-101-200

	Yes

	objId

	String

	Object ID

	RxSigPath_5G:1

	Yes

Example.

{
 "delete-obj-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "obj-id": "RxSigPath_5G:0"
 }
 }
}

POST Output

	Field Name

	Type

	Description

	result

	String, enumerated

	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_STATIC_OBJTYPE”,
“FAIL_LOCKREQUIRED”

Example.

{
 "output": {
 "result": "SUCCESS"
 }
}

get-state

The Object State Reporting procedure allows the application to acquire
the current state (for the requested state type) of one or more objects
of the RE resource model, and additionally configure event-triggered
reporting of the detected state changes for all state types of the
indicated objects.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:get-state-nb

POST Input

	Field Name

	Type

	Description

	Example

	Required
?

	nodeId

	String

	Inventory node
reference for OCP
radio head

	ocp:MTI-101-200

	Yes

	objId

	String

	Object ID

	RxSigPath_5G:1

	Yes

	stateType

	String,
enumerat
ed

	Valid values:
“AST”, “FST”,
“ALL”

	ALL

	Yes

	eventDrivenReporti
ng

	Boolean

	Event-triggered
reporting of state
change

	true

	Yes

Example.

{
 "get-state-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objId": "antPort:0",
 "stateType": "ALL",
 "eventDrivenReporting": "true"
 }
 }
}

POST Output

	Field Name

	Type

	Description

	id

	String

	Object ID

	type

	String, enumerated

	State type. Valid values: “AST”,
“FST

	value

	String, enumerated

	State value. Valid values: For state
type = “AST”: “LOCKED”, “UNLOCKED”.
For state type = “FST”:
“PRE_OPERATIONAL”, “OPERATIONAL”,
“DEGRADED”, “FAILED”,
“NOT_OPERATIONAL”, “DISABLED”

	result

	String, enumerated

	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_UNKNOWN_STATETYPE”,
“FAIL_VALUE_OUTOF_RANGE”

Example.

{
 "output": {
 "obj": [
 {
 "id": "antPort:0",
 "state": [
 {
 "type": "FST",
 "value": "DISABLED"
 },
 {
 "type": "AST",
 "value": "LOCKED"
 }
]
 }
],
 "result": "SUCCESS"
 }
}

modify-state

The Object State Modification procedure allows the application to
trigger a change in the state of an object of the RE Resource Model.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:modify-state-nb

POST Input

	Field Name

	Type

	Description

	Example

	Required?

	nodeId

	String

	Inventory node
reference for OCP
radio head

	ocp:MTI-101-200

	Yes

	objId

	String

	Object ID

	RxSigPath_5G:1

	Yes

	stateType

	String,
enumerated

	Valid values: “AST”,
“FST”, “ALL”

	AST

	Yes

	stateValue

	String,
enumerated

	Valid values: For
state type = “AST”:
“LOCKED”,
“UNLOCKED”. For
state type = “FST”:
“PRE_OPERATIONAL”,
“OPERATIONAL”,
“DEGRADED”,
“FAILED”,
“NOT_OPERATIONAL”,
“DISABLED”

	LOCKED

	Yes

Example.

{
 "modify-state-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objId": "RxSigPath_5G:1",
 "stateType": "AST",
 "stateValue": "LOCKED"
 }
 }
}

POST Output

	Field Name

	Type

	Description

	objId

	String

	Object ID

	stateType

	String, enumerated

	State type. Valid values: “AST”,
“FST

	stateValue

	String, enumerated

	State value. Valid values: For state
type = “AST”: “LOCKED”, “UNLOCKED”.
For state type = “FST”:
“PRE_OPERATIONAL”, “OPERATIONAL”,
“DEGRADED”, “FAILED”,
“NOT_OPERATIONAL”, “DISABLED”

	result

	String, enumerated

	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_UNKNOWN_STATETYPE”,
“FAIL_UNKNOWN_STATEVALUE”,
“FAIL_STATE_READONLY”,
“FAIL_RESOURCE_UNAVAILABLE”,
“FAIL_RESOURCE_INUSE”,
“FAIL_PARENT_CHILD_CONFLICT”,
“FAIL_PRECONDITION_NOTMET

Example.

{
 "output": {
 "objId": "RxSigPath_5G:1",
 "stateType": "AST",
 "stateValue": "LOCKED",
 "result": "SUCCESS",
 }
}

get-fault

The Fault Reporting procedure allows the application to acquire
information about all current active faults associated with a primary
object, as well as configure the RE to report when the fault status
changes for any of faults associated with the indicated primary object.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:get-fault-nb

POST Input

	Field Name

	Type

	Description

	Example

	Required?

	nodeId

	String

	Inventory node
reference for OCP
radio head

	ocp:MTI-101-200

	Yes

	objId

	String

	Object ID

	RE:0

	Yes

	eventDrive
nReporting

	Boolean

	Event-triggered
reporting of fault

	true

	Yes

Example.

{
 "get-fault-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objId": "RE:0",
 "eventDrivenReporting": "true"
 }
 }
}

POST Output

	Field Name

	Type

	Description

	result

	String, enumerated

	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_VALUE_OUTOF_RANGE”

	id (obj)

	String

	Object ID

	id (fault)

	String

	Fault ID

	severity

	String

	Fault severity

	timestamp

	dateTime

	Time stamp

	descr

	String

	Text description

	affectedObj

	String

	Affected object

Example.

{
 "output": {
 "result": "SUCCESS",
 "obj": [
 {
 "id": "RE:0",
 "fault": [
 {
 "id": "FAULT_OVERTEMP",
 "severity": "DEGRADED",
 "timestamp": "2012-02-12T16:35:00",
 "descr": "PA temp too high; Pout reduced",
 "affectedObj": [
 "TxSigPath_EUTRA:0",
 "TxSigPath_EUTRA:1"
]
 },
 {
 "id": "FAULT_VSWR_OUTOF_RANGE",
 "severity": "WARNING",
 "timestamp": "2012-02-12T16:01:05",
 }
]
 }
],
 }
}

Note

The northbound APIs described above wrap the southbound APIs to make
them accessible to external applications via RESTCONF, as well as
take care of synchronizing the RE resource model between radio heads
and the controller’s datastore. See
applications/ocp-service/src/main/yang/ocp-resourcemodel.yang for
the yang representation of the RE resource model.

Java Interfaces (Southbound APIs)

The southbound APIs provide concrete implementation of the following OCP
elementary functions: health-check, set-time, re-reset, get-param,
modify-param, create-obj, delete-obj, get-state, modify-state and
get-fault. Any OpenDaylight services/applications (of course, including
OCP service) wanting to speak OCP to radio heads will need to use them.

SalDeviceMgmtService

Interface SalDeviceMgmtService defines three methods corresponding to
health-check, set-time and re-reset.

SalDeviceMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.device.mgmt.rev150811;

public interface SalDeviceMgmtService
 extends
 RpcService
{

 Future<RpcResult<HealthCheckOutput>> healthCheck(HealthCheckInput input);

 Future<RpcResult<SetTimeOutput>> setTime(SetTimeInput input);

 Future<RpcResult<ReResetOutput>> reReset(ReResetInput input);

}

SalConfigMgmtService

Interface SalConfigMgmtService defines two methods corresponding to
get-param and modify-param.

SalConfigMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.config.mgmt.rev150811;

public interface SalConfigMgmtService
 extends
 RpcService
{

 Future<RpcResult<GetParamOutput>> getParam(GetParamInput input);

 Future<RpcResult<ModifyParamOutput>> modifyParam(ModifyParamInput input);

}

SalObjectLifecycleService

Interface SalObjectLifecycleService defines two methods corresponding to
create-obj and delete-obj.

SalObjectLifecycleService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.object.lifecycle.rev150811;

public interface SalObjectLifecycleService
 extends
 RpcService
{

 Future<RpcResult<CreateObjOutput>> createObj(CreateObjInput input);

 Future<RpcResult<DeleteObjOutput>> deleteObj(DeleteObjInput input);

}

SalObjectStateMgmtService

Interface SalObjectStateMgmtService defines two methods corresponding to
get-state and modify-state.

SalObjectStateMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.object.state.mgmt.rev150811;

public interface SalObjectStateMgmtService
 extends
 RpcService
{

 Future<RpcResult<GetStateOutput>> getState(GetStateInput input);

 Future<RpcResult<ModifyStateOutput>> modifyState(ModifyStateInput input);

}

SalFaultMgmtService

Interface SalFaultMgmtService defines only one method corresponding to
get-fault.

SalFaultMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.fault.mgmt.rev150811;

public interface SalFaultMgmtService
 extends
 RpcService
{

 Future<RpcResult<GetFaultOutput>> getFault(GetFaultInput input);

}

Notifications

In addition to indication messages, the OCP southbound plugin will
translate specific events (e.g., connect, disconnect) coming up from the
OCP protocol library into MD-SAL Notification objects and then publish
them to the MD-SAL. Also, the OCP service will notify the completion of
certain operation via Notification as well.

SalDeviceMgmtListener

An onDeviceConnected Notification will be published to the MD-SAL as
soon as a radio head is connected to the controller, and when that radio
head is disconnected the OCP southbound plugin will publish an
onDeviceDisconnected Notification in response to the disconnect event
propagated from the OCP protocol library.

SalDeviceMgmtListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.device.mgmt.rev150811;

public interface SalDeviceMgmtListener
 extends
 NotificationListener
{

 void onDeviceConnected(DeviceConnected notification);

 void onDeviceDisconnected(DeviceDisconnected notification);

}

OcpServiceListener

The OCP service will publish an onAlignmentCompleted Notification to the
MD-SAL once it has completed the OCP alignment procedure with the radio
head.

OcpServiceListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.ocp.applications.ocp.service.rev150811;

public interface OcpServiceListener
 extends
 NotificationListener
{

 void onAlignmentCompleted(AlignmentCompleted notification);

}

SalObjectStateMgmtListener

When receiving a state change indication message, the OCP southbound
plugin will propagate the indication message to upper layer
services/applications by publishing a corresponding onStateChangeInd
Notification to the MD-SAL.

SalObjectStateMgmtListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.object.state.mgmt.rev150811;

public interface SalObjectStateMgmtListener
 extends
 NotificationListener
{

 void onStateChangeInd(StateChangeInd notification);

}

SalFaultMgmtListener

When receiving a fault indication message, the OCP southbound plugin
will propagate the indication message to upper layer
services/applications by publishing a corresponding onFaultInd
Notification to the MD-SAL.

SalFaultMgmtListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.fault.mgmt.rev150811;

public interface SalFaultMgmtListener
 extends
 NotificationListener
{

 void onFaultInd(FaultInd notification);

}

ODL-SDNi Developer Guide

Overview

This project aims at enabling inter-SDN controller communication by
developing SDNi (Software Defined Networking interface) as an
application (ODL-SDNi App).

ODL-SDNi Architecture

	SDNi Aggregator: Northbound SDNi plugin acts as an aggregator for
collecting network information such as topology, stats, host etc.
This plugin can be evolving as per needs of network data requested to
be shared across federated SDN controllers.

	SDNi API: API view autogenerated and accessible through RESTCONF to
fetch the aggregated information from the northbound plugin – SDNi
aggregator.The RESTCONF protocol operates on a conceptual datastore
defined with the YANG data modeling language.

	SDNi Wrapper: SDNi BGP Wrapper will be responsible for the sharing
and collecting information to/from federated controllers.

	SDNi UI:This component displays the SDN controllers connected to each
other.

SDNi Aggregator

	SDNiAggregator connects with the Base Network Service Functions of
the controller. Currently it is querying network topology through
MD-SAL for creating SDNi network capability.

	SDNiAggregator is customized to retrieve the host controller’s
details, while running the controller in cluster mode. Rest of the
northbound APIs of controller will retrieve the entire topology
information of all the connected controllers.

	The SDNiAggregator creates a topology structure.This structure is
populated by the various network funtions.

SDNi API

Topology and QoS data is fetched from SDNiAggregator through RESTCONF.

http://${controlleripaddress}:8181/apidoc/explorer/index.html

http://${ipaddress}:8181/restconf/operations/opendaylight-sdni-topology-msg:getAllPeerTopology

Peer Topology Data: Controller IP Address, Links, Nodes, Link
Bandwidths, MAC Address of switches, Latency, Host IP address.

http://${ipaddress}:8181/restconf/operations/opendaylight-sdni-qos-msg:get-all-node-connectors-statistics

QOS Data: Node, Port, Transmit Packets, Receive Packets, Collision
Count, Receive Frame Error, Receive Over Run Error, Receive Crc Error

http://${ipaddress}:8181/restconf/operations/opendaylight-sdni-qos-msg:get-all-peer-node-connectors-statistics

Peer QOS Data: Node, Port, Transmit Packets, Receive Packets,
Collision Count, Receive Frame Error, Receive Over Run Error, Receive
Crc Error

SDNi Wrapper

[image: SDNiWrapper]
SDNiWrapper

	SDNiWrapper is an extension of ODL-BGPCEP where SDNi topology data is
exchange along with the Update NLRI message. Refer
http://tools.ietf.org/html/draft-ietf-idr-ls-distribution-04 for more
information on NLRI.

	SDNiWrapper gets the controller’s network capabilities through SDNi
Aggregator and serialize it in Update NLRI message. This NLRI message
will get exchange between the clustered controllers through
BGP-UPDATE message. Similarly peer controller’s UPDATE message is
received and unpacked then format to SDNi Network capability data,
which will be stored for further purpose.

SDNi UI

This component displays the SDN controllers connected to each other.

http://localhost:8181/index.html#/sdniUI/sdnController

API Reference Documentation

Go to
http://${controlleripaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the opendaylight-sdni panel. From there, users can
execute various API calls to test their SDNi deployment.

OF-CONFIG Developer Guide

Overview

OF-CONFIG defines an OpenFlow switch as an abstraction called an
OpenFlow Logical Switch. The OF-CONFIG protocol enables configuration of
essential artifacts of an OpenFlow Logical Switch so that an OpenFlow
controller can communicate and control the OpenFlow Logical switch via
the OpenFlow protocol. OF-CONFIG introduces an operating context for one
or more OpenFlow data paths called an OpenFlow Capable Switch for one or
more switches. An OpenFlow Capable Switch is intended to be equivalent
to an actual physical or virtual network element (e.g. an Ethernet
switch) which is hosting one or more OpenFlow data paths by partitioning
a set of OpenFlow related resources such as ports and queues among the
hosted OpenFlow data paths. The OF-CONFIG protocol enables dynamic
association of the OpenFlow related resources of an OpenFlow Capable
Switch with specific OpenFlow Logical Switches which are being hosted on
the OpenFlow Capable Switch. OF-CONFIG does not specify or report how
the partitioning of resources on an OpenFlow Capable Switch is achieved.
OF-CONFIG assumes that resources such as ports and queues are
partitioned amongst multiple OpenFlow Logical Switches such that each
OpenFlow Logical Switch can assume full control over the resources that
is assigned to it.

How to start

	start OF-CONFIG feature as below:

feature:install odl-of-config-all

Compatible with NETCONF

	Config OpenFlow Capable Switch via OpenFlow Configuration Points

Method: POST

URI:
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules

Headers: Content-Type” and “Accept” header attributes set to
application/xml

Payload:

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">prefix:sal-netconf-connector</type>
 <name>testtool</name>
 <address xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">10.74.151.67</address>
 <port xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">830</port>
 <username xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">mininet</username>
 <password xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">mininet</password>
 <tcp-only xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">false</tcp-only>
 <event-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:netty">prefix:netty-event-executor</type>
 <name>global-event-executor</name>
 </event-executor>
 <binding-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-registry>
 <dom-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">prefix:dom-broker-osgi-registry</type>
 <name>dom-broker</name>
 </dom-registry>
 <client-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:config:netconf">prefix:netconf-client-dispatcher</type>
 <name>global-netconf-dispatcher</name>
 </client-dispatcher>
 <processing-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:threadpool</type>
 <name>global-netconf-processing-executor</name>
 </processing-executor>
</module>

	NETCONF establishes the connections with OpenFlow Capable Switches
using the parameters in the previous step. NETCONF also gets the
information of whether the OpenFlow Switch supports NETCONF during
the signal handshaking. The information will be stored in the NETCONF
topology as prosperity of a node.

	OF-CONFIG can be aware of the switches accessing and leaving by
monitoring the data changes in the NETCONF topology. For the detailed
information it can be refered to the
implementation [https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob_plain;f=southbound/southbound-impl/src/main/java/org/opendaylight/ofconfig/southbound/impl/OdlOfconfigApiServiceImpl.java;hb=refs/heads/stable/boron].

The establishment of OF-CONFIG topology

Firstly, OF-CONFIG will check whether the newly accessed switch supports
OF-CONFIG by querying the NETCONF interface.

	During the NETCONF connection’s establishment, the NETCONF and the
switches will exchange the their capabilities via the “hello”
message.

	OF-CONFIG gets the connection information between the NETCONF and
switches by monitoring the data changes via the interface of
DataChangeListener.

	After the NETCONF connection established, the OF-CONFIG module will
check whether OF-CONFIG capability is in the switch’s capabilities
list which is got in step 1.

	If the result of step 3 is yes, the OF-CONFIG will call the following
processing steps to create the topology database.

For the detailed information it can be referred to the
implementation [https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob_plain;f=southbound/southbound-impl/src/main/java/org/opendaylight/ofconfig/southbound/impl/listener/OfconfigListenerHelper.java;hb=refs/heads/stable/boron].

Secondly, the capable switch node and logical switch node are added in
the OF-CONFIG topology if the switch supports OF-CONFIG.

OF-CONFIG’s topology compromise: Capable Switch topology (underlay) and
logical Switch topology (overlay). Both of them are enhanced (augment)
on

/topo:network-topology/topo:topology/topo:node

The NETCONF will add the nodes in the Topology via the path of
“/topo:network-topology/topo:topology/topo:node” if it gets the
configuration information of the switches.

For the detailed information it can be referred to the
implementation [https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob;f=southbound/southbound-api/src/main/yang/odl-ofconfig-topology.yang;h=dbdaec46ee59da3791386011f571d7434dd1e416;hb=refs/heads/stable/boron].

OpenFlow Protocol Library Developer Guide

Introduction

OpenFlow Protocol Library is component in OpenDaylight, that mediates
communication between OpenDaylight controller and hardware devices
supporting OpenFlow protocol. Primary goal is to provide user (or upper
layers of OpenDaylight) communication channel, that can be used for
managing network hardware devices.

Features Overview

There are three features inside openflowjava:

	odl-openflowjava-protocol provides all openflowjava bundles, that
are needed for communication with openflow devices. It ensures
message translation and handles network connections. It also provides
openflow protocol specific model.

	odl-openflowjava-all currently contains only
odl-openflowjava-protocol feature.

	odl-openflowjava-stats provides mechanism for message counting
and reporting. Can be used for performance analysis.

odl-openflowjava-protocol Architecture

Basic bundles contained in this feature are openflow-protocol-api,
openflow-protocol-impl, openflow-protocol-spi and util.

	openflow-protocol-api - contains openflow model, constants and
keys used for (de)serializer registration.

	openflow-protocol-impl - contains message factories, that
translate binary messages into DataObjects and vice versa. Bundle
also contains network connection handlers - servers, netty pipeline
handlers, …

	openflow-protocol-spi - entry point for openflowjava
configuration, startup and close. Basically starts implementation.

	util - utility classes for binary-Java conversions and to ease
experimenter key creation

odl-openflowjava-stats Feature

Runs over odl-openflowjava-protocol. It counts various message types /
events and reports counts in specified time periods. Statistics
collection can be configured in
openflowjava-config/src/main/resources/45-openflowjava-stats.xml

Key APIs and Interfaces

Basic API / SPI classes are ConnectionAdapter (Rpc/notifications) and
SwitchConnectionProcider (configure, start, shutdown)

Installation

Pull the code and import project into your IDE.

git clone ssh://<username>@git.opendaylight.org:29418/openflowjava.git

Configuration

Current implementation allows to configure:

	listening port (mandatory)

	transfer protocol (mandatory)

	switch idle timeout (mandatory)

	TLS configuration (optional)

	thread count (optional)

You can find exemplary Openflow Protocol Library instance configuration
below:

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <!-- default OF-switch-connection-provider (port 6633) -->
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-default-impl</name>
 <port>6633</port>
<!-- Possible transport-protocol options: TCP, TLS, UDP -->
 <transport-protocol>TCP</transport-protocol>
 <switch-idle-timeout>15000</switch-idle-timeout>
<!-- Exemplary TLS configuration:
 - uncomment the <tls> tag
 - copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and exemplary-cacert.pem
 files into your virtual machine
 - set VM encryption options to use copied keys
 - start communication
 Please visit OpenflowPlugin or Openflow Protocol Library#Documentation wiki pages
 for detailed information regarding TLS -->
<!-- <tls>
 <keystore>/exemplary-ctlKeystore</keystore>
 <keystore-type>JKS</keystore-type>
 <keystore-path-type>CLASSPATH</keystore-path-type>
 <keystore-password>opendaylight</keystore-password>
 <truststore>/exemplary-ctlTrustStore</truststore>
 <truststore-type>JKS</truststore-type>
 <truststore-path-type>CLASSPATH</truststore-path-type>
 <truststore-password>opendaylight</truststore-password>
 <certificate-password>opendaylight</certificate-password>
 </tls> -->
<!-- Exemplary thread model configuration. Uncomment <threads> tag below to adjust default thread model -->
<!-- <threads>
 <boss-threads>2</boss-threads>
 <worker-threads>8</worker-threads>
 </threads> -->
 </module>

 <!-- default OF-switch-connection-provider (port 6653) -->
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-legacy-impl</name>
 <port>6653</port>
<!-- Possible transport-protocol options: TCP, TLS, UDP -->
 <transport-protocol>TCP</transport-protocol>
 <switch-idle-timeout>15000</switch-idle-timeout>
<!-- Exemplary TLS configuration:
 - uncomment the <tls> tag
 - copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and exemplary-cacert.pem
 files into your virtual machine
 - set VM encryption options to use copied keys
 - start communication
 Please visit OpenflowPlugin or Openflow Protocol Library#Documentation wiki pages
 for detailed information regarding TLS -->
<!-- <tls>
 <keystore>/exemplary-ctlKeystore</keystore>
 <keystore-type>JKS</keystore-type>
 <keystore-path-type>CLASSPATH</keystore-path-type>
 <keystore-password>opendaylight</keystore-password>
 <truststore>/exemplary-ctlTrustStore</truststore>
 <truststore-type>JKS</truststore-type>
 <truststore-path-type>CLASSPATH</truststore-path-type>
 <truststore-password>opendaylight</truststore-password>
 <certificate-password>opendaylight</certificate-password>
 </tls> -->
<!-- Exemplary thread model configuration. Uncomment <threads> tag below to adjust default thread model -->
<!-- <threads>
 <boss-threads>2</boss-threads>
 <worker-threads>8</worker-threads>
 </threads> -->
 </module>

 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl">prefix:openflow-provider-impl</type>
 <name>openflow-provider-impl</name>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-default</name>
 </openflow-switch-connection-provider>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-legacy</name>
 </openflow-switch-connection-provider>
 <binding-aware-broker>
 <type xmlns:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-aware-broker>
 </module>
</modules>

Possible transport-protocol options:

	TCP

	TLS

	UDP

Switch-idle timeout specifies time needed to detect idle state of
switch. When no message is received from switch within this time, upper
layers are notified on switch idleness. To be able to use this exemplary
TLS configuration:

	uncomment the <tls> tag

	copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and
exemplary-cacert.pem files into your virtual machine

	set VM encryption options to use copied keys (please visit TLS
support wiki page for detailed information regarding TLS)

	start communication

Thread model configuration specifies how many threads are desired to
perform Netty’s I/O operations.

	boss-threads specifies the number of threads that register incoming
connections

	worker-threads specifies the number of threads performing read /
write (+ serialization / deserialization) operations.

Architecture

Public API (openflow-protocol-api)

Set of interfaces and builders for immutable data transfer objects
representing Openflow Protocol structures.

Transfer objects and service APIs are infered from several YANG models
using code generator to reduce verbosity of definition and repeatibility
of code.

The following YANG modules are defined:

	openflow-types - defines common Openflow specific types

	openflow-instruction - defines base Openflow instructions

	openflow-action - defines base Openflow actions

	openflow-augments - defines object augmentations

	openflow-extensible-match - defines Openflow OXM match

	openflow-protocol - defines Openflow Protocol messages

	system-notifications - defines system notification objects

	openflow-configuration - defines structures used in ConfigSubsystem

This modules also reuse types from following YANG modules:

	ietf-inet-types - IP adresses, IP prefixes, IP-protocol related types

	ietf-yang-types - Mac Address, etc.

The use of predefined types is to make APIs contracts more safe, better
readable and documented (e.g using MacAddress instead of byte array…)

TCP Channel pipeline (openflow-protocol-impl)

Creates channel processing pipeline based on configuration and support.

TCP Channel pipeline.

imageopenflowjava/500px-TCPChannelPipeline.png[width=500]

Switch Connection Provider.

Implementation of connection point for other projects. Library exposes
its functionality through this class. Library can be configured, started
and shutdowned here. There are also methods for custom (de)serializer
registration.

Tcp Connection Initializer.

In order to initialize TCP connection to a device (switch), OF Plugin
calls method initiateConnection() in SwitchConnectionProvider.
This method in turn initializes (Bootstrap) server side channel towards
the device.

TCP Handler.

Represents single server that is handling incoming connections over TCP
/ TLS protocol. TCP Handler creates a single instance of TCP Channel
Initializer that will initialize channels. After that it binds to
configured InetAddress and port. When a new device connects, TCP Handler
registers its channel and passes control to TCP Channel Initializer.

TCP Channel Initializer.

This class is used for channel initialization / rejection and passing
arguments. After a new channel has been registered it calls Switch
Connection Handler’s (OF Plugin) accept method to decide if the library
should keep the newly registered channel or if the channel should be
closed. If the channel has been accepted, TCP Channel Initializer
creates the whole pipeline with needed handlers and also with
ConnectionAdapter instance. After the channel pipeline is ready, Switch
Connection Handler is notified with onConnectionReady notification.
OpenFlow Plugin can now start sending messages downstream.

Idle Handler.

If there are no messages received for more than time specified, this
handler triggers idle state notification. The switch idle timeout is
received as a parameter from ConnectionConfiguration settings. Idle
State Handler is inactive while there are messages received within the
switch idle timeout. If there are no messages received for more than
timeout specified, handler creates SwitchIdleEvent message and sends it
upstream.

TLS Handler.

It encrypts and decrypts messages over TLS protocol. Engaging TLS
Handler into pipeline is matter of configuration (<tls> tag). TLS
communication is either unsupported or required. TLS Handler is
represented as a Netty’s SslHandler.

OF Frame Decoder.

Parses input stream into correct length message frames for further
processing. Framing is based on Openflow header length. If received
message is shorter than minimal length of OpenFlow message (8 bytes), OF
Frame Decoder waits for more data. After receiving at least 8 bytes the
decoder checks length in OpenFlow header. If there are still some bytes
missing, the decoder waits for them. Else the OF Frame Decoder sends
correct length message to next handler in the channel pipeline.

OF Version Detector.

Detects version of used OpenFlow Protocol and discards unsupported
version messages. If the detected version is supported, OF Version
Detector creates VersionMessageWrapper object containing the
detected version and byte message and sends this object upstream.

OF Decoder.

Chooses correct deserilization factory (based on message type) and
deserializes messages into generated DTOs (Data Transfer Object). OF
Decoder receives VersionMessageWrapper object and passes it to
DeserializationFactory which will return translated DTO.
DeserializationFactory creates MessageCodeKey object with
version and type of received message and Class of object that will be
the received message deserialized into. This object is used as key when
searching for appropriate decoder in DecoderTable. DecoderTable
is basically a map storing decoders. Found decoder translates received
message into DTO. If there was no decoder found, null is returned. After
returning translated DTO back to OF Decoder, the decoder checks if it is
null or not. When the DTO is null, the decoder logs this state and
throws an Exception. Else it passes the DTO further upstream. Finally,
the OF Decoder releases ByteBuf containing received and decoded byte
message.

OF Encoder.

Chooses correct serialization factory (based on type of DTO) and
serializes DTOs into byte messages. OF Encoder does the opposite than
the OF Decoder using the same principle. OF Encoder receives DTO, passes
it for translation and if the result is not null, it sends translated
DTO downstream as a ByteBuf. Searching for appropriate encoder is done
via MessageTypeKey, based on version and class of received DTO.

Delegating Inbound Handler.

Delegates received DTOs to Connection Adapter. It also reacts on
channelInactive and channelUnregistered events. Upon one of these events
is triggered, DelegatingInboundHandler creates DisconnectEvent message
and sends it upstream, notifying upper layers about switch
disconnection.

Channel Outbound Queue.

Message flushing handler. Stores outgoing messages (DTOs) and flushes
them. Flush is performed based on time expired and on the number of
messages enqueued.

Connection Adapter.

Provides a facade on top of pipeline, which hides netty.io specifics.
Provides a set of methods to register for incoming messages and to send
messages to particular channel / session. ConnectionAdapterImpl
basically implements three interfaces (unified in one superinterface
ConnectionFacade):

	ConnectionAdapter

	MessageConsumer

	OpenflowProtocolService

ConnectionAdapter interface has methods for setting up listeners
(message, system and connection ready listener), method to check if all
listeners are set, checking if the channel is alive and disconnect
method. Disconnect method clears responseCache and disables consuming of
new messages.

MessageConsumer interface holds only one method: consume().
Consume() method is called from DelegatingInboundHandler. This
method processes received DTO’s based on their type. There are three
types of received objects:

	System notifications - invoke system notifications in OpenFlow Plugin
(systemListener set). In case of DisconnectEvent message, the
Connection Adapter clears response cache and disables consume()
method processing,

	OpenFlow asynchronous messages (from switch) - invoke corresponding
notifications in OpenFlow Plugin,

	OpenFlow symmetric messages (replies to requests) - create
RpcResponseKey with XID and DTO’s class set. This
RpcResponseKey is then used to find corresponding future object
in responseCache. Future object is set with success flag, received
message and errors (if any occurred). In case no corresponding future
was found in responseCache, Connection Adapter logs warning and
discards the message. Connection Adapter also logs warning when an
unknown DTO is received.

OpenflowProtocolService interface contains all rpc-methods for
sending messages from upper layers (OpenFlow Plugin) downstream and
responding. Request messages return Future filled with expected reply
message, otherwise the expected Future is of type Void.

NOTE: MultipartRequest message is the only exception. Basically it
is request - reply Message type, but it wouldn’t be able to process more
following MultipartReply messages if this was implemented as rpc (only
one Future). This is why MultipartReply is implemented as notification.
OpenFlow Plugin takes care of correct message processing.

UDP Channel pipeline (openflow-protocol-impl)

Creates UDP channel processing pipeline based on configuration and
support. Switch Connection Provider, Channel Outbound Queue and
Connection Adapter fulfill the same role as in case of TCP
connection / channel pipeline (please see above).

[image: UDP Channel pipeline]
UDP Channel pipeline

UDP Handler.

Represents single server that is handling incoming connections over UDP
(DTLS) protocol. UDP Handler creates a single instance of UDP Channel
Initializer that will initialize channels. After that it binds to
configured InetAddress and port. When a new device connects, UDP Handler
registers its channel and passes control to UDP Channel Initializer.

UDP Channel Initializer.

This class is used for channel initialization and passing arguments.
After a new channel has been registered (for UDP there is always only
one channel) UDP Channel Initializer creates whole pipeline with needed
handlers.

DTLS Handler.

Haven’t been implemented yet. Will take care of secure DTLS connections.

OF Datagram Packet Handler.

Combines functionality of OF Frame Decoder and OF Version Detector.
Extracts messages from received datagram packets and checks if message
version is supported. If there is a message received from yet unknown
sender, OF Datagram Packet Handler creates Connection Adapter for this
sender and stores it under sender’s address in UdpConnectionMap.
This map is also used for sending the messages and for correct
Connection Adapter lookup - to delegate messages from one channel to
multiple sessions.

OF Datagram Packet Decoder.

Chooses correct deserilization factory (based on message type) and
deserializes messages into generated DTOs. OF Decoder receives
VersionMessageUdpWrapper object and passes it to
DeserializationFactory which will return translated DTO.
DeserializationFactory creates MessageCodeKey object with
version and type of received message and Class of object that will be
the received message deserialized into. This object is used as key when
searching for appropriate decoder in DecoderTable. DecoderTable
is basically a map storing decoders. Found decoder translates received
message into DTO (DataTransferObject). If there was no decoder found,
null is returned. After returning translated DTO back to OF Datagram
Packet Decoder, the decoder checks if it is null or not. When the DTO is
null, the decoder logs this state. Else it looks up appropriate
Connection Adapter in UdpConnectionMap and passes the DTO to found
Connection Adapter. Finally, the OF Decoder releases ByteBuf
containing received and decoded byte message.

OF Datagram Packet Encoder.

Chooses correct serialization factory (based on type of DTO) and
serializes DTOs into byte messages. OF Datagram Packet Encoder does the
opposite than the OF Datagram Packet Decoder using the same principle.
OF Encoder receives DTO, passes it for translation and if the result is
not null, it sends translated DTO downstream as a datagram packet.
Searching for appropriate encoder is done via MessageTypeKey, based on
version and class of received DTO.

SPI (openflow-protocol-spi)

Defines interface for library’s connection point for other projects.
Library exposes its functionality through this interface.

Integration test (openflow-protocol-it)

Testing communication with simple client.

Simple client(simple-client)

Lightweight switch simulator - programmable with desired scenarios.

Utility (util)

Contains utility classes, mainly for work with ByteBuf.

Library’s lifecycle

Steps (after the library’s bundle is started):

	[1] Library is configured by ConfigSubsystem (adress, ports,
encryption, …)

	[2] Plugin injects its SwitchConnectionHandler into the Library

	[3] Plugin starts the Library

	[4] Library creates configured protocol handler (e.g. TCP Handler)

	[5] Protocol Handler creates Channel Initializer

	[6] Channel Initializer asks plugin whether to accept incoming
connection on each new switch connection

	[7] Plugin responds:

	true - continue building pipeline

	false - reject connection / disconnect channel

	[8] Library notifies Plugin with onSwitchConnected(ConnectionAdapter)
notification, passing reference to ConnectionAdapter, that will
handle the connection

	[9] Plugin registers its system and message listeners

	[10] FireConnectionReadyNotification() is triggered, announcing that
pipeline handlers needed for communication have been created and
Plugin can start communication

	[11] Plugin shutdowns the Library when desired

[image: Library lifecycle]
Library lifecycle

Statistics collection

Introduction

Statistics collection collects message statistics. Current collected
statistics (DS - downstream, US - upstream):

	DS_ENTERED_OFJAVA - all messages that entered openflowjava
(picked up from openflowplugin)

	DS_ENCODE_SUCCESS - successfully encoded messages

	DS_ENCODE_FAIL - messages that failed during encoding
(serialization) process

	DS_FLOW_MODS_ENTERED - all flow-mod messages that entered
openflowjava

	DS_FLOW_MODS_SENT - all flow-mod messages that were successfully
sent

	US_RECEIVED_IN_OFJAVA - messages received from switch

	US_DECODE_SUCCESS - successfully decoded messages

	US_DECODE_FAIL - messages that failed during decoding
(deserialization) process

	US_MESSAGE_PASS - messages handed over to openflowplugin

Karaf

In orded to start statistics, it is needed to feature:install
odl-openflowjava-stats. To see the logs one should use log:set DEBUG
org.opendaylight.openflowjava.statistics and than probably log:display
(you can log:list to see if the logging has been set). To adjust
collection settings it is enough to modify 45-openflowjava-stats.xml.

JConsole

JConsole provides two commands for the statistics collection:

	printing current statistics

	resetting statistic counters

After attaching JConsole to correct process, one only needs to go into
MBeans
tab → org.opendaylight.controller → RuntimeBean → statistics-collection-service-impl
→ statistics-collection-service-impl → Operations to be able to use
this commands.

TLS Support

Note

see OpenFlow Plugin Developper Guide

Extensibility

Introduction

Entry point for the extensibility is SwitchConnectionProvider.
SwitchConnectionProvider contains methods for (de)serializer
registration. To register deserializer it is needed to use
.register*Deserializer(key, impl). To register serializer one must use
.register*Serializer(key, impl). Registration can occur either during
configuration or at runtime.

NOTE: In case when experimenter message is received and no
(de)serializer was registered, the library will throw
IllegalArgumentException.

Basic Principle

In order to use extensions it is needed to augment existing model and
register new (de)serializers.

Augmenting the model: 1. Create new augmentation

Register (de)serializers: 1. Create your (de)serializer 2. Let it
implement OFDeserializer<> / OFSerializer<> - in case the
structure you are (de)serializing needs to be used in Multipart
TableFeatures messages, let it implement HeaderDeserializer<> /
HeaderSerializer 3. Implement prescribed methods 4. Register your
deserializer under appropriate key (in our case
ExperimenterActionDeserializerKey) 5. Register your serializer under
appropriate key (in our case ExperimenterActionSerializerKey) 6.
Done, test your implementation

NOTE: If you don’t know what key should be used with your
(de)serializer implementation, please visit Registration
keys page.

Example

Let’s say we have vendor / experimenter action represented by this
structure:

struct foo_action {
 uint16_t type;
 uint16_t length;
 uint32_t experimenter;
 uint16_t first;
 uint16_t second;
 uint8_t pad[4];
}

First, we have to augment existing model. We create new module, which
imports “openflow-types.yang” (don’t forget to update your
pom.xml with api dependency). Now we create foo action identity:

import openflow-types {prefix oft;}
identity foo {
 description "Foo action description";
 base oft:action-base;
}

This will be used as type in our structure. Now we must augment existing
action structure, so that we will have the desired fields first and
second. In order to create new augmentation, our module has to import
“openflow-action.yang”. The augment should look like this:

import openflow-action {prefix ofaction;}
augment "/ofaction:actions-container/ofaction:action" {
 ext:augment-identifier "foo-action";
 leaf first {
 type uint16;
 }
 leaf second {
 type uint16;
 }
 }

We are finished with model changes. Run mvn clean compile to generate
sources. After generation is done, we need to implement our
(de)serializer.

Deserializer:

public class FooActionDeserializer extends OFDeserializer<Action> {
 @Override
 public Action deserialize(ByteBuf input) {
 ActionBuilder builder = new ActionBuilder();
 input.skipBytes(SIZE_OF_SHORT_IN_BYTES); *// we know the type of action*
 builder.setType(Foo.class);
 input.skipBytes(SIZE_OF_SHORT_IN_BYTES); *// we don't need length*
 *// now create experimenterIdAugmentation - so that openflowplugin can
 differentiate correct vendor codec*
 ExperimenterIdActionBuilder expIdBuilder = new ExperimenterIdActionBuilder();
 expIdBuilder.setExperimenter(new ExperimenterId(input.readUnsignedInt()));
 builder.addAugmentation(ExperimenterIdAction.class, expIdBuilder.build());
 FooActionBuilder fooBuilder = new FooActionBuilder();
 fooBuilder.setFirst(input.readUnsignedShort());
 fooBuilder.setSecond(input.readUnsignedShort());
 builder.addAugmentation(FooAction.class, fooBuilder.build());
 input.skipBytes(4); *// padding*
 return builder.build();
 }
}

Serializer:

public class FooActionSerializer extends OFSerializer<Action> {
 @Override
 public void serialize(Action action, ByteBuf outBuffer) {
 outBuffer.writeShort(FOO_CODE);
 outBuffer.writeShort(16);
 *// we don't have to check for ExperimenterIdAction augmentation - our
 serializer*
 *// was called based on the vendor / experimenter ID, so we simply write
 it to buffer*
 outBuffer.writeInt(VENDOR / EXPERIMENTER ID);
 FooAction foo = action.getAugmentation(FooAction.class);
 outBuffer.writeShort(foo.getFirst());
 outBuffer.writeShort(foo.getSecond());
 outBuffer.writeZero(4); //write padding
 }
}

Register both deserializer and serializer:
SwitchConnectionProvider.registerDeserializer(new
ExperimenterActionDeserializerKey(0x04, VENDOR / EXPERIMENTER ID),
new FooActionDeserializer());
SwitchConnectionProvider.registerSerializer(new
ExperimenterActionSerializerKey(0x04, VENDOR / EXPERIMENTER ID),
new FooActionSerializer());

We are ready to test our implementation.

NOTE: Vendor / Experimenter structures define only vendor /
experimenter ID as common distinguisher (besides action type). Vendor /
Experimenter ID is unique for all vendor messages - that’s why vendor is
able to register only one class under
ExperimenterAction(De)SerializerKey. And that’s why vendor has to switch
/ choose between his subclasses / subtypes on his own.

Detailed walkthrough: Deserialization extensibility

External interface & class description.

OFGeneralDeserializer:

	OFDeserializer<E extends DataObject>

	deserialize(ByteBuf) - deserializes given ByteBuf

	HeaderDeserializer<E extends DataObject>

	deserializeHeaders(ByteBuf) - deserializes only E headers (used
in Multipart TableFeatures messages)

DeserializerRegistryInjector

	injectDeserializerRegistry(DeserializerRegistry) - injects
deserializer registry into deserializer. Useful when custom
deserializer needs access to other deserializers.

NOTE: DeserializerRegistryInjector is not OFGeneralDeserializer
descendand. It is a standalone interface.

MessageCodeKey and its descendants These keys are used as for
deserializer lookup in DeserializerRegistry. MessageCodeKey should is
used in general, while its descendants are used in more special cases.
For Example ActionDeserializerKey is used for Action deserializer lookup
and (de)registration. Vendor is provided with special keys, which
contain only the most necessary fields. These keys usually start with
“Experimenter” prefix (MatchEntryDeserializerKey is an exception).

MessageCodeKey has these fields:

	short version - Openflow wire version number

	int value - value read from byte message

	Class<?> clazz - class of object being creating

	[1] The scenario starts in a custom bundle which wants to extend
library’s functionality. The custom bundle creates deserializers
which implement exposed OFDeserializer / HeaderDeserializer
interfaces (wrapped under OFGeneralDeserializer unifying super
interface).

	[2] Created deserializers are paired with corresponding
ExperimenterKeys, which are used for deserializer lookup. If you
don’t know what key should be used with your (de)serializer
implementation, please visit Registration
keys page.

	[3] Paired deserializers are passed to the OF Library via
SwitchConnectionProvider.registerCustomDeserializer(key,
impl). Library registers the deserializer.

	While registering, Library checks if the deserializer is an
instance of DeserializerRegistryInjector interface. If yes,
the DeserializerRegistry (which stores all deserializer
references) is injected into the deserializer.

This is particularly useful when the deserializer needs access to other
deserializers. For example IntructionsDeserializer needs access to
ActionsDeserializer in order to be able to process
OFPIT_WRITE_ACTIONS/OFPIT_APPLY_ACTIONS instructions.

[image: Deserialization scenario walkthrough]
Deserialization scenario walkthrough

Detailed walkthrough: Serialization extensibility

External interface & class description.

OFGeneralSerializer:

	OFSerializer<E extends DataObject>

	serialize(E,ByteBuf) - serializes E into given ByteBuf

	HeaderSerializer<E extends DataObject>

	serializeHeaders(E,ByteBuf) - serializes E headers (used in
Multipart TableFeatures messages)

SerializerRegistryInjector *
injectSerializerRegistry(SerializerRegistry) - injects serializer
registry into serializer. Useful when custom serializer needs access to
other serializers.

NOTE: SerializerRegistryInjector is not OFGeneralSerializer
descendand.

MessageTypeKey and its descendants These keys are used as for
serializer lookup in SerializerRegistry. MessageTypeKey should is used
in general, while its descendants are used in more special cases. For
Example ActionSerializerKey is used for Action serializer lookup and
(de)registration. Vendor is provided with special keys, which contain
only the most necessary fields. These keys usually start with
“Experimenter” prefix (MatchEntrySerializerKey is an exception).

MessageTypeKey has these fields:

	short version - Openflow wire version number

	Class<E> msgType - DTO class

Scenario walkthrough

	[1] Serialization extensbility principles are similar to the
deserialization principles. The scenario starts in a custom bundle.
The custom bundle creates serializers which implement exposed
OFSerializer / HeaderSerializer interfaces (wrapped under
OFGeneralSerializer unifying super interface).

	[2] Created serializers are paired with their ExperimenterKeys, which
are used for serializer lookup. If you don’t know what key should be
used with your serializer implementation, please visit Registration
keys page.

	[3] Paired serializers are passed to the OF Library via
SwitchConnectionProvider.registerCustomSerializer(key, impl).
Library registers the serializer.

	While registering, Library checks if the serializer is an instance of
SerializerRegistryInjector interface. If yes, the
SerializerRegistry (which stores all serializer references) is
injected into the serializer.

This is particularly useful when the serializer needs access to other
deserializers. For example IntructionsSerializer needs access to
ActionsSerializer in order to be able to process
OFPIT_WRITE_ACTIONS/OFPIT_APPLY_ACTIONS instructions.

[image: Serialization scenario walkthrough]
Serialization scenario walkthrough

Internal description

SwitchConnectionProvider SwitchConnectionProvider constructs and
initializes both deserializer and serializer registries with default
(de)serializers. It also injects the DeserializerRegistry into the
DeserializationFactory, the SerializerRegistry into the
SerializationFactory. When call to register custom (de)serializer is
made, SwitchConnectionProvider calls register method on appropriate
registry.

DeserializerRegistry / SerializerRegistry Both registries contain
init() method to initialize default (de)serializers. Registration checks
if key or (de)serializer implementation are not null. If at least
one of the is null, NullPointerException is thrown. Else the
(de)serializer implementation is checked if it is
(De)SerializerRegistryInjector instance. If it is an instance of
this interface, the registry is injected into this (de)serializer
implementation.

GetSerializer(key) or GetDeserializer(key) performs registry
lookup. Because there are two separate interfaces that might be put into
the registry, the registry uses their unifying super interface.
Get(De)Serializer(key) method casts the super interface to desired type.
There is also a null check for the (de)serializer received from the
registry. If the deserializer wasn’t found, NullPointerException
with key description is thrown.

Registration keys

Deserialization.

Possible openflow extensions and their keys

There are three vendor specific extensions in Openflow v1.0 and eight in
Openflow v1.3. These extensions are registered under registration keys,
that are shown in table below:

	Extension type

	OpenFlo
w

	Registration key

	Utility class

	Vendor message

	1.0

	ExperimenterIdDeserializerKe
y(1,
experimenterId,
ExperimenterMessage.class)

	ExperimenterDeseriali
zerKeyFactory

	Action

	1.0

	ExperimenterActionDeserializ
erKey(1,
experimenter ID)

	.

	Stats message

	1.0

	ExperimenterMultipartReplyMe
ssageDeserializerKey(1,
experimenter ID)

	ExperimenterDeseriali
zerKeyFactory

	Experimenter
message

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
ExperimenterMessage.class)

	ExperimenterDeseriali
zerKeyFactory

	Match entry

	1.3

	MatchEntryDeserializerKey(4,
(number) ${oxm_class},
(number) ${oxm_field});

	.

	
	
	key.setExperimenterId(experi
menter
ID);

	.

	Action

	1.3

	ExperimenterActionDeserializ
erKey(4,
experimenter ID)

	.

	Instruction

	1.3

	ExperimenterInstructionDeser
ializerKey(4,
experimenter ID)

	.

	Multipart

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
MultipartReplyMessage.class)

	ExperimenterDeseriali
zerKeyFactory

	Multipart -
Table features

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
TableFeatureProperties.class
)

	ExperimenterDeseriali
zerKeyFactory

	Error

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
ErrorMessage.class)

	ExperimenterDeseriali
zerKeyFactory

	Queue property

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
QueueProperty.class)

	ExperimenterDeseriali
zerKeyFactory

	Meter band
type

	1.3

	ExperimenterIdDeserializerKe
y(4,
experimenterId,
MeterBandExperimenterCase.cl
ass)

	ExperimenterDeseriali
zerKeyFactory

Table: Deserialization

Serialization.

Possible openflow extensions and their keys

There are three vendor specific extensions in Openflow v1.0 and seven
Openflow v1.3. These extensions are registered under registration keys,
that are shown in table below:

	Extension type

	OpenFlo
w

	Registration key

	Utility class

	Vendor message

	1.0

	ExperimenterIdSerializerKey<
>(1,
experimenterId,
ExperimenterInput.class)

	ExperimenterSerialize
rKeyFactory

	Action

	1.0

	ExperimenterActionSerializer
Key(1,
experimenterId, sub-type)

	.

	Stats message

	1.0

	ExperimenterMultipartRequest
SerializerKey(1,
experimenter ID)

	ExperimenterSerialize
rKeyFactory

	Experimenter
message

	1.3

	ExperimenterIdSerializerKey<
>(4,
experimenterId,
ExperimenterInput.class)

	ExperimenterSerialize
rKeyFactory

	Match entry

	1.3

	MatchEntrySerializerKey<>(4,
(class) ${oxm_class},
(class) ${oxm_field});

	.

	
	
	key.setExperimenterId(experi
menter
ID)

	.

	Action

	1.3

	ExperimenterActionSerializer
Key(4,
experimenterId, sub-type)

	.

	Instruction

	1.3

	ExperimenterInstructionSeria
lizerKey(4,
experimenter ID)

	.

	Multipart

	1.3

	ExperimenterIdSerializerKey<
>(4,
experimenterId,
MultipartRequestExperimenter
Case.class)

	ExperimenterSerialize
rKeyFactory

	Multipart -
Table features

	1.3

	ExperimenterIdSerializerKey<
>(4,
experimenterId,
TableFeatureProperties.class
)

	ExperimenterSerialize
rKeyFactory

	Meter band
type

	1.3

	ExperimenterIdSerializerKey<
>(4,
experimenterId,
MeterBandExperimenterCase.cl
ass)

	ExperimenterSerialize
rKeyFactory

Table: Serialization

OpenFlow Plugin Project Developer Guide

This section covers topics which are developer specific and which have
not been covered in the user guide. Please see the OpenFlow
plugin user guide first.

It can be found on the OpenDaylight software download
page [https://www.opendaylight.org/downloads].

Event Sequences

Session Establishment

The OpenFlow Protocol
Library provides
interface SwitchConnectionHandler which contains method
onSwitchConnected (step 1). This event is raised in the OpenFlow
Protocol Library when an OpenFlow device connects to OpenDaylight and
caught in the ConnectionManagerImpl class in the OpenFlow plugin.

There the plugin creates a new instance of the ConnectionContextImpl
class (step 1.1) and also instances of HandshakeManagerImpl (which
uses HandshakeListenerImpl) and ConnectionReadyListenerImpl.
ConnectionReadyListenerImpl contains method onConnectionReady()
which is called when connection is prepared. This method starts the
handshake with the OpenFlow device (switch) from the OpenFlow plugin
side. Then handshake can be also started from device side. In this case
method shake() from HandshakeManagerImpl is called (steps 1.1.1
and 2).

The handshake consists of an exchange of HELLO messages in addition to
an exchange of device features (steps 2.1. and 3). The handshake is
completed by HandshakeManagerImpl. After receiving device features,
the HandshakeListenerImpl is notifed via the
onHanshakeSuccessfull() method. After this, the device features, node
id and connection state are stored in a ConnectionContext and the
method deviceConnected() of DeviceManagerImpl is called.

When deviceConnected() is called, it does the following:

	creates a new transaction chain (step 4.1)

	creates a new instance of DeviceContext (step 4.2.2)

	initializes the device context: the static context of device is
populated by calling createDeviceFeaturesForOF<version>() to
populate table, group, meter features and port descriptions (step
4.2.1 and 4.2.1.1)

	creates an instance of RequestContext for each type of feature

When the OpenFlow device responds to these requests (step 4.2.1.1) with
multipart replies (step 5) they are processed and stored to MD-SAL
operational datastore. The createDeviceFeaturesForOF<version>() method
returns a Future which is processed in the callback (step 5.1) (part
of initializeDeviceContext() in the deviceConnected() method) by
calling the method onDeviceCtxLevelUp() from StatisticsManager
(step 5.1.1).

The call to createDeviceFeaturesForOF<version>(): . creates a new
instance of StatisticsContextImpl (step 5.1.1.1).

	calls gatherDynamicStatistics() on that instance which returns a
Future which will produce a value when done

	this method calls methods to get dynamic data (flows, tables,
groups) from the device (step 5.1.1.2, 5.1.1.2.1, 5.1.1.2.1.1)

	if everything works, this data is also stored in the MD-SAL
operational datastore

If the Future is successful, it is processed (step 6.1.1) in a
callback in StatisticsManagerImpl which:

	schedules the next time to poll the device for statistics

	sets the device state to synchronized (step 6.1.1.2)

	calls onDeviceContextLevelUp() in RpcManagerImpl

The onDeviceContextLevelUp() call:

	creates a new instance of RequestContextImpl

	registers implementation for supported services

	calls onDeviceContextLevelUp() in DeviceManagerImpl (step
6.1.1.2.1.2) which causes the information about the new device be be
written to the MD-SAL operational datastore (step 6.1.1.2.2)

[image: Session establishment]
Session establishment

Handshake

The first thing that happens when an OpenFlow device connects to
OpenDaylight is that the OpenFlow plugin gathers basic information about
the device and establishes agreement on key facts like the version of
OpenFlow which will be used. This process is called the handshake.

The handshake starts with HELLO message which can be sent either by the
OpenFlow device or the OpenFlow plugin. After this, there are several
scenarios which can happen:

	if the first HELLO message contains a version bitmap, it is
possible to determine if there is a common version of OpenFlow or
not:

	if there is a single common version use it and the VERSION IS
SETTLED

	if there are more than one common versions, use the highest
(newest) protocol and the VERSION IS SETTLED

	if there are no common versions, the device is DISCONNECTED

	if the first HELLO message does not contain a version bitmap, then
STEB-BY-STEP negotiation is used

	if second (or more) HELLO message is received, then STEP-BY-STEP
negotiation is used

STEP-BY-STEP negotiation:

	if last version proposed by the OpenFlow plugin is the same as the
version received from the OpenFlow device, then the VERSION IS
SETTLED

	if the version received in the current HELLO message from the device
is the same as from previous then negotiation has failed and the
device is DISCONNECTED

	if the last version from the device is greater than the last version
proposed from the plugin, wait for the next HELLO message in the hope
that it will advertise support for a lower version

	if the last version from the device is is less than the last version
proposed from the plugin:

	propose the highest version the plugin supports that is less than
or equal to the version received from the device and wait for the
next HELLO message

	if if the plugin doesn’t support a lower version, the device is
DISCONNECTED

After selecting of version we can say that the VERSION IS SETTLED
and the OpenFlow plugin can ask device for its features. At this point
handshake ends.

[image: Handshake process]
Handshake process

Adding a Flow

There are two ways to add a flow in in the OpenFlow plugin: adding it to
the MD-SAL config datastore or calling an RPC. Both of these can either
be done using the native MD-SAL interfaces or using RESTCONF. This
discussion focuses on calling the RPC.

If user send flow via REST interface (step 1) it will cause that
invokeRpc() is called on RpcBroker. The RpcBroker then looks
for an appropriate implementation of the interface. In the case of the
OpenFlow plugin, this is the addFlow() method of
SalFlowServiceImpl (step 1.1). The same thing happens if the RPC is
called directly from the native MD-SAL interfaces.

The addFlow() method then

	calls the commitEntry() method (step 2) from the OpenFlow Protocol
Library which is responsible for sending the flow to the device

	creates a new RequestContext by calling createRequestContext()
(step 3)

	creates a callback to handle any events that happen because of
sending the flow to the device

The callback method is triggered when a barrier reply message (step 2.1)
is received from the device indicating that the flow was either
installed or an appropriate error message was sent. If the flow was
successfully sent to the device, the RPC result is set to success (step
5). // SalFlowService contains inside method addFlow() other
callback which caught notification from callback for barrier message.

At this point, no information pertaining to the flow has been added to
the MD-SAL operational datastore. That is accomplished by the periodic
gathering of statistics from OpenFlow devices.

The StatisticsContext for each given OpenFlow device periodically
polls it using gatherStatistics() of StatisticsGatheringUtil which
issues an OpenFlow OFPT_MULTIPART_REQUEST - OFPMP_FLOW. The response
to this request (step 7) is processed in StatisticsGatheringUtil
class where flow data is written to the MD-SAL operational datastore via
the writeToTransaction() method of DeviceContext.

[image: Add flow]
Add flow

Description of OpenFlow Plugin Modules

The OpenFlow plugin project contains a variety of OpenDaylight modules,
which are loaded using the configuration subsystem. This section
describes the YANG files used to model each module.

General model (interfaces) - openflow-plugin-cfg.yang.

	the provided module is defined (identity openflow-provider)

	and target implementation is assigned (...OpenflowPluginProvider)

Implementation model - openflow-plugin-cfg-impl.yang

	the implementation of module is defined
(identity openflow-provider-impl)

	class name of generated implementation is defined
(ConfigurableOpenFlowProvider)

	via augmentation the configuration of module is defined:

	this module requires instance of binding-aware-broker
(container binding-aware-broker)

	and list of openflow-switch-connection-provider (those are
provided by openflowjava, one plugin instance will orchestrate
multiple openflowjava modules)

Generating config and sal classes out of yangs

In order to involve suitable code generators, this is needed in pom:

<build> ...
 <plugins>
 <plugin>
 <groupId>org.opendaylight.yangtools</groupId>
 <artifactId>yang-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>generate-sources</goal>
 </goals>
 <configuration>
 <codeGenerators>
 <generator>
 <codeGeneratorClass>
 org.opendaylight.controller.config.yangjmxgenerator.plugin.JMXGenerator
 </codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/generated-sources/config</outputBaseDir>
 <additionalConfiguration>
 <namespaceToPackage1>
 urn:opendaylight:params:xml:ns:yang:controller==org.opendaylight.controller.config.yang
 </namespaceToPackage1>
 </additionalConfiguration>
 </generator>
 <generator>
 <codeGeneratorClass>
 org.opendaylight.yangtools.maven.sal.api.gen.plugin.CodeGeneratorImpl
 </codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/generated-sources/sal</outputBaseDir>
 </generator>
 <generator>
 <codeGeneratorClass>org.opendaylight.yangtools.yang.unified.doc.generator.maven.DocumentationGeneratorImpl</codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/site/models</outputBaseDir>
 </generator>
 </codeGenerators>
 <inspectDependencies>true</inspectDependencies>
 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>yang-jmx-generator-plugin</artifactId>
 <version>0.2.5-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.yangtools</groupId>
 <artifactId>maven-sal-api-gen-plugin</artifactId>
 <version>${yangtools.version}</version>
 <type>jar</type>
 </dependency>
 </dependencies>
 </plugin>
 ...

	JMX generator (target/generated-sources/config)

	sal CodeGeneratorImpl (target/generated-sources/sal)

Altering generated files

Those files were generated under src/main/java in package as referred in
yangs (if exist, generator will not overwrite them):

	ConfigurableOpenFlowProviderModuleFactory

here the instantiateModule methods are extended in order to
capture and inject osgi BundleContext into module, so it can be
injected into final implementation - OpenflowPluginProvider +
module.setBundleContext(bundleContext);

	ConfigurableOpenFlowProviderModule

here the createInstance method is extended in order to inject
osgi BundleContext into module implementation +
pluginProvider.setContext(bundleContext);

Configuration xml file

Configuration file contains

	required capabilities

	modules definitions from openflowjava

	modules definitions from openflowplugin

	modules definition

	openflow:switch:connection:provider:impl (listening on port 6633,
name=openflow-switch-connection-provider-legacy-impl)

	openflow:switch:connection:provider:impl (listening on port 6653,
name=openflow-switch-connection-provider-default-impl)

	openflow:common:config:impl (having 2 services (wrapping those 2
previous modules) and binding-broker-osgi-registry injected)

	provided services

	openflow-switch-connection-provider-default

	openflow-switch-connection-provider-legacy

	openflow-provider

<snapshot>
 <required-capabilities>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl?module=openflow-switch-connection-provider-impl&revision=2014-03-28</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider?module=openflow-switch-connection-provider&revision=2014-03-28</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl?module=openflow-provider-impl&revision=2014-03-26</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:common:config?module=openflow-provider&revision=2014-03-26</capability>
 </required-capabilities>

 <configuration>

 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-default-impl</name>
 <port>6633</port>
 <switch-idle-timeout>15000</switch-idle-timeout>
 </module>
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-legacy-impl</name>
 <port>6653</port>
 <switch-idle-timeout>15000</switch-idle-timeout>
 </module>

 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl">prefix:openflow-provider-impl</type>
 <name>openflow-provider-impl</name>

 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-default</name>
 </openflow-switch-connection-provider>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-legacy</name>
 </openflow-switch-connection-provider>

 <binding-aware-broker>
 <type xmlns:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-aware-broker>
 </module>
 </modules>

 <services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">prefix:openflow-switch-connection-provider</type>
 <instance>
 <name>openflow-switch-connection-provider-default</name>
 <provider>/modules/module[type='openflow-switch-connection-provider-impl'][name='openflow-switch-connection-provider-default-impl']</provider>
 </instance>
 <instance>
 <name>openflow-switch-connection-provider-legacy</name>
 <provider>/modules/module[type='openflow-switch-connection-provider-impl'][name='openflow-switch-connection-provider-legacy-impl']</provider>
 </instance>
 </service>

 <service>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:common:config">prefix:openflow-provider</type>
 <instance>
 <name>openflow-provider</name>
 <provider>/modules/module[type='openflow-provider-impl'][name='openflow-provider-impl']</provider>
 </instance>
 </service>
 </services>

 </configuration>
</snapshot>

API changes

In order to provide multiple instances of modules from openflowjava
there is an API change. Previously OFPlugin got access to
SwitchConnectionProvider exposed by OFJava and injected collection of
configurations so that for each configuration new instance of tcp
listening server was created. Now those configurations are provided by
configSubsystem and configured modules (wrapping the original
SwitchConnectionProvider) are injected into OFPlugin (wrapping
SwitchConnectionHandler).

Providing config file (IT, local distribution/base, integration/distributions/base)

openflowplugin-it

Here the whole configuration is contained in one file (controller.xml).
Required entries needed in order to startup and wire OEPlugin + OFJava
are simply added there.

OFPlugin/distribution/base

Here new config file has been added
(src/main/resources/configuration/initial/42-openflow-protocol-impl.xml)
and is being copied to config/initial subfolder of build.

integration/distributions/build

In order to push the actual config into config/initial subfolder of
distributions/base in integration project there was a new artifact in
OFPlugin created - openflowplugin-controller-config, containing only
the config xml file under src/main/resources. Another change was
committed into integration project. During build this config xml is
being extracted and copied to the final folder in order to be accessible
during controller run.

Internal message statistics API

To aid in testing and diagnosis, the OpenFlow plugin provides
information about the number and rate of different internal events.

The implementation does two things: collects event counts and exposes
counts. Event counts are grouped by message type, e.g.,
PacketInMessage, and checkpoint, e.g.,
TO_SWITCH_ENQUEUED_SUCCESS. Once gathered, the results are logged
as well as being exposed using OSGi command line (deprecated) and JMX.

Collect

Each message is counted as it passes through various processing
checkpoints. The following checkpoints are defined as a Java enum and
tracked:

/**
 * statistic groups overall in OFPlugin
 */
enum STATISTIC_GROUP {
 /** message from switch, enqueued for processing */
 FROM_SWITCH_ENQUEUED,
 /** message from switch translated successfully - source */
 FROM_SWITCH_TRANSLATE_IN_SUCCESS,
 /** message from switch translated successfully - target */
 FROM_SWITCH_TRANSLATE_OUT_SUCCESS,
 /** message from switch where translation failed - source */
 FROM_SWITCH_TRANSLATE_SRC_FAILURE,
 /** message from switch finally published into MD-SAL */
 FROM_SWITCH_PUBLISHED_SUCCESS,
 /** message from switch - publishing into MD-SAL failed */
 FROM_SWITCH_PUBLISHED_FAILURE,

 /** message from MD-SAL to switch via RPC enqueued */
 TO_SWITCH_ENQUEUED_SUCCESS,
 /** message from MD-SAL to switch via RPC NOT enqueued */
 TO_SWITCH_ENQUEUED_FAILED,
 /** message from MD-SAL to switch - sent to OFJava successfully */
 TO_SWITCH_SUBMITTED_SUCCESS,
 /** message from MD-SAL to switch - sent to OFJava but failed*/
 TO_SWITCH_SUBMITTED_FAILURE
}

When a message passes through any of those checkpoints then counter
assigned to corresponding checkpoint and message is incremented by 1.

Expose statistics

As described above, there are three ways to access the statistics:

	OSGi command line (this is considered deprecated)

osgi> dumpMsgCount

	OpenDaylight logging console (statistics are logged here every 10
seconds)

required logback settings :
<logger name="org.opendaylight.openflowplugin.openflow.md.queue.MessageSpyCounterImpl" level="DEBUG"\/>

	JMX (via JConsole)

start OpenFlow plugin with the -jmx parameter

start JConsole by running jconsole

the JConsole MBeans tab should contain
org.opendaylight.controller

RuntimeBean has a msg-spy-service-impl

Operations provides makeMsgStatistics report functionality

Example results

[image: OFplugin Debug stats.png]
OFplugin Debug stats.png

DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[PortStatusMessage] -> +0 | 1
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[MultipartReplyMessage] -> +24 | 81
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[PacketInMessage] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS: MSG[PortStatusMessage] -> +0 | 1
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS: MSG[MultipartReplyMessage] -> +24 | 81
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS: MSG[PacketInMessage] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[QueueStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[NodeUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[NodeConnectorStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[GroupDescStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[FlowsStatisticsUpdate] -> +3 | 19
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[PacketReceived] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[MeterFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[GroupStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[GroupFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[MeterConfigStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[MeterStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[NodeConnectorUpdated] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[FlowTableStatisticsUpdate] -> +3 | 8
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_SRC_FAILURE: no activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[QueueStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[NodeUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[NodeConnectorStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[GroupDescStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[FlowsStatisticsUpdate] -> +3 | 19
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[PacketReceived] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[MeterFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[GroupStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[GroupFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[MeterConfigStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[MeterStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[NodeConnectorUpdated] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[FlowTableStatisticsUpdate] -> +3 | 8
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_FAILURE: no activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_ENQUEUED_SUCCESS: MSG[AddFlowInput] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_ENQUEUED_FAILED: no activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_SUBMITTED_SUCCESS: MSG[AddFlowInput] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_SUBMITTED_FAILURE: no activity detected

Application: Forwarding Rules Synchronizer

Basics

Description

Forwarding Rules Synchronizer (FRS) is a newer version of Forwarding
Rules Manager (FRM). It was created to solve most shortcomings of FRM.
FRS solving errors with retry mechanism. Sending barrier if needed.
Using one service for flows, groups and meters. And it has less changes
requests send to device since calculating difference and using
compression queue.

It is located in the Java package:

package org.opendaylight.openflowplugin.applications.frsync;

Listeners

	1x config - FlowCapableNode

	1x operational - Node

System of work

	one listener in config datastore waiting for changes

	update cache

	skip event if operational not present for node

	send syncup entry to reactor for synchronization

	node added: after part of modification and whole operational
snapshot

	node updated: after and before part of modification

	node deleted: null and before part of modification

	one listener in operational datastore waiting for changes

	update cache

	on device connected

	register for cluster services

	on device disconnected remove from cache

	remove from cache

	unregister for cluster services

	if registered for reconciliation

	do reconciliation through syncup (only when config present)

	reactor (provides syncup w/decorators assembled in this order)

	Cluster decorator - skip action if not master for device

	FutureZip decorator (FutureZip extends Future decorator)

	Future - run delegate syncup in future - submit task to
executor service

	FutureZip - provides state compression - compress optimized
config delta if waiting for execution with new one

	Guard decorator - per device level locking

	Retry decorator - register for reconciliation if syncup failed

	Reactor impl - calculate diff from after/before parts of syncup
entry and execute

Strategy

In the old FRM uses an incremental strategy with all changes made one
by one, where FRS uses a flat batch system with changes made in bulk. It
uses one service SalFlatBatchService instead of three (flow, group,
meter).

Boron release

FRS is used in Boron as separate feature and it is not loaded by any
other feature. It has to be run separately.

odl-openflowplugin-app-forwardingrules-sync

FRS additions

Retry mechanism

	is started when change request to device return as failed (register
for reconcile)

	wait for next consistent operational and do reconciliation with
actual config (not only diff)

ZipQueue

	only the diff (before/after) between last config changes is sent to
device

	when there are more config changes for device in a row waiting to be
processed they are compressed into one entry (after is still replaced
with the latest)

Cluster-aware

	FRS is cluster aware using ClusteringSingletonServiceProvider from
the MD-SAL

	on mastership change reconciliation is done (register for reconcile)

SalFlatBatchService

FRS uses service with implemented barrier waiting logic between
dependent objects

Service: SalFlatBatchService

Basics

SalFlatBatchService was created along forwardingrules-sync application
as the service that should application used by default. This service uses
only one input with bag of flow/group/meter objects and their common
add/update/remove action. So you practically send only one input (of specific
bags) to this service.

	interface: org.opendaylight.yang.gen.v1.urn.opendaylight.flat.batch.service.rev160321.SalFlatBatchService

	implementation: org.opendaylight.openflowplugin.impl.services.SalFlatBatchServiceImpl

	method: processFlatBatch(input)

	input: org.opendaylight.yang.gen.v1.urn.opendaylight.flat.batch.service.rev160321.ProcessFlatBatchInput

Usage benefits

	possibility to use only one input bag with particular failure analysis preserved

	automatic barrier decision (chain+wait)

	less RPC routing in cluster environment (since one call encapsulates all others)

ProcessFlatBatchInput

Input for SalFlatBatchService (ProcessFlatBatchInput object) consists of:

	node - NodeRef

	batch steps - List<Batch> - defined action + bag of objects + order for failures analysis

	BatchChoice - yang-modeled action choice (e.g. FlatBatchAddFlowCase) containing batch bag of objects (e.g. flows to be added)

	BatchOrder - (integer) order of batch step (should be incremented by single action)

	exitOnFirstError - boolean flag

Workflow

	prepare list of steps based on input

	mark barriers in steps where needed

	prepare particular F/G/M-batch service calls from Flat-batch steps

	F/G/M-batch services encapsulate bulk of single service calls

	they actually chain barrier after processing all single calls if actual step is marked as barrier-needed

	chain futures and start executing

	start all actions that can be run simultaneously (chain all on one starting point)

	in case there is a step marked as barrier-needed

	wait for all fired jobs up to one with barrier

	merge rpc results (status, errors, batch failures) into single one

	the latest job with barrier is new starting point for chaining

Services encapsulation

	SalFlatBatchService

	SalFlowBatchService

	SalFlowService

	SalGroupBatchService

	SalGroupService

	SalMeterBatchService

	SalMeterService

Barrier decision

	decide on actual step and all previous steps since the latest barrier

	if condition in table below is satisfied the latest step before actual is marked as barrier-needed

	actual step

	previous steps contain

	FLOW_ADD or FLOW_UPDATE

	GROUP_ADD or METER_ADD

	GROUP_ADD

	GROUP_ADD or GROUP_UPDATE

	GROUP_REMOVE

	FLOW_UPDATE or FLOW_REMOVE or GROUP_UPDATE or GROUP_REMOVE

	METER_REMOVE

	FLOW_UPDATE or FLOW_REMOVE

Error handling

There is flag in ProcessFlatBatchInput to stop process on the first error.

	true - if partial step is not successful stop whole processing

	false (default) - try to process all steps regardless partial results

If error occurs in any of partial steps upper FlatBatchService call will return as unsuccessful in both cases.
However every partial error is attached to general flat batch result along with BatchFailure (contains BatchOrder
and BatchItemIdChoice to identify failed step).

Cluster singleton approach in plugin

Basics

Description

The existing OpenDaylight service deployment model assumes symmetric
clusters, where all services are activated on all nodes in the cluster.
However, many services require that there is a single active service
instance per cluster. We call such services singleton services. The
Entity Ownership Service (EOS) represents the base Leadership choice for
one Entity instance. Every Cluster Singleton service type must have
its own Entity and every Cluster Singleton service instance must
have its own Entity Candidate. Every registered Entity Candidate should
be notified about its actual role. All this “work” is done by MD-SAL so
the Openflowplugin need “only” to register as service in
SingletonClusteringServiceProvider given by MD-SAL.

Change against using EOS service listener

In this new clustering singleton approach plugin uses API from the
MD-SAL project: SingletonClusteringService which comes with three
methods.

instantiateServiceInstance()
closeServiceInstance()
getIdentifier()

This service has to be registered to a
SingletonClusteringServiceProvider from MD-SAL which take care if
mastership is changed in cluster environment.

First method in SingletonClusteringService is being called when the
cluster node becomes a MASTER. Second is being called when status
changes to SLAVE or device is disconnected from cluster. Last method
plugins returns NodeId as ServiceGroupIdentifier Startup after device is
connected

On the start up the plugin we need to initialize first four managers for
each working area providing information and services

	Device manager

	RPC manager

	Role manager

	Statistics manager

After connection the device the listener Device manager get the event
and start up to creating the context for this connection. Startup after
device connection

Services are managed by SinlgetonClusteringServiceProvider from MD-SAL
project. So in startup we simply create a instance of LifecycleService
and register all contexts into it.

Role change

Plugin is no longer registered as Entity Ownership Service (EOS)
listener therefore does not need to and cannot respond on EOS ownership
changes.

Service start

Services start asynchronously but the start is managed by
LifecycleService. If something goes wrong LifecycleService stop starting
services in context and this speeds up the reconnect process. But the
services haven’t changed and plugin need to start all this:

	Activating transaction chain manager

	Initial gathering of device statistics

	Initial submit to DS

	Sending role MASTER to device

	RPC services registration

	Statistics gathering start

Service stop

If closeServiceInstance occurred plugin just simply try to store all
unsubmitted transactions and close the transaction chain manager, stop
RPC services, stop Statistics gathering and after that all unregister
txEntity from EOS.

Yang models and API

	Model

	Openflow basic types

	opendaylight-table-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-table-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-action-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-action-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-flow-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-flow-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-meter-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-meter-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-group-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-group-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-match-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-match-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-port-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-port-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-queue-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-queue-types.yang;a=blob;hb=refs/heads/stable/boron]

	Openflow services

	sal-table.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-table.yang;a=blob;hb=refs/heads/stable/boron]

	sal-group.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-group.yang;a=blob;hb=refs/heads/stable/boron]

	sal-queue.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-queue.yang;a=blob;hb=refs/heads/stable/boron]

	flow-errors.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-errors.yang;a=blob;hb=refs/heads/stable/boron]

	flow-capable-transaction.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-capable-transaction.yang;a=blob;hb=refs/heads/stable/boron]

	sal-flow.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-flow.yang;a=blob;hb=refs/heads/stable/boron]

	sal-meter.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-meter.yang;a=blob;hb=refs/heads/stable/boron]

	flow-topology-discovery.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-topology-discovery.yang;a=blob;hb=refs/heads/stable/boron]

	node-errors.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/node-errors.yang;a=blob;hb=refs/heads/stable/boron]

	node-config.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/node-config.yang;a=blob;hb=refs/heads/stable/boron]

	sal-echo.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-echo.yang;a=blob;hb=refs/heads/stable/boron]

	sal-port.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-port.yang;a=blob;hb=refs/heads/stable/boron]

	packet-processing.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/packet-processing.yang;a=blob;hb=refs/heads/stable/boron]

	flow-node-inventory.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-node-inventory.yang;a=blob;hb=refs/heads/stable/boron]

	Openflow statistics

	opendaylight-queue-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-queue-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-flow-table-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-flow-table-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-port-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-port-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-statistics-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-statistics-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-group-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-group-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-flow-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-flow-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-meter-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-meter-statistics.yang;a=blob;hb=refs/heads/stable/boron]

Karaf feature tree

[image: Openflow plugin karaf feature tree]
Openflow plugin karaf feature tree

Short
HOWTO [https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:FeatureTreeHowto]
create such a tree.

Wiring up notifications

Introduction

We need to translate OpenFlow messages coming up from the OpenFlow
Protocol Library into
MD-SAL Notification objects and then publish them to the MD-SAL.

Mechanics

	Create a Translator class

	Register the Translator

	Register the notificationPopListener to handle your Notification
Objects

Create a Translator class

You can see an example in
PacketInTranslator.java [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/translator/PacketInTranslator.java;hb=refs/heads/stable/boron].

First, simply create the class

public class PacketInTranslator implements IMDMessageTranslator<OfHeader, List<DataObject>> {

Then implement the translate function:

public class PacketInTranslator implements IMDMessageTranslator<OfHeader, List<DataObject>> {

 protected static final Logger LOG = LoggerFactory
 .getLogger(PacketInTranslator.class);
 @Override
 public PacketReceived translate(SwitchConnectionDistinguisher cookie,
 SessionContext sc, OfHeader msg) {
 ...
 }

Make sure to check that you are dealing with the expected type and cast
it:

if(msg instanceof PacketInMessage) {
 PacketInMessage message = (PacketInMessage)msg;
 List<DataObject> list = new CopyOnWriteArrayList<DataObject>();

Do your transation work and return

PacketReceived pktInEvent = pktInBuilder.build();
list.add(pktInEvent);
return list;

Register your Translator Class

Next you need to go to
MDController.java [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/MDController.java;hb=refs/heads/stable/boron]
and in init() add register your Translator:

public void init() {
 LOG.debug("Initializing!");
 messageTranslators = new ConcurrentHashMap<>();
 popListeners = new ConcurrentHashMap<>();
 //TODO: move registration to factory
 addMessageTranslator(ErrorMessage.class, OF10, new ErrorTranslator());
 addMessageTranslator(ErrorMessage.class, OF13, new ErrorTranslator());
 addMessageTranslator(PacketInMessage.class,OF10, new PacketInTranslator());
 addMessageTranslator(PacketInMessage.class,OF13, new PacketInTranslator());

Notice that there is a separate registration for each of OpenFlow 1.0
and OpenFlow 1.3. Basically, you indicate the type of OpenFlow Protocol
Library message you wish to translate for, the OpenFlow version, and an
instance of your Translator.

Register your MD-SAL Message for Notification to the MD-SAL

Now, also in MDController.init() register to have the
notificationPopListener handle your MD-SAL Message:

addMessagePopListener(PacketReceived.class, new NotificationPopListener<DataObject>());

You are done

That’s all there is to it. Now when a message comes up from the OpenFlow
Protocol Library, it will be translated and published to the MD-SAL.

Message Order Preservation

While the Helium release of OpenFlow Plugin relied on queues to ensure
messages were delivered in order, subsequent releases instead ensure
that all the messages from a given device are delivered using the same
thread and thus message order is guaranteed without queues. The OpenFlow
plugin allocates a number of threads equal to twice the number of
processor cores on machine it is run, e.g., 8 threads if the machine has
4 cores.

Note

While each device is assigned to one thread, multiple devices can be
assigned to the same thread.

OpFlex agent-ovs Developer Guide

Overview

agent-ovs is a policy agent that works with OVS to enforce a group-based
policy networking model with locally attached virtual machines or
containers. The policy agent is designed to work well with orchestration
tools like OpenStack.

agent-ovs Architecture

agent-ovs uses libopflex to communicate with an OpFlex-based policy
repository to enforce policy on network endpoints attached to OVS by an
orchestration system.

The key components are:

	Agent - coordinates startup and configuration

	Renderers - Renderers are responsible for rendering policy. This is a
very general mechanism but the currently-implemented renderer is the
stitched-mode renderer that can work along with with hardware fabrics
such as ACI that support policy enforcement.

	EndpointManager - Keep track of network endpoints and declare them to
the endpoint repository

	PolicyManager - Keep track of and index policies

	IntFlowManager - render policies to OVS integration bridge

	AccessFlowManager - render policies to OVS access bridge

API Reference Documentation

Internal API documentation can be found by in doc/html/index.html in
any build.

OpFlex genie Developer Guide

Overview

Genie is a tool for code generation from a model. It supports generating
C++ and Java code. C++ can be generated suitable for use with libopflex.
C++ and Java can be generated as a plain set of objects.

Group-based Policy Model

The group-based policy model is included with the genie tool and can be
found under the MODEL directory. By running mvn exec:java, libmodelgbp
will be generated as a library project that, when built and installed,
will work with libopflex. This model is used by the OVS agent.

API Reference Documentation

Complete API documentation for the generated libmodelgbp can be found
in doc/html/index.html in any build

OpFlex libopflex Developer Guide

Overview

The OpFlex framework allows you to develop agents that can communicate
using the OpFlex protocol and act as a policy element in an OpFlex-based
distributed control system. The OpFlex architecture provides a
distributed control system based on a declarative policy information
model. The policies are defined at a logically centralized policy
repository and enforced within a set of distributed policy elements. The
policy repository communicates with the subordinate policy elements
using the OpFlex control protocol. This protocol allows for
bidirectional communication of policy, events, statistics, and faults.

Rather than simply providing access to the OpFlex protocol, this
framework allows you to directly manipulate a management information
tree containing a hierarchy of managed objects. This tree is kept in
sync as needed with other policy elements in the system, and you are
automatically notified when important changes to the model occur.
Additionally, we can ensure that only those managed objects that are
important to the local policy element are synchronized locally.

Object Model

Interactions with the OpFlex framework happen through the management
information tree. This is a tree of managed objects defined by an object
model specific to your application. There are a few important major
category of objects that can appear in the model.

	First, there is the policy object. A policy object represents some
data related to a policy that describes a user intent for how the
system should behave. A policy object is stored in the policy
repository which is the source of “truth” for this object.

	Second, there is an endpoint object. A endpoint represents an entity
in the system to which we want to apply policy, which could be a
network interface, a storage array, or other relevent policy
endpoint. Endpoints are discovered and reported by policy elements
locally, and are synchronized into the endpoint repository. The
originating policy element is the source of truth for the endpoints
it discovers. Policy elements can retrieve information about
endpoints discovered by other policy elements by resolving endpoints
from the endpoint repository.

	Third, there is the observable object. An observable object
represents some state related to the operational status or health of
the policy element. Observable objects will be reported to the
observer.

	Finally, there is the local-only object. This is the simplest object
because it exists only local to a particular policy element. These
objects can be used to store state specific to that policy element,
or as helpers to resolve other objects. Read on to learn more.

You can use the genie tool that is included with the framework to
produce your application model along with a set of generated accessor
classes that can work with this framework library. You should refer to
the documentation that accompanies the genie tool for information on how
to use to to generate your object model. Later in this guide, we’ll go
through examples of how to use the generated managed object accessor
classes.

Programming by Side Effect

When developing software on the OpFlex framework, you’ll need to think
in a slightly different way. Rather than calling an API function that
would perform some specific action, you’ll need to write a managed
object to the managed object database. Writing that object to the store
will trigger the side effect of performing the action that you want.

For example, a policy element will need to have a component responsible
for discovering policy endpoints. When it discovers a policy endpoint,
it would write an endpoint object into the managed object database. That
endpoint object will contain a reference to policy that is relevant to
the endpoint object. This will trigger a whole cascade of events. First,
the framework will notice that an endpoint object has been created and
it will write it to the endpoint repository. Second, the framework to
will attempt to resolve the unresolved reference to the relevent policy
object. There might be a whole chain of policy resolutions that will be
automatically performed to download all the relevent policy until there
are no longer any dangling references.

As long as there is a locally-created object in the system with a
reference to that policy, the framework will continually ensure that the
policy and any transitive policies are kept up to date. The policy
element can subscribe to updates to these policy classes that will be
invoked either the first time the policy is resolved or any time the
policy changes.

A consequence of this design is that the managed object database can be
temporarily in an inconsistent state with unresolved dangling
references. Eventually, however, the inconsistency will be fully
resolved. The policy element must be able to cleanly handle
partially-resolved or inconsistent state and eventually reach the
correct state as it receives these update notifications. Note that, in
the OpFlex architecture, when there is no policy that specifically
allows a particular action, that action must be prevented.

Let’s cover one slightly more complex example. If a policy element needs
to discover information about an endpoint that is not local to that
policy element, it will need to retrieve that information from the
endpoint repository. However, just as there is no API call to retrieve a
policy object from the policy repository, there is no API call to
retrieve an endpoint from the endpoint repository.

To get this information, the policy element needs to create a local-only
object that references the endpoint. Once it creates this local-only
object, if the endpoint is not already resolved, the framework will
notice the dangling reference and automatically resolve the endpoint
from the endpoint respository. When the endpoint resolution completes,
the framework deliver an update notification to the policy element. The
policy element will continue to receive any updates related to that
endpoint until the policy element remove the local-only reference to the
object. Once this occurs, the framework can garbage-collect any
unreferenced objects.

Threading and Ownership

The OpFlex framework uses a somewhat unique threading model. Each
managed object in the system belongs to a particular owner. An owner
would typically be a single thread that is reponsible for all updates to
objects with that owner. Though anything can read the state of a managed
object, only the owner of a managed object is permitted to write to it.
Though this is not strictly required for correctness, the performance of
the system wil be best if you ensure that only one thread at a time is
writing to objects with a particular owner.

Change notifications are delivered in a serialized fashion by a single
thread. Blocking this thread from a notification callback will stall
delivery of all notifications. It is therefore best practice to ensure
that you do not block or perform long-running operations from a
notification callback.

Key APIs and Interfaces

Basic Usage and Initialization

The primary interface point into the framework is
opflex::ofcore::OFFramework. You can choose to instantiate your own copy
of the framework, or you can use the static default instance.

Before you can use the framework, you must initialize it by installing
your model metadata. The model metadata is accessible through the
generated model library. In this case, it assumes your model is called
“mymodel”:

#include <opflex/ofcore/OFFramework.h>
#include <mymodel/metadata/metadata.hpp>
// ...
using opflex::ofcore::OFFramework;
OFFramework::defaultInstance().setModel(mymodel::getMetadata());

The other critical piece of information required for initialization is
the OpFlex identity information. The identity information is required in
order to successfully connect to OpFlex peers. In OpFlex, each component
has a unique name within its policy domain, and each policy domain is
identified by a globally unique domain name. You can set this identity
information by calling:

OFFramework::defaultInstance()
 .setOpflexIdentity("[component name]", "[unique domain]");

You can then start the framework simply by calling:

OFFramework::defaultInstance().start();

Finally, you can add peers after the framework is started by calling the
opflex::ofcore::OFFramework::addPeer method:

OFFramework::defaultInstance().addPeer("192.168.1.5", 1234);

When connecting to the peer, that peer may provide an additional list of
peers to connect to, which will be automatically added as peers. If the
peer does not include itself in the list, then the framework will
disconnect from that peer and add the peers in the list. In this way, it
is possible to automatically bootstrap the correct set of peers using a
known hostname or IP address or a known, fixed anycast IP address.

To cleanly shut down, you can call:

OFFramework::defaultInstance().stop();

Working with Data in the Tree

Reading from the Tree

You can access data in the managed tree using the generated accessor
classes. The details of exactly which classes you’ll use will depend on
the model you’re using, but let’s assume that we have a simple model
called “simple” with the following classes:

	root - The root node. The URI for the root node is “/”

	foo - A policy object, and a child of root, with a scalar string
property called “bar”, and a unsigned 64-bit integer property called
baz. The bar property is the naming property for foo. The URI for a
foo object would be “/foo/[value of bar]/”

	fooref - A local-only child of root, with a reference to a foo, and a
scalar string property called “bar”. The bar property is the naming
property for foo. The URI for a fooref object would be
“/fooref/[value of bar]/”

In this example, we’ll have a generated class for each of the objects.
There are two main ways to get access to an object in the tree.

First, we can get instantiate an accessor class to any node in the tree
by calling one of its static resolve functions. The resolve functions
can take either an already-built URI that represents the object, or you
can call the version that will locate the object by its naming
properties.

Second, we can access the object also from its parent object using the
appropriate child resolver member functions.

However we read it, the object we get back is an immutable view into the
object it references. The properties set locally on that object will not
change even though the underlying object may have been updated in the
store. Note, however, that its children can change between when you
first retrieve the object and when you resolve any children.

Another thing that is critical to note again is that when you attempt to
resolve an object, you can get back nothing, even if the object actually
does exist on another OpFlex node. You must ensure that some object in
the managed object database references the remote managed object you
want before it will be visible to you.

To get access to the root node using the default framework instance, we
can simply call:

using boost::shared_ptr;
using boost::optional;
optional<shared_ptr<simple::root> > r(simple::root::resolve());

Note that whenever we can a resolve function, we get back our data in
the form of an optional shared pointer to the object instance. If the
node does not exist, then the optional will be set to boost::none. Note
that if you dereference an optional that has not been set, you’ll
trigger an assert, so you must check the return as follows:

if (!r) {
 // handle missing object
}

Now let’s get a child node of the root in three different ways:

// Get foo1 by constructing its URI from the root
optional<shared_ptr<simple::foo> > foo1(simple::foo::resolve("test"));
// get foo1 by constructing its URI relative to its parent
foo1 = r.get()->resolveFoo("test");
// get foo1 by manually building its URI
foo1 = simple::foo::resolve(opflex::modb::URIBuilder()
 .addElement("foo")
 .addElement("test")
 .build());

All three of these calls will give us the same object, which is the
“foo” object located at “/foo/test/”.

The foo class has a single string property called “bar”. We can easily
access it as follows:

const std::string& barv = foo1.getBar();

Writing to the Tree

Writing to the tree is nearly as easy as reading from it. The key
concept to understand is the mutator object. If you want to make changes
to the tree, you must allocate a mutator object. The mutator will
register itself in some thread-local storage in the framework instance
you’re using. The mutator is specific to a single “owner” for the data,
so you can only make changes to data associated with that owner.

Whenever you modify one of the accessor classes, the change is actually
forwarded to the currently-active mutator. You won’t see any of the
changes you make until you call the commit member function on the
mutator. When you do that, all the changes you made are written into the
store.

Once the changes are written into the store, you will need to call the
appropriate resolve function again to see the changes.

Allocating a mutator is simple. To create a mutator for the default
framework instance associated with the owner “owner1”, just allocate the
mutator on the stack. Be sure to call commit() before it goes out of
scope or you’ll lose your changes.

{
 opflex::modb::Mutator mutator("owner1");
 // make changes here
 mutator.commit();
}

Note that if an exception is thrown while making changes but before
committing, the mutator will go out of scope and the changes will be
discarded.

To create a new node, you must call the appropriate add[Child] member
function on its parent. This function takes parameters for each of the
naming properties for the object:

shared_ptr<simple::foo> newfoo(root->addFoo("test"));

This will return a shared pointer to a new foo object that has been
registered in the active mutator but not yet committed. The “bar” naming
property will be set automatically, but if you want to set the “baz”
property now, you can do so by calling:

newfoo->setBaz(42);

Note that creating the root node requires a call to the special static
class method createRootElement:

shared_ptr<simple::root> newroot(simple::root::createRootElement());

Here’s a complete example that ties this all together:

{
 opflex::modb::Mutator mutator("owner1");
 shared_ptr<simple::root> newroot(simple::root::createRootElement());
 shared_ptr<simple::root> newfoo(newroot->addFoo("test"));
 newfoo->setBaz(42);

 mutator.commit();
}

Update Notifications

When using the OpFlex framework, you’re likely to find that most of your
time is spend responding to changes in the managed object database. To
get these notifications, you’re going to need to register some number of
listeners.

You can register an object listener to see all changes related to a
particular class by calling a static function for that class. You’ll
then get notifications whenever any object in that class is added,
updated, or deleted. The listener should queue a task to read the new
state and perform appropriate processing. If this function blocks or
peforms a long-running operation, then the dispatching of update
notifications will be stalled, but there will not be any other
deleterious effects.

If multiple changes happen to the same URI, then at least one
notification will be delivered but some events may be consolidated.

The update you get will tell you the URI and the Class ID of the changed
object. The class ID is a unique ID for each class. When you get the
update, you’ll need to call the appropriate resolve function to retrieve
the new value.

You’ll need to create your own object listener derived from
opflex::modb::ObjectListener:

class MyListener : public ObjectListener {
public:
 MyListener() { }
 virtual void objectUpdated(class_id_t class_id, const URI& uri) {
 // Your handler here
 }
};

To register your listener with the default framework instance, just call
the appropriate class static method:

MyListener listener;
simple::foo::registerListener(&listener);
// main loop
simple::foo::unregisterListener(&listener);

The listener will now recieve notifications whenever any foo or any
children of any foo object changes.

Note that you must ensure that you unregister your listeners before
deallocating them.

API Reference Documentation

Complete API documentation can be found by in doc/html/index.html in
any build.

OVSDB Developer Guide

OVSDB Integration

The Open vSwitch database (OVSDB) Southbound Plugin component for
OpenDaylight implements the OVSDB RFC
7047 [https://tools.ietf.org/html/rfc7047] management protocol that
allows the southbound configuration of switches that support OVSDB. The
component comprises a library and a plugin. The OVSDB protocol uses
JSON-RPC calls to manipulate a physical or virtual switch that supports
OVSDB. Many vendors support OVSDB on various hardware platforms. The
OpenDaylight controller uses the library project to interact with an OVS
instance.

Note

Read the OVSDB User Guide before you begin development.

OpenDaylight OVSDB southbound plugin architecture and design

OpenVSwitch (OVS) is generally accepted as the unofficial standard for
Virtual Switching in the Open hypervisor based solutions. Every other
Virtual Switch implementation, properietery or otherwise, uses OVS in
some form. For information on OVS, see Open
vSwitch [http://openvswitch.org/].

In Software Defined Networking (SDN), controllers and applications
interact using two channels: OpenFlow and OVSDB. OpenFlow addresses the
forwarding-side of the OVS functionality. OVSDB, on the other hand,
addresses the management-plane. A simple and concise overview of Open
Virtual Switch Database(OVSDB) is available at:
http://networkstatic.net/getting-started-ovsdb/

Overview of OpenDaylight Controller architecture

The OpenDaylight controller platform is designed as a highly modular and
plugin based middleware that serves various network applications in a
variety of use-cases. The modularity is achieved through the Java OSGi
framework. The controller consists of many Java OSGi bundles that work
together to provide the required controller functionalities.

The bundles can be placed in the following broad categories:

	Network Service Functional Modules (Examples: Topology Manager,
Inventory Manager, Forwarding Rules Manager,and others)

	NorthBound API Modules (Examples: Topology APIs, Bridge Domain APIs,
Neutron APIs, Connection Manager APIs, and others)

	Service Abstraction Layer(SAL)- (Inventory Services, DataPath
Services, Topology Services, Network Config, and others)

	SouthBound Plugins (OpenFlow Plugin, OVSDB Plugin, OpenDove Plugin,
and others)

	Application Modules (Simple Forwarding, Load Balancer)

Each layer of the Controller architecture performs specified tasks, and
hence aids in modularity. While the Northbound API layer addresses all
the REST-Based application needs, the SAL layer takes care of
abstracting the SouthBound plugin protocol specifics from the Network
Service functions.

Each of the SouthBound Plugins serves a different purpose, with some
overlapping. For example, the OpenFlow plugin might serve the Data-Plane
needs of an OVS element, while the OVSDB plugin can serve the management
plane needs of the same OVS element. As the OpenFlow Plugin talks
OpenFlow protocol with the OVS element, the OVSDB plugin will use OVSDB
schema over JSON-RPC transport.

OVSDB southbound plugin

The Open vSwitch Database Management
Protocol-draft-02 [http://tools.ietf.org/html/draft-pfaff-ovsdb-proto-02]
and Open vSwitch
Manual [http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf] provide
theoretical information about OVSDB. The OVSDB protocol draft is
generic enough to lay the groundwork on Wire Protocol and Database
Operations, and the OVS Manual currently covers 13 tables leaving
space for future OVS expansion, and vendor expansions on proprietary
implementations. The OVSDB Protocol is a database records transport
protocol using JSON RPC1.0. For information on the protocol structure,
see Getting Started with
OVSDB [http://networkstatic.net/getting-started-ovsdb/]. The
OpenDaylight OVSDB southbound plugin consists of one or more OSGi
bundles addressing the following services or functionalities:

	Connection Service - Based on Netty

	Network Configuration Service

	Bidirectional JSON-RPC Library

	OVSDB Schema definitions and Object mappers

	Overlay Tunnel management

	OVSDB to OpenFlow plugin mapping service

	Inventory Service

Connection service

One of the primary services that most southbound plugins provide in
OpenDaylight a Connection Service. The service provides protocol
specific connectivity to network elements, and supports the
connectivity management services as specified by the OpenDaylight
Connection Manager. The connectivity services include:

	Connection to a specified element given IP-address, L4-port, and
other connectivity options (such as authentication,…)

	Disconnection from an element

	Handling Cluster Mode change notifications to support the
OpenDaylight Clustering/High-Availability feature

Network Configuration Service

The goal of the OpenDaylight Network Configuration services is to
provide complete management plane solutions needed to successfully
install, configure, and deploy the various SDN based network services.
These are generic services which can be implemented in part or full by
any south-bound protocol plugin. The south-bound plugins can be either
of the following:

	The new network virtualization protocol plugins such as OVSDB
JSON-RPC

	The traditional management protocols such as SNMP or any others in
the middle.

The above definition, and more information on Network Configuration
Services, is available at :
https://wiki.opendaylight.org/view/OpenDaylight_Controller:NetworkConfigurationServices

Bidirectional JSON-RPC library

The OVSDB plugin implements a Bidirectional JSON-RPC library. It is easy
to design the library as a module that manages the Netty connection
towards the Element.

The main responsibilities of this Library are:

	Demarshal and marshal JSON Strings to JSON objects

	Demarshal and marshal JSON Strings from and to the Network Element.

OVSDB Schema definitions and Object mappers

The OVSDB Schema definitions and Object Mapping layer sits above the
JSON-RPC library. It maps the generic JSON objects to OVSDB schema POJOs
(Plain Old Java Object) and vice-versa. This layer mostly provides the
Java Object definition for the corresponding OVSDB schema (13 of them)
and also will provide much more friendly API abstractions on top of
these object data. This helps in hiding the JSON semantics from the
functional modules such as Configuration Service and Tunnel management.

On the demarshaling side the mapping logic differentiates the Request
and Response messages as follows :

	Request messages are mapped by its “method”

	
Response messages are mapped by their IDs which were originally
populated by the Request message. The JSON semantics of these OVSDB
schema is quite complex. The following figures summarize two of the
end-to-end scenarios:

[image: End-to-end handling of a Create Bridge request]
End-to-end handling of a Create Bridge request

[image: End-to-end handling of a monitor response]
End-to-end handling of a monitor response

Overlay tunnel management

Network Virtualization using OVS is achieved through Overlay Tunnels.
The actual Type of the Tunnel may be GRE, VXLAN, or STT. The differences
in the encapsulation and configuration decide the tunnel types.
Establishing a tunnel using configuration service requires just the
sending of OVSDB messages towards the ovsdb-server. However, the scaling
issues that would arise on the state management at the data-plane (using
OpenFlow) can get challenging. Also, this module can assist in various
optimizations in the presence of Gateways. It can also help in providing
Service guarantees for the VMs using these overlays with the help of
underlay orchestration.

OVSDB to OpenFlow plugin mapping service

The connect() of the ConnectionService would result in a Node that
represents an ovsdb-server. The CreateBridgeDomain() Configuration on
the above Node would result in creating an OVS bridge. This OVS Bridge
is an OpenFlow Agent for the OpenDaylight OpenFlow plugin with its own
Node represented as (example) OF|xxxx.yyyy.zzzz. Without any help
from the OVSDB plugin, the Node Mapping Service of the Controller
platform would not be able to map the following:

{OVSDB_NODE + BRIDGE_IDENTFIER} <---> {OF_NODE}.

Without such mapping, it would be extremely difficult for the
applications to manage and maintain such nodes. This Mapping Service
provided by the OVSDB plugin would essentially help in providing more
value added services to the orchestration layers that sit atop the
Northbound APIs (such as OpenStack).

OVSDB: New features

Schema independent library

The OVS connection is a node which can have multiple databases. Each
database is represented by a schema. A single connection can have
multiple schemas. OSVDB supports multiple schemas. Currently, these are
two schemas available in the OVSDB, but there is no restriction on the
number of schemas. Owing to the Northbound v3 API, no code changes in
ODL are needed for supporting additional schemas.

Schemas:

	openvswitch : Schema wrapper that represents
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

	hardwarevtep: Schema wrapper that represents
http://openvswitch.org/docs/vtep.5.pdf

OVSDB Library Developer Guide

Overview

The OVSDB library manages the Netty connections to network nodes and
handles bidirectional JSON-RPC messages. It not only provides OVSDB
protocol functionality to OpenDaylight OVSDB plugin but also can be used
as standalone JAVA library for OVSDB protocol.

The main responsibilities of OVSDB library include:

	Manage connections to peers

	Marshal and unmarshal JSON Strings to JSON objects.

	Marshal and unmarshal JSON Strings from and to the Network Element.

Connection Service

The OVSDB library provides connection management through the
OvsdbConnection interface. The OvsdbConnection interface provides OVSDB
connection management APIs which include both active and passive
connections. From the library perspective, active OVSDB connections are
initiated from the controller to OVS nodes while passive OVSDB
connections are initiated from OVS nodes to the controller. In the
active connection scenario an application needs to provide the IP
address and listening port of OVS nodes to the library management API.
On the other hand, the library management API only requires the info of
the controller listening port in the passive connection scenario.

For a passive connection scenario, the library also provides a
connection event listener through the OvsdbConnectionListener interface.
The listener interface has connected() and disconnected() methods to
notify an application when a new passive connection is established or an
existing connection is terminated.

SSL Connection

In addition to a regular TCP connection, the OvsdbConnection interface
also provides a connection management API for an SSL connection. To
start an OVSDB connection with SSL, an application will need to provide
a Java SSLContext object to the management API. There are different ways
to create a Java SSLContext, but in most cases a Java KeyStore with
certificate and private key provided by the application is required.
Detailed steps about how to create a Java SSLContext is out of the scope
of this document and can be found in the Java documentation for JAVA
Class SSlContext [http://goo.gl/5svszT].

In the active connection scenario, the library uses the given SSLContext
to create a Java SSLEngine and configures the SSL engine with the client
mode for SSL handshaking. Normally clients are not required to
authenticate themselves.

In the passive connection scenario, the library uses the given
SSLContext to create a Java SSLEngine which will operate in server mode
for SSL handshaking. For security reasons, the SSLv3 protocol and some
cipher suites are disabled. Currently the OVSDB server only supports the
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite and the following
protocols: SSLv2Hello, TLSv1, TLSv1.1, TLSv1.2.

The SSL engine is also configured to operate on two-way authentication
mode for passive connection scenarios, i.e., the OVSDB server
(controller) will authenticate clients (OVS nodes) and clients (OVS
nodes) are also required to authenticate the server (controller). In the
two-way authentication mode, an application should keep a trust manager
to store the certificates of trusted clients and initialize a Java
SSLContext with this trust manager. Thus during the SSL handshaking
process the OVSDB server (controller) can use the trust manager to
verify clients and only accept connection requests from trusted clients.
On the other hand, users should also configure OVS nodes to authenticate
the controller. Open vSwitch already supports this functionality in the
ovsdb-server command with option --ca-cert=cacert.pem and
--bootstrap-ca-cert=cacert.pem. On the OVS node, a user can use the
option --ca-cert=cacert.pem to specify a controller certificate
directly and the node will only allow connections to the controller with
the specified certificate. If the OVS node runs ovsdb-server with option
--bootstrap-ca-cert=cacert.pem, it will authenticate the controller
with the specified certificate cacert.pem. If the certificate file
doesn’t exist, it will attempt to obtain a certificate from the peer
(controller) on its first SSL connection and save it to the named PEM
file cacert.pem. Here is an example of ovsdb-server with
--bootstrap-ca-cert=cacert.pem option:

ovsdb-server--pidfile--detach--log-file--remotepunix:/var/run/openvswitch/db.sock--remote=db:hardware_vtep,Global,managers--private-key=/etc/openvswitch/ovsclient-privkey.pem--certificate=/etc/openvswitch/ovsclient-cert.pem--bootstrap-ca-cert=/etc/openvswitch/vswitchd.cacert

OVSDB protocol transactions

The OVSDB protocol defines the RPC transaction methods in RFC 7047. The
following RPC methods are supported in OVSDB protocol:

	List databases

	Get schema

	Transact

	Cancel

	Monitor

	Update notification

	Monitor cancellation

	Lock operations

	Locked notification

	Stolen notification

	Echo

According to RFC 7047, an OVSDB server must implement all methods, and
an OVSDB client is only required to implement the “Echo” method and
otherwise free to implement whichever methods suit its needs. However,
the OVSDB library currently doesn’t support all RPC methods. For the
“Echo” method, the library can handle “Echo” messages from a peer and
send a JSON response message back, but the library doesn’t support
actively sending an “Echo” JSON request to a peer. Other unsupported RPC
methods are listed below:

	Cancel

	Lock operations

	Locked notification

	Stolen notification

In the OVSDB library the RPC methods are defined in the Java interface
OvsdbRPC. The library also provides a high-level interface OvsdbClient
as the main interface to interact with peers through the OVSDB protocol.
In the passive connection scenario, each connection will have a
corresponding OvsdbClient object, and the application can obtain the
OvsdbClient object through connection listener callback methods. In
other words, if the application implements the OvsdbConnectionListener
interface, it will get notifications of connection status changes with
the corresponding OvsdbClient object of that connection.

OVSDB database operations

RFC 7047 also defines database operations, such as insert, delete, and
update, to be performed as part of a “transact” RPC request. The OVSDB
library defines the data operations in Operations.java and provides the
TransactionBuilder class to help build “transact” RPC requests. To build
a JSON-RPC transact request message, the application can obtain the
TransactionBuilder object through a transactBuilder() method in the
OvsdbClient interface.

The TransactionBuilder class provides the following methods to help
build transactions:

	getOperations(): Get the list of operations in this transaction.

	add(): Add data operation to this transaction.

	build(): Return the list of operations in this transaction. This is
the same as the getOperations() method.

	execute(): Send the JSON RPC transaction to peer.

	getDatabaseSchema(): Get the database schema of this transaction.

If the application wants to build and send a “transact” RPC request to
modify OVSDB tables on a peer, it can take the following steps:

	Statically import parameter “op” in Operations.java

importstaticorg.opendaylight.ovsdb.lib.operations.Operations.op;

	Obtain transaction builder through transacBuilder() method in
OvsdbClient:

TransactionBuildertransactionBuilder=ovsdbClient.transactionBuilder(dbSchema);

	Add operations to transaction builder:

transactionBuilder.add(op.insert(schema,row));

	Send transaction to peer and get JSON RPC response:

operationResults=transactionBuilder.execute().get();

Note

Although the “select” operation is supported in the OVSDB
library, the library implementation is a little different from
RFC 7047. In RFC 7047, section 5.2.2 describes the “select”
operation as follows:

“The “rows” member of the result is an array of objects. Each object
corresponds to a matching row, with each column specified in
“columns” as a member, the column’s name as the member name, and its
value as the member value. If “columns” is not specified, all the
table’s columns are included (including the internally generated
“_uuid” and “_version” columns).”

The OVSDB library implementation always requires the column’s name in
the “columns” field of a JSON message. If the “columns” field is not
specified, none of the table’s columns are included. If the
application wants to get the table entry with all columns, it needs
to specify all the columns’ names in the “columns” field.

Reference Documentation

RFC 7047 The Open vSwitch Databse Management Protocol
https://tools.ietf.org/html/rfc7047

OVSDB MD-SAL Southbound Plugin Developer Guide

Overview

The Open vSwitch Database (OVSDB) Model Driven Service Abstraction Layer
(MD-SAL) Southbound Plugin provides an MD-SAL based interface to Open
vSwitch systems. This is done by augmenting the MD-SAL topology node
with a YANG model which replicates some (but not all) of the Open
vSwitch schema.

OVSDB MD-SAL Southbound Plugin Architecture and Operation

The architecture and operation of the OVSDB MD-SAL Southbound plugin is
illustrated in the following set of diagrams.

Connecting to an OVSDB Node

An OVSDB node is a system which is running the OVS software and is
capable of being managed by an OVSDB manager. The OVSDB MD-SAL
Southbound plugin in OpenDaylight is capable of operating as an OVSDB
manager. Depending on the configuration of the OVSDB node, the
connection of the OVSDB manager can be active or passive.

Active OVSDB Node Manager Workflow

An active OVSDB node manager connection is made when OpenDaylight
initiates the connection to the OVSDB node. In order for this to work,
you must configure the OVSDB node to listen on a TCP port for the
connection (i.e. OpenDaylight is active and the OVSDB node is passive).
This option can be configured on the OVSDB node using the following
command:

ovs-vsctl set-manager ptcp:6640

The following diagram illustrates the sequence of events which occur
when OpenDaylight initiates an active OVSDB manager connection to an
OVSDB node.

[image: Active OVSDB Manager Connection]
Active OVSDB Manager Connection

	Step 1

	Create an OVSDB node by using RESTCONF or an OpenDaylight plugin.
The OVSDB node is listed under the OVSDB topology node.

	Step 2

	Add the OVSDB node to the OVSDB MD-SAL southbound configuration
datastore. The OVSDB southbound provider is registered to listen for
data change events on the portion of the MD-SAL topology data store
which contains the OVSDB southbound topology node augmentations. The
addition of an OVSDB node causes an event which is received by the
OVSDB Southbound provider.

	Step 3

	The OVSDB Southbound provider initiates a connection to the OVSDB
node using the connection information provided in the configuration
OVSDB node (i.e. IP address and TCP port number).

	Step 4

	The OVSDB Southbound provider adds the OVSDB node to the OVSDB
MD-SAL operational data store. The operational data store contains
OVSDB node objects which represent active connections to OVSDB
nodes.

	Step 5

	The OVSDB Southbound provider requests the schema and databases
which are supported by the OVSDB node.

	Step 6

	The OVSDB Southbound provider uses the database and schema
information to construct a monitor request which causes the OVSDB
node to send the controller any updates made to the OVSDB databases
on the OVSDB node.

Passive OVSDB Node Manager Workflow

A passive OVSDB node connection to OpenDaylight is made when the OVSDB
node initiates the connection to OpenDaylight. In order for this to
work, you must configure the OVSDB node to connect to the IP address and
OVSDB port on which OpenDaylight is listening. This option can be
configured on the OVSDB node using the following command:

ovs-vsctl set-manager tcp:<IP address>:6640

The following diagram illustrates the sequence of events which occur
when an OVSDB node connects to OpenDaylight.

[image: Passive OVSDB Manager Connection]
Passive OVSDB Manager Connection

	Step 1

	The OVSDB node initiates a connection to OpenDaylight.

	Step 2

	The OVSDB Southbound provider adds the OVSDB node to the OVSDB
MD-SAL operational data store. The operational data store contains
OVSDB node objects which represent active connections to OVSDB
nodes.

	Step 3

	The OVSDB Southbound provider requests the schema and databases
which are supported by the OVSDB node.

	Step 4

	The OVSDB Southbound provider uses the database and schema
information to construct a monitor request which causes the OVSDB
node to send back any updates which have been made to the OVSDB
databases on the OVSDB node.

OVSDB Node ID in the Southbound Operational MD-SAL

When OpenDaylight initiates an active connection to an OVSDB node, it
writes an external-id to the Open_vSwitch table on the OVSDB node. The
external-id is an OpenDaylight instance identifier which identifies the
OVSDB topology node which has just been created. Here is an example
showing the value of the opendaylight-iid entry in the external-ids
column of the Open_vSwitch table where the node-id of the OVSDB node is
ovsdb:HOST1.

$ ovs-vsctl list open_vswitch
...
external_ids : {opendaylight-iid="/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1']"}
...

The opendaylight-iid entry in the external-ids column of the
Open_vSwitch table causes the OVSDB node to have same node-id in the
operational MD-SAL datastore as in the configuration MD-SAL datastore.
This holds true if the OVSDB node manager settings are subsequently
changed so that a passive OVSDB manager connection is made.

If there is no opendaylight-iid entry in the external-ids column and a
passive OVSDB manager connection is made, then the node-id of the OVSDB
node in the operational MD-SAL datastore will be constructed using the
UUID of the Open_vSwitch table as follows.

"node-id": "ovsdb://uuid/b8dc0bfb-d22b-4938-a2e8-b0084d7bd8c1"

The opendaylight-iid entry can be removed from the Open_vSwitch table
using the following command.

$ sudo ovs-vsctl remove open_vswitch . external-id "opendaylight-iid"

OVSDB Changes by using OVSDB Southbound Config MD-SAL

After the connection has been made to an OVSDB node, you can make
changes to the OVSDB node by using the OVSDB Southbound Config MD-SAL.
You can make CRUD operations by using the RESTCONF interface or by a
plugin using the MD-SAL APIs. The following diagram illustrates the
high-level flow of events.

[image: OVSDB Changes by using the Southbound Config MD-SAL]
OVSDB Changes by using the Southbound Config MD-SAL

	Step 1

	A change to the OVSDB Southbound Config MD-SAL is made. Changes
include adding or deleting bridges and ports, or setting attributes
of OVSDB nodes, bridges or ports.

	Step 2

	The OVSDB Southbound provider receives notification of the changes
made to the OVSDB Southbound Config MD-SAL data store.

	Step 3

	As appropriate, OVSDB transactions are constructed and transmitted
to the OVSDB node to update the OVSDB database on the OVSDB node.

	Step 4

	The OVSDB node sends update messages to the OVSDB Southbound
provider to indicate the changes made to the OVSDB nodes database.

	Step 5

	The OVSDB Southbound provider maps the changes received from the
OVSDB node into corresponding changes made to the OVSDB Southbound
Operational MD-SAL data store.

Detecting changes in OVSDB coming from outside OpenDaylight

Changes to the OVSDB nodes database may also occur independently of
OpenDaylight. OpenDaylight also receives notifications for these events
and updates the Southbound operational MD-SAL. The following diagram
illustrates the sequence of events.

[image: OVSDB Changes made directly on the OVSDB node]
OVSDB Changes made directly on the OVSDB node

	Step 1

	Changes are made to the OVSDB node outside of OpenDaylight (e.g.
ovs-vsctl).

	Step 2

	The OVSDB node constructs update messages to inform OpenDaylight of
the changes made to its databases.

	Step 3

	The OVSDB Southbound provider maps the OVSDB database changes to
corresponding changes in the OVSDB Southbound operational MD-SAL
data store.

OVSDB Model

The OVSDB Southbound MD-SAL operates using a YANG model which is based
on the abstract topology node model found in the network topology
model [https://github.com/opendaylight/yangtools/blob/stable/boron/model/ietf/ietf-topology/src/main/yang/network-topology%402013-10-21.yang].

The augmentations for the OVSDB Southbound MD-SAL are defined in the
ovsdb.yang [https://github.com/opendaylight/ovsdb/blob/stable/boron/southbound/southbound-api/src/main/yang/ovsdb.yang]
file.

There are three augmentations:

	ovsdb-node-augmentation

	This augments the topology node and maps primarily to the
Open_vSwitch table of the OVSDB schema. It contains the following
attributes.

	connection-info - holds the local and remote IP address and
TCP port numbers for the OpenDaylight to OVSDB node connections

	db-version - version of the OVSDB database

	ovs-version - version of OVS

	list managed-node-entry - a list of references to
ovsdb-bridge-augmentation nodes, which are the OVS bridges
managed by this OVSDB node

	list datapath-type-entry - a list of the datapath types
supported by the OVSDB node (e.g. system, netdev) - depends
on newer OVS versions

	list interface-type-entry - a list of the interface types
supported by the OVSDB node (e.g. internal, vxlan, gre,
dpdk, etc.) - depends on newer OVS verions

	list openvswitch-external-ids - a list of the key/value pairs
in the Open_vSwitch table external_ids column

	list openvswitch-other-config - a list of the key/value pairs
in the Open_vSwitch table other_config column

	ovsdb-bridge-augmentation

	This augments the topology node and maps to an specific bridge in
the OVSDB bridge table of the associated OVSDB node. It contains the
following attributes.

	bridge-uuid - UUID of the OVSDB bridge

	bridge-name - name of the OVSDB bridge

	bridge-openflow-node-ref - a reference (instance-identifier)
of the OpenFlow node associated with this bridge

	list protocol-entry - the version of OpenFlow protocol to use
with the OpenFlow controller

	list controller-entry - a list of controller-uuid and
is-connected status of the OpenFlow controllers associated with
this bridge

	datapath-id - the datapath ID associated with this bridge on
the OVSDB node

	datapath-type - the datapath type of this bridge

	fail-mode - the OVSDB fail mode setting of this bridge

	flow-node - a reference to the flow node corresponding to
this bridge

	managed-by - a reference to the ovsdb-node-augmentation
(OVSDB node) that is managing this bridge

	list bridge-external-ids - a list of the key/value pairs in
the bridge table external_ids column for this bridge

	list bridge-other-configs - a list of the key/value pairs in
the bridge table other_config column for this bridge

	ovsdb-termination-point-augmentation

	This augments the topology termination point model. The OVSDB
Southbound MD-SAL uses this model to represent both the OVSDB port
and OVSDB interface for a given port/interface in the OVSDB schema.
It contains the following attributes.

	port-uuid - UUID of an OVSDB port row

	interface-uuid - UUID of an OVSDB interface row

	name - name of the port

	interface-type - the interface type

	list options - a list of port options

	ofport - the OpenFlow port number of the interface

	ofport_request - the requested OpenFlow port number for the
interface

	vlan-tag - the VLAN tag value

	list trunks - list of VLAN tag values for trunk mode

	vlan-mode - the VLAN mode (e.g. access, native-tagged,
native-untagged, trunk)

	list port-external-ids - a list of the key/value pairs in the
port table external_ids column for this port

	list interface-external-ids - a list of the key/value pairs
in the interface table external_ids interface for this interface

	list port-other-configs - a list of the key/value pairs in
the port table other_config column for this port

	list interface-other-configs - a list of the key/value pairs
in the interface table other_config column for this interface

Examples of OVSDB Southbound MD-SAL API

Connect to an OVSDB Node

This example RESTCONF command adds an OVSDB node object to the OVSDB
Southbound configuration data store and attempts to connect to the OVSDB
host located at the IP address 10.11.12.1 on TCP port 6640.

POST http://<host>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/
Content-Type: application/json
{
 "node": [
 {
 "node-id": "ovsdb:HOST1",
 "connection-info": {
 "ovsdb:remote-ip": "10.11.12.1",
 "ovsdb:remote-port": 6640
 }
 }
]
}

Query the OVSDB Southbound Configuration MD-SAL

Following on from the previous example, if the OVSDB Southbound
configuration MD-SAL is queried, the RESTCONF command and the resulting
reply is similar to the following example.

GET http://<host>:8080/restconf/config/network-topology:network-topology/topology/ovsdb:1/
Application/json data in the reply
{
 "topology": [
 {
 "topology-id": "ovsdb:1",
 "node": [
 {
 "node-id": "ovsdb:HOST1",
 "ovsdb:connection-info": {
 "remote-port": 6640,
 "remote-ip": "10.11.12.1"
 }
 }
]
 }
]
}

Reference Documentation

Openvswitch
schema [http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf]

OVSDB Hardware VTEP Developer Guide

Overview

TBD

OVSDB Hardware VTEP Architecture

TBD

PCEP Developer Guide

Overview

This section provides an overview of feature odl-bgpcep-pcep-all .
This feature will install everything needed for PCEP (Path Computation
Element Protocol) including establishing the connection, storing
information about LSPs (Label Switched Paths) and displaying data in
network-topology overview.

PCEP Architecture

Each feature represents a module in the BGPCEP codebase. The following
diagram illustrates how the features are related.

[image: PCEP Dependency Tree]
PCEP Dependency Tree

Key APIs and Interfaces

PCEP

Session handling

32-pcep.xml defines only pcep-dispatcher the parser should be using
(global-pcep-extensions), factory for creating session proposals (you
can create different proposals for different PCCs (Path Computation
Clients)).

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:impl">prefix:pcep-dispatcher-impl</type>
 <name>global-pcep-dispatcher</name>
 <pcep-extensions>
 <type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">pcepspi:extensions</type>
 <name>global-pcep-extensions</name>
 </pcep-extensions>
 <pcep-session-proposal-factory>
 <type xmlns:pcep="urn:opendaylight:params:xml:ns:yang:controller:pcep">pcep:pcep-session-proposal-factory</type>
 <name>global-pcep-session-proposal-factory</name>
 </pcep-session-proposal-factory>
 <boss-group>
 <type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-threadgroup</type>
 <name>global-boss-group</name>
 </boss-group>
 <worker-group>
 <type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-threadgroup</type>
 <name>global-worker-group</name>
 </worker-group>
</module>

For user configuration of PCEP, check User Guide.

Parser

The base PCEP parser includes messages and attributes from
RFC5441 [http://tools.ietf.org/html/rfc5441],
RFC5541 [http://tools.ietf.org/html/rfc5541],
RFC5455 [http://tools.ietf.org/html/rfc5455],
RFC5557 [http://tools.ietf.org/html/rfc5557] and
RFC5521 [http://tools.ietf.org/html/rfc5521].

Registration

All parsers and serializers need to be registered into Extension
provider. This Extension provider is configured in initial
configuration of the parser-spi module (32-pcep.xml).

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">prefix:pcep-extensions-impl</type>
 <name>global-pcep-extensions</name>
 <extension>
 <type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">pcepspi:extension</type>
 <name>pcep-parser-base</name>
 </extension>
 <extension>
 <type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">pcepspi:extension</type>
 <name>pcep-parser-ietf-stateful07</name>
 </extension>
 <extension>
 <type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">pcepspi:extension</type>
 <name>pcep-parser-ietf-initiated00</name>
 </extension>
 <extension>
 <type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">pcepspi:extension</type>
 <name>pcep-parser-sync-optimizations</name>
 </extension>
</module>

	pcep-parser-base - will register parsers and serializers
implemented in pcep-impl module

	pcep-parser-ietf-stateful07 - will register parsers and serializers
of draft-ietf-pce-stateful-pce-07 implementation

	pcep-parser-ietf-initiated00 - will register parser and serializer
of draft-ietf-pce-pce-initiated-lsp-00 implementation

	pcep-parser-sync-optimizations - will register parser and
serializers of draft-ietf-pce-stateful-sync-optimizations-03
implementation

Stateful07 module is a good example of a PCEP parser extension.

Configuration of PCEP parsers specifies one implementation of Extension
provider that will take care of registering mentioned parser
extensions:
SimplePCEPExtensionProviderContext [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/spi/src/main/java/org/opendaylight/protocol/pcep/spi/pojo/SimplePCEPExtensionProviderContext.java;hb=refs/for/stable/boron].
All registries are implemented in package
pcep-spi [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=tree;f=pcep/spi/src/main/java/org/opendaylight/protocol/pcep/spi/pojo;hb=refs/for/stable/boron].

Parsing

Parsing of PCEP elements is mostly done equally to BGP, the only
exception is message parsing, that is described here.

In BGP messages, parsing of first-level elements (path-attributes) can
be validated in a simple way, as the attributes should be ordered
chronologically. PCEP, on the other hand, has a strict object order
policy, that is described in RBNF (Routing Backus-Naur Form) in each
RFC. Therefore the algorithm for parsing here is to parse all objects in
order as they appear in the message. The result of parsing is a list of
PCEPObjects, that is put through validation. validate() methods are
present in each message parser. Depending on the complexity of the
message, it can contain either a simple condition (checking the presence
of a mandatory object) or a full state machine.

In addition to that, PCEP requires sending error message for each
documented parsing error. This is handled by creating an empty list of
messages errors which is then passed as argument throughout whole
parsing process. If some parser encounters PCEPDocumentedException, it
has the duty to create appropriate PCEP error message and add it to this
list. In the end, when the parsing is finished, this list is examined
and all messages are sent to peer.

Better understanding provides this sequence diagram:

[image: Parsing]
Parsing

PCEP IETF stateful

This section summarizes module pcep-ietf-stateful07. The term stateful
refers to
draft-ietf-pce-stateful-pce [http://tools.ietf.org/html/draft-ietf-pce-stateful-pce]
and
draft-ietf-pce-pce-initiated-lsp [http://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp]
in versions draft-ietf-pce-stateful-pce-07 with
draft-ietf-pce-pce-initiated-lsp-00.

We will upgrade our implementation, when the stateful draft gets
promoted to RFC.

The stateful module is implemented as extensions to pcep-base-parser.
The stateful draft declared new elements as well as additional fields or
TLVs (type,length,value) to known objects. All new elements are defined
in yang models, that contain augmentations to elements defined in
pcep-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/api/src/main/yang/pcep-types.yang;hb=refs/for/stable/boron].
In the case of extending known elements, the Parser class merely
extends the base class and overrides necessary methods as shown in
following diagram:

[image: Extending existing parsers]
Extending existing parsers

All parsers (including those for newly defined PCEP elements) have to be
registered via the Activator class. This class is present in both
modules.

In addition to parsers, the stateful module also introduces additional
session proposal. This proposal includes new fields defined in stateful
drafts for Open object.

PCEP segment routing (SR)

PCEP Segment Routing is an extension of base PCEP and
pcep-ietf-stateful-07 extension. The pcep-segment-routing module
implements
draft-ietf-pce-segment-routing-01 [http://tools.ietf.org/html/draft-ietf-pce-segment-routing-01].

The extension brings new SR-ERO (Explicit Route Object) and SR-RRO
(Reported Route Object) subobject composed of SID (Segment Identifier)
and/or NAI (Node or Adjacency Identifier). The segment Routing path is
carried in the ERO and RRO object, as a list of SR-ERO/SR-RRO subobjects
in an order specified by the user. The draft defines new TLV -
SR-PCE-CAPABILITY TLV, carried in PCEP Open object, used to negotiate
Segment Routing ability.

The yang models of subobject, SR-PCE-CAPABILITY TLV and appropriate
augmentations are defined in
odl-pcep-segment-routing.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/segment-routing/src/main/yang/odl-pcep-segment-routing.yang;hb=refs/for/stable/boron].

The pcep-segment-routing module includes parsers/serializers for new
subobject
(SrEroSubobjectParser [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/segment-routing/src/main/java/org/opendaylight/protocol/pcep/segment/routing/SrEroSubobjectParser.java;hb=refs/for/stable/boron])
and TLV
(SrPceCapabilityTlvParser [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/segment-routing/src/main/java/org/opendaylight/protocol/pcep/segment/routing/SrPceCapabilityTlvParser.java;hb=refs/for/stable/boron]).

The pcep-segment-routing module implements
draft-ietf-pce-lsp-setup-type-01 [http://tools.ietf.org/html/draft-ietf-pce-lsp-setup-type-01],
too. The draft defines new TLV - Path Setup Type TLV, which value
indicate path setup signaling technique. The TLV may be included in
RP(Request Parameters)/SRP(Stateful PCE Request Parameters) object. For
the default RSVP-TE (Resource Reservation Protocol), the TLV is omitted.
For Segment Routing, PST = 1 is defined.

The Path Setup Type TLV is modeled with yang in module
pcep-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/api/src/main/yang/pcep-types.yang;hb=refs/for/stable/boron].
A parser/serializer is implemented in
PathSetupTypeTlvParser [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/impl/src/main/java/org/opendaylight/protocol/pcep/impl/tlv/PathSetupTypeTlvParser.java;hb=refs/for/stable/boron]
and it is overriden in segment-routing module to provide the aditional
PST.

PCEP Synchronization Procedures Optimization

Optimizations of Label Switched Path State Synchronization Procedures
for a Stateful PCE draft-ietf-pce-stateful-sync-optimizations-03
specifies following optimizations for state synchronization and the
corresponding PCEP procedures and extensions:

	State Synchronization Avoidance: To skip state synchronization if
the state has survived and not changed during session restart.

	Incremental State Synchronization: To do incremental (delta)
state synchronization when possible.

	PCE-triggered Initial Synchronization: To let PCE control the
timing of the initial state synchronization. The capability can be
applied to both full and incremental state synchronization.

	PCE-triggered Re-synchronization: To let PCE re-synchronize the
state for sanity check.

PCEP Topology

PCEP data is displayed only through one URL that is accessible from the
base network-topology URL:

http://localhost:8181/restconf/operational/network-topology:network-topology/topology/pcep-topology

Each PCC will be displayed as a node:

<node>
 <path-computation-client>
 <ip-address>42.42.42.42</ip-address>
 <state-sync>synchronized</state-sync>
 <stateful-tlv>
 <stateful>
 <initiation>true</initiation>
 <lsp-update-capability>true</lsp-update-capability>
 </stateful>
 </stateful-tlv>
 </path-computation-client>
 <node-id>pcc://42.42.42.42</node-id>
</node>
</source>

If some tunnels are configured on the network, they would be displayed
on the same page, within a node that initiated the tunnel:

<node>
 <path-computation-client>
 <state-sync>synchronized</state-sync>
 <stateful-tlv>
 <stateful>
 <initiation>true</initiation>
 <lsp-update-capability>true</lsp-update-capability>
 </stateful>
 </stateful-tlv>
 <reported-lsp>
 <name>foo</name>
 <lsp>
 <operational>down</operational>
 <sync>false</sync>
 <ignore>false</ignore>
 <plsp-id>1</plsp-id>
 <create>false</create>
 <administrative>true</administrative>
 <remove>false</remove>
 <delegate>true</delegate>
 <processing-rule>false</processing-rule>
 <tlvs>
 <lsp-identifiers>
 <ipv4>
 <ipv4-tunnel-sender-address>43.43.43.43</ipv4-tunnel-sender-address>
 <ipv4-tunnel-endpoint-address>0.0.0.0</ipv4-tunnel-endpoint-address>
 <ipv4-extended-tunnel-id>0.0.0.0</ipv4-extended-tunnel-id>
 </ipv4>
 <tunnel-id>0</tunnel-id>
 <lsp-id>0</lsp-id>
 </lsp-identifiers>
 <symbolic-path-name>
 <path-name>Zm9v</path-name>
 </symbolic-path-name>
 </tlvs>
 </lsp>
 </reported-lsp>
 <ip-address>43.43.43.43</ip-address>
 </path-computation-client>
 <node-id>pcc://43.43.43.43</node-id>
</node>

Note that, the <path-name> tag displays tunnel name in Base64
encoding.

API Reference Documentation

Javadocs are generated while creating mvn:site and they are located in
target/ directory in each module.

PacketCable Developer Guide

PCMM Specification

PacketCable™ Multimedia
Specification [http://www.cablelabs.com/specification/packetcable-multimedia-specification]

System Overview

These components introduce a DOCSIS QoS Service Flow management using
the PCMM protocol. The driver component is responsible for the
PCMM/COPS/PDP functionality required to service requests from
PacketCable Provider and FlowManager. Requests are transposed into PCMM
Gate Control messages and transmitted via COPS to the CCAP/CMTS. This
plugin adheres to the PCMM/COPS/PDP functionality defined in the
CableLabs specification. PacketCable solution is an MDSAL compliant
component.

PacketCable Components

The packetcable maven project is comprised of several modules.

	Bundle

	Description

	packetcable-driver

	A common module that containts the
COPS stack and manages all
connections to CCAPS/CMTSes.

	packetcable-emulator

	A basic CCAP emulator to facilitate
testing the the plugin when no
physical CCAP is avaible.

	packetcable-policy-karaf

	Generates a Karaf distribution with
a config that loads all the
packetcable features at runtime.

	packetcable-policy-model

	Contains the YANG information model.

	packetcable-policy-server

	Provider hosts the model processing,
RESTCONF, and API implementation.

Setting Logging Levels

From the Karaf console

log:set <LEVEL> (<PACKAGE>|<BUNDLE>)
Example
log:set DEBUG org.opendaylight.packetcable.packetcable-policy-server

Tools for Testing

Postman REST client for Chrome

Install the Chrome
extension [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]

Download and import sample packetcable
collection [https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-policy-server/doc/restconf-samples]

View Rest API

	Install the odl-mdsal-apidocs feature from the karaf console.

	Open http://localhost:8181/apidoc/explorer/index.html default dev
build user/pass is admin/admin

	Navigate to the PacketCable section.

Yang-IDE

Editing yang can be done in any text editor but Yang-IDE will help
prevent mistakes.

Setup and Build Yang-IDE for
Eclipse [https://github.com/xored/yang-ide/wiki/Setup-and-build]

Using Wireshark to Trace PCMM

	To start wireshark with privileges issue the following command:

sudo wireshark &

	Select the interface to monitor.

	Use the Filter to only display COPS messages by applying “cops” in
the filter field.

[image: ../_images/packetcable-developer-wireshark.png]
Wireshark looking for COPS messages.

Debugging and Verifying DQoS Gate (Flows) on the CCAP/CMTS

Below are some of the most useful CCAP/CMTS commands to verify flows
have been enabled on the CMTS.

Cisco

Cisco CMTS Cable Command
Reference [http://www.cisco.com/c/en/us/td/docs/cable/cmts/cmd_ref/b_cmts_cable_cmd_ref.pdf]

Find the Cable Modem

10k2-DSG#show cable modem
 D
MAC Address IP Address I/F MAC Prim RxPwr Timing Num I
 State Sid (dBmv) Offset CPE P
0010.188a.faf6 0.0.0.0 C8/0/0/U0 offline 1 0.00 1482 0 N
74ae.7600.01f3 10.32.115.150 C8/0/10/U0 online 1 -0.50 1431 0 Y
0010.188a.fad8 10.32.115.142 C8/0/10/UB w-online 2 -0.50 1507 1 Y
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 1.00 1677 0 Y
e86d.5271.304f 10.32.115.168 C8/0/10/UB w-online 6 -0.50 1419 1 Y

Show PCMM Plugin Connection

10k2-DSG#show packetcabl ?
 cms Gate Controllers connected to this PacketCable client
 event Event message server information
 gate PacketCable gate information
 global PacketCable global information

10k2-DSG#show packetcable cms
GC-Addr GC-Port Client-Addr COPS-handle Version PSID Key PDD-Cfg

10k2-DSG#show packetcable cms
GC-Addr GC-Port Client-Addr COPS-handle Version PSID Key PDD-Cfg
10.32.0.240 54238 10.32.15.3 0x4B9C8150/1 4.0 0 0 0

Show COPS Messages

debug cops details

Use CM Mac Address to List Service Flows

10k2-DSG#show cable modem
 D
MAC Address IP Address I/F MAC Prim RxPwr Timing Num I
 State Sid (dBmv) Offset CPE P
0010.188a.faf6 --- C8/0/0/UB w-online 1 0.50 1480 1 N
74ae.7600.01f3 10.32.115.150 C8/0/10/U0 online 1 -0.50 1431 0 Y
0010.188a.fad8 10.32.115.142 C8/0/10/UB w-online 2 -0.50 1507 1 Y
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 0.00 1677 0 Y
e86d.5271.304f 10.32.115.168 C8/0/10/UB w-online 6 -0.50 1419 1 Y

10k2-DSG#show cable modem 000e.0900.00dd service-flow

SUMMARY:
MAC Address IP Address Host MAC Prim Num Primary DS
 Interface State Sid CPE Downstream RfId
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 0 Mo8/0/2:1 2353

Sfid Dir Curr Sid Sched Prio MaxSusRate MaxBrst MinRsvRate Throughput
 State Type
23 US act 3 BE 0 0 3044 0 39
30 US act 16 BE 0 500000 3044 0 0
24 DS act N/A N/A 0 0 3044 0 17

UPSTREAM SERVICE FLOW DETAIL:

SFID SID Requests Polls Grants Delayed Dropped Packets
 Grants Grants
23 3 784 0 784 0 0 784
30 16 0 0 0 0 0 0

DOWNSTREAM SERVICE FLOW DETAIL:

SFID RP_SFID QID Flg Policer Scheduler FrwdIF
 Xmits Drops Xmits Drops
24 33019 131550 0 0 777 0 Wi8/0/2:2

Flags Legend:
$: Low Latency Queue (aggregated)
~: CIR Queue

Deleting a PCMM Gate Message from the CMTS

10k2-DSG#test cable dsd 000e.0900.00dd 30

Find service flows

All gate controllers currently connected to the PacketCable client are
displayed

show cable modem 00:11:22:33:44:55 service flow ????
show cable modem

Debug and display PCMM Gate messages

debug packetcable gate control
debug packetcable gate events
show packetcable gate summary
show packetcable global
show packetcable cms

Debug COPS messages

debug cops detail
debug packetcable cops
debug cable dynamic_qos trace

Integration Verification

Checkout the integration project and perform regression tests.

git clone ssh://${ODL_USERNAME}@git.opendaylight.org:29418/integration.git
git clone https:/git.opendaylight.org/gerrit/integration.git

	Check and edit the
integration/features/src/main/resources/features.xml and follow the
directions there.

	Check and edit the integration/features/pom.xml and add a dependency
for your feature file

	Build integration/features and debug

mvncleaninstall

Test your feature in the integration/distributions/extra/karaf/
distribution

cd integration/distributions/extra/karaf/
mvn clean install
cd target/assembly/bin
./karaf

service-wrapper

Install http://karaf.apache.org/manual/latest/users-guide/wrapper.html

opendaylight-user@root>feature:install service-wrapper
opendaylight-user@root>wrapper:install --help
DESCRIPTION
 wrapper:install

Install the container as a system service in the OS.

SYNTAX
 wrapper:install [options]

OPTIONS
 -d, --display
 The display name of the service.
 (defaults to karaf)
 --help
 Display this help message
 -s, --start-type
 Mode in which the service is installed. AUTO_START or DEMAND_START (Default: AUTO_START)
 (defaults to AUTO_START)
 -n, --name
 The service name that will be used when installing the service. (Default: karaf)
 (defaults to karaf)
 -D, --description
 The description of the service.
 (defaults to)

opendaylight-user@root> wrapper:install
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/bin/karaf-wrapper
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/bin/karaf-service
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/etc/karaf-wrapper.conf
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/lib/libwrapper.so
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/lib/karaf-wrapper.jar
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/lib/karaf-wrapper-main.jar

Setup complete. You may wish to tweak the JVM properties in the wrapper configuration file:
/home/user/odl/distribution-karaf-0.5.0-Boron/etc/karaf-wrapper.conf
before installing and starting the service.

Ubuntu/Debian Linux system detected:
 To install the service:
 $ ln -s /home/user/odl/distribution-karaf-0.5.0-Boron/bin/karaf-service /etc/init.d/

 To start the service when the machine is rebooted:
 $ update-rc.d karaf-service defaults

 To disable starting the service when the machine is rebooted:
 $ update-rc.d -f karaf-service remove

 To start the service:
 $ /etc/init.d/karaf-service start

 To stop the service:
 $ /etc/init.d/karaf-service stop

 To uninstall the service :
 $ rm /etc/init.d/karaf-service

Service Function Chaining

OpenDaylight Service Function Chaining (SFC) Overview

OpenDaylight Service Function Chaining (SFC) provides the ability to
define an ordered list of a network services (e.g. firewalls, load
balancers). These service are then “stitched” together in the network to
create a service chain. This project provides the infrastructure
(chaining logic, APIs) needed for ODL to provision a service chain in
the network and an end-user application for defining such chains.

	ACE - Access Control Entry

	ACL - Access Control List

	SCF - Service Classifier Function

	SF - Service Function

	SFC - Service Function Chain

	SFF - Service Function Forwarder

	SFG - Service Function Group

	SFP - Service Function Path

	RSP - Rendered Service Path

	NSH - Network Service Header

SFC Classifier Control and Date plane Developer guide

Overview

Description of classifier can be found in:
https://datatracker.ietf.org/doc/draft-ietf-sfc-architecture/

Classifier manages everything from starting the packet listener to
creation (and removal) of appropriate ip(6)tables rules and marking
received packets accordingly. Its functionality is available only on
Linux as it leverages NetfilterQueue, which provides access to
packets matched by an iptables rule. Classifier requires root
privileges to be able to operate.

So far it is capable of processing ACL for MAC addresses, ports, IPv4
and IPv6. Supported protocols are TCP and UDP.

Classifier Architecture

Python code located in the project repository
sfc-py/common/classifier.py.

Note

classifier assumes that Rendered Service Path (RSP) already
exists in ODL when an ACL referencing it is obtained

	sfc_agent receives an ACL and passes it for processing to the
classifier

	the RSP (its SFF locator) referenced by ACL is requested from ODL

	if the RSP exists in the ODL then ACL based iptables rules for it are
applied

After this process is over, every packet successfully matched to an
iptables rule (i.e. successfully classified) will be NSH encapsulated
and forwarded to a related SFF, which knows how to traverse the RSP.

Rules are created using appropriate iptables command. If the Access
Control Entry (ACE) rule is MAC address related both iptables and
IPv6 tables rules are issued. If ACE rule is IPv4 address related, only
iptables rules are issued, same for IPv6.

Note

iptables raw table contains all created rules

Information regarding already registered RSP(s) are stored in an
internal data-store, which is represented as a dictionary:

{rsp_id: {'name': <rsp_name>,
 'chains': {'chain_name': (<ipv>,),
 ...
 },
 'sff': {'ip': <ip>,
 'port': <port>,
 'starting-index': <starting-index>,
 'transport-type': <transport-type>
 },
 },
...
}

	name: name of the RSP

	chains: dictionary of iptables chains related to the RSP with
information about IP version for which the chain exists

	SFF: SFF forwarding parameters

	ip: SFF IP address

	port: SFF port

	starting-index: index given to packet at first RSP hop

	transport-type: encapsulation protocol

Key APIs and Interfaces

This features exposes API to configure classifier (corresponds to
service-function-classifier.yang)

API Reference Documentation

See: sfc-model/src/main/yang/service-function-classifier.yang

SFC-OVS Plug-in

Overview

SFC-OVS provides integration of SFC with Open vSwitch (OVS) devices.
Integration is realized through mapping of SFC objects (like SF, SFF,
Classifier, etc.) to OVS objects (like Bridge,
TerminationPoint=Port/Interface). The mapping takes care of automatic
instantiation (setup) of corresponding object whenever its counterpart
is created. For example, when a new SFF is created, the SFC-OVS plug-in
will create a new OVS bridge and when a new OVS Bridge is created, the
SFC-OVS plug-in will create a new SFF.

SFC-OVS Architecture

SFC-OVS uses the OVSDB MD-SAL Southbound API for getting/writing
information from/to OVS devices. The core functionality consists of two
types of mapping:

	mapping from OVS to SFC

	OVS Bridge is mapped to SFF

	OVS TerminationPoints are mapped to SFF DataPlane locators

	mapping from SFC to OVS

	SFF is mapped to OVS Bridge

	SFF DataPlane locators are mapped to OVS TerminationPoints

[image: SFC < — > OVS mapping flow diagram]
SFC < — > OVS mapping flow diagram

Key APIs and Interfaces

	SFF to OVS mapping API (methods to convert SFF object to OVS Bridge
and OVS TerminationPoints)

	OVS to SFF mapping API (methods to convert OVS Bridge and OVS
TerminationPoints to SFF object)

SFC Southbound REST Plug-in

Overview

The Southbound REST Plug-in is used to send configuration from datastore
down to network devices supporting a REST API (i.e. they have a
configured REST URI). It supports POST/PUT/DELETE operations, which are
triggered accordingly by changes in the SFC data stores.

	Access Control List (ACL)

	Service Classifier Function (SCF)

	Service Function (SF)

	Service Function Group (SFG)

	Service Function Schedule Type (SFST)

	Service Function Forwarder (SFF)

	Rendered Service Path (RSP)

Southbound REST Plug-in Architecture

	listeners - used to listen on changes in the SFC data stores

	JSON exporters - used to export JSON-encoded data from
binding-aware data store objects

	tasks - used to collect REST URIs of network devices and to send
JSON-encoded data down to these devices

[image: Southbound REST Plug-in Architecture diagram]
Southbound REST Plug-in Architecture diagram

Key APIs and Interfaces

The plug-in provides Southbound REST API designated to listening REST
devices. It supports POST/PUT/DELETE operations. The operation (with
corresponding JSON-encoded data) is sent to unique REST URL belonging to
certain data type.

	Access Control List (ACL):
http://<host>:<port>/config/ietf-acl:access-lists/access-list/

	Service Function (SF):
http://<host>:<port>/config/service-function:service-functions/service-function/

	Service Function Group (SFG):
http://<host>:<port>/config/service-function:service-function-groups/service-function-group/

	Service Function Schedule Type (SFST):
http://<host>:<port>/config/service-function-scheduler-type:service-function-scheduler-types/service-function-scheduler-type/

	Service Function Forwarder (SFF):
http://<host>:<port>/config/service-function-forwarder:service-function-forwarders/service-function-forwarder/

	Rendered Service Path (RSP):
http://<host>:<port>/operational/rendered-service-path:rendered-service-paths/rendered-service-path/

Therefore, network devices willing to receive REST messages must listen
on these REST URLs.

Note

Service Classifier Function (SCF) URL does not exist, because SCF is
considered as one of the network devices willing to receive REST
messages. However, there is a listener hooked on the SCF data store,
which is triggering POST/PUT/DELETE operations of ACL object,
because ACL is referenced in service-function-classifier.yang

Service Function Load Balancing Developer Guide

Overview

SFC Load-Balancing feature implements load balancing of Service
Functions, rather than a one-to-one mapping between Service Function
Forwarder and Service Function.

Load Balancing Architecture

Service Function Groups (SFG) can replace Service Functions (SF) in the
Rendered Path model. A Service Path can only be defined using SFGs or
SFs, but not a combination of both.

Relevant objects in the YANG model are as follows:

	Service-Function-Group-Algorithm:

Service-Function-Group-Algorithms {
 Service-Function-Group-Algorithm {
 String name
 String type
 }
}

Available types: ALL, SELECT, INDIRECT, FAST_FAILURE

	Service-Function-Group:

Service-Function-Groups {
 Service-Function-Group {
 String name
 String serviceFunctionGroupAlgorithmName
 String type
 String groupId
 Service-Function-Group-Element {
 String service-function-name
 int index
 }
 }
}

	ServiceFunctionHop: holds a reference to a name of SFG (or SF)

Key APIs and Interfaces

This feature enhances the existing SFC API.

REST API commands include: * For Service Function Group (SFG): read
existing SFG, write new SFG, delete existing SFG, add Service Function
(SF) to SFG, and delete SF from SFG * For Service Function Group
Algorithm (SFG-Alg): read, write, delete

Bundle providing the REST API: sfc-sb-rest * Service Function Groups
and Algorithms are defined in: sfc-sfg and sfc-sfg-alg * Relevant JAVA
API: SfcProviderServiceFunctionGroupAPI,
SfcProviderServiceFunctionGroupAlgAPI

Service Function Scheduling Algorithms

Overview

When creating the Rendered Service Path (RSP), the earlier release of
SFC chose the first available service function from a list of service
function names. Now a new API is introduced to allow developers to
develop their own schedule algorithms when creating the RSP. There are
four scheduling algorithms (Random, Round Robin, Load Balance and
Shortest Path) are provided as examples for the API definition. This
guide gives a simple introduction of how to develop service function
scheduling algorithms based on the current extensible framework.

Architecture

The following figure illustrates the service function selection
framework and algorithms.

[image: SF Scheduling Algorithm framework Architecture]
SF Scheduling Algorithm framework Architecture

The YANG Model defines the Service Function Scheduling Algorithm type
identities and how they are stored in the MD-SAL data store for the
scheduling algorithms.

The MD-SAL data store stores all informations for the scheduling
algorithms, including their types, names, and status.

The API provides some basic APIs to manage the informations stored in
the MD-SAL data store, like putting new items into it, getting all
scheduling algorithms, etc.

The RESTCONF API provides APIs to manage the informations stored in the
MD-SAL data store through RESTful calls.

The Service Function Chain Renderer gets the enabled scheduling
algorithm type, and schedules the service functions with scheduling
algorithm implementation.

Key APIs and Interfaces

While developing a new Service Function Scheduling Algorithm, a new
class should be added and it should extend the base schedule class
SfcServiceFunctionSchedulerAPI. And the new class should implement the
abstract function:

public List<String> scheduleServiceFuntions(ServiceFunctionChain chain, int serviceIndex).

	``ServiceFunctionChain chain``: the chain which will be rendered

	``int serviceIndex``: the initial service index for this rendered
service path

	``List<String>``: a list of service function names which scheduled
by the Service Function Scheduling Algorithm.

API Reference Documentation

Please refer the API docs generated in the mdsal-apidocs.

SFC Proof of Transit Developer Guide

Overview

SFC Proof of Transit implements the in-situ OAM (iOAM) Proof of Transit
verification for SFCs and other paths. The implementation is broadly
divided into the North-bound (NB) and the South-bound (SB) side of the
application. The NB side is primarily charged with augmenting the RSP
with user-inputs for enabling the PoT on the RSP, while the SB side is
dedicated to auto-generated SFC PoT parameters, periodic refresh of these
parameters and delivering the parameters to the NETCONF and iOAM capable
nodes (eg. VPP instances).

Architecture

The following diagram gives the high level overview of the different parts.

[image: SFC Proof of Transit Internal Architecture]
SFC Proof of Transit Internal Architecture

The Proof of Transit feature is enabled by two sub-features:

	ODL SFC PoT: feature:install odl-sfc-pot

	ODL SFC PoT NETCONF Renderer: feature:install odl-sfc-pot-netconf-renderer

Details

The following classes and handlers are involved.

	The class (SfcPotRpc) sets up RPC handlers for enabling the feature.

	There are new RPC handlers for two new RPCs
(EnableSfcIoamPotRenderedPath and DisableSfcIoamPotRenderedPath) and
effected via SfcPotRspProcessor class.

	When a user configures via a POST RPC call to enable Proof of Transit
on a particular SFC (via the Rendered Service Path), the configuration
drives the creation of necessary augmentations to the RSP
(to modify the RSP) to effect the Proof of Transit configurations.

	The augmentation meta-data added to the RSP are defined in the
sfc-ioam-nb-pot.yang file.

Note

There are no auto generated configuration parameters added to the RSP to
avoid RSP bloat.

	Adding SFC Proof of Transit meta-data to the RSP is done in the
SfcPotRspProcessor class.

	Once the RSP is updated, the RSP data listeners in the SB renderer modules
(odl-sfc-pot-netconf-renderer) will listen to the RSP changes and send
out configurations to the necessary network nodes that are part of the SFC.

	The configurations are handled mainly in the SfcPotAPI,
SfcPotConfigGenerator, SfcPotPolyAPI, SfcPotPolyClass and
SfcPotPolyClassAPI classes.

	There is a sfc-ioam-sb-pot.yang file that shows the format of the iOAM
PoT configuration data sent to each node of the SFC.

	A timer is started based on the “ioam-pot-refresh-period” value in the
SB renderer module that handles configuration
refresh periodically.

	The SB and timer handling are done in the odl-sfc-pot-netconf-renderer module.
Note: This is NOT done in the NB odl-sfc-pot module to avoid periodic
updates to the RSP itself.

	ODL creates a new profile of a set of keys and secrets at a constant rate
and updates an internal data store with the configuration. The controller
labels the configurations per RSP as “even” or “odd” – and the controller
cycles between “even” and “odd” labeled profiles. The rate at which these
profiles are communicated to the nodes is configurable and in future,
could be automatic based on profile usage. Once the profile has been
successfully communicated to all nodes (all Netconf transactions completed),
the controller sends an “enable pot-profile” request to the ingress node.

	The nodes are to maintain two profiles (an even and an odd pot-profile).
One profile is currently active and in use, and one profile is about to
get used. A flag in the packet is indicating whether the odd or even
pot-profile is to be used by a node. This is to ensure that during profile
change we’re not disrupting the service. I.e. if the “odd” profile is
active, the controller can communicate the “even” profile to all nodes
and only if all the nodes have received it, the controller will tell
the ingress node to switch to the “even” profile. Given that the
indicator travels within the packet, all nodes will switch to the
“even” profile. The “even” profile gets active on all nodes – and nodes
are ready to receive a new “odd” profile.

	HashedTimerWheel implementation is used to support the periodic
configuration refresh. The default refresh is 5 seconds to start with.

	Depending on the last updated profile, the odd or the even profile is
updated in the fresh timer pop and the configurations are sent down
appropriately.

	SfcPotTimerQueue, SfcPotTimerWheel, SfcPotTimerTask, SfcPotTimerData
and SfcPotTimerThread are the classes that handle the Proof of
Transit protocol profile refresh implementation.

	The RSP data store is NOT being changed periodically and the timer
and configuration refresh modules are present in the SB renderer module
handler and hence there are are no scale or RSP churn issues
affecting the design.

The following diagram gives the overall sequence diagram of the interactions
between the different classes.

[image: SFC Proof of Transit Sequence Diagram]
SFC Proof of Transit Sequence Diagram

Logical Service Function Forwarder

Overview

Rationale

When the current SFC is deployed in a cloud environment, it is assumed that each
switch connected to a Service Function is configured as a Service Function Forwarder and
each Service Function is connected to its Service Function Forwarder depending on the
Compute Node where the Virtual Machine is located. This solution allows the basic cloud
use cases to be fulfilled, as for example, the ones required in OPNFV Brahmaputra, however,
some advanced use cases, like the transparent migration of VMs can not be implemented.
The Logical Service Function Forwarder enables the following advanced use cases:

	Service Function mobility without service disruption

	Service Functions load balancing and failover

As shown in the picture below, the Logical Service Function Forwarder concept extends the current
SFC northbound API to provide an abstraction of the underlying Data Center infrastructure.
The Data Center underlaying network can be abstracted by a single SFF. This single SFF uses
the logical port UUID as data plane locator to connect SFs globally and in a location-transparent manner.
SFC makes use of Genius project to track the location of the SF’s logical ports.

[image: Single Logical SFF concept]

The SFC internally distributes the necessary flow state over the relevant switches based on the
internal Data Center topology and the deployment of SFs.

Changes in data model

The Logical Service Function Forwarder concept extends the current SFC northbound API to provide
an abstraction of the underlying Data Center infrastructure.

The Logical SFF simplifies the configuration of the current SFC data model by reducing the number
of parameters to be be configured in every SFF, since the controller will discover those parameters
by interacting with the services offered by the Genius project.

The following picture shows the Logical SFF data model. The model gets simplified as most of the
configuration parameters of the current SFC data model are discovered in runtime. The complete
YANG model can be found here logical SFF model [https://github.com/opendaylight/sfc/blob/master/sfc-model/src/main/yang/service-function-forwarder-logical.yang].

[image: Logical SFF data model]

There are other minor changes in the data model; the SFC encapsulation type has been added or moved in the following files:

	RSP data model [https://github.com/opendaylight/sfc/blob/master/sfc-model/src/main/yang/rendered-service-path.yang]

	SFP data model [https://github.com/opendaylight/sfc/blob/master/sfc-model/src/main/yang/service-function-path.yang]

	Service Locator data model [https://github.com/opendaylight/sfc/blob/master/sfc-model/src/main/yang/service-locator.yang]

Interaction with Genius

Feature sfc-genius functionally enables SFC integration with Genius. This allows configuring a Logical SFF
and SFs attached to this Logical SFF via logical interfaces (i.e. neutron ports) that are registered with Genius.

As shown in the following picture, SFC will interact with Genius project’s services to provide the
Logical SFF functionality.

[image: SFC and Genius]

The following are the main Genius’ services used by SFC:

	Interaction with Interface Tunnel Manager (ITM)

	Interaction with the Interface Manager

	Interaction with Resource Manager

SFC Service registration with Genius

Genius handles the coexistence of different network services. As such, SFC service is registered with Genius
performing the following actions:

	SFC Service Binding

	As soon as a Service Function associated to the Logical SFF is involved in a Rendered Service Path, SFC service is
bound to its logical interface via Genius Interface Manager. This has the effect of forwarding every incoming packet
from the Service Function to the SFC pipeline of the attached switch, as long as it is not consumed by a different
bound service with higher priority.

	SFC Service Terminating Action

	As soon as SFC service is bound to the interface of a Service Function for the first time on a specific switch, a
terminating service action is configured on that switch via Genius Interface Tunnel Manager. This has the effect of
forwarding every incoming packet from a different switch to the SFC pipeline as long as the traffic is VXLAN
encapsulated on VNI 0.

The following sequence diagrams depict how the overall process takes place:

[image: sfc-genius at RSP render]
SFC genius module interaction with Genius at RSP creation.

[image: sfc-genius at RSP removal]
SFC genius module interaction with Genius at RSP removal.

For more information on how Genius allows different services to coexist, see the Genius User Guide.

Path Rendering

During path rendering, Genius is queried to obtain needed information, such as:

	Location of a logical interface on the data-plane.

	Tunnel interface for a specific pair of source and destination switches.

	Egress OpenFlow actions to output packets to a specific interface.

See RSP Rendering section for more information.

VM migration

Upon VM migration, it’s logical interface is first unregistered and then registered with Genius, possibly at a new
physical location. sfc-genius reacts to this by re-rendering all the RSPs on which the associated SF
participates, if any.

The following picture illustrates the process:

[image: sfc-genius at VM migration]
SFC genius module at VM migration.

RSP Rendering changes for paths using the Logical SFF

	Construction of the auxiliary rendering graph

When starting the rendering of a RSP, the SFC renderer builds an auxiliary graph with information about the required hops for traffic traversing the path. RSP processing is achieved by iteratively evaluating each of the entries in the graph, writing the required flows in the proper switch for each hop.

It is important to note that the graph includes both traffic ingress (i.e. traffic entering into the first SF) and traffic egress (i.e. traffic leaving the chain from the last SF) as hops. Therefore, the number of entries in the graph equals the number of SFs in the chain plus one.

[image: ../_images/sfc-genius-example-auxiliary-graph.png]

The process of rendering a chain when the switches involved are part of the Logical SFF also starts with the construction of the hop graph. The difference is that when the SFs used in the chain are using a logical interface, the SFC renderer will also retrieve from Genius the DPIDs for the switches, storing them in the graph. In this context, those switches are the ones in the compute nodes each SF is hosted on at the time the chain is rendered.

[image: ../_images/sfc-genius-example-auxiliary-graph-logical-sff.png]

	New transport processor

Transport processors are classes which calculate and write the correct flows for a chain. Each transport processor specializes on writing the flows for a given combination of transport type and SFC encapsulation.

A specific transport processor has been created for paths using a Logical SFF. A particularity of this transport processor is that its use is not only determined by the transport / SFC encapsulation combination, but also because the chain is using a Logical SFF. The actual condition evaluated for selecting the Logical SFF transport processor is that the SFs in the chain are using logical interface locators, and that the DPIDs for those locators can be successfully retrieved from Genius.

[image: ../_images/transport_processors_class_diagram.png]

The main differences between the Logical SFF transport processor and other processors are the following:

	Instead of srcSff, dstSff fields in the hops graph (which are all equal in a path using a Logical SFF), the Logical SFF transport processor uses previously stored srcDpnId, dstDpnId fields in order to know whether an actual hop between compute nodes must be performed or not (it is possible that two consecutive SFs are collocated in the same compute node).

	When a hop between switches really has to be performed, it relies on Genius for getting the actions to perform that hop. The retrieval of those actions involve two steps:

	First, Genius’ Overlay Tunnel Manager module is used in order to retrieve the target interface for a jump between the source and the destination DPIDs.

	Then, egress instructions for that interface are retrieved from Genius’s Interface Manager.

	There are no next hop rules between compute nodes, only egress instructions (the transport zone tunnels have all the required routing information).

	Next hop information towards SFs uses mac adresses which are also retrieved from the Genius datastore.

	The Logical SFF transport processor performs NSH decapsulation in the last switch of the chain.

	Post-rendering update of the operational data model

When the rendering of a chain finishes successfully, the Logical SFF Transport Processor perform two operational datastore modifications in order to provide some relevant runtime information about the chain. The exposed information is the following:

	Rendered Service Path state: when the chain uses a Logical SFF, DPIDs for the switches in the compute nodes on which the SFs participating in the chain are hosted are added to the hop information.

	SFF state: A new list of all RSPs which use each DPID is has been added. It is updated on each RSP addition / deletion.

Classifier impacts

This section explains the changes made to the SFC classifier, enabling it
to be attached to Logical SFFs.

Refer to the following image to better understand the concept, and the required
steps to implement the feature.

[image: Classifier integration with Genius]
SFC classifier integration with Genius.

As stated in the SFC User Guide,
the classifier needs to be provisioned using logical interfaces as attachment
points.

When that happens, MDSAL will trigger an event in the odl-sfc-scf-openflow feature
(i.e. the sfc-classifier), which is responsible for installing the classifier
flows in the classifier switches.

The first step of the process, is to bind the interfaces to classify in Genius,
in order for the desired traffic (originating from the VMs having the
provisioned attachment-points) to enter the SFC pipeline. This will make traffic
reach table 82 (SFC classifier table), coming from table 0 (table managed by
Genius, shared by all applications).

The next step, is deciding which flows to install in the SFC classifier table.
A table-miss flow will be installed, having a MatchAny clause, whose action is
to jump to Genius’s egress dispatcher table. This enables traffic intended for
other applications to still be processed.

The flow that allows the SFC pipeline to continue is added next, having higher
match priority than the table-miss flow. This flow has two responsabilities:

	Push the NSH header, along with its metadata (required within the SFC pipeline)

Features the specified ACL matches as match criteria, and push NSH along
with its metadata into the Action list.

	Advance the SFC pipeline

Forward the traffic to the first Service Function in the RSP. This steers
packets into the SFC domain, and how it is done depends on whether the
classifier is co-located with the first service function in the specified
RSP.

Should the classifier be co-located (i.e. in the same compute node), a
new instruction is appended to the flow, telling all matches to jump to
the transport ingress table.

If not, Genius’s tunnel manager service is queried to get the tunnel
interface connecting the classifier node with the compute node where the
first Service Function is located, and finally, Genius’s interface manager
service is queried asking for instructions on how to reach that tunnel
interface.

These actions are then appended to the Action list already containing push
NSH and push NSH metadata Actions, and written in an Apply-Actions
Instruction into the datastore.

SNMP4SDN Developer Guide

Overview

We propose a southbound plugin that can control the off-the-shelf
commodity Ethernet switches for the purpose of building SDN using
Ethernet switches. For Ethernet switches, forwarding table, VLAN table,
and ACL are where one can install flow configuration on, and this is
done via SNMP and CLI in the proposed plugin. In addition, some settings
required for Ethernet switches in SDN, e.g., disabling STP and flooding,
are proposed.

[image: SNMP4SDN as an OpenDaylight southbound plugin]
SNMP4SDN as an OpenDaylight southbound plugin

Architecture

The modules in the plugin are depicted as the following figure.

[image: Modules in the SNMP4SDN Plugin]
Modules in the SNMP4SDN Plugin

	AclService: add/remove ACL profile and rule on the switches.

	FdbService: add/modify/remove FDB table entry on the switches.

	VlanService: add/modify/remove VLAN table entry on the switches.

	TopologyService: query and acquire the subnet topology.

	InventoryService: acquire the switches and their ports.

	DiscoveryService: probe and resolve the underlying switches as well
as the port pairs connecting the switches. The probing is realized by
SNMP queries. The updates from discovery will also be reflected to
the TopologyService.

	MiscConfigService: do kinds of settings on switches

	Supported STP and ARP settings such as enable/disable STP, get
port’s STP state, get ARP table, set ARP entry, and others

	VendorSpecificHandler: to assist the flow configuration services to
call the switch-talking modules with correct parameters value and
order.

	Switch-talking modules

	For the services above, when they need to read or configure the
underlying switches via SNMP or CLI, these queries are dealt with
the modules SNMPHandler and CLIHandler which directly talk with
the switches. The SNMPListener is to listen to snmp trap such as
link up/down event or switch on/off event.

Design

In terms of the architecture of the SNMP4SDN Plugin’s features, the
features include flow configuration, topology discovery, and
multi-vendor support. Their architectures please refer to Wiki
(Developer Guide -
Design [https://wiki.opendaylight.org/view/SNMP4SDN:Developer_Guide#Design]).

Installation and Configuration Guide

	Please refer to the Getting Started Guide in
https://www.opendaylight.org/downloads, find the SNMP4SDN section.

	For the latest full guide, please refer to Wiki (Installation
Guide [https://wiki.opendaylight.org/view/SNMP4SDN:Installation_Guide],
User Guide -
Configuration [https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Configuration]).

Tutorial

	For the latest full guide, please refer to Wiki (User Guide -
Tutorial [https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Tutorial_.2F_How-To]).

Programmatic Interface(s)

SNMP4SDN Plugin exposes APIs via MD-SAL with YANG model. The methods
(RPC call) and data structures for them are listed below.

TopologyService

	RPC call

	get-edge-list

	get-node-list

	get-node-connector-list

	set-discovery-interval (given interval time in seconds)

	rediscover

	Data structure

	node: composed of node-id, node-type

	node-connector: composed of node-connector-id,
node-connector-type, node

	topo-edge: composed of head-node-connector-id,
head-node-connector-type, head-node-id, head-node-type,
tail-node-connector-id, tail-node-connector-type, tail-node-id,
tail-node-type

VlanService

	RPC call

	add-vlan (given node ID, VLAN ID, VLAN name)

	add-vlan-and-set-ports (given node ID, VLAN ID, VLAN name, tagged
ports, untagged ports)

	set-vlan-ports (given node ID, VLAN ID, tagged ports, untagged
ports)

	delete-vlan (given node ID, VLAN ID)

	get-vlan-table (given node ID)

AclService

	RPC call

	create-acl-profile (given node ID, acl-profile-index, acl-profile)

	del-acl-profile (given node ID, acl-profile-index)

	set-acl-rule (given node ID, acl-index, acl-rule)

	del-acl-rule (given node ID, acl-index)

	clear-acl-table (given node ID)

	Data structure

	acl-profile-index: composed of profile-id, profile name

	acl-profile: composed of acl-layer, vlan-mask, src-ip-mask,
dst-ip-mask

	acl-layer: IP or ETHERNET

	acl-index: composed of acl-profile-index, acl-rule-index

	acl-rule-index: composed of rule-id, rule-name

	acl-rule: composed of port-list, acl-layer, acl-field, acl-action

	acl-field: composed of vlan-id, src-ip, dst-ip

	acl-action: PERMIT or DENY

FdbService

	RPC call

	set-fdb-entry (given fdb-entry)

	del-fdb-entry (given node-id, vlan-id, dest-mac-adddr)

	get-fdb-entry (given node-id, vlan-id, dest-mac-adddr)

	get-fdb-table (given node-id)

	Data structure

	fdb-entry: composed of node-id, vlan-id, dest-mac-addr, port,
fdb-entry-type

	fdb-entry-type: OTHER/INVALID/LEARNED/SELF/MGMT

MiscConfigService

	RPC call

	set-stp-port-state (given node-id, port, is_nable)

	get-stp-port-state (given node-id, port)

	get-stp-port-root (given node-id, port)

	enable-stp (given node-id)

	disable-stp (given node-id)

	delete-arp-entry (given node-id, ip-address)

	set-arp-entry (given node-id, arp-entry)

	get-arp-entry (given node-id, ip-address)

	get-arp-table (given node-id)

	Data structure

	stp-port-state:
DISABLE/BLOCKING/LISTENING/LEARNING/FORWARDING/BROKEN

	arp-entry: composed of ip-address and mac-address

SwitchDbService

	RPC call

	reload-db (The following 4 RPC implemention is TBD)

	add-switch-entry

	delete-switch-entry

	clear-db

	update-db

	Data structure

	switch-info: compose of node-ip, node-mac, community,
cli-user-name, cli-password, model

Help

	SNMP4SDN Wiki [https://wiki.opendaylight.org/view/SNMP4SDN:Main]

	SNMP4SDN Mailing List
(user [https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-users],
developer [https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-dev])

	Latest troubleshooting in
Wiki [https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Troubleshooting]

SXP Developer Guide

Overview

SXP (Scalable-Group Tag eXchange Protocol) project is an effort to enhance
OpenDaylight platform with IP-SGT (IP Address to Source Group Tag)
bindings that can be learned from connected SXP-aware network nodes. The
current implementation supports SXP protocol version 4 according to the
Smith, Kandula - SXP IETF
draft [https://tools.ietf.org/html/draft-smith-kandula-sxp-05] and
grouping of peers and creating filters based on ACL/Prefix-list syntax
for filtering outbound and inbound IP-SGT bindings. All protocol legacy
versions 1-3 are supported as well. Additionally, version 4 adds
bidirectional connection type as an extension of a unidirectional one.

SXP Architecture

The SXP Server manages all connected clients in separate threads and a
common SXP protocol agreement is used between connected peers. Each SXP
network peer is modelled with its pertaining class, e.g., SXP Server
represents the SXP Speaker, SXP Listener the Client. The server program
creates the ServerSocket object on a specified port and waits until a
client starts up and requests connect on the IP address and port of the
server. The client program opens a Socket that is connected to the
server running on the specified host IP address and port.

The SXP Listener maintains connection with its speaker peer. From an
opened channel pipeline, all incoming SXP messages are processed by
various handlers. Message must be decoded, parsed and validated.

The SXP Speaker is a counterpart to the SXP Listener. It maintains a
connection with its listener peer and sends composed messages.

The SXP Binding Handler extracts the IP-SGT binding from a message and
pulls it into the SXP-Database. If an error is detected during the
IP-SGT extraction, an appropriate error code and sub-code is selected
and an error message is sent back to the connected peer. All transitive
messages are routed directly to the output queue of SXP Binding
Dispatcher.

The SXP Binding Dispatcher represents a selector that will decides how
many data from the SXP-database will be sent and when. It is responsible
for message content composition based on maximum message length.

The SXP Binding Filters handles filtering of outgoing and incoming
IP-SGT bindings according to BGP filtering using ACL and Prefix List
syntax for specifying filter or based on Peer-sequence length.

The SXP Domains feature provides isolation of SXP peers and bindings
learned between them, also exchange of Bindings is possible across
SXP-Domains by ACL, Prefix List or Peer-Sequence filters

Key APIs and Interfaces

As this project is fairly small, it provides only few features that
install and provide all APIs and implementations for this project.

	sxp-route

	sxp-controller

	sxp-api

	spx-core

sxp-route

Performs managing of SXP devices in cluster environment

sxp-controller

RPC request handling

sxp-api

Contains data holders and entities

spx-core

Main logic and core features

API Reference Documentation

RESTCONF Interface and Dynamic
Tree [https://wiki.opendaylight.org/images/9/91/SXP_Restconf_Interface_and_Dynamic_Tree.pdf]
Specification and
Architecture [https://wiki.opendaylight.org/images/4/44/SXP_Specification_and_Architecture_v05.pdf]

Topology Processing Framework Developer Guide

Overview

The Topology Processing Framework allows developers to aggregate and
filter topologies according to defined correlations. It also provides
functionality, which you can use to make your own topology model by
automating the translation from one model to another. For example to
translate from the opendaylight-inventory model to only using the
network-topology model.

Architecture

Chapter Overview

In this chapter we describe the architecture of the Topology Processing
Framework. In the first part, we provide information about available
features and basic class relationships. In the second part, we describe
our model specific approach, which is used to provide support for
different models.

Basic Architecture

The Topology Processing Framework consists of several Karaf features:

	odl-topoprocessing-framework

	odl-topoprocessing-inventory

	odl-topoprocessing-network-topology

	odl-topoprocessing-i2rs

	odl-topoprocessing-inventory-rendering

The feature odl-topoprocessing-framework contains the
topoprocessing-api, topoprocessing-spi and topoprocessing-impl bundles.
This feature is the core of the Topology Processing Framework and is
required by all others features.

	topoprocessing-api - contains correlation definitions and definitions
required for rendering

	topoprocessing-spi - entry point for topoprocessing service (start
and close)

	topoprocessing-impl - contains base implementations of handlers,
listeners, aggregators and filtrators

TopoProcessingProvider is the entry point for Topology Processing
Framework. It requires a DataBroker instance. The DataBroker is needed
for listener registration. There is also the TopologyRequestListener
which listens on aggregated topology requests (placed into the
configuration datastore) and UnderlayTopologyListeners which listen on
underlay topology data changes (made in operational datastore). The
TopologyRequestHandler saves toporequest data and provides a method for
translating a path to the specified leaf. When a change in the topology
occurs, the registered UnderlayTopologyListener processes this
information for further aggregation and/or filtration. Finally, after an
overlay topology is created, it is passed to the TopologyWriter, which
writes this topology into operational datastore.

[image: Class relationship]
Class relationship

[1] TopologyRequestHandler instantiates TopologyWriter and
TopologyManager. Then, according to the request, initializes either
TopologyAggregator, TopologyFiltrator or LinkCalculator.

[2] It creates as many instances of UnderlayTopologyListener as there
are underlay topologies.

[3] PhysicalNodes are created for relevant incoming nodes (those having
node ID).

[4a] It performs aggregation and creates logical nodes.

[4b] It performs filtration and creates logical nodes.

[4c] It performs link computation and creates links between logical
nodes.

[5] Logical nodes are put into wrapper.

[6] The wrapper is translated into the appropriate format and written
into datastore.

Model Specific Approach

The Topology Processing Framework consists of several modules and Karaf
features, which provide support for different input models. Currently we
support the network-topology, opendaylight-inventory and i2rs models.
For each of these input models, the Topology Processing Framework has
one module and one Karaf feature.

How it works

User point of view:

When you start the odl-topoprocessing-framework feature, the Topology
Processing Framework starts without knowledge how to work with any input
models. In order to allow the Topology Processing Framework to process
some kind of input model, you must install one (or more) model specific
features. Installing these features will also start
odl-topoprocessing-framework feature if it is not already running. These
features inject appropriate logic into the odl-topoprocessing-framework
feature. From that point, the Topology Processing Framework is able to
process different kinds of input models, specifically those that you
install features for.

Developer point of view:

The topoprocessing-impl module contains (among other things) classes and
interfaces, which are common for every model specific topoprocessing
module. These classes and interfaces are implemented and extended by
classes in particular model specific modules. Model specific modules
also depend on the TopoProcessingProvider class in the
topoprocessing-spi module. This dependency is injected during
installation of model specific features in Karaf. When a model specific
feature is started, it calls the registerAdapters(adapters) method of
the injected TopoProcessingProvider object. After this step, the
Topology Processing Framework is able to use registered model adapters
to work with input models.

To achieve the described functionality we created a ModelAdapter
interface. It represents installed feature and provides methods for
creating crucial structures specific to each model.

[image: ModelAdapter interface]
ModelAdapter interface

Model Specific Features

	odl-topoprocessing-network-topology - this feature contains logic to
work with network-topology model

	odl-topoprocessing-inventory - this feature contains logic to work
with opendaylight-inventory model

	odl-topoprocessing-i2rs - this feature contains logic to work with
i2rs model

Inventory Model Support

The opendaylight-inventory model contains only nodes, termination
points, information regarding these structures. This model co-operates
with network-topology model, where other topology related information is
stored. This means that we have to handle two input models at once. To
support the inventory model, InventoryListener and
NotificationInterConnector classes were introduced. Please see the flow
diagrams below.

[image: Network topology model]
Network topology model

[image: Inventory model]
Inventory model

Here we can see the InventoryListener and NotificationInterConnector
classes. InventoryListener listens on data changes in the inventory
model and passes these changes wrapped as an UnderlayItem for further
processing to NotificationInterConnector. It doesn’t contain node
information - it contains a leafNode (node based on which aggregation
occurs) instead. The node information is stored in the topology model,
where UnderlayTopologyListener is registered as usual. This listener
delivers the missing information.

Then the NotificationInterConnector combines the two notifications into
a complete UnderlayItem (no null values) and delivers this UnderlayItem
for further processing (to next TopologyOperator).

Aggregation and Filtration

Chapter Overview

The Topology Processing Framework allows the creation of aggregated
topologies and filtered views over existing topologies. Currently,
aggregation and filtration is supported for topologies that follow
network-topology [https://github.com/opendaylight/yangtools/blob/master/model/ietf/ietf-topology/src/main/yang/network-topology%402013-10-21.yang],
opendaylight-inventory or i2rs model. When a request to create an
aggregated or filtered topology is received, the framework creates one
listener per underlay topology. Whenever any specified underlay topology
is changed, the appropriate listener is triggered with the change and
the change is processed. Two types of correlations (functionalities) are
currently supported:

	Aggregation

	Unification

	Equality

	Filtration

Terminology

We use the term underlay item (physical node) for items (nodes, links,
termination-points) from underlay and overlay item (logical node) for
items from overlay topologies regardless of whether those are actually
physical network elements.

Aggregation

Aggregation is an operation which creates an aggregated item from two or
more items in the underlay topology if the aggregation condition is
fulfilled. Requests for aggregated topologies must specify a list of
underlay topologies over which the overlay (aggregated) topology will be
created and a target field in the underlay item that the framework will
check for equality.

Create Overlay Node

First, each new underlay item is inserted into the proper topology
store. Once the item is stored, the framework compares it (using the
target field value) with all stored underlay items from underlay
topologies. If there is a target-field match, a new overlay item is
created containing pointers to all equal underlay items. The newly
created overlay item is also given new references to its supporting
underlay items.

Equality case:

If an item doesn’t fulfill the equality condition with any other items,
processing finishes after adding the item into topology store. It will
stay there for future use, ready to create an aggregated item with a new
underlay item, with which it would satisfy the equality condition.

Unification case:

An overlay item is created for all underlay items, even those which
don’t fulfill the equality condition with any other items. This means
that an overlay item is created for every underlay item, but for items
which satisfy the equality condition, an aggregated item is created.

Update Node

Processing of updated underlay items depends on whether the target field
has been modified. If yes, then:

	if the underlay item belonged to some overlay item, it is removed
from that item. Next, if the aggregation condition on the target
field is satisfied, the item is inserted into another overlay item.
If the condition isn’t met then:

	in equality case - the item will not be present in overlay
topology.

	in unification case - the item will create an overlay item with a
single underlay item and this will be written into overlay
topology.

	if the item didn’t belong to some overlay item, it is checked again
for aggregation with other underlay items.

Remove Node

The underlay item is removed from the corresponding topology store, from
it’s overlay item (if it belongs to one) and this way it is also removed
from overlay topology.

Equality case:

If there is only one underlay item left in the overlay item, the overlay
item is removed.

Unification case:

The overlay item is removed once it refers to no underlay item.

Filtration

Filtration is an operation which results in creation of overlay topology
containing only items fulfilling conditions set in the topoprocessing
request.

Create Underlay Item

If a newly created underlay item passes all filtrators and their
conditions, then it is stored in topology store and a creation
notification is delivered into topology manager. No operation otherwise.

Update Underlay Item

First, the updated item is checked for presence in topology store:

	if it is present in topology store:

	if it meets the filtering conditions, then processUpdatedData
notification is triggered

	else processRemovedData notification is triggered

	if item isn’t present in topology store

	if item meets filtering conditions, then processCreatedData
notification is triggered

	else it is ignored

Remove Underlay Item

If an underlay node is supporting some overlay node, the overlay node is
simply removed.

Default Filtrator Types

There are seven types of default filtrators defined in the framework:

	IPv4-address filtrator - checks if specified field meets IPv4 address
+ mask criteria

	IPv6-address filtrator - checks if specified field meets IPv6 address
+ mask criteria

	Specific number filtrator - checks for specific number

	Specific string filtrator - checks for specific string

	Range number filtrator - checks if specified field is higher than
provided minimum (inclusive) and lower than provided maximum
(inclusive)

	Range string filtrator - checks if specified field is alphabetically
greater than provided minimum (inclusive) and alphabetically lower
than provided maximum (inclusive)

	Script filtrator - allows a user or application to implement their
own filtrator

Register Custom Filtrator

There might be some use case that cannot be achieved with the default
filtrators. In these cases, the framework offers the possibility for a
user or application to register a custom filtrator.

Pre-Filtration / Filtration & Aggregation

This feature was introduced in order to lower memory and performance
demands. It is a combination of the filtration and aggregation
operations. First, uninteresting items are filtered out and then
aggregation is performed only on items that passed filtration. This way
the framework saves on compute time. The PreAggregationFiltrator and
TopologyAggregator share the same TopoStoreProvider (and thus topology
store) which results in lower memory demands (as underlay items are
stored only in one topology store - they aren’t stored twice).

Link Computation

Chapter Overview

While processing the topology request, we create overlay nodes with
lists of supporting underlay nodes. Because these overlay nodes have
completely new identifiers, we lose link information. To regain this
link information, we provide Link Computation functionality. Its main
purpose is to create new overlay links based on the links from the
underlay topologies and underlay items from overlay items. The required
information for Link Computation is provided via the Link Computation
model in
(topology-link-computation.yang [https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=topoprocessing-api/src/main/yang/topology-link-computation.yang;hb=refs/heads/stable/boron]).

Link Computation Functionality

Let us consider two topologies with following components:

Topology 1:

	Node: node:1:1

	Node: node:1:2

	Node: node:1:3

	Link: link:1:1 (from node:1:1 to node:1:2)

	Link: link:1:2 (from node:1:3 to node:1:2)

Topology 2:

	Node: node:2:1

	Node: node:2:2

	Node: node:2:3

	Link: link:2:1 (from node:2:1 to node:2:3)

Now let’s say that we applied some operations over these topologies that
results into aggregating together

	node:1:1 and node:2:3 (node:1)

	node:1:2 and node:2:2 (node:2)

	node:1:3 and node:2:1 (node:3)

At this point we can no longer use available links in new topology
because of the node ID change, so we must create new overlay links with
source and destination node set to new nodes IDs. It means that
link:1:1 from topology 1 will create new link link:1. Since
original source (node:1:1) is already aggregated under node:1,
it will become source node for link:1. Using same method the
destination will be node:2. And the final output will be three
links:

	link:1, from node:1 to node:2

	link:2, from node:3 to node:2

	link:3, from node:3 to node:1

[image: Overlay topology with computed links]
Overlay topology with computed links

In-Depth Look

The main logic behind Link Computation is executed in the LinkCalculator
operator. The required information is passed to LinkCalculator through
the LinkComputation section of the topology request. This section is
defined in the topology-link-computation.yang file. The main logic also
covers cases when some underlay nodes may not pass through other
topology operators.

Link Computation Model

There are three essential pieces of information for link computations.
All of them are provided within the LinkComputation section. These
pieces are:

	output model

	overlay topology with new nodes

	underlay topologies with original links

This whole section is augmented into network-topology:topology. By
placing this section out of correlations section, it allows us to send
link computation request separately from topology operations request.

Main Logic

Taking into consideration that some of the underlay nodes may not
transform into overlay nodes (e.g. they are filtered out), we created
two possible states for links:

	matched - a link is considered as matched when both original source
and destination node were transformed to overlay nodes

	waiting - a link is considered as waiting if original source,
destination or both nodes are missing from the overlay topology

All links in waiting the state are stored in waitingLinks list, already
matched links are stored in matchedLinks list and overlay nodes are
stored in the storedOverlayNodes list. All processing is based only on
information in these lists. Processing created, updated and removed
underlay items is slightly different and described in next sections
separately.

Processing Created Items

Created items can be either nodes or links, depending on the type of
listener from which they came. In the case of a link, it is immediately
added to waitingLinks and calculation for possible overlay link
creations (calculatePossibleLink) is started. The flow diagram for this
process is shown in the following picture:

[image: Flow diagram of processing created items]
Flow diagram of processing created items

Searching for the source and destination nodes in the
calculatePossibleLink method runs over each node in storedOverlayNodes
and the IDs of each supporting node is compared against IDs from the
underlay link’s source and destination nodes. If there are any nodes
missing, the link remains in the waiting state. If both the source and
destination nodes are found, the corresponding overlay nodes is recorded
as the new source and destination. The link is then removed from
waitingLinks and a new CalculatedLink is added to the matched links. At
the end, the new link (if it exists) is written into the datastore.

If the created item is an overlayNode, this is added to
storedOverlayNodes and we call calculatePossibleLink for every link in
waitingLinks.

Processing Updated Items

The difference from processing created items is that we have three
possible types of updated items: overlay nodes, waiting underlay links,
and matched underlay links.

	In the case of a change in a matched link, this must be recalculated
and based on the result it will either be matched with new source and
destination or will be returned to waiting links. If the link is
moved back to a waiting state, it must also be removed from the
datastore.

	In the case of change in a waiting link, it is passed to the
calculation process and based on the result will either remain in
waiting state or be promoted to the matched state.

	In the case of a change in an overlay node, storedOverlayNodes must
be updated properly and all links must be recalculated in case of
changes.

Processing Removed items

Same as for processing updated item. There can be three types of removed
items:

	In case of waiting link removal, the link is just removed from
waitingLinks

	In case of matched link removal, the link is removed from
matchingLinks and datastore

	In case of overlay node removal, the node must be removed form
storedOverlayNodes and all matching links must be recalculated

Wrapper, RPC Republishing, Writing Mechanism

Chapter Overview

During the process of aggregation and filtration, overlay items (so
called logical nodes) were created from underlay items (physical nodes).
In the topology manager, overlay items are put into a wrapper. A wrapper
is identified with unique ID and contains list of logical nodes.
Wrappers are used to deal with transitivity of underlay items - which
permits grouping of overlay items (into wrappers).

[image: Wrapper]
Wrapper

PN1, PN2, PN3 = physical nodes

LN1, LN2 = logical nodes

RPC Republishing

All RPCs registered to handle underlay items are re-registered under
their corresponding wrapper ID. RPCs of underlay items (belonging to an
overlay item) are gathered, and registered under ID of their wrapper.

RPC Call

When RPC is called on overlay item, this call is delegated to it’s
underlay items, this means that the RPC is called on all underlay items
of this overlay item.

Writing Mechanism

When a wrapper (containing overlay item(s) with it’s underlay item(s))
is ready to be written into data store, it has to be converted into DOM
format. After this translation is done, the result is written into
datastore. Physical nodes are stored as supporting-nodes. In order to
use resources responsibly, writing operation is divided into two steps.
First, a set of threads registers prepared operations (deletes and puts)
and one thread makes actual write operation in batch.

Topology Rendering Guide - Inventory Rendering

Chapter Overview

In the most recent OpenDaylight release, the opendaylight-inventory
model is marked as deprecated. To facilitate migration from it to the
network-topology model, there were requests to render (translate) data
from inventory model (whether augmented or not) to another model for
further processing. The Topology Processing Framework was extended to
provide this functionality by implementing several rendering-specific
classes. This chapter is a step-by-step guide on how to implement your
own topology rendering using our inventory rendering as an example.

Use case

For the purpose of this guide we are going to render the following
augmented fields from the OpenFlow model:

	from inventory node:

	manufacturer

	hardware

	software

	serial-number

	description

	ip-address

	from inventory node-connector:

	name

	hardware-address

	current-speed

	maximum-speed

We also want to preserve the node ID and termination-point ID from
opendaylight-topology-inventory model, which is network-topology part of
the inventory model.

Implementation

There are two ways to implement support for your specific topology
rendering:

	add a module to your project that depends on the Topology Processing
Framework

	add a module to the Topology Processing Framework itself

Regardless, a successful implementation must complete all of the
following steps.

Step1 - Target Model Creation

Because the network-topology node does not have fields to store all
desired data, it is necessary to create new model to render this extra
data in to. For this guide we created the inventory-rendering model. The
picture below shows how data will be rendered and stored.

[image: Rendering to the inventory-rendering model]
Rendering to the inventory-rendering model

Important

When implementing your version of the topology-rendering model in
the Topology Processing Framework, the source file of the model
(.yang) must be saved in /topoprocessing-api/src/main/yang folder so
corresponding structures can be generated during build and can be
accessed from every module through dependencies.

When the target model is created you have to add an identifier through
which you can set your new model as output model. To do that you have to
add another identity item to topology-correlation.yang file. For our
inventory-rendering model identity looks like this:

After that you will be able to set inventory-rendering-model as output
model in XML.

Step2 - Module and Feature Creation

Important

This and following steps are based on the model specific
approach in the Topology Processing
Framework. We highly recommend that you familiarize yourself with
this approach in advance.

To create a base module and add it as a feature to Karaf in the Topology
Processing Framework we made the changes in following
commit [https://git.opendaylight.org/gerrit/#/c/26223/]. Changes in
other projects will likely be similar.

	File

	Changes

	pom.xml

	add new module to topoprocessing

	features.xml

	add feature to topoprocessing

	features/pom.xml

	add dependencies needed by features

	topoprocessing-artifacts/pom.xml

	add artifact

	topoprocessing-config/pom.xml

	add configuration file

	81-topoprocessing-inventory-renderin
g-config.xml

	configuration file for new module

	topoprocessing-inventory-rendering/p
om.xml

	main pom for new module

	TopoProcessingProviderIR.java

	contains startup method which
register new model adapter

	TopoProcessingProviderIRModule.java

	generated class which contains
createInstance method. You should
call your startup method from here.

	TopoProcessingProviderIRModuleFactor
y.java

	generated class. You will probably
not need to edit this file

	log4j.xml

	configuration file for logger
topoprocessing-inventory-rendering-p
rovider-impl.yang

Step3 - Module Adapters Creation

There are seven mandatory interfaces or abstract classes that needs to
be implemented in each module. They are:

	TopoProcessingProvider - provides module registration

	ModelAdapter - provides model specific instances

	TopologyRequestListener - listens on changes in the configuration
datastore

	TopologyRequestHandler - processes configuration datastore changes

	UnderlayTopologyListener - listens for changes in the specific model

	LinkTransaltor and NodeTranslator - used by OverlayItemTranslator to
create NormalizedNodes from OverlayItems

The name convention we used was to add an abbreviation for the specific
model to the beginning of implementing class name (e.g. the
IRModelAdapter refers to class which implements ModelAdapter in module
Inventory Rendering). In the case of the provider class, we put the
abbreviation at the end.

Important

	In the next sections, we use the terms TopologyRequestListener,
TopologyRequestHandler, etc. without a prepended or appended
abbreviation because the steps apply regardless of which specific
model you are targeting.

	If you want to implement rendering from inventory to
network-topology, you can just copy-paste our module and
additional changes will be required only in the output part.

Provider part

This part is the starting point of the whole module. It is responsible
for creating and registering TopologyRequestListeners. It is necessary
to create three classes which will import:

	TopoProcessingProviderModule - is a generated class from
topoprocessing-inventory-rendering-provider-impl.yang (created in
previous step, file will appear after first build). Its method
createInstance() is called at the feature start and must be
modified to create an instance of TopoProcessingProvider and call its
startup(TopoProcessingProvider topoProvider) function.

	TopoProcessingProvider - in
startup(TopoProcessingProvider topoProvider) function provides
ModelAdapter registration to TopoProcessingProviderImpl.

	ModelAdapter - provides creation of corresponding module specific
classes.

Input part

This includes the creation of the classes responsible for input data
processing. In this case, we had to create five classes implementing:

	TopologyRequestListener and TopologyRequestHandler - when
notified about a change in the configuration datastore, verify if the
change contains a topology request (has correlations in it) and
creates UnderlayTopologyListeners if needed. The implementation of
these classes will differ according to the model in which are
correlations saved (network-topology or i2rs). In the case of using
network-topology, as the input model, you can use our classes
IRTopologyRequestListener and IRTopologyRequestHandler.

	UnderlayTopologyListener - registers underlay listeners according
to input model. In our case (listening in the inventory model), we
created listeners for the network-topology model and inventory model,
and set the NotificationInterConnector as the first operator and set
the IRRenderingOperator as the second operator (after
NotificationInterConnector). Same as for
TopologyRequestListener/Handler, if you are rendering from the
inventory model, you can use our class IRUnderlayTopologyListener.

	InventoryListener - a new implementation of this class is
required only for inventory input model. This is because the
InventoryListener from topoprocessing-impl requires pathIdentifier
which is absent in the case of rendering.

	TopologyOperator - replaces classic topoprocessing operator.
While the classic operator provides specific operations on topology,
the rendering operator just wraps each received UnderlayItem to
OverlayItem and sends them to write.

Important

For purposes of topology rendering from inventory to
network-topology, there are misused fields in UnderlayItem as
follows:

	item - contains node from network-topology part of inventory

	leafItem - contains node from inventory

In case of implementing UnderlayTopologyListener or
InventoryListener you have to carefully adjust UnderlayItem creation
to these terms.

Output part

The output part of topology rendering is responsible for translating
received overlay items to normalized nodes. In the case of inventory
rendering, this is where node information from inventory are combined
with node information from network-topology. This combined information
is stored in our inventory-rendering model normalized node and passed to
the writer.

The output part consists of two translators implementing the
NodeTranslator and LinkTranslator interfaces.

NodeTranslator implementation - The NodeTranslator interface has one
translate(OverlayItemWrapper wrapper) method. For our purposes,
there is one important thing in wrapper - the list of OverlayItems which
have one or more common UnderlayItems. Regardless of this list, in the
case of rendering it will always contains only one OverlayItem. This
item has list of UnderlayItems, but again in case of rendering there
will be only one UnderlayItem item in this list. In NodeTranslator, the
OverlayItem and corresponding UnderlayItem represent nodes from the
translating model.

The UnderlayItem has several attributes. How you will use these
attributes in your rendering is up to you, as you create this item in
your topology operator. For example, as mentioned above, in our
inventory rendering example is an inventory node normalized node stored
in the UnderlayItem leafNode attribute, and we also store node-id from
network-topology model in UnderlayItem itemId attribute. You can now use
these attributes to build a normalized node for your new model. How to
read and create normalized nodes is out of scope of this document.

LinkTranslator implementation - The LinkTranslator interface also
has one translate(OverlayItemWrapper wrapper) method. In our
inventory rendering this method returns null, because the inventory
model doesn’t have links. But if you also need links, this is the place
where you should translate it into a normalized node for your model. In
LinkTranslator, the OverlayItem and corresponding UnderlayItem represent
links from the translating model. As in NodeTranslator, there will be
only one OverlayItem and one UnderlayItem in the corresponding lists.

Testing

If you want to test topoprocessing with some manually created underlay
topologies (like in this guide), than you have to tell Topoprocessing
to listen for underlay topologies on Configuration datastore
instead of Operational.

You can do this in this config file

<topoprocessing_directory>/topoprocessing-config/src/main/resources/80-topoprocessing-config.xml.

Here you have to change

<datastore-type>OPERATIONAL</datastore-type>

to

<datastore-type>CONFIGURATION</datastore-type>.

Also you have to add dependency required to test “inventory” topologies.

In <topoprocessing_directory>/features/pom.xml

add <openflowplugin.version>latest_snapshot</openflowplugin.version>
to properties section

and add this dependency to dependencies section

<dependency>
 <groupId>org.opendaylight.openflowplugin</groupId>
 <artifactId>features-openflowplugin</artifactId>
 <version>${openflowplugin.version}</version>
 <classifier>features</classifier><type>xml</type>
</dependency>

latest_snapshot in <openflowplugin.version> replace with latest snapshot, which can be found here [https://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/org/opendaylight/openflowplugin/openflowplugin/].

And in <topoprocessing_directory>/features/src/main/resources/features.xml

add <repository>mvn:org.opendaylight.openflowplugin/features-openflowplugin/${openflowplugin.version}/xml/features</repository>
to repositories section.

Now after you rebuild project and start Karaf, you can install necessary features.

You can install all with one command:

feature:install odl-restconf-noauth odl-topoprocessing-inventory-rendering odl-openflowplugin-southbound odl-openflowplugin-nsf-model

Now you can send messages to REST from any REST client (e.g. Postman in
Chrome). Messages have to have following headers:

	Header

	Value

	Content-Type:

	application/xml

	Accept:

	application/xml

	username:

	admin

	password:

	admin

Firstly send topology request to
http://localhost:8181/restconf/config/network-topology:network-topology/topology/render:1
with method PUT. Example of simple rendering request:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>render:1</topology-id>
 <correlations xmlns="urn:opendaylight:topology:correlation" >
 <output-model>inventory-rendering-model</output-model>
 <correlation>
 <correlation-id>1</correlation-id>
 <type>rendering-only</type>
 <correlation-item>node</correlation-item>
 <rendering>
 <underlay-topology>und-topo:1</underlay-topology>
 </rendering>
 </correlation>
 </correlations>
</topology>

This request says that we want create topology with name render:1 and
this topology should be stored in the inventory-rendering-model and it
should be created from topology flow:1 by node rendering.

Next we send the network-topology part of topology flow:1. So to the URL
http://localhost:8181/restconf/config/network-topology:network-topology/topology/und-topo:1
we PUT:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology"
 xmlns:it="urn:opendaylight:model:topology:inventory"
 xmlns:i="urn:opendaylight:inventory">
 <topology-id>und-topo:1</topology-id>
 <node>
 <node-id>openflow:1</node-id>
 <it:inventory-node-ref>
 /i:nodes/i:node[i:id="openflow:1"]
 </it:inventory-node-ref>
 <termination-point>
 <tp-id>tp:1</tp-id>
 <it:inventory-node-connector-ref>
 /i:nodes/i:node[i:id="openflow:1"]/i:node-connector[i:id="openflow:1:1"]
 </it:inventory-node-connector-ref>
 </termination-point>
 </node>
</topology>

And the last input will be inventory part of topology. To the URL
http://localhost:8181/restconf/config/opendaylight-inventory:nodes we
PUT:

<nodes
 xmlns="urn:opendaylight:inventory">
 <node>
 <id>openflow:1</id>
 <node-connector>
 <id>openflow:1:1</id>
 <port-number
 xmlns="urn:opendaylight:flow:inventory">1
 </port-number>
 <current-speed
 xmlns="urn:opendaylight:flow:inventory">10000000
 </current-speed>
 <name
 xmlns="urn:opendaylight:flow:inventory">s1-eth1
 </name>
 <supported
 xmlns="urn:opendaylight:flow:inventory">
 </supported>
 <current-feature
 xmlns="urn:opendaylight:flow:inventory">copper ten-gb-fd
 </current-feature>
 <configuration
 xmlns="urn:opendaylight:flow:inventory">
 </configuration>
 <peer-features
 xmlns="urn:opendaylight:flow:inventory">
 </peer-features>
 <maximum-speed
 xmlns="urn:opendaylight:flow:inventory">0
 </maximum-speed>
 <advertised-features
 xmlns="urn:opendaylight:flow:inventory">
 </advertised-features>
 <hardware-address
 xmlns="urn:opendaylight:flow:inventory">0E:DC:8C:63:EC:D1
 </hardware-address>
 <state
 xmlns="urn:opendaylight:flow:inventory">
 <link-down>false</link-down>
 <blocked>false</blocked>
 <live>false</live>
 </state>
 <flow-capable-node-connector-statistics
 xmlns="urn:opendaylight:port:statistics">
 <receive-errors>0</receive-errors>
 <receive-frame-error>0</receive-frame-error>
 <receive-over-run-error>0</receive-over-run-error>
 <receive-crc-error>0</receive-crc-error>
 <bytes>
 <transmitted>595</transmitted>
 <received>378</received>
 </bytes>
 <receive-drops>0</receive-drops>
 <duration>
 <second>28</second>
 <nanosecond>410000000</nanosecond>
 </duration>
 <transmit-errors>0</transmit-errors>
 <collision-count>0</collision-count>
 <packets>
 <transmitted>7</transmitted>
 <received>5</received>
 </packets>
 <transmit-drops>0</transmit-drops>
 </flow-capable-node-connector-statistics>
 </node-connector>
 <node-connector>
 <id>openflow:1:LOCAL</id>
 <port-number
 xmlns="urn:opendaylight:flow:inventory">4294967294
 </port-number>
 <current-speed
 xmlns="urn:opendaylight:flow:inventory">0
 </current-speed>
 <name
 xmlns="urn:opendaylight:flow:inventory">s1
 </name>
 <supported
 xmlns="urn:opendaylight:flow:inventory">
 </supported>
 <current-feature
 xmlns="urn:opendaylight:flow:inventory">
 </current-feature>
 <configuration
 xmlns="urn:opendaylight:flow:inventory">
 </configuration>
 <peer-features
 xmlns="urn:opendaylight:flow:inventory">
 </peer-features>
 <maximum-speed
 xmlns="urn:opendaylight:flow:inventory">0
 </maximum-speed>
 <advertised-features
 xmlns="urn:opendaylight:flow:inventory">
 </advertised-features>
 <hardware-address
 xmlns="urn:opendaylight:flow:inventory">BA:63:87:0C:76:41
 </hardware-address>
 <state
 xmlns="urn:opendaylight:flow:inventory">
 <link-down>false</link-down>
 <blocked>false</blocked>
 <live>false</live>
 </state>
 <flow-capable-node-connector-statistics
 xmlns="urn:opendaylight:port:statistics">
 <receive-errors>0</receive-errors>
 <receive-frame-error>0</receive-frame-error>
 <receive-over-run-error>0</receive-over-run-error>
 <receive-crc-error>0</receive-crc-error>
 <bytes>
 <transmitted>576</transmitted>
 <received>468</received>
 </bytes>
 <receive-drops>0</receive-drops>
 <duration>
 <second>28</second>
 <nanosecond>426000000</nanosecond>
 </duration>
 <transmit-errors>0</transmit-errors>
 <collision-count>0</collision-count>
 <packets>
 <transmitted>6</transmitted>
 <received>6</received>
 </packets>
 <transmit-drops>0</transmit-drops>
 </flow-capable-node-connector-statistics>
 </node-connector>
 <serial-number
 xmlns="urn:opendaylight:flow:inventory">None
 </serial-number>
 <manufacturer
 xmlns="urn:opendaylight:flow:inventory">Nicira, Inc.
 </manufacturer>
 <hardware
 xmlns="urn:opendaylight:flow:inventory">Open vSwitch
 </hardware>
 <software
 xmlns="urn:opendaylight:flow:inventory">2.1.3
 </software>
 <description
 xmlns="urn:opendaylight:flow:inventory">None
 </description>
 <ip-address
 xmlns="urn:opendaylight:flow:inventory">10.20.30.40
 </ip-address>
 <meter-features
 xmlns="urn:opendaylight:meter:statistics">
 <max_bands>0</max_bands>
 <max_color>0</max_color>
 <max_meter>0</max_meter>
 </meter-features>
 <group-features
 xmlns="urn:opendaylight:group:statistics">
 <group-capabilities-supported
 xmlns:x="urn:opendaylight:group:types">x:chaining
 </group-capabilities-supported>
 <group-capabilities-supported
 xmlns:x="urn:opendaylight:group:types">x:select-weight
 </group-capabilities-supported>
 <group-capabilities-supported
 xmlns:x="urn:opendaylight:group:types">x:select-liveness
 </group-capabilities-supported>
 <max-groups>4294967040</max-groups>
 <actions>67082241</actions>
 <actions>0</actions>
 </group-features>
 </node>
</nodes>

After this, the expected result from a GET request to
http://127.0.0.1:8181/restconf/operational/network-topology:network-topology
is:

<network-topology
 xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology>
 <topology-id>render:1</topology-id>
 <node>
 <node-id>openflow:1</node-id>
 <node-augmentation
 xmlns="urn:opendaylight:topology:inventory:rendering">
 <ip-address>10.20.30.40</ip-address>
 <serial-number>None</serial-number>
 <manufacturer>Nicira, Inc.</manufacturer>
 <description>None</description>
 <hardware>Open vSwitch</hardware>
 <software>2.1.3</software>
 </node-augmentation>
 <termination-point>
 <tp-id>openflow:1:1</tp-id>
 <tp-augmentation
 xmlns="urn:opendaylight:topology:inventory:rendering">
 <hardware-address>0E:DC:8C:63:EC:D1</hardware-address>
 <current-speed>10000000</current-speed>
 <maximum-speed>0</maximum-speed>
 <name>s1-eth1</name>
 </tp-augmentation>
 </termination-point>
 <termination-point>
 <tp-id>openflow:1:LOCAL</tp-id>
 <tp-augmentation
 xmlns="urn:opendaylight:topology:inventory:rendering">
 <hardware-address>BA:63:87:0C:76:41</hardware-address>
 <current-speed>0</current-speed>
 <maximum-speed>0</maximum-speed>
 <name>s1</name>
 </tp-augmentation>
 </termination-point>
 </node>
 </topology>
</network-topology>

Use Cases

You can find use case examples on this wiki page [https://wiki.opendaylight.org/view/Topology_Processing_Framework:Developer_Guide:Use_Case_Tutorial].

Key APIs and Interfaces

The basic provider class is TopoProcessingProvider which provides
startup and shutdown methods. Otherwise, the framework communicates via
requests and outputs stored in the MD-SAL datastores.

API Reference Documentation

You can find API examples on this wiki
page [https://wiki.opendaylight.org/view/Topology_Processing_Framework:Developer_Guide:REST_API_Specification].

TTP Model Developer Guide

Overview

Table Type Patterns are a specification developed by the Open
Networking Foundation [https://www.opennetworking.org/] to enable the
description and negotiation of subsets of the OpenFlow protocol. This is
particularly useful for hardware switches that support OpenFlow as it
enables the to describe what features they do (and thus also what
features they do not) support. More details can be found in the full
specification listed on the OpenFlow specifications
page [https://www.opennetworking.org/sdn-resources/onf-specifications/openflow].

TTP Model Architecture

The TTP Model provides a YANG-modeled type for a TTP and allows them to
be associated with a master list of known TTPs, as well as active and
supported TTPs with nodes in the MD-SAL inventory model.

Key APIs and Interfaces

The key API provided by the TTP Model feature is the ability to store a
set of TTPs in the MD-SAL as well as associate zero or one active TTPs
and zero or more supported TTPs along with a given node in the MD-SAL
inventory model.

API Reference Documentation

RESTCONF

See the generated RESTCONF API documentation at:
http://localhost:8181/apidoc/explorer/index.html

Look for the onf-ttp module to expand and see the various RESTCONF APIs.

Java Bindings

As stated above there are 3 locations where a Table Type Pattern can be
placed into the MD-SAL Data Store. They correspond to 3 different REST
API URIs:

	restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/

	restconf/config/opendaylight-inventory:nodes/node/{id}/ttp-inventory-node:active_ttp/

	restconf/config/opendaylight-inventory:nodes/node/{id}/ttp-inventory-node:supported_ttps/

Note

Typically, these URIs are running on the machine the controller is
on at port 8181. If you are on the same machine they can thus be
accessed at http://localhost:8181/<uri>

Using the TTP Model RESTCONF APIs

Setting REST HTTP Headers

Authentication

The REST API calls require authentication by default. The default method
is to use basic auth with a user name and password of ‘admin’.

Content-Type and Accept

RESTCONF supports both xml and json. This example focuses on JSON, but
xml can be used just as easily. When doing a PUT or POST be sure to
specify the appropriate Conetnt-Type header: either
application/json or application/xml.

When doing a GET be sure to specify the appropriate Accept header:
again, either application/json or application/xml.

Content

The contents of a PUT or POST should be a OpenDaylight Table Type
Pattern. An example of one is provided below. The example can also be
found at parser/sample-TTP-from-tests.ttp in the TTP git
repository [https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=parser/sample-TTP-from-tests.ttp;h=45130949b25c6f86b750959d27d04ec2208935fb;hb=HEAD].

Sample Table Type Pattern (json).

{
 "table-type-patterns": {
 "table-type-pattern": [
 {
 "security": {
 "doc": [
 "This TTP is not published for use by ONF. It is an example and for",
 "illustrative purposes only.",
 "If this TTP were published for use it would include",
 "guidance as to any security considerations in this doc member."
]
 },
 "NDM_metadata": {
 "authority": "org.opennetworking.fawg",
 "OF_protocol_version": "1.3.3",
 "version": "1.0.0",
 "type": "TTPv1",
 "doc": [
 "Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast only),",
 "and an ACL table."
],
 "name": "L2-L3-ACLs"
 },
 "identifiers": [
 {
 "doc": [
 "The VLAN ID of a locally attached L2 subnet on a Router."
],
 "var": "<subnet_VID>"
 },
 {
 "doc": [
 "An OpenFlow group identifier (integer) identifying a group table entry",
 "of the type indicated by the variable name"
],
 "var": "<<group_entry_types/name>>"
 }
],
 "features": [
 {
 "doc": [
 "Flow entry notification Extension – notification of changes in flow entries"
],
 "feature": "ext187"
 },
 {
 "doc": [
 "Group notifications Extension – notification of changes in group or meter entries"
],
 "feature": "ext235"
 }
],
 "meter_table": {
 "meter_types": [
 {
 "name": "ControllerMeterType",
 "bands": [
 {
 "type": "DROP",
 "rate": "1000..10000",
 "burst": "50..200"
 }
]
 },
 {
 "name": "TrafficMeter",
 "bands": [
 {
 "type": "DSCP_REMARK",
 "rate": "10000..500000",
 "burst": "50..500"
 },
 {
 "type": "DROP",
 "rate": "10000..500000",
 "burst": "50..500"
 }
]
 }
],
 "built_in_meters": [
 {
 "name": "ControllerMeter",
 "meter_id": 1,
 "type": "ControllerMeterType",
 "bands": [
 {
 "rate": 2000,
 "burst": 75
 }
]
 },
 {
 "name": "AllArpMeter",
 "meter_id": 2,
 "type": "ControllerMeterType",
 "bands": [
 {
 "rate": 1000,
 "burst": 50
 }
]
 }
]
 },
 "table_map": [
 {
 "name": "ControlFrame",
 "number": 0
 },
 {
 "name": "IngressVLAN",
 "number": 10
 },
 {
 "name": "MacLearning",
 "number": 20
 },
 {
 "name": "ACL",
 "number": 30
 },
 {
 "name": "L2",
 "number": 40
 },
 {
 "name": "ProtoFilter",
 "number": 50
 },
 {
 "name": "IPv4",
 "number": 60
 },
 {
 "name": "IPv6",
 "number": 80
 }
],
 "parameters": [
 {
 "doc": [
 "documentation"
],
 "name": "Showing-curt-how-this-works",
 "type": "type1"
 }
],
 "flow_tables": [
 {
 "doc": [
 "Filters L2 control reserved destination addresses and",
 "may forward control packets to the controller.",
 "Directs all other packets to the Ingress VLAN table."
],
 "name": "ControlFrame",
 "flow_mod_types": [
 {
 "doc": [
 "This match/action pair allows for flow_mods that match on either",
 "ETH_TYPE or ETH_DST (or both) and send the packet to the",
 "controller, subject to metering."
],
 "name": "Frame-To-Controller",
 "match_set": [
 {
 "field": "ETH_TYPE",
 "match_type": "all_or_exact"
 },
 {
 "field": "ETH_DST",
 "match_type": "exact"
 }
],
 "instruction_set": [
 {
 "doc": [
 "This meter may be used to limit the rate of PACKET_IN frames",
 "sent to the controller"
],
 "instruction": "METER",
 "meter_name": "ControllerMeter"
 },
 {
 "instruction": "APPLY_ACTIONS",
 "actions": [
 {
 "action": "OUTPUT",
 "port": "CONTROLLER"
 }
]
 }
]
 }
],
 "built_in_flow_mods": [
 {
 "doc": [
 "Mandatory filtering of control frames with C-VLAN Bridge reserved DA."
],
 "name": "Control-Frame-Filter",
 "priority": "1",
 "match_set": [
 {
 "field": "ETH_DST",
 "mask": "0xfffffffffff0",
 "value": "0x0180C2000000"
 }
]
 },
 {
 "doc": [
 "Mandatory miss flow_mod, sends packets to IngressVLAN table."
],
 "name": "Non-Control-Frame",
 "priority": "0",
 "instruction_set": [
 {
 "instruction": "GOTO_TABLE",
 "table": "IngressVLAN"
 }
]
 }
]
 }
],
 "group_entry_types": [
 {
 "doc": [
 "Output to a port, removing VLAN tag if needed.",
 "Entry per port, plus entry per untagged VID per port."
],
 "name": "EgressPort",
 "group_type": "INDIRECT",
 "bucket_types": [
 {
 "name": "OutputTagged",
 "action_set": [
 {
 "action": "OUTPUT",
 "port": "<port_no>"
 }
]
 },
 {
 "name": "OutputUntagged",
 "action_set": [
 {
 "action": "POP_VLAN"
 },
 {
 "action": "OUTPUT",
 "port": "<port_no>"
 }
]
 },
 {
 "opt_tag": "VID-X",
 "name": "OutputVIDTranslate",
 "action_set": [
 {
 "action": "SET_FIELD",
 "field": "VLAN_VID",
 "value": "<local_vid>"
 },
 {
 "action": "OUTPUT",
 "port": "<port_no>"
 }
]
 }
]
 }
],
 "flow_paths": [
 {
 "doc": [
 "This object contains just a few examples of flow paths, it is not",
 "a comprehensive list of the flow paths required for this TTP. It is",
 "intended that the flow paths array could include either a list of",
 "required flow paths or a list of specific flow paths that are not",
 "required (whichever is more concise or more useful."
],
 "name": "L2-2",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Unicast",
 "EgressPort"
]
 },
 {
 "name": "L2-3",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Multicast",
 "L2Mcast",
 "[EgressPort]"
]
 },
 {
 "name": "L2-4",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACL-skip",
 "VID-flood",
 "VIDflood",
 "[EgressPort]"
]
 },
 {
 "name": "L2-5",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Drop"
]
 },
 {
 "name": "v4-1",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Router-MAC",
 "IPv4",
 "v4-Unicast",
 "NextHop",
 "EgressPort"
]
 },
 {
 "name": "v4-2",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Router-MAC",
 "IPv4",
 "v4-Unicast-ECMP",
 "L3ECMP",
 "NextHop",
 "EgressPort"
]
 }
]
 }
]
 }
}

Making a REST Call

In this example we’ll do a PUT to install the sample TTP from above into
OpenDaylight and then retrieve it both as json and as xml. We’ll use the
Postman - REST
Client [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm]
for Chrome in the examples, but any method of accessing REST should
work.

First, we’ll fill in the basic information:

[image: Filling in URL, content, Content-Type and basic auth]
Filling in URL, content, Content-Type and basic auth

	Set the URL to
http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/

	Set the action to PUT

	Click Headers and

	Set a header for Content-Type to application/json

	Make sure the content is set to raw and

	Copy the sample TTP from above into the content

	Click the Basic Auth tab and

	Set the username and password to admin

	Click Refresh headers

[image: Refreshing basic auth headers]
Refreshing basic auth headers

After clicking Refresh headers, we can see that a new header
(Authorization) has been created and this will allow us to
authenticate to make the REST call.

[image: PUTting a TTP]
PUTting a TTP

At this point, clicking send should result in a Status response of 200
OK indicating we’ve successfully PUT the TTP into OpenDaylight.

[image: Retrieving the TTP as json via a GET]
Retrieving the TTP as json via a GET

We can now retrieve the TTP by:

	Changing the action to GET

	Setting an Accept header to application/json and

	Pressing send

[image: Retrieving the TTP as xml via a GET]
Retrieving the TTP as xml via a GET

The same process can retrieve the content as xml by setting the
Accept header to application/xml.

TTP CLI Tools Developer Guide

Overview

Table Type Patterns are a specification developed by the Open
Networking Foundation [https://www.opennetworking.org/] to enable the
description and negotiation of subsets of the OpenFlow protocol. This is
particularly useful for hardware switches that support OpenFlow as it
enables the to describe what features they do (and thus also what
features they do not) support. More details can be found in the full
specification listed on the OpenFlow specifications
page [https://www.opennetworking.org/sdn-resources/onf-specifications/openflow].

The TTP CLI Tools provide a way for people interested in TTPs to read
in, validate, output, and manipulate TTPs as a self-contained,
executable jar file.

TTP CLI Tools Architecture

The TTP CLI Tools use the TTP Model and the YANG Tools/RESTCONF codecs
to translate between the Data Transfer Objects (DTOs) and JSON/XML.

Command Line Options

This will cover the various options for the CLI Tools. For now, there
are no options and it merely outputs fixed data using the codecs.

User Network Interface Manager Plug-in (Unimgr) Developer Guide

Overview

The User Network Interface (UNI) Manager project within OpenDaylight provides
data models and APIs that enable software applications and service
orchestrators to configure and provision connectivity services; in particular,
Carrier Ethernet services as defined by MEF Forum, in physical and virtual
network elements.

Unimgr Architecture

Unimgr provides support for both service orchestration, via the Legato API, and
network resource provisioning, via the Presto API. These APIs, and the
interfaces they provide, are defined by YANG models developed within MEF in
collaboration with ONF and IETF. An application/user can interact with Unimgr
at either layer. For the Carbon release, the YANG models are as follows:

Key APIs and Interfaces

Legato YANG models:
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=legato-api/src/main/yang;hb=refs/heads/stable/carbon

Presto YANG models:
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=presto-api/src/main/yang;hb=refs/heads/stable/carbon

Legato API Tree

module: mef-services

+--rw mef-services
 +--rw mef-service* [svc-id]
 +--rw evc
 | +--rw unis
 | | +--rw uni* [uni-id]
 | | +--rw evc-uni-ce-vlans
 | | | +--rw evc-uni-ce-vlan* [vid]
 | | | +--rw vid -> /mef-interfaces:mef-interfaces/unis/uni[mef-interfaces:uni-id = current()/../../../uni-id]/ce-vlans/ce-vlan/vid
 | | +--rw ingress-bwp-flows-per-cos!
 | | | +--rw coupling-enabled? boolean
 | | | +--rw bwp-flow-per-cos* [cos-name]
 | | | +--rw cos-name -> /mef-global:mef-global/profiles/cos-names/cos-name/name
 | | | +--rw bw-profile -> /mef-interfaces:mef-interfaces/unis/uni[mef-interfaces:uni-id = current()/../../../uni-id]/ingress-envelopes/envelope/env-id
 | | +--rw egress-bwp-flows-per-eec!
 | | | +--rw coupling-enabled? boolean
 | | | +--rw bwp-flow-per-eec* [eec-name]
 | | | +--rw eec-name -> /mef-global:mef-global/profiles/eec-names/eec-name/name
 | | | +--rw bw-profile -> /mef-interfaces:mef-interfaces/unis/uni[mef-interfaces:uni-id = current()/../../../uni-id]/egress-envelopes/envelope/env-id
 | | +--rw status
 | | | +--ro oper-state-enabled? boolean
 | | | +--ro available-status? mef-types:svc-endpoint-availability-type
 | | +--rw uni-id -> /mef-interfaces:mef-interfaces/unis/uni/uni-id
 | | +--rw role mef-types:evc-uni-role-type
 | | +--rw admin-state-enabled? boolean
 | | +--rw color-id? mef-types:cos-color-identifier-type
 | | +--rw data-svc-frm-cos? -> /mef-global:mef-global/profiles/cos/cos-profile/id
 | | +--rw l2cp-svc-frm-cos? -> /mef-global:mef-global/profiles/l2cp-cos/l2cp-profile/id
 | | +--rw soam-svc-frm-cos? -> /mef-global:mef-global/profiles/cos/cos-profile/id
 | | +--rw data-svc-frm-eec? -> /mef-global:mef-global/profiles/eec/eec-profile/id
 | | +--rw l2cp-svc-frm-eec? -> /mef-global:mef-global/profiles/l2cp-eec/l2cp-profile/id
 | | +--rw soam-svc-frm-eec? -> /mef-global:mef-global/profiles/eec/eec-profile/id
 | | +--rw ingress-bw-profile-per-evc? -> /mef-interfaces:mef-interfaces/unis/uni[mef-interfaces:uni-id = current()/../uni-id]/ingress-envelopes/envelope/env-id
 | | +--rw egress-bw-profile-per-evc? -> /mef-interfaces:mef-interfaces/unis/uni[mef-interfaces:uni-id = current()/../uni-id]/egress-envelopes/envelope/env-id
 | | +--rw src-mac-addr-limit-enabled? boolean
 | | +--rw src-mac-addr-limit? uint32
 | | +--rw src-mac-addr-limit-interval? yang:timeticks
 | | +--rw test-meg-enabled? boolean
 | | +--rw test-meg? mef-types:identifier45
 | | +--rw subscriber-meg-mip-enabled? boolean
 | | +--rw subscriber-meg-mip? mef-types:identifier45
 | +--rw status
 | | +--ro oper-state-enabled? boolean
 | | +--ro available-status? mef-types:virt-cx-availability-type
 | +--rw sls-inclusions-by-cos
 | | +--rw sls-inclusion-by-cos* [cos-name]
 | | +--rw cos-name -> /mef-global:mef-global/profiles/cos-names/cos-name/name
 | +--rw sls-uni-inclusions!
 | | +--rw sls-uni-inclusion-set* [pm-type pm-id uni-id1 uni-id2]
 | | +--rw pm-type -> /mef-global:mef-global/slss/sls[mef-global:sls-id = current()/../../../evc-performance-sls]/perf-objs/perf-obj/pm-type
 | | +--rw pm-id -> /mef-global:mef-global/slss/sls[mef-global:sls-id = current()/../../../evc-performance-sls]/perf-objs/perf-obj[mef-global:pm-type = current()/../pm-type]/pm-id
 | | +--rw uni-id1 -> ../../../unis/uni/uni-id
 | | +--rw uni-id2 -> ../../../unis/uni/uni-id
 | +--rw sls-uni-exclusions!
 | | +--rw sls-uni-exclusion-set* [pm-type pm-id uni-id1 uni-id2]
 | | +--rw pm-type -> /mef-global:mef-global/slss/sls[mef-global:sls-id = current()/../../../evc-performance-sls]/perf-objs/perf-obj/pm-type
 | | +--rw pm-id -> /mef-global:mef-global/slss/sls[mef-global:sls-id = current()/../../../evc-performance-sls]/perf-objs/perf-obj[mef-global:pm-type = current()/../pm-type]/pm-id
 | | +--rw uni-id1 -> ../../../unis/uni/uni-id
 | | +--rw uni-id2 -> ../../../unis/uni/uni-id
 | +--rw evc-id mef-types:evc-id-type
 | +--ro evc-status? mef-types:evc-status-type
 | +--rw evc-type mef-types:evc-type
 | +--rw admin-state-enabled? boolean
 | +--rw elastic-enabled? boolean
 | +--rw elastic-service? mef-types:identifier45
 | +--rw max-uni-count? uint32
 | +--rw preserve-ce-vlan-id? boolean
 | +--rw cos-preserve-ce-vlan-id? boolean
 | +--rw evc-performance-sls? -> /mef-global:mef-global/slss/sls/sls-id
 | +--rw unicast-svc-frm-delivery? mef-types:data-svc-frame-delivery-type
 | +--rw multicast-svc-frm-delivery? mef-types:data-svc-frame-delivery-type
 | +--rw broadcast-svc-frm-delivery? mef-types:data-svc-frame-delivery-type
 | +--rw evc-meg-id? mef-types:identifier45
 | +--rw max-svc-frame-size? mef-types:max-svc-frame-size-type
 +--rw svc-id mef-types:retail-svc-id-type
 +--rw sp-id? -> /mef-global:mef-global/svc-providers/svc-provider/sp-id
 +--rw svc-type? mef-types:mef-service-type
 +--rw user-label? mef-types:identifier45
 +--rw svc-entity? mef-types:service-entity-type

module: mef-global

+--rw mef-global
 +--rw svc-providers!
 | +--rw svc-provider* [sp-id]
 | +--rw sp-id mef-types:svc-provider-type
 +--rw cens!
 | +--rw cen* [cen-id]
 | +--rw cen-id mef-types:cen-type
 | +--rw sp-id? -> /mef-global/svc-providers/svc-provider/sp-id
 +--rw slss!
 | +--rw sls* [sls-id]
 | +--rw perf-objs
 | | +--rw pm-time-interval uint64
 | | +--rw pm-time-interval-increment uint64
 | | +--rw unavail-flr-threshold-pp mef-types:simple-percent
 | | +--rw consecutive-small-time-intervals uint64
 | | +--rw perf-obj* [pm-type pm-id]
 | | +--rw pm-type mef-types:performance-metric-type
 | | +--rw pm-id mef-types:identifier45
 | | +--rw cos-name -> /mef-global/profiles/cos-names/cos-name/name
 | | +--rw fd-pp mef-types:simple-percent
 | | +--rw fd-range-pp mef-types:simple-percent
 | | +--rw fd-perf-obj uint64
 | | +--rw fd-range-perf-obj uint64
 | | +--rw fd-mean-perf-obj uint64
 | | +--rw ifdv-pp mef-types:simple-percent
 | | +--rw ifdv-pair-interval mef-types:simple-percent
 | | +--rw ifdv-perf-obj uint64
 | | +--rw flr-perf-obj uint64
 | | +--rw avail-pp mef-types:simple-percent
 | | +--rw hli-perf-obj uint64
 | | +--rw chli-consecutive-small-time-intervals uint64
 | | +--rw chli-perf-obj uint64
 | | +--rw min-uni-pairs-avail uint64
 | | +--rw gp-avail-pp mef-types:simple-percent
 | +--rw sls-id mef-types:cen-type
 | +--rw sp-id? -> /mef-global/svc-providers/svc-provider/sp-id
 +--rw subscribers!
 | +--rw subscriber* [sub-id]
 | +--rw sub-id mef-types:subscriber-type
 | +--rw sp-id? -> /mef-global/svc-providers/svc-provider/sp-id
 | +--rw cen-id? -> /mef-global/cens/cen/cen-id
 +--rw profiles!
 +--rw cos-names
 | +--rw cos-name* [name]
 | +--rw name mef-types:identifier45
 +--rw eec-names
 | +--rw eec-name* [name]
 | +--rw name mef-types:identifier45
 +--rw ingress-bwp-flows
 | +--rw bwp-flow* [bw-profile]
 | +--rw bw-profile mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 | +--rw cir? mef-types:bwp-cir-type
 | +--rw cir-max? mef-types:bwp-cir-type
 | +--rw cbs? mef-types:bwp-cbs-type
 | +--rw eir? mef-types:bwp-eir-type
 | +--rw eir-max? mef-types:bwp-eir-type
 | +--rw ebs? mef-types:bwp-ebs-type
 | +--rw coupling-enabled? boolean
 | +--rw color-mode? mef-types:bwp-color-mode-type
 | +--rw coupling-flag? mef-types:bwp-coupling-flag-type
 +--rw egress-bwp-flows
 | +--rw bwp-flow* [bw-profile]
 | +--rw bw-profile mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 | +--rw cir? mef-types:bwp-cir-type
 | +--rw cir-max? mef-types:bwp-cir-type
 | +--rw cbs? mef-types:bwp-cbs-type
 | +--rw eir? mef-types:bwp-eir-type
 | +--rw eir-max? mef-types:bwp-eir-type
 | +--rw ebs? mef-types:bwp-ebs-type
 | +--rw coupling-enabled? boolean
 | +--rw color-mode? mef-types:bwp-color-mode-type
 | +--rw coupling-flag? mef-types:bwp-coupling-flag-type
 +--rw l2cp-cos
 | +--rw l2cp-profile* [id]
 | +--rw l2cps
 | | +--rw l2cp* [dest-mac-addr peering-proto-name]
 | | +--rw dest-mac-addr yang:mac-address
 | | +--rw peering-proto-name mef-types:identifier45
 | | +--rw protocol? mef-types:l2cp-peering-protocol-type
 | | +--rw protocol-id? yang:hex-string
 | | +--rw cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 | | +--rw handling? mef-types:l2cp-handling-type
 | | +--rw subtype* yang:hex-string
 | +--rw id mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 +--rw l2cp-eec
 | +--rw l2cp-profile* [id]
 | +--rw l2cps
 | | +--rw l2cp* [dest-mac-addr peering-proto-name]
 | | +--rw dest-mac-addr yang:mac-address
 | | +--rw peering-proto-name mef-types:identifier45
 | | +--rw protocol? mef-types:l2cp-peering-protocol-type
 | | +--rw protocol-id? yang:hex-string
 | | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | | +--rw handling? mef-types:l2cp-handling-type
 | | +--rw subtype* yang:hex-string
 | +--rw id mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 +--rw l2cp-peering
 | +--rw l2cp-profile* [id]
 | +--rw l2cps
 | | +--rw l2cp* [dest-mac-addr peering-proto-name]
 | | +--rw dest-mac-addr yang:mac-address
 | | +--rw peering-proto-name mef-types:identifier45
 | | +--rw protocol? mef-types:l2cp-peering-protocol-type
 | | +--rw protocol-id? yang:hex-string
 | | +--rw subtype* yang:hex-string
 | +--rw id mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 +--rw elmi
 | +--rw elmi-profile* [id]
 | +--rw id mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 | +--rw polling-counter? mef-types:elmi-polling-counter-type
 | +--rw status-error-threshold? mef-types:elmi-status-error-threshold-type
 | +--rw polling-timer? mef-types:elmi-polling-timer-type
 | +--rw polling-verification-timer? mef-types:elmi-polling-verification-timer-type
 +--rw eec
 | +--rw eec-profile* [id]
 | +--rw id mef-types:identifier45
 | +--rw (eec-id)?
 | +--:(pcp)
 | | +--rw eec-pcp!
 | | +--rw default-pcp-eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | | +--rw default-pcp-color? mef-types:cos-color-type
 | | +--rw pcp* [pcp-value]
 | | +--rw pcp-value mef-types:ieee8021p-priority-type
 | | +--rw discard-value? boolean
 | | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | | +--rw color? mef-types:cos-color-type
 | +--:(dscp)
 | +--rw eec-dscp!
 | +--rw default-ipv4-eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | +--rw default-ipv4-color? mef-types:cos-color-type
 | +--rw default-ipv6-eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | +--rw default-ipv6-color? mef-types:cos-color-type
 | +--rw ipv4-dscp* [dscp-value]
 | | +--rw dscp-value inet:dscp
 | | +--rw discard-value? boolean
 | | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | | +--rw color? mef-types:cos-color-type
 | +--rw ipv6-dscp* [dscp-value]
 | +--rw dscp-value inet:dscp
 | +--rw discard-value? boolean
 | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | +--rw color? mef-types:cos-color-type
 +--rw cos
 +--rw cos-profile* [id]
 +--rw id mef-types:identifier45
 +--rw (cos-id)?
 +--:(evc)
 | +--rw cos-evc!
 | +--rw default-evc-cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 | +--rw default-evc-color? mef-types:cos-color-type
 +--:(pcp)
 | +--rw cos-pcp!
 | +--rw default-pcp-cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 | +--rw default-pcp-color? mef-types:cos-color-type
 | +--rw pcp* [pcp-value]
 | +--rw pcp-value mef-types:ieee8021p-priority-type
 | +--rw discard-value? boolean
 | +--rw cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 | +--rw color? mef-types:cos-color-type
 +--:(dscp)
 +--rw cos-dscp!
 +--rw default-ipv4-cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 +--rw default-ipv4-color? mef-types:cos-color-type
 +--rw default-ipv6-cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 +--rw default-ipv6-color? mef-types:cos-color-type
 +--rw ipv4-dscp* [dscp-value]
 | +--rw dscp-value inet:dscp
 | +--rw discard-value? boolean
 | +--rw cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 | +--rw color? mef-types:cos-color-type
 +--rw ipv6-dscp* [dscp-value]
 +--rw dscp-value inet:dscp
 +--rw discard-value? boolean
 +--rw cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 +--rw color? mef-types:cos-color-type

Presto API Tree

module: onf-core-network-module

+--rw forwarding-constructs
 +--rw forwarding-construct* [uuid]
 +--rw uuid string
 +--rw layerProtocolName? onf-cnt:LayerProtocolName
 +--rw lowerLevelFc* -> /forwarding-constructs/forwarding-construct/uuid
 +--rw fcRoute* [uuid]
 | +--rw uuid string
 | +--rw fc* -> /forwarding-constructs/forwarding-construct/uuid
 +--rw fcPort* [topology node tp]
 | +--rw topology nt:topology-ref
 | +--rw node nt:node-ref
 | +--rw tp nt:tp-ref
 | +--rw role? onf-cnt:PortRole
 | +--rw fcPortDirection? onf-cnt:PortDirection
 +--rw fcSpec
 | +--rw uuid? string
 | +--rw fcPortSpec* [uuid]
 | | +--rw uuid string
 | | +--rw ingressFcPortSet* [topology node tp]
 | | | +--rw topology nt:topology-ref
 | | | +--rw node nt:node-ref
 | | | +--rw tp nt:tp-ref
 | | +--rw egressFcPortSet* [topology node tp]
 | | | +--rw topology nt:topology-ref
 | | | +--rw node nt:node-ref
 | | | +--rw tp nt:tp-ref
 | | +--rw role? string
 | +--rw nrp:nrp-ce-fcspec-attrs
 | +--rw nrp:connectionType? nrp-types:NRP_ConnectionType
 | +--rw nrp:unicastFrameDelivery? nrp-types:NRP_ServiceFrameDelivery
 | +--rw nrp:multicastFrameDelivery? nrp-types:NRP_ServiceFrameDelivery
 | +--rw nrp:broadcastFrameDelivery? nrp-types:NRP_ServiceFrameDelivery
 | +--rw nrp:vcMaxServiceFrame? nrp-types:NRP_PositiveInteger
 | +--rw nrp:vcId? nrp-types:NRP_PositiveInteger
 +--rw forwardingDirection? onf-cnt:ForwardingDirection

augment /nt:network-topology/nt:topology/nt:node/nt:termination-point:

+--rw ltp-attrs
 +--rw lpList* [uuid]
 | +--rw uuid string
 | +--rw layerProtocolName? onf-cnt:LayerProtocolName
 | +--rw lpSpec
 | | +--rw adapterSpec
 | | | +--rw nrp:nrp-conn-adapt-spec-attrs
 | | | | +--rw nrp:sourceMacAddressLimit
 | | | | | +--rw nrp:enabled? boolean
 | | | | | +--rw nrp:limit? NRP_NaturalNumber
 | | | | | +--rw nrp:timeInterval? NRP_NaturalNumber
 | | | | +--rw nrp:CeExternalInterface
 | | | | | +--rw nrp:physicalLayer? nrp-types:NRP_PhysicalLayer
 | | | | | +--rw nrp:syncMode* [linkId]
 | | | | | | +--rw nrp:linkId string
 | | | | | | +--rw nrp:syncModeEnabled? boolean
 | | | | | +--rw nrp:numberOfLinks? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:resiliency? nrp-types:NRP_InterfaceResiliency
 | | | | | +--rw nrp:portConvsIdToAggLinkMap
 | | | | | | +--rw nrp:conversationId? NRP_NaturalNumber
 | | | | | | +--rw nrp:linkId? NRP_NaturalNumber
 | | | | | +--rw nrp:maxFrameSize? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:linkOamEnabled? boolean
 | | | | | +--rw nrp:tokenShareEnabled? boolean
 | | | | | +--rw nrp:serviceProviderUniId? string
 | | | | +--rw nrp:coloridentifier
 | | | | | +--rw (identifier)?
 | | | | | +--:(sap-color-id)
 | | | | | | +--rw nrp:serviceAccessPointColorId
 | | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | | +--:(pcp-color-id)
 | | | | | | +--rw nrp:pcpColorId
 | | | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
 | | | | | | +--rw nrp:pcpValue* nrp-types:NRP_NaturalNumber
 | | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | | +--:(dei-color-id)
 | | | | | | +--rw nrp:deiColorId
 | | | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
 | | | | | | +--rw nrp:deiValue* nrp-types:NRP_NaturalNumber
 | | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | | +--:(desp-color-id)
 | | | | | +--rw nrp:despColorId
 | | | | | +--rw nrp:ipVersion? nrp-types:NRP_IpVersion
 | | | | | +--rw nrp:dscpValue* nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | +--rw nrp:ingressBwpFlow
 | | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:egressBwpFlow
 | | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:l2cpAddressSet? nrp-types:NRP_L2cpAddressSet
 | | | | +--rw nrp:l2cpPeering* [linkId]
 | | | | +--rw nrp:destinationMacAddress? string
 | | | | +--rw nrp:protocolType? NRP_ProtocolFrameType
 | | | | +--rw nrp:linkId string
 | | | | +--rw nrp:protocolId? string
 | | | +--rw nrp:nrp-ivc-endpoint-conn-adapt-spec-attrs
 | | | | +--rw nrp:ivcEndPointId? string
 | | | | +--rw nrp:testMegEnabled? boolean
 | | | | +--rw nrp:ivcEndPointRole? nrp-types:NRP_EndPointRole
 | | | | +--rw nrp:ivcEndPointMap* [vlanId]
 | | | | | +--rw nrp:vlanId nrp-types:NRP_PositiveInteger
 | | | | | +--rw (endpoint-map-form)?
 | | | | | +--:(map-form-e)
 | | | | | | +--rw nrp:enni-svid* [vid]
 | | | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
 | | | | | +--:(map-form-t)
 | | | | | | +--rw nrp:root-svid? nrp-types:NRP_PositiveInteger
 | | | | | | +--rw nrp:leaf-svid? nrp-types:NRP_PositiveInteger
 | | | | | +--:(map-form-v)
 | | | | | | +--rw nrp:vuni-vid? nrp-types:NRP_PositiveInteger
 | | | | | | +--rw nrp:enni-cevid* [vid]
 | | | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
 | | | | | +--:(map-form-u)
 | | | | | +--rw nrp:cvid* [vid]
 | | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:subscriberMegMipEnabled? boolean
 | | | +--rw nrp:nrp-evc-endpoint-conn-adapt-spec-attrs
 | | | +--rw nrp:sourceMacAddressLimit
 | | | | +--rw nrp:enabled? boolean
 | | | | +--rw nrp:limit? NRP_NaturalNumber
 | | | | +--rw nrp:timeInterval? NRP_NaturalNumber
 | | | +--rw nrp:CeExternalInterface
 | | | | +--rw nrp:physicalLayer? nrp-types:NRP_PhysicalLayer
 | | | | +--rw nrp:syncMode* [linkId]
 | | | | | +--rw nrp:linkId string
 | | | | | +--rw nrp:syncModeEnabled? boolean
 | | | | +--rw nrp:numberOfLinks? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:resiliency? nrp-types:NRP_InterfaceResiliency
 | | | | +--rw nrp:portConvsIdToAggLinkMap
 | | | | | +--rw nrp:conversationId? NRP_NaturalNumber
 | | | | | +--rw nrp:linkId? NRP_NaturalNumber
 | | | | +--rw nrp:maxFrameSize? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:linkOamEnabled? boolean
 | | | | +--rw nrp:tokenShareEnabled? boolean
 | | | | +--rw nrp:serviceProviderUniId? string
 | | | +--rw nrp:coloridentifier
 | | | | +--rw (identifier)?
 | | | | +--:(sap-color-id)
 | | | | | +--rw nrp:serviceAccessPointColorId
 | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | +--:(pcp-color-id)
 | | | | | +--rw nrp:pcpColorId
 | | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
 | | | | | +--rw nrp:pcpValue* nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | +--:(dei-color-id)
 | | | | | +--rw nrp:deiColorId
 | | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
 | | | | | +--rw nrp:deiValue* nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | +--:(desp-color-id)
 | | | | +--rw nrp:despColorId
 | | | | +--rw nrp:ipVersion? nrp-types:NRP_IpVersion
 | | | | +--rw nrp:dscpValue* nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | +--rw nrp:ingressBwpFlow
 | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:egressBwpFlow
 | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:l2cpAddressSet? nrp-types:NRP_L2cpAddressSet
 | | | +--rw nrp:l2cpPeering* [linkId]
 | | | | +--rw nrp:destinationMacAddress? string
 | | | | +--rw nrp:protocolType? NRP_ProtocolFrameType
 | | | | +--rw nrp:linkId string
 | | | | +--rw nrp:protocolId? string
 | | | +--rw nrp:evcEndPointId? nrp-types:NRP_PositiveInteger
 | | | +--rw nrp:testMegEnabled? boolean
 | | | +--rw nrp:evcEndPointRole? nrp-types:NRP_EvcEndPointRole
 | | | +--rw nrp:evcEndPointMap* [vid]
 | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
 | | | +--rw nrp:subscriberMegMipEbabled? boolean
 | | +--rw terminationSpec
 | | | +--rw nrp:nrp-termination-spec-attrs
 | | | | +--rw nrp:physicalLayer? nrp-types:NRP_PhysicalLayer
 | | | | +--rw nrp:syncMode* [linkId]
 | | | | | +--rw nrp:linkId string
 | | | | | +--rw nrp:syncModeEnabled? boolean
 | | | | +--rw nrp:numberOfLinks? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:resiliency? nrp-types:NRP_InterfaceResiliency
 | | | | +--rw nrp:portConvsIdToAggLinkMap
 | | | | | +--rw nrp:conversationId? NRP_NaturalNumber
 | | | | | +--rw nrp:linkId? NRP_NaturalNumber
 | | | | +--rw nrp:maxFrameSize? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:linkOamEnabled? boolean
 | | | | +--rw nrp:tokenShareEnabled? boolean
 | | | | +--rw nrp:serviceProviderUniId? string
 | | | +--rw nrp:nrp-uni-termination-attrs
 | | | +--rw nrp:defaultCeVlanId? nrp-types:NRP_PositiveInteger
 | | | +--rw nrp:uniMegEnabled? boolean
 | | | +--rw nrp:elmiEnabled? boolean
 | | | +--rw nrp:serviceprovideruniprofile? string
 | | | +--rw nrp:operatoruniprofile? string
 | | | +--rw nrp:ingressBwpUni
 | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:egressBwpUni
 | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | +--rw adapterPropertySpecList* [uuid]
 | | | +--rw uuid string
 | | +--rw providerViewSpec
 | | +--rw serverSpecList* [uuid]
 | | +--rw uuid string
 | +--rw configuredClientCapacity? string
 | +--rw lpDirection? onf-cnt:TerminationDirection
 | +--rw terminationState? string
 +--rw ltpSpec
 +--rw ltpDirection? onf-cnt:TerminationDirection

Unified Secure Channel

Overview

The Unified Secure Channel (USC) feature provides REST API, manager, and
plugin for unified secure channels. The REST API provides a northbound
api. The manager monitors, maintains, and provides channel related
services. The plugin handles the lifecycle of channels.

USC Channel Architecture

	USC Agent

	The USC Agent provides proxy and agent functionality on top of all
standard protocols supported by the device. It initiates call-home
with the controller, maintains live connections with with the
controller, acts as a demuxer/muxer for packets with the USC
header, and authenticates the controller.

	USC Plugin

	The USC Plugin is responsible for communication between the
controller and the USC agent . It responds to call-home with the
controller, maintains live connections with the devices, acts as a
muxer/demuxer for packets with the USC header, and provides
support for TLS/DTLS.

	USC Manager

	The USC Manager handles configurations, high availability,
security, monitoring, and clustering support for USC.

	USC UI

	The USC UI is responsible for displaying a graphical user
interface representing the state of USC in the OpenDaylight DLUX
UI.

USC Channel APIs and Interfaces

This section describes the APIs for interacting with the unified secure
channels.

USC Channel Topology API

The USC project maintains a topology that is YANG-based in MD-SAL. These
models are available via RESTCONF.

	Name: view-channel

	URL:
http://${ipaddress}:8181/restconf/operations/usc-channel:view-channel

	Description: Views the current state of the USC environment.

API Reference Documentation

Go to
http://${ipaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the usc-channel panel. From there, users can execute
various API calls to test their USC deployment.

Virtual Tenant Network (VTN)

OpenDaylight Virtual Tenant Network (VTN) Overview

OpenDaylight Virtual Tenant Network (VTN) is an application that
provides multi-tenant virtual network on an SDN controller.

Conventionally, huge investment in the network systems and operating
expenses are needed because the network is configured as a silo for each
department and system. Therefore various network appliances must be
installed for each tenant and those boxes cannot be shared with others.
It is a heavy work to design, implement and operate the entire complex
network.

The uniqueness of VTN is a logical abstraction plane. This enables the
complete separation of logical plane from physical plane. Users can
design and deploy any desired network without knowing the physical
network topology or bandwidth restrictions.

VTN allows the users to define the network with a look and feel of
conventional L2/L3 network. Once the network is designed on VTN, it will
automatically be mapped into underlying physical network, and then
configured on the individual switch leverage SDN control protocol. The
definition of logical plane makes it possible not only to hide the
complexity of the underlying network but also to better manage network
resources. It achieves reducing reconfiguration time of network services
and minimizing network configuration errors. OpenDaylight Virtual Tenant
Network (VTN) is an application that provides multi-tenant virtual
network on an SDN controller. It provides API for creating a common
virtual network irrespective of the physical network.

[image: VTN Architecture]
VTN Architecture

It is implemented as two major components

	VTN Manager

	VTN Coordinator

VTN Manager

An OpenDaylight Plugin that interacts with other modules to implement
the components of the VTN model. It also provides a REST interface to
configure VTN components in OpenDaylight. VTN Manager is implemented as
one plugin to the OpenDaylight. This provides a REST interface to
create/update/delete VTN components. The user command in VTN Coordinator
is translated as REST API to VTN Manager by the OpenDaylight Driver
component. In addition to the above mentioned role, it also provides an
implementation to the OpenStack L2 Network Functions API.

Function Outline

The table identifies the functions and the interface used by VTN
Components:

	Component

	Interface

	Purpose

	VTN Manager

	RESTful API

	Configure VTN
Virtualization model
components in
OpenDaylight

	VTN Manager

	Neutron API
implementation

	Handle Networks API from
OpenStack (Neutron
Interface)

	VTN Coordinator

	RESTful API

	(1) Uses the RESTful
interface of VTN
Manager and configures
VTN Virtualization
model components in
OpenDaylight.
(2) Handles multiple
OpenDaylight
orchestration.
(3) Provides API to
read the physical
network details. See
samples [https://wiki.OpenDaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:L2_Network_Example_Using_VTN_Virtualization]
for usage.

Feature Overview

There are three features

	odl-vtn-manager provides VTN Manager’s JAVA API.

	odl-vtn-manager-rest provides VTN Manager’s REST API.

	odl-vtn-manager-neutron provides the integration with Neutron
interface.

REST Conf documentation for VTN Manager, please refer to:
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html

For VTN Java API documentation, please refer to:
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/apidocs/index.html

Once the Karaf distribution is up, install dlux and apidocs.

feature:install odl-dlux-core odl-dluxapps-applications odl-mdsal-apidocs

Logging In

To Log in to DLUX, after installing the application:

	Open a browser and enter the login URL as
http://<OpenDaylight-IP>:8181/index.html

Note

Replace “<OpenDaylight-IP>” with the IP address of OpenDaylight
based on your environment.

	Login to the application with user ID and password credentials as
admin.

Note

admin is the only default user available for DLUX in this release.

	In the right hand side frame, click “Yang UI”.

YANG documentation for VTN Manager, please refer to:
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html

VTN Coordinator

The VTN Coordinator is an external application that provides a REST
interface for an user to use OpenDaylight VTN Virtualization. It
interacts with the VTN Manager plugin to implement the user
configuration. It is also capable of multiple OpenDaylight
orchestration. It realizes VTN provisioning in OpenDaylight instances.
In the OpenDaylight architecture VTN Coordinator is part of the network
application, orchestration and services layer. VTN Coordinator will use
the REST interface exposed by the VTN Manger to realize the virtual
network using OpenDaylight. It uses OpenDaylight APIs (REST) to
construct the virtual network in OpenDaylight instances. It provides
REST APIs for northbound VTN applications and supports virtual networks
spanning across multiple OpenDaylight by coordinating across
OpenDaylight.

VTN Coordinator Components:

	Transaction Coordinator

	Unified Provider Physical Layer (UPPL)

	Unified Provider Logical LAyer (UPLL)

	OpenDaylight Controller Diver (ODC Driver)

OpenDaylight Virtual Tenant Network (VTN) API Overview

The VTN API module is a sub component of the VTN Coordinator and
provides the northbound REST API interface for VTN applications. It
consists of two subcomponents:

	Web Server

	VTN service Java API Library

[image: VTN-Coordinator_api-architechture]
VTN-Coordinator_api-architechture

Web Server

The Web Server module handles the REST APIs received from the VTN
applications. It translates the REST APIs to the appropriate Java APIs.

The main functions of this module are:

	Starts via the startup script catalina.sh.

	VTN Application sends HTTP request to Web server in XML or JSON
format.

	Creates a session and acquire a read/write lock.

	Invokes the VTN Service Java API Library corresponding to the
specified URI.

	Returns the response to the VTN Application.

WebServer Class Details

The list below shows the classes available for Web Server module and
their descriptions:

	Init Manager

	It is a singleton class for executing the acquisition of
configuration information from properties file, log initialization,
initialization of VTN Service Java API Library. Executed by init()
of VtnServiceWebAPIServlet.

	Configuration Manager

	Maintains the configuration information acquired from properties
file.

	VtnServiceCommonUtil

	Utility class

	VtnServiceWebUtil

	Utility class

	VtnServiceWebAPIServlet

	Receives HTTP request from VTN Application and calls the method of
corresponding VtnServiceWebAPIHandler. herits class HttpServlet, and
overrides doGet(), doPut(), doDelete(), doPost().

	VtnServiceWebAPIHandler

	Creates JsonObject(com.google.gson) from HTTP request, and calls
method of corresponding VtnServiceWebAPIController.

	VtnServiceWebAPIController

	Creates RestResource() class and calls UPLL API/UPPL API through
Java API. the time of calling UPLL API/UPPL API, performs the
creation/deletion of session, acquisition/release of configuration
mode, acquisition/release of read lock by TC API through Java API.

	Data Converter

	Converts HTTP request to JsonObject and JsonXML to JSON.

VTN Service Java API Library

It provides the Java API library to communicate with the lower layer
modules in the VTN Coordinator. The main functions of this library are:

	Creates an IPC client session to the lower layer.

	Converts the request to IPC framework format.

	Invokes the lower layer API (i.e. UPPL API, UPLL API, TC API).

	Returns the response from the lower layer to the web server

	VTN Service Java API Library Class Details

Feature Overview

VTN Coordinator doesn’t have Karaf features.

For VTN Coordinator REST API, please refer to:
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:VTN_Coordinator:RestApi

Usage Examples

	L2 Network using Single
Controller [https://wiki.OpenDaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:How_to_configure_L2_Network_with_Single_Controller]

YANG Tools Developer Guide

Overview

YANG Tools is set of libraries and tooling providing support for use
YANG [https://tools.ietf.org/html/rfc6020] for Java (or other
JVM-based language) projects and applications.

YANG Tools provides following features in OpenDaylight:

	parsing of YANG sources and semantic inference of relationship across
YANG models as defined in
RFC6020 [https://tools.ietf.org/html/rfc6020]

	representation of YANG-modeled data in Java

	Normalized Node representation - DOM-like tree model, which
uses conceptual meta-model more tailored to YANG and OpenDaylight
use-cases than a standard XML DOM model allows for.

	serialization / deserialization of YANG-modeled data driven by YANG
models

	XML - as defined in
RFC6020 [https://tools.ietf.org/html/rfc6020]

	JSON - as defined in
draft-lhotka-netmod-yang-json-01 [https://tools.ietf.org/html/rfc6020]

	support for third-party generators processing YANG models.

Architecture

YANG Tools project consists of following logical subsystems:

	Commons - Set of general purpose code, which is not specific to
YANG, but is also useful outside YANG Tools implementation.

	YANG Model and Parser - YANG semantic model and lexical and
semantic parser of YANG models, which creates in-memory
cross-referenced represenation of YANG models, which is used by other
components to determine their behaviour based on the model.

	YANG Data - Definition of Normalized Node APIs and Data Tree
APIs, reference implementation of these APIs and implementation of
XML and JSON codecs for Normalized Nodes.

	YANG Maven Plugin - Maven plugin which integrates YANG parser
into Maven build lifecycle and provides code-generation framework for
components, which wants to generate code or other artefacts based on
YANG model.

Concepts

Project defines base concepts and helper classes which are
project-agnostic and could be used outside of YANG Tools project scope.

Components

	yang-common

	yang-data-api

	yang-data-codec-gson

	yang-data-codec-xml

	yang-data-impl

	yang-data-jaxen

	yang-data-transform

	yang-data-util

	yang-maven-plugin

	yang-maven-plugin-it

	yang-maven-plugin-spi

	yang-model-api

	yang-model-export

	yang-model-util

	yang-parser-api

	yang-parser-impl

YANG Model API

Class diagram of yang model API

[image: ../_images/yang-model-api.png]
YANG Model API

YANG Parser

Yang Statement Parser works on the idea of statement concepts as defined
in RFC6020, section 6.3. We come up here with basic ModelStatement and
StatementDefinition, following RFC6020 idea of having sequence of
statements, where every statement contains keyword and zero or one
argument. ModelStatement is extended by DeclaredStatement (as it comes
from source, e.g. YANG source) and EffectiveStatement, which contains
other substatements and tends to represent result of semantic processing
of other statements (uses, augment for YANG). IdentifierNamespace
represents common superclass for YANG model namespaces.

Input of the Yang Statement Parser is a collection of
StatementStreamSource objects. StatementStreamSource interface is used
for inference of effective model and is required to emit its statements
using supplied StatementWriter. Each source (e.g. YANG source) has to be
processed in three steps in order to emit different statements for each
step. This package provides support for various namespaces used across
statement parser in order to map relations during declaration phase
process.

Currently, there are two implementations of StatementStreamSource in
Yangtools:

	YangStatementSourceImpl - intended for yang sources

	YinStatementSourceImpl - intended for yin sources

YANG Data API

Class diagram of yang data API

[image: ../_images/yang-data-api.png]
YANG Data API

YANG Data Codecs

Codecs which enable serialization of NormalizedNodes into YANG-modeled
data in XML or JSON format and deserialization of YANG-modeled data in
XML or JSON format into NormalizedNodes.

YANG Maven Plugin

Maven plugin which integrates YANG parser into Maven build lifecycle and
provides code-generation framework for components, which wants to
generate code or other artefacts based on YANG model.

How to / Tutorials

Working with YANG Model

First thing you need to do if you want to work with YANG models is to
instantiate a SchemaContext object. This object type describes one or
more parsed YANG modules.

In order to create it you need to utilize YANG statement parser which
takes one or more StatementStreamSource objects as input and then
produces the SchemaContext object.

StatementStreamSource object contains the source file information. It
has two implementations, one for YANG sources - YangStatementSourceImpl,
and one for YIN sources - YinStatementSourceImpl.

Here is an example of creating StatementStreamSource objects for YANG
files, providing them to the YANG statement parser and building the
SchemaContext:

StatementStreamSource yangModuleSource == new YangStatementSourceImpl("/example.yang", false);
StatementStreamSource yangModuleSource2 == new YangStatementSourceImpl("/example2.yang", false);

CrossSourceStatementReactor.BuildAction reactor == YangInferencePipeline.RFC6020_REACTOR.newBuild();
reactor.addSources(yangModuleSource, yangModuleSource2);

SchemaContext schemaContext == reactor.buildEffective();

First, StatementStreamSource objects with two constructor arguments
should be instantiated: path to the yang source file (which is a regular
String object) and a boolean which determines if the path is absolute or
relative.

Next comes the initiation of new yang parsing cycle - which is
represented by CrossSourceStatementReactor.BuildAction object. You can
get it by calling method newBuild() on CrossSourceStatementReactor
object (RFC6020_REACTOR) in YangInferencePipeline class.

Then you should feed yang sources to it by calling method addSources()
that takes one or more StatementStreamSource objects as arguments.

Finally you call the method buildEffective() on the reactor object which
returns EffectiveSchemaContext (that is a concrete implementation of
SchemaContext). Now you are ready to work with contents of the added
yang sources.

Let us explain how to work with models contained in the newly created
SchemaContext. If you want to get all the modules in the schemaContext,
you have to call method getModules() which returns a Set of modules. If
you want to get all the data definitions in schemaContext, you need to
call method getDataDefinitions, etc.

Set<Module> modules == schemaContext.getModules();
Set<DataSchemaNodes> dataSchemaNodes == schemaContext.getDataDefinitions();

Usually you want to access specific modules. Getting a concrete module
from SchemaContext is a matter of calling one of these methods:

	findModuleByName(),

	findModuleByNamespace(),

	findModuleByNamespaceAndRevision().

In the first case, you need to provide module name as it is defined in
the yang source file and module revision date if it specified in the
yang source file (if it is not defined, you can just pass a null value).
In order to provide the revision date in proper format, you can use a
utility class named SimpleDateFormatUtil.

Module exampleModule == schemaContext.findModuleByName("example-module", null);
// or
Date revisionDate == SimpleDateFormatUtil.getRevisionFormat().parse("2015-09-02");
Module exampleModule == schemaContext.findModuleByName("example-module", revisionDate);

In the second case, you have to provide module namespace in form of an
URI object.

Module exampleModule == schema.findModuleByNamespace(new URI("opendaylight.org/example-module"));

In the third case, you provide both module namespace and revision date
as arguments.

Once you have a Module object, you can access its contents as they are
defined in YANG Model API. One way to do this is to use method like
getIdentities() or getRpcs() which will give you a Set of objects.
Otherwise you can access a DataSchemaNode directly via the method
getDataChildByName() which takes a QName object as its only argument.
Here are a few examples.

Set<AugmentationSchema> augmentationSchemas == exampleModule.getAugmentations();
Set<ModuleImport> moduleImports == exampleModule.getImports();

ChoiceSchemaNode choiceSchemaNode == (ChoiceSchemaNode) exampleModule.getDataChildByName(QName.create(exampleModule.getQNameModule(), "example-choice"));

ContainerSchemaNode containerSchemaNode == (ContainerSchemaNode) exampleModule.getDataChildByName(QName.create(exampleModule.getQNameModule(), "example-container"));

The YANG statement parser can work in three modes:

	default mode

	mode with active resolution of if-feature statements

	mode with active semantic version processing

The default mode is active when you initialize the parsing cycle as
usual by calling the method newBuild() without passing any arguments to
it. The second and third mode can be activated by invoking the
newBuild() with a special argument. You can either activate just one of
them or both by passing proper arguments. Let us explain how these modes
work.

Mode with active resolution of if-features makes yang statements
containing an if-feature statement conditional based on the supported
features. These features are provided in the form of a QName-based
java.util.Set object. In the example below, only two
features are supported: example-feature-1 and example-feature-2. The
Set which contains this information is passed to the method
newBuild() and the mode is activated.

Set<QName> supportedFeatures = ImmutableSet.of(
 QName.create("example-namespace", "2016-08-31", "example-feature-1"),
 QName.create("example-namespace", "2016-08-31", "example-feature-2"));

CrossSourceStatementReactor.BuildAction reactor = YangInferencePipeline.RFC6020_REACTOR.newBuild(supportedFeatures);

In case when no features should be supported, you should provide an
empty Set<QName> object.

Set<QName> supportedFeatures = ImmutableSet.of();

CrossSourceStatementReactor.BuildAction reactor = YangInferencePipeline.RFC6020_REACTOR.newBuild(supportedFeatures);

When this mode is not activated, all features in the processed YANG
sources are supported.

Mode with active semantic version processing changes the way how YANG
import statements work - each module import is processed based on the
specified semantic version statement and the revision-date statement is
ignored. In order to activate this mode, you have to provide
StatementParserMode.SEMVER_MODE enum constant as argument to the method
newBuild().

CrossSourceStatementReactor.BuildAction reactor == YangInferencePipeline.RFC6020_REACTOR.newBuild(StatementParserMode.SEMVER_MODE);

Before you use a semantic version statement in a YANG module, you need
to define an extension for it so that the YANG statement parser can
recognize it.

In the example above, you see a YANG module which defines semantic
version as an extension. This extension can be imported to other modules
in which we want to utilize the semantic versioning concept.

Below is a simple example of the semantic versioning usage. With
semantic version processing mode being active, the foo module imports
the bar module based on its semantic version. Notice how both modules
import the module with the semantic-version extension.

Every semantic version must have the following form: x.y.z. The x
corresponds to a major version, the y corresponds to a minor version and
the z corresponds to a patch version. If no semantic version is
specified in a module or an import statement, then the default one is
used - 0.0.0.

A major version number of 0 indicates that the model is still in
development and is subject to change.

Following a release of major version 1, all modules will increment major
version number when backwards incompatible changes to the model are
made.

The minor version is changed when features are added to the model that
do not impact current clients use of the model.

The patch version is incremented when non-feature changes (such as
bugfixes or clarifications of human-readable descriptions that do not
impact model functionality) are made that maintain backwards
compatibility.

When importing a module with activated semantic version processing mode,
only the module with the newest (highest) compatible semantic version is
imported. Two semantic versions are compatible when all of the following
conditions are met:

	the major version in the import statement and major version in the
imported module are equal. For instance, 1.5.3 is compatible with
1.5.3, 1.5.4, 1.7.2, etc., but it is not compatible with 0.5.2 or
2.4.8, etc.

	the combination of minor version and patch version in the import
statement is not higher than the one in the imported module. For
instance, 1.5.2 is compatible with 1.5.2, 1.5.4, 1.6.8 etc. In fact,
1.5.2 is also compatible with versions like 1.5.1, 1.4.9 or 1.3.7 as
they have equal major version. However, they will not be imported
because their minor and patch version are lower (older).

If the import statement does not specify a semantic version, then the
default one is chosen - 0.0.0. Thus, the module is imported only if it
has a semantic version compatible with the default one, for example
0.0.0, 0.1.3, 0.3.5 and so on.

Working with YANG Data

If you want to work with YANG Data you are going to need NormalizedNode
objects that are specified in the YANG Data API. NormalizedNode is an
interface at the top of the YANG Data hierarchy. It is extended through
sub-interfaces which define the behaviour of specific NormalizedNode
types like AnyXmlNode, ChoiceNode, LeafNode, ContainerNode, etc.
Concrete implemenations of these interfaces are defined in
yang-data-impl module. Once you have one or more NormalizedNode
instances, you can perform CRUD operations on YANG data tree which is an
in-memory database designed to store normalized nodes in a tree-like
structure.

In some cases it is clear which NormalizedNode type belongs to which
yang statement (e.g. AnyXmlNode, ChoiceNode, LeafNode). However, there
are some normalized nodes which are named differently from their yang
counterparts. They are listed below:

	LeafSetNode - leaf-list

	OrderedLeafSetNode - leaf-list that is ordered-by user

	LeafSetEntryNode - concrete entry in a leaf-list

	MapNode - keyed list

	OrderedMapNode - keyed list that is ordered-by user

	MapEntryNode - concrete entry in a keyed list

	UnkeyedListNode - unkeyed list

	UnkeyedListEntryNode - concrete entry in an unkeyed list

In order to create a concrete NormalizedNode object you can use the
utility class Builders or ImmutableNodes. These classes can be found in
yang-data-impl module and they provide methods for building each type of
normalized node. Here is a simple example of building a normalized node:

\\ example 1
ContainerNode containerNode == Builders.containerBuilder().withNodeIdentifier(new YangInstanceIdentifier.NodeIdentifier(QName.create(moduleQName, "example-container")).build();

\\ example 2
ContainerNode containerNode2 == Builders.containerBuilder(containerSchemaNode).build();

Both examples produce the same result. NodeIdentifier is one of the four
types of YangInstanceIdentifier (these types are described in the
javadoc of YangInstanceIdentifier). The purpose of
YangInstanceIdentifier is to uniquely identify a particular node in the
data tree. In the first example, you have to add NodeIdentifier before
building the resulting node. In the second example it is also added
using the provided ContainerSchemaNode object.

ImmutableNodes class offers similar builder methods and also adds an
overloaded method called fromInstanceId() which allows you to create a
NormalizedNode object based on YangInstanceIdentifier and SchemaContext.
Below is an example which shows the use of this method.

YangInstanceIdentifier.NodeIdentifier contId == new YangInstanceIdentifier.NodeIdentifier(QName.create(moduleQName, "example-container");

NormalizedNode<?, ?> contNode == ImmutableNodes.fromInstanceId(schemaContext, YangInstanceIdentifier.create(contId));

Let us show a more complex example of creating a NormalizedNode. First,
consider the following YANG module:

In the following example, two normalized nodes based on the module above
are written to and read from the data tree.

TipProducingDataTree inMemoryDataTree == InMemoryDataTreeFactory.getInstance().create(TreeType.OPERATIONAL);
inMemoryDataTree.setSchemaContext(schemaContext);

// first data tree modification
MapEntryNode parentOrderedListEntryNode == Builders.mapEntryBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifierWithPredicates(
parentOrderedListQName, parentKeyLeafQName, "pkval1"))
.withChild(Builders.leafBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(parentOrdinaryLeafQName))
.withValue("plfval1").build()).build();

OrderedMapNode parentOrderedListNode == Builders.orderedMapBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(parentOrderedListQName))
.withChild(parentOrderedListEntryNode).build();

ContainerNode parentContainerNode == Builders.containerBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(parentContainerQName))
.withChild(Builders.containerBuilder().withNodeIdentifier(
new NodeIdentifier(childContainerQName)).withChild(parentOrderedListNode).build()).build();

YangInstanceIdentifier path1 == YangInstanceIdentifier.of(parentContainerQName);

DataTreeModification treeModification == inMemoryDataTree.takeSnapshot().newModification();
treeModification.write(path1, parentContainerNode);

// second data tree modification
MapEntryNode childOrderedListEntryNode == Builders.mapEntryBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifierWithPredicates(
childOrderedListQName, childKeyLeafQName, "chkval1"))
.withChild(Builders.leafBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(childOrdinaryLeafQName))
.withValue("chlfval1").build()).build();

OrderedMapNode childOrderedListNode == Builders.orderedMapBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(childOrderedListQName))
.withChild(childOrderedListEntryNode).build();

ImmutableMap.Builder<QName, Object> builder == ImmutableMap.builder();
ImmutableMap<QName, Object> keys == builder.put(parentKeyLeafQName, "pkval1").build();

YangInstanceIdentifier path2 == YangInstanceIdentifier.of(parentContainerQName).node(childContainerQName)
.node(parentOrderedListQName).node(new NodeIdentifierWithPredicates(parentOrderedListQName, keys)).node(childOrderedListQName);

treeModification.write(path2, childOrderedListNode);
treeModification.ready();
inMemoryDataTree.validate(treeModification);
inMemoryDataTree.commit(inMemoryDataTree.prepare(treeModification));

DataTreeSnapshot snapshotAfterCommits == inMemoryDataTree.takeSnapshot();
Optional<NormalizedNode<?, ?>> readNode == snapshotAfterCommits.readNode(path1);
Optional<NormalizedNode<?, ?>> readNode2 == snapshotAfterCommits.readNode(path2);

First comes the creation of in-memory data tree instance. The schema
context (containing the model mentioned above) of this tree is set.
After that, two normalized nodes are built. The first one consists of a
parent container, a child container and a parent ordered list which
contains a key leaf and an ordinary leaf. The second normalized node is
a child ordered list that also contains a key leaf and an ordinary leaf.

In order to add a child node to a node, method withChild() is used. It
takes a NormalizedNode as argument. When creating a list entry,
YangInstanceIdentifier.NodeIdentifierWithPredicates should be used as
its identifier. Its arguments are the QName of the list, QName of the
list key and the value of the key. Method withValue() specifies a value
for the ordinary leaf in the list.

Before writing a node to the data tree, a path (YangInstanceIdentifier)
which determines its place in the data tree needs to be defined. The
path of the first normalized node starts at the parent container. The
path of the second normalized node points to the child ordered list
contained in the parent ordered list entry specified by the key value
“pkval1”.

Write operation is performed with both normalized nodes mentioned
earlier. It consist of several steps. The first step is to instantiate a
DataTreeModification object based on a DataTreeSnapshot.
DataTreeSnapshot gives you the current state of the data tree. Then
comes the write operation which writes a normalized node at the provided
path in the data tree. After doing both write operations, method ready()
has to be called, marking the modification as ready for application to
the data tree. No further operations within the modification are
allowed. The modification is then validated - checked whether it can be
applied to the data tree. Finally we commit it to the data tree.

Now you can access the written nodes. In order to do this, you have to
create a new DataTreeSnapshot instance and call the method readNode()
with path argument pointing to a particular node in the tree.

Serialization / deserialization of YANG Data

If you want to deserialize YANG-modeled data which have the form of an
XML document, you can use the XML parser found in the module
yang-data-codec-xml. The parser walks through the XML document
containing YANG-modeled data based on the provided SchemaContext and
emits node events into a NormalizedNodeStreamWriter. The parser
disallows multiple instances of the same element except for leaf-list
and list entries. The parser also expects that the YANG-modeled data in
the XML source are wrapped in a root element. Otherwise it will not work
correctly.

Here is an example of using the XML parser.

InputStream resourceAsStream == ExampleClass.class.getResourceAsStream("/example-module.yang");

XMLInputFactory factory == XMLInputFactory.newInstance();
XMLStreamReader reader == factory.createXMLStreamReader(resourceAsStream);

NormalizedNodeResult result == new NormalizedNodeResult();
NormalizedNodeStreamWriter streamWriter == ImmutableNormalizedNodeStreamWriter.from(result);

XmlParserStream xmlParser == XmlParserStream.create(streamWriter, schemaContext);
xmlParser.parse(reader);

NormalizedNode<?, ?> transformedInput == result.getResult();

The XML parser utilizes the javax.xml.stream.XMLStreamReader for parsing
an XML document. First, you should create an instance of this reader
using XMLInputFactory and then load an XML document (in the form of
InputStream object) into it.

In order to emit node events while parsing the data you need to
instantiate a NormalizedNodeStreamWriter. This writer is actually an
interface and therefore you need to use a concrete implementation of it.
In this example it is the ImmutableNormalizedNodeStreamWriter, which
constructs immutable instances of NormalizedNodes.

There are two ways how to create an instance of this writer using the
static overloaded method from(). One version of this method takes a
NormalizedNodeResult as argument. This object type is a result holder in
which the resulting NormalizedNode will be stored. The other version
takes a NormalizedNodeContainerBuilder as argument. All created nodes
will be written to this builder.

Next step is to create an instance of the XML parser. The parser itself
is represented by a class named XmlParserStream. You can use one of two
versions of the static overloaded method create() to construct this
object. One version accepts a NormalizedNodeStreamWriter and a
SchemaContext as arguments, the other version takes the same arguments
plus a SchemaNode. Node events are emitted to the writer. The
SchemaContext is used to check if the YANG data in the XML source comply
with the provided YANG model(s). The last argument, a SchemaNode object,
describes the node that is the parent of nodes defined in the XML data.
If you do not provide this argument, the parser sets the SchemaContext
as the parent node.

The parser is now ready to walk through the XML. Parsing is initiated by
calling the method parse() on the XmlParserStream object with
XMLStreamReader as its argument.

Finally you can access the result of parsing - a tree of NormalizedNodes
containg the data as they are defined in the parsed XML document - by
calling the method getResult() on the NormalizedNodeResult object.

Introducing schema source repositories

Writing YANG driven generators

Introducing specific extension support for YANG parser

Diagnostics

Java API Documentation

	bgpcep [https://javadocs.opendaylight.org/bgpcep/nitrogen]

	controller [https://javadocs.opendaylight.org/controller/nitrogen]

	genius [https://javadocs.opendaylight.org/genius/nitrogen]

	infrautils [https://javadocs.opendaylight.org/infrautils/nitrogen]

	lispflowmapping [https://javadocs.opendaylight.org/lispflowmapping/nitrogen]

	mdsal [https://javadocs.opendaylight.org/mdsal/nitrogen]

	netvirt [https://javadocs.opendaylight.org/netvirt/nitrogen]

	odlparent [https://javadocs.opendaylight.org/odlparent/2.0.x]

	openflowplugin [https://javadocs.opendaylight.org/openflowplugin/nitrogen]

	ovsdb [https://javadocs.opendaylight.org/ovsdb/nitrogen]

	sfc [https://javadocs.opendaylight.org/sfc/nitrogen]

	yangtools [https://javadocs.opendaylight.org/yangtools/nitrogen]

Documentation Guide

This guide provides details on how to contribute to the OpenDaylight
documentation. OpenDaylight currently uses reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html] for
documentation and Sphinx [http://www.sphinx-doc.org/en/stable/] to build it. These documentation tools are widely used
in open source communities to produce both HTML and PDF documentation and can
be easily versioned alongside the code. reStructuredText also offers similar
syntax to Markdown, which is familiar to many developers.

Contents

	Style Guide

	Formatting Preferences

	Key terms

	Common writing style mistakes

	reStructuredText-based Documentation

	Directory Structure

	Documentation Layout and Style

	Troubleshooting

	Project Documentation Requirements

	Submitting Documentation Outlines (M2)

	Expected Output From Documentation Project

	Project Documentation Requirements

Style Guide

This section serves two purposes:

	A guide for those writing documentation.

	A guide for those reviewing documentation.

Note

When reviewing content, assuming that the content is usable, the
documentation team is biased toward merging the content rather than
blocking it due to relatively minor editorial issues.

Formatting Preferences

In general, when reviewing content, the documentation team ensures that it
is comprehensible but tries not to be overly pedantic. Along those lines,
while it is preferred that the following formatting preferences are followed,
they are generally not an exclusive reason to give a “-1” reply to a patch in
Gerrit:

	No trailing whitespace

	Line wrapping at something reasonable, that is, 72–100 characters

Key terms

	Functionality: something useful a project provides abstractly

	Feature: a Karaf feature that somebody could install

	Project: a project within OpenDaylight; projects ship features to
provide functionality

	OpenDaylight: this refers to the software we release; use this in
place of OpenDaylight controller, the OpenDaylight controller, not
ODL, not ODC

	Since there is a controller project within OpenDaylight, using
other terms is hard.

Common writing style mistakes

	In per-project user documentation, you should never say git clone,
but should assume people have downloaded and installed the controller
per the getting started guide and start with feature:install
<something>

	Avoid statements which are true about part of OpenDaylight, but not
generally true.

	For example: “OpenDaylight is a NETCONF controller.” It is, but
that is not all it is.

	In general, developer documentation should target external developers
to your project so should talk about what APIs you have and how they
could use them. It should not document how to contribute to your
project.

Grammar Preferences

	Avoid contractions: Use “cannot” instead of “can’t”, “it is” instead of
“it’s”, and so on.

Word Choice

Note

The following word choice guidelines apply when using these terms in
text. If these terms are used as part of a URL, class name, or
any instance where modifying the case would create issues, use the
exact capitalization and spacing associated with the URL or class
name.

	ACL: not Acl or acl

	API: not api

	ARP: not Arp or arp

	datastore: not data store, Data Store, or DataStore (unless it is a
class/object name)

	IPsec, not IPSEC or ipsec

	IPv4 or IPv6: not Ipv4, Ipv6, ipv4, ipv6, IPV4, or IPV6

	Karaf: not karaf

	Linux: not LINUX or linux

	NETCONF: not Netconf or netconf

	Neutron: not neutron

	OSGi: not osgi or OSGI

	Open vSwitch: not OpenvSwitch, OpenVSwitch, or Open V Switch.

	OpenDaylight: not Opendaylight, Open Daylight, or OpenDayLight.

Note

Also, avoid Opendaylight abbreviations like ODL and ODC.

	OpenFlow: not Openflow, Open Flow, or openflow.

	OpenStack: not Open Stack or Openstack

	QoS: not Qos, QOS, or qos

	RESTCONF: not Restconf or restconf

	RPC not Rpc or rpc

	URL not Url or url

	VM: not Vm or vm

	YANG: not Yang or yang

reStructuredText-based Documentation

When using reStructuredText, follow the Python documentation
style guidelines. See: https://docs.python.org/devguide/documenting.html

One of the best references for reStrucutedText syntax is the Sphinx
Primer on reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html].

To build and review the reStructuredText documentation locally, you must
have the following packages installed locally:

	python

	python-tox

Note

Both packages should be available in most distribution package
managers.

Then simply run tox and open the HTML produced by using your favorite web
browser as follows:

git clone https://git.opendaylight.org/gerrit/docs
cd docs
git submodule update --init
tox
firefox docs/_build/html/index.html

Directory Structure

The directory structure for the reStructuredText documentation is
rooted in the docs directory inside the docs git
repository.

Note

There are guides hosted directly in the docs git
repository and there are guides hosted in remote git repositories.
Documentation hosted in remote git repositories are generally
provided for project-specific information.

For example, here is the directory layout on June, 28th 2016:

$ tree -L 2
.
├── Makefile
├── conf.py
├── documentation.rst
├── getting-started-guide
│ ├── api.rst
│ ├── concepts_and_tools.rst
│ ├── experimental_features.rst
│ ├── index.rst
│ ├── installing_opendaylight.rst
│ ├── introduction.rst
│ ├── karaf_features.rst
│ ├── other_features.rst
│ ├── overview.rst
│ └── who_should_use.rst
├── index.rst
├── make.bat
├── opendaylight-with-openstack
│ ├── images
│ ├── index.rst
│ ├── openstack-with-gbp.rst
│ ├── openstack-with-ovsdb.rst
│ └── openstack-with-vtn.rst
└── submodules
 └── releng
 └── builder

The getting-started-guide and opendaylight-with-openstack
directories correspond to two guides hosted in the docs repository,
while the submodules/releng/builder directory houses documentation
for the RelEng/Builder [https://wiki.opendaylight.org/view/RelEng/Builder] project.

Each guide includes an index.rst file, which uses a toctree
directive that includes the other files associated with the guide. For example:

.. toctree::
 :maxdepth: 1

 getting-started-guide/index
 opendaylight-with-openstack/index
 submodules/releng/builder/docs/index

This example creates a table of contents on that page where each heading of the
table of contents is the root of the files that are included.

Note

When including .rst files using the toctree directive, omit
the .rst file extension at the end of the file name.

Adding a submodule

If you want to import a project underneath the documentation project so
that the docs can be kept in the separate repo, you can do it by using the
git submodule add command as follows:

git submodule add -b master ../integration/packaging docs/submodules/integration/packaging
git commit -s

Note

Most projects will not want to use -b master, but instead
use the branch ., which tracks whatever branch
of the documentation project you happen to be on.

Unfortunately, -b . does not work, so you have to manually
edit the .gitmodules file to add branch = . and then
commit it. For example:

<edit the .gitmodules file>
git add .gitmodules
git commit --amend

When you’re done you should have a git commit something like:

$ git show
commit 7943ce2cb41cd9d36ce93ee9003510ce3edd7fa9
Author: Daniel Farrell <dfarrell@redhat.com>
Date: Fri Dec 23 14:45:44 2016 -0500

 Add Int/Pack to git submodules for RTD generation

 Change-Id: I64cd36ca044b8303cb7fc465b2d91470819a9fe6
 Signed-off-by: Daniel Farrell <dfarrell@redhat.com>

diff --git a/.gitmodules b/.gitmodules
index 91201bf6..b56e11c8 100644
--- a/.gitmodules
+++ b/.gitmodules
@@ -38,3 +38,7 @@
 path = docs/submodules/ovsdb
 url = ../ovsdb
 branch = .
+[submodule "docs/submodules/integration/packaging"]
+ path = docs/submodules/integration/packaging
+ url = ../integration/packaging
+ branch = master
diff --git a/docs/submodules/integration/packaging b/docs/submodules/integration/packaging
new file mode 160000
index 00000000..fd5a8185
--- /dev/null
+++ b/docs/submodules/integration/packaging
@@ -0,0 +1 @@
+Subproject commit fd5a81853e71d45945471d0f91bbdac1a1444386

As usual, you can push it to Gerrit with git review.

Important

It is critical that the Gerrit patch be merged before the
git commit hash of the submodule changes. Otherwise,
Gerrit is not able to automatically keep it up-to-date
for you.

Documentation Layout and Style

As mentioned previously, OpenDaylight aims to follow the Python documentation
style guidelines, which defines a few types of sections:

with overline, for parts
* with overline, for chapters
=, for sections
-, for subsections
^, for subsubsections
", for paragraphs

OpenDaylight documentation is organized around the following structure based on
that recommendation:

docs/index.rst -> entry point
docs/____-guide/index.rst -> part
docs/____-guide/<chapter>.rst -> chapter

In the ____-guide/index.rst we use the # with overline at the very top
of the file to determine that it is a part and then within each chapter
file we start the document with a section using * with overline to
denote that it is the chapter heading and then everything in the rest of
the chapter should use:

=, for sections
-, for subsections
^, for subsubsections
", for paragraphs

Referencing Sections

This section provides a quick primer for creating references
in OpenDaylight documentation. For more information, refer to
Cross-referencing documents [http://www.sphinx-doc.org/en/stable/markup/inline.html#ref-role].

Within a single document, you can reference another section simply by:

This is a reference to `The title of a section`_

Assuming that somewhere else in the same file, there a is a section
title something like:

The title of a section
^^^^^^^^^^^^^^^^^^^^^^

It is typically better to use :ref: syntax and labels to provide
links as they work across files and are resilient to sections being
renamed. First, you need to create a label something like:

.. _a-label:

The title of a section
^^^^^^^^^^^^^^^^^^^^^^

Note

The underscore (_) before the label is required.

Then you can reference the section anywhere by simply doing:

This is a reference to :ref:`a-label`

or:

This is a reference to :ref:`a section I really liked <a-label>`

Note

When using :ref:-style links, you don’t need a trailing
underscore (_).

Because the labels have to be unique, a best practice is to prefix
the labels with the project name to help share the label space; for example,
use sfc-user-guide instead of just user-guide.

Troubleshooting

Nested formatting does not work

As stated in the reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html] guide, inline markup for bold,
italic, and fixed-width font cannot be nested. Furthermore, inline markup cannot
be mixed with hyperlinks, so you cannot have a link with bold text.

This is tracked in a Docutils FAQ question [http://docutils.sourceforge.net/FAQ.html#is-nested-inline-markup-possible],
but there is no clear current plan to fix this.

Make sure you have cloned submodules

If you see an error like this:

./build-integration-robot-libdoc.sh: line 6: cd: submodules/integration/test/csit/libraries: No such file or directory
Resource file '*.robot' does not exist.

It means that you have not pulled down the git submodule for the
integration/test project. The fastest way to do that is:

git submodule update --init

In some cases, you might wind up with submodules which are somehow
out-of-sync. In that case, the easiest way to fix them is to delete the
submodules directory and then re-clone the submodules:

rm -rf docs/submodules/
git submodule update --init

Warning

These steps delete any local changes or information you made
in the submodules, which would only occur if you
manually edited files in that directory.

Clear your tox directory and try again

Sometimes, tox will not detect when your requirements.txt file has
changed and so will try to run things without the correct dependencies.
This issue usually manifests as No module named X errors or
an ExtensionError and can be fixed by deleting the .tox
directory and building again:

rm -rf .tox
tox

Builds on Read the Docs

Read the Docs builds do not automatically clear the file structure between
builds and clones. The result is that you may have to clean up the state of
old runs of the build script.

As an example, refer to the following patch:
https://git.opendaylight.org/gerrit/41679

This patch fixed the issue that caused builds to fail because they were
taking too long removing directories associated with generated
javadoc files that were present from previous runs.

Errors from Coala

As part of running tox, two environments run: coala which does a variety
of reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html] (and other) linting, and docs, which runs Sphinx [http://www.sphinx-doc.org/en/stable/] to
build HTML and PDF documentation. You can run them independently by doing
tox -ecoala or tox -edocs.

The coala linter for reStructuredText is not always the most helpful in
explaining why it failed. So, here are some common ones. There should also be
Jenkins Failure Cause Management rules that will highlight these for you.

Git Commit Message Errors

Coala checks that git commit messages adhere to the following rules:

	Shortlog (1st line of commit message) is less than 50 characters

	Shortlog (1st line of commit message) is in the imperative mood. For example,
“Add foo unit test” is good, but “Adding foo unit test is bad”“

	Body (all lines but 1st line of commit message) are less than 72 characters.
Some exceptions seem to exist, such as for long URLs.

Some examples of those being logged are:

	::

	Project wide:
| | [NORMAL] GitCommitBear:
| | Shortlog of HEAD commit isn’t in imperative mood! Bad words are ‘Adding’

	::

	Project wide:
| | [NORMAL] GitCommitBear:
| | Body of HEAD commit contains too long lines. Commit body lines should not exceed 72 characters.

Error in “code-block” directive

If you see an error like this:

	::

	docs/gerrit.rst
| 89| ···..·code-block::·bash
| | [MAJOR] RSTcheckBear:
| | (ERROR/3) Error in “code-block” directive:

It means that the relevant code-block is not valid for the
language specified, in this case bash.

Note

If you do not specify a language, the default language is Python. If
you want the code-block to not be an any particular language, instead
use the :: directive. For example:

	::

	
	::

	This is a code block
that will not be parsed
in any particluar langauge

Project Documentation Requirements

Submitting Documentation Outlines (M2)

	Determine the features your project will have and which ones will be
‘’user-facing’‘.

	In general, a feature is user-facing if it creates functionality that a
user would directly interact with.

	For example, odl-openflowplugin-flow-services-ui is likely
user-facing since it installs user-facing OpenFlow features, while
odl-openflowplugin-flow-services is not because it provides only
developer-facing features.

	Determine pieces of documentation that you need to provide based on the
features your project will have and which ones will be user-facing.

	The kinds of required documentation can be found below in the
Requirements for projects section.

Note

You might need to create multiple documents for the
same kind of documentation. For example, the controller project
will likely want to have a developer section for the config
subsystem as well as for the MD-SAL.

	Clone the docs repo: git clone https://git.opendaylight.org/gerrit/docs

	For each piece of documentation find the corresponding template in the docs
repo.

	For user documentation: docs.git/docs/templates/template-user-guide.rst

	For developer documentation: ddocs/templates/template-developer-guide.rst

	For installation documentation (if any): docs/templates/template-install-guide.rst

Note

You can find the rendered templates here:

	<Feature> User Guide

	<Feature> Developer Guide

	<Feature> Installation Guide

	Copy the template into the appropriate directory for your project.

	For user documentation: docs.git/docs/user-guide/${feature-name}-user-guide.rst

	For developer documentation: docs.git/docs/developer-guide/${feature-name}-developer-guide.rst

	For installation documentation (if any): docs.git/docs/getting-started-guide/project-specific-guides/${project-name}.rst

Note

These naming conventions are not set in stone, but are used to
maintain a consistent document taxonomy. If these conventions
are not appropriate or do not make sense for a document
in development, use the convention that you think is more
appropriate and the documentation team will review it and give
feedback on the gerrit patch.

	Edit the template to fill in the outline of what you will provide using the
suggestions in the template. If you feel like a section is not needed, feel
free to omit it.

	Link the template into the appropriate core .rst file.

	For user documentation: docs.git/docs/user-guide/index.rst

	For developer documentation: docs.git/docs/developer-guide/index.rst

	For installation documentation (if any): docs.git/docs/getting-started-guide/project-specific-guides/index.rst

	In each file, it should be pretty clear what line you need to add. In
general if you have an .rst file project-name.rst, you include it
by adding a new line project-name without the .rst at the end.

	Make sure the documentation project still builds.

	Run tox from the root of the cloned docs repo.

	After that, you should be able to find the HTML version of the
docs at docs.git/docs/_build/html/index.html.

	See reStructuredText-based Documentation for more details about building the docs.

	The reStructuredText Troubleshooting
section provides common errors and solutions.

	If you still have problems e-mail the documentation group at
documentation@lists.opendaylight.org

	Commit and submit the patch.

	Commit using:

git add --all && git commit -sm "Documentation outline for ${project-shortname}"

	Submit using:

git review

See the Git-review Workflow [https://wiki.opendaylight.org/view/Git-review_Workflow]
page if you don’t have git-review installed.

	Wait for the patch to be merged or to get feedback

	If you get feedback, make the requested changes and resubmit the patch.

	When you resubmit the patch, it is helpful if you also post a “+0” reply to
the patch in Gerrit, stating what patch set you just submitted and what you
fixed in the patch set.

Expected Output From Documentation Project

The expected output is (at least) 3 PDFs and equivalent web-based documentation:

	User/Operator Guide

	Developer Guide

	Installation Guide

These guides will consist of “front matter” produced by the documentation group
and the per-project/per-feature documentation provided by the projects.

Note

This requirement is intended for the person responsible for the
documentation and should not be interpreted as preventing people not
normally in the documentation group from helping with front matter
nor preventing people from the documentation group from helping with
per-project/per-feature documentation.

Project Documentation Requirements

Content Types

These are the expected kinds of documentation and target audiences for each
kind.

	User/Operator: for people looking to use the feature without writing code

	Should include an overview of the project/feature

	Should include description of availble configuration options and what they
do

	Developer: for people looking to use the feature in code without modifying
it

	Should include API documentation, such as, enunciate for REST, Javadoc for
Java, ??? for RESTCONF/models

	Contributor: for people looking to extend or modify the feature’s source
code

Note

You can find this information on the wiki.

	Installation: for people looking for instructions to install the feature
after they have downloaded the ODL release

Note

The audience for this content is the same as User/Operator docs

	For most projects, this will be just a list of top-level features and
options

	As an example, l2switch-switch as the top-level feature with the -rest
and -ui options

	Features should also note if the options should be checkboxes (that is,
they can each be turned on/off independently) or a drop down (that is, at
most one can be selected)

	What other top-level features in the release are incompatible with each
feature

	This will likely be presented as a table in the documentation and the
data will likely also be consumed by automated
installers/configurators/downloaders

	For some projects, there is extra installation instructions (for external
components) and/or configuration

	In that case, there will be a (sub)section in the documentation
describing this process.

	HowTo/Tutorial: walk throughs and examples that are not general-purpose
documentation

	Generally, these should be done as a (sub)section of either user/operator
or developer documentation.

	If they are especially long or complex, they may belong on their own

	Release Notes:

	Release notes are required as part of each project’s release review. They
must also be translated into reStructuredText for inclusion in the formal
documentation.

Requirements for projects

	Projects must provide reStructuredText documentation including:

	Developer documentation for every feature

	Most projects will want to logically nest the documentation for
individual features under a single project-wide chapter or section

	The feature documentation can be provided as a single .rst file or
multiple .rst files if the features fall into different groups

	Feature documentation should start with appromimately 300 word overview
of the project and include references to any automatically-generated API
documentation as well as more general developer information (see
Content Types).

	User/Operator documentation for every every user-facing feature (if any)

	This documentation should be per-feature, not per-project. Users should
not have to know which project a feature came from.

	Intimately related features can be documented together. For example,
l2switch-switch, l2switch-switch-rest, and l2switch-switch-ui, can be
documented as one noting the differences.

	This documentation can be provided as a single .rst file or multiple
.rst files if the features fall into different groups

	Installation documentation

	Most projects will simply provide a list of user-facing features and
options. See Content Types above.

	Release Notes (both on the wiki and reStructuredText) as part of the release
review.

	Documentation must be contributed to the docs repo (or possibly imported
from the project’s own repo with tooling that is under development)

	Projects may be encouraged to instead provide this from their own
repository if the tooling is developed

	Projects choosing to meet the requirement in this way must provide a patch
to docs repo to import the project’s documentation

	Projects must cooperate with the documentation group on edits and enhancements
to documentation

Timeline for Deliverables from Projects

	M2: Documentation Started

The following tasks for documentation deliverables must be completed for the
M2 readout:

	The kinds of documentation that will be provided and for what features must
be identified.

Note

Release Notes are not required until release reviews at RC2

	The appropriate .rst files must be created in the docs repository
(or their own repository if the tooling is available).

	An outline for the expected documentation must be completed in those
.rst files including the relevant (sub)sections and a sentence or two
explaining what will be contained in these sections.

Note

If an outline is not provided, delivering actual documentation
in the (sub)sections meets this requirement.

	M2 readouts should include

	the list of kinds of documentation

	the list of corresponding .rst files and their location, including
repo and path

	the list of commits creating those .rst files

	the current word counts of those .rst files

	M3: Documentation Continues

	The readout at M3 should include the word counts of all .rst files with
links to commits

	The goal is to have draft documentation complete at the M3 readout so that
the documentation group can comment on it.

	M4: Documentation Complete

	All (sub)sections in all .rst files have complete, readable, usable
content.

	Ideally, there should have been some interaction with the documentation
group about any suggested edits and enhancements

	RC2: Release notes

	Projects must provide release notes in .rst format pushed to integration
(or locally in the project’s repository if the tooling is developed)

<Feature> User Guide

Refer to this template to identify the required sections and information
that you should provide for a User Guide. The user guide should contain
configuration, administration, management, using, and troubleshooting
sections for the feature.

Overview

Provide an overview of the feature and the use case. Also include the
audience who will use the feature. For example, audience can be the
network administrator, cloud administrator, network engineer, system
administrators, and so on.

<Feature> Architecture

Provide information about feature components and how they work together.
Also include information about how the feature integrates with
OpenDaylight. An architecture diagram could help.

Note

Please do not include detailed internals that somebody
using the feature wouldn’t care about. For example, the fact
that there are four layers of APIs between a user command and
a message being sent to a device is probably not useful to
know unless they have some way to influence how those layers
work and a reason to do so.

Configuring <feature>

Describe how to configure the feature or the project after installation.
Configuration information could include day-one activities for a project
such as configuring users, configuring clients/servers and so on.

Administering or Managing <feature>

Include related command reference or operations that you could perform
using the feature. For example viewing network statistics, monitoring
the network, generating reports, and so on.

For example:

To configure L2switch components perform the following steps.

	Step 1:

	Step 2:

	Step 3:

Tutorials

optional

If there is only one tutorial, you skip the “Tutorials” section and
instead just lead with the single tutorial’s name. If you do, also
increase the header level by one, i.e., replace the carets (^^^) with
dashes (- - -) and the dashes with equals signs (===).

<Tutorial Name>

Ensure that the title starts with a gerund. For example using,
monitoring, creating, and so on.

Overview

An overview of the use case.

Prerequisites

Provide any prerequisite information, assumed knowledge, or environment
required to execute the use case.

Target Environment

Include any topology requirement for the use case. Ideally, provide
visual (abstract) layout of network diagrams and any other useful visual
aides.

Instructions

Use case could be a set of configuration procedures. Including
screenshots to help demonstrate what is happening is especially useful.
Ensure that you specify them separately. For example:

Setting up the VM

To set up a VM perform the following steps.

	Step 1

	Step 2

	Step 3

Installing the feature

To install the feature perform the following steps.

	Step 1

	Step 2

	Step 3

Configuring the environment

To configure the system perform the following steps.

	Step 1

	Step 2

	Step 3

<Feature> Developer Guide

Overview

Provide an overview of the feature, what it logical functionality it
provides and why you might use it as a developer. To be clear the target
audience for this guide is a developer who will be using the feature
to build something separate, but not somebody who will be developing
code for this feature itself.

Note

More so than with user guides, the guide may cover more than
one feature. If that is the case, be sure to list all of the
features this covers.

<Feature> Architecture

Provide information about feature components and how they work together.
Also include information about how the feature integrates with
OpenDaylight. An architecture diagram could help. This may be the same
as the diagram used in the user guide, but it should likely be less
abstract and provide more information that would be applicable to a
developer.

Key APIs and Interfaces

Document the key things a user would want to use. For some features,
there will only be one logical grouping of APIs. For others there may be
more than one grouping.

Assuming the API is MD-SAL- and YANG-based, the APIs will be available
both via RESTCONF and via Java APIs. Giving a few examples using each is
likely a good idea.

API Group 1

Provide a description of what the API does and some examples of how to
use it.

API Group 2

Provide a description of what the API does and some examples of how to
use it.

API Reference Documentation

Provide links to JavaDoc, REST API documentation, etc.

<Feature> Installation Guide

Note

Only use this template if installation is more complicated
than simply installing a feature in the Karaf distribution.
Otherwise simply provide the names of all user-facing
features in your M3 readout.

This is a template for installing a feature or a project developed in
the ODL project. The feature could be interfaces, protocol plug-ins,
or applications.

Overview

Add overview of the feature. Include Architecture diagram and the
positioning of this feature in overall controller architecture.
Highlighting the feature in a different color within the overall
architecture must help. Include information to describe if the project
is within ODL installation package or to be installed separately.

Pre Requisites for Installing <Feature>

	Hardware Requirements

	Software Requirements

Preparing for Installation

Include any pre configuration, database, or other software downloads
required to install <feature>.

Installing <Feature>

Include if you have separate procedures for Windows and Linux

Verifying your Installation

Describe how to verify the installation.

Troubleshooting

optional

Text goes here.

Post Installation Configuration

Post Installation Configuration section must include some basic
(must-do) procedures if any, to get started.

Mandatory instructions to get started with the product.

	Logging in

	Getting Started

	Integration points with controller

Upgrading From a Previous Release

Text goes here.

Uninstalling <Feature>

Text goes here.

OpenDaylight Release Process Guide

Overview

This guide provides details on various processes related to OpenDaylight’s
release process and attempts to document the steps used by OpenDaylight Release
Engineers to perform release operations.

Processes

	Project Standalone Release

	Namespaces

	Autorelease

	Project lifecycle

	Branch Cutting

	Release Schedule

	Simultaneous Release

	Milestone Readouts

Supporting Documentation

The release management team maintains several documents in Google Drive to
track releases. These documents can be found at this link:

https://drive.google.com/drive/folders/0ByPlysxjHHJaUXdfRkJqRGo4aDg

Project Standalone Release

This page explains how a project can release independently outside of the
OpenDaylight simultanious release.

Preparing your project for release

A project can produce a staging repository by clicking “build” for their
{project-name}-maven-release-{stream} job. This job performs the following
duties:

	Removes -SNAPSHOT from all pom files

	Produces a taglist.log, project.patch, and project.bundle files

	Runs a mvn clean deploy to a local staging repo

	Pushes the staging repo to a Nexus staging repo
https://nexus.opendaylight.org/content/repositories/<REPO_ID>
(REPO_ID is saved to staging-repo.txt on the log server)

	Archives taglist.log, project.patch, and project.bundle files to log server

The files taglist.log and project.bundle can be used later at release time to
reproduce a byte exact commit of what was built by the Jenkins job. This can
be used to tag the release at release time.

Releasing your project

Once testing against the staging repo has been completed and project has
determined that the staged repo is ready for release. A release can the be
performed as follows:

	Ask helpdesk to sign the artifacts in staging repo

	Ask helpdesk to promote the staging repo

	Download taglist.log and project.bundle

	Read taglist.log and checkout the commit hash listed

	Merge the project.bundle patches

	Git tag the release

	Push release tag to Gerrit

Steps 4-7 as bash:

PATCH_DIR=/tmp/patches
PROJECT=odlparent
VERSION=1.2.3
git checkout $(awk '{print $NF}' "$PATCH_DIR/taglist.log")
git fetch "$PATCH_DIR/$PROJECT.bundle"
git merge --ff-only FETCH_HEAD
git tag -asm "$PROJECT $VERSION" "v$VERSION"
git push origin "v$VERSION"

Once complete the Git tag should be available in Gerrit and the Artifacts should
appear in the Nexus opendaylight.release repo.

Namespaces

Project namespaces in OpenDaylight are used to ensure projects do not have name
collisions in code and packages. OpenDaylight enforces namespaces in Nexus
using the following patterns:

	^/org.opendaylight.PROJECT/.*

	^/org/opendaylight/PROJECT/.*

Where PROJECT is the name of an OpenDaylight project.

In cases where a project has a sub-project we recommend adding an additional
level to the path for example org.opendaylight.integration.test however no
strong enforcement is currently enforced and some projects do this already
internally.

This restriction applies to all site repositories in Nexus as well in the event
that a project wishes to push a static web site into their allocated site path.

Maven / Java

Maven has a built in namespace routing using <groupId> field in pom files.
For example:

<project>
 <groupId>org.opendaylight.odlparent</groupId>
 <artifactId>odlparent-lite</artifactId>
 <version>1.8.0-SNAPSHOT</version>
</project>

Python

Python projects typically publish to artifacts to PyPi and use their shortname
for modules rather than a full path like Java projects do.

setup.py:

setup(
 name='spectrometer',
)

The structure of a Python project typically determines it’s package routing. So
a project package spectrometer.reporttool might have a layout like this inside
their project root.

./ # This is the root of the repository
./setup.py
./spectrometer
./spectrometer/__init__.py
./spectrometer/reporttool
./spectrometer/reporttool/__init__.py

Autorelease

The Release Engineering - Autorelease project [https://wiki.opendaylight.org/view/RelEng/Autorelease]
is targeted at building the artifacts that are used in the release candidates
and final full release.

	Open Gerrit Patches [https://git.opendaylight.org/gerrit/#/q/project:releng/autorelease+status:open]

	Jenkins Jobs [https://jenkins.opendaylight.org/releng/view/autorelease/]

Cloning Autorelease

To clone all the autorelease repo including it’s submodules simply run the
clone command with the ‘’‘–recursive’‘’ parameter.

git clone --recursive https://git.opendaylight.org/gerrit/releng/autorelease

If you forgot to add the –recursive parameter to your git clone you can pull
the submodules after with the following commands.

git submodule init
git submodule update

Creating Autorelease - Release and RC build

An autorelease release build comes from the autorelease-release-<branch> job
which can be found on the autorelease tab in the releng master:

	https://jenkins.opendaylight.org/releng/view/autorelease/

For example to create a Boron release candidate build launch a build from the
autorelease-release-boron job by clicking the ‘’‘Build with Parameters’‘’
button on the left hand menu:

	https://jenkins.opendaylight.org/releng/view/autorelease/job/autorelease-release-boron/

Note

The only field that needs to be filled in is the ‘’‘RELEASE_TAG’‘’, leave all
other fields to their default setting. Set this to Boron, Boron-RC0,
Boron-RC1, etc… depending on the build you’d like to create.

Adding Autorelease staging repo to settings.xml

If you are building or testing this release in such a way that requires pulling
some of the artifacts from the Nexus repo you may need to modify your
settings.xml to include the staging repo URL as this URL is not part of ODL
Nexus’ public or snapshot groups. If you’ve already cloned the recommended
settings.xml for building ODL you will need to add an additional profile and
activate it by adding these sections to the “<profiles>” and
“<activeProfiles>” sections (please adjust accordingly).

Note

	This is an example and you need to “Add” these example sections to your
settings.xml do not delete your existing sections.

	The URLs in the <repository> and <pluginRepository> sections will also
need to be updated with the staging repo you want to test.

<profiles>
 <profile>
 <id>opendaylight-staging</id>
 <repositories>
 <repository>
 <id>opendaylight-staging</id>
 <name>opendaylight-staging</name>
 <url>https://nexus.opendaylight.org/content/repositories/automatedweeklyreleases-1062</url>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>opendaylight-staging</id>
 <name>opendaylight-staging</name>
 <url>https://nexus.opendaylight.org/content/repositories/automatedweeklyreleases-1062</url>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
</profiles>

<activeProfiles>
 <activeProfile>opendaylight-staging</activeProfile>
</activeProfiles>

Project lifecycle

This page documents the current rules to follow when adding and removing
a particular project to Simultaneous Release (SR).

List of states

The state names are short negative phrases describing what is missing to
progress to the following state.

	non-existent
The project is not recognized by Technical Steering Committee (TSC) to be
part of OpenDaylight (ODL).

	non-participating
The project is recognized byt TSC to be an ODL project, but the project has
not confirmed participation in SR for given release cycle.

	non-building
The recognized project is willing to participate, but its current codebase is
not passing its own merge job, or the project artifacts are otherwise
unavailable in Nexus.

	not-in-autorelease
Project merge job passes, but the project is not added to
autorelease (git submodule, maven module, validate-autorelease job passes).

	failing-autorelease
The project is added to autorelease (git submodule, maven module, validate-autorelease job passes),
but autorelease build fails when building project’s artifact.
Temporary state, timing out into not-in-autorelease.

	repo-not-in-integration
Project is succesfully built within autorelease, but integration/distribution:features-index
is not listing all its public feature repositories.

	feature-not-in-integration
Feature repositories are referenced, distribution-check job is passing,
but some user-facing features are absent from integration/distribution:features-test
(possibly because adding them does not pass distribution SingleFeatureTest).

	distribution-check-not-passing
Features are in distribution, but distribution-check job is either not running,
or it is failing for any reason. Temporary state, timing out into feature-not-in-integration.

	feature-is-experimental
All user-facing features are in features-test, but at least one of the corresponding
functional CSIT jobs does not meet Integration/Test requirements.

	feature-is-not-stable
Feature does meet Integration/Test requirements, but it does not meed all requirements for stable features.

	feature-is-stable

Note

A project may change its state in both directions, this list is to make sure
a project is not left in an invalid state, for example distribution referencing
feature repositories, but without passing distribution-check job.

Branch Cutting

This page documents the current branch cutting tasks that are needed
to be performed at various milestones and which team has the necessary
permissions in order to perform the necessary task in Parentheses.

M5 Offset 2

JJB

	Export ${NEXT_RELEASE} and ${CURR_RELEASE} with new and current release names.
(releng/builder committers)

export NEXT_RELEASE="Nitrogen"
export CURR_RELEASE="Carbon"

	Change JJB yaml files from stream:carbon branch pointer from master -> stable/${CURR_RELEASE,,}
and create new stream: ${NEXT_RELEASE,,} branch pointer to branch master. This
requires handling two different file formats interspersed with in autorelease projects.
(releng/builder committers)

stream:
 - Nitrogen:
 branch: master
 - Carbon:
 branch: stable/carbon

- project:
 name: aaa-carbon
 jobs:
 - '{project-name}-verify-{stream}-{maven}-{jdks}'
 stream: nitrogen
 branch: master

	The above manual process of updating individual files is automated with the script.
(releng/builder committers)

cd builder/scripts/branch_cut
./branch_cutter.sh -n $NEXT_RELEASE -c $CURR_RELEASE

	Review and submit the changes to releng/builder project. (releng/builder committers)

Autorelease

	Block submit permissions for registered users and elevate RE’s committer rights on gerrit.
(Helpdesk)

[image: ../_images/gerrit-update-committer-rights.png]

Note

Enable Exclusive checkbox for the submit button to override any existing persmissions.

	Setup releng/autorelease repository.
(Release Engineering Team)

git review -s
git submodule foreach 'git review -s'
git checkout master
git submodule foreach 'git checkout master'
git pull --rebase
git submodule foreach 'git pull --rebase'

	Create stable/${CURR_RELEASE} branches based on HEAD master.
(Release Engineering Team)

git submodule foreach 'git checkout -b stable/${CURR_RELEASE,,} origin/master'
git push gerrit stable/${CURR_RELEASE,,}
git submodule foreach 'git push gerrit stable/${CURR_RELEASE,,}'

	Enable create reference permissions on gerrit for RE’s to submit .gitreview patches.
(Helpdesk)

[image: ../_images/gerrit-update-create-reference.png]

Note

Enable Exclusive checkbox override any existing persmissions.

	Contribute .gitreview updates to stable/${CURR_RELEASE,,}.
(Release Engineering Team)

git submodule foreach sed -i -e "s#defaultbranch=master#defaultbranch=stable/${CURR_RELEASE,,}#" .gitreview
git submodule foreach git commit -asm "Update .gitreview to stable/${CURR_RELEASE,,}"
git submodule foreach 'git review -t ${CURR_RELEASE,,}-branch-cut'
sed -i -e "s#defaultbranch=master#defaultbranch=stable/${CURR_RELEASE,,}#" .gitreview
git add .gitreview
git commit -s -v -m "Update .gitreview to stable/${CURR_RELEASE,,}"
git review -t ${CURR_RELEASE,,}-branch-cut

	Merge all .gitreview patches submitted in the above step. (Release Engineering Team)

	Remove create reference permissions set on gerrit for RE’s. (Helpdesk)

	Version bump master by x.(y+1).z. (Release Engineering Team)

git checkout master
git submodule foreach 'git checkout master'
pip install lftools
lftools version bump ${CURR_RELEASE}

	Exclude version bump changes to release notes. (Release Engineering Team)

git checkout pom.xml scripts/

	Push version bump master changes to gerrit. (Release Engineering Team)

git submodule foreach 'git commit -asm "Bump versions by x.(y+1).z for next dev cycle"'
git submodule foreach 'git review -t nitrogen-br-cut'

	Merge all version bump patches in the order of dependencies. (Release Engineering Team)

	Re-enable submit permissions for registered users and disable elevated RE committer rights on gerrit. (Helpdesk)

	Notify release list on branch cutting work completion. (Release Engineering Team)

Release Schedule

While OpenDaylight has always targeted two releases per year, in practice our
release process for the first six releases (through Carbon) has, in practice,
released approximately every 8 months. This has meant we don’t quite release
twice a year (Lithium was our only release in 2015) and we struggle to
coordinate releases with other projects that release at regular times each
year, e.g., OpenStack and OPNFV.

To try to fix this, we are having a short Nitrogen release and then moving to
a date-based, six-month release calendar releasing at the same time each year.

Nitrogen

	milestone

	offset 0

	offset 1

	offset 2

	description

	M0/M1

	6/7/2017

	6/14/2017

	6/21/2017

	Draft Release Plan

	M2/M3/M4

	6/28/2017

	7/7/2017

	7/14/2017

	Final Release Plan,
Functionality Freeze, API Freeze

	M5

	7/28/2017

	8/7/2017

	8/14/2017

	Code Freeze

	RC0

	8/14/2017

	
	
	

	RC1

	8/21/2017

	
	
	

	RC2

	8/28/2017

	
	
	

	RC3

	9/3/2017

	
	
	

	Release

	9/7/2017

	
	
	

	SR1

	10/7/2017

	
	
	

	SR2

	12/7/2017

	
	
	

	SR3

	2/7/2018

	
	
	

	SR4

	3/21–5/7

	
	
	

Note

Dates are calendar based on the 7th, 14th, 21st, and 28th of each month instead of being
on a particular day of the week. The intent is that projects will figure out how to meet
the deadline in the way that best works for them even if that means getting work done
ahead of time to avoid holidays, weekends, vacation or travel.

Future Odd Releases

Starting with Oxygen, our odd-numbered element releases will look like this:

	milestone

	off0

	off1

	off2

	Description

	M0

	9/7

	
	
	Draft Release Plan

	M1

	10/7

	10/14

	10/21

	Final Release Plan, Project Setup

	M2

	11/7

	11/14

	11/21

	Functionality Freeze

	M3

	12/7

	12/14

	12/21

	API Freeze

	M4

	1/7

	1/14

	1/21

	Code Freeze (note M3-M4 will likely
be short since it includes 12/25-1/1)

	RCs

	1/21-3/7

	
	
	(continuous build)

	Release

	3/7

	
	
	

	SR1

	4/7

	
	
	

	SR2

	6/7

	
	
	

	SR3

	8/7

	
	
	

	SR4

	9/21-11/7

	
	
	

Future Even Releases

Starting with Fluorine, our even-numbered element releases will look like this:

	milestone

	off0

	off1

	off2

	Description

	M0

	3/7

	
	
	Draft Release Plan

	M1

	4/7

	4/14

	4/21

	Final Release Plan, Project Setup

	M2

	5/7

	5/14

	5/21

	Functionality Freeze

	M3

	6/7

	6/14

	6/21

	API Freeze

	M4

	7/7

	7/14

	7/21

	Code Freeze

	RCs

	7/21-9/7

	
	
	(continuous build)

	Release

	9/7

	
	
	

	SR1

	10/7

	
	
	

	SR2

	12/7

	
	
	

	SR3

	2/7

	
	
	

	SR4

	3/21-5/7

	
	
	

Simultaneous Release

This page explains how the OpenDaylight release process works once the TSC has
approved a release.

Code Freeze

At the first Release Candidate (RC) the Submit button is disabled on the
stable branch to prevent projects from merging non-blocking patches
into the release.

	Disable Submit for Registered Users and allow permission to the
Release Engineering Team
(Helpdesk)

[image: ../_images/gerrit-update-committer-rights.png]

Important

DO NOT enable Code-Review+2 and Verified+1 to the
Release Engienering Team during code freeze.

Note

Enable Exclusive checkbox for the submit button to override any
existing persmissions. Code-Review and Verify permissions are only needed
during version bumping.

Release Preparations

After release candidate is built gpg sign artifacts using the
lftools sign [http://docs.releng.linuxfoundation.org/projects/lftools/en/latest/commands/sign.html] command.

STAGING_REPO=autorelease-1903
STAGING_PROFILE_ID=abc123def456 # This Profile ID is listed in Nexus > Staging Profiles
lftools sign deploy-nexus https://nexus.opendaylight.org $STAGING_REPO $STAGING_PROFILE_ID

Verify the distribution-karaf file with the signature.

gpg2 --verify karaf-x.y.z-${RELEASE}.tar.gz.asc karaf-x.y.z-${RELEASE}.tar.gz

Note

Projects such as OpFlex participate in the Simultaneous Release but are not
part of the autorelease build. Ping those projects and prep their staging
repos as well.

Releasing OpenDaylight

The following describes the Simultaneous Release process for shipping out the
binary and source code on release day.

Bulleted actions can be performed in parallel while numbered actions should be
done in sequence.

	Release the Nexus Staging repos
(Helpdesk)

	Select both the artifacts and signature repos
(created previously) and click Release.

	Enter Release OpenDaylight $RELEASE for the description and
click confirm.

Perform this step for any additional projects that are participating in
the Simultaneous Release but are not part of the autorelease build.

Tip

This task takes hours to run so kicking it off early is a good idea.

	Version bump for next dev cycle
(Release Engineering Team)

	Run the autorelease-version-bump-${STREAM} job

Tip

This task takes hours to run so kicking it off early is a good idea.

	Enable Code-Review+2 and Verify+1 voting permissions
for the Release Engineering Team
(Helpdesk)

[image: ../_images/gerrit-update-committer-rights.png]

Note

Enable Exclusive checkbox for the submit button to override any
existing persmissions. Code-Review and Verify permissions are only needed
during version bumping. DO NOT enable it during code freeze.

	Merge all patches generated by the job

	Restore Gerrit permissions for Registered Users and disable elevated
Release Engineering Team permissions
(Helpdesk)

	Tag the release
(Release Engineering Team)

	Install lftools

lftools contains the version bumping scripts we need to version bump
and tag the dev branches. We recommend using a virtualenv for this.

Skip mkvirtualenv if you already have an lftools virtualenv
mkvirtualenv lftools
workon lftools
pip install --upgrade lftools

	Pull latest autorelease repository

export RELEASE=Nitrogen-SR1
export STREAM=${RELEASE//-*}
export BRANCH=origin/stable/${STREAM,,}

No need to clean if you have already done it.
git clone --recursive https://git.opendaylight.org/gerrit/releng/autorelease
cd autorelease
git fetch origin

Ensure we are on the right branch. Note that we are wiping out all
modifications in the repo so backup unsaved changes before doing this.
git checkout -f
git checkout ${BRANCH,,}
git clean -xdff
git submodule foreach git checkout -f
git submodule foreach git clean -xdff
git submodule update --init

Ensure git review is setup
git review -s
git submodule foreach 'git review -s'

	Publish release tags

export BUILD_NUM=55
export PATCH_URL="https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/autorelease-release-${STREAM,,}/${BUILD_NUM}/patches.tar.gz"
./scripts/release-tags.sh "${RELEASE}" /tmp/patches "$PATCH_URL"

	Notify Community and Website teams

	Create Jira [https://jira.linuxfoundation.org] against LF Projects
(Helpdesk)

This Jira provides the URLs to the binary files to update the
downloads website.

	Email dev/release/tsc mailing lists announcing release binaries location
(Release Engineering Team)

	Email dev/release/tsc mailing lists to notify of tagging and version bump
completion
(Release Engineering Team)

Note

This step is performed after Version Bump and Tagging steps are
complete.

	Generate Service Release notes

Warning

If this is a major release (eg. Nitrogen) as opposed to a Service Release
(eg. Nitrogen-SR1). Skip this step.

For major releases the notes come from the projects themselves in the docs
repo via the docs/releaset-notes/projects directory.

For service releases (SRs) we need to generate service release notes. This
can be performed by running the autorelease-generate-release-notes-$STREAM
job.

	Run the autorelease-generate-release-notes-${STREAM} job
(Release Engineering Team)

Trigger this job by leaving a Gerrit comment
generate-release-notes Carbon-SR2

Release notes can also be manually generated with the script:

git checkout stable/${BRANCH,,}
./scripts/release-notes-generator.sh ${RELEASE}

A release-notes.rst will be generated in the working directory. Submit
this file as release-notes-sr1.rst (update the sr as necessary) to the
docs project.

Milestone Readouts

M0: Declare Intent

(Project Name)

	A statement to the effect: “The <Project Name> project formally joins the OpenDaylight Carbon
Simultaneous Release and agrees to the activities and timeline documented on the Carbon Release
Plan Page: https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan”

	Project Offset: (Offset 0/Offset 1/Offset 2)

	Project Category: (Kernel/Protocol/Services/Application/Support)

	Project Labels: (List keywords and tags and fit the description of your project comma separated)

	Project PTL: (name/email/IRC)

	Do you confirm that the list of Project Committers is updated and accurate? (Yes/No)

[1] https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan#M0:_Declare_Intent

M1: Draft Plan

(Project Name)

	Project Lead Contact: (name/email/IRC)

	Review PTL Requirements [1].

	Project Contact: (name/email/IRC)

	Test Contact: (name/email/IRC)

	Documentation Contact (name/email/IRC)

	Draft Release Plan: (wiki link)

** FOR NEW PROJECTS ONLY **

	Project Main Page: (wiki link) Use Project Facts Template [2].

[1] Be sure to read the responsibilities of being a project lead under Leadership & Communication
in the Requirements for Participation section of the release plan:
https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan#Requirements_for_Participation

[2] https://wiki.opendaylight.org/view/Template:Project_Facts

M2: Final Release Plan

(Project Name)

	Does your project have any updates on any previously-incomplete items from prior milestone
readouts? (Yes/No)

	(If yes, list updates)

	Were project-specific deliverables planned for this milestone delivered successfully? (No
Deliverables/Yes/No)

	(If no, list incomplete deliverables)

	Does your project have any special needs in CI Infrastructure [2]? (Yes/No)

	(If yes, link to helpdesk ticket number)

	Is your project release plan finalized? (Yes/No)

	(If yes, link to final release plan wiki page)

	(If no, ETA to finalize release plan)

	Do you have all APIs intended to be externally consumable listed? (Yes/No)

	Does each API have a useful short name? (Yes/No)

	Are the Java interface and/or YANG files listed for each API? (Yes/No)

	Are they labeled as tentative, provisional, or stable as appropriate for each API? (Yes/No)

	Do you call out the OSGi bundles and/or Karaf features providing the API for each API?
(Yes/No)

	Have all project dependencies requests on other project’s release plans been acknowledged and
documented by upstream projects? (Yes/No)

	(List of all project dependencies and if they have been acknowledged, unacknowledged)

	Will your project have top-level features not requiring system test? (Yes/No)

	(If yes, link to system test waiver request email)

	Will your project use the OpenDaylight CI infrastructure for testing top-level features
requiring system test? (Yes/No)

	(If no, link to system test plan explaining why [3])

	(If no, link to system test plan identifying external lab testing [4])

** FOR NEW PROJECTS ONLY **

	Have you completed the project checklist [1]? (Yes/No)

	(link to a merged patch in gerrit)

	(link to a mail from your mailing list)

	(link to a bug for your project; you can create a dummy one and close it if need be)

	(link to an artifact published from your project in nexus)

	(link to a sonar report)

	(link to your root pom file)

[0] https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan

[1] https://wiki.opendaylight.org/view/GettingStarted:Project_Main#New_Project_Checklist

[2] Special needs include tools or configuration. Note that generally, the only available tools in
CI are basic RHEL/CentOS linux images with Java. You should note and ask for anything beyond that
here. Email helpdesk@opendaylight.org

[3] It is recommended to use the OpenDaylight CI infrastructure unless there is some HW or SW
resource that cannot be installed there. Update the test plan with explanation on why your
top-level features will not be using the OpenDaylight CI Infrastructure:
https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Feature_Integration_System_Test_Template#Test_Infrastructure

[4] Projects running system test in external Labs are required to report system test results in a
timely fashion after release creations, e.g., weekly, RC, and formal releases. Update the test
plan with plans on testing in external lab:
https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Feature_Integration_System_Test_Template#Test_Infrastructure

M3: Functionality Freeze

<Project Name>

Please provide updates on any previously-incomplete items from prior milestone readouts.

Functionality Freeze:

	Final list of externally consumable APIs defined: Yes/No

	
	If you had an Tentative APIs, have they been moved to Provisional or dropped? Yes/No (link to

	release plan)

	If any of your Tentative APIs were dropped, have you notified all projects that were expecting
them? Yes/No (link to e-mail)

	Also please list all dropped APIs.

	Are all your inter-project dependencies are resolved (i.e., have the other projects you were
counting on given you what you needed)? Yes/No

	If no, please list the features you were expecting that haven’t been delivered and the project
you were expecting to receive them from.

	Note that you can only reasonably hold a a project to something if you formally asked for it
during the release planning process and they acknowledged that ask saying they would do it.

	Were there any project-specific deliverables planned for this milestone? Yes/No

	If so, were they delivered? Yes/No

Karaf Features Defined:

	Are all your project’s features that are intended for release added to the features.xml and
checked into integration git repository. Yes/No (please provide link to the gerrit patch)

	List all top-level, user-facing, and stable Karaf features for your project.

	For top-level and user-facing features, please provide a one-sentence description which a
developer and/or user would find helpful.

Documentation:

	List the kinds of documentation you will provide including at least:

	One user/operator guide section per user-facing feature.

	One developer guide per top-level feature.

	An installation guide for any top-level features that require more than feature:install
<feature-name> to install.

	Eventually, release notes, but it is a good idea to keep release notes as a living document
when significant changes others should be aware of are made.

	Optional tutorials and how tos.

	Have you checked in a reStructuredText outline for each of the documents you will provide
to the docs repository? Yes/No (link to gerrit patch)

Integration and Test:

	Have you started automated system testing for your top-level features. Yes/No

	If yes, link to test report

	If no, why?

	Have you filled out basic system test plan template for each top-level feature (karaf and not
karaf) and a comprehensive system test plan template including functionality, cluster,
scalability, performance, longevity/stability for each stable feature? Yes/No

	If yes, link to test plans

	If no, why?

Project Specific:

	Were there any project-specific deliverables planned for this milestone? Yes/No

	If so, were they delivered? Yes/No

	Have you updated your project facts with the project type category? Yes/No

	Do you acknowledge the changes to the RC Blocking Bug Policy for Carbon Release [1]? Yes/No

[1] https://lists.opendaylight.org/pipermail/tsc/2016-December/006468.html

M4: API Freeze

<Project Name>

	Please provide updates on any previously-incomplete items from prior milestone readouts.

	Has your project achieved API freeze such that all externally accessible Stable or Provisional
APIs will not be modified after now? (Yes/No)

	(Link to gerrit search for patches modifying the API [1])

	Do you have content in your project documentation? (Yes/No)

	(For each document, provide current word count)

	(For each document, link to the file in gerrit)

	(Link to pending gerrit patches waiting approval)

	Has your project met the requirements to be included in Maven Central [2]? (Yes/No)

	Were project-specific deliverables planned for this milestone delivered successfully? (No
Deliverables/Yes/No)

	Have you started automated system testing for your top-level features. (Yes/No)

	(If yes, link to test report)

	(If no, explain why)

	Does your project use any ports, including for testing? (Yes/No)

	(If yes, list of ports used)

	(If yes, have you updated the wiki [3] with all ports used? Yes/No)

	Does your project build successful in Autorelease?

	(If yes, link to successful autorelease job [4])

	(If not, explain why)

[1] Provide a link to a gerrit search for patches modifying the files defined as specifying the
API. For example:
https://git.opendaylight.org/gerrit/#/q/file:%255Eopendaylight/md-sal/sal-binding-api/.%252B+status:merged+project:controller

[2] http://central.sonatype.org/pages/requirements.html

[3] https://wiki.opendaylight.org/view/Ports

[4] https://wiki.opendaylight.org/view/RelEng/Autorelease/Project_Autorelease_Requirements

M5: Code Freeze

<Project Name>

	Please provide updates on any previously-incomplete items from prior milestone readouts.

	Has your project met code freeze, i.e., only bug fixes are allowed from now on? (Yes/No)

	Are all externally visible strings frozen to allow for translation & documentation? (Yes/No)

	Is your documentation complete such that only editing and enhancing should take place after this
point? (Yes/No)

	(For each document, link to the file in gerrit)

	(Link to pending gerrit patches waiting approval)

	Were project-specific deliverables planned for this milestone delivered successfully? (No
Deliverables/Yes/No)

	Are you running at least one basic automated system test job for each top-level feature?
(Yes/No)

	(If yes, link to test report)

	(If not, explain why)

Stables Features (Only for Projects with Stable Features)

	Do your stable features fulfill quality requirements (i.e. unit and/or integration test coverage
of at least 75%)? (Yes/No)

	(If yes, link to sonar report)

	(If not, explain why)

	Are you running several automated system test jobs including functionality, cluster,
scalability, performance, longevity/stability for each stable feature? (Yes/No)

	(If yes, link to test reports)

	(If not, explain why)

RCX: Release Candidate Testing

<Project Name>

	Have you tested your code in the release candidate? Yes/No (provide a link to the release
candidate you tested)

	If yes, did you find any issues?

	If you found issues, do you believe any of them should block this release of OpenDaylight
until they are resolved?

	Please list all the issues and note if they are blocking.

Genius Documentation

This documentation provides critical information needed to help you write ODL
Applications/Projects that can co-exist with other ODL Projects.

Contents:

	Genius Pipeline

	Genius Design Overview

	Genius Design Specifications

Genius Pipeline

This document captures current OpenFlow pipeline as use by Genius and projects
using Genius for app-coexistence.

High Level Pipeline

 +---------+
 | In Port |
 +----+----+
 |
 |
 +---------v---------+
 | (0) Classifier |
 | Table |
 +-------------------+
 | VM Port +------+
 +-------------------+ +----------+
 | Provider Network +------+ |
 +-------------------+ |
 +-------------------+ Internal Tunnel | |
 | +-------------------+ |
 | +------+ External Tunnel | |
 | | +-------------------+ +---------v---------+
 | | | (17) Dispatcher |
 | | | Table |
 | +----------v--------+ +-------------------+
 | | (18,20,38) | +-------------+Ing.ACL Service (1)|
 | | Services External | | +-------------------+
 | | Pipeline | | +-----------+IPv6 Service (2)|
 | +-------------------+ | | +-------------------+
 | | | |L3 Service (3)+-+
 | | | +-------------------+ | | | |
 | | | +-+L2 Service (4)| |
 | | | | +-------------------+ |
 | | | | |
 | | | | |
 | | | | |
 | | | | |
 | | | | |
 | +------------------+ | | |
 | | | | |
 | +--------v--------+ | | |
 | | (40 to 42) | | | |
 | | Ingress ACL | | | |
 | | Pipeline | | | |
 | +-------+---------+ | | |
 | | | | |
 | +--v-+ +------------v------+ | |
 | |(17)| | (45) | | |
 | +----+ | | | |
 | | IPv6 Pipeline | | |
 +----------+ +--+-------+--------+ | |
 | | | | |
 +----------v--------+ +--v--+ +--v-+ +-----v-----------+ |
 | (36) | | ODL | |(17)| | (50 to 55) | |
 | Internal | +-----+ +----+ | | |
 | Tunnel | | L2 Pipeline | |
 +----------+--------+ +-+---------------+ |
 | | |
 | | +------------v----+
 | | | (19 to 47) | |
 | | +------------+ |
 | | | | L3 Pipeline |
 | | | +----+-------+----+
 +----------------------------+ | | | |
 | | | +--v--+ +--v-+
 | | | | ODL | |(17)|
 | | | +-----+ +----+
 | | |
 +-----------------+ +-v-v-v-------------+
 | (251 to 253) <-----+ (220) Egress |
 | Egress ACL +-----> Dispatcher Table|
 | Pipeline | +--------+----------+
 +-----------------+ |
 |
 |
 +----v-----+
 | Out Port |
 +----------+

Services Pipelines

Ingress ACL Pipeline

 +-----------------+
 | (17) |
 +------------+ Dispatcher <---------------------------+
 | | Table | |
 | +-----------------+ |
 | |
+--------v--------+ |
(40)			
Ingress ACL	+-----------------+		
Table		(41)	
+-----------------+	Ingress ACL 2	+-----------------+	
Match Allowed +----> Table		(42)	
+-----------------+ +-----------------+ | Ingress ACL 2 +---+
 | Match Allowed +----> Table |
 +-----------------+ +-----------------+

Owner Project: Netvirt

TBD.

IPv6 Pipeline

+-----------------+ +--------v--------+
| (17) | | (45) |
| Dispatcher +----> IPv6 |
| Table | | Table |
+--------^--------+ +-----------------+ +---+
 | | IPv6 ND for +---->ODL|
 | | Router Interface| +---+
 | +-----------------+
 +-------------+ Other Packets |
 +-----------------+

Owner Project: Netvirt

TBD.

L2 Pipeline

+-----------------+
| (17) |
| Dispatcher |
| Table |
+--------+--------+
 |
 |
+--------v--------+
| (50) |
| L2 SMAC Learning|
| Table |
+-----------------+ +--------v--------+
| Known SMAC +----> (51) |
+-----------------+ | L2 DMAC Filter |
| Unknown SMAC +----> Table |
+-------+---------+ +-----------------+
 | | Known DMAC +--------------------+
 | +-----------------+ |
 +-v-+ | Unknown DMAC | |
 |ODL| | | |
 +---+ +--------+--------+ |
 | |
 | |
 +--------v--------+ |
 | (52) | |
 | Unknown DMACs | |
 | Table | |
 +-----------------+ |
 +----+ Tunnel In Port | |
 | +-----------------+ |
 | | VM In Port | |
 | +------+----------+ |
 | | |
 | +------v-----+ |
 | | Group | |
 | | Full BCast +------+ |
 | +-----+------+ | |
 | | | |
 | +-----v------+ | +---v-------------+
 +----> Group +--+ | | (220) |
 | Local BCast| | | |Egress Dispatcher|
 +------------+ | | +--->+ Table |
 | | | +-----------------+
 | | |
 | | |
 +-------v---v-----+ |
 | (55) | |
 | Filter Equal | |
 | Table | |
 +-----------------+ |
 | L Register +---+
 | and Egress |
 +-----------------+
 | ? Match Drop |
 +-----------------+

Owner Project: Netvirt

TBD.

L3 Pipeline

+-----------------+
| Coming |
| Soon! |
+-----------------+

Owner Project: Netvirt

TBD.

Egress ACL Pipeline

 +-----------------+
 | (220) Egress |
 +------------+ Dispatcher <---------------------------+
 | | Table | |
 | +-----------------+ |
 | |
+--------v--------+ |
(251)			
Egress ACL	+-----------------+		
Table		(252)	
+-----------------+	Egress ACL 2	+-----------------+	
Match Allowed +----> Table		(253)	
+-----------------+ +-----------------+ | Egress ACL 2 +---+
 | Match Allowed +----> Table |
 +-----------------+ +-----------------+

Owner Project: Netvirt

TBD.

Genius Design Overview

Genius project provides generic infrastructure services and utilities for
integration and co-existance of mulltiple networking services/applications.
Following image presents a top level view of Genius framework -

[image: ../../../_images/Genius_overview.png]

Genius Module Dependencies

Genius modules are developed as karaf features which can be independently
installed. However, there is some dependency among these modules. The
diagram below provides a dependency relationship of these modules.

All these modules expose Yang based API which can be used to
configure/interact with these modules and fetch services provided by
these modules. Thus all these modules can be used/configured by other
ODL modules and can also be accessed via REST interface.

Genius based packet pipeline

Following picture presents an example of packet pipeline based on Genius framework.
It also presents the functions of diffrent genius components -

[image: ../../../_images/App_co_exist_new.png]
Following sections provide details about each of these components.

	Interface Manager Design

	Internal Transport Manager (ITM)

	Datastore Job Coordination framework

	Aliveness Monitor

	ID-Manager

	MDSAL Utils

	Resource Manager

	FCAPS manager

Interface Manager Design

The Interface Manager (IFM) uses MD-SAL based architecture, where
different software components operate on, and interact via a set of
data-models. Interface manager defines configuration data-stores where
other OpenDaylight modules can write interface configurations and
register for services. These configuration data-stores can also be
accessed by external entities through REST interface. IFM listens to
changes in these config data-stores and accordingly programs the
data-plane. Data in Configuration data-stores remains persistent across
controller restarts.

Operational data like network state and other service specific
operational data are stored in operational data-stores. Change in
network state is updated in southbound interfaces (OFplugin, OVSDB)
data-stores. Interface Manager uses ODL Inventory and Topology
datastores to retrive southbound configurations and events. IFM listens
to these updates and accordingly updates its own operational data-stores.
Operational data stores are cleaned up after a controller restart.

Additionally, a set of RPCs to access IFM data-stores
and provide other useful information. Following figure presents
different IFM data-stores and its interaction with other modules.

Follwoing diagram provides a toplevel architecture of Interface Manager.

[image: ../../../_images/Ifmsbirenderers.png]

InterfaceManager Dependencies

Interface Manager uses other Genius modules for its operations.
It mainly interacts with following other genius modules-

	Id Manager – For allocating dataplane interface-id (if-index)

	Aliveness Monitor - For registering the interfaces for monitoring

	MdSalUtil – For interactions with MD-SAL and other openflow operations

Following picture shows interface manager dependencies

[image: digraph structs { subgraph { "interfacemanager-impl" -> "interfacemanager-api"; "interfacemanager-api" -> "iana-if-type-2014-05-08"; "interfacemanager-impl" -> "idmanager-api"; "interfacemanager-impl" -> "utils.southbound-utils"; "interfacemanager-api" -> "mdsalutil-api"; "interfacemanager-impl" -> "model-flow-base"; "interfacemanager" -> "interfacemanager-api"; "interfacemanager-api" -> "yang-binding"; "interfacemanager-impl" -> "hwvtepsouthbound-api"; "interfacemanager-impl" -> "javax.inject"; "interfacemanager" -> "interfacemanager-impl"; "interfacemanager-shell" -> "interfacemanager-impl"; "interfacemanager-impl" -> "mdsalutil-api"; "interfacemanager-impl" -> "southbound-api"; "interfacemanager-api" -> "southbound-api"; "interfacemanager-shell" -> "org.apache.karaf.shell.console"; "interfacemanager-impl" -> "guava"; "interfacemanager-impl" -> "model-flow-service"; "interfacemanager-impl" -> "alivenessmonitor-api"; "interfacemanager" -> "interfacemanager-shell"; "interfacemanager-impl" -> "idmanager-impl"; "interfacemanager-api" -> "ietf-inet-types-2013-07-15"; "interfacemanager-impl" -> "ietf-interfaces"; "interfacemanager-impl" -> "openflowplugin-extension-nicira"; "interfacemanager-api" -> "ietf-yang-types-20130715"; "interfacemanager-api" -> "ietf-interfaces"; "interfacemanager-shell" -> "interfacemanager-api"; "interfacemanager-api" -> "yang-ext"; "interfacemanager-impl" -> "testutils"; "interfacemanager-api" -> "model-inventory"; "interfacemanager-impl" -> "lockmanager-impl"; "interfacemanager-api" -> "openflowplugin-extension-nicira"; } rankdir=LR; }]

Code structure

Interface manager code is organized in following folders -

	interfacemanager-api contains the interface yang data models and
corresponding interface implementation.

	interfacemanager-impl contains the interfacemanager
implementation

	interface-manager-shell contains Karaf CLI implementation for
interfacemanager

interfacemanager-api

└───main

├───java

│└───org

│└───opendaylight

│└───genius

│└───interfacemanager

│├───exceptions

│├───globals

│└───interfaces

└───yang

interfacemanager-impl

├───commons <---containscommonutilityfunctions

├───listeners<---ContainsinterfacemanagerDCNlistenenrsfordifferntMD-SALdatastores

├───renderer<---Containsdifferentsouthboundrenderers'implementation

│├───hwvtep<---HWVTEPspecificrenderer

││├───confighelpers

││├───statehelpers

││└───utilities

│└───ovs<---OVSspecificSBIrenderer

│├───confighelpers

│├───statehelpers

│└───utilities

├───servicebindings<---containsinterfaceservicebindingDCNlistenerandcorrespondingimplementation

│└───flowbased

│├───confighelpers

│├───listeners

│├───statehelpers

│└───utilities

├───rpcservice<---ContainsinterfacemanagerRPCs'implementation

├───pmcounters<---ContainsPMcountersgathering

└───statusanddiag<---containsstatusanddiagnosticsimplementations

‘interfacemanager-shell

Interfacemanager Data-model

FOllowing picture shows different MD-SAL datastores used by intetrface manager.
These datastores are created based on YANG datamodels defined in interfacemanager-api.

[image: ../../../_images/Ifmarch.png]

Config Datastores

InterfaceManager mainly uses following two datastores to accept configurations.

	odl-interface datamodel () where verious type of interface can be
configuted.

	service-binding datamodel () where different applications can
bind services to interfaces.

In addition to these datamodels, it also implements several RPCs for
accessing interface operational data. Details of these datamodels and
RPCs are described in following sections.

Interface Config DS

Interface config datamodel is defined in
odl-interface.yang [https://github.com/opendaylight/genius/blob/master/interfacemanager/interfacemanager-api/src/main/yang/odl-interface.yang]
. It is based on ‘ietf-interfaces’ datamodel (imported in
odl_interface.yang) with additional augmentations to it. Common
interface configurations are –

	name (string) : this is the unique interface name/identifier.

	type (identityref:iana-if-type) : this configuration sets the
interface type. Interface types are defined in iana-if-types data
model. Odl-interfaces.yang data model adds augmentations to
iana-if-types to define new interface types. Currently supported
interface types are -

	l2vlan (trunk, vlan classified sub-ports/trunk-member)

	tunnel (OVS based VxLAN, GRE, MPLSoverGRE/MPLSoverUDP)

	enabled (Boolean) : this configuration sets the administrative
state of the interface.

	parent-refs : this configuration specifies the parent of the
interface, which feeds data/hosts this interface. It can be a
physical switch port or a virtual switch port.

	Parent-interface (string) : is the port name with which a network
port in dataplane in that appearing on the southbound interface.
E.g. neutron port. this can also be another interface, thus
supporting a hierarchy of linked interfaces.

	Node-identifier (topology_id, node_id) : is used for configuring
parent node for HW nodes/VTEPs

Additional configuration parameters are defined for specific interface
type. Please see the table below.

	Vlan-xparent

	Vlan-trunk

	Vlan-trunk-member

	vxlan

	gre

	Name =uuid

	Name =uuid

	Name =uuid

	Name =uuid

	Name =uuid

	description

	description

	description

	description

	description

	Type =l2vlan

	Type =l2valn

	Type =l2vlan

	Type =tunnel

	Type =tunnel

	enabled

	enabled

	enabled

	enabled

	enabled

	Parent-if = port-name

	Parent-if = port-name

	Parent-if = vlan-trunkIf

	Vlan-id

	Vlan-id

	vlan-mode = transparent

	vlan-mode = trunk

	vlan-mode = trunk-member

	tunnel-type = vxlan

	tunnel-type = gre

	
	vlan-list= [trunk-member-list]

	Vlan-Id = trunk-vlanId

	dpn-id

	dpn-id

	
	
	Parent-if = vlan-trunkIf

	Vlan-id

	Vlan-id

	
	
	
	local-ip

	local-ip

	
	
	
	remote-ip

	remote-ip

	
	
	
	gayeway-ip

	gayeway-ip

Interface service binding config

Yang Data Model
odl-interface-service-bindings.yang [https://github.com/opendaylight/genius/blob/master/interfacemanager/interfacemanager-api/src/main/yang/odl-interface-service-bindings.yang]
contains the service binding configuration daatmodel.

An application can bind services to a particular interface by
configuring MD-SAL data node at path /config/interface-service-binding.
Binding services on interface allows particular service to pull traffic
arriving on that interface, depending upon the a service priority. It is
possible to bind services at ingress interface (when packet enters into
the packet-pipeline from particular interface) as well as on the egress
Interface (before the packet is sent out on particular interafce).
Service modules can specify openflow-rules to be applied on the packet
belonging to the interface. Usually these rules include sending the
packet to specific service table/pipeline. Service modules/applications
are responsible for sending the packet back (if not consumed) to service
dispatcher table, for next service to process the packet.

[image: ../../../_images/App_co_exist_new.png]
Following are the service binding parameters –

	interface-name is name of the interface to which service binding
is being configured

	Service-Priority parameter is used to define the order in which
the packet will be delivered to different services bind to the
particular interface.

	Service-Name

	Service-Info parameter is used to configure flow rule to be
applied to the packets as needed by services/applications.

	(for service-type openflow-based)

	Flow-priority

	Instruction-list

When a service is bind to an interface, Interface Manager programs the
service dispatcher table with a rule to match on the interface
data-plane-id and the service-index (based on priority) and the
instruction-set provided by the service/application. Every time when the
packet leaves the dispatcher table the service-index (in metadata) is
incremented to match the next service rule when the packet is
resubmitted back to dispatcher table. Following table gives an example
of the service dispatcher flows, where one interface is bind to 2
services.

	Service Dispatcher Table

	Match

	Actions

	
	if-index = I

	ServiceIndex = 1

	
	Set SI=2 in metadata

	service specific actions <e.g., Goto prio 1 Service table>

	
	if-index = I

	ServiceIndex = 2

	
	Set SI=3 in metadata

	service specific actions <e.g., Goto prio 2 Service table>

	miss

	Drop

Interface Manager programs openflow rules in the service dispatcher
table.

Egress Service Binding

There are services that need packet processing on the
egress, before sending the packet out to particular port/interface. To
accommodate this, interface manager also supports egress
service binding. This is achieved by introducing a new “egress
dispatcher table” at the egress of packet pipeline before the interface
egress groups.

On different application request, Interface Manager returns the egress
actions for interfaces. Service modules program use these actions to
send the packet to particular interface. Generally, these egress actions
include sending packet out to port or appropriate interface egress
group. With the inclusion of the egress dispatcher table the egress
actions for the services would be to

	Update REG6 - Set service_index =0 and egress if_index

	send the packet to Egress Dispatcher table

IFM shall add a default entry in Egress Dispatcher Table for each interface
With -

	Match on if_index with REG6

	Send packet to corresponding output port or Egress group.

On Egress Service binding, IFM shall add rules to Egress Dispatcher
table with following parameters –

	Match on

	ServiceIndex=egress Service priority

	if_index in REG6 = if_index for egress interface

	Actions

	Increment service_index

	Actions provided by egress service binding.

Egress Services will be responsible for sending packet back to Egress
Dispatcher table, if the packet is not consumed (dropped/ send out). In
this case the packet will hit the lowest priority default entry and the
packet will be send out.

Operational Datastores

Interface Manager uses ODL Inventory and Topology datastores to retrive southbound
configurations and events.

Interface Manager modules

Interface manager is designed in a modular fashion to provide a flexible
way to support multiple southbound protocols. North-bound
interface/data-model is decoupled from south bound plugins. NBI Data
change listeners select and interact with appropriate SBI renderers. The
modular design also allows addition of new renderers to support new
southbound interfaces, protocols plugins. Following figure shows
interface manager modules –

[image: submodules/genius/docs/images/ifmsbirenderers.png]
InterfaceManager uses the datastore-job-coordinator module for all its
operations.

	Datastore Job Coordination framework

Datastore job coordinator solves the following problems
which is observed in the previous Li-based interface manager :

	The Business Logic for the Interface configuration/state handling is
performed in the Actor Thread itself.

	This will cause the Actor’s mailbox to get filled up and may start
causing unnecessary back-pressure.

	Actions that can be executed independently will get unnecessarily
serialized.

	Can cause other unrelated applications starve for chance to execute.

	Available CPU power may not be utilized fully. (for instance, if 1000
interfaces are created on different ports, all 1000 interfaces
creation will happen one after the other.)

	May depend on external applications to distribute the load across the
actors.

IFM Listeners

IFM listeners listen to data change events for different MD-SAL data-stores. On the NBI side it
implements data change listeners for interface config data-store and the
service-binding data store. On the SBI side IFM implements listeners for
Topology and Inventory data-stores in opendaylight.

Interface Config change listener

Interface config change listener listens to ietf-interface/interfaces data node.

service-binding change listener

Interface config change listener listens to ietf-interface/interfaces data node.

Topology state change listener

Interface config change listener listens to ietf-interface/interfaces data node.

inventory state change listener

+++ this page is under construction +++

Dynamic Behavior

when a l2vlan interface is configured

	Interface ConfigDS is populated

	Interface DCN in InterfaceManager does the following :

	Add interface-state entry for the new interface along with if-index generated

	Add ingress flow entry

	If it is a trunk VLAN, need to add the interface-state for all child interfaces, and add ingress flows for all child interfaces

when a tunnel interface is configured

	Interface ConfigDS is populated

	Interface DCN in InterfaceManager does the following :

	Creates bridge interface entry in odl-interface-meta Config DS

	
	Add port to Bridge using OVSDB

	
	retrieves the bridge UUID corresponding to the interface and

	populates the OVSDB Termination Point Datastore with the following information

tpAugmentationBuilder.setName(portName);

tpAugmentationBuilder.setInterfaceType(type);

options.put(“key”,“flow”);

options.put(“local_ip”,localIp.getIpv4Address().getValue());

options.put(“remote_ip”,remoteIp.getIpv4Address().getValue());

tpAugmentationBuilder.setOptions(options);

OVSDB plugin acts upon this data change and configures the tunnel end

points on the switch with the supplied information.

NodeConnector comes up on vSwitch

	Inventory DCN Listener in InterfaceManager does the following:

	
	Updates interface-state DS.

	Generate if-index for the interface

	Update if-index to interface reverse lookup map

	If interface maps to a vlan trunk entity, operational states of
all vlan trunk members are updated

	If interface maps to tunnel entity, add ingress tunnel flow

Bridge is created on vSWitch

	Topology DCN Listener in InterfaceManager does the following:

	
	Update odl-interface-meta OperDS to have the dpid to bridge
reference

	Retrieve all pre provisioned bridge Interface Entries for this
dpn, and add ports to bridge using ovsdb

ELAN/VPNManager does a bind service

	Interface service-bindings config DS is populated with service name,
priority and lport dispatcher flow instruction details

	Based on the service priority, the higher priority service flow will
go in dispatcher table with match as if-index

	Lower priority service will go in the same lport dispatcher table
with match as if-index and service priority

Interface Manager Sequence Diagrams

Following gallery contains sequence diagrams for different IFM
operations -

Removal of Tunnel Interface When OF Switch is Connected

[image: ../../../_images/Removal_of_Tunnel_Interface_When_OF_Switch_is_Connected.png]

Removal of Tunnel Interfaces in Pre provisioning Mode

[image: ../../../_images/Removal_of_Tunnel_Interfaces_in_Pre_provisioning_Mode.png]

Updating of Tunnel Interfaces in Pre provisioning Mode

[image: ../../../_images/Updating_of_Tunnel_Interfaces_in_Pre_provisioning_Mode.png]

creation of tunnel-interface when OF switch is connected and PortName already in OperDS

[image: ../../../_images/Creation_of_tunnel-interface_when_OF_switch_is_connected_and_PortName_already_in_OperDS.png]

creation of vlan interface in pre provisioning mode

[image: ../../../_images/Creation_of_vlan_interface_in_pre_provisioning_mode.png]

creation of vlan interface when switch is connected

[image: ../../../_images/Creation_of_vlan_interface_when_switch_is_connected.png]

deletion of vlan interface in pre provisioning mode

[image: ../../../_images/Deletion_of_vlan_interface_in_pre_provisioning_mode.png]

deletion of vlan interface when switch is connect

[image: ../../../_images/Deletion_of_vlan_interface_when_switch_is_connected.png]

Node connector added updated DCN handling

[image: ../../../_images/Node_connector_added_updated_DCN_handling.png]

Node connector removed DCN handling

[image: ../../../_images/Node_connector_removed_DCN_handling.png]

updation of vlan interface in pre provisioning mode

[image: ../../../_images/File:Updation_of_vlan_interface_in_pre_provisioning_mode.png]

updation of vlan interface when switch is connect

[image: ../../../_images/Updation_of_vlan_interface_when_switch_is_connected.png]

Datastore Job Coordination framework

The datastore job coordinator framework offers the following benefits :

	“Datastore Job” is a set of updates to the Config/Operational
Datastore.

	Dependent Jobs (eg. Operations on interfaces on same port) that need
to be run one after the other will continue to be run in sequence.

	Independent Jobs (eg. Operations on interfaces across different
Ports) will be allowed to run paralelly.

	Makes use of ForkJoin Pools that allows for work-stealing across
threads. ThreadPool executor flavor is also available… But would be
deprecating that soon.

	Jobs are enqueued and dequeued to/from a two-level Hash structure
that ensures point 1 & 2 above are satisfied and are executed using
the ForkJoinPool mentioned in point 3.

	The jobs are enqueued by the application along with an application
job-key (type: string). The Coordinator dequeues and schedules the
job for execution as appropriate. All jobs enqueued with the same
job-key will be executed sequentially.

	DataStoreJob Coordination to distribute jobs and execute them
paralelly within a single node.

	This will still work in a clustered mode by handling optimistic lock
exceptions and retrying of the job.

	Framework provides the capability to retry and rollback Jobs.

	Applications can specify how-many retries and provide callbacks for
rollback.

	Aids movement of Application Datastore listeners to “Follower” also
listening mode without any change to the business logic of the
application.

	Datastore Job Coordination function gets the list of listenable
futures returned from each job.

	The Job is deemed complete only when the onSuccess callback is
invoked and the next enqueued job for that job-key will be dequeued
and executed.

	On Failure, based on application input, retries and/or rollback will
be performed. Rollback failures are considered as double-fault and
system bails out with error message and moves on to the next job with
that Job-Key.

Internal Transport Manager (ITM)

Internal Transport Manager creates and maintains mesh of tunnels of
type VXLAN or GRE between Openflow switches forming an overlay
transport network. ITM also builds external tunnels towards DC
Gateway. ITM does not provide redundant tunnel support.

The diagram below gives a pictorial representation of the different
modules and data stores and their interactions.

[image: ../../../_images/ITM_top_lvl.png]

ITM Dependencies

ITM mainly interacts with following other genius modules-

	Interface Manager – For creating tunnel interfaces

	Aliveness Monitor - For monitoring the tunnel interfaces

	MdSalUtil – For openflow operations

Following picture shows interface manager dependencies

[image: digraph structs { subgraph { "genius" -> "resourcemanager"; "interfacemanager-impl" -> "alivenessmonitor-api"; "genius" -> "arputil"; "itm" -> "itm-impl"; "arputil" -> "arputil-api"; "interfacemanager-impl" -> "idmanager-api"; "alivenessmonitor-impl-protocols" -> "arputil-api"; "interfacemanager-impl" -> "interfacemanager-api"; "interfacemanager" -> "interfacemanager-api"; "arputil" -> "arputil-impl"; "interfacemanager-api" -> "mdsalutil-api"; "lockmanager" -> "lockmanager-api"; "idmanager" -> "idmanager-api"; "idmanager-impl" -> "mdsalutil-api"; "mdsalutil-testutils" -> "mdsalutil-api"; "interfacemanager" -> "interfacemanager-shell"; "lockmanager" -> "lockmanager-impl"; "arputil-impl" -> "arputil-api"; "itm-impl" -> "mdsalutil-api"; "alivenessmonitor" -> "alivenessmonitor-impl"; "idmanager-shell" -> "mdsalutil-api"; "idmanager" -> "idmanager-shell"; "interfacemanager-shell" -> "interfacemanager-impl"; "genius" -> "lockmanager"; "resourcemanager-api" -> "idmanager-api"; "interfacemanager" -> "interfacemanager-impl"; "itm-impl" -> "idmanager-impl"; "itm-impl" -> "lockmanager-impl"; "idmanager-shell" -> "idmanager-impl"; "alivenessmonitor-impl-protocols" -> "interfacemanager-api"; "itm" -> "itm-api"; "resourcemanager-impl" -> "mdsalutil-api"; "arputil-impl" -> "interfacemanager-api"; "itm-impl" -> "idmanager-api"; "genius" -> "alivenessmonitor"; "mdsalutil" -> "mdsalutil-impl"; "interfacemanager-impl" -> "idmanager-impl"; "resourcemanager" -> "resourcemanager-impl"; "genius" -> "idmanager"; "alivenessmonitor" -> "alivenessmonitor-impl-protocols"; "alivenessmonitor-impl" -> "idmanager-api"; "resourcemanager-impl" -> "idmanager-api"; "genius" -> "interfacemanager"; "interfacemanager-impl" -> "lockmanager-impl"; "mdsalutil-impl" -> "mdsalutil-api"; "idmanager-impl" -> "lockmanager-api"; "mdsalutil" -> "mdsalutil-testutils"; "mdsalutil" -> "mdsalutil-api"; "resourcemanager" -> "resourcemanager-api"; "arputil-impl" -> "mdsalutil-api"; "alivenessmonitor-impl-protocols" -> "alivenessmonitor-impl"; "genius" -> "mdsalutil"; "interfacemanager-shell" -> "interfacemanager-api"; "alivenessmonitor-impl" -> "alivenessmonitor-api"; "itm-impl" -> "itm-api"; "idmanager" -> "idmanager-impl"; "alivenessmonitor-impl" -> "mdsalutil-api"; "itm-api" -> "interfacemanager-api"; "resourcemanager-impl" -> "resourcemanager-api"; "idmanager-impl" -> "idmanager-api"; "alivenessmonitor" -> "alivenessmonitor-api"; "lockmanager-impl" -> "lockmanager-api"; "genius" -> "itm"; "interfacemanager-impl" -> "mdsalutil-api"; "itm-impl" -> "interfacemanager-api"; } rankdir=LR; }]

Code Structure

As shown in the diagram, ITM has a common placeholder for various
datastore listeners, RPC implementation, config helpers. Config
helpers are responsible for creating / delete of Internal and
external tunnel.

[image: ../../../_images/Itmcodestructure.png]

ITM Data Model

ITM uses the following data model to create and manage tunnel interfaces
Tunnels interfces are created by writing to Interface Manager’s Config DS.

itm.yang

follwoing datamodel is defined in itm.yang [https://github.com/opendaylight/genius/blob/master/itm/itm-api/src/main/yang/itm.yang]
This DS stores the transport zone information populated through REST or Karaf CLI

|image33|

Itm-state.yang

This DS stores the tunnel end point information populated through
REST or Karaf CLI. The internal and external tunnel interfaces are
also stored here.

|image34|

Itm-rpc.yang

This Yang defines all the RPCs provided by ITM.

|image35|

Itm-config.yang

|image36|

ITM Design

ITM uses the datastore job coordinator module for all its operations.

	Datastore Job Coordination framework

When tunnel end point are configured in ITM datastores by CLI or
REST, corresponding DTCNs are fired. ITM TransportZoneListener
listens to the . Based on the add/remove end point operation,
the transport zone listener queues the approporiate job (ItmInternalTunnelAddWorker or
ItmInternalTunnelDeleteWorker) to the DataStoreJob Coordinator. Jobs
within transport zones are queued to be executed serially and jobs
across transport zones are done parallel.

Tunnel Building Logic

ITM will iterate over all the tunnel end points in each of the transport
zones and build the tunnels between every pair of tunnel end points in
the given transport zone. The type of the tunnel (GRE/VXLAN) will be
indicated in the YANG model as part of the transport zone.

ITM Operations

ITM builds the tunnel infrastructure and maintains them. ITM builds
two types of tunnels namely, internal tunnels between openflow
switches and external tunnels between openflow switches and an
external device such as datacenter gateway. These tunnels can be
Vxlan or GRE. The tunnel endpoints are configured using either
individual endpoint configuration or scheme based auto configuration
method or REST. ITM will iterate over all the tunnel end points in
each of the transport zones and build the tunnels between every pair
of tunnel end points in the given transport zone.

	ITM creates tunnel interfaces in Interface manager Config DS.

	Stores the tunnel mesh information in tunnel end point format in ITM
config DS

	ITM stores the internal and external trunk interface names in
itm-state yang

	Creates external tunnels to DC Gateway when VPN manager calls the
RPCs for creating tunnels towards DC gateway.

ITM depends on interface manager for the following functionality.

	Provides interface to create tunnel interfaces

	Provides configuration option to enable monitoring on tunnel
interfaces.

	Registers tunnel interfaces with monitoring enabled with
alivenessmonitor.

ITM depends on Aliveness monitor for the following functionality.

	Tunnel states for trunk interfaces are updated by alivenessmonitor.
Sets OperState for tunnel interfaces

RPCs

The following are the RPCs supported by ITM

Get-tunnel-interface-id RPC

|image37|

Get-internal-or-external-interface-name

|image38|

Get-external-tunnel-interface-name

|image39|

Build-external-tunnel-from-dpns

|image40|

Add-external-tunnel-endpoint

|image41|

Remove-external-tunnel-from-dpns

|image42|

Remove-external-tunnel-endpoint

|image43|

Create-terminating-service-actions

|image44|

Remove-terminating-service-actions

|image45|

Datastore Job Coordination framework

The datastore job coordinator framework offers the following benefits :

	“Datastore Job” is a set of updates to the Config/Operational
Datastore.

	Dependent Jobs (eg. Operations on interfaces on same port) that need
to be run one after the other will continue to be run in sequence.

	Independent Jobs (eg. Operations on interfaces across different
Ports) will be allowed to run paralelly.

	Makes use of ForkJoin Pools that allows for work-stealing across
threads. ThreadPool executor flavor is also available… But would be
deprecating that soon.

	Jobs are enqueued and dequeued to/from a two-level Hash structure
that ensures point 1 & 2 above are satisfied and are executed using
the ForkJoinPool mentioned in point 3.

	The jobs are enqueued by the application along with an application
job-key (type: string). The Coordinator dequeues and schedules the
job for execution as appropriate. All jobs enqueued with the same
job-key will be executed sequentially.

	DataStoreJob Coordination to distribute jobs and execute them
paralelly within a single node.

	This will still work in a clustered mode by handling optimistic lock
exceptions and retrying of the job.

	Framework provides the capability to retry and rollback Jobs.

	Applications can specify how-many retries and provide callbacks for
rollback.

	Aids movement of Application Datastore listeners to “Follower” also
listening mode without any change to the business logic of the
application.

	Datastore Job Coordination function gets the list of listenable
futures returned from each job.

	The Job is deemed complete only when the onSuccess callback is
invoked and the next enqueued job for that job-key will be dequeued
and executed.

	On Failure, based on application input, retries and/or rollback will
be performed. Rollback failures are considered as double-fault and
system bails out with error message and moves on to the next job with
that Job-Key.

Datastore Job Coordination framework

The datastore job coordinator framework offers the following benefits :

	“Datastore Job” is a set of updates to the Config/Operational
Datastore.

	Dependent Jobs (eg. Operations on interfaces on same port) that need
to be run one after the other will continue to be run in sequence.

	Independent Jobs (eg. Operations on interfaces across different
Ports) will be allowed to run paralelly.

	Makes use of ForkJoin Pools that allows for work-stealing across
threads. ThreadPool executor flavor is also available… But would be
deprecating that soon.

	Jobs are enqueued and dequeued to/from a two-level Hash structure
that ensures point 1 & 2 above are satisfied and are executed using
the ForkJoinPool mentioned in point 3.

	The jobs are enqueued by the application along with an application
job-key (type: string). The Coordinator dequeues and schedules the
job for execution as appropriate. All jobs enqueued with the same
job-key will be executed sequentially.

	DataStoreJob Coordination to distribute jobs and execute them
paralelly within a single node.

	This will still work in a clustered mode by handling optimistic lock
exceptions and retrying of the job.

	Framework provides the capability to retry and rollback Jobs.

	Applications can specify how-many retries and provide callbacks for
rollback.

	Aids movement of Application Datastore listeners to “Follower” also
listening mode without any change to the business logic of the
application.

	Datastore Job Coordination function gets the list of listenable
futures returned from each job.

	The Job is deemed complete only when the onSuccess callback is
invoked and the next enqueued job for that job-key will be dequeued
and executed.

	On Failure, based on application input, retries and/or rollback will
be performed. Rollback failures are considered as double-fault and
system bails out with error message and moves on to the next job with
that Job-Key.

Genius Design Specifications

Starting from Carbon, Genius uses RST format Design Specification document for
all new features. These specifications are perfect way to understand various
Genius features.

Contents:

	Design Specification Template

	ITM Tunnel Auto-Configuration

	Load balancing and high availability of multiple VxLAN tunnels

	OF Tunnels

	Traffic shaping with Ovsdb QoS queues

	Service Binding On Tunnels

	Service Recovery Framework

Table of Contents

	Title of the feature

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Title of the feature

[link to gerrit patch]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

For most Genius features users will be other projects but this
should still capture any user visible CLI/API etc. e.g. ITM configuration.

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-genius-ui

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assignee and other contributors.

	Primary assignee:

	<developer-a>

	Other contributors:

	<developer-b>
<developer-c>

Work Items

Break up work into individual items. This should be a checklist on
Trello card for this feature. Give link to trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc.] This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing project that depend on Genius.
Following projects currently depend on Genius:
* Netvirt
* SFC

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is impact on documentation for this change? If documentation
change is needed call out one of the <contributors> who will work with
Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

ITM Tunnel Auto-Configuration

https://git.opendaylight.org/gerrit/#/q/topic:itm-auto-config

Internal Transport Manager (ITM) Tunnel Auto configuration feature proposes a
solution to migrate from REST/CLI based Tunnel End Point (TEP) configuration to
automatic learning of Openvswitch (OVS) TEPs from the switches, thereby triggering
automatic configuration of tunnels.

Problem description

User has to use ITM REST APIs for addition/deletion of TEPs into/from Transport zone.
But, OVS and other TOR switches that support OVSDB can be configured for TEP without
requring TEP configuration through REST API, which leads to redundancy and makes the
process cumbersome and error-prone.

Use Cases

This feature will support following use cases:

	Use case 1: Add tep to existing transport-zone from southbound interface(SBI).

	Use case 2: Delete tep from SBI.

	Use case 3: Move the tep from one transport zone to another from SBI.

	Use case 4: User can specify the Datapath Node (DPN) bridge for tep other
than br-int from SBI.

	Use case 5: Allow user to configure a tep from SBI if they want to use
flow based tunnels.

	Use case 6: TEP-IP, Port, vlan, subnet, gateway IP are optional parameters
for creating a transport zone from REST.

	Use case 7: User must configure Transport zone name and tunnel type parameters
while creating a transport zone from REST, as both are mandatory parameters.

	Use case 8: Store teps received on OVS connect for transport-zone which is not yet
created and also allow to move such teps into transport-zone when it gets created
from northbound.

	Use case 9: Allow user to control creation of default transport zone through
start-up configurable parameter def-tz-enabled in config file.

	Use case 10: Tunnel-type for default transport zone should be configurable through configurable
parameter def-tz-tunnel-type in config file.

	Use case 11: Allow user to change def-tz-enabled configurable parameter from OFF to ON
during OpenDaylight controller restart.

	Use case 12: Allow user to change def-tz-enabled configurable parameter from ON to OFF
during OpenDaylight controller restart.

	Use case 13: Default value for configurable parameter def-tz-enabled is OFF and if it is
not changed by user, then it will be OFF after OpenDaylight controller restart as well.

Following use cases will not be supported:

	If a switch gets disconnected, the corresponding TEP entries will not get cleared
off from the ITM config datastore (DS) and operator must explicitly clean it up.

	Operator is not supposed to delete default-transport-zone from REST, such
scenario will be taken as incorrect configuration.

	Dynamic change in the bridge for tunnel creation via change in Openvswitch table’s
external_ids parameter br-name is not supported.

	Dynamic change for of-tunnel tep configuration via change in Openvswitch table’s
external_ids parameter of-tunnel is not supported.

	Dynamic change for configurable parameters def-tz-enabled and def-tz-tunnel-type
is not supported.

Proposed change

ITM will create a default transport zone on OpenDaylight start-up if configurable parameter
def-tz-enabled is true in genius-itm-config.xml file (by default, this flag
is false). When the flag is true, default transport zone is created and configured with:

	Default transport zone will be created with name default-transport-zone.

	Tunnel type: This would be configurable parameter via config file.
ITM will take tunnel type value from config file for default-transport-zone.
Tunnel-type value cannot be changed dynamically. It will take value of
def-tz-tunnel-type parameter from config file genius-itm-config.xml on startup.

	If def-tz-tunnel-type parameter is changed and def-tz-enabled remains true
during OpenDaylight restart, then default-transport-zone with previous value of
tunnel-type would be first removed and then default-transport-zone would be created
with newer value of tunnel-type.

If def-tz-enabled is configured as false, then ITM will delete default-transport-zone
if it is present already.

When transport-zone is added from northbound i.e. REST interface.
Few of the transport-zone parameters are mandatory and fewer are optional now.

	Status

	Transport zone parameters

	Mandatory

	transport-zone name, tunnel-type

	Optional

	TEP IP-Address, Subnet prefix, Dpn-id, Gateway-ip,
Vlan-id, Portname

When a new transport zone is created, check for any TEPs if present in
tepsNotHostedInTransportZone for that transport zone. If present,
remove from tepsNotHostedInTransportZone and add them under the
transport zone and include the TEP in the tunnel mesh.

ITM will register listeners to the Node of network topology Operational DS
to receive Data Tree Change Notification (DTCN) for add/update/delete notification
in the OVSDB node so that such DTCN can be parsed and changes in the external_ids
for TEP parameters can be determined to perform TEP add/update/delete operations.

URL: restconf/operational/network-topology:network-topology/topology/ovsdb:1

Sample JSON output

 {
 "topology": [
 {
 "topology-id": "ovsdb:1",
 "node": [
 {
 "node-id": "ovsdb://uuid/83192e6c-488a-4f34-9197-d5a88676f04f",
 "ovsdb:db-version": "7.12.1",
 "ovsdb:ovs-version": "2.5.0",
 "ovsdb:openvswitch-external-ids": [
 {
 "external-id-key": "system-id",
 "external-id-value": "e93a266a-9399-4881-83ff-27094a648e2b"
 },
 {
 "external-id-key": "tep-ip",
 "external-id-value": "20.0.0.1"
 },
 {
 "external-id-key": "tzname",
 "external-id-value": "TZA"
 },
 {
 "external-id-key": "of-tunnel",
 "external-id-value": "true"
 }
],
 "ovsdb:datapath-type-entry": [
 {
 "datapath-type": "ovsdb:datapath-type-system"
 },
 {
 "datapath-type": "ovsdb:datapath-type-netdev"
 }
],
 "ovsdb:connection-info": {
 "remote-port": 45230,
 "local-ip": "10.111.222.10",
 "local-port": 6640,
 "remote-ip": "10.111.222.20"
 }

 ...
 ...

 }
]
 }
]
 }

OVSDB changes

Below table covers how ITM TEP parameter are mapped with OVSDB and which fields of
OVSDB would provide ITM TEP parameter values.

	ITM TEP parameter

	OVSDB field

	DPN-ID

	ovsdb:datapath-id from bridge whose name is pre-configured
with openvswitch:external_ids:br-name:value

	IP-Address

	openvswitch:external_ids:tep-ip:value

	Transport Zone Name

	openvswitch:external_ids:tzname:value

	of-tunnel

	openvswitch:external_ids:of-tunnel:value

NOTE: If openvswitch:external_ids:br-name is not configured, then by default
br-int will be considered to fetch DPN-ID which in turn would be used for
tunnel creation.

MDSALUtil changes

getDpnId() method is added into MDSALUtil.java.

 /**
 * This method will be utility method to convert bridge datapath ID from
 * string format to BigInteger format.
 *
 * @param datapathId datapath ID of bridge in string format
 *
 * @return the datapathId datapath ID of bridge in BigInteger format
 */
 public static BigInteger getDpnId(String datapathId);

Pipeline changes

N.A.

Yang changes

Changes are needed in itm.yang and itm-config.yang which are described in
below sub-sections.

itm.yang changes

Following changes are done in itm.yang file.

	A new list tepsNotHostedInTransportZone will be added to container
transport-zones for storing details of TEP received from southbound
having transport zone which is not yet hosted from northbound.

	Existing list transport-zone would be modified for leaf zone-name
and tunnel-type to make them mandatory parameters.

itm.yang

 list transport-zone {
 ordered-by user;
 key zone-name;
 leaf zone-name {
 type string;
 mandatory true;
 }
 leaf tunnel-type {
 type identityref {
 base odlif:tunnel-type-base;
 }
 mandatory true;
 }
 }

 list tepsNotHostedInTransportZone {
 key zone-name;
 leaf zone-name {
 type string;
 }
 list unknown-vteps {
 key "dpn-id";
 leaf dpn-id {
 type uint64;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 leaf of-tunnel {
 description "Use flow based tunnels for remote-ip";
 type boolean;
 default false;
 }
 }
 }

itm-config.yang changes

itm-config.yang file is modified to add new container to contain following parameters
which can be configured in genius-itm-config.xml on OpenDaylight controller startup.

	def-tz-enabled: this is boolean type parameter which would create or delete
default-transport-zone if it is configured true or false respectively. By default,
value is false.

	def-tz-tunnel-type: this is string type parameter which would allow user to
configure tunnel-type for default-transport-zone. By default, value is vxlan.

itm-config.yang

 container itm-config {
 config true;
 leaf def-tz-enabled {
 type boolean;
 default false;
 }
 leaf def-tz-tunnel-type {
 type string;
 default "vxlan";
 }
 }

Workflow

TEP Addition

When TEP IP external_ids:tep-ip and external_ids:tzname are configured at OVS side
using ovs-vsctl commands to add TEP, then TEP parameters details are passed to the OVSDB
plugin via OVSDB connection which in turn, is updated into Network Topology Operational DS.
ITM listens for change in Network Topology Node.

When TEP parameters (like tep-ip, tzname, br-name, of-tunnel) are
received in add notification of OVSDB Node, then TEP is added.

For TEP addition, TEP-IP and DPN-ID are mandatory. TEP-IP is obtained from tep-ip
TEP parameter and DPN-ID is fetched from OVSDB node based on br-name TEP parameter:

	if bridge name is specified, then datapath ID of the specified bridge is fetched.

	if bridge name is not specified, then datapath ID of the br-int bridge is fetched.

TEP-IP and fetched DPN-ID would be needed to add TEP in the transport-zone.
Once TEP is added in config datastore, transport-zone listener of ITM would
internally take care of creating tunnels on the bridge whose DPN-ID is
passed for TEP addition. It is noted that TEP parameter of-tunnel would be
checked if it is true, then of-tunnel flag would be set for vtep to be added
under transport-zone or tepsNotHostedInTransportZone.

TEP would be added under transport zone with following conditions:

	TEPs not configured with external_ids:tzname i.e. without transport zone will be
placed under the default-transport-zone if def-tz-enabled parameter is configured
to true in genius-itm-config.xml. This will fire a DTCN to transport zone yang listener
and ITM tunnels gets built.

	TEPs configured with external_ids:tzname i.e. with transport zone and
if the specified transport zone exists in the ITM Config DS, then TEP will
be placed under the specified transport zone. This will fire a DTCN to
transport zone yang listener and the ITM tunnels gets built.

	TEPs configured with external_ids:tzname i.e. with transport zone and
if the specified transport zone does not exist in the ITM Config DS, then
TEP will be placed under the tepsNotHostedInTransportZone under ITM
config DS.

TEP Movement

When transport zone which was not configured earlier, is created through REST, then
it is checked whether any “orphan” TEPs already exists in the tepsNotHostedInTransportZone
for the newly created transport zone, if present, then such TEPs are removed from
tepsNotHostedInTransportZone, and then added under the newly created transport zone
in ITM config DS and then TEPs are added to the tunnel mesh of that transport zone.

TEP Updation

	TEP updation for IP address is considered as TEP deletion followed by TEP addition.
Remove existing TEP-IP external_ids:tep-ip and then add new TEP-IP using ovs-vsctl
commands. TEP with old TEP-IP is deleted and then TEP with new TEP-IP gets added.

	TEP updation for transport zone can be done dynamically. When external_ids:tzname
is updated at OVS side, then such change will be notified to OVSDB plugin via OVSDB
protocol, which in turn is reflected in Network topology Operational DS. ITM gets
DTCN for Node update. Parsing Node update notification for external_ids:tzname
parameter in old and new node can determine change in transport zone for TEP.
If it is updated, then TEP is deleted from old transport zone and added into new
transport zone. This will fire a DTCN to transport zone yang listener and
the ITM tunnels gets updated.

TEP Deletion

When an openvswitch:external_ids:tep-ip parameter gets deleted through ovs-vsctl
command, then network topology Operational DS gets updated via OVSB update notification.
ITM which has registered for the network-topology DTCNs, gets notified and this deletes
the TEP from Transport zone or tepsNotHostedInTransportZone stored in ITM config DS
based on external_ids:tzname parameter configured for TEP.

	If external_ids:tzname is configured and corresponding transport zone exists
in Configuration DS, then remove TEP from transport zone. This will fire a DTCN
to transport zone yang listener and the ITM tunnels of that TEP gets deleted.

	If external_ids:tzname is configured and corresponding transport zone does not
exist in Configuration DS, then check if TEP exists in tepsNotHostedInTransportZone,
if present, then remove TEP from tepsNotHostedInTransportZone.

	If external_ids:tzname is not configured, then check if TEP exists in the default
transport zone in Configuration DS, if and only if def-tz-enabled parameter is configured
to true in genius-itm-config.xml. In case, TEP is present, then remove TEP from
default-transport-zone. This will fire a DTCN to transport zone yang listener and
ITM tunnels of that TEP gets deleted.

Configuration impact

Following are the configuation changes and impact in the OpenDaylight.

	genius-itm-config.xml configuation file is introduced newly into ITM
in which following parameters are added:

	def-tz-enabled: this is boolean type parameter which would create or delete
default-transport-zone if it is configured true or false respectively. Default
value is false.

	def-tz-tunnel-type: this is string type parameter which would allow user to
configure tunnel-type for default-transport-zone. Default value is vxlan.

genius-itm-config.xml

 <itm-config xmlns="urn:opendaylight:genius:itm:config">
 <def-tz-enabled>false</def-tz-enabled>
 <def-tz-tunnel-type>vxlan</def-tz-tunnel-type>
 </itm-config>

Runtime changes to the parameters of this config file would not be
taken into consideration.

Clustering considerations

Any clustering requirements are already addressed in ITM, no new requirements added
as part of this feature.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

This feature would not introduce any significant scale and performance issues in the OpenDaylight.

Targeted Release

OpenDaylight Carbon

Known Limitations

	Dummy Subnet prefix 255.255.255.255/32 under transport-zone is used to store the
TEPs listened from southbound.

Alternatives

N.A.

Usage

Features to Install

This feature doesn’t add any new karaf feature. This feature would be available in
already existing odl-genius karaf feature.

REST API

Creating transport zone

As per this feature, the TEP addition is based on the southbound configuation and
respective transport zone should be created on the controller to form the tunnel
for the same. The REST API to create the transport zone with mandatory parameters.

URL: restconf/config/itm:transport-zones/

Sample JSON data

{
 "transport-zone": [
 {
 "zone-name": "TZA",
 "tunnel-type": "odl-interface:tunnel-type-vxlan"
 }
]
}

Retrieving transport zone

To retrieve the TEP configuations from all the transport zones.

URL: restconf/config/itm:transport-zones/

Sample JSON output

{
 "transport-zones": {
 "transport-zone": [
 {
 "zone-name": "default-transport-zone",
 "tunnel-type": "odl-interface:tunnel-type-vxlan"
 },
 {
 "zone-name": "TZA",
 "tunnel-type": "odl-interface:tunnel-type-vxlan",
 "subnets": [
 {
 "prefix": "255.255.255.255/32",
 "vteps": [
 {
 "dpn-id": 1,
 "portname": "",
 "ip-address": "10.0.0.1"
 },
 {
 "dpn-id": 2,
 "portname": "",
 "ip-address": "10.0.0.2"
 }
],
 "gateway-ip": "0.0.0.0",
 "vlan-id": 0
 }
]
 }
]
 }
}

CLI

No CLI is added into OpenDaylight for this feature.

OVS CLI

ITM TEP parameters can be added/removed to/from the OVS switch using
the ovs-vsctl command:

DESCRIPTION
 ovs-vsctl
 Command for querying and configuring ovs-vswitchd by providing a
 high-level interface to its configuration database.
 Here, this command usage is shown to store TEP parameters into
 ``openvswitch`` table of OVS database.

SYNTAX
 ovs-vsctl set O . [column]:[key]=[value]

* To set TEP params on OVS table:

ovs-vsctl set O . external_ids:tep-ip=192.168.56.102
ovs-vsctl set O . external_ids:tzname=TZA
ovs-vsctl set O . external_ids:br-name=br0
ovs-vsctl set O . external_ids:of-tunnel=true

* To clear TEP params in one go by clearing external_ids column from
 OVS table:

ovs-vsctl clear O . external_ids

* To clear specific TEP paramter from external_ids column in OVS table:

ovs-vsctl remove O . external_ids tep-ip
ovs-vsctl remove O . external_ids tzname

* To check TEP params are set or cleared on OVS table:

ovsdb-client dump -f list Open_vSwitch

Implementation

Assignee(s)

Primary assignee:

	Tarun Thakur

Other contributors:

	Sathish Kumar B T

	Nishchya Gupta

	Jogeswar Reddy

Work Items

	YANG changes

	Add code to create xml config file for ITM to configure flag which would control
creation of default-transport-zone during bootup and configure tunnel-type for
default transport zone.

	Add code to handle changes in the def-tz-enabled configurable parameter during
OpenDaylight restart.

	Add code to handle changes in the def-tz-tunnel-type configurable parameter during
OpenDaylight restart.

	Add code to create listener for OVSDB to receive TEP-specific
parameters configured at OVS.

	Add code to update configuation datastore to add/delete TEP received from
southbound into transport-zone.

	Check tunnel mesh for transport-zone is updated correctly for TEP
add/delete into transport-zone.

	Add code to update configuation datastore for handling update in TEP-IP.

	Add code to update configuation datastore for handling update in TEP’s transport-zone.

	Check tunnel mesh is updated correctly against TEP update.

	Add code to create tepsNotHostedInTransportZone list in configuation datastore to
store TEP received with not-configured transport-zone.

	Add code to move TEP from tepsNotHostedInTransportZone list to transport-zone
configured from REST.

	Check tunnel mesh is formed for TEPs after their movement from tepsNotHostedInTransportZone
list to transport-zone.

	Add UTs.

	Add ITs.

	Add CSIT.

	Add Documentation.

Dependencies

This feature should be used when configuration flag i.e. use-transport-zone in
netvirt-neutronvpn-config.xml for automatic tunnel configuration in transport-zone
is disabled in Netvirt’s NeutronVpn, otherwise netvirt feature of dynamic tunnel creation
may duplicate tunnel for TEPs in the tunnel mesh.

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in, once UT framework is in place.

Integration Tests

Integration tests will be added, once IT framework for ITM is ready.

CSIT

Following test cases will need to be added/expanded in Genius CSIT:

	Verify default-transport-zone is not created when def-tz-enabled flag is false.

	Verify tunnel-type change is considered while creation of default-transport-zone.

	Verify ITM tunnel creation on default-transport-zone when TEPs are configured without
transport zone or with default-transport-zone on switch when def-tz-enabled
flag is true.

	Verify default-transport-zone is deleted when def-tz-enabled flag is changed from
true to false during OpenDaylight controller restart.

	Verify ITM tunnel creation by TEPs configured with transport zone on switch and
respective transport zone should be pre-configured on OpenDaylight controller.

	Verify auto-mapping of TEPs to corresponding transport zone group.

	Verify ITM tunnel deletion by deleting TEP from switch.

	Verify TEP transport zone change from OVS will move the TEP to corresponding
transport-zone in OpenDaylight controller.

	Verify TEPs movement from tepsNotHostedInTransportZone to transport-zone when
transport-zone is configured from northbound.

	Verify ITM tunnel details persist after OpenDaylight controller restart, switch restart.

Documentation Impact

This will require changes to User Guide and Developer Guide.

User Guide will need to add information for below details:

	TEPs parameters to be configured from OVS side to use this feature.

	TEPs added from southbound can be viewed from REST APIs.

	TEPs added from southbound will be added under dummy subnet (255.255.255.255/32) in
transport-zone.

	Usage details of genius-itm-config.xml config file for ITM to configure def-tz-enabled
flag and def-tz-tunnel-type to create/delete default-transport-zone and its
tunnel-type respectively.

	User is explicitly required to configure def-tz-enabled as true if TEPs needed to be
added into default-transport-zone from northbound.

Developer Guide will need to capture how to use changes in ITM to create
tunnel automatically for TEPs configured from southbound.

References

	Genius: Carbon Release Plan [https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan]

Table of Contents

	Load balancing and high availability of multiple VxLAN tunnels

	Problem description

	Use Cases

	Proposed change

	ITM Changes

	IFM Changes

	Netvirt Changes

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Load balancing and high availability of multiple VxLAN tunnels

https://git.opendaylight.org/gerrit/#/q/topic:vxlan-tunnel-aggregation

The purpose of this feature is to enable resiliency and load balancing of VxLAN encapsulated traffic
between pair of OVS nodes.

Additionally, the feature will provide infrastructure to support more complex use cases such as policy-based
path selection. The exact implementation of policy-based path selection is out of the scope of this document
and will be described in a different spec [2].

Problem description

The current ITM implementation enables creation of a single VxLAN tunnel between each pair of hypervisors.

If the hypervisor is connected to the network using multiple links with different capacity or connected to different
L2 networks in different subnets, it is not possible to utilize all the available network resources to increase the
throughput of traffic to remote hypervisors.

In addition, link failure of the network card forwarding the VxLAN traffic will result in complete traffic loss
to/from the remote hypervisor if the network card is not part of a bonded interface.

Use Cases

	Forwarding of VxLAN traffic between hypervisors with multiple network cards connected to L2 switches in
different networks.

	Forwarding of VxLAN traffic between hypervisors with multiple network cards connected to the same L2 switch.

Proposed change

ITM Changes

The ITM will continue to create tunnels based on transport-zone configuration similarly to the current implementation -
TEP IP per DPN per transport zone.
When ITM creates TEP interfaces, in addition to creating the actual tunnels, it will create logical tunnel interface for
each pair of DPNs in the ietf-interface config data-store representing the tunnel aggregation group between the DPNs.
The logical tunnel interface be created only when the first tunnel interface on each OVS is created. In addition,
this feature will be guarded by a global configuration option in the ITM and will be turned off by default.
Only when the feature is enabled, the logical tunnel interfaces will be created.

Creation of transport-zone with multiple IPs per DPN is out of the scope of this document and will be described in [2] However,
the limitation of configuring no more than one TEP ip per transport zone will remain.

The logical tunnel will reference all member tunnel interfaces in the group using interface-child-info model.
In addition, it would be possible to add weight to each member of the group to support unequal load-sharing of traffic.

The proposed feature depends on egress tunnel service binding functionality detailed in [3].

When the logical tunnel interface is created, a default egress service would be bound to it. The egress service will
create an OF select group based on the actual list of tunnel members in the logical group.
Each tunnel member can be assigned a weight field that will be applied on it’s corresponding bucket in the OF select
group. If weight was not defined, the bucket weight will be configured with a default value of 1 resulting
in uniform distribution if weight was not configured for any of the buckets.
Each bucket in the select group will route the egress traffic to one of the tunnel members in the group by
loading the lport-tag of the tunnel member interface to NXM register6.

Logical tunnel egress service pipeline example:

cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,reg6=0x500
actions=load:0xe000500->NXM_NX_REG6[],write_metadata:0xe000500000000000/0xfffffffffffffffe,group:80000
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x600 actions=output:3
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x700 actions=output:4
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x800 actions=output:5
group_id=800000,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)

Each bucket of the LB group will set the watch_port property to be the tunnel member OF port number.
This will allow the OVS to monitor the bucket liveness and route egress traffic only to live buckets.

BFD monitoring is required to probe the tunnel state and update the OF select group accordingly. Using OF tunnels [4]
or turning off BFD monitoring will not allow the logical group service to respond to tunnel state changes.

OF select group for logical tunnel can contain a mix of IPv4 and IPv6 tunnels, depending on the transport-zone
configuration.

A new pool will be allocated to generate OF group ids of the default select group and the policy groups described in [2].
The pool name VXLAN_GROUP_POOL will allocate ids from the id-manager in the range 300,000-310,000.
ITM RPC calls to get internal tunnel interface between source and destination DPNs will return the logical tunnel
interface group name if such exits, otherwise the lower layer tunnel will be returned.

IFM Changes

The logical tunnel group is an ietf-interface thus it has an allocated lport-tag.
RPC call to getEgressActionsForInterface for the logical tunnel will load register6 with its corresponding
lport-tag and resubmit the traffic to the egress dispatcher table.

The state of the logical tunnel group is affected by the states of the group members. If at least one of the
tunnels is in oper-status UP, the logical group is considered UP.

If the logical tunnel was set as admin-status DOWN, all the tunnel members will be set accordingly.

Ingress traffic from VxLAN tunnels would not be bounded to any logical group service as part of this feature and it
will continue to use the same workflow while traversing the ingress services pipeline.

Other applications would be able to utilize this infrastructure to introduce new services over logical tunnel group
interface e.g. policy-based path selection. These services will take precedence over the default egress service for
logical tunnel.

Netvirt Changes

L3 models map each combination of VRF id and destination prefix to a list of nexthop ip addresses.
When calling getInternalOrExternalInterfaceName RPC from the FIB manager, if the DPN id of the remote nexthop
is known it will be sent along with the nexthop ip. If logical tunnel exists between the source and destination DPNs
it will be set as the lport-tag of register6 in the remote nexthop actions.

Pipeline changes

For the flows below it is assumed that a logical tunnel group was configured for both ingress and egress DPNs.
The logical tunnel group is composed of { tunnnel1, tunnel2 } and bound to the default logical tunnel
egress service.

Traffic between VMs on the same DPN

No pipeline changes required

L3 traffic between VMs on different DPNs

VM originating the traffic (Ingress DPN):

	Remote next hop group in the FIB table references the logical tunnel group.

	The default logical group service uses OF select group to load balance traffic between the tunnels.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm2-ip set dst-mac=vm2-mac tun-id=vm2-label reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Logical tunnel LB select group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tunnel1

VM receiving the traffic (Ingress DPN):

	No pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vm2-label =>

Local Next-Hop group: set dst-mac=vm2-mac,reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

SNAT traffic from non-NAPT switch

VM originating the traffic is non-NAPT switch:

	NAPT group references the logical tunnel group.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group set tun-id=router-id reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Logical tunnel LB select group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tunnel1

Traffic from NAPT switch punted to controller:

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=router-id =>

Outbound NAPT table (46) set vpn-id=router-id, punt-to-controller

L2 unicast traffic between VMs in different DPNs

VM originating the traffic (Ingress DPN):

	ELAN DMAC table references the logical tunnel group

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set tun-id=vm2-lport-tag reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Logical tunnel LB select group set reg6=tun2-lport-tag =>

Egress table (220) match: reg6=tun2-lport-tag output to tunnel2

VM receiving the traffic (Ingress DPN):

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

L2 multicast traffic between VMs in different DPNs

VM originating the traffic (Ingress DPN):

	ELAN broadcast group references the logical tunnel group.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) =>

ELAN DMAC table (52) match: elan-tag=vxlan-net-tag =>

ELAN BC group goto_group=elan-local-group, set tun-id=vxlan-net-tag reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Logical tunnel LB select group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tunnel1

VM receiving the traffic (Ingress DPN):

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vxlan-net-tag =>

ELAN local BC group set tun-id=vm2-lport-tag =>

ELAN filter equal table (55) match: tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

Yang changes

The following changes would be required to support configuration of logical tunnel group:

IFM Yang Changes

Add a new tunnel type to represent the logical group in odl-interface.yang.

identity tunnel-type-logical-group {
 description "Aggregation of multiple tunnel endpoints between two DPNs";
 base tunnel-type-base;
}

Each tunnel member in the logical group can have an assigned weight as part of tunnel-optional-params
in odl-interface:if-tunnel augment to support unequal load sharing.

 grouping tunnel-optional-params {
 leaf tunnel-source-ip-flow {
 type boolean;
 default false;
 }

 leaf tunnel-remote-ip-flow {
 type boolean;
 default false;
 }

 leaf weight {
 type uint16;
 }

 ...
 }

ITM Yang Changes

Each tunnel endpoint in itm:transport-zones/transport-zone can be configured with optional weight parameter.
Weight configuration will be propagated to tunnel-optional-params.

 list vteps {
 key "dpn-id portname";
 leaf dpn-id {
 type uint64;
 }

 leaf portname {
 type string;
 }

 leaf ip-address {
 type inet:ip-address;
 }

 leaf weight {
 type unit16;
 default 1;
 }

 leaf option-of-tunnel {
 type boolean;
 default false;
 }
 }

The internal tunnel will be enhanced to contain multiple tunnel interfaces

container tunnel-list {
 list internal-tunnel {
 key "source-DPN destination-DPN transport-type";
 leaf source-DPN {
 type uint64;
 }

 leaf destination-DPN {
 type uint64;
 }

 leaf transport-type {
 type identityref {
 base odlif:tunnel-type-base;
 }
 }

 leaf-list tunnel-interface-name {
 type string;
 }
 }
}

The RPC call itm-rpc:get-internal-or-external-interface-name will be enhanced to contain the destination dp-id
as an optional input parameter

 rpc get-internal-or-external-interface-name {
 input {
 leaf source-dpid {
 type uint64;
 }

 leaf destination-dpid {
 type uint64;
 }

 leaf destination-ip {
 type inet:ip-address;
 }

 leaf tunnel-type {
 type identityref {
 base odlif:tunnel-type-base;
 }
 }
 }

 output {
 leaf interface-name {
 type string;
 }
 }
 }

Configuration impact

Creation of logical tunnel group will be guarded by configuration in itm-config per tunnel-type

 container itm-config {
 config true;
 leaf def-tz-enabled {
 type boolean;
 default false;
 }

 leaf def-tz-tunnel-type {
 type string;
 default "vxlan";
 }

 list tunnel-aggregation {
 key "tunnel-type";
 leaf tunnel-type {
 type string;
 }

 leaf enabled {
 type boolean;
 default false;
 }
 }
 }

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

This feature is expected to increase the datapath throughput by utilizing all available network resources.

Targeted Release

Carbon

Alternatives

There are certain use cases where it would be possible to add the network cards to a separate bridge with
LACP enabled and patch it to br-int but this alternative was rejected since it imposes limitations on
the type of links and the overall capacity.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Create multiple uplinks between pair of OVS nodes

URL: restconf/config/itm:transport-zones/

Sample JSON data

The following REST will create 3 bi-directional tunnels between two OVS nodes.

{
 "transport-zone": [
 {
 "zone-name": "underlay-net1",
 "subnets": [
 {
 "prefix": "0.0.0.0/0",
 "vteps": [
 {
 "dpn-id": 273348439543366,
 "portname": "tunnel_port",
 "ip-address": "20.2.1.2",
 "option-of-tunnel": false
 },
 {
 "dpn-id": 110400932149974,
 "portname": "tunnel_port",
 "ip-address": "20.2.1.3",
 "option-of-tunnel": false
 }
],
 "gateway-ip": "0.0.0.0",
 "vlan-id": 0
 }
],
 "tunnel-type": "odl-interface:tunnel-type-vxlan"
 },
 {
 "zone-name": "underlay-net2",
 "subnets": [
 {
 "prefix": "0.0.0.0/0",
 "vteps": [
 {
 "dpn-id": 273348439543366,
 "portname": "tunnel_port",
 "ip-address": "30.3.1.2",
 "option-of-tunnel": false
 },
 {
 "dpn-id": 110400932149974,
 "portname": "tunnel_port",
 "ip-address": "30.3.1.3",
 "option-of-tunnel": false
 }
],
 "gateway-ip": "0.0.0.0",
 "vlan-id": 0
 }
],
 "tunnel-type": "odl-interface:tunnel-type-vxlan"
 },
 {
 "zone-name": "underlay-net3",
 "subnets": [
 {
 "prefix": "0.0.0.0/0",
 "vteps": [
 {
 "dpn-id": 273348439543366,
 "portname": "tunnel_port",
 "ip-address": "40.4.1.2",
 "option-of-tunnel": false
 },
 {
 "dpn-id": 110400932149974,
 "portname": "tunnel_port",
 "ip-address": "40.4.1.3",
 "option-of-tunnel": false
 }
],
 "gateway-ip": "0.0.0.0",
 "vlan-id": 0
 }
],
 "tunnel-type": "odl-interface:tunnel-type-vxlan"
 }
]
 }

ITM RPCs

URL: restconf/operations/itm-rpc:get-tunnel-interface-name

{
 "input": {
 "source-dpid": "40146672641571",
 "destination-dpid": "102093507130250",
 "tunnel-type": "odl-interface:tunnel-type-vxlan"
 }
}

URL: restconf/operations/itm-rpc:get-internal-or-external-interface-name

{
 "input": {
 "source-dpid": "40146672641571",
 "destination-dpid": "102093507130250",
 "tunnel-type": "odl-interface:tunnel-type-vxlan"
 }
}

CLI

tep:show-state will be enhanced to extract the state of the logical tunnel interface in addition to the actual TEP state.

Implementation

Assignee(s)

	Primary assignee:

	Olga Schukin <olga.schukin@hpe.com>

	Other contributors:

	Tali Ben-Meir <tali@hpe.com>

Work Items

Trello card: https://trello.com/c/Q7LgiHH7/92-multiple-vxlan-endpoints-for-compute

	Add support to ITM for creation of multiple tunnels between pair of DPNs

	Create logical tunnel group in ietf-interface if more than one tunnel exist between two DPNs.
Update the interface-child-info model with the list of individual tunnel members

	Bind a default service for the logical tunnel interface to create OF select group based on the tunnel members

	Change ITM RPC calls to getTunnelInterfaceName and getInternalOrExternalInterfaceName to prefer
the logical tunnel group over the tunnel members

	Support OF weighted select group

Dependencies

None

Testing

Unit Tests

	ITM unitests will be enhanced with test cases of multiple tunnels

	IFM unitests will be enhanced to handle CRUD operations on logical tunnel group

Integration Tests

CSIT

Transport zone creation with multiple tunnels

	Verify tunnel endpoint creation

	Verify logical tunnel group creation

	Verify logical tunnel service binding flows/group

Transport zone removal with multiple tunnels

	Verify tunnel endpoint removal

	Verify logical tunnel group removal

	Verify logical tunnel service binding flows/group removal

Transport zone updates to single/multiple tunnels

	Verify tunnel endpoint creation/removal

	Verify logical tunnel group creation/removal

	Verify logical tunnel service binding flows/group creation/removal

Transport zone creation with multiple OF tunnels

	Verify tunnel endpoint creation

	Verify logical tunnel group creation

	Verify logical tunnel service binding flows/group

Documentation Impact

None

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] Policy based path selection [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/policy-based-path-selection.html]

[3] Service Binding On Tunnels [http://docs.opendaylight.org/en/latest/submodules/genius/docs/specs/service-binding-on-tunnels.html]

[4] OF tunnels [http://docs.opendaylight.org/en/latest/submodules/genius/docs/specs/of-tunnels.html]

Table of Contents

	OF Tunnels

	Problem description

	Use Cases

	Proposed change

	Using OVSDB Plugin

	MDSALUtil changes

	Pipeline changes

	YANG changes

	Workflow

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release(s)

	Known Limitations

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

OF Tunnels

https://git.opendaylight.org/gerrit/#/q/topic:of-tunnels

OF Tunnels feature adds support for flow based tunnels to allow
scalable overlay tunnels.

Problem description

Today when tunnel interfaces are created, InterFaceManager [IFM] creates one
OVS port for each tunnel interface i.e. source-destination pair. For N devices
in a TransportZone this translates to N*(N-1) tunnel ports created across all
devices and N-1 ports in each device. This has obvious scale limitations.

Use Cases

This feature will support following use cases:

	Use case 1: Allow user to specify if they want to use flow based tunnels at
the time of configuration.

	Use case 2: Create single OVS Tunnel Interface if flow based tunnels are
configured and this is the first tunnel on this device/tep.

	Use case 3: Flow based and non flow based tunnels should be able to exist
in a given transport zone.

	Use case 4: On tep delete, if this is the last tunnel interface on this
tep/device and it is flow based tunnel, delete the OVS Tunnel Interface.

Following use cases will not be supported:

	Configuration of flow based and non-flow based tunnels of same type on the same device.
OVS requires one of the following: remote_ip, local_ip, type and key to
be unique. Currently we don’t support multiple local_ip and key is always set to flow.
So remote_ip and type are the only unique identifiers. remote_ip=flow
is a super set of remote_ip=<fixed-ip> and we can’t have two interfaces with
all other fields same except this.

	Changing tunnel from one flow based to non-flow based at runtime. Such a
change will require deletion and addition of tep. This is inline with
existing model where tunnel-type cannot be changed at runtime.

	Configuration of Source IP for tunnel through flow. It will still be fixed. Though we’re
adding option in IFM YANG for this, implementation for it won’t be done till we get
use case(s) for it.

Proposed change

OVS 2.0.0 onwards allows configuration of flow based tunnels through
interface option:remote_ip=flow. Currently this field is set to
IP address of the destination endpoint.

remote_ip=flow means tunnel destination IP will be set by an OpenFlow
action. This allows us to add different actions for different destinations
using the single OVS/OF port.

This change will add optional parameters to ITM and IFM YANG files to allow
OF Tunnels. Based on this option, ITM will configure IFM which in turn will
create tunnel ports in OVSDB.

Using OVSDB Plugin

OVSDB Plugin provides following field in Interface to configure options:

ovsdb.yang

 list options {
 description "Port/Interface related optional input values";
 key "option";
 leaf option {
 description "Option name";
 type string;
 }
 leaf value {
 description "Option value";
 type string;
 }

For flow based tunnels we will set option name remote_ip to
value flow.

MDSALUtil changes

Following new actions will be added to mdsalutil/ActionType.java

	set_tunnel_src_ip

	set_tunnel_dest_ip

Following new matches will be added to mdsalutil/NxMatchFieldType.java

	tun_src_ip

	tun_dest_ip

Pipeline changes

This change adds a new match in Table0. Today we match in in_port
to determine which tunnel interface this pkt came in on. Since currently
each tunnel maps to a source-destination pair it tells us about source device.
For interfaces configured to use flow based tunnels this will add an
additional match for tun_src_ip. So, in_port+tunnel_src_ip will
give us which tunnel interface this pkt belongs to.

When services call getEgressActions(), they will get one additional action,
``set_tunnel_dest_ip before the output:ofport action.

YANG changes

Changes will be needed in itm.yang and odl-interface.yang to allow
configuring a tunnel as flow based or not.

ITM YANG changes

A new parameter option-of-tunnel will be added to list-vteps

itm.yang

 list vteps {
 key "dpn-id portname";
 leaf dpn-id {
 type uint64;
 }
 leaf portname {
 type string;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 leaf option-of-tunnel {
 type boolean;
 default false;
 }
 }

Same parameter will also be added to tunnel-end-points in itm-state.yang.
This will help eliminate need to retrieve information from TransportZones when configuring
tunnel interfaces.

itm-state.yang

 list tunnel-end-points {
 ordered-by user;
 key "portname VLAN-ID ip-address tunnel-type";
 /* Multiple tunnels on the same physical port but on different VLAN can be supported */

 leaf portname {
 type string;
 }
 ...
 ...
 leaf option-of-tunnel {
 type boolean;
 default false;
 }
 }

This will allow to set OF Tunnels on per VTEP basis. So in a transport-zone
we can have some VTEPs (devices) that use OF Tunnels and others that don’t.
Default of false means it will not impact existing behavior and will need to
be explicitly configured. Going forward we can choose to set default true.

IFM YANG changes

We’ll add a new tunnel-optional-params and add them to iftunnel

odl-interface.yang

 grouping tunnel-optional-params {
 leaf tunnel-source-ip-flow {
 type boolean;
 default false;
 }

 leaf tunnel-remote-ip-flow {
 type boolean;
 default false;
 }

 list tunnel-options {
 key "tunnel-option";
 leaf tunnel-option {
 description "Tunnel Option name";
 type string;
 }
 leaf value {
 description "Option value";
 type string;
 }
 }
 }

The list tunnel-options is a list of key-value pairs of strings, similar to
options in OVSDB Plugin. These are not needed for OF Tunnels but is being added
to allow user to configure any other Interface options that OVS supports. Aim is to
enable developers and users try out newer options supported by OVS without needing to
add explicit support for it. Note that there is no counterpart for this option in
itm.yang. Any options that we want to explicitly support will be added as a separate
option. This will allow us to do better validations for options that are needed for
our specific use cases.

 augment "/if:interfaces/if:interface" {
 ext:augment-identifier "if-tunnel";
 when "if:type = 'ianaift:tunnel'";
 ...
 ...
 uses tunnel-optional-params;
 uses monitor-params;
 }

Workflow

Adding tep

	User: While adding tep user gives option-of-tunnel:true for tep being
added.

	ITM: When creating tunnel interfaces for this tep, if
option-of-tunnel:true, set tunnel-remote-ip:true for the tunnel
interface.

	IFM: If option-of-tunnel:true and this is first tunne on this device,
set option:remote_ip=flow when creating tunnel interface in OVSDB. Else,
set option:remote_ip=<destination-ip>.

Deleting tep

	If tunnel-remote-ip:true and this is last tunnel on this device,
delete tunnel port in OVSDB. Else, do nothing.

	If tunnel-remote-ip:false, follow existing logic.

Configuration impact

This change doesn’t add or modify any configuration parameters.

Clustering considerations

Any clustering requirements are already addressed in ITM and IFM, no new
requirements added as part of this feature.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

This solution will help improve scale numbers by reducing no. of interfaces
created on devices as well as no. of interfaces and ports present in
inventory and network-topology.

Targeted Release(s)

Carbon.
Boron-SR3.

Known Limitations

BFD monitoring will not work when OF Tunnels are used. Today BFD monitoring in
OVS relies on destination_ip configured in remote_ip when creating tunnel port
to determine target IP for BFD packets. If we use flow it won’t know where
to send BFD packets. Unless OVS allows adding destination IP for BFD monitoring
on such tunnels, monitoring cannot be enabled.

Alternatives

LLDP/ARP based monitoring was considered for OF tunnels to overcome lack of BFD
monitoring but was rejected because LLDP/ARP based monitoring doesn’t scale
well. Since driving requirement for this feature is scale setups, it didn’t
make sense to use an unscalable solution for monitoring.

XML/CFG file based global knob to enable OF tunnels for all tunnel interfaces
was rejected due to inflexible nature of such a solution. Current solution
allows a more fine grained and device based configuration at runtime. Also,
wanted to avoid adding yet another global configuration knob.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Adding TEPs to transport zone

For most users TEP Addition is the only configuration they need to do to create
tunnels using genius. The REST API to add TEPs with OF Tunnels is same as earlier
with one small addition.

URL: restconf/config/itm:transport-zones/

Sample JSON data

{
 "transport-zone": [
 {
 "zone-name": "TZA",
 "subnets": [
 {
 "prefix": "192.168.56.0/24",
 "vlan-id": 0,
 "vteps": [
 {
 "dpn-id": "1",
 "portname": "eth2",
 "ip-address": "192.168.56.101",
 "option-of-tunnel":"true"
 }
],
 "gateway-ip": "0.0.0.0"
 }
],
 "tunnel-type": "odl-interface:tunnel-type-vxlan"
 }
]
}

Creating tunnel-interface directly in IFM

This use case is mainly for those who want to write applications using Genius and/or
want to create individual tunnel interfaces. Note that this is a simpler easy way to
create tunnels without needing to delve into how OVSDB Plugin creates tunnels.

Refer Genius User Guide [http://docs.opendaylight.org/en/latest/user-guide/genius-user-guide.html#creating-overlay-tunnel-interfaces]
for more details on this.

URL: restconf/config/ietf-interfaces:interfaces

Sample JSON data

{
 "interfaces": {
 "interface": [
 {
 "name": "vxlan_tunnel",
 "type": "iana-if-type:tunnel",
 "odl-interface:tunnel-interface-type": "odl-interface:tunnel-type-vxlan",
 "odl-interface:datapath-node-identifier": "1",
 "odl-interface:tunnel-source": "192.168.56.101",
 "odl-interface:tunnel-destination": "192.168.56.102",
 "odl-interface:tunnel-remote-ip-flow": "true",
 "odl-interface:monitor-enabled": false,
 "odl-interface:monitor-interval": 10000,
 "enabled": true
 }
]
 }
}

CLI

A new boolean option, remoteIpFlow will be added to tep:add command.

DESCRIPTION
 tep:add
 adding a tunnel end point

SYNTAX
 tep:add [dpnId] [portNo] [vlanId] [ipAddress] [subnetMask] [gatewayIp] [transportZone]
 [remoteIpFlow]

ARGUMENTS
 dpnId
 DPN-ID
 portNo
 port-name
 vlanId
 vlan-id
 ipAddress
 ip-address
 subnetMask
 subnet-Mask
 gatewayIp
 gateway-ip
 transportZone
 transport_zone
 remoteIpFlow
 Use flow for remote ip

Implementation

Assignee(s)

	Primary assignee:

	<Vishal Thapar>

	Other contributors:

	<Vacancies available>

Work Items

	YANG changes

	Add relevant match and actions to MDSALUtil

	Add set_tunnel_dest_ip action to actions returned in
getEgressActions() for OF Tunnels.

	Add match on tun_src_ip in Table0 for OF Tunnels.

	Add CLI.

	Add UTs.

	Add ITs.

	Add CSIT.

	Add Documentation

Dependencies

This doesn’t add any new dependencies. This requires minimum of OVS 2.0.0
which is already lower than required by some of other features.

This change is backwards compatible, so no impact on dependent projects.
Projects can choose to start using this when they want. However, there is a
known limitation with monitoring, refer Limitations section for details.

Following projects currently depend on Genius:

	Netvirt

	SFC

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

Integration tests will be added once IT framework for ITM and IFM is ready.

CSIT

CSIT already has test cases for tunnels which test with non OF Tunnels. Similar test
cases will be added for OF Tunnels. Alternatively, some of the existing test cases
that use multiple teps can be tweaked to use OF Tunnels for one of them.

Following test cases will need to be added/expanded in Genius CSIT:

	Create a TZ with more than one TEPs set to use OF Tunnels and test datapath.

	Create a TZ with mix of OF and non OF Tunnels and test datapath.

	Delete a TEP using OF Tunnels and add it again with non OF tunnels and test
the datapath.

	Delete a TEP using non OF Tunnels and add it again with OF Tunnels and test
datapath.

Documentation Impact

This will require changes to User Guide and Developer Guide.

User Guide will need to add information on how to add TEPs with flow based
tunnels.

Developer Guide will need to capture how to use changes in IFM to create
individual tunnel interfaces.

References

	https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

Table of Contents

	Traffic shaping with Ovsdb QoS queues

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	References

Traffic shaping with Ovsdb QoS queues

QoS patches: https://git.opendaylight.org/gerrit/#/q/topic:qos-shaping

The current Boron implementation provides support for ingress rate limiting configuration of OVS.
The Carbon release will add egress traffic shaping to QoS feature set.
(Note, the direction of traffic flow (ingress, egress) is from the perspective of the OpenSwitch)

Problem description

OVS supports traffic shaping for traffic that egresses from a switch. To utilize this functionality,
Genius implementation should be able to create ‘set queue’ output action upon connection of new
OpenFlow node.

Use Cases

Use case 1: Allow Unimgr to shape egress traffic from UNI

Proposed change

Unimgr or Neutron VPN creates ietf vlan interface for each port connected to particular service.
The Ovsdb provides a possibility to create QoS and mapped Queue with egress rate limits for
lower level port. Such queue should be created on parent physical interface of vlan or trunk member
port if service has definition of limits.
The ovsdb southbound provides interface for creation of ovs QoS and Queues.
This functionality may be utilized by netvirt qos service.
Below is the dump from ovsdb with queues created for one of the ports.

Port table
 _uuid : a6cf4ca9-b15c-4090-aefe-23af2d5ce4f2
 name : "ens5"
 qos : 9779ce41-4347-4383-b308-75f46d6a258c
QoS table
 _uuid : 9779ce41-4347-4383-b308-75f46d6a258c
 other_config : {max-rate="50000"}
 queues : {1=3cc34bb7-7df8-4538-9fd7-4a6c6c467c69}
 type : linux-htb
Queue table
 _uuid : 3cc34bb7-7df8-4538-9fd7-4a6c6c467c69
 dscp : []
 other_config : {max-rate="50000", min-rate="5000"}

The queues creation is out of scope of this document.
The definition of vlan or trunk member port will be augmented with relevant queue reference
and number if queue was created successful.
That will allow to create openflow ‘set_queue’ output action during service binding.

Pipeline changes

New ‘set_queue’ action will be supported in Egress Dispatcher table

	Table

	Match

	Action

	Egress Dispatcher [220]

	no changes

	Set queue id (optional) and output to port

Yang changes

A new augment “ovs-qos” is added to if:interface in odl-interface.yang

/* vlan port to qos queue */
 augment "/if:interfaces/if:interface" {
 ext:augment-identifier "ovs-qos";
 when "if:type = 'ianaift:l2vlan'";

 leaf ovs-qos-ref {
 type instance-identifier;
 description
 "represents whether service port has associated qos. A reference to a ovsdb QoS entry";
 }
 leaf service-queue-number {
 type uint32;
 description
 "specific queue number within the list of queues in the qos entry";
 }
 }

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Additional OpenFlow action will be performed on part of the packages.
Egress packages will be processed via linux-htp if service configured accordanly.

Targeted Release

Carbon

Alternatives

The unified REST API for ovsdb port adjustment could be created if future release.
The QoS engress queues and ingress rate limiting should be a part of this API.
Usage
=====
User will configure unimgr service with egress rate limits.
That will follow to process described above.

Features to Install

	odl-genius (unimgr using genius feature for flows creation)

REST API

None

CLI

None

Implementation

Assignee(s)

	Primary assignee:

	konsta.pozdeev@hpe.com

Work Items

Dependencies

Minimum OVS version 1.8.0 is required.

Testing

Unimgr test cases with configured egress rate limits will cover this functionality.

Unit Tests

Integration Tests

CSIT

References

[1] OpenDaylight Documentation Guide <http://docs.opendaylight.org/en/latest/documentation.html>

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Table of Contents

	Service Binding On Tunnels

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	RPC Changes

	Yang changes

	Workflow

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Service Binding On Tunnels

https://git.opendaylight.org/gerrit/#/q/topic:service-binding-on-tunnels

Service Binding On Tunnels Feature enables applications to bind multiple services on
an ingress/egress tunnel.

Problem description

Currently GENIUS does not provide a generic mechanism to support binding services on all
interfaces.Ingress service binding pipeline is different for l2vlan interfaces and tunnel
interfaces.Similarly, egress Service Binding is only supported for l2vlan interfaces.

Today when ingress services are bound on a tunnel, the highest priority service gets
bound in INTERFACE INGRESS TABLE(0) itself, and remaining service entries get
populated in LPORT DISPATCHER TABLE(17), which is not in alignment with the service
binding logic for VM ports. As part of this feature, we enable ingress/egress service
binding support for tunnels in the same way as for VM interfaces. This feature also enables
service-binding based on a tunnel-type which is basically meant for optimizing the number
of flow entries in dispatcher tables.

Use Cases

This feature will support following use cases:

	Use case 1: IFM should support binding services based on tunnel type.

	Use case 2: All application traffic ingressing on a tunnel should go through the LPORT
DISPATCHER TABLE(17).

	Use case 3: IFM should support binding multiple ingress services on tunnels.

	Use case 4: IFM should support priority based ingress service handling for tunnels.

	Use case 5: IFM should support unbinding ingress services on tunnels.

	Use case 6: IFM should support binding multiple egress services on tunnels.

	Use case 7: IFM should support priority based egress service handling for tunnels.

	Use case 8: All application traffic egressing on a tunnel should go through the egress
dispatcher table(220).

	Use case 9: Datapath should be intact even if there is no egress service bound on the tunnel.

	Use case 10: IFM should support unbinding egress services on tunnels.

	Use case 11: IFM should support handling of lower layer interface deletions gracefully.

	Use case 12: IFM should support binding services based on tunnel type and
lport-tag on the same tunnel interface on a priority basis.

	Use case 13: Applications should bind on specific tunnel types on module startup

	Use case 13: IFM should take care of programming the tunnel type based binding flows
on each DPN.

Following use cases will not be supported:

	Use case 1 : Update of service binding on tunnels. Any update should be done as
delete and re-create

Proposed change

The proposed change extends the current l2vlan service binding functionality to tunnel
interfaces. With this feature, multiple applications can bind their services on the same
tunnel interface, and traffic will be processed on an application priority basis.
Applications are given the flexibility to provide service specific actions while they
bind their services. Normally service binding actions include
go-to-service-pipeline-entry-table. Packets will enter a particular service based
on the service priority, and if the packet is not consumed by the service,
it is the application’s responsibility to resubmit the packet back to the egress/ingress
dispatcher table for further processing by next priority service. Egress Dispatcher
Table will have a default service priority entry per tunnel interface to egress the
packet on the tunnel port.So, if there are no egress services bound on a tunnel interface,
this default entry will take care of taking the packet out of the switch.

The feature also enables service binding based on tunnel type. This way number of entries in
Dispatcher Tables can be optimized if all the packets entering on tunnel of a particular type
needs to be handled in the same way.

Pipeline changes

There is a pipeline change introduced as part of this feature for tunnel egress as well
as ingress, and is captured in genius pipeline document patch 2.

With this feature, all traffic from INTERFACE_INGRESS_TABLE(0) will be dispatched to
LPORT_DISPATCHER_TABLE(17), from where the packets will be dispatched to the respective
applications on a priority basis.

Register6 will be used to set the ingress tunnel-type in Table0, and this can be used to
match in Table17 to identify the respective applications bound on the tunnel-type.
Remaining logic of ingress service binding will remain as is, and service-priority and
interface-tag will be set in metadata as usual. The bits from 25-28 of Register6 will be
used to indicate tunnel-type.

After the ingress service processing, packets which are identified to be egressed on
tunnel interfaces, currently directly go to the tunnel port. With this feature,
these packets will goto Egress Dispatcher Table[Table 220] first, where the packet will be
processed by Egress Services on the tunnel interface one by one, and finally will egress the switch.

Register6 will be used to indicate service priority as well as interface tag for the egress tunnel
interface, in Egress Dispatcher Table, and when there are N services bound on a tunnel
interface, there will be N+1 entries in Egress Dispatcher Table,
the additional one for the default tunnel entry. The first 4 bits of Register6 will be
used to indicate the service priority and the next 20 bits for interface Tag, and this will
be the match criteria for packet redirection to service pipeline in Egress Dispatcher Table.
Before sending the packet to the service, Egress Dispatcher Table will set the service index
to the next service’ priority. Same as ingress, Register6 will be used for egress tunnel-type
matching, if there are services bound on tunnel-type.

	TABLE

	MATCH

	ACTION

	INTERFACE_INGRESS_TABLE

	in_port

	SI=0,reg6=interface_type,
metadata=lport tag,
goto table 17

	LPORT_DISPATCHER_TABLE

	metadata=service priority
&& lport-tag(priority=10)

	increment SI,
apply service specific actions,
goto ingress service

	reg6=tunnel-type
priority=5

	increment SI,
apply service specific actions,
goto ingress service

	EGRESS_DISPATCHER_TABLE

	Reg6==service Priority
&& lport-tag(priority=10)

	increment SI,
apply service specific actions,
goto egress service

	reg6=tunnel-type
priority=5

	increment SI,
apply service specific actions,
goto egress service

RPC Changes

GetEgressActionsForInterface RPC in interface-manager currently returns the output:port
action for tunnel interfaces. This will be changed to return
set_field_reg6(default-service-index + interface-tag) and resubmit(egress_dispatcher_table).

Yang changes

No yang changes are needed, as binding on tunnel-type is enabled by having reserved keywords for
interface-names

Workflow

Create Tunnel

	User: User created a tunnel end point

	IFM: When tunnel port is created on OVS, and the respective OpenFlow port Notification
comes, IFM binds a default service in Egress Dispatcher Table for the tunnel interface,
which will be the least priority service, and the action will be to take
the packet out on the tunnel port.

Bind Service on Tunnel Interface

	User: While binding service on tunnels user gives service-priority, service-mode
and instructions for service being bound on the tunnel interface.

	IFM: When binding the service for the tunnel, if this is the first service
being bound, program flow rules in Dispatcher Table(ingress/egress based on service mode)
to match on service-priority and interface-tag value with actions
pointing to the service specific actions supplied by the application.

	IFM: When binding a second service, based on the service priority one more flow will
be created in Dispatcher Table with matches specific to the new service
priority.

Unbind Service on Tunnel Interface

	User: While unbinding service on tunnels user gives service-priority and
service-mode for service being unbound on the tunnel interface.

	IFM: When unbinding the service for the tunnel, IFM removes the entry in
Dispatcher Tables for the service. IFM also rearranges the remaining flows for the
same tunnel interface to adjust the missing service priority

Bind Service on Tunnel Type

	Application: While binding service on tunnel type user gives a reserved keyword
indicating the tunnel-type apart from``service-priority``, service-mode
and instructions for service being bound. The reserved keywords will be
ALL_VXLAN_INTERNAL, ALL_VXLAN_EXTERNAL, and ALL_MPLS_OVER_GRE.

	IFM: When binding the service for the tunnel-type,program flow rules in Dispatcher
Table(ingress/egress based on service mode) to match on service-priority and
tunnel-type value with actions pointing to the service specific actions
supplied by the application will be created on each DPN.

	IFM: When binding a second service, based on the service priority one more flow will
be created in Dispatcher Table with matches specific to the new service
priority will be created on each DPN..

Unbind Service on Tunnel Type

	User: While unbinding service on tunnels user gives a reserved keyword
indicating the tunnel-type ,``service-priority`` and service-mode for service being
unbound on all connected DPNs.

	IFM: When unbinding the service for the tunnel-type, IFM removes the entry in
Dispatcher Tables for the service. IFM also rearranges the remaining flows for the
same tunnel type to adjust the missing service priority

Delete Tunnel

	User: User deleted a tunnel end point

	IFM: When tunnel port is deleted on OVS, and the respective OpenFlow Port Notification
comes, IFM unbinds the default service in Egress Dispatcher Table for the tunnel interface.

	IFM: If there are any outstanding services bound on the tunnel interface, all the Dispatcher
Table Entries for this Tunnel will be deleted by IFM.

Application Module Startup

	Applications: When Application bundle comes up, they can bind respective applications
on the tunnel types they are interested in, with their respective service priorities.

Configuration impact

This change doesn’t add or modify any configuration parameters.

Clustering considerations

The solution is supported on a 3-node cluster.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

	The feature adds one extra transaction during tunnel port creation, since the default
Egress Dispatcher Table entry has to be programmed for each tunnel.

	The feature provides support for service-binding on tunnel type with the primary purpose
of minimizing the number of flow entries in ingress/egress dispatcher tables.

Targeted Release

Carbon.

Alternatives

N/A

Usage

Features to Install

This feature doesn’t add any new karaf feature.Installing any of the below features
can enable the service:

odl-genius-ui
odl-genius-rest
odl-genius

REST API

Creating tunnel-interface directly in IFM

This use case is mainly for those who want to write applications using Genius and/or
want to create individual tunnel interfaces. Note that this is a simpler easy way to
create tunnels without needing to delve into how OVSDB Plugin creates tunnels.

Refer Genius User Guide [4]_
for more details on this.

URL: restconf/config/ietf-interfaces:interfaces

Sample JSON data

{
 "interfaces": {
 "interface": [
 {
 "name": "vxlan_tunnel",
 "type": "iana-if-type:tunnel",
 "odl-interface:tunnel-interface-type": "odl-interface:tunnel-type-vxlan",
 "odl-interface:datapath-node-identifier": "1",
 "odl-interface:tunnel-source": "192.168.56.101",
 "odl-interface:tunnel-destination": "192.168.56.102",
 "odl-interface:monitor-enabled": false,
 "odl-interface:monitor-interval": 10000,
 "enabled": true
 }
]
 }
}

Binding Egress Service On Tunnels

URL: http://localhost:8181/restconf/config/interface-service-bindings:service-bindings/services-info/{tunnel-interface-name}/interface-service-bindings:service-mode-egress

Sample JSON data

{
 "bound-services": [
 {
 "service-name": "service1",
 "flow-priority": "5",
 "service-type": "service-type-flow-based",
 "instruction": [
 {
 "order": 1,
 "go-to-table": {
 "table_id": 88
 }
 }],
 "service-priority": "2",
 "flow-cookie": "1"
 }
]
}

CLI

N.A.

Implementation

Assignee(s)

	Primary assignee:

	Faseela K

Work Items

	Create Table 0 tunnel entries to set tunnel-type and lport_tag and
point to LPORT_DISPATCHER_TABLE

	Support of reserved keyword in interface-names for tunnel type based
service binding.

	Program tunnel-type based service binding flows on DPN connect events.

	Program Lport Dispatcher Flows(17) on bind service

	Remove Lport Dispatcher Flows(17) on unbind service

	Handle multiple service bind/unbind on tunnel interface

	Create default Egress Service for Tunnel on Tunnel Creation

	Add set_field_reg_6 and resubmit(220) action to actions returned in
getEgressActionsForInterface() for Tunnels.

	Program Egress Dispatcher Table(220) Flows on bind service

	Remove Egress Dispatcher Table(220) Flows on unbind service

	Handle multiple egress service bind/unbind on tunnel interface

	Delete default Egress Service for Tunnel on Tunnel Deletion

	Add UTs.

	Add CSIT.

	Add Documentation

	Trello Card : https://trello.com/c/S8lNGd9S/6-service-binding-on-tunnel-interfaces

Dependencies

Genius, Netvirt

There will be several impacts on netvirt pipeline with this change. A brief overview
is given in the table below:

Testing

Capture details of testing that will need to be added.

Unit Tests

New junits will be added to InterfaceManagerConfigurationTest to cover the following :

	Bind/Unbind single ingress service on tunnel-type

	Bind/Unbind single egress service on tunnel-type

	Bind single ingress service on tunnel-interface

	Unbind single ingress service on tunnel-interface

	Bind multiple ingress services on tunnel in priority order

	Unbind multiple ingress services on tunnel in priority order

	Bind multiple ingress services out of priority order

	Unbind multiple ingress services out of priority order

	Delete tunnel port to check if ingress dispatcher flows for bound services get deleted

	Add tunnel port back to check if ingress dispatcher flows for bound services get added back

	Bind single egress service on tunnel

	Unbind single egress service on tunnel

	Bind multiple egress services on tunnel in priority order

	Unbind multiple egress services on tunnel in priority order

	Bind multiple egress services out of priority order

	Unbind multiple egress services out of priority order

	Delete tunnel port to check if egress dispatcher flows for bound services get deleted

	Add tunnel port back to check if egress dispatcher flows for bound services get added back

Integration Tests

CSIT

The following TCs should be added to CSIT to cover this feature:

	Bind/Unbind single ingress/egress service on tunnel-type to see the corresponding
table entries are created in switch.

	Bind single ingress service on tunnel to see the corresponding table entries
are created in switch.

	Unbind single ingress service on tunnel to see the corresponding table entries
are deleted in switch.

	Bind multiple ingress services on tunnel in priority order to see if metadata
changes are proper on the flow table.

	Unbind multiple ingress services on tunnel in priority order to see if metadata
changes are proper on the flow table on each unbind.

	Bind multiple ingress services out of priority order to see if metadata
changes are proper on the flow table.

	Unbind multiple ingress services out of priority order.

	Delete tunnel port to check if ingress dispatcher flows for bound services get deleted.

	Add tunnel port back to check if ingress dispatcher flows for bound services get added back.

	Bind single egress service on tunnel to see the corresponding table entries
are created in switch.

	Unbind single egress service on tunnel to see the corresponding table entries
are deleted in switch.

	Bind multiple egress services on tunnel in priority order to see if metadata
changes are proper on the flow table.

	Unbind multiple egress services on tunnel in priority order to see if metadata
changes are proper on the flow table on each unbind.

	Bind multiple egress services out of priority order to see if metadata
changes are proper on the flow table.

	Unbind multiple egress services out of priority order.

	Delete tunnel port to check if egress dispatcher flows for bound services get deleted.

	Add tunnel port back to check if egress dispatcher flows for bound services get added back.

Documentation Impact

This will require changes to User Guide and Developer Guide.

There is a pipeline change for tunnel datapath introduced due to this change.
This should go in User Guide.

Developer Guide should capture how to configure egress service binding on tunnels.

References

	1

	Genius Carbon Release Plan https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

	2

	Netvirt Pipeline Diagram http://docs.opendaylight.org/en/latest/submodules/genius/docs/pipeline.html

	3

	Genius Trello Card https://trello.com/c/S8lNGd9S/6-service-binding-on-tunnel-interfaces

	4

	Genius User Guide http://docs.opendaylight.org/en/latest/user-guide/genius-user-guide.html#creating-overlay-tunnel-interfaces

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Service Recovery Framework

	Problem description

	Use Cases

	Proposed change

	SRM Terminology

	Out of Scope

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Service Recovery Framework

https://git.opendaylight.org/gerrit/#/q/topic:service-recovery

Service Recovery Framework is a feature that enables recovery of services. This recovery
can be trigerred by user, or eventually, be used as a self-healing mechanism.

Problem description

Status and Diagnostic adds support for reporting current status of different services.
However, there is no means to recover individual service or service instances that have
failed. Only recovery that can be done today is to restart the controller node(s) or
manually restart the bundle or reinstall the karaf feature itself.

Restarting the controller can be overkill and needlessly disruptive. Manually restarting bundle or
feature requires user to be aware of and have access to these CLIs. There may not be one-to-one
mapping from a service to corresponding bundle or feature. Also, a truly secure system
would provide role based access to users. Only someone with administrative rights will have
access to Karaf CLI to restart/reinstall while a less privileged user should be able to trigger
recovery without requiring higher level access.

Note that role based access is out of scope of this document

Use Cases

This feature will support following use cases:

	Use Case 1: Provide RPC and CLI to trigger reinstall of a service.

	Use Case 2: Provide RPC and CLI to trigger recover a service.

	Use Case 3: Provide RPC and CLI to trigger recovery of specific instance object managed by a
service, referred to as service instance.

Proposed change

A new module Service Recovery Manager (SRM) will be added to Genius. SRM will provide single and
common point of interaction with all individual services. Recovery options will vary from highest
level service restart to restarting individual service instances.

SRM Terminology

SRM will introduce concept of service entities and operations.

SRM Entities

	EntityName - Every object in SRM is referred to as an entity and EntityName is the
unique identifier for a given entity. e.g. L3VPN, ITM, VPNInstance etc.

	EntityType - Every entity has a corresponding type. Currently supported types are
service and instance. e.g. L3VPN is a entity of type service and VPNInstance
is an entity of type instance

	EntityId - Every entity of type instance will have a unique entity-id as an
identifier. e.g. The uuid of VPNInstance is the entity-id identifying an
individual VPN Instance from amongst many present in L3VPN service.

SRM Operations

	reinstall - This command will be used to reinstall a service. This will be similar to
karaf bundle restart, but may result in restart of more than one bundle as per the
service. This operation will only be applicable to entity-type service.

	recover - This command will be used to recover an individual entity, which can be service
or instance. For entity-type: service the entity-name will be service name.
For entity-type: instance the entity-name will be instance name and entity-id` will
be a required field.

Example

This table gives some examples of different entities and operations for them:

	OPERATION

	EntityType

	EntityName

	EntityId

	Remarks

	reinstall

	service

	ITM

	N.A.

	Restart ITM

	recover

	service

	ITM

	ITM

	Recover ITM Service

	recover

	instance

	TEP

	dpn-1

	Recover TEP

	recover

	isntance

	TransportZone

	TZA

	Recover Transport Zone

Out of Scope

	SRM will not be implementing actual recovery mechanisms, it will only act as intermediary between user and
individual services.

	SRM will not provide status of services. Status and Diagnostic (SnD) framework is expected to provide
service status.

Pipeline changes

N.A.

Yang changes

We’ll be adding three new yang files

ServiceRecovery Types

This file will contain different types used by service recovery framework. Any service that wants
to use ServiceRecovery will have to define its supported names and types in this file.

srm-types.yang

 module srm-types {
 namespace "urn:opendaylight:genius:srm:types";
 prefix "srmtypes";

 revision "2017-05-31" {
 description "ODL Services Recovery Manager Types Module";
 }

 /* Entity TYPEs */

 identity entity-type-base {
 description "Base identity for all srm entity types";
 }
 identity entity-type-service {
 description "SRM Entity type service";
 base entity-type-base;
 }
 identity entity-type-instance {
 description "SRM Entity type instance";
 base entity-type-base;
 }

 /* Entity NAMEs */

 /* Entity Type SERVICE names */
 identity entity-name-base {
 description "Base identity for all srm entity names";
 }
 identity genius-ifm {
 description "SRM Entity name for IFM service";
 base entity-type-base;
 }
 identity genius-itm {
 description "SRM Entity name for ITM service";
 base entity-type-base;
 }
 identity netvirt-vpn {
 description "SRM Entity name for VPN service";
 base entity-type-base;
 }
 identity netvirt-elan {
 description "SRM Entity name for elan service";
 base entity-type-base;
 }
 identity ofplugin {
 description "SRM Entity name for openflowplugin service";
 base entity-type-base;
 }

 /* Entity Type INSTANCE Names */

 /* Entity types supported by GENIUS */
 identity genius-itm-tep {
 description "SRM Entity name for ITM's tep instance";
 base entity-type-base;
 }
 identity genius-itm-tz {
 description "SRM Entity name for ITM's transportzone instance";
 base entity-type-base;
 }

 identity genius-ifm-interface {
 description "SRM Entity name for IFM's interface instance";
 base entity-type-base;
 }

 /* Entity types supported by NETVIRT */
 identity netvirt-vpninstance {
 description "SRM Entity name for VPN instance";
 base entity-type-base;
 }

 identity netvirt-elaninstance {
 description "SRM Entity name for ELAN instance";
 base entity-type-base;
 }

 /* Service operations */
 identity service-op-base {
 description "Base identity for all srm operations";
 }
 identity service-op-reinstall {
 description "Reinstall or restart a service";
 base service-op-base;
 }
 identity service-op-recover {
 description "Recover a service or instance";
 base service-op-recover;
 }

 }

ServiceRecovery Operations

This file will contain different operations that individual services must support on entities
exposed by them in servicesrecovery-types.yang. These are not user facing operations but
used by SRM to translate user RPC calls to

srm-ops.yang

 module srm-ops {
 namespace "urn:opendaylight:genius:srm:ops";
 prefix "srmops";

 import srm-types {
 prefix srmtype;
 }

 revision "2017-05-31" {
 description "ODL Services Recovery Manager Operations Model";
 }

 /* Operations */

 container service-ops {
 config false;
 list services {
 key service-name
 leaf service-name {
 type identityref {
 base srmtype:entity-name-base
 }
 }
 list operations {
 key entity-name;
 leaf entity-name {
 type identityref {
 base srmtype:entity-name-base;
 }
 }
 leaf entity-type {
 type identityref {
 base srmtype:entity-type-base;
 mandatory true;
 }
 }
 leaf entity-id {
 description "Optional when entity-type is service. Actual
 id depends on entity-type and entity-name"
 type string;
 }
 leaf trigger-operation {
 type identityref {
 base srmtypes:service-op;
 mandatory true;
 }
 }
 }
 }
 }

 }

ServiceRecovery RPCs

This file will contain different RPCs supported by SRM. These RPCs are user facing
and SRM will translate these into ServiceRecovery Operations as defined in srm-ops.yang.

srm-rpcs.yang

 module srm-rpcs {
 namespace "urn:opendaylight:genius:srm:rpcs";
 prefix "srmrpcs";

 import srm-types {
 prefix srmtype;
 }

 revision "2017-05-31" {
 description "ODL Services Recovery Manager Rpcs Module";
 }

 /* RPCs */

 rpc reinstall {
 description "Reinstall a given service";
 input {
 leaf entity-name {
 type identityref {
 base srmtype:entity-name-base;
 mandatory true;
 }
 }
 leaf entity-type {
 description "Currently supported entity-types:
 service";
 type identityref {
 base srmtype:entity-type-base;
 mandatory false;
 }
 }
 }
 output {
 leaf successful {
 type boolean;
 }
 leaf message {
 type string;
 }
 }
 }

 rpc recover {
 description "Recover a given service or instance";
 input {
 leaf entity-name {
 type identityref {
 base srmtype:entity-name-base;
 mandatory true;
 }
 }
 leaf entity-type {
 description "Currently supported entity-types:
 service, instance";
 type identityref {
 base srmtype:entity-type-base;
 mandatory true;
 }
 }
 leaf entity-id {
 description "Optional when entity-type is service. Actual
 id depends on entity-type and entity-name"
 type string;
 mandatory false;
 }
 }
 output {
 leaf response {
 type identityref {
 base rpc-result-base;
 mandatory true;
 }
 }
 leaf message {
 type string;
 mandatory false;
 }
 }
 }

 /* RPC RESULTs */

 identity rpc-result-base {
 description "Base identity for all SRM RPC Results";
 }
 identity rpc-success {
 description "RPC result successful";
 base rpc-result-base;
 }
 identity rpc-fail-op-not-supported {
 description "RPC failed:
 operation not supported for given parameters";
 base rpc-result-base;
 }
 identity rpc-fail-entity-type {
 description "RPC failed:
 invalid entity type";
 base rpc-result-base;
 }
 identity rpc-fail-entity-name {
 description "RPC failed:
 invalid entity name";
 base rpc-result-base;
 }
 identity rpc-fail-entity-id {
 description "RPC failed:
 invalid entity id";
 base rpc-result-base;
 }
 identity rpc-fail-unknown {
 description "RPC failed:
 reason not known, check message string for details";
 base rpc-result-base;
 }
 }

Configuration impact

N.A.

Clustering considerations

SRM will provide RPCs, which will only be handled on one of the nodes. In turn, it will
write to srm-ops.yang and each individual service will have Clustered
Listeners to track operations being triggered. Individual services will decide, based
on service and instance on which recovery is triggered, if it needs to run on all nodes
on cluster or individual nodes.

Other Infra considerations

Status and Diagnostics (SnD) may need to be updated to user service names similar to ones
used in SRM.

Security considerations

Providing RPCs to trigger service restarts will eliminate the need to give administrative
access to non-admin users just so they can trigger recovery though bundle restarts from
karaf CLI. Expectation is access to these RPCs will be role based, but role based access
and its implementation is out of scope of this feature.

Scale and Performance Impact

This feature allows recovery at a much fine grained level than full controller or node
restart. Such restarts impact and trigger recovery of services that didn’t need to be
recover. Every restart of controller cluster or individual nodes has a significant overhead
that impacts scale and performance. This feature aims to eliminate these overheads by
allowing targeted recovery.

Targeted Release

Nitrogen.

Alternatives

Using existing karaf CLI for feature and bundle restart was considered but rejected
due to reasons already captured in earlier sections.

Usage

TBD.

Features to Install

odl-genius

REST API

TBD.

CLI

srm:reinstall

All arguments are case insensitive unless specified otherwise.

DESCRIPTION
 srm:reinstall
 reinstall a given service

SYNTAX
 srm:reinstall <service-name>

ARGUMENTS
 service-name
 Name of service. to re-install e.g. itm/ITM, ifm/IFM etc.

EXAMPLE
 srm:reinstall ifm

srm:recover

DESCRIPTION
 srm:recover
 recover a service or service instance

SYNTAX
 srm:recover <entity-type> <entity-name> [<entity-id>]

ARGUMENTS
 entity-type
 Type of entity as defined in srm-types.
 e.g. service, instance etc.
 entity-name
 Entity name as defined in srm-types.
 e.g. itm, itm-tep etc.
 entity-id
 Entity Id for instances, requierd for entity-type instance.
 e.g. 'TZA', 'tunxyz' etc.

EXAMPLES
 srm:recover service itm
 srm:recover instance itm-tep TZA
 srm:recover instance vpn-instance e5e2e1ee-31a3-4d0c-a8d8-b86d08cd14b1

Implementation

Assignee(s)

	Primary assignee:

	Vishal Thapar

	Other contributors:

	Faseela K
Hema Gopalakrishnan

Work Items

	Add srm modules and features

	Add srm yang models

	Add code for CLI

	Add backend implementation for RPCs to tigger SRM Operations

	Optionally, for each service and supported instances, add implementation for SRM Operations

	Add UTs

	Add CSITs

Dependencies

	Infrautils

Testing

TBD.

Unit Tests

Integration Tests

CSIT

Documentation Impact

This will require changes to User Guide based on information provided in Usage section.

References

[1] Genius Nitrogen Release Plan https://wiki.opendaylight.org/view/Genius:Nitrogen_Release_Plan

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Infrautils Documentation

This documentation provides critical information needed to help you write ODL
Applications/Projects using Infrautils, which offers various generic utilities
and infrastructure for ease of application development.

Contents:

	InfraUtils Design Specifications

InfraUtils Design Specifications

Starting from Carbon, InfraUtils project uses RST format Design Specification document for
all new features. These specifications are perfect way to understand various
InfraUtils features.

Contents:

	Design Specification Template

	Job Coordinator

Table of Contents

	Title of the feature

	Problem description

	Use Cases

	Proposed change

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	Documentation Impact

	References

Title of the feature

[link to gerrit patch]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Yang changes

This should detail any changes to yang models.

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

For most InfraUtils features users will be other projects but this
should still capture any user visible CLI/API etc. e.g. Counters

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-infrautils-all

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, unit tests etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assigne and other contributors.

	Primary assignee:

	<developer-a>

	Other contributors:

	<developer-b>
<developer-c>

Work Items

Break up work into individual items. This should be a checklist on
Trello card for this feature. Give link to trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc.] This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing project that depend on InfraUtils.
Following projects currently depend on Infrautils:
* Netvirt
* GENIUS

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

Documentation Impact

What is impact on documentation for this change? If documentation
change is needed call out one of the <contributors> who will work with
Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Job Coordinator

	Problem description

	Use Cases

	Proposed change

	YANG changes

	Workflow

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release(s)

	Known Limitations

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	JAVA API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Job Coordinator

https://git.opendaylight.org/gerrit/#/q/topic:JC

Job Coordinator is a framework for executing jobs in sequential/parallel
based on their job-keys. One such job,to give an example, can be for MD-SAL config/operational
datastore updates.

Problem description

The concept of datastore jobcordinator was derived from the following pattern seen
in many ODL project implementations :

	The Business Logic for the configuration/state handling is performed in the Actor Thread itself.
This will cause the Actor’s mailbox to get filled up and may start causing unnecessary back-pressure.

	Actions that can be executed independently will get unnecessarily serialized.
Can cause other unrelated applications starve for chance to execute.

	Available CPU power may not be utilized fully. (for instance, if 1000 interfaces
are created on different ports, all 1000 interfaces creation will happen one after the other.)

	May depend on external applications to distribute the load across the actors.

Use Cases

This feature will support following use cases:

	Use case 1: JC framework should enable applications to enqueue their jobs based on a job key.

	Use case 2: JC framework should run jobs queued on same key sequentially, and different keys
parallelly.

	Use case 3: JC framework should provide a framework for retry mechanism in case the jobs fail.

	Use case 4: JC framework should provide a framework for rollback in case the jobs fail permanently.

	Use case 3: JC should provide applications the flexibility to input the number of retries
on a need basis.

Proposed change

The proposed feature adds a new module in infrautils called “jobcoordinator”, which will
have the following functionalities:

	“Job” is a set of operations, (eg : updates to the Config/Operational MD-SAL Datastore)

	Dependent Jobs [eg. Operations on interfaces on same port] that need to be run
one after the other will continue to be run in sequence.

	Independent Jobs [eg. Operations on interfaces across different Ports] will be allowed to run parallel.

	Makes use of ForkJoin Pools that allows for work-stealing across threads. ThreadPool executor
flavor is also available. But would be deprecating that soon.

	Jobs are enqueued and dequeued to/from a Hash structure that ensures point 2 & 3 above are
satisfied and are executed using the ForkJoinPool mentioned in point 4.

	The jobs are enqueued by the application along with an application job-key (type: string). The Coordinator
dequeues and schedules the job for execution as appropriate. All jobs enqueued with the same job-key will
be executed sequentially.

	Job Coordination function gets the list of listenable futures returned from each job.

	The Job is deemed complete only when the onSuccess callback is invoked and the next enqueued job for that
job-key will be dequeued and executed.

	On Failure, based on application input, retries and/or rollback will be performed. Rollback failures are
considered as double-fault and system bails out with error message and moves on to the next job with that Job-Key.

YANG changes

N/A

Workflow

Define Job Workers

Applications can define their own worker threads for their job.
A job is defined as a piece of code that can be independently executed.

Define Rollback Workers

Applications should define a rollback worker, which will have the code to be executed
in case the main job fails permanently. In usual scenarios, this will be the code to clean up
all partially completed transactions by the main worker.

Decide Job Key

Applications should carefully choose the job-key for their job worker. All jobs based on the
same job-key will be executed sequentially, and all jobs on different keys will be executed parallelly
depending on the available threadpool size.

Enqueue Job

Applications can enqueue their job worker to JC framework for execution.JC has a hash structure
to handle the execution of the tasks sequentially/parallelly. Whenever a job is enqueued, JC creates
a Job Entry for the particular job. A Job Entry is characterized by - job-key, the main worker, the rollback
worker and the number of retries. This JobEntry will be added to a JobQueue, which inturn is part of a
JobQueueMap.

Job Queue Handling

There is a JobQueueHandler task which runs periodically, which will poll each of the JobQueues
to execute the main task of the corresponding JobEntry. Within a JobQueue, execution will be synchronized.

Retries in case of failure

The list of listenable futures for the transactions from the application main worker will be available to JC,
and if at all the transaction fails, the main worker will be retried the ‘max-retries’ number of times which is
application specified. If all the retries fail, JC will bail out and the rollback worker will be executed.

Configuration impact

N/A

Clustering considerations

	Job Coordinator synchronization is not cluster-wide

	This will still work in a clustered mode by handling optimistic lock exceptions and retrying of the job.

	Future scope can be : Cluster-Wide Datastore & Switch Job Coordination in:

	Fully replicated Followers also listening Mode.

	Distributed system where no. of replicas is less than the no. of nodes in the cluster.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

This feature is aiming at improving the scale and performance of applications
by providing the cabability to execute their functions parallelly wherever it can be done.

Targeted Release(s)

Carbon.

Known Limitations

JC synchronization is not currently clusterwide.

Alternatives

N/A

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

N/A

CLI

N/A

JAVA API

JobCoordinator provides the below APIs which can be used by other applications:

void enqueueJob(String key, Callable<List<ListenableFuture<Void>>> mainWorker).

void enqueueJob(String key, Callable<List<ListenableFuture<Void>>> mainWorker, RollbackCallable rollbackWorker).

void enqueueJob(String key, Callable<List<ListenableFuture<Void>>> mainWorker, int maxRetries).

void enqueueJob(String key, Callable<List<ListenableFuture<Void>>> mainWorker, RollbackCallable rollbackWorker,
 int maxRetries).

key is the JobKey for synchronization, mainWorker will be the actual Job Task, maxRetries is the number of times a
Job will be retried if the mainWorker results in ERROR, rollbackWorker is the Task
to be executed if the Job fails with any ERROR maxRetries times.

Implementation

Assignee(s)

	Primary assignee:

	<Periyasamy Palanisamy>

	Other contributors:

	<Yakir Dorani>
<Faseela K>

Work Items

	spec review.

	jobcoordinator module bring-up.

	API definitions.

	Enqueue Job Implementation.

	Job Queue Handler Implementation.

	Job Callback Implementation including retry and rollback

	Add CLI.

	Add UTs.

	Add Documentation.

Dependencies

Following projects currently depend on InfraUtils:

	Netvirt

	Genius

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

N/A

CSIT

N/A

Documentation Impact

This will require changes to Developer Guide.

Developer Guide can capture the new set of APIs added by JobCoordinator as mentioned
in API section.

References

	https://wiki.opendaylight.org/view/Infrastructure_Utilities:Carbon_Release_Plan

NetVirt Contributor Guide

	NetVirt Design Specifications
	Design Specification Template

	ACLs - ACL Statistics

	ACLs - Remote ACL - Indirection Table to Improve Scale

	ACLs - ACL reflection on existing traffic

	Conntrack Based SNAT

	Cross site connectivity with Federation service

	DHCP Server with Dynamic Allocation Pool

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	ECMP Support for BGP based L3VPN

	Element Counters

	Hairpinning of floating IPs in flat/VLAN provider networks

	IPv6 Data Center to internet connectivity using L3VPN

	IPv6 Inter Data Center connectivity using L3VPN

	IPv6 L3 North-South support for Flat/VLAN based Provider Networks

	L3VPN Dual Stack for VMs

	Listener Dependency Helper, avoids waiting for dependent IID

	Migrate the SFC classifier from the old to the new netvirt

	Netvirt counters

	Policy based path selection for multiple VxLAN tunnels

	QoS Alert

	Quality of Service

	Setup Source-MAC-Address for routed packets to virtual endpoints

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Support of VXLAN based L2 connectivity across Datacenters

	Support of VXLAN based connectivity across Datacenters

	Temporary SMAC Learning

	VLAN provider network enhancement

	VNI based L2 switching, L3 forwarding and NATing

	Neutron Port Allocation For DHCP Service

NetVirt Design Specifications

Starting from Carbon, NetVirt uses an RST format Design Specification document
for all new features. These specifications are a perfect way to understand
various NetVirt features.

Contents:

	Design Specification Template

	ACLs - ACL Statistics

	ACLs - Remote ACL - Indirection Table to Improve Scale

	ACLs - ACL reflection on existing traffic

	Conntrack Based SNAT

	Cross site connectivity with Federation service

	DHCP Server with Dynamic Allocation Pool

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	ECMP Support for BGP based L3VPN

	Element Counters

	Hairpinning of floating IPs in flat/VLAN provider networks

	IPv6 Data Center to internet connectivity using L3VPN

	IPv6 Inter Data Center connectivity using L3VPN

	IPv6 L3 North-South support for Flat/VLAN based Provider Networks

	L3VPN Dual Stack for VMs

	Listener Dependency Helper, avoids waiting for dependent IID

	Migrate the SFC classifier from the old to the new netvirt

	Netvirt counters

	Policy based path selection for multiple VxLAN tunnels

	QoS Alert

	Quality of Service

	Setup Source-MAC-Address for routed packets to virtual endpoints

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Support of VXLAN based L2 connectivity across Datacenters

	Support of VXLAN based connectivity across Datacenters

	Temporary SMAC Learning

	VLAN provider network enhancement

	VNI based L2 switching, L3 forwarding and NATing

	Neutron Port Allocation For DHCP Service

Table of Contents

	Title of the feature

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Title of the feature

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:cool-topic]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

example.yang

 module example {
 namespace "urn:opendaylight:netvirt:example";
 prefix "example";

 import ietf-yang-types {prefix yang; revision-date "2013-07-15";}

 description "An example YANG model.";

 revision 2017-02-14 { description "Initial revision"; }
 }

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

e.g. For most netvirt features this will include OpenStack APIs.

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-netvirt-openstack

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assignee and other contributors.

	Primary assignee:

	<developer-a>, <irc nick>, <email>

	Other contributors:

	<developer-b>, <irc nick>, <email>
<developer-c>, <irc nick>, <email>

Work Items

Break up work into individual items. This should be a checklist on a
Trello card for this feature. Provide the link to the trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc]. This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing projects that depend on Netvirt.

	Following projects currently depend on Netvirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is the impact on documentation for this change? If documentation
changes are needed call out one of the <contributors> who will work with
the Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	ACL Statistics

	Problem description

	Use Cases

	Proposed change

	ACL Changes

	Drop packets statistics support

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL Statistics

https://git.opendaylight.org/gerrit/#/q/topic:acl-stats

This feature is to provide additional operational support for ACL through statistical counters.
ACL rules provide security to VMs by filtering packets in either directions (ingress/egress).
Using OpenFlow statistical counters, ODL will provide additional information on the number of
packets dropped by the ACL rules. This information is made available to the operator “on demand”.

Drop statistics will be provided for below cases:

	Packets dropped due to ACL rules

	Packets dropped due to INVALID state. The INVALID state means that the packet can’t be identified
or that it does not have any state. This may be due to several reasons, such as the system
running out of memory or ICMP error messages that do not respond to any known connections.

The packet drop information provided through the statistical counters enable operators to
trouble shoot any misbehavior and take appropriate actions through automated or manual
intervention.

Collection and retrieval of information on the number of packets dropped by the SG rules

	Done for all (VM) ports in which SG is configured

	Flow statistical counters (in OpenFlow) are used for this purpose

	The information in these counters are made available to the operator, on demand, through an API

This feature will only be supported with Stateful ACL mode.

Problem description

With only ACL support, operators would not be able to tell how many packets dropped by ACL rules.
This enhancement planned is about ACL module supporting aforementioned limitation.

Use Cases

Collection and retrieval of information on the number of packets dropped by the ACL rules

	Done for all (VM) ports in which ACL is configured

	The information in these counters are made available to the operator, on demand, through an API

	Service Orchestrator/operator can also specify ports selectively where ACL rules are configured

Proposed change

ACL Changes

Current Stateful ACL implementation has drop flows for all ports combined for a device. This needs
to be modified to have drop flows for each of the OF ports connected to VMs (Neutron Ports).

With the current implementation, drop flows are as below:

cookie=0x6900000, duration=938.964s, table=252, n_packets=0, n_bytes=0, priority=62020,
 ct_state=+inv+trk actions=drop

cookie=0x6900000, duration=938.969s, table=252, n_packets=0, n_bytes=0, priority=50,
 ct_state=+new+trk actions=drop

Now, for supporting Drop packets statistics per port, ACL will be updated to replace above
flows with new DROP flows with lport tag as metadata for each of the VM (Neutron port) being
added to OVS as specified below:

cookie=0x6900001, duration=938.964s, table=252, n_packets=0, n_bytes=0, priority=62015,
 metadata=0x10000000000/0xffffff0000000000, ct_state=+inv+trk actions=drop

cookie=0x6900001, duration=938.969s, table=252, n_packets=0, n_bytes=0, priority=50,
 metadata=0x10000000000/0xffffff0000000000, ct_state=+new+trk actions=drop

Drop flows details explained above are for pipeline egress direction. For ingress side,
similar drop flows would be added with table=41.

Also, new cookie value 0x6900001 would be added with drop flows to identify it uniquely and
priority 62015 would be used with +inv+trk flows to give higher priority for +est and +rel
flows.

Drop packets statistics support

ODL Controller will be updated to provide a new RPC/NB REST API <get-acl-port-statistics> in
ACL module with ACL Flow Stats Request and ACL Flow Stats Response messages. This RPC/API
will retrieve details of dropped packets by Security Group rules for all the neutron ports
specified as part of ACL Flow Stats Request. The retrieved information (instantaneous) received
in the OF reply message is formatted as ACL Flow Stats Response message before sending it as a
response towards the NB.

<get-acl-port-statistics> RPC/API implementation would be triggering
opendaylight-direct-statistics:get-flow-statistics request of OFPlugin towards OVS to get the
flow statistics of ACL tables (ingress / egress) for the required ports.

ACL Flow Stats Request/Response messages are explained in subsequent sections.

Pipeline changes

No changes needed in OF pipeline. But, new flows as specified in above section would be added for
each of the Neutron ports being added.

Yang changes

New yang file will be created with RPC as specified below:

acl-live-statistics.yang

 module acl-live-statistics {
 namespace "urn:opendaylight:netvirt:acl:live:statistics";

 prefix "acl-stats";

 import ietf-interfaces {prefix if;}
 import aclservice {prefix aclservice; revision-date "2016-06-08";}

 description "YANG model describes RPC to retrieve ACL live statistics.";

 revision "2016-11-29" {
 description "Initial revision of ACL live statistics";
 }

 typedef direction {
 type enumeration {
 enum ingress;
 enum egress;
 enum both;
 }
 }

 grouping acl-drop-counts {
 leaf drop-count {
 description "Packets/Bytes dropped by ACL rules";
 type uint64;
 }
 leaf invalid-drop-count {
 description "Packets/Bytes identified as invalid";
 type uint64;
 }
 }

 grouping acl-stats-output {
 description "Output for ACL port statistics";
 list acl-interface-stats {
 key "interface-name";
 leaf interface-name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 list acl-drop-stats {
 max-elements "2";
 min-elements "0";
 leaf direction {
 type identityref {
 base "aclservice:direction-base";
 }
 }
 container packets {
 uses acl-drop-counts;
 }
 container bytes {
 uses acl-drop-counts;
 }
 }
 container error {
 leaf error-message {
 type string;
 }
 }
 }
 }

 grouping acl-stats-input {
 description "Input parameters for ACL port statistics";

 leaf direction {
 type identityref {
 base "aclservice:direction-base";
 }
 mandatory "true";
 }
 leaf-list interface-names {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 max-elements "unbounded";
 min-elements "1";
 }
 }

 rpc get-acl-port-statistics {
 description "Get ACL statistics for given list of ports";

 input {
 uses acl-stats-input;
 }
 output {
 uses acl-stats-output;
 }
 }
 }

Configuration impact

No configuration parameters being added/deprecated for this feature

Clustering considerations

No additional changes required to be done as only one RPC is being supported as part of
this feature.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

N.A.

Targeted Release

Carbon

Alternatives

Dispatcher table (table 17 and table 220) based approach of querying drop packets count was
considered. ie., arriving drop packets count by below rule:

<total packets entered ACL tables> - <total packets entered subsequent service>

This approach was not selected as this only provides total packets dropped count per port by ACL
services and does not provide details of whether it’s dropped by ACL rules or for some other
reasons.

Usage

Features to Install

odl-netvirt-openstack

REST API

Get ACL statistics

Following API gets ACL statistics for given list of ports.

Method: POST

URI: /operations/acl-live-statistics:get-acl-port-statistics

Parameters:

	Parameter

	Type

	Possible Values

	Comments

	“direction”

	Enum

	ingress/egress/both

	Required

	“interface-names”

	Array [UUID String]

	[<UUID String>,<UUID String>,..]

	Required (1,N)

Example:

{
 "input":
 {
 "direction": "both",
 "interface-names": [
 "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "6c53df3a-3456-11e5-a151-feff819cdc9f"
]
 }
}

Possible Responses:

RPC Success:

{
 "output": {
 "acl-port-stats": [
 {
 "interface-name": "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "0",
 "drop-count": "300"
 },
 "packets": {
 "invalid-drop-count": "0",
 "drop-count": "4"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "168",
 "drop-count": "378"
 },
 "packets": {
 "invalid-drop-count": "2",
 "drop-count": "9"
 }
 }]
 },
 {
 "interface-name": "6c53df3a-3456-11e5-a151-feff819cdc9f",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "1064",
 "drop-count": "1992"
 },
 "packets": {
 "invalid-drop-count": "18",
 "drop-count": "23"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "462",
 "drop-count": "476"
 },
 "packets": {
 "invalid-drop-count": "11",
 "drop-count": "6"
 }
 }]
 }]
}

RPC Success (with error for one of the interface):

{
 "output":
 {
 "acl-port-stats": [
 {
 "interface-name": "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
 "acl-drop-stats": [
 {
 "direction": "ingress",
 "bytes": {
 "invalid-drop-count": "0",
 "drop-count": "300"
 },
 "packets": {
 "invalid-drop-count": "0",
 "drop-count": "4"
 }
 },
 {
 "direction": "egress",
 "bytes": {
 "invalid-drop-count": "168",
 "drop-count": "378"
 },
 "packets": {
 "invalid-drop-count": "2",
 "drop-count": "9"
 }
 },
 {
 "interface-name": "6c53df3a-3456-11e5-a151-feff819cdc9f",
 "error": {
 "error-message": "Interface not found in datastore."
 }
 }]
 }]
 }
}

Note

Below are error messages for the interface:

	“Interface not found in datastore.”

	“Failed to find device for the interface.”

	“Unable to retrieve drop counts due to error: <<error message>>”

	“Unable to retrieve drop counts as interface is not configured for statistics collection.”

	“Operation not supported for ACL <<Stateless/Transparent/Learn>> mode”

CLI

No CLI being added for this feature

Implementation

Assignee(s)

	Primary assignee:

	<Somashekar Byrappa>

	Other contributors:

	<Shashidhar R>

Work Items

	Adding new drop rules per port (in table 41 and 252)

	Yang changes

	Supporting new RPC

Dependencies

This doesn’t add any new dependencies.

This feature has dependency on below bug reported in OF Plugin:

Bug 7232 - Problem observed with “get-flow-statistics” RPC call [https://bugs.opendaylight.org/show_bug.cgi?id=7232]

Testing

Unit Tests

Following test cases will need to be added/expanded

	Verify ACL STAT RPC with single Neutron port

	Verify ACL STAT RPC with multiple Neutron ports

	Verify ACL STAT RPC with invalid Neutron port

	Verify ACL STAT RPC with mode set to “transparent/learn/stateless”

Also, existing unit tests will be updated to include new drop flows.

Integration Tests

Integration tests will be added, once IT framework is ready

CSIT

Following test cases will need to be added/expanded

	Verify ACL STAT RPC with single Neutron port with different directions (ingress, egress, both)

	Verify ACL STAT RPC with multiple Neutron ports with different
directions (ingress, egress, both)

	Verify ACL STAT RPC with invalid Neutron port

	Verify ACL STAT RPC with combination of valid and invalid Neutron ports

	Verify ACL STAT RPC with combination of Neutron ports with few having port-security-enabled as
true and others having false

Documentation Impact

This will require changes to User Guide. User Guide needs to be updated with details about new RPC
being supported and also about its REST usage.

References

N.A.

Note

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	ACL Remote ACL - Indirection Table to Improve Scale

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL Remote ACL - Indirection Table to Improve Scale

ACL Remote ACL Indirection patches:
https://git.opendaylight.org/gerrit/#/q/topic:remote_acl_indirection

This spec is to enhance the initial implementation of ACL remote ACLs filtering which was released
in Boron. The Boron release added full support for remote ACLs, however the current implementation
does not scale well in terms of flows. The Carbon release will update the implementation to
introduce a new indirection table for ACL rules with remote ACLs, to reduce the number of necessary
flows, in cases where the port is associated with a single ACL. Due to the complication of
supporting multiple ACLs on a single port, the current implementation will stay the same for these
cases.

Problem description

Today, for each logical port, an ACL rule results in a flow in the ACL table (ACL2). When a remote
ACL is configured on this rule, this flow is multiplied for each VM in the remote ACL, resulting in
a very large number of flows.

For example, consider we have:

	100 computes

	50 VMs on each compute (5000 VMs total),

	All VMs are in a SG (SG1)

	This SG has a security rule configured on it with remote SG=SG1
(it is common to set the remote SG as itself, to set rules within the SG).

This would result in 50*5000 = 250,000 flows on each compute, and 25M flows in ODL MDSAL (!).

Use Cases

Neutron configuration of security rules, configured with remote SGs. This optimization will be
relevant only when there is a single security group that is associated with the port. In case
more than one security group is associated with the port - we will fallback to the current
implementation which allows full functionality but with possible flow scaling issues.

Rules with a remote ACL are used to allow certain types of packets only between VMs in certain
security groups. For example, configuring rules with the parent security group also configured
as a remote security group, allows to configure rules applied only for traffic between VMs in
the same security group.

This will be done in the ACL implementation, so any ACL configured with a remote ACL via a different
northbound or REST would also be handled.

Proposed change

This blueprint proposes adding a new indirection table in the ACL service in each direction, which
will attempt to match the “remote” IP address associated with the packet (“dst_ip” in Ingress ACL,
“src_ip” in Egress ACL), and set the ACL ID as defined by the ietf-access-control-list in the
metadata. This match will also include the ELAN ID to handle ports with overlapping IPs.

These flows will be added to the ACL2 table. In addition, for each such ip->SG flow inserted in
ACL2, we will insert a single SG metadata match in ACL3 for each SG rule on the port configured with
this remote SG.

If the IP is associated with multiple SGs - it is impossible to do a 1:1 matching of the SG, so we
will not set the metadata at this time and fallback to the current implementation of matching all
possible IPs in the ACL table - for this ACL2 will have a default flow passing the unmatched packets
to ACL3 with an empty metadata SG_ID write (e.g. 0x0), to prevent potential garbage in the metadata
SG ID.

This means that on transition from a single SG on the port to multiple SG (and back), we would need
to remove/add these flows from ACL2, and insert the correct rules into ACL3.

ACL1 (211/241):

	This is the ACL that has default allow rules - it is left untouched, and usually goes to ACL2.

ACL2 (212/242):

	For each port with a single SG - we will match on the IPs and the ELAN ID (for tenant awareness)
here, and set the SG ID in the metadata, before going to the ACL3 table.

	For any port with multiple SGs (or with no SG) - an empty value (0x0) will be set as the SG ID in
the metadata, to avoid potential garbage in the SG ID, and goto ACL3 table.

ACL3 (213/243):

	For each security rule that doesn’t have a remote SG, we keep the behavior the same: ACL3
matches on rule, and resubmits to dispatcher if there is a match (Allow). The SG ID in the metadata
will not be matched.

	For each security rule that does have a remote SG, we have two options:

	For ports belonging to the remote SG that are associated with a single SG - there will be a
single flow per rule, matching the SG ID from the metadata (in addition to the other rule matches)
and allowing the packet.

	For ports belonging to the remote SG that are associated with multiple SGs - the existing
implementation will stay the same, multiplying the rule with all possible IP matches from the
remote security groups.

Considering the example from the problem description above, the new implementation would result in a
much reduced number of flows:

5000+50 = 5050 flows on each compute, and 505,000 flows in ODL MDSAL.

As noted above, this would require using part of the metadata for writing/matching of an ACL ID. We
would likely require at least 12 bits for this, to support up to 4K SGs, where 16 bits to support up
to 65K would be ideal. If the metadata bits are not available, we can use a register for this
purpose (16 bits).

In addition, the dispatcher will set the ELAN ID in the metadata before entering the ACL services,
to allow tenant aware IP to SG detection, supporting multi-tenants with IP collisions.

Pipeline changes

ACL3 will be added, and the flows in ACL2/ACL3 will be modified as noted above in the proposed change:

	Table

	Match

	Action

	Dispatcher

	metadata=service_id:ACL

	write_metadata:(elan_id=ELAN, service_id=NEXT), goto_table:ACL1

	ACL1 (211/241)

	goto_table:ACL2

	

	ACL2 (212/242)

	metadata=ELAN_ID, ip_src/dst=VM1_IP

	write_metadata:(remote_acl=id), goto_table:ACL3

	ACL2 (212/242)

	metadata=ELAN_ID, ip_src/dst=VM2_IP

	write_metadata:(remote_acl=id), goto_table:ACL3

	…

	
	

	ACL2 (212/242)

	
	goto_table:ACL3

	ACL3 (213/243)

	metadata=lport, <acl_rule>

	resubmit(,DISPATCHER) (X)

	ACL3 (213/243)

	metadata=lport+remote_acl, <acl_rule>

	resubmit(,DISPATCHER) (XX)

	ACL3 (213/243)

	metadata=lport,ip_src/dst=VM1_IP, <acl_rule>

	resubmit(,DISPATCHER) (XXX)

	ACL3 (213/243)

	metadata=lport,ip_src/dst=VM2_IP, <acl_rule>

	resubmit(,DISPATCHER) (XXX)

	…

	
	

(X) These are the regular rules, not configured with any remote SG.

(XX) These are the proposed rules with the optimization - assuming the lport is using a single ACL.

(XXX) These are the remote SG rules in the current implementation, which we will fall back to if the lport has multiple ACLs.

Table Numbering:

Currently the Ingress ACLs use tables 40,41,42 and the Egress ACLs use tables 251,252,253.

Table 43 is already proposed to be taken by SNAT, and table 254 is considered invalid by OVS.
To overcome this and align Ingress/Egress with symmetric numbering, I propose the following change:

	Ingress ACLs: 211, 212, 213, 214

	Egress ACLs: 241, 242, 243, 244

ACL1: INGRESS/EGRESS_ACL_TABLE
ACL2: INGRESS/EGRESS_ACL_REMOTE_ACL_TABLE
ACL3: INGRESS/EGRESS_ACL_FILTER_TABLE

ACL4 is used only for Learn implementation for which an extra table is required.

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

See example in description.
The scale of the flows will be drastically reduced when using remote ACLs.

Targeted Release

Carbon

Alternatives

For fully optimized support in all scenarios for remote SGs, meaning including support for ports
with multiple ACLs on them, we did consider implementing a similar optimization.

However, for this to happen due to OpenFlow limitations we would need to introduce an internal
dispatcher inside the ACL services, meaning we loop the ACL service multiple times, each time
setting a different metadata SG value for the port.

For another approach we could use a bitmask, but this would limit the number of possible SGs to be
the number of bits in the mask, which is much too low for any reasonable use case.

Usage

Any configuration of ACL rules with remote ACLs will receive this optimization if the port is using
a single SG.

Functionality should remain as before in any case.

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 1 for the Neutron CLI command syntax for managing Security
Rules with Remote Security Groups.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other
contributors.

Primary assignee:

	Alon Kochba <alonko@hpe.com>

	Aswin Suryanarayanan <asuryana@redhat.com>

Other contributors:

	?

Work Items

Task list in Carbon Trello [https://trello.com/c/6WBbSSkr/145-acl-remote-acls-indirection-table-to-improve-scale-remote-acl-indirection]

Dependencies

None.

Testing

Unit Tests

Integration Tests

CSIT

We should add tests verifying remote SG configuration functionality.
There should be at least:

	One security rule allowing ICMP traffic between VMs in the same SG.

	One positive test, checking ICMP connectivity works between two VMs using the same SG.

	One negative test, checking ICMP connectivity does not work between two VMs, one using the SG
configured with the rule above, and the other using a separate security group with all directions
allowed.

Documentation Impact

None.

References

	1

	Neutron Security Groups http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

Table of Contents

	ACL - Reflecting the ACL changes on existing traffic

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ACL - Reflecting the ACL changes on existing traffic

ACL patches:
https://git.opendaylight.org/gerrit/#/q/topic:acl-reflection-on-existing-traffic

This spec describes the new implementation for applying ACL changes on existing traffic.

In current ACL implementation, once a connection had been committed to the connection tracker, the connection would
continue to be allowed, even if the policy defined in the ACL table has changed. This spec will explain the new approach
that ensures ACL policy changes will affect existing connections as well. This approach will
improve the pipeline behaviour in terms of reliable traffic between the VMs.

Problem description

When the traffic between two VMs starts, the first packet will match the actual SG flow, which commits the packets
in connection tracker. It changes the state of the packets to established. Further traffic will match
the global conntrack flow and go through the connection tracker straightly. This will continue until we terminate the
established traffic.

When a rule is removed from the VM, the ACL flow getting removed from the respective tables. But, the already
established traffic is still working, because the connection still exists as ‘committed’ in the conntrack tracker.

For example, consider the below scenario which explains the problem in detail,

	Create a VM and associate the rule which allows ICMP

	Ping the DHCP server from the VM

	Remove the ICMP rule and check the ongoing traffic

When we remove the ICMP rule, the respective ICMP flow getting removed from the respective
table (For egress, table 213 and For Ingress, table 243). But, Since the conntrack flow having high priority than
the SG flow, the packets are matched by the conntrack flow and the live traffic is unaware of the flow removal.

The traffic between the VMs should be reliable and it should be succeeded accordance with SG flow. When a SG rule is
removed from the VM, the packets of ongoing traffic should be dropped.

Use Cases

	The new ACL implementation will affect the below use cases,

	
	VM Creation/Deletion with SG

	SG Rule addition and removal to/from existing SG associated to ports

Proposed change

This spec proposes the fix that requires a new table (210/240) in the existing pipeline.

In this approach, we will use the “ct_mark” flag of connection tracker. The default value of ct_mark is zero.

	ct_mark=0 matches the packet in new state

	ct_mark=1 matches the packet in established state

For every new traffic, the ct_mark value will be zero. When the traffic begins, the first packet of every
new traffic will be matched by the respective SG flow which commits the packets into the connection tracker and
changes the ct_mark value to 1. So, every packets of established traffic will have the ct_mark value as 1.

In conntrack flow, we will have a ct_mark=1 match condition. After first packet committed
to the connection tracker, further packets of established traffic will be matched by the conntrack flow straightly.

	In every SG flow, we will have below changes,

	“table=213/243, priority=3902, ct_state=+trk ,icmp,reg6=0x200/0xfffff00 actions=ct(commit,zone=6001,
exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	The SG flow will match the packets which are in tracked state. It will commit
the packet into the connection tracker. It will change the ct_mark value to 1.

	When a VM having duplicate flows, the removal of one flow should not affect the
existing traffic.

For example, consider a VM having ingress ICMP and Other protocol (ANY) rule. Ping the VM from the DHCP server. Removal of ingress ICMP rule
from the VM should not affect the existing traffic. Because the Other protocol ANY flow will match
the established packets of existing ICMP traffic and should make the communication possible.
To make the communication possible in above specific scenarios, we should match the established
packets in every SG flow. So, We will remove the “+new” check from the ct_state condition of every ACL flow to
recommit the established packets again into the conntrack.

	In conntrack flow,

	“table=213/243, priority=62020,ct_state=-new+est-rel-inv+trk, ct_mark=0x1 actions=resubmit(,17/220)”
“table=213/243, priority=62020,ct_state=-new-est+rel-inv+trk, ct_mark=0x1 actions=resubmit(,17/220)”

	The conntrack flow will match the packet which are in established state.

	For every new traffic, the first packet will be matched by the SG flow, which will change the ct_mark value to 1.
So, further packets will match the conntrack flow straightly.

	In default drop flow of table 213/243,

	“table=213, n_packets=0, n_bytes=0, priority=50, ct_state=+trk ,metadata=0x20000000000/0xfffff0000000000 actions=drop”
“table=243, n_packets=6, n_bytes=588, priority=50, ct_state=+trk ,reg6=0x300/0xfffff00 actions=drop”

	For every VM, we are having a default drop flow to measure the drop statistics of particular VM. So, we will remove
the “+new” state check from the ct_state to measure the drop counts accurately.

Deletion of SG flow will add the below flow with configured hard time out in the table 212/242.

[1] “table=212/242, n_packets=73, n_bytes=7154, priority=40,icmp,reg6=0x200/0xfffff00,ct_mark=1
actions=ct(commit, zone=5500, exec(set_field:0x0->ct_mark)),goto_table:ACL4”

	It will match the ct_mark value with the one and change the ct_mark to zero.

The below tables describes the default hard time out of each protocol as configured in the conntrack.

	Protocol

	Time out (secs)

	ICMP

	30

	TCP

	18000

	UDP

	180

Please refer the Pipeline Changes for table information.

For Egress, Dispatcher table (table 17) will forward the packets to the new table 210 where we will check the source match.
It will forward the packet to 211 to match the destination of the packets. After the destination of the packet verified,
The packets will forward to the table 212. New flow in the table, will match the ct_mark value and forward
the packets to the 213 table.

	Similarly, for Ingress, the packets will be forwarded through,

	Dispatcher table (220) >> New table (240) >> 241 >> 242 >> 243.

In dispatcher flows, we will have the below changes which will change the table 211/241 from the goto_table action to
the new table 210/240.

“table=17, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x900002157f000000/0xfffffffffffffffe, goto_table:210”

“table=220, priority=6,reg6=0x200 actions=load:0x90000200->NXM_NX_REG6[],write_metadata:0x157f000000/0xfffffffffe, goto_table:240”

Deletion of SG rule will add a new flow in the table 212/242 as mentioned above. The first packet after SG got deleted,
will match the above new flow and will change the ct_mark value to zero. So this packet will not match the conntrack
flow and will check the ACL4 table whether it having any other flows to match this packet. If the SG flow found, the packet
will be matched and change the ct_mark value 1.

If we restore the SG rule again, we will delete the added flow [1] from the 212/242 table, so the packets of
existing traffic will match the newly added SG flow in ACL4 table and proceed successfully.

Sample flows to be installed in each scenario,

	SG rule addition

	
	SG flow: [ADD]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk, icmp,
reg6=0x200/0xfffff00 actions=ct(commit,zone=6001, exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	Conntrack flow: [DEFAULT]

	“table=213/243, n_packets=105, n_bytes=10290, priority=62020,ct_state=-new+est-rel-inv+trk, ct_mark=0x1
actions=resubmit(,17/220)”

	SG Rule deletion

	
	SG flow: [DELETE]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk,icmp,reg6=0x200/0xfffff00
actions=ct(commit,zone=6001,exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	New flow: [ADD]

	“table=212/242, n_packets=73, n_bytes=7154, priority=62021, ct_mark=0x1,icmp,reg6=0x200/0xfffff00
actions=ct(commit, exec(set_field:0x0->ct_mark)),goto_table:213/243”

	Rule Restore

	
	SG flow: [ADD]

	“table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk, icmp,reg6=0x200/0xfffff00
actions=ct(commit,zone=6001,exec(set_field:0x1->ct_mark)),resubmit(,17/220)”

	New flow: [DELETE]

	“table=212/242, n_packets=73, n_bytes=7154, priority=62021,ct_mark=0x1,icmp,reg6=0x200/0xfffff00
actions=ct(commit,exec(set_field:0x0->ct_mark)),goto_table:213/243”

The new tables (210/240) will matches the source and the destination of the packets respectively. So, a default flow will be added in
the table 210/240 with least priority to drop the packets.

“table=210/240, n_packets=1, n_bytes=98, priority=0 actions=drop”

	Flow Sample:

	
Egress flows before the changes,

cookie=0x6900000, duration=30.590s, table=17, n_packets=108, n_bytes=10624, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x9000021389000000/0xfffffffffffffffe,goto_table:211
cookie=0x6900000, duration=30.247s, table=211, n_packets=0, n_bytes=0, priority=61010,ipv6,dl_src=fa:16:3e:93:dc:92,ipv6_src=fe80::f816:3eff:fe93:dc92 actions=ct(table=212,zone=5001)
cookie=0x6900000, duration=30.236s, table=211, n_packets=96, n_bytes=9312, priority=61010,ip,dl_src=fa:16:3e:93:dc:92,nw_src=10.100.5.3 actions=ct(table=212,zone=5001)
cookie=0x6900000, duration=486.527s, table=211, n_packets=2, n_bytes=180, priority=0 actions=drop
cookie=0x6900000, duration=30.157s, table=212, n_packets=0, n_bytes=0, priority=50,ipv6,metadata=0x1389000000/0xffff000000,ipv6_dst=fe80::f816:3eff:fe93:dc92 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=30.152s, table=212, n_packets=0, n_bytes=0, priority=50,ip,metadata=0x1389000000/0xffff000000,nw_dst=10.100.5.3 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=486.527s, table=212, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:212
cookie=0x6900000, duration=486.056s, table=213, n_packets=80, n_bytes=8128, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x6900000, duration=485.948s, table=213, n_packets=0, n_bytes=0, priority=62020,ct_state=-new-est+rel-inv+trk actions=resubmit(,17)
cookie=0x6900001, duration=30.184s, table=213, n_packets=0, n_bytes=0, priority=62015,ct_state=+inv+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop
cookie=0x6900000, duration=30.177s, table=213, n_packets=16, n_bytes=1184, priority=1000,ct_state=+new+trk,ip,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900000, duration=30.168s, table=213, n_packets=0, n_bytes=0, priority=1001,ct_state=+new+trk,ipv6,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900001, duration=30.207s, table=213, n_packets=0, n_bytes=0, priority=50,ct_state=+new+trk,metadata=0x20000000000/0xfffff0000000000 actions=dro

After the changes, flows will be,

cookie=0x6900000, duration=30.590s, table=17, n_packets=108, n_bytes=10624, priority=10,metadata=0x20000000000/0xffffff0000000000 actions=write_metadata:0x9000021389000000/0xfffffffffffffffe,goto_table:210
cookie=0x6900000, duration=30.247s, table=210, n_packets=0, n_bytes=0, priority=61010,ipv6,dl_src=fa:16:3e:93:dc:92,ipv6_src=fe80::f816:3eff:fe93:dc92 actions=ct(table=211,zone=5001)
cookie=0x6900000, duration=30.236s, table=210, n_packets=96, n_bytes=9312, priority=61010,ip,dl_src=fa:16:3e:93:dc:92,nw_src=10.100.5.3 actions=ct(table=211,zone=5001)
cookie=0x6900000, duration=486.527s, table=210, n_packets=2, n_bytes=180, priority=0 actions=drop
cookie=0x6900000, duration=30.157s, table=211, n_packets=0, n_bytes=0, priority=50,ipv6,metadata=0x1389000000/0xffff000000,ipv6_dst=fe80::f816:3eff:fe93:dc92 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=30.152s, table=211, n_packets=0, n_bytes=0, priority=50,ip,metadata=0x1389000000/0xffff000000,nw_dst=10.100.5.3 actions=write_metadata:0x2/0xfffffe,goto_table:212
cookie=0x6900000, duration=486.527s, table=211, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:212
cookie=0x6900000, duration=486.527s, table=212, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:213
cookie=0x6900000, duration=486.056s, table=213, n_packets=80, n_bytes=8128, priority=62020,ct_state=-new+est-rel-inv+trk,ct_mark=0x1 actions=resubmit(,17)
cookie=0x6900000, duration=485.948s, table=213, n_packets=0, n_bytes=0, priority=62020,ct_state=-new-est+rel-inv+trk,ct_mark=0x1 actions=resubmit(,17)
cookie=0x6900001, duration=30.184s, table=213, n_packets=0, n_bytes=0, priority=62015,ct_state=+inv+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop
cookie=0x6900000, duration=30.177s, table=213, n_packets=16, n_bytes=1184, priority=1000,ct_state=+trk,ip,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001,exec(set_field:0x1->ct_mark)),resubmit(,17)
cookie=0x6900000, duration=30.168s, table=213, n_packets=0, n_bytes=0, priority=1001,ct_state=+new+trk,ipv6,metadata=0x20000000000/0xfffff0000000000 actions=ct(commit,zone=5001),resubmit(,17)
cookie=0x6900001, duration=30.207s, table=213, n_packets=0, n_bytes=0, priority=50,ct_state=+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop

	New flow will be installed in table 212 when we delete SG rule,

	“cookie=0x6900000, duration=30.177s, table=212, n_packets=16, n_bytes=1184, priority=1000,ct_state=+trk,ip,metadata=0x20000000000/0xfffff0000000000,ct_mark=1,idle_timeout=1800 actions=ct(commit,zone=5001,exec(set_field:0x0->ct_mark)),goto_table:213”

Similarly, the ingress related flows will have the same changes as mentioned above.

Pipeline changes

	The propose changes includes:

	
	New tables 210 and 240

	Re-purposed tables 211, 212, 241, 242

The propose will re-purpose the table 211 and 212 of egress, table 241 and 242 of ingress.

Currently, for egress, we are using the table 211 for source match and 212 for destination match.
In new propose, we will use the new table 210 for source match, table 211 for destination match and table 212 for new
flow installation when we delete the SG flow.

	For Egress, the traffic will use the tables in following order,

	17 >> 210 >> 211 >> 212 >> 213.

Similarly, for ingress, currently we are using the table 241 for destination match and 242 for source match.
In new propose, we will use the new table 240 for destination match, table 241 for source match and table 242 for new
flow installation when we delete the SG flow.

	For Ingress, the traffic will use the tables in following order,

	220 >> 240 >> 241 >> 242 >> 243

flow will be added in table 212/242, and the match condition of ACL4 flows will be modified as noted above in the proposed change:

	Table

	Match

	Action

	Dispatcher

	metadata=service_id:ACL

	write_metadata:(elan_id=ELAN, service_id=NEXT), goto_table:210/240 (ACL1)

	ACL1 (210/240)

	
	goto_table:ACL2

	…

	
	

	ACL2 (211/241)

	
	goto_table:ACL3

	ACL3 (212/242)

	ip,ct_mark=0x1,reg6=0x200/0xfffff00

	(set_field:0x0->ct_mark), goto_table:ACL4

	ACL3 (212/242)

	
	goto_table:ACL4

	ACL4 (213/243)

	ct_state=-new+est-rel-inv+trk,ct_mark=0x1

	resubmit(,DISPATCHER)

	ACL4 (213/243)

	ct_state=+trk,priority=3902,ip,reg6=0x200/0xfffff00

	set_field:0x1>ct_mark, resubmit(,DISPATCHER)

	ACL4 (213/243)

	ct_state=+trk, reg6=0x200/0xfffff00

	drop

	…

	
	

Yang changes

The nicira-action.yang and the openflowplugin-extension-nicira-action.yang needs to be updated
with ct_mark action. The action structure shall be

grouping ofj-nx-action-conntrack-grouping {
 container nx-action-conntrack {
 leaf flags {
 type uint16;
 }
 leaf zone-src {
 type uint32;
 }
 leaf conntrack-zone {
 type uint16;
 }
 leaf recirc-table {
 type uint128;
 }
 leaf experimenter-id {
 type oft:experimenter-id;
 }
 list ct-actions{
 uses ofpact-actions;
 }
 }
 }

The nicira-match.yang and the openflowplugin-extension-nicira-match.yang needs to be updated
with the ct_mark match.

grouping ofj-nxm-nx-match-ct-mark-grouping{
 container ct-mark-values {
 leaf ct-mark {
 type uint32;
 }
 leaf mask {
 type uint32;
 }
 }
 }

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

When we delete the SG rule from the VM, A new flow will be added in the flow table 212 to flip
the value of ct_mark of ongoing traffics. This flow will have a time out based on the protocol as mentioned in the
proposed changes section. The packets of ongoing traffic will be recommitted and will do the set filed of ct_mark until
the flow reaches the time out.

Targeted Release

Carbon

Alternatives

While deleting a SG flow from the flow table, we will add a DROP flow with the highest priority in the ACL4 table.
This DROP flow will drop the packets and it will stop the existing traffic. Similarly, when we restore the
same rule again, we will delete the DROP flow from the ACL4 table which will enable the existing traffic.

But this approach will be effective only if the VM do not have any duplicate flows. With the current ACL
implementation, if we associate two SGs which having similar set of SG rule, netvirt will install the two set of
flows with different priority for the same VM.

As per above approach, if we dissociate any one of SG from the VM, It will add the DROP flow in ACL4 table which
will stops the existing traffic irrespective of there is still another flow available in ACL4, to make the
traffic possible.

Usage

Traffic between VMs will work accordance with the SG flow existence in the flow table.

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 1 for the Neutron CLI command syntax for managing Security
Rules.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assignee and other
contributors.

Primary assignee:

	VinothB <vinothb@hcl.com>

	Balakrishnan Karuppasamy <balakrishnan.ka@hcl.com>

Other contributors:

	?

Work Items

None

Dependencies

None.

Testing

Unit Tests

Integration Tests

CSIT

We should add tests verifying ACL change reflection on existing traffic.
There should be at least:

	One security rule allowing ICMP traffic between VMs in the same SG.

	One positive test, checking ICMP connectivity works between two VMs using the same SG. Delete all the rules from
the SG without disturbing the already established traffic. It should stop the traffic.

	One positive test, checking ICMP connectivity works between two VMs,one using the SG,
configured with the ICMP rule, Delete and restore the ICMP rule immediately. This should stop and resume the ICMP traffic after
restoring the ICMP rule.

	One positive test, checking ICMP connectivity between VMs, using the SG,
configured with ICMP ALL and Other protocol ANY rule. Delete the ICMP rule from the SG, It should not stop the ICMP traffic.

	One negative test, checking ICMP connectivity between two VMs, one using the SG,
configured with the ICMP and TCP rules above, and delete the TCP rule. This should not affect the ICMP traffic.

Documentation Impact

None.

References

	1

	Neutron Security Groups http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

Table of Contents

	Conntrack Based SNAT

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create External Network

	Create Internal Network

	Create Router

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Conntrack Based SNAT

https://git.opendaylight.org/gerrit/#/q/topic:snat_conntrack

The ovs conntrack based SNAT implements Source Network Address Translation using openflow rules by
leveraging ovs-netfilter integration.

Problem description

Today SNAT is done in Opendaylight netvirt using controller punting and thus controller installing
the rules for inbound and outbound NAPT. This causes significant delay as the first packet of all
the new connections needs to go through the controller.The number of flows grows linearly with the
increase in the vms. Also the current implementation does not support ICMP.

The current algorithm for selecting the NAPT switch does not work well with conntrack based SNAT.
For a NAPT switch to remain as designated NAPT switch, it requires at least one port from any of
the subnets present in the router. When such a port cease to exist a new NAPT switch will be
elected. With the controller based implementation the failover is faster as the NAT flows are
reinstalled to the new NAPT switch and should not lead to termination of existing connection.
With the conntrack based approach, the translation will be lost and the newly elected switch will
have to redo the translation. This will lead to connection timeout for TCP like connections. So
the re-election needs to be prevented unless switch is down. Also the current implementation
tends to select the node running the DHCP agent as the designated NAPT switch as the DHCP port is
the first port created for a subnet.

Use Cases

The following use case will be realized by the implementation

External Network Access
The SNAT enables the VM in a tenant network access the external network without using a floating ip. It
uses NAPT for sharing the external ip address across multiple VMs that share the same router
gateway.

Proposed change

The proposed implementation uses linux netfilter framework to do the NAPT (Network Address Port
Translation) and for tracking the connection. The first packet of a traffic will be committed to
the netfilter for translation along with the external ip. The subsequent packets will use the entry
in the netfilter for inbound and outbound translation. The router id will be used as the zone id in
the netfilter. Each zone tracks the connection in its own table. The rest of the implementation for
selecting the designated NAPT switch and non designated switches will remain the same. The pipeline
changes will happen in the designated switch. With this implementation we will be able to do
translation for icmp as well.

The openflow plugin needs to support new set of actions for conntrack based NAPT. This shall be
added in the nicira plugin extension of OpenFlow plugin.

The new implementation will not re-install the existing NAT entries to the new NAPT switch during
fail-over. Also spec does not cover the use case of having multiple external subnets in the same
router.

The HA framework will have a new algorithm to elect the designated NAPT switch. The
new logic will be applicable only if the conntrack mode is selected. The switch selection logic
will also be modified to use round robin logic with weights associated with each switch. It will
not take into account whether a port belonging to a subnet in the router is present in the switch.
The initial weight of all the switches shall be 0 and will be incremented by 1 when the switch is
selected as the designated NAPT. The weights shall be decremented by 1 when the router is deleted.
At any point of time the switch with the lowest weight will be selected as the designated NAPT
switch for a new router. If there are multiple the first one with the lowest weight will be
selected. A pseudo port will be added in the switch which is selected as the designated NAPT
switch. This port will be deleted only when the switch cease to be a designated NAPT switch. This
helps the switch to maintain the remote flows even when there are no ports in the router subnet in
the switch. Only if the switch hosting the designated NAPT switch is down a new NAPT switch will be
elected.

Pipeline changes

The ovs based NAPT flows will replace the controller based NAPT flows. The changes are limited
to the designated switch for the router. Below is the illustration for flat external network.

Outbound NAPT

Table 26 (PSNAT Table) => submits the packet to netfilter to check whether it is an existing
connection. Resubmits the packet back to 46.

Table 46 (NAPT OUTBOUND TABLE) => if it is an established connection, it indicates the
translation is done and the packet is forwarded to table 47 after writing the external network
metadata.

If it is a new connection the connection will be committed to netfilter and this entry will be
used for NAPT. The translated packet will be resubmitted to table 47. The external network
metadata will be written before sending the packet to netfilter.

Table 47 (NAPT FIB TABLE) => The translated packet will be sent to the egress group.

Sample Flows

table=26, priority=5,ip,metadata=0x222e2/0xfffffffe actions=ct(table=46,zone=5003,nat)
table=46, priority=6,ct_state=+snat,ip,metadata=0x222e2/0xfffffffe actions=set_field:0x222e0->metadata,resubmit(,47)
table=46, priority=5,ct_state=+new+trk,ip,metadata=0x222e2/0xfffffffe actions=set_field:0x222e0->metadata,ct(commit,table=47,zone=5003,nat(src=192.168.111.21))
table=47, n_packets=0, n_bytes=0, priority=6,ct_state=+snat,ip,nw_src=192.168.111.21 actions=group:200000

Inbound NAPT

Table 44 (NAPT INBOUND Table)=> submits the packet to netfilter to check for an existing
connection after changing the metadata to that of the internal network. The packet will be
submitted back to table 47.

Table 47 (NAPT FIB TABLE) => The translated packet will be submitted back to table 21.

Sample Flows

table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=192.168.111.21 actions=resubmit(,44)
table=44, priority=10,ip,metadata=0x222e0/0xfffffffe,nw_dst=192.168.111.21 actions=set_field:0x222e2->metadata,ct(table=47,zone=5003,nat)
table=47, priority=5,ct_state=+dnat,ip actions=resubmit(,21)

Yang changes

The nicira-action.yang and the openflowplugin-extension-nicira-action.yang needs to be updated
with nat action. The action structure shall be

typedef nx-action-nat-range-present {
 type enumeration {
 enum NX_NAT_RANGE_IPV4_MIN {
 value 1;
 description "IPV4 minimum value is present";
 }
 enum NX_NAT_RANGE_IPV4_MAX {
 value 2;
 description "IPV4 maximum value is present";
 }
 enum NX_NAT_RANGE_IPV6_MIN {
 value 4;
 description "IPV6 minimum value is present in range";
 }
 enum NX_NAT_RANGE_IPV6_MAX {
 value 8;
 description "IPV6 maximum value is present in range";
 }
 enum NX_NAT_RANGE_PROTO_MIN {
 value 16;
 description "Port minimum value is present in range";
 }
 enum NX_NAT_RANGE_PROTO_MAX {
 value 32;
 description "Port maximum value is present in range";
 }
 }
 }

typedef nx-action-nat-flags {
 type enumeration {
 enum NX_NAT_F_SRC {
 value 1;
 description "Source nat is selected ,Mutually exclusive with NX_NAT_F_DST";
 }
 enum NX_NAT_F_DST {
 value 2;
 description "Destination nat is selected";
 }
 enum NX_NAT_F_PERSISTENT {
 value 4;
 description "Persistent flag is selected";
 }
 enum NX_NAT_F_PROTO_HASH {
 value 8;
 description "Hash mode is selected for port mapping, Mutually exclusive with
 NX_NAT_F_PROTO_RANDOM ";
 }
 enum NX_NAT_F_PROTO_RANDOM {
 value 16;
 description "Port mapping will be randomized";
 }
 }
 }

grouping ofj-nx-action-conntrack-grouping {
 container nx-action-conntrack {
 leaf flags {
 type uint16;
 }
 leaf zone-src {
 type uint32;
 }
 leaf conntrack-zone {
 type uint16;
 }
 leaf recirc-table {
 type uint8;
 }
 leaf experimenter-id {
 type oft:experimenter-id;
 }
 list ct-actions{
 uses ofpact-actions;
 }
 }
 }

grouping ofpact-actions {
 description
 "Actions to be performed with conntrack.";
 choice ofpact-actions {
 case nx-action-nat-case {
 container nx-action-nat {
 leaf flags {
 type uint16;
 }
 leaf range_present {
 type uint16;
 }
 leaf ip-address-min {
 type inet:ip-address;
 }
 leaf ip-address-max {
 type inet:ip-address;
 }
 leaf port-min {
 type uint16;
 }
 leaf port-max {
 type uint16;
 }
 }
 }
 }
}

For the new configuration knob a new yang natservice-config shall be added in NAT service, with the
container for holding the NAT mode configured. It will have two options controller and conntrack,
with controller being the default.

container natservice-config {
 config true;
 leaf nat-mode {
 type enumeration {
 enum "controller";
 enum "conntrack";
 }
 default "controller";
 }
}

Configuration impact

The proposed change requires the NAT service to provide a configuration knob to switch between the
controller based/conntrack based implementation. A new configuration file
netvirt-natservice-config.xml shall be added with default value controller.

<natservice-config xmlns="urn:opendaylight:netvirt:natservice-config">
 <nat-mode>controller</nat-mode>
</natservice-config>

The dynamic update of nat-mode will not be supported. To change the nat-mode the controller cluster
needs to be restarted after changing the nat-mode. On restart the NAT translation lifecycle will be
reset and after the controller comes up in the updated nat-mode, a new set of switches will be
elected as designated NAPT switches and it can be different from the ones that were forwarding
traffic earlier.

Clustering considerations

NA

Other Infra considerations

The implementation requires ovs2.6 with the kernel module installed. OVS currently does not support
SNAT connection tracking for dpdk datapath. It would be supported in some future release.

Security considerations

NA

Scale and Performance Impact

The new SNAT implementation is expected to improve the performance when compared to the existing
one and will reduce the flows in ovs pipeline.

Targeted Release

Carbon

Alternatives

An alternative implementation of X NAPT switches was discussed, which will not be a part of this
document but will be considered as a further enhancement.

Usage

Create External Network

Create an external flat network and subnet

neutron net-create ext1 --router:external --provider:physical_network public --provider:network_type flat
neutron subnet-create --allocation-pool start=<start-ip>,end=<end-ip> --gateway=<gw-ip> --disable-dhcp --name subext1 ext1 <subnet-cidr>

Create Internal Network

Create an internal n/w and subnet

neutron net-create vx-net1 --provider:network_type vxlan
neutron subnet-create vx-net1 <subnet-cidr> --name vx-subnet1

Create Router

Create a router and add an interface to internal n/w. Set the external n/w as the router gateway.

neutron router-create router1
neutron router-interface-add router1 vx-subnet1
neutron router-gateway-set router1 ext1
nova boot --poll --flavor m1.tiny --image $(nova image-list | grep 'uec\s' | awk '{print $2}' | tail -1) --nic net-id=$(neutron net-list | grep -w vx-net1 | awk '{print $2}') vmvx2

Features to Install

odl-netvirt-openstack

REST API

NA

CLI

A new command line, display-napt-switch, will be added to display the current designated NAPT
switch selected for each router. It shall show the below info.

router id | Host Name of designated NAPT switch | Management Ip of the designated NAPT switch

Implementation

Assignee(s)

Aswin Suryanarayanan <asuryana@redhat.com>

Work Items

https://trello.com/c/DMLsrLfq/9-snat-decentralized-ovs-nat-based

	Write a framework which can support multiple modes of NAT implementation.

	Add support in openflow plugin for conntrack nat actions.

	Add support in genius for conntrack nat actions.

	Add a config parameter to select between controller based and conntrack based.

	Add the flow programming for SNAT in netvirt.

	Add the new HA framework.

	Add the command to display the designated NAPT switch.

	Write Unit tests for conntrack based snat.

Dependencies

NA

Testing

Unit Tests

Unit test needs to be added for the new snat mode. It shall use the component tests framework

Integration Tests

Integration tests needs to be added for the conntrack snat flows.

CSIT

Run the CSIT with conntrack based SNAT configured.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

Table of Contents

	Cross site connectivity with federation service

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Cross site connectivity with federation service

https://git.opendaylight.org/gerrit/#/q/topic:federation-plugin

Enabling neutron networks to expand beyond a single OpenStack instance to allow L2 switching and L3 routing
between sites. Sites may be geographically remote or partitioned in a single data center.

Each site is deployed with independent local ODL cluster. The clusters communicate using the federation
infrastructure [2] in order to publish MDSAL events whenever routable entities e.g. VM instances are added/removed
from remote sites.

VxLAN tunnels are used to form the overlay for cross site communication between OpenStack compute nodes.

Problem description

Today, communication between VMs in remote sites is based on BGP control plane and requires DC-GW.
Overlay network between data centers is based on MPLSoverGRE or VxLAN if the DC-GW supports EVPN RT5 [4].
The purpose of this feature is to allow inter-DC communication independent from BGP control plane and DC-GW.

Use Cases

This feature will cover the following use cases:

L2 switching use cases

	L2 Unicast frames exchanged between VMs sharing federated neutron network between OVS datapaths in
remote sites

	L2 Unicast frames exchanged between VM and PNF sharing federated neutron network between OVS and HWVTEP
datapath in remote sites

	L2 Broadcast frames exchanged between VMs sharing federated neutron network between OVS datapaths in
remote sites

	L2 Broadcast frames exchanged between VM and PNF sharing federated neutron network between OVS and HWVTEP
datapath in remote sites

L3 forwarding use cases

	L3 traffic exchanged between VMs sharing federated neutron router between OVS datapaths in
remote sites

Proposed change

For Carbon release, cross-site connectivity will be based on the current HPE downstream federation plugin codebase.
This plugin implements the federation service API [3] to synchronize the following MDSAL subtrees between connected
sites:

	config/ietf-interfaces:interfaces

	config/elan:elan-interfaces

	config/l3vpn:vpn-interfaces

	config/network-topology:network-topology/topology/ovsdb:1

	operational/network-topology:network-topology/topology/ovsdb:1

	config/network-topology:network-topology/topology/hwvtep:1

	operational/network-topology:network-topology/topology/hwvtep:1

	config/opendaylight-inventory:nodes

	operational/opendaylight-inventory:nodes

	config/neutron:neutron/l2gateways

	config/neutron:neutron/l2gatewayConnections

The provisioning of connected networks between remote sites is out of the scope of this spec and described in [6].

Upon receiving a list of shared neutron networks and subnets, the federation plugin will propagate MDSAL entities from
all of the subtrees detailed above to remote sites based on the federation connection definitions.
The federated entities will be transformed to match the target network/subnet/router details in each remote site.

For example, ELAN interface will be federated with elan-instance-name set to the remote site elan-instance-name.
VPN interface will be federated with the remote site vpn-instance-name i.e. router-id and remote subnet-id contained
in the primary VPN interface adjacency.

This would allow remotely federated entities a.k.a shadow entities to be handled the same way local entities are handled
thus shadow entities will appear as if they were local entities in remote sites.
As a result, the following pipeline elements will be added for shadow entities on all compute nodes in each connected
remote site:

	ELAN remote DMAC flow for L2 unicast packets to remote site

	ELAN remote broadcast group buckets for L2 multicast packets to remote site

	FIB remote nexthop flow for L3 packet to remote site

The following limitations exist for the current federation plugin implementation:

	Federated networks use VxLAN network type and the same VNI is used across sites.

	The IP addresses allocated to VM instances in federated subnets do not overlap across sites.

	The neutron-configured VNI will be passed on the wire for inter-DC L2/L3 communication between VxLAN networks.
The implementation is described in [5].

As part of Nitrogen, the federation plugin is planned to go through major redesign. The scope and internals have not
been finalized yet but this spec might be a good opportunity to agree on an alternate solution.

Some initial thoughts:

	For L3 cross site connectivity, it seems that federating the FIB vrf-entry associated with VMs in connected
networks should be sufficient to form remote nexthop connectivity across sites.

	In order to create VxLAN tunnels to remote sites, it may be possible to use the external tunnel concept instead
of creating internal tunnels that are dependent on federation of the OVS topology nodes from remote sites.

	L2 cross site connectivity is the most challenging part for federation of MAC addresses of both VM
instances and PNFs connected to HWVTEP.
If the ELAN model could be enhanced to have remote-mac-entry model containing MAC address, ELAN instance name
and remote TEP ip, it would be possible to federate such entity to remote sites in order to create remote DMAC
flows for cases of remote VM instances and PNFs connected HWVTEP in remote sites.

Pipeline changes

No new pipeline changes are introduced as part of this feature. The pipeline flow between VM instances in
remote sites is similar to the current implementation of cross compute intra-DC traffic since the
realization of remote compute nodes is similar to local ones.

Yang changes

The following new yang models will be introduced as part of the federation plugin API bundle:

Federation Plugin Yang

Marking for each federated entity using shadow-properties augmentation

module federation-plugin {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin";
 prefix "federation-plugin";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import network-topology {
 prefix topo;
 }

 import opendaylight-inventory {
 prefix inv;
 }

 import ietf-interfaces {
 prefix if;
 }

 import elan {
 prefix elan;
 }

 import l3vpn {
 prefix l3vpn;
 }

 import neutronvpn {
 prefix nvpn;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 grouping shadow-properties {
 leaf shadow {
 type boolean;
 description "Represents whether this is a federated entity";
 }
 leaf generation-number {
 type int32;
 description "The current generation number of the federated entity";
 }
 leaf remote-ip {
 type string;
 description "The IP address of the original site of the federated entity";
 }
 }

 augment "/topo:network-topology/topo:topology/topo:node" {
 ext:augment-identifier "topology-node-shadow-properties";
 uses shadow-properties;
 }

 augment "/inv:nodes/inv:node" {
 ext:augment-identifier "inventory-node-shadow-properties";
 uses shadow-properties;
 }

 augment "/if:interfaces/if:interface" {
 ext:augment-identifier "if-shadow-properties";
 uses shadow-properties;
 }

 augment "/elan:elan-interfaces/elan:elan-interface" {
 ext:augment-identifier "elan-shadow-properties";
 uses shadow-properties;
 }

 augment "/l3vpn:vpn-interfaces/l3vpn:vpn-interface" {
 ext:augment-identifier "vpn-shadow-properties";
 uses shadow-properties;
 }
}

Federation Plugin Manager Yang

Management of federated networks and routed RPCs subscription

module federation-plugin-manager {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:manager";
 prefix "federation-plugin-manager";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 identity mgr-context {
 description "Identity for a routed RPC";
 }

 container routed-container {
 list route-key-item {
 key "id";
 leaf id {
 type string;
 }

 ext:context-instance "mgr-context";
 }
 }

 container federated-networks {
 list federated-network {
 key self-net-id;
 uses federated-nets;
 }
 }

 container federation-generations {
 description
 "Federation generation information for a remote site.";
 list remote-site-generation-info {
 max-elements "unbounded";
 min-elements "0";
 key "remote-ip";
 leaf remote-ip {
 mandatory true;
 type string;
 description "Remote site IP address.";
 }
 leaf generation-number {
 type int32;
 description "The current generation number used for the remote site.";
 }
 }
 }

 grouping federated-nets {
 leaf self-net-id {
 type string;
 description "UUID representing the self net";
 }
 leaf self-subnet-id {
 type yang:uuid;
 description "UUID representing the self subnet";
 }
 leaf self-tenant-id {
 type yang:uuid;
 description "UUID representing the self tenant";
 }
 leaf subnet-ip {
 type string;
 description "Specifies the subnet IP in CIDR format";
 }

 list site-network {
 key id;
 leaf id {
 type string;
 description "UUID representing the site ID (from xsite manager)";
 }
 leaf site-ip {
 type string;
 description "Specifies the site IP";
 }
 leaf site-net-id {
 type string;
 description "UUID of the network in the site";
 }
 leaf site-subnet-id {
 type yang:uuid;
 description "UUID of the subnet in the site";
 }
 leaf site-tenant-id {
 type yang:uuid;
 description "UUID of the tenant holding this network in the site";
 }
 }
 }
}

Federation Plugin RPC Yang

FederationPluginRpcService yang definition for update-federated-networks RPC

module federation-plugin-rpc {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:rpc";
 prefix "federation-plugin-rpc";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import federation-plugin-manager {
 prefix federation-plugin-manager;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 rpc update-federated-networks {
 input {
 list federated-networks-in {
 key self-net-id;
 uses federation-plugin-manager:federated-nets;
 description "Contain all federated networks in this site that are still
 connected, a federated network that does not appear will be considered
 disconnected";
 }
 }
 }
}

Federation Plugin routed RPC Yang

Routed RPCs will be used only within the cluster to route connect/disconnect requests to the federation cluster singleton.

module federation-plugin-routed-rpc {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:federation:plugin:routed:rpc";
 prefix "federation-plugin-routed-rpc";

 import yang-ext {
 prefix ext;
 revision-date "2013-07-09";
 }

 import ietf-yang-types {
 prefix yang;
 }

 import federation-plugin-manager {
 prefix federation-plugin-manager;
 }

 revision "2017-02-19" {
 description "Federation plugin model";
 }

 rpc update-federated-networks {
 input {
 leaf route-key-item {
 type instance-identifier;
 ext:context-reference federation-plugin-manager:mgr-context;
 }

 list federated-networks-in {
 key self-net-id;
 uses federation-plugin-manager:federated-nets;
 }
 }
 }
}

Configuration impact

None.

Clustering considerations

The federation plugin will be active only on one of the ODL instances in the cluster. The cluster singleton service
infrastructure will be used in order to register the federation plugin routed RPCs only on the selected ODL instance.

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Features to Install

odl-netvirt-federation

This is a new feature that will load odl-netvirt-openstack and the federation service features.
It will not be installed by default and requires manual startup using karaf feature:install command.

REST API

Connecting neutron networks from remote sites

URL: restconf/operations/federation-plugin-manager:update-federated-networks

Sample JSON data

{
 "input": {
 "federated-networks-in": [
 {
 "self-net-id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7920",
 "self-subnet-id": "93dee7cb-ba25-4318-b60c-19a15f2c079a",
 "subnet-ip": "10.0.123.0/24",
 "site-network": [
 {
 "id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7922",
 "site-ip": "10.0.43.146",
 "site-net-id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7921",
 "site-subnet-id": "93dee7cb-ba25-4318-b60c-19a15f2c079b",
 }
]
 }
]
 }
}

CLI

None.

Implementation

Assignee(s)

	Primary assignee:

	Tali Ben-Meir <tali@hpe.com>

	Other contributors:

	Guy Sela <guy.sela@hpe.com>

Shlomi Alfasi <shlomi.alfasi@hpe.com>

Yair Zinger <yair.zinger@hpe.com>

Work Items

Trello card https://trello.com/c/mgdUO6xx/154-federation-plugin-for-netvirt

Since the code was already implemented in downstream no work items will be defined

Dependencies

This feature will be implemented in 2 new bundles - federation-plugin-api and federation-plugin-impl
the implementation will be dependent on federation-service-api [3] bundle from OpenDaylight federation project.

The new karaf feature odl-netvirt-federation will encapsulate the federation-plugin api and impl bundles
and will be dependant on the followings features:

	federation-with-rabbit from federation project

	odl-netvirt-openstack from netvirt project

Testing

Unit Tests

End-to-end component service will test the federation plugin on top of the federation service.

Integration Tests

None

CSIT

The CSIT infrastructure will be enhanced to support connect/disconnect operations between sites using
update-federated-networks RPC call.

A new federation suite will test L2 and L3 connectivity between remote sites and will be based on the
existing L2/L3 connectivity suites.
CSIT will load sites A,B and C in 1-node/3-node deployment options to run the following tests:

1 Install odl-netvirt-federation feature

	Basic L2 connectivity test within the site

	Basic L3 connectivity test within the site

	L2 connectivity between sites - expected to fail since sites are not connected

	L3 connectivity between sites - expected to fail since sites are not connected

2 Connect sites A,B

	Basic L2 connectivity test within the site

	L2 connectivity test between VMs in sites A,B

	L2 connectivity test between VMs in sites A,C and B,C - expected to fail since sites are not connected

	Basic L3 connectivity test within the site

	L3 connectivity test between VMs in sites A,B

	L3 connectivity test between VMs in sites A,C and B,C - expected to fail since sites are not connected

3 Connect site C to A,B

	L2 connectivity test between VMs in sites A,B B,C and A,C

	L3 connectivity test between VMs in sites A,B B,C and A,C

	Connectivity test between VMs in non-federated networks in sites A,B,C - expected to fail

4 Disconnect site C from A,B

	Repeat the test steps from 2 after C disconnect. Identical results expected.

5 Disconnect sites A,B

	Repeat the test steps from 1 after A,B disconnect. Identical results expected.

6 Federation cluster test

	Repeat test steps 1-5 while rebooting the ODLs between the steps similarly to the existing cluster suite.

Documentation Impact

None.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] Federation project [https://wiki.opendaylight.org/view/Federation:Main]

[3] Federation service API [https://github.com/opendaylight/federation/tree/master/federation-service/api]

[4] Support of VxLAN based connectivity across Datacenters [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/l3vpn-over-vxlan-with-evpn-rt5.html]

[5] VNI based L2 switching, L3 forwarding and NATing [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/vni-based-l2-switching-l3-forwarding-and-NATing.html]

[6] Cross site manager presentation ODL Summit 2016 [https://www.youtube.com/watch?v=wDdP6ONg8wU&list=PL8F5jrwEpGAiRCzJIyboA8Di3_TAjTT-2]

Table of Contents

	DHCP Server Dynamic Allocation Pool

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

DHCP Server Dynamic Allocation Pool

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:dhcp_server_pool]

Extension of the ODL based DHCP server, which add support for dynamic address allocation to end
point users, that are not controlled (known) by OpenStack Neutron. Each DHCP pool can be configured
with additional information such as DNS servers, lease time (not yet), static allocations based on
MAC address, etc.

The feature supports IPv4 only.

Problem description

In a non-neutron northbounds environment e.g. SD-WAN solution (unimgr), there is currently no
dynamic DHCP service for end-points or networks that are connected to OVS. Every DHCP packet that is
received by the controller, the controller finds the neutron port based on the inport of the packet,
extracts the ip which was allocated by neutron for that vm, and replies using that info. If the dhcp
packet is from a non-neutron port, the packet won’t even reach the controller.

Use Cases

a DHCP packet that is received by the odl, from a port that is managed by Netvirt and was configured
using the netvirt API, rather then the neutron API, in a way that there is no pre-allocated IP for
network interfaces behind that port - will be handled by the DHCP dynamic allocation pool that is
configured on the network associated with the receiving OVS port.

Proposed change

We wish to forward to the controller, every dhcp packet coming from a non-neutron port as well (as
long as it is configured to use the controller dhcp). Once a DHCP packet is recieved by the
controller, the controller will check if there is already a pre-allocated address by checking if
packet came from a neutron port. if so, the controller will reply using the information from the
neutron port. Otherwise, the controller will find the allocation pool for the network which the
packet came from and will allocate the next free ip. The operation of each allocation pool will
be managed through the Genius ID Manager service that will support the allocation and release of IP
addresses (ids), persistent mapping across controller restarts and more. Neutron IP allocations will
be added to the relevant pools to avoid allocation of the same addresses.

The allocation pool DHCP server will support:

	DHCP methods: Discover, Request, Release, Decline and Inform (future)

	Allocation of a dynamic or specific (future) available IP address from the pool

	(future) Static IP address allocations

	(future) IP Address Lease Time + Rebinding and Renewal Time

	Classless Static Routes for each pool

	Domain names (future) and DNS for each pool

	(future) Probe an address before allocation

	(future) Relay agents

Pipeline changes

This new rule in table 60 will be responsible for forwarding dhcp packets to the controller:

cookie=0x6800000, duration=121472.576s, table=60, n_packets=1, n_bytes=342, priority=49,udp,tp_src=68,tp_dst=67 actions=CONTROLLER:65535

Yang changes

New YANG model to support the configuration of the DHCP allocation pools and allocations, per
network and subnet.

	Allocation-Pool: configuration of allocation pool parameters like range, gateway and dns servers.

	Allocation-Instance: configuration of static IP address allocation and Neutron pre-allocated addresses, per MAC address.

dhcp_allocation_pool.yang

 container dhcp_allocation_pool {
 config true;
 description "contains DHCP Server dynamic allocations";

 list network {
 key "network-id";
 leaf network-id {
 description "network (elan-instance) id";
 type string;
 }
 list allocation {
 key "subnet";
 leaf subnet {
 description "subnet for the dhcp to allocate ip addresses";
 type inet:ip-prefix;
 }

 list allocation-instance {
 key "mac";
 leaf mac {
 description "requesting mac";
 type yang:phys-address;
 }
 leaf allocated-ip {
 description "allocated ip address";
 type inet:ip-address;
 }
 }
 }
 list allocation-pool {
 key "subnet";
 leaf subnet {
 description "subnet for the dhcp to allocate ip addresses";
 type inet:ip-prefix;
 }
 leaf allocate-from {
 description "low allocation limit";
 type inet:ip-address;
 }
 leaf allocate-to {
 description "high allocation limit";
 type inet:ip-address;
 }
 leaf gateway {
 description "default gateway for dhcp allocation";
 type inet:ip-address;
 }
 leaf-list dns-servers {
 description "dns server list";
 type inet:ip-address;
 }
 list static-routes {
 description "static routes list for dhcp allocation";
 key "destination";
 leaf destination {
 description "destination in CIDR format";
 type inet:ip-prefix;
 }
 leaf nexthop {
 description "router ip address";
 type inet:ip-address;
 }
 }
 }
 }
 }

Configuration impact

The feature is activated in the configuration (disabled by default).

adding dhcp-dynamic-allocation-pool-enabled leaf to dhcpservice-config:

dhcpservice-config.yang

 container dhcpservice-config {
 leaf controller-dhcp-enabled {
 description "Enable the dhcpservice on the controller";
 type boolean;
 default false;
 }

 leaf dhcp-dynamic-allocation-pool-enabled {
 description "Enable dynamic allocation pool on controller dhcpservice";
 type boolean;
 default false;
 }
 }

and netvirt-dhcpservice-config.xml:

<dhcpservice-config xmlns="urn:opendaylight:params:xml:ns:yang:dhcpservice:config">
 <controller-dhcp-enabled>false</controller-dhcp-enabled>
 <dhcp-dynamic-allocation-pool-enabled>false</dhcp-dynamic-allocation-pool-enabled>
</dhcpservice-config>

Clustering considerations

Support clustering.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release

Carbon.

Alternatives

Implement and maintain an external DHCP server.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

Introducing a new REST API for the feature

Dynamic allocation pool

URL: /config/dhcp_allocation_pool:dhcp_allocation_pool/

Sample JSON data

{"dhcp_allocation_pool": {
 "network": [
 {
 "network-id": "d211a14b-e5e9-33af-89f3-9e43a270e0c8",
 "allocation-pool": [
 {
 "subnet": "10.1.1.0/24",
 "dns-servers": [
 "8.8.8.8"
],
 "gateway": "10.1.1.1",
 "allocate-from": "10.1.1.2",
 "allocate-to": "10.1.1.200"
 "static-routes": [
 {
 "destination": "5.8.19.24/16",
 "nexthop": "10.1.1.254"
 }
]
]}]}}

Static address allocation

URL: /config/dhcp_allocation_pool:dhcp_allocation_pool/

Sample JSON data

{"dhcp_allocation_pool": {
 "network": [
 {
 "network-id": "d211a14b-e5e9-33af-89f3-9e43a270e0c8",
 "allocation": [
 {
 "subnet": "10.1.1.0/24",
 "allocation-instance": [
 {
 "mac": "fa:16:3e:9d:c6:f5",
 "allocated-ip": "10.1.1.2"
 }
]}]}]}}

CLI

None.

Implementation

Assignee(s)

	Primary assignee:

	Shai Haim (shai.haim@hpe.com)

	Other contributors:

	Alex Feigin (alex.feigin@hpe.com)

Work Items

Here is the link for the Trello Card:
https://trello.com/c/0mgGyJuV/153-dhcp-server-dynamic-allocation-pool

Dependencies

None.

Testing

Unit Tests

N.A.

Integration Tests

N.A.

CSIT

N.A.

Documentation Impact

??

References

Table of Contents

	Discovery of directly connected PNFs in Flat/VLAN provider networks

	Problem description

	Subnet-Route

	Aliveness monitor

	Use Cases

	Proposed change

	Subnet-route

	Communication between VMs in tenant networks and PNFs in provider networks.

	Communication between VMs and PNFs in different tenant networks.

	ARP messages

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create external network with a subnet

	Create internal networks with subnets

	Create a router instance and connect it to an internal subnet and an external subnet

	Create a router instance and connect to it to two internal subnets

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Discovery of directly connected PNFs in Flat/VLAN provider networks

https://git.opendaylight.org/gerrit/#/q/topic:directly_connected_pnf_discovery

This features enables discovering and directing traffic to Physical Network Functions (PNFs)
in Flat/VLAN provider and tenant networks, by leveraging Subnet-Route feature.

Problem description

PNF is a device which has not been created by Openstack but connected to the hypervisors
L2 broadcast domain and configured with ip from one of the neutron subnets.

Ideally, L2/L3 communication between VM instances and PNFs on flat/VLAN networks
would be routed similarly to inter-VM communication. However, there are two main issues
preventing direct communication to PNFs.

	L3 connectivity of tenant network and VLAN provider network, between VMs and PNFs.
A VM is located in a tenant network, A PNF is located in a provider network (external network).
Both networks are connected via a router.
The only way for VMs to communicate with a PNF is via additional hop which is the external gateway,
instead of directly.

	L3 connectivity between VMs and PNFs in a two diffrent tenant networks,
connected by a router, which is not supported and have two problems.
First, traffic initiated from a VMs towards a PNF is dropped because there isn’t
an appropriate rule in FIB table (table 21) to route that traffic.
Second, in the other direction, PNFs are not able to resolve their default gateway.

We want to leverage the Subnet-Route and Aliveness-Monitor features in order to address
the above issues.

Subnet-Route

Today, Subnet-Route feature enables ODL to route traffic to a destination IP address,
even for ip addresses that have not been statically configured by OpenStack,
in the FIB table.
To achieve that, the FIB table contains a flow that match all IP packets in a given subnet range.
How that works?

	A flow is installed in the FIB table, matching on subnet prefix and vpn-id of the network,
with a goto-instruction directing packets to table 22. There, packets are punted to the controller.

	ODL hold the packets, and initiate an ARP request towards the destination IP.

	Upon receiving ARP reply, ODL installs exact IP match flow in FIB table to direct
all further traffic towards the newly learnt MAC of the destination IP

Current limitations of Subnet-Route feature:

	Works for BGPVPN only

	May cause traffic lost due to “swallowing” the packets punted from table 22.

	Uses the source MAC and source IP from the punted packet.

Aliveness monitor

After ODL learns a mac that is associated with an ip address,
ODL schedule an arp monitor task, with the purpose of verifying that the device is still alive
and responding. This is done by periodically sending arp requests to the device.

Current limitation:
Aliveness monitor was not designed for monitoring devices behind flat/VLAN provider network ports.

Use Cases

	
	L3 connectivity of tenant network and VLAN provider network, between VMs and PNFs.

	
	VMs in a private network, PNFs in external network

	L3 connectivity between VMs and PNFs in a two diffrent tenant networks.

Proposed change

Subnet-route

	Upon OpenStack configuration of a Subnet in a provider network,
a new vrf entry with subnet-route augmentation will be created.

	Upon associataion of neutron router with a subnet in a tenant network,
a new vrf entry with subnet-route augmentation will be created.

	Upon receiving ARP reply, install exact IP match flow in FIB table to direct all
further traffic towards the newly resolved PNF, on all relevant computes nodes,
which will be discussed later

	Packets that had been punted to controller will be resubmitted to the openflow pipeline
after installation of exact match flow.

Communication between VMs in tenant networks and PNFs in provider networks.

In this scenario a VM in a private tenant network wants to communicate with a PNF in the
(external) provider network

	The controller will hold the packets, and initiate an ARP request towards the PNF IP.
an ARP request will have source MAC and IP the router gateway
and will be sent from the NAPT switch.

	ARP packets will be punted from the NAPT switch only.

	Upon receiving ARP reply, install exact IP match flow in FIB table to direct all further
traffic towards the newly resolved PNF, on all compute nodes that are associated
with the external network.

	leveraging Aliveness monitor feature to monitor PNFs.
The controller will send ARP requests from the NAPT switch.

Communication between VMs and PNFs in different tenant networks.

In this scenario a VM and a PNF, in different private networks of the same tenant, wants to communicate.
For each subnet prefix, a designated switch will be chosen to communicate directly with the PNFs
in that subnet prefix. That means sending ARP requests to the PNFs and receiving their traffic.

Note: IP traffic from VM instances will retain the src MAC of the VM instance,
instead of replacing it with the router-interface-mac, in order to prevent MAC momvements
in the underlay switches.
This is a limitation until NetVirt supports a MAC per hypervisor implementation.

	A subnet flow will be installed in the FIB table,
matching the subnet prefix and vpn-id of the router.

	ARP request will have a source MAC and IP of the router interface, and will be sent via the provider port
in the designated switch.

	ARP packets will be punted from the designated switch only.

	Upon receiving an ARP reply, install exact IP match flow in FIB table to direct all
further traffic towards the newly resolved PNF, on all computes related to the router

	ARP responder flow: a new ARP responder flow will be installed in the designated switch
This flow will response for ARP requests from a PNF and the response MAC
will be the router interface MAC. This flow will use the LPort-tag of the provider port.

	Split Horizon protection disabling: traffic from PNFs,
arrives to the primary switch(via a provider port) due to the ARP responder rule described above,
and will need to be directed to the proper compute of the designated VM (via a provider port).
This require disabling the split horizon protection.
In order to protects against infinite loops, the packet TTL will be decreased.

	leveraging Aliveness monitor, the controller will send ARP requests from the designated switch.

ARP messages

ARP messages in the Flat/Vlan provider and tenant networks will be punted from
a designated switch, in order to avoid a performance issue in the controller,
of dealing with broadcast packets that may be received in multiple provider ports.
In external networks this switch is the NAPT switch.

Pipeline changes

First use-case depends on hairpinning spec [2], the flows presented here reflects that dependency.

Egress traffic from VM with floating IP to an unresolved PNF in external network

	Packets in FIB table after translation to FIP, will match on subnet flow
and will be punted to controller from Subnet Route table.
Then, ARP request will be generated and be sent to the PNF.
No flow changes are required in this part.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip
set vpn-id=ext-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=ext-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=ext-subnet-ip =>

Subnet Route table (22): => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.
No other flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip
set vpn-id=ext-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=ext-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=pnf-ip,
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Egress traffic from VM using NAPT to an unresolved PNF in external network

	Ingress-DPN is not the NAPT switch, no changes required.
Traffic will be directed to NAPT switch and directed to the outbound NAPT table straight
from the internal tunnel table

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group output to tunnel port of NAPT switch

	Ingress-DPN is the NAPT switch. Packets in FIB table after translation to NAPT,
will match on subnet flow and will be punted to controller from Subnet Route table.
Then, ARP request will be generated and be sent to the PNF. No flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port
set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB tabl (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=ext-subnet-ip =>

Subnet Route table (22) => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.
No other changes required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: vpn-id=router-id TBD set vpn-id=external-net-id =>

NAPT PFIB table (47) match: vpn-id=external-net-id =>

FIB table (21) match: vpn-id=ext-network-id, dst-ip=pnf-ip
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Egress traffic from VM in private network to an unresolved PNF in another private network

	Packet from a VM is punted to the controller, no flow changes are required.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id dst-ip=subnet-ip =>

Subnet Route table (22): => Output to Controller

	After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id dst-ip=pnf-ip
set dst-mac=pnf-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider port

Ingress traffic to VM in private network from a PNF in another private network

	New flow in table 19, to distinguish our new use-case,
in which we want to decrease the TTL of the packet

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: lport-tag=provider-port, vpn-id=router-id, dst-mac=router-interface-mac,
set split-horizon-bit = 0, decrease-ttl =>

FIB table (21) match: vpn-id=router-id dst-ip=vm-ip
set dst-mac=vm-mac reg6=provider-lport-tag =>

Egress table (220) output to provider port

Yang changes

In odl-l3vpn module, adjacency-list grouping will be enhanced with the following field

 grouping adjacency-list {
 list adjacency {
 key "ip_address";
 ...
 leaf phys-network-func {
 type boolean;
 default false;
 description "Value of True indicates this is an adjacency of a device in a provider network";
 }
 }
}

An adjacency that is added as a result of a PNF discovery, is a primary adjacency with
an empty next-hop-ip list. This is not enough to distinguish PNF at all times.
This new field will help us identify this use-case in a more robust way.

Configuration impact

A configuration mode will be available to turn this feature ON/OFF.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

All traffic of PNFs in each subnet-prefix sends their traffic to a designated switch.

Targeted Release

Carbon

Alternatives

None

Usage

Create external network with a subnet

neutron net-create public-net -- --router:external --is-default --provider:network_type=flat
--provider:physical_network=physnet1
neutron subnet-create --ip_version 4 --gateway 10.64.0.1 --name public-subnet1 <public-net-uuid> 10.64.0.0/16
-- --enable_dhcp=False

Create internal networks with subnets

neutron net-create private-net1
neutron subnet-create --ip_version 4 --gateway 10.0.123.1 --name private-subnet1 <private-net1-uuid>
10.0.123.0/24
neutron net-create private-net2
neutron subnet-create --ip_version 4 --gateway 10.0.124.1 --name private-subnet2 <private-net2-uuid>
10.0.124.0/24

Create a router instance and connect it to an internal subnet and an external subnet

This will allow communication with PNFs in provider network

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> <router1-uuid> <public-net-uuid>

Create a router instance and connect to it to two internal subnets

This will allow East/West communication between VMs and PNFs

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-interface-add <router1-uuid> <private-subnet2-uuid>

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Tomer Pearl <tomer.pearl@hpe.com>

	Other contributors:

	Yakir Dorani <yakir.dorani@hpe.com>

Work Items

	Configure subnet-route flows upon ext-net configuration / router association

	Solve traffic lost issues of punted packets from table 22

	Enable aliveness monitoring on external interfaces.

	Add ARP responder flow for L3-PNF

	Add ARP packet-in from primary switch only

	Disable split-horizon and enable TTL decrease for L3-PNF

Dependencies

This feature depends on hairpinning feature [2]

Testing

Unit Tests

Unit tests will be added for the new functionality

Integration Tests

CSIT

Will need to see if a PNF could be simulated in CSIT

Documentation Impact

References

[1] https://docs.google.com/presentation/d/1ByvEQXUtIyH-H7Bin6OBJNrHjOv-3hpHYzU6Sf6hDbA/edit#slide=id.g11657174d1_0_31
[2] http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/hairpinning-flat-vlan.html

Table of Contents

	ECMP Support for BGP based L3VPN

	Problem description

	Use Cases

	High-Level Components:

	Proposed change

	Pipeline changes

	Local FIB entry/Nexthop Group programming:

	Remote FIB entry/Nexthop Group programming:

	YANG changes

	L3VPN YANG changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	ECMP forwarding through multiple Compute Node and VMs

	ECMP forwarding for dispersed VMs

	ECMP forwarding for co-located VMs

	ECMP forwarding through two DC-Gateways

	ECMP for Intra-DC L3VPN communication

	ECMP Path decision based on Internal/External Tunnel Monitoring

	GRE tunnel state handling

	VxLAN tunnel state handling

	Assumptions

	Reboot Scenarios

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

ECMP Support for BGP based L3VPN

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn_ecmp

This Feature is needed for load balancing of traffic in a cloud and also
redundancy of paths for resiliency in cloud.

Problem description

The current L3VPN implementation for BGP VPN doesn’t support load balancing
behavior for external routes through multiple DC-GWs and reaching starting
route behind Nova VMs through multiple compute nodes.

This spec provides implementation details about providing traffic load
balancing using ECMP for L3 routing and forwarding. The load balancing of
traffic can be across virtual machines with each connected to the different
compute nodes, DC-Gateways. ECMP also enables fast failover of traffic
The ECMP forwarding is required for both inter-DC and intra-DC data traffic
types. For inter-DC traffic, spraying from DC-GW to compute nodes & VMs for
the traffic entering DC and spraying from compute node to DC-GWs for the
traffic exiting DC is needed. For intra-DC traffic, spraying of traffic
within DC across multiple compute nodes & VMs is needed. There should be
tunnel monitoring (e.g. GRE-KA or BFD) logic implemented to monitor DC-GW
/compute node GRE tunnels which helps to determine available ECMP paths to
forward the traffic.

Use Cases

	ECMP forwarding of traffic entering a DC (i.e. Spraying of
DC-GW -> OVS traffic across multiple Compute Nodes & VMs).
In this case, DC-GW can load balance the traffic if a static route can be reachable
through multiple NOVA VMs (say VM1 and VM2 connected on different compute nodes)
running some networking application (example: vRouter).

	ECMP forwarding of traffic exiting a DC (i.e. Spraying of
OVS -> DC-GW traffic across multiple DC Gateways).
In this case, a Compute Node can LB the traffic if external route can be
reachable from multiple DC-GWs.

	ECMP forwarding of intra-DC traffic (i.e. Spraying of traffic within DC
across multiple Compute Nodes & VMs)
This is similar to UC1, but load balancing behavior is applied on remote Compute
Node for intra-DC communication.

	OVS -> DC-GW tunnel status based ECMP for inter and intra-DC traffic.
Tunnel status based on monitoring (BFD) is considered in ECMP path set determination.

High-Level Components:

The following components of the Openstack - ODL solution need to be enhanced to provide
ECMP support:

	OpenStack Neutron BGPVPN Driver (for supporting multiple RDs)

	OpenDaylight Controller (NetVirt VpnService)

We will review enhancements that will be made to each of the above components in following
sections.

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager and VPN Interface Manager)

	FIB Manager

Pipeline changes

Local FIB entry/Nexthop Group programming:

A static route (example: 100.0.0.0/24) reachable through two VMs connected
with same compute node.

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>Local VM Group=>Table 220

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=100.0.0.0/24 actions=write_actions(group:150002)
group_id=150002,type=select,bucket=weight:50,actions=group:150001,bucket=weight:50,actions=group:150000
group_id=150001,type=all,bucket=actions=set_field:fa:16:3e:34:ff:58->eth_dst,load:0x200->NXM_NX_REG6[],resubmit(,220)
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:eb:61:39->eth_dst,load:0x100->NXM_NX_REG6[],resubmit(,220)

Remote FIB entry/Nexthop Group programming:

	A static route (example: 10.0.0.1/32) reachable through two VMs connected with
different compute node.

on remote compute node,

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>VxLAN port

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=10.0.0.1 actions=set_field:0xEF->tun_id, group:150003
group_id=150003,type=select,bucket=weight:50,actions=output:1,bucket=weight:50,actions=output:2

on local compute node,

Here, From LB group, packets flow through local VM and VxLAN port

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>Local VM Group=>Table 220

………………………………………………………………………………=> VxLAN port

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=10.0.0.1 actions=group:150003
group_id=150003,type=select,bucket=weight:50,group=150001,bucket=weight:50,actions=set_field:0xEF->tun_id, output:2
group_id=150001,type=all,bucket=actions=set_field:fa:16:3e:34:ff:58->eth_dst,load:0x200->NXM_NX_REG6[],resubmit(,220)

	An external route (example: 20.0.0.1/32) reachable through two DC-GWs.

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>GRE port

cookie=0x8000003, duration=13.044s, table=21, n_packets=0, n_bytes=0,priority=42,ip,metadata=0x222ec/0xfffffffe,nw_dst=20.0.0.1 actions=load:0x64->NXM_NX_REG0[0..19],load:0xc8->NXM_NX_REG1[0..19],group:150111
group_id=150111,type=select,bucket=weight:50,actions=push_mpls:0x8847, move:NXM_NX_REG0[0..19]->OXM_OF_MPLS_LABEL[],output:3, bucket=weight:50,actions=push_mpls:0x8847,move:NXM_NX_REG1[0..19]->OXM_OF_MPLS_LABEL[],output:4

YANG changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang and odl-fib.yang
to support ECMP functionality.

L3VPN YANG changes

route-distinguisher type is changed from leaf to leaf-list in vpn-af-config grouping in l3vpn.yang.

l3vpn.yang

 grouping vpn-af-config {
 description "A set of configuration parameters that is applicable to both IPv4 and
 IPv6 address family for a VPN instance .";

 leaf-list route-distinguisher {
 description "The route-distinguisher command configures a route distinguisher (RD)
 for the IPv4 or IPv6 address family of a VPN instance.
 Format is ASN:nn or IP-address:nn.";
 config "true";
 type string{
 length "3..21";
 }
 }
 }

ODL-L3VPN YANG changes

	Add vrf-id (RD) in adjacency list in odl-l3vpn.yang.

odl-l3vpn.yang

 grouping adjacency-list {
 list adjacency{
 key "ip_address";
 leaf-list next-hop-ip-list { type string; }
 leaf ip_address {type string;}
 leaf primary-adjacency {
 type boolean;
 default false;
 description "Value of True indicates this is a primary adjacency";
 }

 leaf label { type uint32; config "false"; } /*optional*/
 leaf mac_address {type string;} /*optional*/
 leaf vrf-id {type string;}
 }
 }

	vpn-to-extraroute have to be updated with multiple RDs (vrf-id) when extra route from VMs
connected with different compute node and when connected on same compute node, just use
same RD and update nexthop-ip-list with new VM IP address like below.

odl-l3vpn.yang

 container vpn-to-extraroutes {
 config false;
 list vpn-extraroutes {
 key "vpn-name";
 leaf vpn-name {
 type uint32;
 }

 list extra-routes {
 key "vrf-id";
 leaf vrf-id {
 description "The vrf-id command configures a route distinguisher (RD) for the IPv4
 or IPv6 address family of a VPN instance or vpn instance name for
 internal vpn case.";
 type string;
 }

 list route-paths {
 key "prefix";
 leaf prefix {type string;}
 leaf-list nexthop-ip-list {
 type string;
 }
 }
 }
 }
 }

	To manage RDs for extra with multiple next hops, the following YANG
model is required to advertise (or) withdraw the extra routes with
unique NLRI accordingly.

odl-l3vpn.yang

 container extraroute-routedistinguishers-map {
 config true;
 list extraroute-routedistingueshers {
 key "vpnid";
 leaf vpnid {
 type uint32;
 }

 list dest-prefixes {
 key "dest-prefix";
 leaf dest-prefix {
 type string;
 mandatory true;
 }

 leaf-list route-distinguishers {
 type string;
 }
 }
 }
 }

ODL-FIB YANG changes

	When Quagga BGP announces route with multiple paths, then it is ODL responsibility
to program Fib entries in all compute nodes where VPN instance blueprint is present,
so that traffic can be load balanced between these two DC gateways. It requires
changes in existing odl-fib.yang model (like below) to support multiple
routes for same destination IP prefix.

odl-fib.yang

 grouping vrfEntries {
 list vrfEntry {
 key "destPrefix";
 leaf destPrefix {
 type string;
 mandatory true;
 }

 leaf origin {
 type string;
 mandatory true;
 }

 list route-paths {
 key "nexthop-address";
 leaf nexthop-address {
 type string;
 mandatory true;
 }

 leaf label {
 type uint32;
 }
 }
 }
 }

	New YANG model to update load balancing next hop group buckets according
to VxLAN/GRE tunnel status [Note that these changes are required only if
watch_port in group bucket is not working based on tunnel port liveness
monitoring affected by the BFD status]. When one of the VxLAN/GRE tunnel
is going down, then retrieve nexthop-key from dpid-l3vpn-lb-nexthops by
providing tep-device-ids from src-info and dst-info of StateTunnelList
while handling its update DCN. After retrieving next hop key, fetch
target-device-id list from l3vpn-lb-nexthops and reprogram
VxLAN/GRE load balancing group in each remote Compute Node based
on tunnel state between source and destination Compute Node. Similarly,
when tunnel comes up, then logic have to be rerun to add its
bucket back into Load balancing group.

odl-fib.yang

 container l3vpn-lb-nexthops {
 config false;
 list nexthops {
 key "nexthop-key";
 leaf group-id { type string; }
 leaf nexhop-key { type string; }
 leaf-list target-device-id { type string;
 //dpId or ip-address }
 }
 }

 container dpid-l3vpn-lb-nexthops {
 config false;
 list dpn-lb-nexthops {
 key "src-dp-id dst-device-id";
 leaf src-dp-id { type uint64; }
 leaf dst-device-id { type string;
 //dpId or ip-address }
 leaf-list nexthop-keys { type string; }
 }
 }

ECMP forwarding through multiple Compute Node and VMs

In some cases, extra route can be added which can have reachability through
multiple Nova VMs. These VMs can be either connected on same compute node
(or) different Compute Nodes. When VMs are in different compute nodes, DC-GW
should learn all the route paths such that ECMP behavior can be applied for
these multi path routes. When VMs are co-located in same compute node, DC-GW
will not perform ECMP and compute node performs traffic splitting instead.

ECMP forwarding for dispersed VMs

When configured extra route are reached through nova VMs which are connected
with different compute node, then it is ODL responsibility to advertise these
multiple route paths (but with same MPLS label) to Quagga BGP which in turn
sends these routes into DC-GW. But DC-GW replaces the existing route with a new
route received from the peer if the NLRI (prefix) is same in the two routes.

This is true even when multipath is enabled on the DC-GW and it is as per standard
BGP RFC 4271, Section 9 UPDATE Message Handling. Hence the route is lost in DC-GW
even before path computation for multipath is applied.This scenario is solved by
adding multiple route distinguisher (RDs) for the vpn instance and let ODL uses
the list of RDs to advertise the same prefix with different BGP NHs. Multiple RDs
will be supported only for BGP VPNs.

ECMP forwarding for co-located VMs

When extra routes on VM interfaces are connected with same compute node, LFIB/FIB
and Terminating service table flow entries should be programmed so that traffic can
be load balanced between local VMs. This can be done by creating load balancing next
hop group for each vpn-to-extraroute (if nexthop-ip-list size is greater than 1) with
buckets pointing to the actual VMs next hop group on source Compute Node. Even for the
co-located VMs, VPN interface manager should assign separate RDs for each adjacency of
same dest IP prefix and let route can be advertised again to Quagga BGP with same next
hop (TEP IP address). This will enable DC-Gateway to realize ECMP behavior when an IP
prefix can be reachable through multiple co located VMs on one Compute Node and an
another VM connected on different Compute Node.

To create load balancing next hop group, the dest IP prefix is used as the key to
generate group id. When any of next hop is removed, then adjust load balancing nexthop
group so that traffic can be sent through active next hops.

ECMP forwarding through two DC-Gateways

The current ITM implementation provides support for creating multiple GRE tunnels for
the provided list of DC-GW IP addresses from compute node. This should help in creating
corresponding load balancing group whenever Quagga BGP is advertising two routes on same
IP prefix pointing to multiple DC GWs. The group id of this load balancing group can be
derived from sorted order of DC GW TEP IP addresses with the following format dc_gw_tep_ip
_address_1: dc_gw_tep_ip_address_2. This will be useful when multiple external IP prefixes
share the same next hops. The load balancing next hop group buckets is programmed according
to sorted remote end point DC-Gateway IP address. The support of action move:NXM_NX_REG0(1)
-> MPLS label is not supported in ODL openflowplugin. It has to be implemented. Since there
are two DC gateways present for the data center, it is possible that multiple equal cost
routes are supplied to ODL by Quagga BGP like Fig 2. The current Quagga BGP doesn’t have
multipath support and it will be done. When Quagga BGP announces route with multiple
paths, then it is ODL responsibility to program Fib entries in all compute nodes where
VPN instance blueprint is present, so that traffic can be load balanced between these
two DC gateways. It requires changes in existing odl-fib.yang model (like below) to
support multiple routes for same destination IP prefix.

BGPManager should be able to create vrf entry for the advertised IP prefix with multiple
route paths. VrfEntryListener listens to DCN on these vrf entries and program Fib entries
(21) based on number route paths available for given IP prefix. For the given (external)
destination IP prefix, if there is only one route path exists, use the existing approach
to program FIB table flow entry matches on (vpnid, ipv4_dst) and actions with push MPLS
label and output to gre tunnel port. For the given (external) destination IP prefix, if
there are two route paths exist, then retrieve next hop ip address from routes list in
the same sorted order (i.e. using same logic which is used to create buckets for load
balancing next hop group for DC- Gateway IP addresses), then program FIB table flow entry
with an instruction like Fig 3. It should have two set field actions where first action sets
MPLS label to NX_REG0 for first sorted DC-GW IP address and second action sets MPLS label
to NX_REG1 for the second sorted DC-GW IP address. When more than two DC Gateways are used,
then more number of NXM Registries have to be used to push appropriate MPLS label before
sending it to next hop group. It needs operational DS container to have mapping between DC
Gateway IP address and NXM_REG. When one of the route is withdrawn for the IP prefix, then
modify the FIB table flow entry with with push MPLS label and output to the available
gre tunnel port.

ECMP for Intra-DC L3VPN communication

ECMP within data center is required to load balance the data traffic when extra route can
be reached through multiple next hops (i.e. Nova VMs) when these are connected with different
compute nodes. It mainly deals with how Compute Nodes can spray the traffic when dest IP prefix
can be reached through two or more VMs (next hops) which are connected with multiple compute
nodes.

When there are multiple RDs (if VPN is of type BGP VPN) assigned to VPN instance so that VPN
engine can be advertise IP route with different RDs to achieve ECMP behavior in DC-GW as
mentioned before. But for intra-DC, this doesn’t make any more sense since it’s all about
programming remote FIB entries on computes nodes to achieve data traffic
spray behavior.

Irrespective of RDs, when multiple next hops (which are from different Compute Nodes) are
present for the extra-route adjacency, then FIB Manager has to create load balancing next
hop group in remote compute node with buckets pointing with targeted Compute Node VxLAN
tunnel ports.

To allocate group id for this load balancing next hop, the same destination IP prefix is
used as the group key. The remote FIB table flow should point to this next hop group after
writing prefix label into tunnel_id. The bucket weight of remote next hop is adjusted
according to number of VMs associated to given extra route and on which compute node
the VMs are connected. For example, two compute node having one VM each, then bucket
weight is 50 each. One compute node having two VMs and another compute node having one
VM, then bucket weight is 66 and 34 each. The hop-count property in vrfEntry data store
helps to decide what is the bucket weight for each bucket.

ECMP Path decision based on Internal/External Tunnel Monitoring

ODL will use GRE-KA or BFD protocol to implement monitoring of GRE external tunnels.
This implementation detail is out of scope in this document. Based on the tunnel state,
GRE Load Balancing Group is adjusted accordingly as mentioned like below.

GRE tunnel state handling

As soon as GRE tunnel interface is created in ODL, interface manager uses alivenessmonitor
to monitor the GRE tunnels for its liveness using GRE Keep-alive protocol. When tunnel state
changes, it has to handled accordingly to adjust above load balancing group so that data
traffic is sent to only active DC-GW tunnel. This can be done with listening to update
StateTunnelList DCN.

When one GRE tunnel is operationally going down, then retrieve the corresponding bucket
from the load balancing group and delete it.
When GRE tunnel comes up again, then add bucket back into load balancing group and
reprogram it.

When both GRE tunnels are going down, then just recreate load balancing group with empty.
Withdraw the routes from that particular DC-GW.
With the above implementation, there is no need of modifying Fib entries for GRE tunnel
state changes.

But when BGP Quagga withdrawing one of the route for external IP prefix, then reprogram
FIB flow entry (21) by directly pointing to output=<gre_port> after pushing MPLS label.

VxLAN tunnel state handling

Similarly, when VxLAN tunnel state changes, the Load Balancing Groups in Compute Nodes have
to be updated accordingly so that traffic can flow through active VxLAN tunnels. It can be
done by having config mapping between target data-path-id to next hop group Ids
and vice versa.

For both GRE and VxLAN tunnel monitoring, L3VPN has to implement the following YANG model
to update load balancing next hop group buckets according to tunnel status.

When one of the VxLAN/GRE tunnel is going down, then retrieve nexthop-key from
dpid-l3vpn-lb-nexthops by providing tep-device-ids from src-info and dst-info of
StateTunnelList while handling its update DCN.

After retrieving next hop key, fetch target-device-id list from l3vpn-lb-nexthops
and reprogram VxLAN/GRE load balancing group in each remote Compute Node based on
tunnel state between source and destination Compute Node. Similarly, when tunnel
comes up, then logic have to be rerun to add its bucket back into
Load balancing group.

Assumptions

The support for action move:NXM_NX_REG0(1) -> MPLS label is already available
in Compute Node.

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Implementation

Assignee(s)

	Primary assignee(s):

	
	Manu B <manu.b@ericsson.com>

	Kency Kurian <kency.kurian@ericsson.com>

	Gobinath <gobinath@ericsson.com>

	P Govinda Rajulu <p.govinda.rajulu@ericsson.com>

	Other contributors:

	
	Periyasamy Palanisamy <periyasamy.palanisamy@ericsson.com>

Work Items

The Trello cards have already been raised for this feature
under l3vpn_ecmp.

Link for the Trello Card: https://trello.com/c/8E3LWIkq/121-ecmp-support-for-bgp-based-l3vpn-l3vpn-ecmp

Dependencies

Quagga BGP multipath support and APIs. This is needed to support when two DC-GW advertises
routes for same external prefix with different route labels
GRE tunnel monitoring. This is need to implement ECMP forwarding based on MPLSoGRE tunnel state.
Support for action move:NXM_NX_REG0(1) -> MPLS label in ODL openflowplugin

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

	https://docs.google.com/document/d/1KRxrIGCLCBuz2D8f8IhU2I84VrM5EMa1Y7Scjb6qEKw

Table of Contents

	Element Counters

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Element Counters

https://git.opendaylight.org/gerrit/#/q/element-counters

This feature depends on the Netvirt statistics feature.

This feature enables collecting statistics on filtered traffic passed from/to a network element. For example: traffic outgoing/incoming from a specific IP, tcp traffic, udp traffic, incoming/outgoing traffic only.

Problem description

Collecting statistics on filtered traffic sent to/from a VM is currently not possible.

Use Cases

	Tracking East/West communication between local VMs.

	Tracking East/West communication between VMs that are located in different compute nodes.

	Tracking communication between a local VM and an IP located in an external network.

	Tracking TCP/UDP traffic sent from/to a VM.

	Tracking dropped packets between 2 VMs.

Proposed change

The Netvirt Statistics Plugin will receive requests regarding element filtered counters.
A new service will be implemented (“CounterService”), and will be associated with the relevant interfaces (either ingress side, egress sides or both of them).

	Ingress traffic: The service will be the first one in the pipeline after the Ingress ACL service.

	Egress traffic: The service will be the last one after the Egress ACL service.

	The input for counters request regarding VM A, and incoming and outgoing traffic from VM B, will be VM A interface uuid and VM B IP.

	The input can also include other filters like TCP only traffic, UDP only traffic, incoming/outgoing traffic.

	In order to track dropped traffic between VM A and VM B, the feature should be activated on both VMS (either in the same compute node or in different compute nodes). service binding will be done on both VMs relevant interfaces.

	If the counters request involves an external IP, service binding will be done only on the VM interface.

	Adding/Removing the “CounterService” should be dynamic and triggered by requesting element counters.

The Statistics Plugin will use OpenFlow flow statistic requests for these new rules,
allowing it to gather statistics regarding the traffic between the 2 elements.
It will be responsible to validate and filter the counters results.

Pipeline changes

Two new tables will be used: table 219 for outgoing traffic from the VM, and table 249 for incoming traffic from the VM.
In both ingress and egress pipelines, the counter service will be just after the appropriate ACL service.
The default rule will resubmit traffic to the appropriate dispatcher table.

Assuming we want statistics on VM A traffic, received or sent from VM B.

VM A Outgoing Traffic (vm interface)

In table 219 traffic will be matched against dst-ip and lport tag.

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: dst-ip=vmB-ip, lport-tag=vmA-interface, actions: resubmit to table 17 =>

VM A Incoming Traffic (vm interface)

In table 249 traffic will be matched against src-ip and lport tag.

Egress dispatcher table (220): match: lport-tag=vmA-interface, actions: go to table 249 =>

Egress counters table (249): match: lport-tag=vmA-interface, src-ip=vmB-ip, actions: resubmit to table 220 =>

Assuming we want statistics on VM A incoming TCP traffic.

VM A Outgoing Traffic (vm interface)

Egress dispatcher table (220): match: lport-tag=vmA-interface, actions: go to table 249 =>

Egress counters table (249): match: lport-tag=vmA-interface, tcp, actions: resubmit to table 220 =>

Assuming we want statistics on VM A outgoing UDP traffic.

VM A Incoming traffic (vm interface)

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: lport-tag=vmA-interface, udp, actions: resubmit to table 17 =>

Assuming we want statistics on all traffic sent to VM A port.

VM A Incoming traffic (vm interface)

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to table 219 =>

Ingress counters table (219): match: lport-tag=vmA-interface, actions: resubmit to table 17 =>

Yang changes

Netvirt Statistics module will be enhanced with the following RPC:

grouping result {
 list counterResult {
 key id;
 leaf id {
 type string;
 }
 list groups {
 key name;
 leaf name {
 type string;
 }
 list counters {
 key name;
 leaf name {
 type string;
 }
 leaf value {
 type uint64;
 }
 }
 }
 }
}

grouping filters {
 leaf-list groupFilters {
 type string;
 }
 leaf-list counterFilter {
 type string;
 }
}

grouping elementRequestData {
 container filters {
 container tcpFilter {
 leaf on {
 type boolean;
 }
 leaf srcPort {
 type int32;
 default -1;
 }
 leaf dstPort {
 type int32;
 default -1;
 }
 }

 container udpFilter {
 leaf on {
 type boolean;
 }
 leaf dstPort {
 type int32;
 default -1;
 }
 leaf srcPort {
 type int32;
 default -1;
 }
 }

 container ipFilter {
 leaf ip {
 type string;
 default "";
 }
 }
 }
}

container elementCountersRequestConfig {
 list counterRequests {
 key "requestId";
 leaf requestId {
 type string;
 }
 leaf lportTag {
 type int32;
 }
 leaf dpn {
 type uint64;
 }
 leaf portId {
 type string;
 }
 leaf trafficDirection {
 type string;
 }
 uses elementRequestData;
 }
}

rpc acquireElementCountersRequestHandler {
 input {
 leaf portId {
 type string;
 }
 container incomingTraffic {
 uses elementRequestData;
 }
 container outgoingTraffic {
 uses elementRequestData;
 }
 uses filters;
 }
 output {
 leaf incomingTrafficHandler {
 type string;
 }
 leaf outcoingTrafficHandler {
 type string;
 }
 }
}

rpc releaseElementCountersRequestHandler {
 input {
 leaf handler {
 type string;
 }
 }
 output {
 }
}

rpc getElementCountersByHandler {
 input {
 leaf handler {
 type string;
 }
 }
 output {
 uses result;
 }
}

Configuration impact

The described above YANG model will be saved in the data store.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Since adding the new service is done by a request (as well as removing it), not all packets will be sent to the new tables described above.

Targeted Release

Carbon

Alternatives

None

Usage

	Create router, network, 2 VMS, VXLAN tunnel.

	Connect to each one of the VMs and send ping to the other VM.

	Use REST to get the statistics.

Run the following to get interface ids:

http://10.0.77.135:8181/restconf/operational/ietf-interfaces:interfaces-state/

Choose VM B interface and use the following REST in order to get the statistics:
Assuming VM A IP = 1.1.1.1, VM B IP = 2.2.2.2

Acquire counter request handler:

10.0.77.135:8181/restconf/operations/statistics-plugin:acquireElementCountersRequestHandler, {"input":{"portId":"4073b4fe-a3d5-47c0-b37d-4fb9db4be9b1", "incomingTraffic":{"filters":{"ipFilter":{"ip":"1.1.3.9"}}}}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Release handler:

10.0.77.135:8181/restconf/operations/statistics-plugin:releaseElementCountersRequestHandler, input={"input":{"handler":"1"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Get counters:

10.0.77.135:8181/restconf/operations/statistics-plugin:getElementCountersByHandler, input={"input":{"handler":"1"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Example counters output:

 {
"output": {
 "counterResult": [
 {
 "id": "SOME UNIQUE ID",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 298000000
 },
 {
 "name": "durationSecondCount",
 "value": 10369
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesTransmittedCount",
 "value": 648
 },
 {
 "name": "bytesReceivedCount",
 "value": 0
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsTransmittedCount",
 "value": 8
 },
 {
 "name": "packetsReceivedCount",
 "value": 0
 }
]
 }
]
 }
]
}

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Guy Regev <guy.regev@hpe.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/88MnwGwb/129-element-to-element-counters

	Add new service in Genius.

	Implement new rules installation.

	Update Netvirt Statistics module to support the new counters request.

Dependencies

None

Testing

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Netvirt statistics feature: https://git.opendaylight.org/gerrit/#/c/50164/8

Table of Contents

	Hairpinning of floating IPs in flat/VLAN provider networks

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Create external network with two subnets

	Create internal networks with subnets

	Create two router instances and connect each router to one internal subnet and one external subnet

	Create router instance connected to both external subnets and the remaining internal subnets

	Create floating ips from both subnets

	Create 2 VM instance in each subnet and associate with floating ips

	Connectivity tests

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Hairpinning of floating IPs in flat/VLAN provider networks

https://git.opendaylight.org/gerrit/#/q/topic:hairpinning

This feature enables VM instances connected to the same router to communicate with each other using their
floating ip addresses directly without traversing via the external gateway.

Problem description

Local and East/West communication between VMs using floating ips for flat/VLAN provider types is not
handled internally by the pipeline currently. As a result, this type of traffic is mistakenly classified
as North/South and routed to the external network gateway.

Today, SNATted traffic to flat/VLAN network is routed directly to the external gateway after traversing
the SNAT/outbound NAPT pipeline using OF group per external network subnet.
The group itself sets the destination mac as the mac address of the external gw associated with the floating ip/
router gw and output to the provider network port via the egress table.
This workflow would be changed to align with the VxLAN provider type and direct SNATted traffic back to the FIB
where the destination can then resolved to be floating ip on local or remote compute node.

Use Cases

	Local and East/West communication between VMs co-located on the same compute node using associated floating ip.

	Local and East/West communication between VMs located on different compute nodes using associated floating ip.

Proposed change

	The vpn-id used for classification of floating ips and router gateway external addresses in flat/VLAN
provider networks is based on the external network id. It will be changed to reflect the subnet id
associated with the floating ip/router gateway. This will allow traffic from the SNAT/outbound NAPT
table to be resubmitted back to the FIB while preserving the subnet id.

	Each floating ip already has VRF entry in the fib table. The vpn-id of this entry will also be based
on the subnet id of the floating ip instead of the external network id. If the VM associated with the
floating ip is located on remote compute node, the traffic will be routed to the remote compute based
on the provider network of the subnet from which the floating ip was allocated e.g. if the private
network is VxLAN and the external network is VLAN provider, traffic to floating ip on remote compute
node will be routed to the provider port associated with the VLAN provider and not the tunnel
associated with the VxLAN provider.

	In the FIB table of the egress node, the destination mac will be replaced with the mac address
of the floating ip in case of routing to remote compute node. This will allow traffic from flat/VLAN
provider enter the L3 pipeline for DNAT of the floating ip.

	Default flow will be added to the FIB table for each external subnet-id. If no floating ip match
was found in the FIB table for the subnet id, the traffic will be sent to the group of the external
subnet. Each group entry will perform the following:
(a) replace the destination mac address to the external gateway mac address
(b) send the traffic to the provider network via the egress table.

	Ingress traffic from flat/VLAN provider network is bounded to L3VPN service using vpn-id of the
external network id. To allow traffic classification based on subnet id for floating ips and router
gateway ips, the GW MAC table will replace the vpn-id of the external network with
the vpn-id of the subnet id of the floating ip. For ingress traffic to router gateway mac, the vpn-id
of the correct subnet will be deterined at the FIB table based on the router gateway fixed ip.

	A new model will be introduced to contain the new vpn/subnet associations - odl-nat:subnets-networks.
This model will be filled only for external flat/VLAN provider networks and will take precedence over
odl-nat:external-networks model for selection of vpn-id. BGPVPN use cases won’t be affected by these
changes as this model will not be applicable for these scenarios.

Pipeline changes

Egress traffic from VM with floating IP to the internet

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ip

	Packets from SNAT table resubmitted back to the FIB rather than straight to the external network subnet-id group.
In the FIB table it should be matched against a new flow with lower priority than any other flow containing
dst-ip match. Traffic will be redirected based on the vpn-id of the floating ip subnet to the external network
subnet-id group.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip set vpn-id=fip-subnet-id,src-ip=fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=fip set src-mac=fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id =>

Subnet-id group: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

Ingress traffic from the internet to VM with floating IP

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=floating-ip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=fip =>

Pre DNAT table (25) match: dst-ip=fip set vpn-id=router-id,dst-ip=vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm-ip =>

Local Next-Hop group: set dst-mac=vm-mac, reg6=vm-lport-tag =>

Egress table (220) output to VM port

Egress traffic from VM with no associated floating IP to the internet - NAPT switch

	For Outbound NAPT, NAPT PFIB and FIB tables the vpn-id will be based on the subnet-id of the router gateway

	Packets from NAPT PFIB table resubmitted back to the FIB rather than straight to the external network subnet-id group.
In the FIB table it should be matched against a new flow with lower priority than any other flow containing
dst-ip match. Traffic will be redirected based on the vpn-id of the router gateway subnet to the external network
subnet-id group.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB table (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=router-gw-subnet-id =>

Subnet-id group: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

Ingress traffic from the internet to VM with no associated floating IP - NAPT switch

	For FIB table the vpn-id will be based on the subnet-id of the router gateway

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match vpn-id=ext-net-id,dst-mac=router-gw mac =>

FIB table (21) match: vpn-id=ext-net-id,dst-ip=router-gw set vpn-id=router-gw-subnet-id =>

Inbound NAPT table (44) match: dst-ip=router-gw,port=ext-port set dst-ip=vm-ip,vpn-id=router-id,port=int-port =>

PFIB table (47) match: vpn-id=router-id =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm-ip =>

Local Next-Hop group: set dst-mac=vm-mac,reg6=vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - VM traffic to floating ip on the same compute node

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ips

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=src-vm-ip set vpn-id=fip-subnet-id,src-ip=src-fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=src-fip set src-mac=src-fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,reg6=dst-vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - VM traffic to floating ip on remote compute node

VM originating the traffic (Ingress DPN):

	For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ip

	The destination mac is updated by the FIB table to be the floating ip mac. Traffic is sent to the egress DPN over
the port of the flat/VLAN provider network.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id,src-ip=src-vm-ip set vpn-id=fip-subnet-id,src-ip=src-fip =>

SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=src-fip set src-mac=src-fip-mac =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip set dst-mac=dst-fip-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

VM receiving the traffic (Egress DPN):

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=dst-fip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,lport-tag=dst-vm-lport-tag =>

Egress table (220) output to VM port

Hairpinning - traffic from VM with no associated floating IP to floating ip on remote compute node

VM originating the traffic (Ingress DPN) is non-NAPT switch:

	No flow changes required. Traffic will be directed to NAPT switch and directed to the outbound NAPT table straight
from the internal tunnel table

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group output to tunnel port of NAPT switch =>

VM originating the traffic (Ingress DPN) is the NAPT switch:

	For Outbound NAPT, NAPT PFIB, Pre DNAT, DNAT and FIB tables the vpn-id will be based on the common subnet-id of the
router gateway and the floating-ip.

	Packets from NAPT PFIB table resubmitted back to the FIB where they will be matched against the destnation floating ip.

	The destination mac is updated by the FIB table to be the floating ip mac. Traffic is sent to the egress DPN over
the port of the flat/VLAN provider network.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>

NAPT PFIB table (47) match: vpn-id=router-gw-subnet-id =>

FIB table (21) match: vpn-id=router-gw-subnet-id dst-ip=dst-fip set dst-mac=dst-fip-mac, reg6=provider-lport-tag =>

Egress table (220) output to provider network

VM receiving the traffic (Egress DPN):

	For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>

GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=dst-fip-mac set vpn-id=fip-subnet-id =>

FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>

Pre DNAT table (25) match: dst-ip=dst-fip set vpn-id=router-id,dst-ip=dst-vm-ip =>

DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>

Local Next-Hop group: set dst-mac=dst-vm-mac,lport-tag=dst-vm-lport-tag =>

Egress table (220) output to VM port

Yang changes

odl-nat module will be enhanced with the following container

container external-subnets {
 list subnets {
 key id;
 leaf id {
 type yang:uuid;
 }
 leaf vpnid {
 type yang:uuid;
 }
 leaf-list router-ids {
 type yang:uuid;
 }
 leaf external-network-id {
 type yang:uuid;
 }
 }
}

This model will be filled out only for flat/VLAN external network provider types.
If this model is missing, vpn-id will be taken from odl-nat:external-networks model
to maintain compatibility with BGPVPN models.

odl-nat:ext-routers container will be enhanced with the list of the external subnet-ids
associated with the router.

container ext-routers {
 list routers {
 key router-name;
 leaf router-name {
 type string;
 }
 ...

 leaf-list external-subnet-id {
 type yang:uuid; }
 }
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Create external network with two subnets

neutron net-create public-net -- --router:external --is-default --provider:network_type=flat
--provider:physical_network=physnet1
neutron subnet-create --ip_version 4 --gateway 10.64.0.1 --name public-subnet1 <public-net-uuid> 10.64.0.0/16
-- --enable_dhcp=False
neutron subnet-create --ip_version 4 --gateway 10.65.0.1 --name public-subnet2 <public-net-uuid> 10.65.0.0/16
-- --enable_dhcp=False

Create internal networks with subnets

neutron net-create private-net1
neutron subnet-create --ip_version 4 --gateway 10.0.123.1 --name private-subnet1 <private-net1-uuid>
10.0.123.0/24
neutron net-create private-net2
neutron subnet-create --ip_version 4 --gateway 10.0.124.1 --name private-subnet2 <private-net2-uuid>
10.0.124.0/24
neutron net-create private-net3
neutron subnet-create --ip_version 4 --gateway 10.0.125.1 --name private-subnet3 <private-net3-uuid>
10.0.125.0/24
neutron net-create private-net4
neutron subnet-create --ip_version 4 --gateway 10.0.126.1 --name private-subnet4 <private-net4-uuid>
10.0.126.0/24

Create two router instances and connect each router to one internal subnet and one external subnet

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> <router1-uuid> <public-net-uuid>
neutron router-create router2
neutron router-interface-add <router2-uuid> <private-subnet2-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet2-uuid> <router2-uuid> <public-net-uuid>

Create router instance connected to both external subnets and the remaining internal subnets

neutron router-create router3
neutron router-interface-add <router3-uuid> <private-subnet3-uuid>
neutron router-interface-add <router3-uuid> <private-subnet4-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> --fixed-ip subnet_id=<public-subnet2-uuid>
<router3-uuid> <public-net-uuid>

Create floating ips from both subnets

neutron floatingip-create --subnet <public-subnet1-uuid> public-net
neutron floatingip-create --subnet <public-subnet1-uuid> public-net
neutron floatingip-create --subnet <public-subnet2-uuid> public-net

Create 2 VM instance in each subnet and associate with floating ips

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net1-uuid> VM1
nova floating-ip-associate VM1 <fip1-public-subnet1>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net1-uuid> VM2
nova floating-ip-associate VM2 <fip2-public-subnet1>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net2-uuid> VM3
nova floating-ip-associate VM3 <fip1-public-subnet2>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net2-uuid> VM4
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net3-uuid> VM5
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net4-uuid> VM6

Connectivity tests

	Connect to the internet from all VMs. VM1 and VM2 will route traffic through external gateway 10.64.0.1
VM3 and VM4 route traffic through external gateway 10.65.0.1.

	Connect to the internet from VM5 and VM6. Each connection will be routed to different external gateway
with the corresponding subnet router-gateway ip.

	Hairpinning when source VM is associated with floating ip - ping between VM1 and VM2 using their floating ips.

	Hairpinning when source VM is not associated with floating ip - ping from VM4 to VM3 using floating ip.
Since VM4 has no associated floating ip a NAPT entry will be allocated using the router-gateway ip.

Features to Install

odl-netvirt-openstack

REST API

N/A

CLI

N/A

Implementation

Assignee(s)

	Primary assignee:

	Yair Zinger <yair.zinger@hpe.com>

	Other contributors:

	Tali Ben-Meir <tali@hpe.com>

Work Items

https://trello.com/c/uDcQw95v/104-pipeline-changes-fip-w-multiple-subnets-in-ext-net-hairpinning

	Add external-subnets model

	Add vpn-instances for external flat/VLAN sunbets

	Change pipeline to prefer vpn-id from external-subnets over vpn-id from external-networks

	Add write metadata to GW MAC table for floating ip/router gw mac addresses

	Add default subnet-id match in FIB table to external subnet group entry

	
	Changes in remote next-hop flow for floating ip in FIB table

	
	Set destination mac to floating ip mac

	Set egress actions to provider port of the network attached to the floating ip subnet

	Resubmit SNAT + Outbound NAPT flows to FIB table

Dependencies

None

Testing

Unit Tests

Integration Tests

CSIT

	Hairpinning between VMs in the same subnet

	Hairpinning between VMs in different subnets connected to the same router

	Hairpinning with NAPT - source VM is not associated with floating ip

	Traffic to external network with multiple subnets

Documentation Impact

None

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

Table of Contents

	IPv6 DC-Internet L3 North-South connectivity using L3VPN provider network types.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Fib Manager changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 DC-Internet L3 North-South connectivity using L3VPN provider network types.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-l3vpn-internet

In this specification we will be discussing the high level design of
IPv6 Datacenter to Internet North-South connectivity support in OpenDaylight
using L3VPN provider network type use-case.

Problem description

Provide IPv6 connectivity to virtual machines located in different subnets
spread over multiple sites or Data center can be achieved through use of
Globally Unique Addresses and capacity to update enough routing tables to
forge a path between the two. Even if IPv6 is made to interconnect hosts
without the help of any NAT mechanisms, routing with the best efficienty
(shortest path) or policy (route weight, commercial relationships) must
be configured using only few parameters, automatically updating routes
for each VM spawned in new network.

Keep in mind that key aspects of L3VPN connectivity is Route Targets and
VPN-IPv6 address family.
Assuming an operator can configure data center gateways with a
Route Distinguisher dedicated to Internet connectivity and a set of imported
Route Targets, each time a virtual machine is spawned within a data center subnet
associated with that Route Distinguisher, it will trigger the send of a BGP UPDATE
message containing MP-BGP attributes required for reaching the VM outside the
datacenter. In the same manner, adding extra-route or declaring subnetworks will
trigger the same.
Such behavior can be achieved by configuring a neutron router an internet public
VPN address. For the following of the document, we focus to GUA/128 addresses that
are advertised, when one VM start. Indeed, most of the requirements are dealing with
VM access to internet.

Only IPv6 Globally Unique Address (eg /128) are advertised, this is not a scaling
architecture since it implies as much routes to process as the number of spawned
VMs, but with such BGP routing information base, DCGW can select the Compute Node
to which a packet coming from the WAN should be forwarded to.

The following covers the case where a VM connects to a host located in the internet,
and the destination ip address of packets is not part of the list of advertised
prefixes (see spec [6]).

Following schema could help :

 OVS A flow:
 IP dst not in advertised list
 VPN configuration explained in use case chapter
 +-----------------+
 | +-------------+ |
 +---+ |VM1 | |
 BGP table | | | Subnet A::2 | |
 Prefix Subnet A::2 |OVS| +-------------+ |
+-------+ Label L2 | A | +-------------+ |
| | Next Hop OVS A | | |VM2 | |
| Host | +-+-+ | Subnet B::2 | |
+---+---+ +-------+ | | +-------------+ |
 | | | | +-----------------+
 | | +-----------------+
 +--Internet-----+ DCGW |
 | +-----------------+ +-----------------+
 | | | | +-------------+ |
 +-------+ +-+-+ |VM3 | |
 | | | Subnet A::3 | |
 |OVS| +-------------+ |
 | B | +-------------+ |
 | | |VM4 | |
 +---+ | Subnet B::2 | |
 | +-------------+ |
 +-----------------+

Use Cases

Datacenter IPv6 external connectivity to/from Internet for VMs spawned on tenant
networks.

There are several techniques for VPNs to access the Internet. Those methods are
described in [8], on section 11.
Also a note describes in [8] the different techniques that could be applied to
the DC-GW case. Note that not all solutions are compliant with the RFC. Also,
we make the hypothesis of using GUA.

The method that will be described more in detail below is the option 2. Option 2
is external network connectivity option 2 from [8]). That method implies 2 VPNs.
One VPN will be dedicated to Internet access, and will contain the Internet Routes,
but also the VPNs routes. The Internet VPN can also contain default route to a gateway.
Having a separated VPN brings some advantages:
- the VPN that do not need to get Internet access get the private characteristic

of VPNs.

	using a VPN internet, instead of default forwarding table is enabling
flexibility, since it coud permit creating more than one internet VPN.
As consequence, it could permit applying different rules (different gateway
for example).

Having 2 VPNs implies the following for one packet going from VPN to the internet.
The FIB table will be used for that. If the packet’s destination address does no
match any route in the first VPN, then it may be matched against the internet VPN
forwarding table.
Reversely, in order for traffic to flow natively in the opposite direction, some
of the routes from the VPN will be exported to the internet VPN.

Configuration steps in a datacenter:

	Configure ODL and Devstack networking-odl for BGP VPN.

	Create a tenant network with IPv6 subnet using GUA prefix or an

admin-created-shared-ipv6-subnet-pool.
- This tenant network is connected to an external network where the DCGW is

connected. Separation between both networks is done by DPN located on compute
nodes. The subnet on this external network is using the same tenant as an IPv4
subnet used for MPLS over GRE tunnels endpoints between DCGW and DPN on
Compute nodes. Configure one GRE tunnel between DPN on compute node and DCGW.

	Create a Neutron Router and connect its ports to all internal subnets

	Create a transport zone to declare that a tunneling method is planned to reach an external IP:

the IPv6 interface of the DC-GW

	The neutron router subnetworks will be associated to two L3 BGPVPN instance.

The step create the L3VPN instances and associate the instances to the router.
Especially, two VPN instances will be created, one for the VPN, and one for the
internetVPN.

	operations:neutronvpn:createL3VPN (“route-distinguisher” = “vpn1”

	“import-RT” = [“vpn1”,”internetvpn”]
“export-RT” = [“vpn1”,”internetvpn”])

	operations:neutronvpn:createL3VPN (“route-distinguisher” = “internetvpn”

	“import-RT” = “internetvpn”
“export-RT” = “internetvpn”)

	The DC-GW configuration will also include 2 BGP VPN instances.
Below is a configuration from QBGP using vty command interface.

vrf rd “internetvpn”
vrf rt both “internetvpn”
vrf rd “vpn1”
vrf rt both “vpn1” “internetvpn”

	Spawn VM and bind its network interface to a subnet, L3 connectivty between

VM in datacenter and a host on WAN must be successful.
More precisely, a route belonging to VPN1 will be associated to VM GUA.
and will be sent to remote DC-GW. DC-GW will import the entry to both “vpn1” and “internetvpn”
so that the route will be known on both vpns.
Reversely, because DC-GW knows internet routes in “internetvpn”, those routes will be sent to
QBGP. ODL will get those internet routes, only in the “internetvpn” vpn.
For example, when a VM will try to reach a remote, a first lookup will be done in “vpn1” FIB
table. If none is found, a second lookup will be found in the “internetvpn” FIB table. The
second lookup should be successfull, thus trigerring the encapsulation of packet to the DC-GW.

	When the data centers is set up, there are 2 use cases:

	
	Traffic from Local DPN to DC-Gateway

	Traffic from DC-Gateway to Local DPN

The use cases are slightly different from [6], on the Tx side.

Proposed change

Similar as with [6], plus a specific processing on Tx side.
An additionnal processing in DPN is required. When a packet is received by a
neutron router associated with L3VPN, with destination mac address is the subnet
gateway mac address, and the destination ip is not in the FIB (default gateway)
of local DPN, then the packet should do a second lookup in the second VPN configured.
So that the packet can enter the L3VPN netvirt pipeline.
The MPLS label pushed on the IPv6 packet is the one configured to provide access
to Internet at DCGW level.

Pipeline changes

No pipeline changes, compared with [6]. However, FIB Manager will be modified so as to
implement the fallback mechanism. The FIB tables of the import-RTs VPNs from the default
VPN created will be parsed. In our case, a match will be found in the “internetVPN”
FIB table. If not match is found, the drop rule will be applied.

Regarding the pipeline changes, we can use the same BGPVPNv4 pipeline
(Tables Dispatcher (17), DMAC (19), LFIB (20), L3FIB (21), and NextHop Group
tables) and enhance those tables to support IPv6 North-South communication
through MPLS/GRE.
For understanding, the pipeline is written below: l3vpn-id is the ID associated to the initial VPN,
while l3vpn-internet-id is the ID associated to the internet VPN.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

When a packet is coming from DC-Gateway, the label will help finding out the associated VPN. The first one is l3vpn-id.

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

When a packet is going out from a dedicated VM, the l3vpn-id attached to that subnetwork will be used.
Theorically, in L3 FIB, there will be no match for dst IP with this l3vpn-id.
However, because ODL know the relationship between both VPNs, then the dst IP will be attached
with the first l3vpn-id.

However, since the gateway IP for inter-DC and external access is the same, the same MPLS label will be used for both VPNs.

Classifier Table (0) =>

Lport Dispatcher Table (17) ``match: LportTag l3vpn service: set vpn-id=l3vpn-id` =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=internet-l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=<alternate-ip> set tun-id=mpls_label output to MPLSoGRE tunnel port =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Fib Manager changes

Ingress traffic from internet to VM

The FIB Manager is being configured with 2 entries for different RDs : l3vpn-id and internetvpn-id.
The LFIB will be matched first.
In our case, label NH and prefix are the same, whereas we have 2 VPN instances.
So, proposed change is to prevent LFIB from adding entries if a label is already registered for that compute node.

Egress traffic from VM to internet

The FIB Manager is being configured with the internet routes on one RD only : internetvpn-id.
As packets that are emitted from the VM with vpn=l3vpn-id, the internet route will not be matched in l3vpn, if implementation remains as it is.
In FIB Manager, solution is the following:
- The internetvpn is not attached to any local subnetwork.
so, any eligible VPNs are looked up in the list of VPN instances.
for each VPN instance, for each RD, if an imported RT matches the internetvpnID, then a new rule will be appended.

Yang changes

None

Configuration impact

The configuration will require to create 2 VPN instances.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

The number of entries will be duplicated, compared with [6].
This is the cost in order to keep some VPNs private, and others kind of public.
Another impact is the double lookup that may result, when emitting a packet.
This is due to the fact that the whole fib should be parsed to fallback
to the next VPN, in order to make an other search, so that the packet can enter
in the L3VPN flow.

Targeted Release

Carbon

Alternatives

None

Usage

	Configure MPLS/GRE tunnel endpoint on DCGW connected to public-net network

	Configure neutron networking-odl plugin

	Configure BGP speaker in charge of retrieving prefixes for/from data center
gateway in ODL through the set of vpnservice.bgpspeaker.host.name in
etc/custom.properties. No REST API can configure that parameter.
Use config/ebgp:bgp REST api to start BGP stack and configure VRF, address
family and neighboring. In our case, as example, following values will be used:

	rd=”100:2” # internet VPN
- import-rts=”100:2”
- export-rts=”100:2”

	rd=”100:1” # vpn1
- import-rts=”100:1 100:2”
- export-rts=”100:1 100:2”

POST config/ebgp:bgp
{
 "ebgp:as-id": {
 "ebgp:stalepath-time": "360",
 "ebgp:router-id": "<ip-bgp-stack>",
 "ebgp:announce-fbit": "true",
 "ebgp:local-as": "<as>"
 },
 "ebgp:neighbors": [
 {
 "ebgp:remote-as": "<as>",
 "ebgp:address-families": [
 {
 "ebgp:afi": "2",
 "ebgp:peer-ip": "<neighbor-ip-address>",
 "ebgp:safi": "128"
 }
],
 "ebgp:address": "<neighbor-ip-address>"
 }
],
}

* Configure BGP speaker on DCGW to exchange prefixes with ODL BGP stack. Since
 DCGW should be a vendor solution, the configuration of such equipment is out of
 the scope of this specification.

	Create an internal tenant network with an IPv6 (or dual-stack) subnet.

neutron net-create private-net
neutron subnet-create --name ipv6-int-subnet --ip-version 6
--ipv6-ra-mode slaac --ipv6-address-mode slaac private-net 2001:db8:0:2::/64

	Use neutronvpn:createL3VPN REST api to create L3VPN

POST /restconf/operations/neutronvpn:createL3VPN

{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid_1",
 "name":"internetvpn",
 "route-distinguisher": [100:2],
 "export-RT": [100:2],
 "import-RT": [100:2],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

POST /restconf/operations/neutronvpn:createL3VPN

{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid_2",
 "name":"vpn1",
 "route-distinguisher": [100:1],
 "export-RT": [100:1, 100:2],
 "import-RT": [100:1, 100:2],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

	Associate L3VPN To Network

POST /restconf/operations/neutronvpn:associateNetworks

{
 "input":{
 "vpn-id":"vpnid_uuid_1",
 "network-id":"network_uuid"
 }
}

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net> VM1

	Dump ODL BGP FIB

GET /restconf/config/odl-fib:fibEntries

{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid_1>
 },
 {
 "routeDistinguisher": <rd_vpn1>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
 {
 "routeDistinguisher": <rd-uuid_2>
 },
 {
 "routeDistinguisher": <rd_vpninternet>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Julien Courtat <julien.courtat@6wind.com>

	Other contributors:

	Noel de Prandieres <prandieres@6wind.com>
Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>
Philippe Guibert <philippe.guibert@6wind.com>

Work Items

	Validate proposed setup so that each VM entry is duplicated in 2 VPN instances

	Implement FIB-Manager fallback mechanism for output packets

Dependencies

[6]

Testing

Unit Tests

Unit tests related to fallback mechanism when setting up 2 VPN instances configured
as above.

Integration Tests

TBD

CSIT

CSIT provided for the BGPVPNv6 versions will be enhanced to also support
connectivity to Internet.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] IPv6 Distributed Router for Flat/VLAN based Provider Networks. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-distributed-router]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

[6] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN. [https://git.opendaylight.org/gerrit/#/c/50359]

[7] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/c/49909/]

[8] External Network connectivity in IPv6 networks. [https://drive.google.com/file/d/0BxAspfn9mEi8OEtvVFpsZXo0ZlE/view]

[9] BGP/MPLS IP Virtual Private Networks (VPNs) [https://tools.ietf.org/html/rfc4364#section-11]

Table of Contents

	IPv6 Inter-DC L3 North-South connectivity using L3VPN provider network types.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 Inter-DC L3 North-South connectivity using L3VPN provider network types.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-interdc-l3vpn

In this specification we will be discussing the high level design of
IPv6 Inter-Datacenter North-South connectivity support in OpenDaylight
using L3VPN provider network type use-case.

Problem description

Provide IPv6 connectivity to virtual machines located in different subnets
spread over multiple sites or Data center can be achieved through use of
Globally Unique Addresses and capacity to update enough routing tables to
forge a path between the two. Even if IPv6 is made to interconnect hosts
without the help of any NAT mechanisms, routing with the best efficienty
(shortest path) or policy (route weight, commercial relationships) must
be configured using only few parameters, automatically updating routes
for each VM spawned in new network.

Keep in mind that key aspects of L3VPN connectivity is Route Targets and
VPN-IPv6 address family.
Assuming an operator can configure both data center gateways with same
Route Distinguisher or set of imported Route Targets, each time a virtual
machine is spawned within a new subnet, it will trigger the send of a BGP UPDATE
message containing MP-BGP attributes required for reaching the VM.
Such behavior can be achieved by configuring a neutron router a default gateway.

Only IPv6 Globally Unique Address (eg /128) are advertised, this is not a scaling
architecture since it implies as much routes to process as the number of spawned
VMs, but with such BGP routing information base, DCGW can select the Compute Node
to which a packet coming from the WAN should be forwarded to.

Following schema could help :

+-----------------+ +-----------------+
+-------------+		+-------------+						
	VM1	+---+ +---+	VM1					
	Subnet C::4			BGP table			Subnet A::2	
+-------------+	OVS	Prefix Subnet A::2	OVS	+-------------+				
+-------------+	A	Label L1	A	+-------------+				
	VM2			Next Hop OVS A			VM2	
	Subnet D::4	+-+-+ +-+-+	Subnet B::2					
+-------------+		+------+ +-------+		+-------------+				
+-----------------+ | | | | | | +-----------------+
 +-----+ | | +--------+
 | DCGW +--WAN--+ DCGW |
+-----------------+ +-----+ | | +--------+ +-----------------+
+-------------+								+-------------+
	VM3	+-+-+ +------+ +-------+ +-+-+	VM3					
	Subnet C::5						Subnet A::3	
+-------------+	OVS		OVS	+-------------+				
+-------------+	B		B	+-------------+				
	VM4						VM4	
	Subnet D::5	+---+ +---+	Subnet B::3					
+-------------+		+-------------+						
+-----------------+ +-----------------+

BGP protocol and its MP-BGP extension would do the job as long as all BGP
speakers are capable of processing UPDATE messages containing VPN-IPv6 address
family, which AFI value is 2 and SAFI is 128. It is not required that BGP
speakers peers using IPv6 LLA or GUA, IPv4 will be used to peer speakers
together.

Opendaylight is already able to support the VPN-IPv4 address family (AFI=1,
SAFI=128), and this blueprint focuses on specific requirements to VPN-IPv6.

One big question concerns the underlying transport IP version used with MPLS/GRE
tunnels established between Data center Gateway (DCGW), and compute nodes
(CNs). There is one MPLS/GRE tunnel setup from DCGW to each Compute Node involved
in the L3VPN topology. Please note that this spec doesn’t covers the case of
VxLAN tunnels between DCGW and Compute Nodes.

According to RFC 4659 §3.2.1, the encoding of the nexthop attribute in
MP-BGP UPDATE message differs if the tunneling transport version required is
IPv4 or IPv6. In this blueprint spec, the assumption of transport IP version of
IPv4 is prefered. This implies that any nexthop set for a prefix in FIB will be
IPv4.

Within BGP RIB table, for each L3VPN entry, the nexthop and label are key
elements for creating MPLS/GRE tunnel endpoints, and the prefix is used for
programming netvirt pipeline. When a VM is spawned, the prefix advertised by BGP
is 128 bits long and the nexthop carried along within UPDATE message is the ip
address of the DPN interface used for DCGW connection.
Since DCGW can be proprietary device, it may not support MPLS/GRE tunnel endpoint
setup according to its internal BGP table. A static configuration of such tunnel
endpoint may be required.

Use Cases

Inter Datacenter IPv6 external connectivity for VMs spawned on tenant networks,
routes exchanged between BGP speakers using same Route Distinguisher.

Steps in both data centers :

	Configure ODL and Devstack networking-odl for BGP VPN.

	Create a tenant network with IPv6 subnet using GUA prefix or an
admin-created-shared-ipv6-subnet-pool.

	This tenant network is separated to an external network where the DCGW is
connected. Separation between both networks is done by DPN located on compute
nodes. The subnet on this external network is using the same tenant as an IPv4
subnet used for MPLS over GRE tunnels endpoints between DCGW and DPN on
Compute nodes. Configure one GRE tunnel between DPN on compute node and
DCGW.

	Create a Neutron Router and connect its ports to all internal subnets that
will belong to the same L3 BGPVPN identified by a Route Distinguisher.

	Start BGP stack managed by ODL, possibly on same host as ODL.

	Create L3VPN instance.

	Associate the Router with the L3VPN instance.

	Spawn VM on the tenant network, L3 connectivity between VMs located on
different datacenter sharing same Route Distinguisher must be successful.

When both data centers are set up, there are 2 use cases per data center:

	Traffic from DC-Gateway to Local DPN (VMS on compute node)

	Traffic from Local DPN to DC-Gateway

Proposed change

ODL Controller would program the necessary pipeline flows to support IPv6
North South communication through MPLS/GRE tunnels out of compute node.

BGP manager would be updated to process BGP RIB when entries are IPv6 prefixes.

FIB manager would be updated to take into acount IPv6 prefixes.

Thrift interface between ODL and BGP implementation (Quagga BGP) must be
enhanced to support new AFI=2. Thrift interface will still carry IPv4 Nexthops,
and it will be the Quagga duty to transform this IPv4 Nexthop address into an
IPv4-mapped IPv6 address in every NLRI fields. Here is the new api proposed :

enum af_afi {
 AFI_IP = 1,
 AFI_IPV6 = 2,
}
i32 pushRoute(1:string prefix, 2:string nexthop, 3:string rd, 4:i32 label,
 5:af_afi afi)
i32 withdrawRoute(1:string prefix, 2:string rd, 3:af_afi afi)
oneway void onUpdatePushRoute(1:string rd, 2:string prefix,
 3:i32 prefixlen, 4:string nexthop,
 5:i32 label, 6:af_afi afi)
oneway void onUpdateWithdrawRoute(1:string rd, 2:string prefix,
 3:i32 prefixlen, 4:string nexthop,
 5:af_afi afi)
Routes getRoutes(1:i32 optype, 2:i32 winSize, 3:af_afi afi)

BGP implementation (Quagga BGP) announcing (AFI=2,SAFI=128) capability as well
as processing UPDATE messages with such address family. Note that the required
changes in Quagga is not part of the design task covered by this blueprint.

Pipeline changes

Regarding the pipeline changes, we can use the same BGPVPNv4 pipeline
(Tables Dispatcher (17), DMAC (19), LFIB (20), L3FIB (21), and NextHop Group
tables) and enhance those tables to support IPv6 North-South communication
through MPLS/GRE.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Please note that vpn-subnet-gateway-mac-address stands for MAC address of
the neutron port of the internal subnet gateway router.

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) match: LportTag l3vpn service: set vpn-id=l3vpn-id =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Please note that router-internal-interface-mac stands for MAC address of
the neutron port of the internal subnet gateway router.

Yang changes

Changes will be needed in ebgp.yang to start supporting IPv6 networks
advertisements.

A new leaf afi will be added to container networks

ebgp.yang

list networks {
 key "rd prefix-len";

 leaf rd {
 type string;
 }

 leaf prefix-len {
 type string;
 }

 leaf afi {
 type uint32;
 mandatory "false";
 }

 leaf nexthop {
 type inet:ipv4-address;
 mandatory "false";
 }

 leaf label {
 type uint32;
 mandatory "false";
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Impact on scaling inside datacenter essentially grow with the number of VM
connected to subnets associated with the L3VPN.
Since Globally Unique Address are used and there is no NAT involved in the
datapath, it implies prefixes advertised are all /128.
At the end, it means that every prefix advertised will have its entry
in BGP RIB of all ODL controllers and DCGW involved in L3VPN (ie all bgp aware
equipment will handle all prefixes advertised wihtin a Route Distinguisher).

This may imply BGP table with very high number of entries. This also implies a
high number of entries in ODL routing table and equivalent number of flows
inserted in OVS, since prefix advertised add matching ip destination in OVS
tables.

This fact also impact the scaling of the BGP speaker implementation (Quagga
BGP) with many thousands of BGPVPNv4 and BGPVPNv6 prefixes (as much as number
of spawned VMs) with best path selection algorithm on route updates, graceful
restart procedure, and multipath.

Targeted Release

Carbon

Alternatives

None

Usage

	Configure MPLS/GRE tunnel endpoint on DCGW connected to public-net network

	Configure neutron networking-odl plugin

	Configure BGP speaker in charge of retrieving prefixes for/from data center
gateway in ODL through the set of vpnservice.bgpspeaker.host.name in
etc/custom.properties. No REST API can configure that parameter.
Use config/ebgp:bgp REST api to start BGP stack and configure VRF, address
family and neighboring

POST config/ebgp:bgp
{
 "ebgp:as-id": {
 "ebgp:stalepath-time": "360",
 "ebgp:router-id": "<ip-bgp-stack>",
 "ebgp:announce-fbit": "true",
 "ebgp:local-as": "<as>"
 },
 "ebgp:vrfs": [
 {
 "ebgp:export-rts": [
 "<export-rts>"
],
 "ebgp:rd": "<RD>",
 "ebgp:import-rts": [
 "<import-rts>"
]
 }
],
 "ebgp:neighbors": [
 {
 "ebgp:remote-as": "<as>",
 "ebgp:address-families": [
 {
 "ebgp:afi": "2",
 "ebgp:peer-ip": "<neighbor-ip-address>",
 "ebgp:safi": "128"
 }
],
 "ebgp:address": "<neighbor-ip-address>"
 }
],
}

	Configure BGP speaker on DCGW to exchange prefixes with ODL BGP stack. Since
DCGW should be a vendor solution, the configuration of such equipment is out of
the scope of this specification.

	Create an internal tenant network with an IPv6 (or dual-stack) subnet and
connect ports.

neutron net-create private-net
neutron subnet-create private-net 2001:db8:0:2::/64 --name ipv6-int-subnet
--ip-version 6 --ipv6-ra-mode slaac --ipv6-address-mode slaac
neutron port-create private-net --name port1_private1

	Create a router and associate it to internal subnets.

neutron router-create router1
neutron router-interface-add router1 ipv6-int-subnet

	Use neutronvpn:createL3VPN REST api to create L3VPN

POST /restconf/operations/neutronvpn:createL3VPN
{
 "input": {
 "l3vpn":[
 {
 "id":"vpnid_uuid",
 "name":"vpn1",
 "route-distinguisher": [100:1],
 "export-RT": [100:1],
 "import-RT": [100:1],
 "tenant-id":"tenant_uuid"
 }
]
 }
}

	Associate L3VPN To Routers

POST /restconf/operations/neutronvpn:associateRouter
{
 "input":{
 "vpn-id":"vpnid_uuid",
 "router-id":["router_uuid"]
 }
}

	Create MPLSoGRE tunnel between DPN and DCGW

POST /restconf/operations/itm-rpc:add-external-tunnel-endpoint
{
 "itm-rpc:input": {
 "itm-rpc:destination-ip": "dcgw_ip",
 "itm-rpc:tunnel-type": "odl-interface:tunnel-type-mpls-over-gre"
 }
}

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> \
 --nic net-id=port1_private1_uuid VM1

	Dump ODL BGP FIB

GET /restconf/config/odl-fib:fibEntries
{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid>
 },
 {
 "routeDistinguisher": <rd>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

A new option --afi will be added to command odl:bgp-network:

opendaylight-user@root>
odl:bgp-network --prefix 2001:db8::1/128 --rd 100:1 --nexthop 192.168.0.2
 --label 700 --afi 2 add/del

Implementation

Assignee(s)

	Primary assignee:

	Julien Courtat <julien.courtat@6wind.com>

	Other contributors:

	Noel de Prandieres <prandieres@6wind.com>
Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>
Philippe Guibert <philippe.guibert@6wind.com>

Work Items

	Implement necessary APIs to allocate a transport over IPv6 requirement
configuration for a given Route Target as the primary key.

	Support of BGPVPNv6 prefixes within MD-SAL. Enhance RIB-manager to support
routes learned from other bgp speakers, [un]set static routes.

	BGP speaker implementation, Quagga BGP, to support BGPVPN6 prefixes exchanges
with other BGP speakers (interoperability), and thrift interface updates.

	Program necessary pipeline flows to support IPv6 to MPLS/GRE (IPv4) communication.

Dependencies

Quagga from 6WIND is publicly available at the following url

	https://github.com/6WIND/quagga

	https://github.com/6WIND/zrpcd

Testing

Unit Tests

Unit tests provided for the BGPVPNv4 versions will be enhanced to also support
BGPVPNv6. No additional unit tests will be proposed.

Integration Tests

TBD

CSIT

CSIT provided for the BGPVPNv4 versions will be enhanced to also support
BGPVPNv6. No additional CSIT will be proposed.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	IPv6 L3 North-South support for Flat/VLAN Provider Networks.

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

IPv6 L3 North-South support for Flat/VLAN Provider Networks.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south

In this specification we will be discussing the high level design of
IPv6 North-South support in OpenDaylight for VLAN/FLAT provider network
use-case.

Problem description

OpenDaylight currently supports IPv6 IPAM (IP Address Management) and a fully
distributed east-west router. IPv6 external connectivity is not yet supported.
This SPEC captures the implementation details of IPv6 external connectivity for
VLAN/FLAT provider network use-cases.

We have a separate SPEC [3] that captures external connectivity for L3VPN use-case.

The expectation in OpenStack is that Tenant IPv6 subnets are created with Globally
Unique Addresses (GUA) that are routable by the external physical IPv6 gateway in
the datacenter for external connectivity. So, there is no concept of NAT or
Floating-IPs for IPv6 addresses in Neutron. An IPv6 router is hence expected to do
a plain forwarding.

Initially, we would like to pursue a Centralized IPv6 router (CVR) use-case and
look into a fully distributed router via a future spec. One of the main reasons
for pursuing the CVR over DVR is that OpenStack Neutron creates only a single
router gateway port (i.e., port with device owner as network:router_gateway)
when the router is associated with the external network. When implementing
a distributed router, we cannot use the same router gateway port MAC address
from multiple Compute nodes as it could create issues in the underlying physical
switches. In order to implement a fully distributed router, we would ideally
require a router-gateway-port per compute node. We will be addressing the
distributed router in a future spec taking into consideration both IPv4 and IPv6
use-cases.

Use Cases

IPv6 external connectivity (north-south) for VMs spawned on tenant networks,
when the external network is of type FLAT/VLAN based.

Steps:

	Create a tenant network with IPv6 subnet using GUA/ULA prefix or an
admin-created-shared-ipv6-subnet-pool.

	Create an external network of type FLAT/VLAN with an IPv6 subnet where the
gateway_ip points to the Link Local Address (LLA) of external/physical IPv6
gateway.

	Create a Neutron Router and associate it with the internal subnets and external
network.

	Spawn VMs on the tenant network.

 +------------------+
 | |
 | +------->Internet
 | External IPv6 |
 | Gateway |
 | |
 | |
 +------------------+
 |LLA of IPv6 GW
 |
 | Flat/VLAN External Network: 2001:db8:0:1::/64
 +--+
 | | |
 | | |
 | ---+
 | | Internal Tenant N/W | | | |
router-gw-port| | | | | |
 +------------------------+ +-------------------------+ +-------------------------+
+--------------------+										
	Virtual IPv6 Router									
	using OVS Flows									
+--------------------+										
+--------------------+		+---------------------+		+---------------------+						
	VM1				VM2				VM3	
	Tenant IPv6 Subnet									
	2001:db8:0:2::10/64				2001:db8:0:2::20/64				2001:db8:0:2::30/64	
+--------------------+		+---------------------+		+---------------------+						
 +------------------------+ +-------------------------+ +-------------------------+
 Compute Node-1 designated Compute Node-2 Compute Node-3
 as NAPT Switch for router1

Proposed change

ODL Controller would implement the following.

	Program the necessary pipeline flows to support IPv6 forwarding

	Support Neighbor Discovery for Router Gateway port-ips on the external network.
i.e., When the upstream/external IPv6 Gateway does a Neighbor Solicitation for the
router-gateway-ip, ODL-Controller/ipv6service would respond with a Neighbor Advertisement
providing the target link layer address.

	Enhance IPv6Service to learn the MAC-address of external-subnet-gateway-ip by framing
the necessary Neighbor Solicitation messages and parsing the corresponding response.
The APIs in IPv6Service would be triggered from Gateway MAC resolver code and the
information obtained will be used while programming the ProviderNetworkGroup entries.

The implementation would be aligned with the existing IPv4 SNAT support we have
in Netvirt. ODL controller would designate one of the compute nodes (also referred
as NAPT Switch), one per router, to act as an IPv6/IPv4-SNAT router, from where the
tenant traffic is routed to the external network. External traffic from VMs hosted
on the NAPT switch is forwarded directly, whereas traffic from VMs hosted on other
compute nodes would have to do an extra hop to NAPT switch before hitting the
external network. If a router has both IPv4 and IPv6 subnets, the same NAPT Switch
for the router will be used for IPv4-SNAT and IPV6 external-packet forwarding.

Pipeline changes

Flows on NAPT Switch for Egress traffic from VM to the internet

Classifier Table (0) =>

LPORT_DISPATCHER_TABLE (17) l3vpn service: set: vpn-id=router-id =>

L3_GW_MAC_TABLE (19) priority=20, match: vpn-id=router-id, dst-mac=router-internal-interface-mac =>

L3_FIB_TABLE (21) priority=10, match: ipv6, vpn-id=router-id, default-route-flow =>

PSNAT_TABLE (26) priority=5, match: ipv6, vpn-id=router-id, unknown-sip =>

OUTBOUND_NAPT_TABLE (46) priority=10, match: ipv6, vpn-id=router-id, ip-src=vm-ip set: src-mac=external-router-gateway-mac-address, vpn-id=external-net-id, =>

NAPT_PFIB_TABLE (47) priority=6, match: ipv6, vpn-id=external-net-id, src-ip=vm-ip =>

ProviderNetworkGroup: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

EGRESS_LPORT_DISPATCHER_TABLE (220) output to provider network

Flows on NAPT Switch for Ingress traffic from internet to VM

Classifier Table (0) =>

LPORT_DISPATCHER_TABLE (17) l3vpn service: set: vpn-id=ext-net-id =>

L3_GW_MAC_TABLE (19) priority=20, match: vpn-id=ext-net-id, dst-mac=router-gateway-mac =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=ext-net-id, dst-ip=vm-ip =>

INBOUND_NAPT_TABLE (44) priority=10, match: ipv6, vpn-id=ext-net-id, dst-ip=vm-ip set: vpn-id=router-id =>

NAPT_PFIB_TABLE (47) priority=5, match: ipv6, vpn-id=router-id set: in_port=0 =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=router-id, dst-ip=vm-ip =>

Local Next-Hop group: set: src-mac=router-intf-mac, dst-mac=vm-mac,reg6=vm-lport-tag =>

Egress table (220) output to VM port

Flows for VMs hosted on Compute node that is not acting as an NAPT Switch

Same egress pipeline flows as above until L3_FIB_TABLE (21).

PSNAT_TABLE (26) priority=5, match: ipv6, vpn-id=router-id set: tun_id=<tunnel-id> =>

TunnelOutputGroup: output to tunnel-port =>

OnNAPTSwitch (for Egress Traffic from VM)

INTERNAL_TUNNEL_TABLE (36): priority=10, match: ipv6, tun_id=<tunnel-id-set-on-compute-node> set: vpn-id=router-id, goto_table:46

Rest of the flows are common.

OnNAPTSwitch (for Ingress Traffic from Internet to VM)

Same flows in ingress pipeline shown above until NAPT_PFIB_TABLE (47) =>

L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=router-id, dst-ip=vm-ip set: tun_id=<tunnel-id>, dst-mac=vm-mac, output: <tunnel-port> =>

Yang changes

IPv6Service would implement the following YANG model.

module ipv6-ndutil {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:ipv6service:ipv6util";
 prefix "ipv6-ndutil";

 import ietf-interfaces {
 prefix if;
 }

 import ietf-inet-types {
 prefix inet; revision-date 2013-07-15;
 }

 import ietf-yang-types {
 prefix yang;
 }

 revision "2017-02-10" {
 description "IPv6 Neighbor Discovery Util module";
 }

 grouping interfaces {
 list interface-address {
 key interface;
 leaf interface {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf src-ip-address {
 type inet:ipv6-address;
 }
 leaf src-mac-address {
 type yang:phys-address;
 }
 }
 }

 rpc send-neighbor-solicitation {
 input {
 leaf target-ip-address {
 type inet:ipv6-address;
 }
 uses interfaces;
 }
 }
}

neighbor-solicitation-packet container in neighbor-discovery.yang would be enhanced
with Source Link Layer optional header.

container neighbor-solicitation-packet {
 uses ethernet-header;
 uses ipv6-header;
 uses icmp6-header;
 leaf reserved {
 type uint32;
 }
 leaf target-ip-address {
 type inet:ipv6-address;
 }
 leaf option-type {
 type uint8;
 }
 leaf source-addr-length {
 type uint8;
 }
 leaf source-ll-address {
 type yang:mac-address;
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

Scale and Performance Impact

	In the proposed implementation, we have to configure a static route
on the external IPv6 Gateway with next-hop as the router-gateway-ip.
In a future patch, we would enhance the implementation to use BGP for
advertising the necessary routes.

	When the external IPv6 Gateway wants to contact the tenant VMs, it
forwards all the traffic to the router-gateway-port on the designated
NAPT Switch. To know the target-link-layer address of the router-gw-port,
the external IPv6 Gateway would send out a Neighbor Solicitation for the
router-gateway-port-ip. This request would be punted to the Controller
and ipv6service would respond with the corresponding Neighbor Advertisement.
In large deployments this can become a bottleneck.
Note: Currently, OpenFlow does not have support to auto-respond to Neighbor
Solicitation packets like IPv4 ARP. When the corresponding support is added
in OpenFlow, we would program the necessary ovs flows to auto-respond to
the Neighbor Soliciation requests for router-gateway-ports.

Targeted Release

Carbon

Alternatives

An alternate solution is to implement a fully distributed IPv6 router and
would be pursued in a future SPEC.

Usage

	Create an external FLAT/VLAN network with an IPv6 (or dual-stack) subnet.

neutron net-create public-net -- --router:external --is-default
--provider:network_type=flat --provider:physical_network=public

neutron subnet-create --ip_version 6 --name ipv6-public-subnet
--gateway <LLA-of-external-ipv6-gateway> <public-net-uuid> 2001:db8:0:1::/64

	Create an internal tenant network with an IPv6 (or dual-stack) subnet.

neutron net-create private-net
neutron subnet-create --name ipv6-int-subnet --ip-version 6
--ipv6-ra-mode slaac --ipv6-address-mode slaac private-net 2001:db8:0:2::/64

	Create a router and associate the external and internal subnets.
Explicitly specify the fixed_ip of router-gateway-port, as it would help us
when manually configuring the downstream route on the external IPv6 Gateway.

neutron router-create router1
neutron router-gateway-set --fixed-ip subnet_id=<ipv6-public-subnet-id>,ip_address=2001:db8:0:10 router1 public-net
neutron router-interface-add router1 ipv6-int-subnet

	Manually configure a downstream route in the external IPv6 gateway
for the IPv6 subnet “2001:db8:0:2::/64” with next hop address as the
router-gateway-ip.

Example (on Linux host acting as an external IPv6 gateway):
ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:10

	Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net> VM1

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Sridhar Gaddam <sgaddam@redhat.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/cqjOFmow/147-ipv6-centralized-router-l3-north-south-support-for-flat-vlan-provider-networks

	Program necessary pipeline flows to support IPv6 North-South communication.

	Enhance ipv6service to send out Neighbor Solicitation requests
for the external/physical IPv6 gateway-ip and parse the response.

	Support controller based Neighbor Advertisement for router-gateway-ports
on the external network.

	Implement Unit and Integration tests to validate the use-case.

Dependencies

None

Testing

Unit Tests

Necessary Unit tests would be added to validate the use-case.

Integration Tests

Necessary Integration tests would be added to validate the use-case.

CSIT

We shall explore the possibility to validate this use-case in CSIT.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/50359/]

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Dual Stack VM support in OpenDaylight

	Problem description

	Setup Presentation

	Known Limitations

	Use Cases

	Inter DC Access

	External Internet Connectivity

	Proposed changes

	Pipeline changes

	Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

	Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

	Configuration impact

	ECMP impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Dual Stack VM support in OpenDaylight

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn-dual-stack-vms

In this specification we will introduce a support of basic L3 forwarding for
dualstack VMs connectivity over L3 in NetVirt. Dualstack VM is a virtual machine
that has at least two IP addresses with different ethertypes: IPv4 address and
IPv6 address.

In addition to this, the specification ensures initial support of dualstack VMs
inside L3 BGPVPN. L3 forwarding for dualstack VMs connectivity inside L3 BGPVPN
will be provided for the following variations of L3 BGPVPN:

	L3 BGPVPN constructed purely using networks;

	L3 BGPVPN constructed purely using a router;

	L3 BGPVPN constructed using multiple networks and a router.

Problem description

As a dualstack VM, we assume a VM which has one Neutron Port, i.e. one VNIC,
that inherits two IPs addresses with different ethertypes: one IPv4 address and
one IPv6 address. We also will use in this document a term singlestack VM to
describe a VM, which VNIC possesses either IPv4 or IPv6 address, but not both
simultaneously.

So, dualstack VM has two IP addresses with different ethertypes. This could be
achieved by two ways:

1. VM was initially created with one VNIC, i.e. one Neutron Port from network
with IPv4 subnet. Second VNIC, corresponded to a Neutron Port from another
network with IPv6 subnet, was added to this machine after its creation.

2. VM has one Neutron Port from a network, which contains 2 subnets: IPv4 subnet
and IPv6 subnet.

OpenDaylight has already provided a support for the first way, so this use-case
is not in the scope of the specification. For the second way the specification
doesn’t intend to cover a use-case when, Neutron Port will possess several IPv4
and several IPv6 addresses. More specifically this specification covers only the
use-case, when Neutron Port has only one IPv4 and one IPv6 address.

Since there are more and more services that use IPv6 by default, support of
dualstack VMs is important. Usage of IPv6 GUA addresses has increased during the
last couple years. Administrators want to deploy services, which will be
accessible from traditional IPv4 infrastructures and from new IPv6 networks as
well.

Dualstack VM should be able to connect to other VMs, be they are of IPv4 (or)
IPv6 ethertypes.
So in this document we can handle following use cases:

	Intra DC, Inter-Subnet basic L3 Forwarding support for dualstack VMs;

	Intra DC, Inter-Subnet L3 Forwarding support for dualstack VMs within L3 BGPVPN.

Current L3 BGPVPN allocation scheme picks up only the first IP address of
dualstack VM Neutron Port. That means that the L3 BGPVPN allocation scheme will
not apply both IPv4 and IPv6 network configurations for a port. For example, if
the first allocated IP address is IPv4 address, then L3 BGPVPN allocation scheme
will only apply to IPv4 network configuration. The second IPv6 address will be
ignored.

Separate VPN connectivity for singlestack VMs within IPv4 subnetworks and within
IPv6 subnetworks is already achieved by using distinct L3 BGPVPN instances. What
we want is to support a case, when the same L3 BGPVPN instance will handle both
IPV4 and IPv6 VM connectivity.

Regarding the problem description above, we would propose to implement in
OpenDaylight two following solutions, applying to two setups

	two-router setup solution

One router belongs to IPv4 subnetwork, another one belongs to IPv6 subnetwork.
This setup brings flexibility to manage access to external networks. More
specifically, by having two routers, where one is holding IPv4 subnet and
another is holding IPv6 subnet, customer can tear-down access to external
network for IPv4 subnet ONLY or for IPv6 subnet ONLY by doing a
router-gateway-clear on a respective router.

Now this kind of orchestration step entail us to put a Single VPN Interface
(representing the VNIC of DualStack VM) in two different Internal-VPNs, where
each VPN represents one of the routers. To achive this we will use L3 BGPVPN
concept. We will extend existing L3 BGPVPN instance implementation to give it an
ability to be associated with two routers. As consequence, IPv4 and IPv6
subnetworks, added as ports in associated routers and, hence, IPv4 and IPv6 FIB
entries, would be gathered in one L3 BGPVPN instance.

L3 BGPVPN concept is the easiest solution to federate two routers in a single L3
BGPVPN entity. From the orchestration point of view and from the networking
point of view, there is no any reason to provide IPv4 L3VPN and IPv6 L3VPN
access separately for dualstack VMs. It makes sense to have the same L3 BGPVPN
entity that can handle both IPv4 and IPv6 subnetworks.

The external network connectivity using L3 BGPVPN is not in scope of this
specification. Please, find more details about this in [6]. Right now, this
configuration will be useful for inter-subnet and intra-dc routing.

	dualstack-router setup solution

The router with 2 ports (one port for IPv4 subnet and another one for IPv6
subnet) is attached to a L3 BGPVPN instance.

The external network connectivity using L3 BGPVPN is not in the scope of this
specification.

Setup Presentation

Following drawing could help :

+---------------------+
| +-----------------+ |
| |VM1 | +---+
	Subnet C::4/64		
	Subnet a.b.c.1/i		
+-----------------+	OVS		
+-----------------+	A		
	VM2		
	Subnet C::5/64		
	Subnet a.b.c.2/i	+-+-+	
+-----------------+		+------+	
+---------------------+ | | |
 | +-MPLSoGRE tunnel for IPv4/IPv6-+ |
 | | |
 Vxlan | |
 Tunnel | |
 | | DCGW +--WAN--
+---------------------+ +-MPLSoGRE tunnel for IPv4/IPV6-+ |
| +-----------------+ | | | |
| |VM3 | +-+-+ +------+
	Subnet C::6/64		
	Subnet a.b.c.3/i		
+-----------------+	OVS		
+-----------------+	B		
	VM4		
	Subnet C::7/64		
	Subnet a.b.c.4/i	+---+	
+-----------------+			
+---------------------+

	We identify there 2 subnets:

	
	IPv4 subnet: a.b.c.x/i

	IPv6 subnet: C::x/64

Each VM will receive IPs from these two defined subnets.

Following schemes stand for conceptual representation of used neutron
configurations for each proposed solution.

setup 1: two singlestack routers, associated with one BGPVPN
 ("two-router" solution)

 +---------------+
 | Network N3 |
 +---------------+
 +-----+ +---------------+ | Subnet C IPv4 |
 | VM1 |-----| Network N | +---------------+
 +-----+ +--| | |
 | +---------------+ +---------------+
 | | Subnet A IPv4 |----| Router 1 |-----+
 | +---------------+ +---------------+ |
 | | Subnet B IPv6 | | | +--------+
 | +---------------+ +---------------+ | | | | |
 | | | Subnet E IPv4 | |---+ BGPVPN |
 | | +---------------+ | | |
 | | | Network N2 | | +--------+
 | | +---------------+ |
 | +---------------+ |
 | | Router 2 |--------------------------+
 +-----+ | +---------------+
 | VM2 |--+ |
 +-----+ +---------------+
 | Subnet D IPv6 |
 +---------------+
 | Network N1 |
 +---------------+

Network N gathers 2 subnetworks, subnet A IPv4 and subnet B IPv6. This makes
possible to create Neutron Ports, which will have 2 IP addresses and whose
attributes will inherit information (extraroutes, etc) from these 2 subnets A
and B.

Router1 and Router2 are connected to Subnet A and Subnet B respectively and will
be attached to a same L3 BGPVPN instance. Routers 1 and 2 can also have other
ports, but they always should stay singlestack routers, otherwise this
configuration will not be still supported. See the chapter “Configuration
impact” for more details.

setup 2: one dualstack router associated with one BGPVPN
 ("dualstack-router" solution)

 +-----+ +---------------+
 | VM1 |-----| Network N |
 +-----+ +--| |
 | +---------------+ +----------+ +--------+
 | | Subnet A IPv4 |---------| | | |
 | +---------------+ | Router 1 |---+ BGPVPN |
 | | Subnet B IPv6 |---------| | | |
 | +---------------+ +----------+ +--------+
 +-----+ |
 | VM2 |--+
 +-----+

Network N gathers 2 subnetworks, subnet A IPv4 and subnet B IPv6. This makes
possible to create Neutron Ports, which will have 2 IP addresses and whose
attributes will inherit information (extraroutes, etc) from these 2 subnets A
and B.

Router 1 is connected to Subnet A and Subnet B, and it will be attached to a L3
BGPVPN instance X. Other subnets can be added to Router 1, but this
configurations will not be still supported. See the chapter “Configuration
impact” for more details.

setup 3: networks associated with one BGPVPN

 +-----+ +------------------+ +--------+
 | VM1 |-----| Network N1 |------| BGPVPN |
 +-----+ +--| | | |
 | +------------------+ +--------+
 | | Subnet A IPv4 (1)| |
 +-----+ | +------------------+ |
 | VM2 |--+ | Subnet B IPv6 (2)| |
 +-----+ +------------------+ |
 |
 |
 +-----+ +------------------+ |
 | VM3 |-----+ Network N2 |----------+
 +-----+ | |
 +------------------+
 | Subnet C IPv4 (3)|
 +------------------+
 | Subnet D IPv6 (4)|
 +------------------+

Network N1 gathers 2 subnets, subnet A with IPv4 ethertype and subnet B with
IPv6 ethertype. When Neutron Port was created in the network N1, it has 1 IPv4
address and 1 IPv6 address. If user lately will add others subnets to the
Network N1 and will create the second Neutron Port, anyway the second VPN port,
constructed for a new Neutron Port will keep only IP addresses from subnets (1)
and (2). So valid network configuration in this case is a network with only 2
subnets: IPv4 and IPv6. See the chapter “Configuration impact” for more details.
Second dualstack network N2 can be added to the same L3 BGPVPN instance.

It is valid for all schemes: in dependency of chosen ODL configuration, either
ODL, or Neutron Dhcp Agent will provide IPv4 addresses for launched VMs. Please
note, that currently DHCPv6 is supported only by Neutron Dhcp Agent. ODL
provides only SLAAC GUA IPv6 address allocation for VMs launched in IPv6 private
subnets attached to a Neutron router.

It is to be noted that today, setup 3 can not be executed for VPNv6 with the above
allocation scheme previously illustrated. Indeed, only a neutron router is able to
send router advertisements, which is the corner stone for DHCPv6 allocation. Either
IPv6 fixed IPs will have to be used for this setup, or an extra enhancement for providing
router advertisements for such a configuration will have to be done. The setup 3 will be
revisited in future.

Known Limitations

Currently, from Openstack-based Opendaylight Bgpvpn driver point-of-view, there
is a check, where it does not allow more than one router to be associated to a
single L3 BGPVPN. This was done in Openstack, because actually entire ODL
modeling and enforcement supported only one router per L3 BGPVPN by design.

From Netvirt point of view, there are some limitations as well:

	We can not associate VPN port with both IPv4 and IPv6 Neutron Port addresses
at the same time. Currently, any first Neutron Port IP address is using to
create a VPN interface. If a Neutron Port possesses multiple IP Addresses,
regardless of ethertype, this port might not work properly with ODL.

	It is not possible to associate a single L3 BGPVPN instance with two different
routers.

Use Cases

There is no change in the use cases described in [6] and [7], except that the
single L3 BGPVPN instance serves both IPv4 and IPv6 subnets.

Inter DC Access

	two-router solution

IPv4 subnet Subnet A is added as a port in Router 1, IPv6 subnet Subnet B is
added as a port in Router 2. The same L3 BGPVPN instance will be associated with
both Router 1 and Router 2.

The L3 BGPVPN instance will distinguish ethertype of router ports and will
create appropriate FIB entries associated to its own VPN entry, so IPv4 and IPv6
enries will be gathered in the same L3 BGPVPN.

	dualstack-router solution

IPv4 subnet Subnet A is added as a port in Router 1, IPv6 subnet Subnet B is
added as a port in Router 1 as well. L3 BGPVPN instance will be associated with
Router 1.

The L3 BGPVPN instance will distinguish ethertype of routers ports and will
create appropriate FIB entries associated to its own VPN entry as well.
Appropriate BGP VRF context for IPv4 or IPv6 subnets will be also created.

External Internet Connectivity

External Internet Connectivity is not in the scope of this specification.

Proposed changes

All changes we can split in two main parts.

	Distinguish IPv4 and IPv6 VRF tables with the same RD/iRT/eRT

1.1 Changes in neutronvpn

To support a pair of IPv4 and IPv6 prefixes for each launched dualstack VM we
need to obtain information about subnets, where dualstack VM was spawned and
information about extraroutes, enabled for these subnets. Obtained information
will be stored in vmAdj and erAdjList objects respectively. These objects are
attributes of created for new dualstack VM VPN interface. Created VPN port
instance will be stored as part of already existed L3 BGPVPN node instance in
MDSAL DataStore.

When we update L3 BGPVPN instance node (associate/dissociated router or
network), we need to provide information about ethertype of new
attached/detached subnets, hence, Neutron Ports. New argument flags ipv4On
and ipv6On will be introduced for that in NeutronvpnManager function
API, called to update current L3 BGPVPN instance (updateVpnInstanceNode()
method). UpdateVpnInstanceNode() method is also called, when we create a new
L3 BGPVPN instance. So, to provide appropriate values for ipv4On, ipv6On
flags we need to parse subnets list. Then in dependency of these flags values we
will set either Ipv4Family attribute for the new L3 BGPVPN instance or
Ipv6Family attribute, or both attributes. Ipv4Family, Ipv6Family
attributes allow to create ipv4 or/and ipv6 VRF context for underlayed
vpnmanager and bgpmanager APIs.

1.2. Changes in vpnmanager

When L3 BGPVPN instance is created or updated, VRF tables must be created for
QBGP as well. What we want, is to introduce separate VRF tables, created
according to IPv4Family/IPv6Family VPN attributes, i.e. we want to
distinguish IPv4 and IPv6 VRF tables, because this will bring flexibility in
QBGP. For example, if QBGP receives an entry IPv6 MPLSVPN on a router, which is
expecting to receive only IPv4 entries, this entry will be ignored. The same for
IPv4 MPLSVPN entries respectively.

So, for creating VrfEntry objects, we need to provide information about L3
BGPVPN instance ethertype (Ipv4Family/Ipv6Family attribute), route
distinguishers list, route imports list and route exports lists
(RD/iRT/eRT). RD/iRT/eRT lists will be simply obtained from subnetworks,
attached to the chosen L3 BGPVPN. Presence of IPv4Family, IPv6Family in
VPN will be translated in following VpnInstanceListener class attributes:
afiIpv4, afiIpv6, safiMplsVpn, safiEvpn, which will be passed to
addVrf() and deleteVrf() bgpmanager methods for creating/deleting either
IPv4 VrfEntry or IPv6 VrfEntry objects.

RD/iRT/eRT lists will be the same for both IPv4 VrfEntry and IPv6
VrfEntry in case, when IPv4 and IPv6 subnetworks are attached to the same L3
BGPVPN instance.

1.3 Changes in bgpmanager

In bgpmanager we need to change signatures of addVrf() and deleteVrf()
methods, which will trigger signature changes of underlying API methods
addVrf() and delVrf() from BgpConfigurationManager class.

This allows BgpConfigurationManager class to create needed IPv4 VrfEntry and
IPv6 VrfEntry objects with appropriate AFI and SAFI values and finally
pass this appropriate AFI and SAFI values to BgpRouter.

BgpRouter represents client interface for thrift API and will create needed
IPv4 and IPv6 VRF tables in QBGP.

1.4 Changes in yang model

To support new attributes AFI and SAFI in bgpmanager classes, it should
be added in ebgp.yang model:

list address-families {
 key "afi safi";
 leaf afi {
 type uint32;
 mandatory "true";
 }
 leaf safi {
 type uint32;
 mandatory "true";
 }
}

1.5 Changes in QBGP thrift interface

To support separate IPv4 and IPv6 VRF tables in QBGP we need to change
signatures of underlying methods addvrf() and delvrf() in thrift API as
well. They must include the address family and subsequent address families
informations:

enum af_afi {
 AFI_IP = 1,
 AFI_IPV6 = 2,
}

i32 addVrf(1:layer_type l_type, 2:string rd, 3:list<string> irts, 4:list<string> erts,
 5:af_afi afi, 6:af_safi afi),
i32 delVrf(1:string rd, 2:af_afi afi, 3:af_safi safi)

	Support of two routers, attached to the same L3 BGPVPN

2.1 Changes in neutronvpn

two-router solution assumes, that all methods, which are using to create,
update, delete VPN interface or/and VPN instance must be adapted to a case, when
we have a list of subnetworks and/or list of router IDs to attach. Due to this,
appropriate changes need to be done in nvpnManager method APIs.

To support two-router solution properly, we also should check, that we do
not try to associate to L2 BGPVPN a router, that was already associated to that
VPN instance. Attached to L3 BGPVPN router list must contain maximum 2 router
IDs. Routers, which IDs are in the list must be only singlestack routers. More
information about supported router configurations is available below in chapter
“Configuration Impact”.

For each created in dualstack network Neutron Port we take only the last
received IPv4 address and the last received IPv6 address. So we also limit a
length of subnets list, which could be attached to a L3 BGPVPN instance, to two
elements. (More detailed information about supported network configurations is
available below in chapter “Configuration Impact”.) Two corresponding
Subnetmap objects will be created in NeutronPortChangeListener class for
attached subnets. A list with created subnetmaps will be passed as argument,
when createVpnInterface method will be called.

2.2 Changes in vpnmanager

VpnMap structure must be changed to support a list with router IDs. This
change triggers modifications in all methods, which retry router ID from
VpnMap object.

VpnInterfaceManager structure must be also changed, to support a list of VPN
instance name. So all methods, which gives VPN router ID from VpnInterfaceManager
should be modified as well.

As consequence, in operDS, a VpnInterfaceOpDataEntry structure is created, inherited
from VpnInterface in configDS. While the latter structure has a list of VPN instance
name, the former will be instantiated in operDS as many times as there are VPN instances.
The services that were handling VPNInterface in operDS, will be changed to handle
VPNInterfaceOpDataEntry. That structure will be indexed by InterfaceName and by VPNName.
The services include natservice, fibmanager, vpnmanager, cloud service chain.

Also, an augment structure will be done for VPNInterfaceOpDataEntry to contain the list
of operational adjacencies. As for VpnInterfaceOpDataEntry, the new AdjacenciesOp
structure will replace Adjacencies that are in operDS. Similarly, the services will be
modified for that.

Also, VPNInterfaceOpDataEntry will contain a VPNInterfaceState that stands for the
state of the VPN Interface. Code change will be done to reflect the state of the interface.
For instance, if VPNInstance is not ready, associated VPNInterfaceOpDataEntries will have
the state changed to INACTIVE. Reversely, the state will be changed to ACTIVE.

2.3 Changes in yang model

To provide change in VpnMap and in VpnInterfaceManager structures, described
above, we need to modify following yang files.

2.3.1 neutronvpn.yang

	Currently, container vpnMap holds one router-id for each L3 BGPVPN instance ID. A
change consists in replacing one router-id leaf by a leaf-list of router-ids.
Obviously, no more than two router-ids will be used.

	Container vpnMaps is used internally for describing a L3 BGPVPN. Change router-id
leaf by router-ids leaf-list in this container is also necessary.

--- a/vpnservice/neutronvpn/neutronvpn-api/src/main/yang/neutronvpn.yang
+++ b/vpnservice/neutronvpn/neutronvpn-api/src/main/yang/neutronvpn.yang
@@ -1,4 +1,3 @@
-
module neutronvpn {

namespace "urn:opendaylight:netvirt:neutronvpn";
@@ -120,7 +119,7 @@ module neutronvpn {
Format is ASN:nn or IP-address:nn.";
}

- leaf router-id {
+ leaf-list router-ids {
 type yang:uuid;
 description "UUID router list";
 }
@@ -173,7 +172,7 @@ module neutronvpn {
description "The UUID of the tenant that will own the subnet.";
}

- leaf router-id {
+ leaf-list router_ids {
 type yang:uuid;
 description "UUID router list";
 }

2.3.2 l3vpn.yang

	Currently, list vpn-interface holds a leaf vpn-instance-name, which is a
container for VPN router ID. A change consists in replacing leaf
vpn-instance-name by a leaf-list of VPN router IDs, because L3 BGPVPN instance can
be associated with two routers.
Obviously, no more than two VPN router-IDs will be stored in leaf-list
vpn-instance-name.

--- a/vpnservice/vpnmanager/vpnmanager-api/src/main/yang/l3vpn.yang
+++ b/vpnservice/vpnmanager/vpnmanager-api/src/main/yang/l3vpn.yang
 @@ -795,21 +795,21 @@

 list vpn-interface {
 key "name";
 max-elements "unbounded";
 min-elements "0";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
- leaf vpn-instance-name {
+ leaf-list vpn-instance-name {
 type string {
 length "1..40";
 }
 }
 leaf dpn-id {
 type uint64;
 }
 leaf scheduled-for-remove {
 type boolean;
 }

2.3.3 odl-l3vpn.yang

 augment "/odl-l3vpn:vpn-interface-op-data/odl-l3vpn:vpn-interface-op-data-entry" {
 ext:augment-identifier "adjacencies-op";
 uses adjacency-list;
 }

 container vpn-interface-op-data {
 config false;
 list vpn-interface-op-data-entry {
 key "name vpn-instance-name";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf vpn-instance-name {
 type string {
 length "1..40";
 }
 }
 max-elements "unbounded";
 min-elements "0";
 leaf dpn-id {
 type uint64;
 }
 leaf scheduled-for-remove {
 type boolean;
 }
 leaf router-interface {
 type boolean;
 }
 leaf vpn-interface-state {
 description
 "This flag indicates the state of this interface in the VPN identified by vpn-name.
 ACTIVE state indicates that this vpn-interface is currently associated to vpn-name
 available as one of the keys.
 INACTIVE state indicates that this vpn-interface has already been dis-associated
 from vpn-name available as one of the keys.";

 type enumeration {
 enum active {
 value "0";
 description
 "Active state";
 }
 enum inactive {
 value "1";
 description
 "Inactive state";
 }
 }
 default "active";
 }
 }
}

Pipeline changes

There is no change in the pipeline, regarding the changes already done in [6]
and [7].

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

The DC-GW has the information, that permits to detect an underlay destination IP
and MPLS label for a packet coming from the Internet or from anotherr DC-GW.

Classifier Table (0) =>

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) match: LportTag l3vpn service: set vpn-id=l3vpn-id =>

DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ipv4-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ipv6-address set tun-id=mpls_label output to MPLSoGRE tunnel port =>

Please, note that router-internal-interface-mac stands for MAC address of
the internal subnet gateway router port.

Configuration impact

	Limitations for router configurations

	1.1 Maximum number of singlestack routers that can be associated to a

	L3BGPVPN is limited to 2. Maximum number of dualstack routers that can be
associated with a BGPVPN is limited to 1.

	1.2 If a L3 BGPVPN has already associated with a one singlestack router and we

	try to associate this VPN instance again with a dualstack router, exception will
not be raised. But this configuration will not be valid.

	1.3 If a singlestack router is already associated to a L3 BGPVPN instance, and

	it has more than one port and we try to add a port to this router with another
ethertype, i.e. we try to make this router dualstack, exception will not be
raised. But this configuration will not be valid and supported.

	1.4 When a different ethertype port is added to a singlestack router, which already

	has only one port and which is already associated to a L3 BGPVPN instance,
singlestack router in this case becomes dualstack router with only two ports.
This router configuration is allowed by current specification.

	Limitations for subnetworks configurations

	2.1 Maximum numbers of different ethertype subnetworks associated to a one L3

	BGPVPN instance is limited to two. If a network contains more than two different
ethertype subnetworks, exception won’t be raised, but this configuration isn’t
supported.

	2.2 When we associate a network with a L3 BGPVPN instance, we do not care if

	subnetworks from this network are ports in some routers and these routers were
associated with other VPNs. This configuration is not considered as supported as
well.

	Limitations for number of IP addresses for a Neutron Port

The specification only targets dual-stack networks, that is to say with 1 IPv4 address and
one IPv6 address only.
For other cases, that is to say, adding subnetworks IPv4 or IPv6, will lead to undefined or
untested use cases. The multiple subnets test case would be handled in a future spec.

ECMP impact

ECMP - Equal Cost multiple path.

ECMP feature is currently provided for Neutron BGPVPN networks and described in
the specification [10]. 3 cases have been cornered to use ECMP feature for
BGPVPN usability.

	ECMP of traffic from DC-GW to OVS (inter-DC case)

	ECMP of traffic from OVS to DC-GW (inter-DC case)

	ECMP of traffic from OVS to OVS (intra-DC case)

In each case, traffic begins either at DC-GW or OVS node. Then it is sprayed to
end either at OVS node or DC-GW.

ECMP feature for Neutron BGPVPN networks was successfully (OK) tested with IPv4
L3 BGPVPN and IPv6 L3 BGPVPN (OK). the dual stack VM connectivity should embrace
ECMP

We’ve included this chapter to remind, that code changes for supporting
dualstack VMs should be tested against ECMP scenario as well.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Assume, that in the same provider network we have OpenStack installed with 1
controller and 2 compute nodes, DC-GW node and OpenDaylight node.

	create private tenant networks and subnetworks

	create Network N;

	declare Subnet A IPv4 for Network N;

	declare Subnet B IPv6 for Network N;

	create two ports in Network N;

	each port will inherit a dual IP configuration.

	create routers

	two-router solution
+ create two routers A and B, each router will be respectively connected to

IPv4 and IPv6 subnets;

	add subnet A as a port to router A;

	add subnet B as a port to router B.

	dualstack-router solution
+ create router A;
+ add subnet A as a port to router A;
+ add subnet B as a port to router A.

	Create MPLSoGRE tunnel between DPN and DCGW

POST /restconf/operations/itm-rpc:add-external-tunnel-endpoint
{
 "itm-rpc:input": {
 "itm-rpc:destination-ip": "dcgw_ip",
 "itm-rpc:tunnel-type": "odl-interface:tunnel-type-mpls-over-gre"
 }
}

	create the DC-GW VPN settings

	Create a L3 BGPVPN context. This context will have the same settings as in
[7].In dualstack case both IPv4 and IPv6 prefixes will be injected in the same
L3 BGPVPN.

	create the ODL L3 BGPVPN settings

	Create a BGP context. This step permits to start QBGP module depicted in [8]
and [9]. ODL has an API, that permits interfacing with that external software.
The BGP creation context handles the following:

	start of BGP protocol;

	declaration of remote BGP neighbor with the AFI/SAFI affinities. In our
case, VPNv4 and VPNv6 address families will be used.

	Create a L3 BGPVPN, this L3 BGPVPN will have a name and will contain VRF
settings.

	associate created L3 BGPVPN to router

	two-router solution: associate routers A and B with a created L3 BGPVPN;

	dualstack-router solution: associate router A with a created L3 BGPVPN.

	Spawn a VM in a created tenant network:

The VM will possess IPv4 and IPv6 addresses from subnets A and B.

	Observation: dump ODL BGP FIB entries

At ODL node, we can dump ODL BGP FIB entries and we should see entries for
both IPv4 and IPv6 subnets prefixes:

GET /restconf/config/odl-fib:fibEntries
{
 "fibEntries": {
 "vrfTables": [
 {
 "routeDistinguisher": <rd-uuid>
 },
 {
 "routeDistinguisher": <rd>,
 "vrfEntry": [
 {
 "destPrefix": <IPv6_VM1/128>,
 "label": <label>,
 "nextHopAddressList": [
 <DPN_IPv4>
],
 "origin": "l"
 },
]
 }
]
 }
}

Features to Install

odl-netvirt-openstack

REST API

CLI

A new option --afi and --safi will be added to command odl:bgp-vrf:

odl:bgp-vrf --rd <> --import-rt <> --export-rt <> --afi <1|2> --safi <value> add|del

Implementation

Assignee(s)

	Primary assignee:

	Philippe Guibert <philippe.guibert@6wind.com>

	Other contributors:

	
	Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>

	Noel de Prandieres <prandieres@6wind.com>

Work Items

	QBGP Changes

	BGPManager changes

	VPNManager changes

	NeutronVpn changes

Dependencies

Quagga from 6WIND is available at the following urls:

	https://github.com/6WIND/quagga

	https://github.com/6WIND/zrpcd

Testing

Unit Tests

Some L3 BGPVPN testing may have be done.
Complementary specification for other tests will be done.

Integration Tests

TBD

CSIT

Basically, IPv4 and IPv6 vpnservice functionality have to be validated by
regression tests with a single BGPVRF.

CSIT specific testing will be done to check dualstack VMs connectivity with
network configurations for two-router and dualstack-router solutions.

Two-router solution test suite:

	Create 2 Neutron Networks NET_1_2RT and NET_2_2RT.

	1.1 Query ODL restconf API to check that both Neutron Network objects were

	successfully created in ODL.

1.2 Update NET_1_2RT with a new description attribute.

	In each Neutron Network create one Subnet IPv4 and one Subnet IPv6:
SUBNET_V4_1_2RT, SUBNET_V6_1_2RT, SUBNET_V4_2_2RT, SUBNET_V6_2_2RT,
respectively.

	2.1 Query ODL restconf API to check that all Subnetwork objects were

	successfully created in ODL.

2.2 Update SUBNET_V4_2RT, SUBNET_V6_2RT with a new description attribute.

	Create 2 Routers: ROUTER_1 and ROUTER_2.

	3.1 Query ODL restconf API to check that all Router objects were successfully

	created in ODL.

	Add SUBNET_V4_1_2RT, SUBNET_V4_2_2RT to ROUTER_1 and SUBNET_V6_1_2RT,
SUBNET_V6_2_2RT to ROUTER_2.

	Create 2 security-groups: SG6_2RT and SG4_2RT. Add appropriate rules to allow
IPv6 and IPv4 traffic from/to created subnets, respectively.

	In network NET_1_2RT create Neutron Ports: PORT_11_2RT, PORT_12_2RT, attached
with security groups SG6_2RT and SG4_2RT; in network NET_2_2RT: PORT_21_2RT,
PORT_22_2RT, attached with security groups SG6_2RT and SG4_2RT.

	6.1 Query ODL restconf API to check, that all Neutron Port objects were

	successfully created in ODL.

6.2 Update Name attribute of PORT_11_2RT.

	Use each created Neutron Port to launch a VM with it, so we should have 4 VM
instances: VM_11_2RT, VM_12_2RT, VM_21_2RT, VM_22_2RT.

	7.1 Connect to NET_1_2RT and NET_2_2RT dhcp-namespaces, check that subnet

	routes were successfully propagated.

7.2 Check that all VMs have: one IPv4 address and one IPv6 addresses.

	Check IPv4 and IPv6 VMs connectivity within NET_1_2RT and NET_2_2RT.

	Check IPv4 and IPv6 VMs connectivity across NET_1_2RT and NET_2_2RT with
ROUTER_1 and ROUTER_2.

9.1 Check that FIB entries were created for spawned Neutron Ports.

	9.2 Check that all needed tables (19, 17, 81, 21) are presented in OVS

	pipelines and VMs IPs, gateways MAC and IP addresses are taken in account.

	Connect to VM_11_2RT and VM_21_2RT and add extraroutes to other IPv4 and
IPv6 subnets.

	10.1 Check other IPv4 and IPv6 subnets reachability from VM_11_2RT and

	VM_21_2RT.

	Delete created extraroutes.

	Delete and recreate extraroutes and check its reachability again.

	Create L3VPN and check with ODL REST API, that it was successfully created.

	Associate ROUTER_1 and ROUTER_2 with created L3VPN and check the presence of
router IDs in VPN instance with ODL REST API.

	Check IPv4 and IPv6 connectivity accross NET_1_2RT and NET_2_2RT with
associated to L3VPN routers.

	15.1 Check with ODL REST API, that VMs IP addresses are presented in VPN

	interfaces entries.

15.2 Verify OVS pipelines at compute nodes.

	15.3 Check the presence of VMs IP addresses in vrfTables objects with

	ODL REST API query.

	Dissociate L3VPN from ROUTER_1 and ROUTER_2.

	Delete ROUTER_1 and ROUTER_2 and its interfaces from L3VPN.

	Try to delete router with NonExistentRouter name.

	Associate L3VPN to NET_1_2RT.

	Dissociate L3VPN from NET_1_2RT.

	Delete L3VPN.

	Create multiple L3VPN.

	Delete multiple L3VPN.

Documentation Impact

Necessary documentation would be added if needed.

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] Spec to support IPv6 North-South support for Flat/VLAN Provider Network. [https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south]

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

[6] Spec to support IPv6 DC to Internet L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/54050/]

[7] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN [https://git.opendaylight.org/gerrit/#/c/50359/]

[8] Zebra Remote Procedure Call [https://github.com/6WIND/zrpcd/]

[9] Quagga BGP protocol [https://github.com/6WIND/zrpcd/]

Listener Dependency Helper

https://git.opendaylight.org/gerrit/#/q/topic:ListenerDepedencyHelper

Listener Dependency Helper makes “Data Store Listeners” independent from dependency
resolution.

Problem description

When a DataStore-Listener is fired with config add/update/delete event, as
part of listener processing it may try to read the other data store objects,
at times those datastore objects are not yet populated. In this scenario,
listener event processing has to be delayed (or) discarded, as the required
information is NOT entirely available. Later when the dependant data objects
are available, this listener event will not be triggered again by DataStore.

This results in some events not getting processed resulting in possible
data-path, bgp control and data plane failures.

Example: VpnInterface add() callback triggered by MD-SAL on vpnInterface
add. While processing add() callback, the corresponding vpnInstance is
expected to be present in MD-SAL operational DS; which means that vpnInstance
creation is complete (updating the vpn-targets in Operational DS and BGP).

Information: vpnInstance Config-DS listener thread has to process vpnInstance
creation and update vpnInstance in operational DS. vpnInstance creation
listener callback is handled by different listener thread.

Use Cases

Use Case 1: VPNInterfaces may get triggered before VPNInstance Creation.

Current implementation: Delay based waits for handling VPNInterfaces that may
get triggered before VPNInstance Creation(waitForVpnInstance()).

Use Case 2: VPNManager to handle successful deletion of VPN which has a
large number of BGP Routes (internal/external):

Current implementation: Delay-based logic on VPNInstance delete in
VPNManager (waitForOpRemoval()).

Use Case 3: VpnSubnetRouteHandler that may get triggered before VPNInstance
Creation.

Current implementation: Delay based waits in VpnSubnetRouteHandler which may
get triggered before VPNInstance Creation(waitForVpnInstance()).

Use Case 4: VPN Swaps (Internal to External and vice-versa)

Current implementation: Currently we support max of 100 VM’s for swap
(VpnInterfaceUpdateTimerTask, waitForFibToRemoveVpnPrefix()).

Proposed change

During Listener event call-back (AsyncDataTreeChangeListenerBase) from
DataStore, check for pending events in “Listener-Dependent-Queue” with
same InstanceIdentifier to avoid re-ordering.

Generic Queue Event Format:

key : Instance Identifier
eventType : Type of event (ADD/UPDATE/DELETE)
oldData : Data before modification (for Update event);
newData : Newly populated data
queuedTime : at which the event is queued to LDH.
lastProcessedTime : latest time at which dependency list verified
expiryTime : beyond which processing for event is useless
waitBetweenDependencyCheckTime : wait time between each dependency check
dependentIIDs : list of dependent InstanceIdentifiers
retryCount : max retries allowed.
databroker : data broker.
deferTimerBased : flag to choose between (timer/listener based).

For Use Case - 1: deferTimerBased shall be set to TRUE (as per the specification).

During processing of events (either directly from DataStore or from
“Listener-Dependent-Queue”), if there any dependent objects are yet to
populated; queue them to “Listener-Dependent-Queue”.

Expectations from Listener: Listener will push the callable instance to
“Listener-Dependent-Queue” if it cannot proceed with processing of the
event due to dependent objects/InstanceIdentifier and list of dependent IID’s.

There are two approaches the Listener Dependency check can be verified.

approach-1 Get the list of dependent-IID’s, query DataStore/Cache for

depenedency resolution at regular intervals using “timer-task-pool”. Once
all the dependent IID’s are resolved, call respective listener for
processing.

LDH-task-pool : pool of threads which query for dependency resolution READ
ONLY operation in DataStore. These threads are part of LDH common for all
listeners.

hasDependencyResolved(<InstanceIdentifier iid, Boolean shouldDataExist,
DataStoreType DSType> List), this shall return either Null list (or) the list
which has dependencies yet to be resolved. In case Listener has local-cache
implemented for set of dependencies, it can look at cache and identify. This
api will be called from LDH-task-pool of thread(s).

instanceIdentifier is the MD-SAL key value which need to be verified for
existence/non-existence of data.
Boolean shouldDataExist: shall be TRUE, if the Listener expects to have the
information exists in MD-SAL; False otherwise.

approach-2 Register Listener for wild-card path of IID’s.

When a Listener gets queued to “”Listener-Dependent-Queue”, LDH shall register
itself as Listener for the dependent IID’s (using wild-card-path/parent-node).
Once the listener gets fired, identify the dependent listeners waiting for the
Data. Once the dependent Listener is identified, if the dependent-IID list is
NULL. Trigger listener for processing the event.
LDH-task-pool shall unregister itself from wild-card-path/parent-node once there
are no dependent listeners on child-nodes.

Re-Ordering

The following scenario, when re-ordering can happen and avoidance of the same:

	Example: Key1 and Value1 are present in MD-SAL Data Store under Tree1, SubTree1

	(for say). Update-Listener for Key1 is dependent on Dependency1.

Key1 received UPDATE event (UPDATE-1) with value=x, at the time of processing
UPDATE-1, dependency is not available. So Listener Queued ‘UPDATE-1’ event to
“UnProcessed-EventQueue”.
same key1 received UPDATE event (UPDATE-2) with value=y, at the time of
processing UPDATE-2, dependency is available (Dependency1 is resolved), so it
goes and processes the event and updates value of Key1 to y.

	After WaitTime, event Key1, UPDATE-1 is de-queued from “UnProcessed-EventQueue”

	and put for processing in Lister. Listener processes it and updates the Key1
value to x. (which is incorrect, happened due to re-ordering of events).

To avoid reordering of events within listener, every listener call back shall
peek into “UnProcessed-EventQueue” to identify if there exists a pending event
with same key value; if so, either suppress (or)
queue the event. Below are event ordering expected from MD-SAL and respective
actions:

what to consider before processing the event to avoid re-ordering of events:

	Current Event| Queued Event| Action

	ADD | ADD | NOT EXPECTED

	ADD | REMOVE | QUEUE THE EVENT

	ADD | UPDATE | NOT EXPECTED

	UPDATE | ADD | QUEUE EVENT

	UPDATE | UPDATE | QUEUE EVENT

	UPDATE | REMOVE | NOT EXPECTED

	REMOVE | ADD | SUPPRESS BOTH

	REMOVE | UPDATE | EXECUTE REMOVE SUPPRESS UPDATE

	REMOVE | REMOVE | NOT EXPECTED

Pipeline changes

none

Yang changes

none

Configuration impact

none

Clustering considerations

In the two approaches mentioned:
1 - Timer: polling MD-SAL for dependency resolution may incur in more
number of reads.

2 - RegisterListener: RegisterListener may some impact at the time of
registering listener after which a notification message to cluser nodes.

Predined List of Listeners

perational/odl-l3vpn:vpn-instance-op-data/vpn-instance-op-data-entry/*
operational/odl-l3vpn:vpn-instance-op-data/vpn-instance-op-data-entry/

vpn-id/vpn-to-dpn-list/*

config/l3vpn:vpn-instances/*

Other Infra considerations

Security considerations

none

Scale and Performance Impact

this infra, shall improve scaling of application without having to wait for
dependent data store gets populated.
Performance shall remain intact.

Targeted Release

Alternatives

	use polling/wait mechanisms

Features to Install

REST API

CLI

CLI will be added for debugging purpose.

Implementation

Assignee(s)

Primary assignee:
Siva Kumar Perumalla (sivakumar.perumalla@ericsson.com)

Other contributors:
Suneelu Verma K.

Work Items

Dependencies

Testing

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Acronyms

IID: InstanceIdentifier

Table of Contents

	New SFC Classifier

	Terminology

	Problem description

	Use Cases

	Proposed change

	Integration with Genius

	Classifier and SFC Genius Services

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

New SFC Classifier

https://git.opendaylight.org/gerrit/#/q/topic:new-sfc-classifier

The current SFC Netvirt classifier only exists in the old Netvirt.
This blueprint explains how to migrate the old Netvirt classifier
to a new Netvirt classifier.

Terminology

	NSH - Network Service Headers, used as Service Chaining encapsulation. NSH RFC Draft [1]

	NSI - Network Service Index, a field in the NSH header used to indicate the next hop

	NSP - Network Service Path, a field in the NSH header used to indicate the service chain

	RSP - Rendered Service Path, a service chain.

	SFC - Service Function Chaining. SFC RFC [2] ODL SFC Wiki [3].

	SF - Service Function

	SFF - Service Function Forwarder

	VXGPE - VXLAN GPE (Generic Protocol Encapsulation)
Used as transport for NSH. VXGPE uses the same header format as traditional
VXLAN, but adds a Next Protocol field to indicate NSH will be the next header.
Traditional VXLAN implicitly expects the next header to be ethernet. VXGPE RFC
Draft [4].

Problem description

In the Boron release, an SFC classifier was implemented, but in the
old Netvirt. This blueprint intends to explain how to migrate the
old Netvirt classifier to a new Netvirt classifier, which includes
integrating the classifier and SFC with Genius.

The classifier is an integral part of Service Function Chaining (SFC).
The classifier maps client/tenant traffic to a service chain by matching
the packets using an ACL, and once matched, the classifier encapsulates
the packets using some sort of Service Chaining encapsulation. Currently,
the only supported Service Chaining encapsulation is NSH using VXGPE as
the transport. Very soon (possibly in the Carbon release) Vxlan will be
added as another encapsulation/transport, in which case NSH is not used.
The transport and encapsulation information to be used for the service
chain is obtained by querying the Rendered Service Path (RSP) specified
in the ACL action.

The transport and encapsulation used between the classifier and the SFF,
and also between SFFs will be VXGPE+NSH. The transport and encapsulation
used between the SFF and the SF will be Ethernet+NSH.

The following image details the packet headers used for Service Chaining
encapsulation with VXGPE+NSH.

[image: VXGPE+NSH and Eth+NSH packet headers]

Diagram source [5].

The problem was originally discussed using the slides in this link [12]
as a guideline. These slides are only intended for reference, and are not
to be used for implementation.

Use Cases

The main use case addressed by adding an SFC classifier to Netvirt
is to integrate SFC with Netvirt, thus allowing for Service Chaining
to be used in an OpenStack virtual deployment, such as the OPNFV
SFC project [6].

SFC works with both OVS and VPP virtual switches, and its even possible
to have a hybrid setup whereby Netvirt is hosted on OVS and SFC is hosted
on VPP switches. This blueprint only addresses the use of SFC with NetVirt
and OVS.

As mentioned previously, currently SFC works with VXGPE+NSH and Eth+NSH
transport/encapsulation, and soon SFC will work with VXLAN as the transport and
encapsulation. The first version of this implementation will focus on VXGPE+NSH
and Eth+NSH. In the future, when VXLAN is implemented in SFC, VXLAN can be added
to the Netvirt SFC classifier. Changes in the transport and encapsulation
used for service chains will have no affect on the Netvirt ACL model, since
the transport and encapsulation information is obtained via the RSP specified
in the RSP.

Proposed change

The existing old Netvirt SFC code can be found here:

	netvirt/openstack/net-virt-sfc/{api,impl}

Once the new Netvirt SFC classifier is implemented and working, the old
Netvirt SFC classifier code will be left in place for at least one release
cycle.

The new Netvirt SFC code base will be located here:

	netvirt/vpnservice/sfc/classifier/{api,impl}

The new Netvirt SFC classifier implementation will be new code. This
implementation is not to be confused with the existing Netvirt aclservice,
which is implemented for Security Groups. More details about the Genius
integration can be found in the following section, but the Netvirt SFC
classifier will be in a new Genius classifier service. The SFC
implementation is already integrated with Genius and is managed via
the Genius SFC service.

Integration with Genius

Genius [7], [8] is an OpenDaylight project that provides generic
infrastructure services to other OpenDaylight projects. New Netvirt makes
use of Genius and the new Netvirt classifier will also make use of Genius
services. Among these services, the interface manager, tunnel manager
and service binding services are of special relevance for the new
Netvirt classifier.

Genius interface manager handles an overlay of logical interfaces on
top of the data plane physical ports. Based on these logical interfaces,
different services/applications may be bound to them with certain
priority ensuring that there is no interference between them. Avoiding
interference between services/applications is called Application Coexistence
in Genius terminology. Typically, the effect of an application binding to
a logical interface is that downstream traffic from that interface will be
handed off to that application pipeline. Each application is then responsible
to either perform a termination action with the packet (i.e output or drop
action) or to return the packet back to Genius so that another application
can handle the packet. There is a predefined set of types of services that
can bind, and Classifier is one of them.

For OpenStack environments, Netvirt registers Neutron ports as logical
interfaces in the Genius interface manager. Classifying traffic for a
client/tenant ultimately relies on classifying traffic downstream from
their corresponding Neutron ports. As such, the Netvirt classifier will
bind on these interfaces as a newly defined Genius Classifier service
through the Genius interface manager. It was considered integrating the
Netvirt classifier with the existing Netvirt security groups, but the idea
was discarded due to the possible conflicts and other complications this
could cause.

Netvirt also keeps track of the physical location of these Neutron
ports in the data plane and updates the corresponding Genius logical
interface with this information. Services integrated with Genius may
consume this information to be aware of the physical location of a
logical interface in the data plane and it’s changes when a VM migrates
from one location to another. New Netvirt classifier will install the
classification rules based on the data plane location of the client/tenant
Neutron ports whose traffic is to be classified. On VM migration, the
classifier has to remove or modify the corresponding classification rules
accounting for this location change, which can be a physical node
change or a physical port change.

The classifier is responsible for forwarding packets to the first
service function forwarder (SFF) in the chain. This SFF may or may
not be on the same compute host as the classifier. If the classifier
and SFF are located on the same compute host, then the encapsulated
packet is sent to the SFF via the Genius Dispatcher and OpenFlow
pipelines. The packets can be forwarded to the SFF locally via the
ingress or egress classifier, and it will most likely be performed
by the egress classifier, but this decision will be determined at
implementation time.

In scenarios where the first SFF is on a different compute host than
the client node, the encapsulated packet needs to be forwarded to that
SFF through a tunnel port. Tunnels are handled by the Genius tunnel
manager (ITM) with an entity called transport zone: all nodes in a
transport zone will be connected through a tunnel mesh. Thus the
netvirt classifier needs to ensure that the classifier and the SFF
are included in a transport zone. The transport type is also specified
at the transport zone level and for NSH it needs to be VXGPE. The
classifier needs to make sure that this transport zone is handled
for location changes of client VMs. Likewise, SFC needs to make sure
the transport zone is handled for SF location changes.

The afore-mentioned Genius ITM is different than the tunnels currently
used by Netvirt. SFC uses VXGPE tunnels, and requests they be created
via the Genius ITM.

Classifier and SFC Genius Services

There will be 2 new Genius services created in Netvirt for the new
Netvirt SFC classifier, namely an “Ingress SFC Classifier” and an
“Egress SFC Classifier”. There will also be a Genius service for
the SFC SFF functionality that has already been created in the SFC
project.

The priorites of the services will be as follows:

Ingress Dispatcher:

	SFC - P1

	IngressACL - P2

	Ingress SFC Classifier - P3

	IPv6, IPv4, L2 - P4…

Egress Dispatcher:

	EgressACL - P1

	Egress SFC Classifier - P2

The Ingress SFC classifier will bind on all the Neutron VM ports of
the Neutron Network configured in the ACL. All packets received from
these Neutron ports will be sent to the Ingress SFC classifier via the
Genius Ingress Dispatcher, and will be subjected to ACL matching.
If there is no match, then the packets will be returned to the Genius
dispatcher so they can be sent down the rest of the Netvirt pipeline.
If there is an ACL match, then the classifier will encapsulate NSH,
set the NSP and NSI accordingly, initialize C1 and C2 to 0, and send
the packet down the rest of the pipeline. Since the SFC service (SFF)
will most likely not be bound to this same Neutron port, the packet
wont be processed by the SFF on the ingress pipeline. If the classifier
and first SFF are in the same node, when the packet is processed by
the egress SFC classifier, it will be resubmitted back to the Ingress SFC
service (SFC SFF) for SFC processing. If not, the packet will be sent to
the first SFF.

The Ingress SFC service (SFF) will bind on the Neutron ports for the Service
Functions and on the VXGPE ports. The Ingress SFC service will receive
packets from these Neutron and VXGPE ports, and also those that have
been resubmitted from the Egress SFC Classifier. It may be possible that
packets received from the SFs are not NSH encapsulated, so any packets
received by the Ingress SFC service that are not NSH encapsulated will
not be processed and will be sent back to the Ingress Dispatcher. For
the NSH packets that are received, the Ingress SFC service will calculate
the Next-Hop and modify either the VXGPE header if the next hop is a
different SFF, or modify the Ethernet encapsulation header if the next
hop is an SF on this same SFF. Once NSH packets are processed by the
Ingress SFC service, they will be sent to the Egress Dispatcher.

The Egress SFC classifier service is the final phase of what the Ingress
SFC classifier service started when an ACL match happens. The packet needed
to go down the rest of the pipeline so the original packet destination
can be calculated. The Egress SFC classifier will take the information
prepared by the rest of the Netvirt pipeline and store the TunIPv4Dst and
VNID of the destination compute host in C1 and C2 respectively. If the
packet is not NSH encapsulated, then it will be sent back to the Egress
Dispatcher. If the packet does have NSH encapsulation, then if C1/C2 is
0, then the fields will be populated as explained above. If the C1/C2
fields are already set, the packet will be sent out to either the Next
Hop SF or SFF.

At the last hop SFF, when the packet egresses the Service Chain, the
SFF will pop the NSH encapsulation and use the NSH C1 and C2 fields to
tunnel the packet to its destination compute host. If the destination
compute host is the same as the last hop SFF, then the packet will be
sent down the rest of the Netvirt pipeline so it can be sent to its
destination VM on this compute host. When the destination is local,
then the inport will probably have to be adjusted.

An example of how the last hop SFF routing works, imagine the following
diagram where packet from the Src VM would go from br-int1 to br-int3 to
reach the Dst VM when there is no service chaining employed. When the
packets from the Src VM are subjected to service chaining, the pipeline
in br-int1 need to calculate the the final destination is br-int3, and
the appropriate information needs to be set in the NSH C1/C2 fields.
Then the SFC SFF on br-int2, upon chain egress will use C1/C2 to send
the packets to br-int3 so they can ultimately reach the Dst VM.

 +----+
 | SF |
 +--+-+
 Route with SFC |
 C1/C2 has tunnel +-------+-----+
 info to br-int3 | |
 +------------>| br-int2 |----+
+-----+ | | SFF | | +-----+
| Src | | +-------------+ | | Dst |
| VM | | | | VM |
+--+--+ | | +--+--+
 | | v |
 | +-----+-------+ +-------------+ |
 +------>| | | |<-+
 | br-int1 +----------------->| br-int3 |
 | | Original route | |
 +-------------+ with no SFC +-------------+

Pipeline changes

The existing Netvirt pipeline will not change as a result of adding the
new classifier, other than the fact that the Ingress SFC classifier and
Egress SFC classifier Genius Services will be added, which will change
the Genius Service priorities as explained previously. The Genius
pipelines can be found here [10].

Ingress Classifier Flows:

The following flows are an approximation of what the Ingress Classifier
service pipeline will look like. Notice there are 2 tables defined as
follows:

	
	table 100: Ingress Classifier Filter table.

	
	Only allows Non-NSH packets to proceed in the classifier

	
	table 101: Ingress Classifier ACL table.

	
	Performs the ACL classification, and sends packets to Ingress Dispatcher

The final table numbers may change depending on how they are assigned
by Genius.

 // Pkt has NSH, send back to Ingress Dispatcher
cookie=0xf005ball00000101 table=100, n_packets=11, n_bytes=918,
 priority=550,nsp=42 actions=resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

 // Pkt does NOT have NSH, send to GENIUS_INGRESS_DISPATCHER_TABLE
cookie=0xf005ball00000102 table=100, n_packets=11, n_bytes=918,
 priority=5 actions=goto_table:GENIUS_INGRESS_DISPATCHER_TABLE

 // ACL match: if TCP port=80
 // Action: encapsulate NSH and set NSH NSP, NSI, C1, C2, first SFF
 // IP in Reg0, and send back to Ingress Dispatcher to be sent down
 // the Netvirt pipeline. The in_port in the match is derived from
 // the Neutron Network specified in the ACL match and identifies
 // the tenant/Neutron Network the packet originates from
cookie=0xf005ball00000103, table=101, n_packets=11, n_bytes=918,
 tcp,tp_dst=80, in_port=10
 actions=push_nsh,
 load:0x1->NXM_NX_NSH_MDTYPE[],
 load:0x0->NXM_NX_NSH_C1[],
 load:0x0->NXM_NX_NSH_C2[],
 load:0x2a->NXM_NX_NSP[0..23],
 load:0xff->NXM_NX_NSI[],
 load:0x0a00010b->NXM_NX_REG0[],
 resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

Egress Classifier Flows:

The following flows are an approximation of what the Egress Classifier
service pipeline will look like. Notice there are 3 tables defined as
follows:

	
	table 221: Egress Classifier Filter table.

	
	Only allows NSH packets to proceed in the egress classifier

	
	table 222: Egress Classifier NextHop table.

	
	Set C1/C2 accordingly

	
	table 223: Egress Classifier TransportEgress table.

	
	Final egress processing and egress packets

	Determines if the packet should go to a local or remote SFF

The final table numbers may change depending on how they are assigned
by Genius.

 // If pkt has NSH, goto table 222 for more processing
cookie=0x14 table=221, n_packets=11, n_bytes=918,
 priority=260,md_type=1
 actions=goto_table:222

 // Pkt does not have NSH, send back to Egress Dispatcher
cookie=0x14 table=110, n_packets=0, n_bytes=0,
 priority=250
 actions=resubmit(,GENIUS_EGRESS_DISPATCHER_TABLE)

 // Pkt has NSH, if NSH C1/C2 = 0, Set C1/C2 and overwrite TunIpv4Dst
 // with SFF IP (Reg0) and send to table 223 for egress
cookie=0x14 table=222, n_packets=11, n_bytes=918,
 priority=260,nshc1=0,nshc2=0
 actions=load:NXM_NX_TUN_IPV4_DST[]->NXM_NX_NSH_C1[],
 load:NXM_NX_TUN_ID[]->NXM_NX_NSH_C2[],
 load:NXM_NX_REG0[]->NXM_NX_TUN_IPV4_DST[]
 goto_table:223

 // Pkt has NSH, but NSH C1/C2 aleady set,
 // send to table 223 for egress
cookie=0x14 table=222, n_packets=11, n_bytes=918,
 priority=250
 actions=goto_table:223

 // Checks if the first SFF (IP stored in reg0) is on this node,
 // if so resubmit to SFC SFF service
cookie=0x14 table=223, n_packets=0, n_bytes=0,
 priority=260,nsp=42,reg0=0x0a00010b
 actions=resubmit(, SFF_TRANSPORT_INGRESS_TABLE)

cookie=0x14 table=223, n_packets=0, n_bytes=0,
 priority=250,nsp=42
 actions=outport:6

Ingress SFC Service (SFF) Flows:

The following flows are an approximation of what the Ingress SFC
service (SFF) pipeline will look like. Notice there are 3 tables
defined as follows:

	
	table 83: SFF TransportIngress table.

	
	Only allows NSH packets to proceed into the SFF

	tables 84 and 85 are not used for NSH

	
	table 86: SFF NextHop table.

	
	Set the destination of the next SF

	
	table 87: SFF TransportEgress table.

	
	Prepare the packet for egress

The final table numbers may change depending on how they are assigned
by Genius.

 // Pkt has NSH, send to table 86 for further processing
cookie=0x14 table=83, n_packets=11, n_bytes=918,
 priority=250,nsp=42
 actions=goto_table:86
 // Pkt does NOT have NSH, send back to Ingress Dispatcher
cookie=0x14 table=83, n_packets=0, n_bytes=0,
 priority=5
 actions=resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

 // Table not used for NSH, shown for completeness
cookie=0x14 table=84, n_packets=0, n_bytes=0,
 priority=250
 actions=goto_table:86

 // Table not used for NSH, shown for completeness
cookie=0x14 table=85, n_packets=0, n_bytes=0,
 priority=250
 actions=goto_table:86

 // Match on specific NSH NSI/NSP, Encapsulate outer Ethernet
 // transport. Send to table 87 for further processing.
cookie=0x14 table=86, n_packets=11, n_bytes=918,
 priority=550,nsi=255,nsp=42
 actions=load:0xb00000c->NXM_NX_TUN_IPV4_DST[],
 goto_table:87
 // The rest of the packets are sent to
 // table 87 for further processing
cookie=0x14 table=86, n_packets=8, n_bytes=836,
 priority=5
 actions=goto_table:87

 // Match on specific NSH NSI/NSP, C1/C2 set
 // prepare pkt for egress, send to Egress Dispatcher
cookie=0xba5eba1100000101 table=87, n_packets=11, n_bytes=918,
 priority=650,nsi=255,nsp=42
 actions=move:NXM_NX_NSH_MDTYPE[]->NXM_NX_NSH_MDTYPE[],
 move:NXM_NX_NSH_NP[]->NXM_NX_NSH_NP[],
 move:NXM_NX_TUN_ID[0..31]->NXM_NX_TUN_ID[0..31],
 load:0x4->NXM_NX_TUN_GPE_NP[],
 resubmit(,GENIUS_EGRESS_DISPATCHER_TABLE)

Yang changes

The api YANGs used for the classifier build on the ietf acl models from
the mdsal models.

Multiple options can be taken, depending on the desired functionality.
Depending on the option chosen, YANG changes might be required.

Assuming no YANG changes, SFC classification will be performed on all VMs
in the same neutron-network - this attribute is already present in the
YANG model. This is the proposed route, since it hits a sweet-spot
in the trade-off between functionality and risk.

If classifying the traffic from specific interfaces is desired, then the
YANG model would need to be updated, possibly by adding a list of interfaces
on which to classify.

Configuration impact

None

Clustering considerations

None

Other Infra considerations

Since SFC uses NSH, and the new Netvirt Classifier will need to add NSH
encapsulation, a version of OVS that supports NSH must be used. NSH has not
been officially accepted into the OVS project, so a branched version of OVS is
used. Details about the branched version of OVS can be found here [9].

Security considerations

None

Scale and Performance Impact

None

Targeted Release

This change is targeted for the ODL Carbon release.

Alternatives

None

Usage

The new Netvirt Classifier will be configured via the REST JSON configuration
mentioned in the REST API section below.

Features to Install

The existing old Netvirt SFC classifier is implemented in the following Karaf
feature:

odl-ovsdb-sfc

When the new Netvirt SFC classifier is implemented, the previous Karaf feature
will no longer be needed, and the following will be used:

odl-netvirt-sfc

REST API

The classifier REST API wont change from the old to the new Netvirt. The
following example is how the old Netvirt classifier is configured.

Defined in netvirt/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang

An ACL is created which specifies the matching criteria and the action,
which is to send the packets to an SFC RSP. Notice the “network-uuid” is
set. This is for binding the Netvirt classifier service to a logical port.
The procedure will be to query Genius for all the logical ports in that
network uuid, and bind the Netvirt classifier service to each of them.

If the RSP has not been created yet, then the classification can not
be created, since there wont be any information available about the
RSP. In this case, the ACL information will be buffered, and there
will be a separate listener for RSPs. When the referenced RSP is
created, then the classifier processing will continue.

URL: /restconf/config/ietf-access-control-list:access-lists/

{
 "access-lists": {
 "acl": [
 {
 "acl-name": "ACL1",
 "acl-type": "ietf-access-control-list:ipv4-acl",
 "access-list-entries": {
 "ace": [
 {
 "rule-name": "ACE1",
 "actions": {
 "netvirt-sfc-acl:rsp-name": "RSP1"
 },
 "matches": {
 "network-uuid" : "eccb57ae-5a2e-467f-823e-45d7bb2a6a9a",
 "source-ipv4-network": "192.168.2.0/24",
 "protocol": "6",
 "source-port-range": {
 "lower-port": 0
 },
 "destination-port-range": {
 "lower-port": 80
 }
 }
 }
]
 }
 }]}}

CLI

None.

Implementation

Assignee(s)

Primary assignee:

	<brady.allen.johnson@ericsson.com>

Other contributors:

	<brady.allen.johnson@ericsson.com>

	<david.suarez.fuentes@ericsson.com

	<jaime.camaano.ruiz@ericsson.com>

	<miguel.duarte.de.mora.barroso@ericsson.com>

Work Items

Simple scenario:

	Augment the provisioned ACL with the ‘neutron-network’ augmentation - [11]

	From the neutron-network, get a list of neutron-ports - the interfaces
connecting the VMs to that particular neutron-network. For each interface, do
as follows:

	Extract the DPN-ID of the node hosting the VM having that neutron-port

	Extract the DPN-ID of the node hosting the first SF of the RSP

	The forwarding logic to implement depends on the co-location of the client’s
VM with the first SF in the chain.

	When the VMs are co-located (i.e. located in the same host), the output
actions are to forward the packet to the first table of the SFC pipeline.

	When the VMs are not co-located (i.e. hosted on different nodes) it
is necessary to:

	Use genius RPCs to get the interface connecting 2 DPN-IDs. This will
return the tunnel endpoint connecting the compute nodes.

	Use genius RPCs to get the list of actions to reach the tunnel
endpoint.

Enabling VM mobility:

	Handle first SF mobility

Listen to RSP updates, where the only relevant
migration is when the first SF moves to another node (different DPN-IDs).
In this scenario, we delete the flows from the old node, and install the
newly calculated flows in the new one. This happens for each node having
an interface to classify attached to the provisioned neutron-network.

	Handle client VM mobility

Listen to client’s InterfaceState changes,
re-evaluating the Forwarding logic, since the tunnel interface used to reach
the target DPN-ID is different. This means the action list to implement it,
will also be different. The interfaces to listen to will be ones attached to
the provisioned neutron-network.

	Must keep all the nodes having interfaces to classify (i.e. nodes
having neutron-ports attached to the neutron-network) and the first SF host
node within the same transport zone. By listening to InterfaceState changes
of clients within the neutron-network & the first SF neutron ports, the
transport zone rendering can be redone.

TODO: is there a better way to identify when the transport zone
needs to be updated?

Dependencies

No dependency changes will be introduced by this change.

Testing

Unit Tests

Unit tests for the new Netvirt classifier will be modeled on the existing
old Netvirt classifier unit tests, and tests will be removed and/or added
appropriately.

Integration Tests

The existing old Netvirt Classifier Integration tests will need to be
migrated to use the new Netvirt classifier.

CSIT

The existing Netvirt CSIT tests for the old classifier will need to be
migrated to use the new Netvirt classifier.

Documentation Impact

User Guide documentation will be added by one of the following contributors:

	<brady.allen.johnson@ericsson.com>

	<david.suarez.fuentes@ericsson.com

	<jaime.camaano.ruiz@ericsson.com>

	<miguel.duarte.de.mora.barroso@ericsson.com>

References

[1] https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/

[2] https://datatracker.ietf.org/doc/rfc7665/

[3] https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

[4] https://datatracker.ietf.org/doc/draft-ietf-nvo3-vxlan-gpe/

[5] https://docs.google.com/presentation/d/1kBY5PKPETEtRA4KRQ-GvVUSLbJoojPsmJlvpKyfZ5dU/edit?usp=sharing

[6] https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home

[7] http://docs.opendaylight.org/en/stable-boron/user-guide/genius-user-guide.html

[8] https://wiki.opendaylight.org/view/Genius:Design_doc

[9] https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#Building_Open_vSwitch_with_VxLAN-GPE_and_NSH_support

[10] http://docs.opendaylight.org/en/latest/submodules/genius/docs/pipeline.html

[11] https://github.com/opendaylight/netvirt/blob/master/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang

[12] https://docs.google.com/presentation/d/1gN8GnpVGwku4mp1on7EBZiE41RI7lZ-FFmFS2QlUTKk/edit?usp=sharing

Table of Contents

	Netvirt Statistics

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Netvirt Statistics

https://git.opendaylight.org/gerrit/#/q/topic:netvirt-counters

The feature enables getting statistics on ports and switches.

Problem description

Being able to ask for statistics, given as input Netvirt identifiers.
It will enable filtering the results and having aggregated result.
In a later stage, it will be also used to get element to element counters.
Examples for possible filters: RX only, TX only, port + VLAN counters…

Use Cases

	Getting port counters, given its interface id (ietf interface name).

	Getting node counters, given its node id.

Port counters can be useful also to get statistics on traffic going into tunnels
when requesting it from the tunnel endpoint port.
In addition, there will also be support in aggregated results. For example:
Getting the total number of transmitted packets from a given switch.

Proposed change

Adding a new bundle named “statistics-plugin” to Netvirt.
This bundle will be responsible for converting the Netvirt unique identifiers into OpenFlow ones,
and will get the relevant statistics by using OpenFlowPlugin capabilities.
It will also be responsible of validating and filtering the results.
It will be able to provide a wide range of aggregated results in the future.

Work flow description: Once a port statistics request is received, it is translated to a port statistics request from openflow plugin. Once the transaction is received, the data is validated and translated to a user friendly data. The user will be notified if a timeout occurs.
In case of a request for aggregated counters, the user will receive a single counter result divided to groups (such as “bits”, “packets”…). The counters in each group will be the sum of all of the matching counters for all ports.
Neither one of the counter request nor the counter response will not be stored in the configuration database. Moreover, requests are not periodic and they are on demand only.

Pipeline changes

None

Yang changes

The new plugin introduced will have the following models:

 grouping result {
 list counterResult {
 key id;
 leaf id {
 type string;
 }
 list groups {
 key name;
 leaf name {
 type string;
 }
 list counters {
 key name;
 leaf name {
 type string;
 }
 leaf value {
 type uint64;
 }
 }
 }
 }
}

grouping filters {
 leaf-list groupFilters {
 type string;
 }
 leaf-list counterFilter {
 type string;
 }
}

rpc getNodeConnectorCounters {
 input {
 leaf portId {
 type string;
 }
 uses filters;
 }
 output {
 uses result;
 }
}

rpc getNodeCounters {
 input {
 leaf nodeId {
 type uint64;
 }
 }
 output {
 uses result;
 }
}

rpc getNodeAggregatedCounters {
 input {
 leaf nodeId {
 type uint64;
 }
 uses filters;
 }
 output {
 uses result;
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

Getting the statistics from OpenFlow flows: it would be possible to target the appropriate rules in ingress/egress tables, and count the hits on these flows. The reason we decided to work with ports instead is because we don’t want to be dependent on flow structure changes.

Usage

	Create router, network, VMS, VXLAN tunnel.

	Connect to one of the VMs, send ping ping to the other VM.

	Use REST to get the statistics.

Port statistics:

http://10.0.77.135:8181/restconf/operational/ietf-interfaces:interfaces-state/

Choose a port id and use the following REST in order to get the statistics:

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeConnectorCounters, input={"input":{"portId":"b99a7352-1847-4185-ba24-9ecb4c1793d9"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Node statistics:

http://10.0.77.135:8181/restconf/config/odl-interface-meta:bridge-interface-info/

Choose a node dpId and use the following REST in order to get the statistics:

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeCounters, input=
 {"input": { "portId": "b99a7352-1847-4185-ba24-9ecb4c1793d9","groups": [{ "name": "byte*",
 "counters": [{
 "name": "rec*",
 }, {
 "name": "transmitted*",
 }]
 }]
 }},
headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeAggregatedCounters, input=
 {"input": { "portId": "b99a7352-1847-4185-ba24-9ecb4c1793d9","groups": [{ "name": "byte*",
 "counters": [{
 "name": "rec*",
 }, {
 "name": "transmitted*",
 }]
 }]
 }},
headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

Example for a filtered request:

10.0.77.135:8181/restconf/operations/statistics-plugin:getPortCounters, input={"input": {"portId":"b99a7352-1847-4185-ba24-9ecb4c1793d9"} }, headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-Type=application/json}]

An example for node connector counters result:

 {
 "output": {
 "counterResult": [
 {
 "id": "openflow:194097926788804:5",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 471000000
 },
 {
 "name": "durationSecondCount",
 "value": 693554
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 1455
 },
 {
 "name": "bytesTransmittedCount",
 "value": 14151299
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 9
 },
 {
 "name": "packetsTransmittedCount",
 "value": 9
 }
]
 }
]
 }
]
 }
}

An example for node counters result:

 {
 "output": {
 "counterResult": [
 {
 "id": "openflow:194097926788804:3",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 43000000
 },
 {
 "name": "durationSecondCount",
 "value": 694674
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 648
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:2",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 882000000
 },
 {
 "name": "durationSecondCount",
 "value": 698578
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 648
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:1",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 978000000
 },
 {
 "name": "durationSecondCount",
 "value": 698627
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 6896336558
 },
 {
 "name": "bytesTransmittedCount",
 "value": 161078765
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 35644913
 },
 {
 "name": "packetsTransmittedCount",
 "value": 35644913
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:LOCAL",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 339000000
 },
 {
 "name": "durationSecondCount",
 "value": 698628
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 0
 },
 {
 "name": "bytesTransmittedCount",
 "value": 0
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 0
 },
 {
 "name": "packetsTransmittedCount",
 "value": 0
 }
]
 }
]
 },
 {
 "id": "openflow:194097926788804:5",
 "groups": [
 {
 "name": "Duration",
 "counters": [
 {
 "name": "durationNanoSecondCount",
 "value": 787000000
 },
 {
 "name": "durationSecondCount",
 "value": 693545
 }
]
 },
 {
 "name": "Bytes",
 "counters": [
 {
 "name": "bytesReceivedCount",
 "value": 1455
 },
 {
 "name": "bytesTransmittedCount",
 "value": 14151073
 }
]
 },
 {
 "name": "Packets",
 "counters": [
 {
 "name": "packetsReceivedCount",
 "value": 9
 },
 {
 "name": "packetsTransmittedCount",
 "value": 9
 }
]
 }
]
 }
]
 }
}

Features to Install

odl-netvirt-openflowplugin-genius-openstack

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	Guy Regev <guy.regev@hpe.com>

	Other contributors:

	TBD

Work Items

https://trello.com/c/ZdoLQWoV/126-netvirt-statistics

	Support port counters.

	Support node counters.

	Support aggregated results.

	Support filters on results.

Dependencies

	Genius

	OpenFlow Plugin

	Infrautils

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Policy based path selection for multiple VxLAN tunnels

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Policy based path selection for multiple VxLAN tunnels

https://git.opendaylight.org/gerrit/#/q/topic:policy-based-path-selection

The purpose of this feature is to allow selection of primary and backup VxLAN tunnels for different types of VxLAN
encapsulated traffic between a pair of OVS nodes based on some predefined policy.

Egress traffic can be classified using different characteristics e.g. 5-tuple, ingress port+VLAN, service-name
to determine the best available path when multiple VxLAN endpoints are configured for the same destination.

Problem description

Today, netvirt is not able to classify traffic and route it over different tunnel endpoints based on a set of
predefined characteristics. This is an essential infrastructure for applications on top of netvirt
offering premium and personalized services.

Use Cases

	Forwarding of VxLAN traffic between hypervisors with multiple physical/logical ports.

Proposed change

The current implementation of transport-zone creation generates vtep elements based on the local_ip
definition in the other-config column of the Open_vSwitch schema where the local_ip value represents
the tunnel interface ip.
This feature will introduce a new other-config property local_ips.
local_ips will express the association between multiple tunnel ip addresses and multiple underlay networks using the following format:

local_ips=<tun1-ip>:<underlay1-net>,<tun2-ip>:<underlay2-net>,..,<tunN-ip>:<underlayN-net>

Upon transport-zone creation, if the local_ips configuration is present, full tunnel mesh will be created between
all TEP ips in the same underlay network considering the existing transport-zone optimizations i.e. tunnels will be created
only between compute nodes with at least one spawned VM in the same VxLAN network or between networks connected to
the same router if at least one of the networks is VxLAN-based.

Note that configuration of multiple tunnel IPs for the same DPN in the same underlay network is not a supported
as part of this feature and requires further enhancements in both ITM and the transport-zone model.

The underlay networks are logical entities that will be used to distigush between multiple uplinks for routing of egress
VxLAN traffic. They have no relation to Openstack and neutron networks definition.
A new yang module is introduced to model the association between different types of OVS egress VxLAN traffic and the
selected underlay network paths to output the traffic.

Policy-based path selection will be defined as a new egress tunnel service and depends on tunnel service binding
functionality detailed in [3].

The policy service will be bounded only for tunnels of type logical tunnel group defined in [2].

The service will classify different types of traffic based on a predefined set of policy rules to find the best
available path to route each type of traffic. The policy model will be agnostic to the specific topology details
including DPN ids, tunnel interface and logical interface names. The only reference from the policy model
to the list of preferred paths is made using underlay network-ids described earlier in this document.

Each policy references an ordered set of policy-routes. Each policy-route can be a basic-route
referencing single underlay-network or route-group composed of multiple underlay networks.
This set will get translated in each DPN to OF fast-failover group. The content of the buckets in each DPN depends
on the existing underlay networks configured as part of the local_ips in the specific DPN.

The order of the buckets in the fast-failover group depends on the order of the underlay networks in the policy-routes model.
policy-routes with similar set of routes in different order will be translated to different groups.

Each bucket in the fast-failover group can either reference a single tunnel or an additional OF select group
depending on the type of policy route as detailed in the following table:

	Policy route type

	Bucket actions

	OF Watch type

	Basic route

	load reg6(tun-lport)
resubmit(220)

	watch_port(tun-port)

	Route group

	goto_group(select-grp)

	watch_group(select-grp)

This OF select group does not have the same content as the select groups defined in [2] and the content of its’
buckets is based on the defined route-group elements and weights.

Logical tunnel will be bounded to the policy service if and only if there is at least one policy-route referencing
one or more of the underlay networks in the logical group.

This service will take precedence over the default weighted LB service defined in [2] for logical tunnel group interfaces.

Policy-based path selection and weighted LB service pipeline example:

cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,reg6=0x500
actions=load:0xe000500->NXM_NX_REG6[],write_metadata:0xe000500000000000/0xffffffff00000000,goto_table:230
cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,reg6=0xe000500
actions=load:0xf000500->NXM_NX_REG6[],write_metadata:0xf000500000000000/0xffffffff00000000,group:800002
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x600 actions=output:3
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x700 actions=output:4
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,reg6=0x800 actions=output:5
cookie=0x9000007, duration=0.546s, table=230, n_packets=0, n_bytes=0,priority=7,ip,
metadata=0x222e0/0xfffffffe,nw_dst=10.0.123.2,tp_dst=8080 actions=write_metadata:0x200/0xfffffffe,goto_table:231
cookie=0x9000008, duration=0.546s, table=230, n_packets=0, n_bytes=0,priority=0,resubmit(,220)
cookie=0x7000007, duration=0.546s, table=231, n_packets=0, n_bytes=0,priority=7,metadata=0x500000000200/0xfffff00fffffffe,
actions=group:800000
cookie=0x9000008, duration=0.546s, table=231, n_packets=0, n_bytes=0,priority=0,resubmit(,220)
group_id=800000,type=ff,
bucket=weight:0,watch_group=800001,actions=group=800001,
bucket=weight:0,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
group_id=800001,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:50,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
group_id=800002,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)

Each bucket in the fast-failover group will set the watch_port or watch_group property to monitor the
liveness of the OF port in case of basic-route and underlay group in case of route-group.
This will allow the OVS to route egress traffic only to the first live bucket in each fast-failover group.

The policy model rules will be based on IETF ACL data model [4]. The following enhancements are proposed for
this model to support policy-based path selection:

	
	Name

	Attributes

	Description

	OF implementation

	ACE matches

	ingress-interface

	name

	Policy match based on the
ingress port and optionally
the VLAN id

	Match lport-tag
metadata bits

	vlan-id

	service

	service-type

	Policy match based on the
service-name of L2VPN/L3VPN
e.g. ELAN name/VPN instance
name

	Match service/vrf-id
metadata bits depending
on the service-type

	service-name

	ACE actions

	set
policy-classifier

	policy-classifier

	Set ingress/egress classifier
that can be later used for
policy routing etc.
Only the egress classifier
will be used in this feature

	Set policy classifier
in the metadata service
bits

	direction

To enable matching on previous services in the pipeline e.g. L2/L3VPN, the egress service binding for tunnel interfaces
will be changed to preserve the metadata of preceding services rather than override it as done in the current
implementation.

Each policy-classifier will be associated with policy-route. The same route can be shared by multiple classifiers.

The policy service will also maintain counters on number of policy rules assigned to underlay network per dpn
in the operational DS.

Pipeline changes

	The following new tables will be added to support the policy-based path selection service:

	Table Name

	Matches

	Actions

	Policy classifier table (230)

	ACE matches

	ACE policy actions:
set policy-classifier

	Policy routing table (231)

	match
policy-classifier

	set FF group-id

	Each Access List Entry (ACE) composed of standard and/or policy matches and policy actions will be translated
to a flow in the policy classifier table.

Each policy-classifier name will be allocated with id from a new pool - POLICY_SERVICE_POOL.
Once a policy classifier has been determined for a given ACE match, the classifier-id will be set in the service
bits of the metadata.

	Classified traffic will be sent from the policy classifier table to the policy routing table where the classifier-id
will be matched to select the preferred tunnel using OF fast-failover group. Multiple classifiers can point to a
single group.

	The default flow in the policy tables will resubmit traffic with no predefined policy/set of routes back to the
egress dispatcher table in order to continue processing in the next bounded egress service.

	For all the examples below it is assumed that a logical tunnel group was configured for both ingress and egress DPNs.
The logical tunnel group is composed of { tun1, tun2, tun3 } and bound to a policy service.

Traffic between VMs on the same DPN

No pipeline changes required

L3 traffic between VMs on different DPNs

VM originating the traffic (Ingress DPN):

	Remote next hop group in the FIB table references the logical tunnel group.

	Policy service on the logical group selects the egress interface by classifying the traffic e.g. based on
destination ip and port.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id,dst-ip=vm2-ip set dst-mac=vm2-mac tun-id=vm2-label reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: vpn-id=router-id,dst-ip=vm2-ip,dst-tcp-port=8080 set egress-classifier=clf1 =>

Egress policy indirection table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf1 =>

Logical tunnel tun1 FF group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tun1

VM receiving the traffic (Ingress DPN):

	No pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vm2-label =>

Local Next-Hop group: set dst-mac=vm2-mac,reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

SNAT traffic from non-NAPT switch

VM originating the traffic is non-NAPT switch:

	NAPT group references the logical tunnel group.

	Policy service on the logical group selects the egress interface by classifying the traffic based on
the L3VPN service id.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>

FIB table (21) match: vpn-id=router-id =>

Pre SNAT table (26) match: vpn-id=router-id =>

NAPT Group set tun-id=router-id reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: vpn-id=router-id set egress-classifier=clf2 =>

Policy routing table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf2 =>

Logical tunnel tun2 FF group set reg6=tun2-lport-tag =>

Egress table (220) match: reg6=tun2-lport-tag output to tun2

Traffic from NAPT switch punted to controller:

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=router-id =>

Outbound NAPT table (46) set vpn-id=router-id, punt-to-controller

L2 unicast traffic between VMs in different DPNs

VM originating the traffic (Ingress DPN):

	ELAN DMAC table references the logical tunnel group

	Policy service on the logical group selects the egress interface by classifying the traffic based on
the ingress port.

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set tun-id=vm2-lport-tag reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag =>

Policy classifier table (230) match: lport-tag=vm1-lport-tag set egress-classifier=clf3 =>

Policy routing table (231) match: reg6=logical-tun-lport-tag,egress-classifier=clf3 =>

Logical tunnel tun1 FF group set reg6=tun1-lport-tag =>

Egress table (220) match: reg6=tun1-lport-tag output to tun1

VM receiving the traffic (Ingress DPN):

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

L2 multicast traffic between VMs in different DPNs with undefined policy

VM originating the traffic (Ingress DPN):

	ELAN broadcast group references the logical tunnel group.

	Policy service on the logical group has no classification for this type of traffic. Fallback to the default
logical tunnel service - weighted LB [2].

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) =>

ELAN DMAC table (52) match: elan-tag=vxlan-net-tag =>

ELAN BC group goto_group=elan-local-group, set tun-id=vxlan-net-tag reg6=logical-tun-lport-tag =>

Egress table (220) match: reg6=logical-tun-lport-tag set reg6=default-egress-service&logical-tun-lport-tag =>

Policy classifier table (230) =>

Egress table (220) match: reg6=default-egress-service&logical-tun-lport-tag =>

Logical tunnel LB select group set reg6=tun2-lport-tag =>

Egress table (220) match: reg6=tun2-lport-tag output to tun2

VM receiving the traffic (Ingress DPN):

	No explicit pipeline changes required

Classifier table (0) =>

Internal tunnel Table (36) match:tun-id=vxlan-net-tag =>

ELAN local BC group set tun-id=vm2-lport-tag =>

ELAN filter equal table (55) match: tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>

Egress table (220) match: reg6=vm2-lport-tag output to VM 2

Yang changes

The following yang modules will be added to support policy-based routing:

Policy Service Yang

policy-service.yang define policy profiles and add augmentations on top of
ietf-access-control-list:access-lists to apply policy classifications on access control entries.

module policy-service {
 yang-version 1;
 namespace "urn:opendaylight:netvirt:policy";
 prefix "policy";

 import ietf-interfaces { prefix if; }

 import ietf-access-control-list { prefix ietf-acl; }

 import aclservice { prefix acl; }

 import yang-ext { prefix ext; }

 import opendaylight-l2-types { prefix ethertype; revision-date "2013-08-27"; }

 description
 "Policy Service module";

 revision "2017-02-07" {
 description
 "Initial revision";
 }

 identity policy-acl {
 base ietf-acl:acl-base;
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches" {
 ext:augment-identifier "ingress-interface";
 leaf name {
 type if:interface-ref;
 }

 leaf vlan-id {
 type ethertype:vlan-id;
 }
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches" {
 ext:augment-identifier "service";
 leaf service-type {
 type identityref {
 base service-type-base;
 }
 }

 leaf service-name {
 type string;
 }
 }

 augment "/ietf-acl:access-lists/ietf-acl:acl/"
 + "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:actions" {
 ext:augment-identifier "set-policy-classifier";
 leaf policy-classifier {
 type leafref {
 path "/policy-profiles/policy-profile/policy-classifier";
 }
 }

 leaf direction {
 type identityref {
 base acl:direction-base;
 }
 }
 }

 container underlay-networks {
 list underlay-network {
 key "network-name";
 leaf network-name {
 type string;
 }

 leaf network-access-type {
 type identityref {
 base access-network-base;
 }
 }

 leaf bandwidth {
 type uint64;
 description "Maximum bandwidth. Units in byte per second";
 }

 list dpn-to-interface {
 config false;
 key "dp-id";
 leaf dp-id {
 type uint64;
 }

 list tunnel-interface {
 key "interface-name";
 leaf interface-name {
 type string;
 }
 }
 }

 list policy-profile {
 config false;
 key "policy-classifier";
 leaf policy-classifier {
 type string;
 }
 }
 }
 }

 container underlay-network-groups {
 list underlay-network-group {
 key "group-name";
 leaf group-name {
 type string;
 }

 list underlay-network {
 key "network-name";
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }

 leaf weight {
 type uint16;
 default 1;
 }
 }

 leaf bandwidth {
 type uint64;
 description "Maximum bandwidth of the group. Units in byte per second";
 }
 }
 }

 container policy-profiles {
 list policy-profile {
 key "policy-classifier";
 leaf policy-classifier {
 type string;
 }

 list policy-route {
 key "route-name";
 leaf route-name {
 type string;
 }

 choice route {
 case basic-route {
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }
 }

 case route-group {
 leaf group-name {
 type leafref {
 path "/underlay-network-groups/underlay-network-group/group-name";
 }
 }
 }
 }
 }

 list policy-acl-rule {
 config false;
 key "acl-name";
 leaf acl-name {
 type leafref {
 path "/ietf-acl:access-lists/ietf-acl:acl/ietf-acl:acl-name";
 }
 }

 list ace-rule {
 key "rule-name";
 leaf rule-name {
 type leafref {
 path "/ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:rule-name";
 }
 }
 }
 }
 }
 }

 container policy-route-counters {
 config false;

 list underlay-network-counters {
 key "network-name";
 leaf network-name {
 type leafref {
 path "/underlay-networks/underlay-network/network-name";
 }
 }

 list dpn-counters {
 key "dp-id";
 leaf dp-id {
 type uint64;
 }

 leaf counter {
 type uint32;
 }
 }

 list path-counters {
 key "source-dp-id destination-dp-id";
 leaf source-dp-id {
 type uint64;
 }

 leaf destination-dp-id {
 type uint64;
 }

 leaf counter {
 type uint32;
 }
 }
 }
 }

 identity service-type-base {
 description "Base identity for service type";
 }

 identity l3vpn-service-type {
 base service-type-base;
 }

 identity l2vpn-service-type {
 base service-type-base;
 }

 identity access-network-base {
 description "Base identity for access network type";
 }

 identity mpls-access-network {
 base access-network-base;
 }

 identity docsis-access-network {
 base access-network-base;
 }

 identity pon-access-network {
 base access-network-base;
 }

 identity dsl-access-network {
 base access-network-base;
 }

 identity umts-access-network {
 base access-network-base;
 }

 identity lte-access-network {
 base access-network-base;
 }
}

Policy service tree view

module: policy-service
 +--rw underlay-networks
 | +--rw underlay-network* [network-name]
 | +--rw network-name string
 | +--rw network-access-type? identityref
 | +--rw bandwidth? uint64
 | +--ro dpn-to-interface* [dp-id]
 | | +--ro dp-id uint64
 | | +--ro tunnel-interface*
 | | +--ro interface-name? string
 | +--ro policy-profile* [policy-classifier]
 | +--ro policy-classifier string
 +--rw underlay-network-groups
 | +--rw underlay-network-group* [group-name]
 | +--rw group-name string
 | +--rw underlay-network* [network-name]
 | | +--rw network-name -> /underlay-networks/underlay-network/network-name
 | | +--rw weight? uint16
 | +--rw bandwidth? uint64
 +--rw policy-profiles
 | +--rw policy-profile* [policy-classifier]
 | +--rw policy-classifier string
 | +--rw policy-route* [route-name]
 | | +--rw route-name string
 | | +--rw (route)?
 | | +--:(basic-route)
 | | | +--rw network-name? -> /underlay-networks/underlay-network/network-name
 | | +--:(route-group)
 | | +--rw group-name? -> /underlay-network-groups/underlay-network-group/group-name
 | +--ro policy-acl-rule* [acl-name]
 | +--ro acl-name -> /ietf-acl:access-lists/acl/acl-name
 | +--ro ace-rule* [rule-name]
 | +--ro rule-name -> /ietf-acl:access-lists/acl/access-list-entries/ace/rule-name
 +--ro policy-route-counters
 +--ro underlay-network-counters* [network-name]
 +--ro network-name -> /underlay-networks/underlay-network/network-name
 +--ro dpn-counters* [dp-id]
 | +--ro dp-id uint64
 | +--ro counter? uint32
 +--ro path-counters* [source-dp-id destination-dp-id]
 +--ro source-dp-id uint64
 +--ro destination-dp-id uint64
 +--ro counter? uint32
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches:
 +--rw name? if:interface-ref
 +--rw vlan-id? ethertype:vlan-id
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches:
 +--rw service-type? identityref
 +--rw service-name? string
 augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:actions:
 +--rw policy-classifier? -> /policy-profiles/policy-profile/policy-classifier
 +--rw direction? identityref

Configuration impact

This feature introduces a new other_config parameter local_ips to support multiple ip:network
associations as detailed above.
Compatibility with the current local_ip parameter will be maintained but if both are present, local_ips
would take presedence over local_ip.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Features to Install

odl-netvirt-openstack

REST API

Sample JSON data

Create policy rule

URL: restconf/config/ietf-access-control-list:access-lists

The following REST will create rule to classify all http traffic to ports 8080-8181 from specific vpn-id

{
 "access-lists": {
 "acl": [
 {
 "acl-type": "policy-service:policy-acl",
 "acl-name": "http-policy",
 "access-list-entries": {
 "ace": [
 {
 "rule-name": "http-ports",
 "matches": {
 "protocol": 6,
 "destination-port-range": {
 "lower-port": 8080,
 "upper-port": 8181
 },
 "policy-service:service-type": "l3vpn",
 "policy-service:service-name": "71f7eb47-59bc-4760-8150-e5e408d2ba10"
 },
 "actions": {
 "policy-service:policy-classifier" : "classifier1",
 "policy-service:direction" : "egress"
 }
 }
]
 }
 }
]
 }
 }
 }

Create underlay networks

URL: restconf/config/policy-service:underlay-networks

The following REST will create multiple underlay networks with different access types

{
 "underlay-networks": {
 "underlay-network": [
 {
 "network-name": "MPLS",
 "network-access-type": "policy-service:mpls-access-network"
 },
 {
 "network-name": "DLS1",
 "network-access-type": "policy-service:dsl-access-network"
 },
 {
 "network-name": "DSL2",
 "network-access-type": "policy-service:dsl-access-network"
 }
]
 }
}

Create underlay group

URL: restconf/config/policy-service:underlay-network-groups

The following REST will create group for the DSL underlay networks

{
 "underlay-network-groups": {
 "underlay-network-group": [
 {
 "group-name": "DSL",
 "underlay-network": [
 {
 "network-name": "DSL1",
 "weight": 75
 },
 {
 "network-name": "DSL2",
 "weight": 25
 }
]
 }
]
 }
}

Create policy profile

URL: restconf/config/policy-service:policy-profiles

The following REST will create profile for classifier1 with multiple policy-routes

{
 "policy-profiles": {
 "policy-profile": [
 {
 "policy-classifier": "classifier1",
 "policy-route": [
 {
 "route-name": "primary",
 "network-name": "MPLS"
 },
 {
 "route-name": "backup",
 "group-name": "DSL"
 }
]
 }
]
 }
}

CLI

None

Implementation

Assignee(s)

	Primary assignee:

	Tali Ben-Meir <tali@hpe.com>

	Other contributors:

	Yair Zinger <yair.zinger@hpe.com>

Work Items

Trello card: https://trello.com/c/Uk3yrjUG/25-multiple-vxlan-endpoints-for-compute

	Transport-zone creation for multiple tunnels based on underlay network definitions

	Extract ACL flow programming to common location so it can be used by the policy service

	Create policy OF groups based on underlay network/group definitions

	Create policy classifier table based on ACL rules

	Create policy routing table

	Bind policy service to logical tunnels

	Maintain policy-route-counters per dpn/dpn-path

Dependencies

None

Testing

Unit Tests

Integration Tests

The test plan defined for CSIT below could be reused for integration tests.

CSIT

Adding multiple ports to the CSIT setups is challenging due to rackspace limitations.
As a result, the test plan defined for this feature uses white-box methodology and not verifying actual traffic was
sent over the tunnels.

Policy routing with single tunnel per access network type

	Set local_ips to contain tep ips for networks underlay1 and underlay2

	Each underlay network will be defined with different access-network-type

	Create the following policy profiles

	Profile1: policy-classifier=clf1, policy-routes=underlay1, underlay2

	Profile2: policy-classifier=clf2, policy-routes=underlay2, underlay1

	Create the following policy rules

	Policy rule 1: dst_ip=vm2_ip,dst_port=8080 set_policy_classifier=clf1

	Policy rule 2: src_ip=vm1_ip set_policy_classifier=clf2

	Policy rule 3: service-type=l2vpn service-name=elan-name set_policy_classifier=clf1

	Policy rule 4: service-type=l3vpn service-name=router-name set_policy_classifier=clf2

	Policy rule 5: ingress-port=vm3_port set_policy_classifier=clf1

	Policy rule 6: ingress-port=vm4_port vlan=vlan-id set_policy_classifier=clf2

	Verify policy service flows/groups for all policy rules

	Verify flows/groups removal after the profiles were deleted

Policy routing with multiple tunnels per access network type

	Set local_ips to contain tep ips for networks underlay1..``underlay4``

	underlay1, underlay2 and underlay3, underlay4 are from the same access-network-type

	Create the following policy profiles where each route can be either group or basic route

	Profile1: policy-classifier=clf1, policy-routes={underlay1, underlay2}, {underlay3,underlay4}

	Profile2: policy-classifier=clf2, policy-routes={underlay3,underlay4}, {underlay1, underlay2}

	Profile3: policy-classifier=clf3, policy-routes=underlay1, {underlay3,underlay4}

	Profile4: policy-classifier=clf4, policy-routes={underlay1, underlay2}, underlay3

	Profile5: policy-classifier=clf5, policy-routes={underlay1, underlay2}

	Profile6: policy-classifier=clf6, policy-routes=underlay4

	Create the following policy rules

	Policy rule 1: dst_ip=vm2_ip,dst_port=8080 set_policy_classifier=clf1

	Policy rule 2: src_ip=vm1_ip set_policy_classifier=clf2

	Policy rule 3: service-type=l2vpn service-name=elan-name set_policy_classifier=clf3

	Policy rule 4: service-type=l3vpn service-name=router-name set_policy_classifier=clf4

	Policy rule 5: ingress-port=vm3_port set_policy_classifier=clf5

	Policy rule 6: ingress-port=vm4_port vlan=vlan-id set_policy_classifier=clf6

	Verify policy service flows/groups for all policy rules

	Verify flows/groups removal after the profiles were deleted

Documentation Impact

Netvirt documentation needs to be updated with description and examples of policy service configuration

References

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] Load balancing and high availability of multiple VxLAN tunnels [https://git.opendaylight.org/gerrit/#/c/50779]

[3] Service Binding On Tunnels [https://git.opendaylight.org/gerrit/#/c/51270]

[4] Network Access Control List (ACL) YANG Data Model [https://tools.ietf.org/html/draft-ietf-netmod-acl-model-09]

Table of Contents

	Support for QoS Alert

	Problem description

	Use Cases

	Proposed change

	Log file format

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support for QoS Alert

https://git.opendaylight.org/gerrit/#/q/topic:qos-alert

This feature adds support to monitor the per port packet drop counts when QoS rate limit rule is
applied.

Problem description

If QoS bandwidth policy is applied on a neutron port, all packets exceeding the rate limit are
dropped by the switch. This spec proposes a new service to monitor the packet drop ratio and log
the alert message if packet drop ratio is greater than the configured threshold value.

Use Cases

Periodically monitor the port statistics of neutron ports having bandwidth limit rule and log an
alert message in a log file if packet drop ratio cross the threshold value. Log file can be
analyzed offline later to check the health/diagnostics of the network.

Proposed change

Proposed new service will use the RPC
/operations/opendaylight-direct-statistics:get-node-connector-statistics provided by
openflowplugin to retrieve port statistics directly from switch by polling at regular interval.
Polling interval is configurable with default value of 2 minutes.

Port packet drop ratio is calculated using delta of two port statistics counters
rx_dropped and rx_received between the sample interval.

packet drop ratio = 100 * (rx_dropped / (rx_received + rx_dropped))

An message is logged if packet drop ratio is greater than the configured threshold value.

Existing logging framework log4j shall be used to log the alert messages in the log file.
A new appender qosalertmsg shall be added in org.ops4j.pax.logging.cfg to define the
logging properties.

Log file format

2017-01-17 01:17:49,550 Packet drop threshold hit for qos policy qospolicy1 with qos-id qos-2dbf02f6-dcd1-4c13-90ee-6f727e21fe8d for port port-3afde68d-1103-4b8a-a38d-9cae631f7d67 on network network-563f9610-dd91-4524-ae23-8ec3c32f328e rx_received 4831 rx_dropped 4969
2017-01-17 01:17:49,550 Packet drop threshold hit for qos policy qospolicy2 with qos-id qos-cb7e5f67-2552-4d49-b534-0ce90ebc8d97 for port port-09d3a437-f4a4-43eb-8655-85df8bbe4793 on network network-389532a1-2b48-4ba9-9bcd-c1705d9e28f9 rx_received 3021 rx_dropped 4768
2017-01-17 01:19:49,339 Packet drop threshold hit for qos policy qospolicy1 with qos-id qos-2dbf02f6-dcd1-4c13-90ee-6f727e21fe8d for port port-3afde68d-1103-4b8a-a38d-9cae631f7d67 on network network-563f9610-dd91-4524-ae23-8ec3c32f328e rx_received 3837 rx_dropped 3961
2017-01-17 01:19:49,339 Packet drop threshold hit for qos policy qospolicy2 with qos-id qos-cb7e5f67-2552-4d49-b534-0ce90ebc8d97 for port port-09d3a437-f4a4-43eb-8655-85df8bbe4793 on network network-389532a1-2b48-4ba9-9bcd-c1705d9e28f9 rx_received 2424 rx_dropped 2766

Pipeline changes

None.

Yang changes

A new yang file shall be created for qos-alert configuration as specified below:

qos-alert-config.yang

module qosalert-config {

 yang-version 1;
 namespace "urn:opendaylight:params:xml:ns:yang:netvirt:qosalert:config";
 prefix "qosalert";

 revision "2017-01-03" {
 description "Initial revision of qosalert model";
 }

 description "This YANG module defines QoS alert configuration.";

 container qosalert-config {

 config true;

 leaf qos-alert-enabled {
 description "QoS alert enable-disable config knob";
 type boolean;
 default false;
 }

 leaf qos-drop-packet-threshold {
 description "QoS Packet drop threshold config. Specified as % of rx packets";
 type uint8 {
 range "1..100";
 }
 default 5;
 }

 leaf qos-alert-poll-interval {
 description "Polling interval in minutes";
 type uint16 {
 range "1..3600";
 }
 default 2;
 }

 }
}

Configuration impact

Following new parameters shall be made available as configuration. Initial or default configuration
is specified in netvirt-qosservice-config.xml

	Sl No.

	configuration

	Description

	
	

	qos-alert-enabled

	configuration parameter to enable/disable the alerts

	
	

	qos-drop-packet-threshold

	Drop percentage threshold configuration.

	
	

	qos-alert-poll-interval

	Polling interval in minutes

Logging properties like log file name, location, size and maximum number of backup files are
configured in file org.ops4j.pax.logging.cfg

Clustering considerations

In cluster setup, only one instance of qosalert service shall poll for port statistics.
Entity owner service (EOS) shall be used to determine the owner of service.

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

QoS Alert Service minimizes scale and performance impact by following:

	Proposed service uses the direct-statistics RPC instead of OpenflowPlugin statistics-manager. This
is lightweight because only node-connector statistics are queried instead of all statistics.

	Polling frequency is quite slow. Default polling interval is two minutes and minimum allowed
value is 1 minute.

Targeted Release

Carbon.

Alternatives

N.A.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

Put Qos Alert Config

Following API puts Qos Alert Config.

Method: POST

URI: /config/qosalert-config:qosalert-config

Parameters:

	Parameter

	Type

	Value range

	Comments

	qos-alert-enabled

	Boolean

	true/false

	Optional (default false)

	qos-drop-packet-threshold

	Uint16

	1..100

	Optional (default 5)

	qos-alert-poll-interval

	Uint16

	1..65535

	Optional time interval in minute(s) (default 2)

Example:
.. code-block:: json

	{

	
“input”:
{

“qos-alert-enabled”: true,

“qos-drop-packet-threshold”: 35,

“qos-alert-poll-interval”: 5

}

}

CLI

Following new karaf CLIs are added

qos:enable-qos-alert <true|false>

qos:drop-packet-threshold <threshold value in %>

qos:alert-poll-interval <polling interval in minutes>

Implementation

Assignee(s)

	Primary assignee:

	
	Arun Sharma (arun.e.sharma@ericsson.com)

	Other contributors:

	
	Ravi Sundareswaran (ravi.sundareswaran@ericsson.com)

	Mukta Rani (mukta.rani@tcs.com)

Work Items

Trello Link <https://trello.com/c/780v28Yw/148-netvirt-qos-alert>

	Adding new yang file and listener.

	Adding new log4j appender in odlparent org.ops4j.pax.logging.cfg file.

	Retrieval of port statistics data using the openflowplugin RPC.

	Logging alert message into the log file.

	UT and CSIT

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

Unit Tests

Standard UTs will be added.

Integration Tests

N.A.

CSIT

Following new CSIT tests shall be added

	Verify that alerts are generated if drop packets percentage is more than the configured threshold
value.

	Verify that alerts are not generated if drop packets percentage is less than threshold value.

	Verify that alerts are not generated when qos-alert-enabled if false irrespective of drop
packet percentage.

Documentation Impact

This will require changes to User Guide.

User Guide will need to add information on how qosalert service can
be used.

References

[1] Neutron QoS [http://docs.openstack.org/developer/neutron/devref/quality_of_service.html]

[2] Spec for NetVirt QoS [http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/qos.html]

[3] Openflowplugin port statistics [https://github.com/opendaylight/openflowplugin/blob/master/model/model-flow-statistics/src/main/yang/opendaylight-direct-statistics.yang]

Table of Contents

	Neutron Quality of Service API Enhancements for NetVirt

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Neutron Quality of Service API Enhancements for NetVirt

QoS patches: https://git.opendaylight.org/gerrit/#/q/topic:qos

The Carbon release will enhance the initial implementation of Neutron
QoS API 1 support for NetVirt which was released in Boron. The
Boron released added support for Neutron QoS policies and the
Egress bandwidth rate limiting rule. The Carbon release will update the
QoS feature set of NetVirt by providing support for the DSCP Marking
rule and QoS Rule capability reporting.

Problem description

It is important to be able to configure QoS attributes of workloads on
virtual networks. The Neutron QoS API provides a method for defining
QoS policies and associated rules which can be applied to Neutron Ports
and Networks. These rules include:

	Egress Bandwidth Rate Limiting

	DSCP Marking

(Note that for the Neutron API, the direction of traffic flow (ingress, egress)
is from the perspective of the OpenStack instance.)

As a Neutron provider for ODL, NetVirt will provide the ability to report
back to Neutron its QoS rule capabilties and provide the ability to
configure and manage the supported QoS rules on supported backends
(e.g. OVS, …). The key changes in the Carbon release will be the
addition of support for the DSCP Marking rule.

Use Cases

Neutron QoS API support, including:

	Egress rate limiting -
Drop traffic that exceeeds the specified rate parameters for a
Neutron Port or Network.

	DSCP Marking -
Set the DSCP field for IP packets arriving from Neutron Ports
or Networks.

	Reporting of QoS capabilities -
Report to Neutron which QoS Rules are supported.

Proposed change

To handle DSCP marking, listener support will be added to the
neutronvpn service to respond to changes in DSCP Marking
Rules in QoS Policies in the Neutron Northbound QoS models 2 3 .

To implement DSCP marking support, a new ingress (from vswitch
perspective) QoS Service is defined in Genius. When DSCP Marking rule
changes are detected, a rule in a new OpenFlow table for
QoS DSCP marking rules will be updated.

The QoS service will be bound to an interface when a DSCP Marking
rule is added and removed when the DSCP Marking rule is deleted.
The QoS service follows the DHCP service and precedes the IPV6
service in the sequence of Genius ingress services.

Some use cases for DSCP marking require that the DSCP mark set on the inner packet
be replicated to the DSCP marking in the outer packet. Therefore, for packets egressing out
of OVS through vxlan/gre tunnels the option to copy the DSCP bits from the inner IP header
to the outer IP header is needed.
Marking of the inner header is done via OpenFlow rules configured on the corresponding Neutron port
as described above. For cases where the outer tunnel header should have a copy of the inner
header DSCP marking, the tos option on the tunnel interface in OVSDB must be configured
to the value inherit.
The setting of the tos option is done with a configurable parameter defined in the ITM module.
By default the tos option is set to 0 as specified in the OVSDB specification 4 .

On the creation of new tunnels, the tos field will be set to either the user provided value
or to the default value, which may be controlled via configuration. This will result in
the tunnel-options field in the IFM (Interface Manager) to be set which will in turn cause
the options field for the tunnel interface on the OVSDB node to be configured.

To implement QoS rule capability reporting back towards Neutron, code will
be added to the neutronvpn service to populate the operational qos-rule-types
list in the Neutron Northbound Qos model 3 with a list of the supported
QoS rules - which will be the bandwidth limit rule and DSCP marking rule for
the Carbon release.

Pipeline changes

A new QoS DSCP table is added to support the new QoS Service:

	Table

	Match

	Action

	QoS DSCP [90]

	Ethtype == IPv4 or IPv6 AND LPort tag

	Mark packet with DSCP value

Yang changes

A new leaf option-tunnel-tos is added to tunnel-end-points in itm-state.yang and to
vteps in itm.yang.

itm-state.yang

list tunnel-end-points {
 ordered-by user;
 key "portname VLAN-ID ip-address tunnel-type";

 leaf portname {
 type string;
 }
 leaf VLAN-ID {
 type uint16;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 leaf subnet-mask {
 type inet:ip-prefix;
 }
 leaf gw-ip-address {
 type inet:ip-address;
 }
 list tz-membership {
 key "zone-name";
 leaf zone-name {
 type string;
 }
 }
 leaf interface-name {
 type string;
 }
 leaf tunnel-type {
 type identityref {
 base odlif:tunnel-type-base;
 }
 }
 leaf option-of-tunnel {
 description "Use flow based tunnels for remote-ip";
 type boolean;
 default false;
 }
 leaf option-tunnel-tos {
 description "Value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 }
}

itm.yang

list vteps {
 key "dpn-id portname";
 leaf dpn-id {
 type uint64;
 }
 leaf portname {
 type string;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 leaf option-of-tunnel {
 description "Use flow based tunnels for remote-ip";
 type boolean;
 default false;
 }
 leaf option-tunnel-tos {
 description "Value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 }
}

A configurable parameter default-tunnel-tos is added to itm-config.yang which
defines the default ToS value to be applied to tunnel ports.

itm-config.yang

container itm-config {
 config true;

 leaf default-tunnel-tos {
 description "Default value of ToS bits to be set on the encapsulating
 packet. The value of 'inherit' will copy the DSCP value
 from inner IPv4 or IPv6 packets. When ToS is given as
 and numberic value, the least significant two bits will
 be ignored. ";
 type string;
 default 0;
 }
}

Configuration impact

A configurable parameter default-tunnel-tos is added to
genius-itm-config.xml which specifies the default ToS to
use on a tunnel if it is not specified by the user when a
tunnel is created. This value may be set to inherit for
some DSCP Marking use cases.

genius-itm-config.xml

<itm-config xmlns="urn:opendaylight:genius:itm:config">
 <default-tunnel-tos>0</default-tunnel-tos>
</itm-config>

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

Additional OpenFlow packets will be generated to configure DSCP marking rules in response
to QoS Policy changes coming from Neutron.

Targeted Release

Carbon

Alternatives

Use of OpenFlow meters was desired, but the OpenvSwitch datapath implementation
does not support meters (although the OpenvSwitch OpenFlow protocol implementation
does support meters).

Usage

The user will use the QoS support by enabling and configuring the
QoS extension driver for networking-odl. This will allow QoS Policies and
Rules to be configured for Neuetron Ports and Networks using Neutron.

Perform the following configuration steps:

	In neutron.conf enable the QoS service by appending qos to
the service_plugins configuration:

/etc/neutron/neutron.conf

service_plugins = odl-router, qos

	Add the QoS notification driver to the neutron.conf file as follows:

/etc/neutron/neutron.conf

[qos]
notification_drivers = odl-qos

	Enable the QoS extension driver for the core ML2 plugin.
In file ml2.conf.ini append qos to extension_drivers

/etc/neutron/plugins/ml2/ml2.conf.ini

[ml2]
extensions_drivers = port_security,qos

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

	odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference 5 for the Neutron CLI command syntax
for managing QoS policies and rules for Neutron networks and ports.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assigne and other contributors.

Primary assignee:

	Poovizhi Pugazh <poovizhi.p@ericsson.com>

Other contributors:

	Ravindra Nath Thakur <ravindra.nath.thakur@ericsson.com>

	Eric Multanen <eric.w.multanen@intel.com>

	Praveen Mala <praveen.mala@intel.com> (including CSIT)

Work Items

Task list in Carbon Trello: https://trello.com/c/bLE2n2B1/14-qos

Dependencies

Genius project - Code 6 to support QoS Service needs to be added.

Neutron Northbound - provides the Neutron QoS models for policies and rules (already done).

	Following projects currently depend on NetVirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

Documentation to describe use of Neutron QoS support with NetVirt
will be added.

OpenFlow pipeline documentation updated to show QoS service table.

References

http://specs.openstack.org/openstack/neutron-specs/specs/newton/ml2-qos-with-dscp.html

ODL gerrit adding QoS models to Neutron Northbound: https://git.opendaylight.org/gerrit/#/c/37165/

	1

	Neutron QoS http://docs.openstack.org/developer/neutron/devref/quality_of_service.html

	2

	Neutron Northbound QoS Model Extensions https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos-ext.yang

	3

	Neutron Northbound QoS Model https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos.yang

	4

	OVSDB Schema http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

	5

	Neutron CLI Reference http://docs.openstack.org/cli-reference/neutron.html#neutron-qos-available-rule-types

	6

	Genius code supporting QoS service https://git.opendaylight.org/gerrit/#/c/49084/

Table of Contents

	Setup Source-MAC-Address for routed packets destined to virtual endpoints

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Setup Source-MAC-Address for routed packets destined to virtual endpoints

https://git.opendaylight.org/gerrit/#/q/topic:SMAC_virt_endpoints

All L3 Routed packets destined to virtual endpoints in the datacenter managed by ODL
do not carry a proper source-mac address in such frames put out to virtual endpoints.

This spec makes sure a proper source-mac is updated in the packet at the point where the
packet is delivered to the VM, regardless of the tenant network type. On the actual datapath,
there will be no change in the source mac-addresses and packets continue to use the same
mechanism that is used today.

Addressing the datapath requires unique MAC allocation per OVS Datapath, so that it can be
used as the source MAC for all distributively routed packets of an ODL enabled cloud. It
would be handled in some future spec.

Problem description

Today all L3 Routed packets destined to virtual endpoints in the datacenter either

	Incorrectly carry the source mac-address of the originator (regardless of which network the originator is in)

	Incorrectly carry sometimes the reserved source mac address of 00:00:00:00:00:00

This spec is intended to setup a source-mac-address in the frame of L3 Routed packets just before
such frames are directed into the virtual endpoints themselves. This enables use-cases where certain
virtual endpoints which are VNFs in the datacenter that are source-mac conscious (or mandate that src-mac
in frames be valid) can become functional on their instantiation in an OpenDaylight enabled cloud.

Use Cases

	Intra-Datacenter L3 forwarded packets within a hypervisor.

	Intra-Datacenter L3 forwarded packets over Internal VXLAN Tunnels between two hypervisors in the datacenter.

	Inter-Datacenter L3 forwarded packets :

	Destined to VMs associated floating IP over External VLAN Provider Networks.

	Destined to VMs associated floating IP over External MPLSOverGRE Tunnels.

	SNAT traffic from VMs over External MPLSOverGRE Tunnels.

	SNAT traffic from VMS over External VLAN Provider Networks.

Proposed change

All the L3 Forwarded traffic today reaches the VM via a LocalNextHopGroup managed by
the VPN Engine (including FIBManager).

Currently the LocalNextHopGroup sets-up the destination MAC Address of the VM and forwards the traffic
to EGRESS_LPORT_DISPATCHER_TABLE (Table 220). In that LocalNextHopGroup we will additionally setup
source-mac-address for the frame. There are two cases to decide what source-mac-address should go
into the frame:

	If the VM is on a subnet (on a network) for which a subnet gatewayip port exists, then the
source-mac address of that subnet gateway port will be setup as the frame’s source-mac
inside the LocalNextHop group.This is typical of the case when a subnet is added to a router,
as the router interface port created by neutron will be representing the subnet’s gateway-ip address.

	If the VM is on a subnet (on a network), for which there is no subnet gatewayip port but that network
is part of a BGPVPN , then the source-mac address would be that of the connected mac-address of the
VM itself. The connected mac-address is nothing but the mac-address on the ovs-datapath for the VMs
tapxxx/vhuxxx port on that hypervisor itself.

The implementation also applies to Extra-Routes (on a router) and Discovered Routes as they both use the
LocalNextHopGroup in their last mile to send packets into their Nexthop VM.

We need to note that when a network is already part of a BGPVPN, adding a subnet on such a network to
a router is disallowed currently by NeutronVPN. And so the need to swap the mac-addresses inside
the LocalNextHopGroup to reflect the subnet gatewayip port here does not arise.

For all the use-cases listed in the USE-CASES section above, proper source mac address will be filled-up
in the frame before it enters the virtual endpoint.

Pipeline changes

There are no pipeline changes.

The only change is in the NextHopGroup created by VPN Engine (i.e., VRFEntryListener). In the NextHopGroup we
will additionally fill up the ethernet source mac address field with proper mac-address as outlined in the
‘Proposed change’ section.

Currently the LocalNextHopGroup is used in the following tables of VPN Pipeline:

	L3_LFIB_TABLE (Table 20) - Lands all routed packets from MPLSOverGRE tunnel into the virtual endpoint.

	INTERNAL_TUNNEL_TABLE (Table 36) - Lands all routed packets on Internal VXLAN Tunnel within the DC into the
virtual end point.

	L3_FIB_TABLE (Table 21) - Lands all routed packets within a specific hypervisor into the virtual endpoint.

cookie=0x8000002, duration=50.676s, table=20, n_packets=0, n_bytes=0, priority=10,mpls,mpls_label=70006 actions=write_actions(pop_mpls:0x0800,group:150000)
cookie=0x8000003, duration=50.676s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222f2/0xfffffffe,nw_dst=10.1.1.3 actions=write_actions(group:150000)
cookie=0x9011176, duration=50.676s, table=36, n_packets=0, n_bytes=0, priority=5,tun_id=0x11176 actions=write_actions(group:150000)

NEXTHOP GROUP:
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:01:1a:40->eth_src,set_field:fa:16:3e:8b:c5:51->eth_dst,load:0x300->NXM_NX_REG6[],resubmit(,220)

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None

Targeted Release

Carbon/Boron

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Primary assignee:

	Achuth Maniyedath (achuth.m@altencalsoftlabs.com)

Other contributors:

	Karthik Prasad (karthik.p@altencalsoftlabs.com)

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

https://trello.com/c/IfAmnFFr/110-add-source-macs-in-frames-for-l3-routed-packets-before-such-frames-get-to-the-virtual-endpoint

	Determine the smac address to be used for L3 packets forwarded to VMs.

	Update the LocalNextHopGroup table with proper ethernet source-mac parameter.

Dependencies

No new dependencies.

Testing

Verify the Source-MAC-Address setting on frames forwarded to Virtual endpoints in following cases.

Intra-Datacenter traffic to VMs (Intra/Inter subnet).

	VM to VM traffic within a hypervisor.

	VM to VM traffic across hypervisor over Internal VXLAN tunnel.

Inter-Datacenter traffic to/from VMs.

	External access to VMs using Floating IPs on MPLSOverGRE tunnels.

	External access to VMs using Floating IPs over VLAN provider networks.

	External access from VMs using SNAT over VLAN provider networks.

	External access from VMs using SNAT on MPLSOverGRE tunnels.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

	Validate that router-interface src-mac is available on received frames within the VM when that VM is on a router-arm.

	Validate that connected-mac as src-mac available on received frames within the VM when that VM is on a network-driven L3 BGPVPN.

Documentation Impact

N/A

References

N/A

Table of Contents

	Support for TCP MD5 Signature Option configuration of Quagga BGP

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	API changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Internal

	External

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support for TCP MD5 Signature Option configuration of Quagga BGP

https://git.opendaylight.org/gerrit/#/q/topic:qbgp-tcp-md5-signature-option

This functionality adds support to odl-netvirt-impl feature to configure the TCP MD5 Signature Option
[RFC2385] password in Quagga BGPs [QBGP].

Problem description

Quagga [QBGP] supports TCP MD5 Signature Option [RFC2385] in BGP traffic but current odl-netvirt-impl feature
implementation lacks support to configure the required passwords.

Use Cases

UC1: Protect (Quagga [QBGP]) BGP and DC gateway BGP interface using
TCP MD5 Signature Option [RFC2385].

Proposed change

The following components need to be enhanced:

	BGP Manager

Pipeline changes

No pipeline changes.

API changes

Changes will be needed in ebgp.yang, and qbgp.thrift.

YANG changes

A new optional leaf with the TCP MD5 Signature Option [RFC2385] password is added (by means of a
choice) to list neighbors.

ebgp.yang additions

typedef tcp-md5-signature-password-type {
 type string {
 length 1..80;
 } // subtype string
 description
 "The shared secret used by TCP MD5 Signature Option. The length is
 limited to 80 chars because A) it is identified by the RFC as current
 practice and B) it is the maximum length accepted by Quagga
 implementation.";
 reference "RFC 2385";
} // typedef tcp-md5-signature-password-type

grouping tcp-security-option-grouping {
 description "TCP security options.";
 choice tcp-security-option {
 description "The tcp security option in use, if any.";

 case tcp-md5-signature-option {
 description "The connection uses TCP MD5 Signature Option.";
 reference "RFC 2385";
 leaf tcp-md5-signature-password {
 type tcp-md5-signature-password-type;
 description "The shared secret used to sign the packets.";
 } // leaf tcp-md5-signature-password
 } // case tcp-md5-signature-option

 } // choice tcp-security-option
} // grouping tcp-security-option-grouping

ebgp.yang modifications

 list neighbors {
 key "address";
 leaf address {
 type inet:ipv4-address;
 mandatory "true";
 }
 leaf remote-as {
 type uint32;
 mandatory "true";
 }
 + use tcp-security-option-grouping;

Thrift changes

A new function setPeerSecret is added to the service BgpConfigurator.

qbgp.thrift modifications

--- a/vpnservice/bgpmanager/bgpmanager-impl/src/main/java/org/opendaylight/netvirt/bgpmanager/thrift/idl/qbgp.thrift
+++ b/vpnservice/bgpmanager/bgpmanager-impl/src/main/java/org/opendaylight/netvirt/bgpmanager/thrift/idl/qbgp.thrift
@@ -31,6 +31,8 @@ const i32 GET_RTS_NEXT = 1
 * ERR_NOT_ITER when GET_RTS_NEXT is called without
 * initializing with GET_RTS_INIT
 * ERR_PARAM when there is an issue with params
+ * ERR_NOT_SUPPORTED when the server does not support
+ * the operation.
 */

 const i32 BGP_ERR_FAILED = 1
@@ -38,6 +40,7 @@ const i32 BGP_ERR_ACTIVE = 10
 const i32 BGP_ERR_INACTIVE = 11
 const i32 BGP_ERR_NOT_ITER = 15
 const i32 BGP_ERR_PARAM = 100
+const i32 BGP_ERR_NOT_SUPPORTED = 200

 // these are the supported afi-safi combinations
 enum af_afi {
@@ -122,6 +125,33 @@ service BgpConfigurator {
 6:i32 stalepathTime, 7:bool announceFlush),
 i32 stopBgp(1:i64 asNumber),
 i32 createPeer(1:string ipAddress, 2:i64 asNumber),
+
+ /* 'setPeerSecret' sets the shared secret needed to protect the peer
+ * connection using TCP MD5 Signature Option (see rfc 2385).
+ *
+ * Params:
+ *
+ * 'ipAddress' is the peer (neighbour) address. Mandatory.
+ *
+ * 'rfc2385_sharedSecret' is the secret. Mandatory. Length must be
+ * greater than zero.
+ *
+ * Return codes:
+ *
+ * 0 on success.
+ *
+ * BGP_ERR_FAILED if 'ipAddress' is missing or unknown.
+ *
+ * BGP_ERR_PARAM if 'rfc2385_sharedSecret' is missing or invalid (e.g.
+ * it is too short or too long).
+ *
+ * BGP_ERR_INACTIVE when there is no session.
+ *
+ * BGP_ERR_NOT_SUPPORTED when TCP MD5 Signature Option is not supported
+ * (e.g. the underlying TCP stack does not support it)
+ *
+ */
+ i32 setPeerSecret(1:string ipAddress, 2:string rfc2385_sharedSecret),
 i32 deletePeer(1:string ipAddress)
 i32 addVrf(1:layer_type l_type, 2:string rd, 3:list<string> irts, 4:list<string> erts),
 i32 delVrf(1:string rd),

An old server (i.e. using a previous version of qbgp.thrift) will return
a TApplicationException with type UNKNOWN_METHOD. See
[TBaseProcessor].

Configuration impact

No configuration parameters deprecated.

New optional leaf tcp-md5-signature-password does not impact existing
deployments.

The recommended AAA configuration (See Security considerations) may impact
existing deployments.

Clustering considerations

NA

Other Infra considerations

Signature mismatch

On signature mismatch TCP MD5 Signature Option [RFC2385] (page 2) specifies the following
behaviour:

RFC 2385 page 2

Upon receiving a signed segment, the receiver must validate it by
calculating its own digest from the same data (using its own key) and
comparing the two digest. A failing comparison must result in the
segment being dropped and must not produce any response back to the
sender. Logging the failure is probably advisable.

A BGP will be unable to connect with a neighbor with a wrong password because
the TCP SYN,ACK will be dropped. The neighbor state will bounce between
“Active” and “Connect” while it retries.

Security considerations

tcp-md5-signature-password is stored in clear in the datastore. This is
a limitation of the proposed change.

Because tcp-md5-signature-password is stored in clear the REST access to
neighbors list should be restricted. See the following AAA
configuration examples:

etc/shiro.ini example

#
DISCOURAGED since Carbon
#
/config/ebgp:bgp/neighbors/** = authBasic, roles[admin]

AAA MDSALDynamicAuthorizationFilter example

{ "aaa:policies":
 { "aaa:policies": [
 { "aaa:resource": "/restconf/config/ebgp:bgp/neighbors/**",
 "aaa:permissions": [
 { "aaa:role": "admin",
 "aaa:actions": ["get","post","put","patch","delete"]
 }]
 }]
 }
}

If BgpConfigurator thrift service is not secured then
tcp-md5-signature-password goes clear on the wire.

Quagga [QBGP] (up to version 1.0) keeps the password in memory in clear.
The password can be retrieved through Quagga’s configuration interface.

Scale and Performance Impact

Negligible scale or performance impacts.

	datastore: A bounded (<=80) string per configured neighbor.

	Traffic (thrift BgpConfigurator service): A bounded (<=80) string field
per neighbor addition operation.

Targeted Release

Carbon

Alternatives

Three alternatives have been considered in order to avoid storing the plain
password in datastore: RPC, post-update, and transparent encryption.
They are briefly described below.

The best alternative is transparent encryption, but in Carbon time-frame
is not feasible.

The post-update alternative does not actually solve the limitation.

The RPC alternative is feasible in Carbon time-frame but, given that
currently BgpConfigurator thrift service is not secured, to add an RPC
does not pull its weight.

RPC encryption

A new RPC add-neighbor(address, as-number[, tcp-md5-signature-password])
is in charge of create neighbors elements.
The password is salted and encrypted with aaa-encryption-service.
Both the salt and the encrypted password are stored in the neighbors
element.

Post-update encryption

The neighbors element contains both a plain-password leaf and a
encrypted-password-with-salt leaf.
The listener BgpConfigurationManager.NeighborsReactor is in charge of
encrypt and remove the plain-password leaf when it is present (and the
encrypted one is not).

This alternative does not really solve the limitation because during a
brief period the password is stored in plain.

Transparent encryption

A plain value is provided in REST write operations but it is automagically
encrypted before it reaches MD-SAL.
Read operations never decrypts the encrypted values.

This alternative impacts at least aaa, yangtools, and netconf
projects. It can not possibly be done in Carbon.

Usage

Features to Install

odl-netvirt-openstack

REST API

The RESTful API for neighbors creation
(/restconf/config/ebgp:bgp/neighbors/{address}) will be enhanced to
accept an additional tcp-md5-signature-password attribute:

{ "neighbors": {
 "address": "192.168.50.2",
 "remote-as": "2791",
 "tcp-md5-signature-password": "password"
}}

CLI

A new option --tcp-md5-password will be added to commands
odl:configure-bgp and odl:bgp-nbr.

opendaylight-user@root> odl:configure-bgp -op add-neighbor --ip 192.168.50.2 --as-num 2791 --tcp-md5-password password
opendaylight-user@root> odl:bgp-nbr --ip-address 192.168.50.2 --as-number 2791 --tcp-md5-password password add

Implementation

Assignee(s)

	Primary assignee:

	Jose-Santos Pulido, JoseSantos, jose.santos.pulido.garcia@ericsson.com

	Other contributors:

	TBD

Work Items

	https://trello.com/c/87MAFjRf

	Spec

	ebgp.yang

	BgpConfigurator thrift service (both idl and client)

	BgpConfigurationManager.NeighborsReactor

	ConfigureBgpCli

Dependencies

Internal

No internal dependencies are added or removed.

External

To enable TCP MD5 Signature Option [RFC2385] in a BGP the following conditions need to be
met:

	BgpConfigurator thrift service provider (e.g. Zebra Remote Procedure
Call [ZRPC]) must support the new function setPeerSecret.

	BGP’s TCP stack must support TCP MD5 Signature Option (e.g. in linux the kernel option
CONFIG_TCP_MD5SIG must be set).

Testing

Unit Tests

Currently bgpmanager has no unit tests related to configuration.

Integration Tests

Currently bgpmanager has no integration tests.

CSIT

Currently there is no CSIT test exercising bgpmanager.

Documentation Impact

Currently there is no documentation related to bgpmanager.

References

	QBGP(1,2,3,4)

	Quagga Routing Suite [http://www.nongnu.org/quagga]

	RFC2385(1,2,3,4,5,6)

	IETF RFC 2385: Protection of BGP Sessions via the TCP MD5 Signature Option [https://tools.ietf.org/html/rfc2385]

	TBaseProcessor

	thrift java library’s TBaseProcessor.process [https://github.com/apache/thrift/blob/0.9.1/lib/java/src/org/apache/thrift/TBaseProcessor.java#L25-L41]

	ZRPC

	Zebra Remote Procedure Call [https://github.com/6WIND/zrpcd/]

Table of Contents

	Support of VXLAN based L2 connectivity across Datacenters

	Problem description

	In scope

	Out of scope

	Use Cases

	Datacenter access from another Datacenter over WAN via respective DC-Gateways (L2 DCI)

	Proposed change

	Pipeline changes

	INTRA DC

	Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

	Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	INTER DC

	Intra subnet Traffic from DC-Gateway to Local DPN

	Intra subnet Traffic from Local DPN to DC-Gateway

	Inter subnet Traffic from Local DPN to DC-Gateway (Symmetric IRB)

	Inter subnet Traffic from DC-Gateway to Local DPN (Symmetric IRB)

	Inter subnet Traffic from Local DPN to DC-Gateway (ASymmetric IRB)

	Intra subnet Traffic from DC-Gateway to Local DPN (ASymmetric IRB)

	ARP Pipeline changes

	Local DPN: VMs on the same subnet, same DPN

	Intra Subnet, Local DPN: VMs on the same subnet, on remote DC

	Yang changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	NEUTRONVPN YANG changes

	ELAN YANG changes

	Solution considerations

	Proposed change in Openstack Neutron BGPVPN Driver

	Proposed change in BGP Quagga Stack

	Proposed change in OpenDaylight-specific features

	Reboot Scenarios

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support of VXLAN based L2 connectivity across Datacenters

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT2

Enable realization of L2 connectivity over VXLAN tunnels using L2 BGPVPNs,
internally taking advantage of EVPN as the BGP Control Plane mechanism.

Problem description

OpenDaylight NetVirt service today supports L3VPN connectivity over VXLAN tunnels.
L2DCI communication is not possible so far.

This spec attempts to enhance the BGPVPN service in NetVirt to
embrace inter-DC L2 connectivity over external VXLAN tunnels.

In scope

The scope primarily includes providing ability to support intra-subnet
connectivity across DataCenters over VXLAN tunnels using BGP EVPN with type L2.

When we mention that we are using EVPN BGP Control plane, this
spec proposes using the RouteType 2 as the primary
means to provision the control plane to enable inter-DC connectivity
over external VXLAN tunnels.

With this inplace we will be able to support the following.

	Intra-subnet connectivity across dataCenters over VXLAN tunnels.

The following are already supported as part of the other spec(RT5)
and will continue to function.

	Intra-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity across dataCenters over VXLAN tunnels.

Out of scope

Use Cases

The following high level use-cases will be realized by the implementation of this Spec.

Datacenter access from another Datacenter over WAN via respective DC-Gateways (L2 DCI)

This use-case involves providing intra-subnet connectivity between two DataCenters.
Tenant VMs in one datacenter will be able to communicate with tenant VMs on the other
datacenter provided they are part of the same BGP EVPN and they are on same subnets.

The dataplane between the tenant VMs themselves and between the tenant VMs
towards the DC-Gateway will be over VXLAN Tunnels.

The dataplane between the DC-Gateway to its other WAN-based BGP Peers is
transparent to this spec. It is usually MPLS-based EPVPN.

The BGP Control plane between the ODL Controller and the DC-Gateway will be
via EVPN RouteType 2 as defined in EVPN_RT2.

The control plane between the DC-Gateway and it other BGP Peers in the WAN
is transparent to this spec, but can be EVPN IP-MPLS.

In this use-case:

	We will have only a single DCGW for WAN connectivity

	MAC IP prefix exchange between ODL controller and DC-GW (iBGP) using EVPN RT2

	WAN control plane may use EVPN IP-MPLS for route exchange.

	On the DC-Gateway, the VRF instance will be configured with two sets of import/export targets. One set of import/export route targets belong to EVPN inside DataCenter (realized using EVPN RT2) and the second set of import/export route target belongs to WAN control plane.

	EVPN single homing to be used in all RT2 exchanges inside the DataCenter i.e., ESI=0 for all prefixes sent from DataCenter to the DC-Gateway.

Proposed change

The following components of an Openstack-ODL-based solution need to be enhanced to provide
intra-subnet and inter-subnet connectivity across DCs using EVPN MAC IP Advertisement
(Route Type 2) mechanism (refer EVPN_RT2):

	Openstack Neutron BGPVPN Driver

	OpenDaylight Controller (NetVirt)

	BGP Quagga Stack to support EVPN with RouteType 2 NLRI

	DC-Gateway BGP Neighbour that supports EVPN with RouteType 2 NLRI

The changes required in Openstack Neutron BGPVPN Driver and BGP Quagga Stack
are captured in the Solution considerations section down below.

Pipeline changes

INTRA DC

Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

There are no explicit pipeline changes for this use-case.

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

INTER DC

Intra subnet Traffic from DC-Gateway to Local DPN

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L2VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (24) => match tunnel-id=l2vni, set elan-tag

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set reg6=vm-lport-tag =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

Intra subnet Traffic from Local DPN to DC-Gateway

Classifier table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

GW Mac table (19) =>

Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>

ELAN base table (48) =>

ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=external-vm-mac set tun-id=vxlan-net-tag group=next-hop-group

Next Hop Group bucket0 :set reg6=tunnel-lport-tag bucket1 :set reg6=tunnel2-lport-tag

Egress table (220) match: reg6=tunnel2-lport-tag output to tunnel2

Inter subnet Traffic from Local DPN to DC-Gateway (Symmetric IRB)

Classifier Table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set tun-id=l3vni output to nexthopgroup =>

NextHopGroup: set-eth-dst router-gw-vm, reg6=tunnel-lport-tag =>

Lport Egress Table (220) Output to tunnel port

Inter subnet Traffic from DC-Gateway to Local DPN (Symmetric IRB)

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (23) => match tunnel-id=l3vni, set l3vpn-id =>

L3 Gateway MAC Table (19) => match dst-mac=vpn-subnet-gateway-mac-address =>

FIB table (21) match: l3vpn-tag=l3vpn-id,dst-ip=vm2-ip set reg6=vm-lport-tag goto=local-nexthop-group =>

local nexthop group set dst-mac=vm2-mac table=220 =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

Inter subnet Traffic from Local DPN to DC-Gateway (ASymmetric IRB)

Classifier Table (0) =>

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set tun-id=l2vni output to nexthopgroup =>

NextHopGroup: set-eth-dst dst-vm-mac, reg6=tunnel-lport-tag =>

Lport Egress Table (220) Output to tunnel port

Intra subnet Traffic from DC-Gateway to Local DPN (ASymmetric IRB)

Classifier table (0) =>

Dispatcher table (17) match: tunnel-type=vxlan =>

L2VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (24) => match tunnel-id=l2vni, set elan-tag

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set reg6=vm-lport-tag =>

Egress table (220) match: reg6=vm-lport-tag output to vm port

ARP Pipeline changes

Local DPN: VMs on the same subnet, same DPN

a. Introducing a new Table aka ELAN_ARP_SERVICE_TABLE (Table 81).
This table will be the first table in elan pipeline.

Classifier table (0) =>

Dispatcher table (17) elan service: set elan-id=vxlan-net-tag =>

Arp Service table (81) => match: arp-op=req, dst-ip=vm-ip, ela-id=vxlan-net-tag inline arp reply

Intra Subnet, Local DPN: VMs on the same subnet, on remote DC

Classifier table (0) =>

Dispatcher table (17) elan service: set elan-id=vxlan-net-tag =>

Arp Service table (81) => match: arp-op=req, dst-ip=vm-ip, ela-id=vxlan-net-tag inline arp reply

Yang changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang , odl-fib.yang and
neutronvpn.yang to start supporting EVPN functionality.

ODL-L3VPN YANG changes

A new container evpn-rd-to-networks is added
This holds the rd to networks mapping
This will be useful to extract in which elan the received RT2 route can be injected into.

odl-l3vpn.yang

 container evpn-rd-to-networks {
 config false;
 description "Holds the networks to which given evpn is attached to";
 list evpn-rd-to-network {
 key rd;
 leaf rd {
 type string;
 }
 list evpn-networks {
 key network-id;
 leaf network-id {
 type string;
 }
 }
 }
 }

ODL-FIB YANG changes

A new field macVrfEntries is added to the container fibEntries
This holds the RT2 routes received for the given rd

odl-fib.yang

 grouping vrfEntryBase {
 list vrfEntry{
 key "destPrefix";
 leaf destPrefix {
 type string;
 mandatory true;
 }
 leaf origin {
 type string;
 mandatory true;
 }
 leaf encap-type {
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 }
 default "mplsgre";
 }
 leaf l3vni {
 type uint32;
 }
 list route-paths {
 key "nexthop-address";
 leaf nexthop-address {
 type string;
 }
 leaf label {
 type uint32;
 }
 leaf gateway_mac_address {
 type string;
 }
 }
 }
 }

 grouping vrfEntries{
 list vrfEntry{
 key "destPrefix";
 uses vrfEntryBase;
 }
 }

 grouping macVrfEntries{
 list MacVrfEntry {
 key "mac_address";
 uses vrfEntryBase;
 leaf l2vni {
 type uint32;
 }
 }
 }

container fibEntries {
 config true;
 list vrfTables {
 key "routeDistinguisher";
 leaf routeDistinguisher {type string;}
 uses vrfEntries;
 uses macVrfEntries;//new field
 }
 container ipv4Table{
 uses ipv4Entries;
 }
 }

NEUTRONVPN YANG changes

A new rpc createEVPN is added
Existing rpc associateNetworks is reused to attach a network to EVPN assuming
uuid of L3VPN and EVPN does not collide with each other.

neutronvpn.yang

 rpc createEVPN {
 description "Create one or more EVPN(s)";
 input {
 list evpn {
 uses evpn-instance;
 }
 }
 output {
 leaf-list response {
 type string;
 description "Status response for createVPN RPC";
 }
 }
 }

 rpc deleteEVPN{
 description "delete EVPNs for specified Id list";
 input {
 leaf-list id {
 type yang:uuid;
 description "evpn-id";
 }
 }
 output {
 leaf-list response {
 type string;
 description "Status response for deleteEVPN RPC";
 }
 }
 }

 grouping evpn-instance {

 leaf id {
 mandatory "true";
 type yang:uuid;
 description "evpn-id";
 }

 leaf name {
 type string;
 description "EVPN name";
 }

 leaf tenant-id {
 type yang:uuid;
 description "The UUID of the tenant that will own the subnet.";
 }

 leaf-list route-distinguisher {
 type string;
 description
 "configures a route distinguisher (RD) for the EVPN instance.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf-list import-RT {
 type string;
 description
 "configures a list of import route target.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf-list export-RT{
 type string;
 description
 "configures a list of export route targets.
 Format is ASN:nn or IP-address:nn.";
 }

 leaf l2vni {
 type uint32;
 }
 }

ELAN YANG changes

Existing container elan-instances is augmented with evpn information.

A new list external-teps is added to elan container.
This captures the broadcast domain of the given network/elan.
When the first RT2 route is received from the dc gw,
it’s tep ip is added to the elan to which this RT2 route belongs to.

elan.yang

 augment "/elan:elan-instances/elan:elan-instance" {
 ext:augment-identifier "evpn";
 leaf evpn-name {
 type string;
 }
 leaf l3vpn-name {
 type string;
 }
 }

 container elan-instances {
 list elan-instance {
 key "elan-instance-name";
 leaf elan-instance-name {
 type string;
 }
 //omitted other existing fields
 list external-teps {
 key tep-ip;
 leaf tep-ip {
 type inet:ip-address;
 }
 }
 }
 }

 container elan-interfaces {
 list elan-interface {
 key "name";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf elan-instance-name {
 mandatory true;
 type string;
 }
 list static-mac-entries {
 key "mac";
 leaf mac {
 type yang:phys-address;
 }
 leaf prefix {//new field
 mandatory false;
 type inet:ip-address;
 }
 }
 }
 }

 grouping forwarding-entries {
 list mac-entry {
 key "mac-address";
 leaf mac-address {
 type yang:phys-address;
 }
 leaf interface {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 leaf controllerLearnedForwardingEntryTimestamp {
 type uint64;
 }
 leaf isStaticAddress {
 type boolean;
 }
 leaf prefix {//new field
 mandatory false;
 type inet:ip-address;
 }
 }
 }

Solution considerations

Proposed change in Openstack Neutron BGPVPN Driver

The Openstack Neutron BGPVPN’s ODL driver in Newton release is changed (mitaka release), so that
it is able to relay the configured L2 BGPVPNs, to the OpenDaylight Controller.

The Newton changes for the BGPVPN Driver has merged and is here:
https://review.openstack.org/#/c/370547/

Proposed change in BGP Quagga Stack

The BGP Quagga Stack is a component that interfaces with ODL Controller to enable ODL Controller itself
to become a BGP Peer. This BGP Quagga Stack need to be enhanced so that it is able to embrace EVPN
with Route Type 5 on the following two interfaces:

	Thrift Interface where ODL pushes routes to BGP Quagga Stack

	Route exchanges from BGP Quagga Stack to other BGP Neighbors (including DC-GW).

Proposed change in OpenDaylight-specific features

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager)

	ELAN Manager

	FIB Manager

	BGP Manager

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Configuration impact

The following parameters have been initially made available as configurable for EVPN. These
configurations can be made via the RESTful interface:

1.Multi-homing-mode – For multi-homing use cases where redundant DCGWs are used ODL can be configured with ‘none’, ‘all-active’ or ‘single-active’ multi-homing mode. Default will be ‘none’.

2.IRB-mode – Depending upon the support on DCGW, ODL can be configured with either ‘Symmetric’ or ‘Asymmetric’ IRB mode. Default is ‘Symmetric’.

There is another important parameter though it won’t be configurable:

MAC Address Prefix for EVPN – This MAC Address prefix represents the MAC Address prefix that will be hardcoded and that MACAddress will be used as the gateway mac address if it is not supplied from Openstack. This will usually be the case when networks are associated to an L3VPN with no gateway port yet configured in Openstack for such networks.

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

A new rpc is added to create and delete evpn:

{'input': {
 'evpn': [
 {'name': 'EVPN1',
 'export-RT': ['50:2'],
 'route-distinguisher': ['50:2'],
 'import-RT': ['50:2'],
 'id': '4ae8cd92-48ca-49b5-94e1-b2921a260007',
 ‘l2vni’: ‘200’,
 'tenant-id': 'a565b3ed854247f795c0840b0481c699'
}]}}

There is no change in the REST API for associating networks to the EVPN.

On the Openstack-side configuration, the vni_ranges configured in Openstack Neutron ml2_conf.ini
should not overlap with the L3VNI provided in the ODL RESTful API.
In an inter-DC case, where both the DCs are managed by two different Openstack Controller
Instances, the workflow will be to do the following:

	Configure the DC-GW2 facing OSC2 (Openstack) and DC-GW1 facing OSC1 with the same BGP configuration parameters.

	On first Openstack Controller (OSC1) create an L3VPN1 with RD1 and L3VNI1

	On first Openstack Controller (OSC1) create an EVPN1 with RD2 and L2VNI1

	Create a network Net1 and Associate that Network Net1 to L3VPN1

	Create a network Net1 and Associate that Network Net1 to EVPN1

	On second Openstack Controller (OSC2) create an L3VPN2 with RD1 with L3VNI1

	On second Openstack Controller (OSC2) create an EVPN2 with RD2 with L2VNI1

	Create a network Net2 on OSC2 with same cidr as the first one with a different allocation pool and associate that Network Net2 to L3VPN2.

	Associate that Network Net2 to EVPN2.

	Spin-off VM1 on Net1 in OSC1.

	Spin-off VM2 on Net2 in OSC2.

	Now VM1 and VM2 should be able to communicate.

Implementation

Assignee(s)

	Primary assignee:

	Vyshakh Krishnan C H <vyshakh.krishnan.c.h@ericsson.com>

Yugandhar Reddy Kaku <yugandhar.reddy.kaku@ericsson.com>

Riyazahmed D Talikoti <riyazahmed.d.talikoti@ericsson.com>

	Other contributors:

	K.V Suneelu Verma <k.v.suneelu.verma@ericsson.com>

Work Items

Trello card details https://trello.com/c/PysPZscm/150-evpn-evpn-rt2.

Dependencies

Requires a DC-GW that is supporting EVPN RT2 on BGP Control plane.

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

[1] EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

[2] Network Virtualization using EVPN [https://www.ietf.org/id/draft-ietf-bess-evpn-overlay-07.txt]

[3] Integrated Routing and Bridging in EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-inter-subnet-forwarding-04]

[4] VXLAN DCI using EVPN [https://tools.ietf.org/html/draft-boutros-bess-vxlan-evpn-02]

[5] BGP MPLS-Based Ethernet VPN [https://tools.ietf.org/html/rfc7432]

[6] Trello card details [https://trello.com/c/PysPZscm/150-evpn-evpn-rt2]

Table of Contents

	Support of VXLAN based connectivity across Datacenters

	Problem description

	In scope

	Out of scope

	Use Cases

	DataCenter access from a WAN-client via DC-Gateway (Single Homing)

	Datacenter access from another Datacenter over WAN via respective DC-Gateways (L3 DCI)

	Proposed change

	Pipeline changes

	INTRA DC

	Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

	Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

	Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

	Inter Subnet, Remote DPN: VMs on two different DPNs, both VMs on different subnet, but same VPN

	INTER DC

	Intra Subnet

	Inter Subnet

	SNAT pipeline (Access to External Network Access over VXLAN)

	DNAT pipeline (Access from External Network over VXLAN)

	Yang changes

	L3VPN YANG changes

	ODL-L3VPN YANG changes

	ODL-FIB YANG changes

	NEUTRONVPN YANG changes

	Solution considerations

	Proposed change in Openstack Neutron BGPVPN Driver

	Proposed change in BGP Quagga Stack

	Proposed change in OpenDaylight-specific features

	Import Export RT support for EVPN

	SubnetRoute support on EVPN

	NAT Service support for EVPN

	ARP request/response and MIP handling Support for EVPN

	Tunnel state handling Support

	InterVPNLink support for EVPN

	Supporting VLAN Aware VMs (Trunk and SubPorts)

	VM Mobility with RT5

	Reboot Scenarios

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Support of VXLAN based connectivity across Datacenters

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT5

Enable realization of L3 connectivity over VXLAN tunnels using L3 BGPVPNs,
internally taking advantage of EVPN as the BGP Control Plane mechanism.

Problem description

OpenDaylight NetVirt service today supports VLAN-based,
VXLAN-based connectivity and MPLSOverGRE-based overlays.

In this VXLAN-based underlay is supported only for traffic
within the DataCenter. For all the traffic that need to
go via the DC-Gateway the only supported underlay is MPLSOverGRE.

Though there is a way to provision an external VXLAN tunnel
via the ITM service in Genius, the BGPVPN service in
NetVirt does not have the ability to take advantage of such
a tunnel to provide inter-DC connectivity.

This spec attempts to enhance the BGPVPN service (runs on
top of the current L3 Forwarding service) in NetVirt to
embrace inter-DC L3 connectivity over external VXLAN tunnels.

In scope

The scope primarily includes providing ability to support Inter-subnet
connectivity across DataCenters over VXLAN tunnels by modeling a
new type of L3VPN which will realize this connectivity using
EVPN BGP Control plane semantics.

When we mention that we are using EVPN BGP Control plane, this
spec proposes using the RouteType 5 explained in EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] as the primary
means to provision the control plane en enable inter-DC connectivity
over external VXLAN tunnels.

This new type of L3VPN will also inclusively support:

	Intra-subnet connectivity within a DataCenter over VXLAN tunnels.

	Inter-subnet connectivity within a DataCenter over VXLAN tunnels.

Out of scope

	Does not cover providing VXLAN connectivity between hypervisors (with OVS Datapath) and Top-Of-Rack switches that might be positioned within such DataCenters.

	Does not cover providing intra-subnet connectivity across DCs.

Both the points above will be covered by another spec that will be Phase 2 of realizing intra-subnet inter-DC connectivity.

Use Cases

The following high level use-cases will be realized by the implementation of this Spec.

DataCenter access from a WAN-client via DC-Gateway (Single Homing)

This use case involves communication within the DataCenter by tenant VMs and also
communication between the tenant VMs to a remote WAN-based client via DC-Gateway.
The dataplane between the tenant VMs themselves and between the tenant VMs
towards the DC-Gateway will be over VXLAN Tunnels.

The dataplane between the DC-Gateway to its other WAN-based BGP Peers is
transparent to this spec. It is usually MPLS-based IPVPN.

The BGP Control plane between the ODL Controller and the DC-Gateway will be
via EVPN RouteType 5 as defined in EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03].

The control plane between the DC-Gateway and it other BGP Peers in the WAN
is transparent to this spec, but can be IP-MPLS.

In this use-case:

	We will have only a single DCGW for WAN connectivity

	IP prefix exchange between ODL controller and DC-GW (iBGP) using EVPN RT5

	WAN control plane will use L3VPN IP-MPLS route exchange.

	On the DC-Gateway, the VRF instance will be configured with two sets of import/export targets. One set of import/export route targets belong to L3VPN inside DataCenter (realized using EVPN RT5) and the second set of import/export route target belongs to WAN control plane.

	EVPN single homing to be used in all RT5 exchanges inside the DataCenter i.e., ESI=0 for all prefixes sent from DataCenter to the DC-Gateway.

	Inter AS option B is used at DCGW, route regeneration at DCGW

Datacenter access from another Datacenter over WAN via respective DC-Gateways (L3 DCI)

This use-case involves providing inter-subnet connectivity between two DataCenters.
Tenant VMs in one datacenter will be able to communicate with tenant VMs on the other
datacenter provided they are part of the same L3VPN and they are on different subnets.

Both the Datacenters can be managed by different ODL Controllers, but the L3VPN configured on
both ODL Controllers will use identical RDs and RTs.

Proposed change

The following components of an Openstack-ODL-based solution need to be enhanced to provide
intra-subnet and inter-subnet connectivity across DCs using EVPN IP Prefix Advertisement
(Route Type 5) mechanism (refer EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]):

	Openstack Neutron BGPVPN Driver

	OpenDaylight Controller (NetVirt)

	BGP Quagga Stack to support EVPN with RouteType 5 NLRI

	DC-Gateway BGP Neighbour that supports EVPN with RouteType 5 NLRI

The changes required in Openstack Neutron BGPVPN Driver and BGP Quagga Stack
are captured in the Solution considerations section down below.

Pipeline changes

For both the use-cases above, we have put together the required pipeline changes here.
For ease of understanding, we have made subsections that talk about Intra-DC
traffic and Inter-DC traffic.

INTRA DC

Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) tablemiss: goto_table=17 =>

Lport Dispatcher Table (17) elan service: set elan-id=elan-tag =>

ELAN Source MAC Table (50) match: elan-id=elan-tag, src-mac=source-vm-mac =>

ELAN Destination MAC Table (51) match: elan-id=elan-tag, dst-mac=dst-vm-mac set output to port-of-dst-vm

Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same VPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

VM sourcing the traffic (Ingress DPN)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) l3vpn service: tablemiss: goto_table=17 =>

Lport Dispatcher Table (17) elan service: set elan-id=elan-tag =>

ELAN Source MAC Table (50) match: elan-id=elan-tag, src-mac=source-vm-mac =>

ELAN Destination MAC Table (51) match: elan-id=elan-tag, dst-mac=dst-vm-mac set tun-id=dst-vm-lport-tag, output to vxlan-tun-port

VM receiving the traffic (Egress DPN)

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=lport-tag set reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case. However the tables that
a packet will traverse through is shown below for understanding purposes.

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000000, table=0, priority=4,in_port=1 actions=write_metadata:0x10000000000/0xffffff0000000001,goto_table:17
cookie=0x8000001, table=17, priority=5,metadata=0x5000010000000000/0xffffff0000000000 actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, table=19, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=de:ad:be:ef:00:01 actions=goto_table:21
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)

Inter Subnet, Remote DPN: VMs on two different DPNs, both VMs on different subnet, but same VPN

For this use-case there is a change in the remote flow rule to L3 Forward the traffic to the remote VM.
The flow-rule will use the LPortTag as the vxlan-tunnel-id, in addition to setting the destination mac address of the
remote destination vm.

VM sourcing the traffic (Ingress DPN)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set eth-dst-mac=dst-vm-mac, tun-id=dst-vm-lport-tag, output to vxlan-tun-port

cookie=0x8000000, table=0, priority=4,in_port=1 actions=write_metadata:0x10000000000/0xffffff0000000001,goto_table:17
cookie=0x8000001, table=17, priority=5,metadata=0x5000010000000000/0xffffff0000000000 actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, table=19, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=de:ad:be:ef:00:01 actions=goto_table:21
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

As you can notice 0x2 set in the above flow-rule as tunnel-id is the LPortTag assigned to VM holding IP Address 10.0.0.3.

VM receiving the traffic (Egress DPN)

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=lport-tag set reg6=lport-tag-dst-vm =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000001, table=0, priority=5,in_port=2 actions=write_metadata:0x40000000001/0xfffff0000000001,goto_table:36
cookie=0x9000001, table=36, priority=5,tun_id=0x2 actions=load:0x400->NXM_NX_REG6[],resubmit(,220)

As you notice, 0x2 tunnel-id match in the above flow-rule in INTERNAL_TUNNEL_TABLE (Table 36), is the LPortTag assigned
to VM holding IP Address 10.0.0.3.

INTER DC

Intra Subnet

Not supported in this Phase

Inter Subnet

For this use-case we are doing a couple of pipeline changes:

a. Introducing a new Table aka L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (Table 23).
L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (Table 23) - This table is a new table in the L3VPN pipeline and will be
responsible only to process VXLAN packets coming from External VXLAN tunnels.

The packets coming from External VXLAN Tunnels (note: not Internal VXLAN Tunnels), would be directly punted
to this new table from the CLASSIFIER TABLE (Table 0) itself. Today when multiple services bind to a
tunnel port on GENIUS, the service with highest priority binds directly to Table 0 entry for the tunnel port.
So such a service should make sure to provide a fallback to Dispatcher Table so that subsequent service interested
in that tunnel traffic would be given the chance.

The new table L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE will have flows to match on VXLAN
VNIs that are L3VNIs. On a match, their action is to fill the metadata with the VPNID, so that further
tables in the L3VPN pipeline would be able to continue and operate with the VPNID metadata seamlessly.
After filling the metadata, the packets are resubmitted from this new table to the L3_GW_MAC_TABLE (Table 19).
The TableMiss in L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE will resubmit the packet to LPORT_DISPATCHER_TABLE to enable
next service if any to process the packet ingressing from the external VXLAN tunnel.

b. For all packets going from VMs within the DC, towards the external gateway device via the External VXLAN Tunnel,
we are setting the VXLAN Tunnel ID to the L3VNI value of VPNInstance to which the VM belongs to.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=l3vni set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

cookie=0x8000001, table=0, priority=5,in_port=9 actions=write_metadata:0x70000000001/0x1fffff0000000001,goto_table:23
cookie=0x8000001, table=19, priority=20,metadata=0x222e0/0xffffffff,dl_dst=de:ad:be:ef:00:06 actions=goto_table:21
cookie=0x8000001, table=23, priority=5,tun_id=0x16 actions= write_metadata:0x222e0/0xfffffffe,resubmit(19)
cookie=0x8000001, table=23, priority=0,resubmit(17)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

In the above flow rules, Table 23 is the new L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE. The in_port=9 reprsents an
external VXLAN Tunnel port.

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set eth-dst-mac=dst-mac-address, tun-id=l3vni, output to ext-vxlan-tun-port

cookie=0x7000001, table=0, priority=5,in_port=8, actions=write_metadata:0x60000000001/0x1fffff0000000001,goto_table:17
cookie=0x7000001, table=17, priority=5,metadata=0x60000000001/0x1fffff0000000001 actions=goto_table:19
cookie=0x7000001, table=19, priority=20,metadata=0x222e0/0xffffffff,dl_dst=de:ad:be:ef:00:06 actions=goto_table:21
cookie=0x7000001, table=23, priority=5,tun_id=0x16 actions= write_metadata:0x222e0/0xfffffffe,resubmit(19)
cookie=0x7000001, table=23, priority=0,resubmit(17)
cookie=0x7000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.2 actions=apply_actions(group:150001)
cookie=0x7000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,output:2)

SNAT pipeline (Access to External Network Access over VXLAN)

SNAT Traffic from Local DPN to External IP (assuming this DPN is NAPT Switch)

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-entity-ip set eth-dst=external-entity-mac tun-id=external-l3vni, output to ext-vxlan-tun-port

SNAT Reverse Traffic from External IP to Local DPN (assuming this DPN is NAPT Switch)

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, dst-mac=external-router-gateway-mac-address =>

Inbound NAPT Table (44) match: vpn-id=external-vpn-id nw-dst=router-gateway-ip port=ext-port set vpn-id=l3vpn-id, dst-ip=vm-ip

NAPT PFIB Table (47) match: vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

DNAT pipeline (Access from External Network over VXLAN)

DNAT Traffic from External IP to Local DPN

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, eth-dst=floating-ip-dst-vm-mac-address =>

PDNAT Table (25) match: nw-dst=floating-ip,eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

DNAT Reverse Traffic from Local DPN to External IP

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-floating-ip set eth-dst=external-mac-address tun-id=external-l3vni, output to ext-vxlan-tun-port

DNAT to DNAT Traffic (Intra DC)

	FIP VM to FIP VM on Different Hypervisor

DPN1:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst=floating-ip-dst-vm-mac-address tun-id=external-l3vni, output to vxlan-tun-port

DPN2:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id= external-l3vni =>

PDNAT Table (25) match: nw-dst=floating-ip eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

In the above flow rules INTERNAL_TUNNEL_TABLE (table=36) will take the packet to the PDNAT_TABLE
(table 25) for an exact match with floating-ip and floating-ip-dst-vm-mac-address in PDNAT_TABLE.

In case of a successful floating-ip and floating-ip-dst-vm-mac-address match, PDNAT_TABLE will set IP destination as VM IP and VPN ID as internal l3 VPN ID then it will pointing to DNAT_TABLE (table=27)

In case of no match, the packet will be redirected to the SNAT pipeline towards the
INBOUND_NAPT_TABLE (table=44). This is the use-case where DPN2 also acts as
the NAPT DPN.

In summary, on an given NAPT switch, if both DNAT and SNAT are configured, the incoming traffic
will first be sent to the PDNAT_TABLE and if there is no FIP and FIP Mac match found, then it will be
forwarded to INBOUND_NAPT_TABLE for SNAT translation.
As part of the response, the external-l3vni will be used as tun_id to reach floating
IP VM on DPN1.

	FIP VM to FIP VM on same Hypervisor

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>

SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set eth-src=floating-ip-src-vm-mac-address =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst= floating-ip-dst-vm-mac-address =>

PDNAT Table (25) match: nw-dst=floating-ip eth-dst=floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

SNAT to DNAT Traffic (Intra DC)

SNAT Hypervisor:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set eth-dst=floating-ip-dst-vm-mac-address tun-id=external-l3vni, output to vxlan-tun-port

DNAT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id= external-l3vni =>

PDNAT Table (25) ``match: nw-dst=floating-ip eth-dst= floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip, vpn-id=l3vpn-id``=>

DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

Non-NAPT to NAPT Forward Traffic (Intra DC)

Non-NAPT Hypervisor:

Classifier Table (0) =>

Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id, dst-mac=vpn-subnet-gateway-mac-address =>

L3 FIB Table (21) match: vpn-id=l3vpn-id =>

PSNAT Table (26) match: vpn-id=l3vpn-id set tun-id=router-lport-tag,group =>

group: output to NAPT vxlan-tun-port

NAPT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=router-lport-tag =>

Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,vpn-id=external-vpn-id,port=ext-port =>

NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>

L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-entity-ip set eth-dst=external-entity-mac tun-id=external-l3vni, output to ext-vxlan-tun-port

For forwarding the traffic from Non-NAPT to NAPT DPN the tun-id will be setting with “router-lport-tag” which will be carved out per router.

NAPT to Non-NAPT Reverse Traffic (Intra DC)

NAPT Hypervisor:

Classifier Table (0) =>

L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set vpn-id=external-vpn-id =>

L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id, dst-mac=external-router-gateway-mac-address =>

Inbound NAPT Table (44) match: vpn-id=external-vpn-id nw-dst=router-gateway-ip port=ext-port set vpn-id=l3vpn-id, dst-ip=vm-ip =>

NAPT PFIB Table (47) match: vpn-id=l3vpn-id =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set eth-dst-mac=dst-vm-mac, tun-id=dst-vm-lport-tag, output to vxlan-tun-port

Non-NAPT Hypervisor:

Classifier Table (0) =>

Internal Tunnel Table (36) match: tun-id=dst-vm-lport-tag =>

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to nexthopgroup-dst-vm =>

NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>

Lport Egress Table (220) Output to dst vm port

More details of the NAT pipeline changes are in the NAT Service section of this spec.

Yang changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang , odl-fib.yang and
neutronvpn.yang to start supporting EVPN functionality.

L3VPN YANG changes

A new leaf l3vni and a new leaf type will be added to container vpn-instances

l3vpn.yang

 leaf type {
 description
 "The type of the VPN Instance.
 ipvpn indicates it is an L3VPN.
 evpn indicates it is EVPN”;

 type enumeration {
 enum ipvpn {
 value "0";
 description “L3VPN";
 }
 enum evpn {
 value "1";
 description "EVPN";
 }
 }
 default "ipvpn";
 }

 leaf l3vni {
 description
 "The L3 VNI to use for this L3VPN Instance.
 If this attribute is non-zero, it indicates
 this L3VPN will do L3Forwarding over VXLAN.
 If this value is non-zero, and the type field is ‘l2’,
 it is an error.
 If this value is zero, and the type field is ‘l3’, it is
 the legacy L3VPN that will do L3Forwarding
 with MPLSoverGRE.
 If this value is zero, and the type field is ‘l2’, it
 is an EVPN that will provide L2 Connectivity with
 Openstack supplied VNI”.

 type uint24;
 mandatory false;
 }

 The **type** value comes from Openstack BGPVPN ODL Driver based on what type of BGPVPN is
 orchestrated by the tenant. That same **type** value must be retrieved and stored into
 VPNInstance model above maintained by NeutronvpnManager.

ODL-L3VPN YANG changes

A new leaf l3vni and a new leaf type will be added to container vpn-instance-op-data

odl-l3vpn.yang

leaf type {
 description
 "The type of the VPN Instance.
 ipvpn indicates it is an L3VPN.
 evpn indicates it is EVPN”;

 type enumeration {
 enum ipvpn {
 value "0";
 description “L3VPN";
 }
 enum evpn {
 value "1";
 description "EVPN";
 }
 }
 default "ipvpn";
}

leaf l3vni {
 description
 "The L3 VNI to use for this L3VPN Instance.
 If this attribute is non-zero, it indicates
 this L3VPN will do L3Forwarding over VXLAN.
 If this value is non-zero, and the type field is ‘l2’,
 it is an error.
 If this value is zero, and the type field is ‘l3’, it is
 the legacy L3VPN that will do L3Forwarding
 with MPLSoverGRE.
 If this value is zero, and the type field is ‘l2’, it
 is an EVPN that will provide L2 Connectivity with
 Openstack supplied VNI”.

 type uint24;
 mandatory false;
}

For every interface in the cloud that is part of an L3VPN which has an L3VNI setup, we should
extract that L3VNI from the config VPNInstance and use that to both program the flows as well
as advertise to BGP Neighbour using RouteType 5 BGP Route exchange.
Fundamentally, what we are accomplishing is L3 Connectivity over VXLAN tunnels by using the
EVPN RT5 mechanism.

ODL-FIB YANG changes

Few new leafs like mac_address , gateway_mac_address , l2vni, l3vni and a leaf encap-type will
be added to container fibEntries

odl-fib.yang

leaf encap-type {
 description
 "This flag indicates how to interpret the existing label field.
 A value of mpls indicates that the label will continue to
 be considered as an MPLS Label.
 A value of vxlan indicates that vni should be used to
 advertise to bgp.
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 }
 default "mplsgre";
}

leaf mac_address {
 type string;
 mandatory false;
}

leaf l3vni {
 type uint24;
 mandatory false;
}

leaf l2vni {
 type uint24;
 mandatory false;
}

leaf gateway_mac_address {
 type string;
 mandatory false;
}
Augment:parent_rd {
 type string;
 mandatory false;
}

The encaptype indicates whether an MPLSOverGre or VXLAN encapsulation should be used
for this route. If the encapType is MPLSOverGre then the usual label field will carry
the MPLS Label to be used in datapath for traffic to/from this VRFEntry IP prefix.

If the encaptype is VXLAN, the VRFEntry implicitly refers that this route is reachable
via a VXLAN tunnel. The L3VNI will carry the VRF VNI and there will also be an L2VNI which
represents the VNI of the network to which the VRFEntry belongs to.

Based on whether Symmetric IRB (or) Asymmetric IRB is configured to be used by the CSC
(see section on Configuration Impact below). If Symmetric IRB is configured, then the L3VNI
should be used to program the flows rules. If Asymmetric IRB is configured, then L2VNI should
be used in the flow rules.

The mac_address field must be filled for every route in an EVPN. This mac_address field
will be used for support intra-DC communication for both inter-subnet and intra-subnet routing.

The gateway_mac_address must always be filled for every route in an EVPN.[AKMA7] [NV8]
This gateway_mac_address will be used for all packet exchanges between DC-GW and the
DPN in the DC to support L3 based forwarding with Symmetric IRB.

NEUTRONVPN YANG changes

One new leaf l3vni will be added to container grouping vpn-instance

odl-fib.yang

leaf l3vni {
 type uint32;
 mandatory false;
}

Solution considerations

Proposed change in Openstack Neutron BGPVPN Driver

The Openstack Neutron BGPVPN’s ODL driver in Newton release needs to be changed, so that
it is able to relay the configured L2 BGPVPNs, to the OpenDaylight Controller.
As of Mitaka release, only L3 BGPVPNs configured in Openstack are being relayed to the
OpenDaylight Controller. So in addition to addressing the ODL BGPVPN Driver changes in
Newton, we will provide a Mitaka based patch that will integrate into Openstack.

The Newton changes for the BGPVPN Driver has merged and is here:
https://review.openstack.org/#/c/370547/

Proposed change in BGP Quagga Stack

The BGP Quagga Stack is a component that interfaces with ODL Controller to enable ODL Controller itself
to become a BGP Peer. This BGP Quagga Stack need to be enhanced so that it is able to embrace EVPN
with Route Type 5 on the following two interfaces:

	Thrift Interface where ODL pushes routes to BGP Quagga Stack

	Route exchanges from BGP Quagga Stack to other BGP Neighbors (including DC-GW).

Proposed change in OpenDaylight-specific features

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronvpnManager

	VPN Engine (VPN Manager and VPN Interface Manager)

	FIB Manager

	BGP Manager

	VPN SubnetRoute Handler

	NAT Service

Import Export RT support for EVPN

Currently Import/Export logic for L3VPN uses a LabelRouteInfo structure to build information
about imported prefixes using MPLS Label as the key. However, this structure cannot be used
for EVPN as the L3VNI will be applicable for an entire EVPN Instance instead of the MPLS Label.
In lieu of LabelRouteInfo, we will maintain an IPPrefixInfo keyed structure that can be used
for facilitating Import/Export of VRFEntries across both EVPNs and L3VPNs.

odl-fib.yang

list ipprefix-info {

 key "prefix, parent-rd"
 leaf prefix {
 type string;
 }

 leaf parent-rd {
 type string;
 }

 leaf label {
 type uint32;
 }

 leaf dpn-id {
 type uint64;
 }

 leaf-list next-hop-ip-list {
 type string;
 }

 leaf-list vpn-instance-list {
 type string;
 }

 leaf parent-vpnid {
 type uint32;
 }

 leaf vpn-interface-name {
 type string;
 }

 leaf elan-tag {
 type uint32;
 }

 leaf is-subnet-route {
 type boolean;
 }

 leaf encap-type {
 description
 "This flag indicates how to interpret the existing label field.
 A value of mpls indicates that the l3label should be considered as an MPLS
 Label.
 A value of vxlan indicates that l3label should be considered as an VNI.
 type enumeration {
 enum mplsgre {
 value "0";
 description "MPLSOverGRE";
 }
 enum vxlan {
 value "1";
 description “VNI";
 }
 default "mplsgre";
 }
 }

 leaf l3vni {
 type uint24;
 mandatory false;
 }

 leaf l2vni {
 type uint24;
 mandatory false;
 }

 leaf gateway_mac_address {
 type string;
 mandatory false;
 }
}

SubnetRoute support on EVPN

The subnetRoute feature will continue to be supported on EVPN and we will use RT5 to publish
subnetRoute entries with either the router-interface-mac-address if available (or) if not
available use the pre-defined hardcoded MAC Address described in section Configuration Impact.
For both ExtraRoutes and MIPs (invisible IPs) discovered via subnetroute, we will continue
to use RT5 to publish those prefixes.[AKMA9] [NV10]
On the dataplane, VXLAN packets from the DC-GW will carry the MAC Address of the gateway-ip
for the subnet in the inner DMAC.

NAT Service support for EVPN

However, since external network NAT should continue to be supported on VXLAN, making NAT
service work on L3VPNs that use VXLAN as the tunnel type becomes imperative.

Existing SNAT/DNAT design assumed internetVpn to be using mplsogre as the connectivity
from external network towards DCGW. This needs to be changed such that it can handle even
EVPN case with VXLAN connectivity as well.

As of the implementation required for this specification, the workflow will be to create
InternetVPN with and associate a single external network to that is of VXLAN Provider Type.
The Internet VPN itself will be an L3VPN that will be created via the ODL RESTful API and
during creation an L3VNI parameter will be supplied to enable this L3VPN to operate on a
VXLAN dataplane. The L3VNI provided to the Internet VPN can be different from the VXLAN
segmentation ID associated to the external network.

However, it will be a more viable use-case in the community if we mandate in our workflow
that both the L3VNI configured for Internet VPN and the VXLAN segmentation id of the
associated external network to the Internet VPN be the same.
NAT service can use vpninstance-op-data model to classify the DCGW connectivity for internetVpn.

For the Pipeline changes for NAT Service, please refer to ‘Pipeline changes’ section.

SNAT to start using Router Gateway MAC, in translated entry in table 46 (Outbound SNAT table)
and in table 19 (L3_GW_MAC_Table). Presently Router gateway mac is already stored in odl-nat model
in External Routers.

DNAT to start using Floating MAC, in table 28 (SNAT table) and in table 19 (L3_GW_MAC Table).
Change in pipeline mainly reverse traffic for SNAT and DNAT so that when packet arrives from DCGW,
it goes to 0->38->17->19 and based on Vni and MAC matching, take it back to SNAT or DNAT pipelines.

Also final Fib Entry pointing to DCGW in forward direction also needs modification where we should
start using VXLAN’s vni, FloatingIPMAC (incase of DNAT) and ExternalGwMacAddress(incase of SNAT)
and finally encapsulation type as VXLAN.

For SNAT advertise to BGP happens during external network association to Vpn and during High
availability scenarios where you need to re-advertise the NAPT switch. For DNAT we need to
advertise when floating IP is associated to the VM.
For both SNAT and DNAT this IS mandates that we do only RT5 based advertisement. That RT5
advertisement must carry the external gateway mac address assigned for the respective Router
for SNAT case while for DNAT case the RT5 will carry the floating-ip-mac address.

ARP request/response and MIP handling Support for EVPN

Will not support ARP across DCs, as we donot support intra-subnet inter-DC scenarios.

	For intra-subnet intra-DC scenarios, the ARPs will be serviced by existing ELAN pipeline.

	For inter-subnet intra-DC scenarios, the ARPs will be processed by ARP Responder implementation that is already pursued in Carbon.

	For inter-subnet inter-DC scenarios, ARP requests won’t be generated by DC-GW. Instead the DC-GW will use ‘gateway mac’ extended attribute MAC Address information and put that directly into DSTMAC field of Inner MAC Header by the DC-GW for all packets sent to VMs within the DC.

	As quoted, intra-subnet inter-DC scenario is not a supported use-case as per this Implementation Spec.

Tunnel state handling Support

We have to handle both the internal and external tunnel events for L3VPN (with L3VNI) the same way
it is handled for current L3VPN.

InterVPNLink support for EVPN

Not supported as this is not a requirement for this Spec.

Supporting VLAN Aware VMs (Trunk and SubPorts)

Not supported as this is not a requirement for this Spec.

VM Mobility with RT5

We will continue to support cold migration of VMs across hypervisors across L3VPNs as supported
already in current ODL Carbon Release.

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Configuration impact

The following parameters have been initially made available as configurable for EVPN. These
configurations can be made via the RESTful interface:

1.Multi-homing-mode – For multi-homing use cases where redundant DCGWs are used ODL can be configured with ‘none’, ‘all-active’ or ‘single-active’ multi-homing mode. Default will be ‘none’.

2.IRB-mode – Depending upon the support on DCGW, ODL can be configured with either ‘Symmetric’ or ‘Asymmetric’ IRB mode. Default is ‘Symmetric’.

There is another important parameter though it won’t be configurable:

MAC Address Prefix for EVPN – This MAC Address prefix represents the MAC Address prefix that will be hardcoded and that MACAddress will be used as the gateway mac address if it is not supplied from Openstack. This will usually be the case when networks are associated to an L3VPN with no gateway port yet configured in Openstack for such networks.

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

The creational RESTful API for the L3VPN will be enhanced to accept
the L3VNI as an additional attribute as in the below request format:

{'input': {
 'l3vpn': [
 {'name': 'L3VPN2',
 'export-RT': ['50:2'],
 'route-distinguisher': ['50:2'],
 'import-RT': ['50:2'],
 'id': '4ae8cd92-48ca-49b5-94e1-b2921a260007',
 ‘l3vni’: ‘200’,
 'tenant-id': 'a565b3ed854247f795c0840b0481c699'
}]}}

There is no change in the REST API for associating networks, associating routers (or) deleting
the L3VPN.

On the Openstack-side configuration, the vni_ranges configured in Openstack Neutron ml2_conf.ini
should not overlap with the L3VNI provided in the ODL RESTful API.
In an inter-DC case, where both the DCs are managed by two different Openstack Controller
Instances, the workflow will be to do the following:

	Configure the DC-GW2 facing OSC2 and DC-GW1 facing OSC1 with the same BGP configuration parameters.

	On first Openstack Controller (OSC1) create an L3VPN1 with RD1 and L3VNI1

	Create a network Net1 and Associate that Network Net1 to L3VPN1

	On second Openstack Controller (OSC2) create an L3VPN2 with RD1 with L3VNI2

	Create a network Net2 on OSC2 and associate that Network Net2 to L3VPN2.

	Spin-off VM1 on Net1 in OSC1.

	Spin-off VM2 on Net2 in OSC2.

	Now VM1 and VM2 should be able to communicate.

Implementation

Assignee(s)

	Primary assignee:

	Kiran N Upadhyaya (kiran.n.upadhyaya@ericsson.com)

Sumanth MS (sumanth.ms@ericsson.com)

Basavaraju Chickmath (basavaraju.chickmath@ericsson.com)

	Other contributors:

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

The Trello cards have already been raised for this feature
under the EVPN_RT5.

Here is the link for the Trello Card:
https://trello.com/c/Tfpr3ezF/33-evpn-evpn-rt5

New tasks into this will be added to cover Java UT and
CSIT.

Dependencies

Requires a DC-GW that is supporting EVPN RT5 on BGP Control plane.

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

User Guide will need to add information on how OpenDaylight can
be used to deploy L3 BGPVPNs and enable communication across
datacenters between virtual endpoints in such L3 BGPVPN.

Developer Guide will capture the ODL L3VPN API changes to enable
management of an L3VPN that can use VXLAN overlay to enable
communication across datacenters.

References

[1] EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

[2] Network Virtualization using EVPN [https://www.ietf.org/id/draft-ietf-bess-evpn-overlay-07.txt]

[3] Integrated Routing and Bridging in EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-inter-subnet-forwarding-04]

[4] VXLAN DCI using EVPN [https://tools.ietf.org/html/draft-boutros-bess-vxlan-evpn-02]

[5] BGP MPLS-Based Ethernet VPN [https://tools.ietf.org/html/rfc7432]

	http://docs.opendaylight.org/en/latest/documentation.html

	https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

Temporary Source MAC Learning

https://git.opendaylight.org/gerrit/#/q/topic:temp-smac-learning

Temporary source MAC learning introduces two new tables to the ELAN service, for OVS-based source MAC learning using a learn action,
to reduce a large scale of packets punted to the controller for an unlearned source MAC.

Problem description

Currently any packet originating from an unknown source MAC address is punted to the controller from the ELAN service (L2 SMAC table 50).

This behavior continues for each packet from this source MAC until ODL properly processes this packet and adds an explicit source MAC rule to this table.

During the time that is required to punt a packet, process it by the ODL and create an appropriate flow, it is not necessary to punt any other packet from this source MAC, as it causes an unnecessary load.

Use Cases

Any L2 traffic from unknown source MACs passing through the ELAN service.

Proposed change

A preliminary logic will be added prior to the SMAC learning table,
that will use OpenFlow learn action to add a temporary rule for each
source MAC after the first packet is punted.

Pipeline changes

Two new tables will be introduced to the ELAN service:

Table 48 for resubmitting to tables 49 and 50 (trick required to use the learned flows, similar to the ACL implementation).

Table 49 for setting a register value to mark that this SMAC was already punted to the ODL for learning. The flows in this table will be generated automatically by OVS.

Table 50 will be modified, with a new flow, which has a lower priority than the existing known SMAC flows but a higher priority than the default flow. This flow passes packets marked with the register directly to the DMAC table 51 without punting to the controller, as it is already being processed. In addition, the default flow that punts packets to the controller, will also have a new learn action, temporarily adding a flow matching this source MAC to table 49.

Example of flows after change:

cookie=0x8040000, duration=1575.755s, table=17, n_packets=7865, n_bytes=1451576, priority=6,metadata=0x6000020000000000/0xffffff0000000000 actions=write_metadata:0x7000021389000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=1129.530s, table=48, n_packets=4149, n_bytes=729778, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x8600000, duration=6.875s, table=49, n_packets=0, n_bytes=0, hard_timeout=60, priority=0,dl_src=fa:16:3e:2f:73:61 actions=load:0x1->NXM_NX_REG4[0..7]
cookie=0x8051389, duration=7.078s, table=50, n_packets=0, n_bytes=0, priority=20,metadata=0x21389000000/0xfffffffff000000,dl_src=fa:16:3e:2f:73:61 actions=goto_table:51
cookie=0x8050000, duration=440.925s, table=50, n_packets=49, n_bytes=8030, priority=10,reg4=0x1 actions=goto_table:51
cookie=0x8050000, duration=124.209s, table=50, n_packets=68, n_bytes=15193, priority=0 actions=CONTROLLER:65535,learn(table=49,hard_timeout=60,priority=0,cookie=0x8600000,NXM_OF_ETH_SRC[],load:0x1->NXM_NX_REG4[0..7]),goto_table:51

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

This change should substantially reduce the packet in load from SMAC learning, resulting in a reduced load of the ODL in high performance traffic scenarios.

Targeted Release

Due to scale and performance criticality, and the low risk of this feature, suggest to target this functionality for Boron.

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other contributors.

	Primary assignee:

	Olga Schukin (olga.schukin@hpe.com)

	Other contributors:

	Alon Kochba (alonko@hpe.com)

Work Items

N/A.

Dependencies

No new dependencies.
Learn action is already in use in netvirt pipeline and has been available in OVS since early versions. However this is a non-standard OpenFlow feature.

Testing

Existing source MAC learning functionality should be verified.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

N/A.

Documentation Impact

Pipeline documentation should be updated accordingly to reflect the changes to the ELAN service.

Table of Contents

	Enhancement to VLAN Provider Network Support

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Enhancement to VLAN Provider Network Support

https://git.opendaylight.org/gerrit/#/q/topic:vlan-provider-network

This feature aims to enhance the support for VLAN provider networks that are not of type
external.As part of this enhancement, ELAN pipeline processing for the network will be
done on the switch only if there is at least one VM port in the network on the switch.
The behavior of VLAN provider networks of type external and flat networks will remain
unchanged as of now. The optimization for external network is out of scope of this spec
and will be handled as part of future releases.

Problem description

Current ODL implementation supports all configured VLAN segments corresponding to VLAN
provider networks on a particular patch port on all Open vSwitch which are part of the
network. This could have adverse performance impacts because every provider patch port
will receive and processes broadcast traffic for all configured VLAN segments even in
cases when the switch doesn’t have a VM port in the network. Furthermore, for unknown
SMACs it leads to unnecessary punts from ELAN pipeline to controller for source MAC
learning from all the switches.

Use Cases

L2 forwarding between OVS switches using provider type VLAN over L2 segment of the
underlay fabric

Proposed change

Instead of creating the VLAN member interface on the patch port at the time of network
creation, VLAN member interface creation will be deferred until a VM port comes up in the
switch in the VLAN provider network. Switch pipeline will not process broadcast traffic on
this switch in a VLAN provider network until VM port is added to the network. This will be
applicable to VLAN provider network without external router attribute set.

Elan service binding will also be done at the time of VLAN member interface
creation. Since many neutron ports on same switch can belong to a single VLAN provider
network, the flow rule should be created only once when first VM comes up and should be
deleted when there are no more neutron ports in the switch for the VLAN provider network.

Pipeline changes

None.

Yang changes

elan:elan-instances container will be enhanced with information whether an external
router is attached to VLAN provider network.

elan.yang

container elan-instances {
 description
 "elan instances configuration parameters. Elan instances support both the VLAN and VNI based elans.";

 list elan-instance {
 max-elements "unbounded";
 min-elements "0";
 key "elan-instance-name";
 description
 "Specifies the name of the elan instance. It is a string of 1 to 31
 case-sensitive characters.";
 leaf elan-instance-name {
 type string;
 description "The name of the elan-instance.";
 }
 ...

 leaf external {
 description "indicates whether the network has external router attached to it";
 type boolean;
 default "false";
 }
 }
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

Performance will improve because of the following:

	Switch will drop packets if it doesn’t have a VM port in the VLAN on which packet is
received.

	Unnecessary punts to the controller from ELAN pipeline for source mac learning will be
prevented.

Targeted Release

Carbon.

Alternatives

N.A.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack.
This feature doesn’t add any new karaf feature.

REST API

CLI

Implementation

Assignee(s)

	Primary assignee:

	
	Ravindra Nath Thakur (ravindra.nath.thakur@ericsson.com)

	Naveen Kumar Verma (naveen.kumar.verma@ericsson.com)

	Other contributors:

	
	Ravi Sundareswaran (ravi.sundareswaran@ericsson.com)

Work Items

N.A.

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

This feature will not require any change in User Guide.

References

[1] https://trello.com/c/A6Km6J3D/110-flat-and-vlan-network-type

Table of Contents

	VNI based L2 switching, L3 forwarding and NATing

	Problem description

	In Scope

	Out of Scope

	Use Cases

	L2 switching use cases

	L3 forwarding use cases

	NAT use cases

	Proposed change

	Pipeline changes

	L2 Switching

	Unicast

	Within hypervisor

	Across hypervisors

	Broadcast

	Across hypervisors

	L3 Forwarding

	Between VMs on a single OVS

	Between VMs on two different OVS

	VM sourcing the traffic (Ingress OVS)

	VM receiving the traffic (Egress OVS)

	NAT Service

	Inter DC

	SNAT

	DNAT

	Intra DC

	DNAT to DNAT

	SNAT to DNAT

	YANG changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release(s)

	Known Limitations

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

VNI based L2 switching, L3 forwarding and NATing

https://git.opendaylight.org/gerrit/#/q/topic:vni-based-l2-l3-nat

Important: All gerrit links raised for this feature will have topic name as vni-based-l2-l3-nat

This feature attempts to realize the use of VxLAN VNI (Virtual Network Identifier) for VxLAN
tenant traffic flowing on the cloud data-network. This is applicable to L2 switching, L3
forwarding and NATing for all VxLAN based provider networks. In doing so, it eliminates the
presence of LPort tags, ELAN tags and MPLS labels on the wire and instead, replaces
them with VNIs supplied by the tenant’s OpenStack.

This will be selectively done for the use-cases covered by this spec and hence, its
implementation won’t completely remove the usage of the above entities. The usage of LPort tags
and ELAN tags within an OVS datapath (not on the wire) of the hypervisor will be retained, as
eliminating it completely is a large redesign and can be pursued incrementally later.

This spec is the first step in the direction of enforcing datapath semantics that uses tenant
supplied VNI values on VxLAN Type networks created by tenants in OpenStack Neutron.

Note: The existing L3 BGPVPN control-path and data-path semantics will continue to use L3
labels on the wire as well as inside the OVS datapaths of the hypervisor to realize both intra-dc
and inter-dc connectivity.

Problem description

OpenDaylight NetVirt service today supports the following types of networks:

	Flat

	VLAN

	VxLAN

	GRE

Amongst these, VxLAN-based overlay is supported only for traffic within the DataCenter. External
network accesses over the DC-Gateway are supported via VLAN or GRE type external networks.
For rest of the traffic over the DC-Gateway, the only supported overlay is GRE.

Today, for VxLAN enabled networks by the tenant, the labels are generated by L3 forwarding service
and used. Such labels are re-used for inter-DC use-cases with BGPVPN as well. This does not honor
and is not in accordance with the datapath semantics from an orchestration point of view.

This spec attempts to change the datapath semantics by enforcing the VNIs (unique for every VxLAN
enabled network in the cloud) as dictated by the tenant’s OpenStack configuration for L2
switching, L3 forwarding and NATing.

This implementation will remove the reliance on using the following (on the wire) within the
DataCenter:

	Labels for L3 forwarding

	LPort tags for L2 switching

More specifically, the traffic from source VM will be routed in source OVS by the L3VPN / ELAN
pipeline. After that, the packet will travel as a switched packet in the VxLAN underlay within the
DC, containing the VNI in the VxLAN header instead of MPLS label / LPort tag. In the destination
OVS, the packet will be collected and sent to the destination VM through the existing ELAN
pipeline.

In the nodes themselves, the LPort tag will continue to be used when pushing the packet from
ELAN / L3VPN pipeline towards the VM as ACLService continues to use LPort tags.

Simiarly ELAN tags will continue to be used for handling L2 broadcast packets:

	locally generated in the OVS datapath

	remotely received from another OVS datapath via internal VxLAN tunnels

LPort tag uses 8 bits and ELAN tag uses 21 bits in the metadata. The existing use of both in the
metadata will remain unaffected.

In Scope

Since VNIs are provisioned only for VxLAN based underlays, this feature has in its scope the
use-cases pertaining to intra-DC connectivity over internal VxLAN tunnels only.

On the cloud data network wire, all the VxLAN traffic for basic L2 switching within a VxLAN
network and L3 forwarding across VxLAN-type networks using routers will use tenant supplied VNI
values for such VXLAN networks.

Inter-DC connectivity over external VxLAN tunnels is covered by the EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec.

Out of Scope

	Complete removal of use of LPort tags everywhere in ODL: Use of LPort tags within the OVS
Datapath of a hypervisor, for streaming traffic to the right virtual endpoint on that hypervisor
(note: not on the wire) will be retained

	Complete removal of use of ELAN tags everywhere in ODL: Use of ELAN tags within the OVS
Datapath to handle local/remote L2 broadcasts (note: not on the wire) will be retained

	Complete removal of use of MPLS labels everywhere in ODL: Use of MPLS labels for
realizing an L3 BGPVPN (regardless of type of networks put into such BGPVPN that may include
networks of type VxLAN) both on the wire and within the OVS Datapaths will be retained.

	Addressing or testing IPv6 use-cases

	Intra DC NAT usecase where no explicit Internet VPN is created for VxLAN based external provider
networks: Detailed further in Intra DC subsection in NAT section below.

Complete removal of use of LPort tags, ELAN tags and MPLS labels for VxLAN-type
networks has large scale design/pipeline implications and thus need to be attempted as future
initiatives via respective specs.

Use Cases

This feature involves amendments/testing pertaining to the following:

L2 switching use cases

	L2 Unicast frames exchanged within an OVS datapath

	L2 Unicast frames exchanged over OVS datapaths that are on different hypervisors

	L2 Broadcast frames transmitted within an OVS datapath

	L2 Broadcast frames received from remote OVS datapaths

L3 forwarding use cases

	Router realized using VNIs for networks attached to a new router (with network having
pre-created VMs)

	Router realized using VNIs for networks attached to a new router (with new VMs booted later on
the network)

	Router updated with one or more extra route(s) to an existing VM.

	Router updated to remove previously added one/more extra routes.

NAT use cases

The provider network types for external networks supported today are:

	External VLAN Provider Networks (transparent Internet VPN)

	External Flat Networks (transparent Internet VPN)

	Tenant-orchestrated Internet VPN of type GRE (actually MPLSOverGRE)

Following are the SNAT/DNAT use-cases applicable to the network types listed above:

	SNAT functionality.

	DNAT functionality.

	DNAT to DNAT functionality (Intra DC)

	FIP VM to FIP VM on same hypervisor

	FIP VM to FIP VM on different hypervisors

	SNAT to DNAT functionality (Intra DC)

	Non-FIP VM to FIP VM on the same NAPT hypervisor

	Non-FIP VM to FIP VM on the same hypervisor, but NAPT on different hypervisor

	Non-FIP VM to FIP VM on different hypervisors (with NAPT on FIP VM hypervisor)

	Non-FIP VM to FIP VM on different hypervisors (with NAPT on Non-FIP VM hypervisor)

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	NeutronVPN Manager

	ELAN Manager

	VPN Engine (VPN Manager, VPN Interface Manager and VPN Subnet Route Handler)

	FIB Manager

	NAT Service

Pipeline changes

L2 Switching

Unicast

Within hypervisor

There are no explicit pipeline changes for this use-case.

Across hypervisors

	Ingress OVS

Instead of setting the destination LPort tag, destination network VNI will be set in the
tun_id field in L2_DMAC_FILTER_TABLE (table 51) while egressing the packet on the tunnel
port.

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=65.484s, table=0, n_packets=23, n_bytes=2016, priority=4,in_port=6actions=write_metadata:0x30000000000/0xffffff0000000001,goto_table:17
cookie=0x6900000, duration=63.106s, table=17, n_packets=23, n_bytes=2016, priority=1,metadata=0x30000000000/0xffffff0000000000 actions=write_metadata:0x2000030000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=64.135s, table=40, n_packets=4, n_bytes=392, priority=61010,ip,dl_src=fa:16:3e:86:59:fd,nw_src=12.1.0.4 actions=ct(table=41,zone=5002)
cookie=0x6900000, duration=5112.542s, table=41, n_packets=21, n_bytes=2058, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x8040000, duration=62.125s, table=17, n_packets=15, n_bytes=854, priority=6,metadata=0x6000030000000000/0xffffff0000000000 actions=write_metadata:0x700003138a000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=5113.124s, table=48, n_packets=24, n_bytes=3044, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x805138a, duration=62.163s, table=50, n_packets=15, n_bytes=854, priority=20,metadata=0x3138a000000/0xfffffffff000000,dl_src=fa:16:3e:86:59:fd actions=goto_table:51
cookie=0x803138a, duration=62.163s, table=51, n_packets=6, n_bytes=476, priority=20,metadata=0x138a000000/0xffff000000,dl_dst=fa:16:3e:31:fb:91 actions=set_field:**0x710**->tun_id,output:1

	Egress OVS

On the egress OVS, for the packets coming in via the internal VxLAN tunnel (OVS - OVS),
INTERNAL_TUNNEL_TABLE currently matches on destination LPort tag for unicast packets. Since
the incoming packets will now contain the network VNI in the VxLAN header, the
INTERNAL_TUNNEL_TABLE will match on this VNI, set the ELAN tag in the metadata and forward
the packet to L2_DMAC_FILTER_TABLE so as to reach the destination VM via the ELAN pipeline.

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=5136.996s, table=0, n_packets=12601, n_bytes=899766, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=1145.594s, table=36, n_packets=15, n_bytes=476, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x803138a, duration=62.163s, table=51, n_packets=9, n_bytes=576, priority=20,metadata=0x138a000001/0xffff000000,dl_dst=fa:16:3e:86:59:fd actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

Broadcast

Across hypervisors

The ARP broadcast by the VM will be a (local + remote) broadcast.

For the local broadcast on the VM’s OVS itself, the packet will continue to get flooded to all the
VM ports by setting the destination LPort tag in the local broadcast group. Hence, there are no
explicit pipeline changes for when a packet is transmitted within the source OVS via a local
broadcast.

The changes in pipeline for the remote broadcast are illustrated below:

	Ingress OVS

Instead of setting the ELAN tag, network VNI will be set in the tun_id field as part of
bucket actions in remote broadcast group while egressing the packet on the tunnel port.

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=65.484s, table=0, n_packets=23, n_bytes=2016, priority=4,in_port=6actions=write_metadata:0x30000000000/0xffffff0000000001,goto_table:17
cookie=0x6900000, duration=63.106s, table=17, n_packets=23, n_bytes=2016, priority=1,metadata=0x30000000000/0xffffff0000000000 actions=write_metadata:0x2000030000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=64.135s, table=40, n_packets=4, n_bytes=392, priority=61010,ip,dl_src=fa:16:3e:86:59:fd,nw_src=12.1.0.4 actions=ct(table=41,zone=5002)
cookie=0x6900000, duration=5112.542s, table=41, n_packets=21, n_bytes=2058, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x8040000, duration=62.125s, table=17, n_packets=15, n_bytes=854, priority=6,metadata=0x6000030000000000/0xffffff0000000000 actions=write_metadata:0x700003138a000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=5113.124s, table=48, n_packets=24, n_bytes=3044, priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x805138a, duration=62.163s, table=50, n_packets=15, n_bytes=854, priority=20,metadata=0x3138a000000/0xfffffffff000000,dl_src=fa:16:3e:86:59:fd actions=goto_table:51
cookie=0x8030000, duration=5112.911s, table=51, n_packets=18, n_bytes=2568, priority=0 actions=goto_table:52
cookie=0x870138a, duration=62.163s, table=52, n_packets=9, n_bytes=378, priority=5,metadata=0x138a000000/0xffff000001 actions=write_actions(group:210004)

group_id=210004,type=all,bucket=actions=group:210003,bucket=actions=set_field:**0x710**->tun_id,output:1

	Egress OVS

On the egress OVS, for the packets coming in via the internal VxLAN tunnel (OVS - OVS),
INTERNAL_TUNNEL_TABLE currently matches on ELAN tag for broadcast packets. Since the
incoming packets will now contain the network VNI in the VxLAN header, the
INTERNAL_TUNNEL_TABLE will match on this VNI, set the ELAN tag in the metadata and forward
the packet to L2_DMAC_FILTER_TABLE to be broadcasted via the local broadcast groups
traversing the ELAN pipeline.

The TUNNEL_INGRESS_BIT being set in the CLASSIFIER_TABLE (table 0) ensures that the
packet is always sent to the local broadcast group only and hence, remains within the OVS. This
is necessary to avoid switching loop back to the source OVS.

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=5136.996s, table=0, n_packets=12601, n_bytes=899766, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=1145.594s, table=36, n_packets=15, n_bytes=476, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x8030000, duration=5137.609s, table=51, n_packets=9, n_bytes=1293, priority=0 actions=goto_table:52
cookie=0x870138a, duration=1145.592s, table=52, n_packets=0, n_bytes=0, priority=5,metadata=0x138a000001/0xffff000001 actions=apply_actions(group:210003)

group_id=210003,type=all,bucket=actions=set_field:0x4->tun_id,resubmit(,55)

cookie=0x8800004, duration=1145.594s, table=55, n_packets=9, n_bytes=378, priority=9,tun_id=0x4,actions=load:0x400->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

The ARP response will be a unicast packet, and as indicated above, for unicast packets, there
are no explicit pipeline changes.

L3 Forwarding

Between VMs on a single OVS

There are no explicit pipeline changes for this use-case.
The destination LPort tag will continue to be set in the nexthop group since when
The EGRESS_DISPATCHER_TABLE sends the packet to EGRESS_ACL_TABLE, it is used by the ACL
service.

Between VMs on two different OVS

L3 forwarding between VMs on two different hypervisors is asymmetric forwarding since the traffic
is routed in the source OVS datapath while it is switched over the wire and then all the way to
the destination VM on the destination OVS datapath.

VM sourcing the traffic (Ingress OVS)

L3_FIB_TABLE will set the destination network VNI in the tun_id field instead of the MPLS
label.

CLASSIFIER_TABLE => DISPATCHER_TABLE => INGRESS_ACL_TABLE =>
DISPATCHER_TABLE => L3_GW_MAC_TABLE =>
L3_FIB_TABLE (set destination MAC, **set tunnel-ID as destination network VNI**)
=> Output to tunnel port

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=128.140s, table=0, n_packets=25, n_bytes=2716, priority=4,in_port=5 actions=write_metadata:0x50000000000/0xffffff0000000001,goto_table:17
cookie=0x8000000, duration=4876.599s, table=17, n_packets=0, n_bytes=0, priority=0,metadata=0x5000000000000000/0xf000000000000000 actions=write_metadata:0x6000000000000000/0xf000000000000000,goto_table:80
cookie=0x1030000, duration=4876.563s, table=80, n_packets=0, n_bytes=0, priority=0 actions=resubmit(,17)
cookie=0x6900000, duration=123.870s, table=17, n_packets=25, n_bytes=2716, priority=1,metadata=0x50000000000/0xffffff0000000000 actions=write_metadata:0x2000050000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=126.056s, table=40, n_packets=15, n_bytes=1470, priority=61010,ip,dl_src=fa:16:3e:63:ea:0c,nw_src=10.1.0.4 actions=ct(table=41,zone=5001)
cookie=0x6900000, duration=4877.057s, table=41, n_packets=17, n_bytes=1666, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x6800001, duration=123.485s, table=17, n_packets=28, n_bytes=3584, priority=2,metadata=0x2000050000000000/0xffffff0000000000 actions=write_metadata:0x5000050000000000/0xfffffffffffffffe,goto_table:60
cookie=0x6800000, duration=3566.900s, table=60, n_packets=24, n_bytes=2184, priority=0 actions=resubmit(,17)
cookie=0x8000001, duration=123.456s, table=17, n_packets=17, n_bytes=1554, priority=5,metadata=0x5000050000000000/0xffffff0000000000 actions=write_metadata:0x60000500000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, duration=124.815s, table=19, n_packets=15, n_bytes=1470, priority=20,metadata=0x222e0/0xfffffffe,dl_dst=fa:16:3e:51:da:ee actions=goto_table:21
cookie=0x8000003, duration=125.568s, table=21, n_packets=9, n_bytes=882, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=12.1.0.3 actions=**set_field:0x710->tun_id**,set_field:fa:16:3e:31:fb:91->eth_dst,output:1

VM receiving the traffic (Egress OVS)

On the egress OVS, for the packets coming in via the VxLAN tunnel, INTERNAL_TUNNEL_TABLE
currently matches on MPLS label and sends it to the nexthop group to be taken to the destination
VM via EGRESS_ACL_TABLE.
Since the incoming packets will now contain network VNI in the VxLAN header, the INTERNAL_TUNNEL_TABLE
will match on the VNI, set the ELAN tag in the metadata and forward the packet to
L2_DMAC_FILTER_TABLE, from where it will be taken to the destination VM via the ELAN pipeline.

CLASSIFIER_TABLE => INTERNAL_TUNNEL_TABLE (Match on network VNI, set ELAN tag in the metadata)
=> L2_DMAC_FILTER_TABLE (Match on destination MAC) => EGRESS_DISPATCHER_TABLE
=> EGRESS_ACL_TABLE => Output to destination VM port

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=4918.647s, table=0, n_packets=12292, n_bytes=877616, priority=5,in_port=1actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=927.245s, table=36, n_packets=8234, n_bytes=52679, priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,goto_table:51**
cookie=0x803138a, duration=62.163s, table=51, n_packets=9, n_bytes=576, priority=20,metadata=0x138a000001/0xffff000000,dl_dst=fa:16:3e:86:59:fd actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392, priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862, priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,reg6=0x70000300actions=output:6

NAT Service

For NAT, we need VNIs to be used in two scenarios:

	When packet is forwarded from non-NAPT to NAPT hypervisor (VNI per router)

	Between hypervisors (intra DC) over Internet VPN (VNI per Internet VPN)

Hence, a pool titled opendaylight-vni-ranges, non-overlapping with the OpenStack Neutron
vni_ranges configuration, needs to be configured by the OpenDaylight Controller Administrator.

This opendaylight-vni-ranges pool will be used to carve out a unique VNI per router to be then
used in the datapath for traffic forwarding from non-NAPT to NAPT switch for this router.

Similarly, for MPLSOverGRE based external networks, the opendaylight-vni-ranges pool will be
used to carve out a unique VNI per Internet VPN (GRE-provider-type) to be then used in the
datapath for traffic forwarding for SNAT-to-DNAT and DNAT-to-DNAT cases within the
DataCenter. Only one external network can be associated to Internet VPN today and this spec
doesn’t attempt to address that limitation.

A NeutronVPN configuration API will be exposed to the administrator to configure the lower and
higher limit for this pool.
If the administrator doesn’t configure this explicitly, then the pool will be created with default
values of lower limit set to 70000 and upper limit set to 100000, during the first NAT session
configuration.

FIB Manager changes: For external network of type GRE, it is required to use
Internet VPN VNI for intra-DC communication, but we still require MPLS labels to reach
SNAT/DNAT VMs from external entities via MPLSOverGRE. Hence, we will make use of the l3vni
attribute added to fibEntries container as part of EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec. NAT will populate both
label and l3vni values for fibEntries created for floating-ips and external-fixed-ips with
external network of type GRE. This l3vni value will be used while programming remote FIB flow
entries (on all the switches which are part of the same VRF). But still, MPLS label will be used
to advertise prefixes and in L3_LFIB_TABLE taking the packet to INBOUND_NAPT_TABLE and
PDNAT_TABLE.

For SNAT/DNAT use-cases, we have following provider network types for External Networks:

	VLAN - not VNI based

	Flat - not VNI based

	VxLAN - VNI based (covered by the EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec)

	GRE - not VNI based (will continue to use MPLS labels)

Inter DC

SNAT

	From a VM on a NAPT switch to reach Internet, and reverse traffic reaching back to the VM

There are no explicit pipeline changes.

	From a VM on a non-NAPT switch to reach Internet, and reverse traffic reaching back to the VM

On the non-NAPT switch, PSNAT_TABLE (table 26) will be set with tun_id field as
Router Based VNI allocated from the pool and send to group to reach NAPT switch.

On the NAPT switch, INTERNAL_TUNNEL_TABLE (table 36) will match on the tun_id field
which will be Router Based VNI and send the packet to OUTBOUND_NAPT_TABLE (table 46) for
SNAT Translation and to be taken to Internet.

	Non-NAPT switch

cookie=0x8000006, duration=2797.179s, table=26, n_packets=47, n_bytes=3196, priority=5,ip,metadata=0x23a50/0xfffffffe actions=**set_field:0x710->tun_id**,group:202501

group_id=202501,type=all,bucket=actions=output:1

	NAPT switch

cookie=0x8000001, duration=4918.647s, table=0, n_packets=12292, n_bytes=877616, priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=927.245s, table=36, n_packets=8234, n_bytes=52679, priority=10,ip,**tun_id=0x710**,actions=write_metadata:0x23a50/0xfffffffe,goto_table:46

As part of the response from NAPT switch, the packet will be taken to the Non-NAPT switch
after SNAT reverse translation using destination VMs Network VNI.

DNAT

There is no NAT specific explicit pipeline change for DNAT traffic to DC-gateway.

Intra DC

	VLAN Provider External Networks: VNI is not applicable on the external VLAN Provider network.
However, the Router VNI will be used for datapath traffic from non-NAPT switch to NAPT-switch
over the internal VxLAN tunnel.

	VxLAN Provider External Networks:

	Explicit creation of Internet VPN: An L3VNI, mandatorily falling within the
opendaylight-vni-ranges, will be provided by the Cloud admin (or tenant). This VNI will be
used uniformly for all packet transfer over the VxLAN wire for this Internet VPN (uniformly
meaning all the traffic on Internal or External VXLAN Tunnel, except the non-NAPT to NAPT
communication). This usecase is covered by EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03] spec

	No explicit creation of Internet VPN: A transparent Internet VPN having UUID same as that
of the corresponding external network UUID is created implicitly and the VNI configured for
this external network should be used on the VxLAN wire. This usecase is out of scope from
the perspective of this spec, and the same is indicated in Out of Scope section.

	GRE Provider External Networks: Internet VPN VNI will be carved per Internet VPN using
opendaylight-vni-ranges to be used on the wire.

DNAT to DNAT

	FIP VM to FIP VM on different hypervisors

After DNAT translation on the first hypervisor DNAT-OVS-1, the traffic will be sent to the
L3_FIB_TABLE (table=21) in order to reach the floating IP VM on the second hypervisor
DNAT-OVS-2. Here, the tun_id action field will be set as the INTERNET VPN VNI value.

	DNAT-OVS-1

cookie=0x8000003, duration=518.567s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222e8/0xfffffffe,nw_dst=172.160.0.200 actions=**set_field:0x11178->tun_id**,output:9

	DNAT-OVS-2

cookie=0x9011177, duration=411685.075s, table=36, n_packets=2, n_bytes=196, priority=**6**,**tun_id=0x11178**actions=resubmit(,25)
cookie=0x9011179, duration=478573.171s, table=36, n_packets=2, n_bytes=140, priority=5,**tun_id=0x11178**,actions=goto_table:44

cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ip,nw_dst=172.160.0.100,**eth_dst=fa:16:3e:e6:e3:c6** actions=set_field:10.0.0.5->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27
cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ipactions=goto_table:44

First, the INTERNAL_TUNNEL_TABLE (table=36) will take the packet to the PDNAT_TABLE
(table 25) for an exact FIP match in PDNAT_TABLE.

	In case of a successful FIP match, PDNAT_TABLE will further match on floating IP MAC.
This is done as a security prerogative since in DNAT usecases, the packet can land to the
hypervisor directly from the external world. Hence, better to have a second match criteria.

	In case of no match, the packet will be redirected to the SNAT pipeline towards the
INBOUND_NAPT_TABLE (table=44). This is the use-case where DNAT-OVS-2 also acts as
the NAPT switch.

In summary, on an given NAPT switch, if both DNAT and SNAT are configured, the incoming traffic
will first be sent to the PDNAT_TABLE and if there is no FIP match found, then it will be
forwarded to INBOUND_NAPT_TABLE for SNAT translation.

As part of the response, the Internet VPN VNI will be used as tun_id to reach floating
IP VM on DNAT-OVS-1.

	FIP VM to FIP VM on same hypervisor

The pipeline changes will be similar as are for different hypervisors, the only difference being
that INTERNAL_TUNNEL_TABLE will never be hit in this case.

SNAT to DNAT

	Non-FIP VM to FIP VM on different hypervisors (with NAPT elected as the FIP VM hypervisor)

The packet will be sent to the NAPT hypervisor from non-FIP VM (for SNAT translation) using
Router VNI (similar to as described in SNAT section). As part of the response from the
NAPT switch after SNAT reverse translation, the packet is forwarded to non-FIP VM using
destination VM’s Network VNI.

	Non-FIP VM to FIP VM on the same NAPT hypervisor

There are no explicit pipeline changes for this use-case.

	Non-FIP VM to FIP VM on the same hypervisor, but a different hypervisor elected as NAPT switch

	NAPT hypervisor

The packet will be sent to the NAPT hypervisor from non-FIP VM (for SNAT translation) using
Router VNI (similar to as described in SNAT section). On the NAPT switch, the
INTERNAL_TUNNEL_TABLE will match on the Router VNI in the tun_id field and send the
packet to OUTBOUND_NAPT_TABLE for SNAT translation (similar to as described in SNAT
section).

cookie=0x8000005, duration=5073.829s, table=36, n_packets=61, n_bytes=4610, priority=10,ip,**tun_id=0x11170**,actions=write_metadata:0x222e0/0xfffffffe,goto_table:46

The packet will later be sent back to the FIP VM hypervisor from L3_FIB_TABLE with tun_id
field set as the Internet VPN VNI.

cookie=0x8000003, duration=518.567s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222e8/0xfffffffe,nw_dst=172.160.0.200 actions=**set_field:0x11178->tun_id**,output:9

	FIP VM hypervisor

On reaching the FIP VM Hypervisor, the packet will be sent for DNAT translation. The
INTERNAL_TUNNEL_TABLE will match on the Internet VPN VNI in the tun_id field and
send the packet to PDNAT_TABLE.

cookie=0x9011177, duration=411685.075s, table=36, n_packets=2, n_bytes=196, priority=**6**,**tun_id=0x11178**,actions=resubmit(,25)
cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_bytes=58064, priority=10,ip,nw_dst=172.160.0.100,**eth_dst=fa:16:3e:e6:e3:c6** actions=set_field:10.0.0.5->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27

Upon FIP VM response, DNAT reverse translation happens and traffic is sent back to the NAPT
switch for SNAT translation. The L3_FIB_TABLE will be set with Internet VPN VNI in the
tun_id field.

cookie=0x8000003, duration=95.300s, table=21, n_packets=2, n_bytes=140, priority=42,ip,metadata=0x222ea/0xfffffffe,nw_dst=172.160.0.3 actions=**set_field:0x11178->tun_id**,output:5

	NAPT hypervisor

On NAPT hypervisor, the INTERNAL_TUNNEL_TABLE will match on the Internet VPN VNI in
the tun_id field and send the packet to `` INBOUND_NAPT_TABLE`` for SNAT reverse
translation (external fixed IP to VM IP). The packet will then be sent back to the non-FIP VM
using destination VM’s Network VNI.

	Non-FIP VM to FIP VM on different hypervisors (with NAPT elected as the non-FIP VM hypervisor)

After SNAT Translation, Internet VPN VNI will be used to reach FIP VM. On FIP VM hypervisor,
the INTERNAL_TUNNEL_TABLE will take the packet to the PDNAT_TABLE to match on
Internet VPN VNI in the tun_id field for DNAT translation.

Upon response from FIP, DNAT reverse translation happens and uses Internet VPN VNI to reach
back to the non-FIP VM.

YANG changes

	opendaylight-vni-ranges and enforce-openstack-semantics leaf elements will be added to
neutronvpn-config container in neutronvpn-config.yang:

	opendaylight-vni-ranges will be introduced to accept inputs for the VNI range pool from
the configurator via the corresponding exposed REST API. In case this is not defined, the
default value defined in netvirt-neutronvpn-config.xml will be used to create this pool.

	enforce-openstack-semantics will be introduced to have the flexibility to enable
or disable OpenStack semantics in the dataplane for this feature. It will be defaulted to
true, meaning these semantics will be enforced by default. In case it is set to false, the
dataplane will continue to be programmed with LPort tags / ELAN tags for switching and with
labels for routing use-cases. Once this feature gets stabilized and the semantics are in place
to use VNIs on the wire for BGPVPN based forwarding too, this config can be permanently
removed if deemed fit.

neutronvpn-config.yang

container neutronvpn-config {
 config true;
 ...
 ...
 leaf opendaylight-vni-ranges {
 type string;
 default "70000:99999";
 }
 leaf enforce-openstack-semantics {
 type boolean;
 default true;
 }
}

	Provider network-type and provider segmentation-ID need to be propagated to FIB Manager to manipulate
flows based on the same. Hence:

	A new grouping network-attributes will be introduced in neutronvpn.yang to hold
network type and segmentation ID. This grouping will replace the leaf-node
network-id in subnetmaps MD-SAL configuration datastore:

neutronvpn.yang

grouping network-attributes {
 leaf network-id {
 type yang:uuid;
 description "UUID representing the network";
 }
 leaf network-type {
 type enumeration {
 enum "FLAT";
 enum "VLAN";
 enum "VXLAN";
 enum "GRE";
 }
 }
 leaf segmentation-id {
 type uint32;
 description "Optional. Isolated segment on the physical network.
 If segment-type is vlan, this ID is a vlan identifier.
 If segment-type is vxlan, this ID is a vni.
 If segment-type is flat/gre, this ID is set to 0";
 }
}

container subnetmaps {
 ...
 ...
 uses network-attributes;
}

	These attributes will be propagated upon addition of a router-interface or addition of a
subnet to a BGPVPN to VPN Manager module via the subnet-added-to-vpn notification
modelled in neutronvpn.yang. Hence, the following node will be added:

neutronvpn.yang

notification subnet-added-to-vpn {
 description "new subnet added to vpn";
 ...
 ...
 uses network-attributes;
}

	VpnSubnetRouteHandler will act on these notifications and store these attributes in
subnet-op-data MD-SAL operational datastore as described below. FIB Manager will get to
retrieve the subnetID from the primary adjacency of the concerned VPN interface. This
subnetID will be used as the key to retrieve network-attributes from subnet-op-data
datastore.

odl-l3vpn.yang

import neutronvpn {
 prefix nvpn;
 revision-date "2015-06-02";
}

container subnet-op-data {
 ...
 ...
 uses nvpn:network-attributes;
}

	subnetID and nat-prefix leaf elements will be added to prefix-to-interface
container in odl-l3vpn.yang:

	For NAT use-cases where the VRF entry is not always associated with a VPN interface (eg. for
NAT entries such as floating IP and router-gateway-IPs for external VLAN / flat networks),
subnetID leaf element will be added to make it possible to retrieve the
network-attributes.

	To distinguish a non-NAT prefix from a NAT prefix, nat-prefix leaf element will be
added. This is a boolean attribute indicating whether the prefix is a NAT prefix (meaning a
floating IP, or an external-fixed-ip of a router-gateway). The VRFEntry corresponding to
the NAT prefix entries here may carry both the MPLS label and the Internet VPN VNI.
For SNAT-to-DNAT within the datacenter, where the Internet VPN contains an MPLSOverGRE
based external network, this VRF entry will publish the MPLS label to BGP while the
Internet VPN VNI (also known as L3VNI) will be used to carry intra-DC traffic on
the external segment within the datacenter.

odl-l3vpn.yang

container prefix-to-interface {
 config false;
 list vpn-ids {
 key vpn-id;
 leaf vpn-id {type uint32;}
 list prefixes {
 key ip_address;
 ...
 ...
 leaf subnet-id {
 type yang:uuid;
 }
 leaf nat-prefix {
 type boolean;
 default false;
 }
 }
 }
}

Configuration impact

	We have to make sure that we do not accept configuration of VxLAN type provider networks without
the segmentation-ID available in them since we are using it to represent the VNI on the wire
and in the flows/groups.

Clustering considerations

No specific additional clustering considerations to be adhered to.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release(s)

Carbon.

Known Limitations

None.

Alternatives

N.A.

Usage

Features to Install

odl-netvirt-openstack

REST API

No new changes to the existing REST APIs.

CLI

No new CLI is being added.

Implementation

Assignee(s)

	Primary assignee:

	Abhinav Gupta <abhinav.gupta@ericsson.com>
Vivekanandan Narasimhan <n.vivekanandan@ericsson.com>

	Other contributors:

	Chetan Arakere Gowdru <chetan.arakere@altencalsoftlabs.com>
Karthikeyan Krishnan <karthikeyan.k@altencalsoftlabs.com>
Yugandhar Sarraju <yugandhar.s@altencalsoftlabs.com>

Work Items

Trello card: https://trello.com/c/PfARbEmU/84-enforce-vni-on-the-wire-for-l2-switching-l3-forwarding-and-nating-on-vxlan-overlay-networks

	Code changes to alter the pipeline and e2e testing of the use-cases mentioned.

	Add Documentation

Dependencies

This doesn’t add any new dependencies.

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

No new testcases to be added, existing ones should continue to succeed.

Documentation Impact

This will require changes to the Developer Guide.

Developer Guide needs to capture how this feature modifies the existing Netvirt L3 forwarding
service implementation.

References

	http://docs.opendaylight.org/en/latest/documentation.html

	https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

	EVPN_RT5 [https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03]

Table of Contents

	Neutron Port Allocation For DHCP Service

	Problem description

	Problem - 1: L2 Deployment with 3PP gateway

	Problem - 2: Designated DHCP for SR-IOV VMs via HWVTEP

	High-Level Components:

	Proposed change

	ODL Driver Changes:

	Pipeline changes

	ARP Changes for DHCP port

	Assumptions

	Reboot Scenarios

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	CSIT

	Documentation Impact

	References

Neutron Port Allocation For DHCP Service

https://git.opendaylight.org/gerrit/#/q/topic:neutron_port_dhcp

This feature will enable the Neutron DHCP proxy service within controller
to reserve and use a Neutron port per subnet for communication with
Neutron endpoints.

Problem description

The DHCP service currently assumes availability of the subnet gateway IP address
and its mac address for its DHCP proxy service, which may or may not be available
to the controller. This can lead to service unavailability.

Problem - 1: L2 Deployment with 3PP gateway

There can be deployment scenario in which L2 network is created with no distributed
Router/VPN functionality. This deployment can have a separate gateway for the network
such as a 3PP LB VM, which acts as a TCP termination point and this LB VM is
configured with a default gateway IP. It means all inter-subnet traffic is terminated
on this VM which takes the responsibility of forwarding the traffic.

But the current DHCP proxy service in controller hijacks gateway IP address for
serving DHCP discover/request messages. If the LB is up, this can continue to work,
DHCP broadcasts will get hijacked by the ODL, and responses
sent as PKT_OUTs with SIP = GW IP.

However, if the LB is down, and the VM ARPs for the same IP as part of a DHCP renew
workflow, the ARP resolution can fail, due to which renew request will not be
generated. This can cause the DHCP lease to lapse.

Problem - 2: Designated DHCP for SR-IOV VMs via HWVTEP

In this Deployment scenario, L2 network is created with no distributed Router/VPN
functionality, and HWVTEP for SR-IOV VMs. DHCP flood requests from SR-IOV VMs
(DHCP discover, request during bootup), are flooded by the HWVTEP on the ELAN,
and punted to the controller by designated vswitch. DHCP offers are sent as unicast
responses from Controller, which are forwarded by the HWVTEP to the VM. DHCP renews
can be unicast requests, which the HWVTEP may forward to an external Gateway VM (3PP
LB VM) as unicast packets. Designated vswitch will never receive these pkts, and thus
not be able to punt them to the controller, so renews will fail.

High-Level Components:

The following components of the Openstack - ODL solution need to be enhanced to provide
port allocation for DHCP service.

	Openstack ODL Mechanism Driver

	OpenDaylight Controller (NetVirt VpnService/DHCP Service/Elan Service)

We will review enhancements that will be made to each of the above components in following
sections.

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

	Neutron VPN module

	DHCP module

	ELAN and L3VPN modules

OpenDaylight controller needs to preserve a Neutron port for every subnet so that DHCP proxy
service can be enabled in Openstack deployment. The Neutron port’s device owner property is
set to network:dhcp and uses this port for all outgoing DHCP messages. Since this port gets
a distinct IP address and MAC address from the subnet, both problem-1 and problem-2 will be
solved.

ODL Driver Changes:

ODL driver will need a config setting when ODL DHCP service is in use, as against when Neutron
DHCP agent is deployed (Community ODL default setting). This needs to be enabled for ODL deployment

ODL driver will insert an async call in subnet create/update workflow in POST_COMMIT for subnets
with DHCP set to ‘enabled’, with a port create request, with device owner set to network:dhcp,
and device ID set to controller hostname/IP (from ml2_conf.ini file)

ODL driver will insert an async call in subnet delete, and DHCP ‘disable’ workflow to ensure
the allocated port is deleted

ODL driver needs to ensure at any time no more than a single port is allocated per subnet
for these requirements

Pipeline changes

For example, If a VM interface is having 30.0.0.1/de:ad:be:ef:00:05 as its Gateway (or) Router
Interface IP/MAC address and its subnet DHCP neutron port is created with IP/MAC address
30.0.0.4/de:ad:be:ef:00:04. The ELAN pipeline is changed like below.

LPort Dispatcher Table (17)=>ELAN ARP Check Table(43) => ARP Responder Group (5000) => ARP Responder Table (81) => Egress dispatcher Table(220)

cookie=0x8040000, duration=627.038s, table=17, n_packets=0, n_bytes=0, priority=6, metadata=0xc019a00000000000/0xffffff0000000000 actions=write_metadata:0xc019a01771000000/0xfffffffffffffffe,goto_table:43
cookie=0x1080000, duration=979.712s, table=43, n_packets=0, n_bytes=0, priority=100,arp,arp_op=1 actions=group:5000
cookie=0x1080000, duration=979.713s, table=43, n_packets=0, n_bytes=0, priority=100,arp,arp_op=2 actions=CONTROLLER:65535,resubmit(,48)
cookie=0x8030000, duration=979.717s, table=43, n_packets=0, n_bytes=0, priority=0 actions=goto_table:48
cookie=0x262219a4, duration=312.151s, table=81, n_packets=0, n_bytes=0, priority=100,arp,metadata=0xc019a000000/0xfffffffff000000,arp_tpa=30.0.0.1,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:de:ad:be:ef:00:05->eth_src,load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xdeadbeef0005->NXM_NX_ARP_SHA[],load:0x1e000001->NXM_OF_ARP_SPA[],load:0->NXM_OF_IN_PORT[],load:0x19a000->NXM_NX_REG6[],resubmit(,220)
cookie=0x262219a4, duration=312.151s, table=81, n_packets=0, n_bytes=0, priority=100,arp,metadata=0xc019a000000/0xfffffffff000000,arp_tpa=30.0.0.4,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:de:ad:be:ef:00:04->eth_src,load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xdeadbeef0004->NXM_NX_ARP_SHA[],load:0x1e000001->NXM_OF_ARP_SPA[],load:0->NXM_OF_IN_PORT[],load:0x19a000->NXM_NX_REG6[],resubmit(,220)

group_id=5000,type=all,bucket=actions=CONTROLLER:65535,bucket=actions=resubmit(,48),bucket=actions=resubmit(,81)

ARP Changes for DHCP port

1. Client VM ARP requests for DHCP server IP need to be answered in L2 as well
as L3 deployment.
2. Create ARP responder table flow entry for DHCP server IP in computes nodes
on which ELAN footprint is available.
3. Currently ARP responder is part of L3VPN pipeline, however no L3 service
may be available in an L2 deployment to leverage the current ARP pipeline,
for DHCP IP ARP responses. To ensure ARP responses are sent in L2 deployment,
ARP processing needs to be migrated to the ELAN pipeline.
4. ELAN service to provide API to other services needing ARP responder entries
including L3VPN service (for router MAC, router-gw MAC and floating IPs,
and EVPN remote MAC entries).
5. ELAN service will be responsible for punting a copy of each ARP packet to the
controller if the source MAC address is not already learned.

Assumptions

Support for providing port allocation for DHCP service is available from
Openstack Pike release.

Reboot Scenarios

	This feature support all the following Reboot Scenarios for EVPN:

	
	Entire Cluster Reboot

	Leader PL reboot

	Candidate PL reboot

	OVS Datapath reboots

	Multiple PL reboots

	Multiple Cluster reboots

	Multiple reboots of the same OVS Datapath.

	Openstack Controller reboots

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Nitrogen, Carbon

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Implementation

The programming of flow rules in Table 43 and Table 81 is handled in ELAN module and
following APIs are exposed from IElanService so that L3VPN and DHCP modules can
use it to program ARP responder table flow entries for Gateway/Router Interface,
floating IPs and DHCP port.

void addArpResponderEntry(BigIneger dpId, String ingressInterfaceName,
 String ipAddress, String macAddress, Optional<Integer> lportTag);
void removeArpResponderEntry(BigIneger dpId, String ingressInterfaceName,
 String ipAddress, String macAddress, Optional<Integer> lportTag);

A new container is introduced to hold the subnet DHCP port information.

dhcpservice-api.yang

 container subnet-dhcp-port-data {
 config true;
 list subnet-to-dhcp-port {
 key "subnet-id";
 leaf subnet-id {
 type string;
 }
 leaf port-name {
 type string;
 }
 leaf port-fixedip {
 type string;
 }
 leaf port-macaddress {
 type string;
 }
 }
 }

When no DHCP port is available for the subnet we will flag an error to indicate
DHCP service failure for virtual endpoints on such subnets which are dhcp-enabled
in Openstack neutron.

Assignee(s)

	Primary assignee:

	Karthik Prasad <karthik.p@altencalsoftlabs.com>
Achuth Maniyedath <achuth.m@altencalsoftlabs.com>
Vijayalakshmi CN <vijayalakshmi.c@altencalsoftlabs.com>

	Other contributors:

	Dayavanti Gopal Kamath <dayavanti.gopal.kamath@ericsson.com>
Vivekanandan Narasimhan <n.vivekanandan@ericsson.com>
Periyasamy Palanisamy <periyasamy.palanisamy@ericsson.com>

Work Items

Dependencies

Testing

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

	OpenStack Spec - https://review.openstack.org/#/c/453160

Openflowplugin Documentation

This documentation provides information needed to help you write ODL
Applications/Projects that can co-exist with other ODL Projects.

Contents:

	Openflowplugin Design Specifications
	Reconciliation Framework

Openflowplugin Design Specifications

Starting from Nitrogen, Openflowplugin uses RST format Design Specification document for
all new features. These specifications are perfect way to understand various
Openflowplugin features.

Contents:

	Reconciliation Framework

Table of Contents

	Reconciliation Framework

	Problem description

	Use Cases

	Proposed change

	Implementation Details

	ReconciliationManager

	ReconciliationNotificationListener

	Priority

	Result State - Intent Action

	Name

	ReconciliationNotificationListener

	Command Line Interface (CLI)

	Other Changes

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Reconciliation Framework

Reconciliation Framework Reviews [https://git.opendaylight.org/gerrit/#/q/topic:bug/8902]

This feature aims to overcome the drawbacks of the current reconciliation implementation. As part of this enhancement,
reconciliation framework will be introduced which will coordinate the reconciliation across various applications.

Applications should register themself with reconciliation framework with a specific priority.
Application should decide the priority and the reconciliation framework will use it for executing in an priority.

Problem description

When a switch connected to controller, the current ODL reconciliation implementation pushes all the
table/meters/groups/flows from the inventory configuration datastore to the switch.

When the switch is connected, all the applications including FRM(Forwarding Rules Manager) will receive the node added
DTCN(Data Tree Change Listener) and starts pushing the flows for the openflow switch. FRM reconciliation will read the
data from the config and starts pushing the flows one by one.
In the meantime, applications can react to the node added DTCN change and will start pushing
the flows through the config DS. With this, there is a high chance the application flow can be overwritten by the old
flows by FRM via reconciliation.

With framework, the problem will be avoided by doing the reconciliation for all the registered services including FRM
and then the openflow switch will be submitted to the DS. With this, applications won’t receive the node added DTCN until
registered applications are done with reconciliation for the switch.

The current reconciliation mechanism lacks an ordered execution of tasks across multiple applications resulting
in the forwarding plane not correctly reflecting the changes in the control plane.
The issue becomes more prominent in case of multi-application scenarios, resulting in errors.

Use Cases

Priority based/Ordered Coordination of Reconciliation across multiple applications.

Proposed change

Reconciliation Framework will be introduced, framework will coordinate the reconciliation across applications.
The Openflow switch won’t be advertised to application until Openflow switch is in KNOWN state.

KNOWN state controller and switch state should be in sync(reconciliation), once the switch connects.

Application participating in reconciliation needs to register with framework.

	Application can either be FRM, FRS or any other application(s).

	Application(s) registering with Reconciliation module is encouraged since: Applications would know the right
Flows/Groups/Meters which needs to be replayed (Add/Delete/Update). FRM/FRS(Forwarding Rules Sync) would not have
application view of flows/group, it would blindly replay the flows/groups. Also flows having idle/hard timeout
can be gracefully handled by application rather than FRM/FRS.

As applications register with reconciliation module

	Reconciliation module maintains the numbers of application registered in an order based on the priority.

	Applications will be executed in the priority order of higher to lower, 1 - Highest n - lowest

	Reconciliation will be triggered as per the priority, applications with same priority will be processed in parallel,
once the higher priority application completed, next priority of applications will be processed.

Openflow switch establishes connections with openflowplugin.

	Openflow switch sends connection request.

	Openflowplugin accepts connection and than establishes the connection.

Openflowplugin after establishing the connection with openflow switch, elects the mastership and invokes reconciliation
framework through ReconciliationFrameworkEvent onDevicePrepared.

	Before invoking the reconciliation API, all the RPCs are registered with MD-SAL by openflowplugin.

	Reconciliation framework will register itself with the MastershipChangeServiceManager.

All registered applications would be indicated to start the reconciliation.
* DeviceInfo would be passed for the API/Event and it contains all the information needed by application.

Application(s) would than fetch the flows / groups for that particular Node, which needs to be replayed.

Application(s) would than replay the selected flows / group on to the switch.

Application(s) would also wait for error from switch, for pre-defined time.

Application(s) would inform the reconciliation status to reconciliation module.

Reconciliation framework would co-relate result status from all the applications and decides the final status.
If success, framework will report back DO_NOTHING and in case of failure it will be DISCONNECT.

Based on result state, openflowplugin should do the following

	On success case, openflowplugin should continue with the openflow switch –> write the switch to the operational datastore.

	On failure case, openflowplugin should disconnect the openflow switch.

	When the switch reconnects, the same steps will be followed again.

When there is a disconnect/mastership change while the reconciliation is going on, openflowplugin should notify the
framework and the framework should halt the current reconciliation.

Implementation Details

Following new interface will be introduced from Reconciliation framework (RF).

	ReconciliationManager

	ReconciliationNotificationListener

ReconciliationManager

/* Application who are interested in reconciliation should use this API to register themself to the RF */
/* NotificationRegistration will be return to the registered application, who needs to take of closing the registration */
NotificationRegistration registerService(ReconciliationNotificationListener object);

/* API exposed by RF for get list of registered services */
Map<Integer, List<ReconciliationNotificationListener>> getRegisteredServices();

ReconciliationNotificationListener

/* This method will be a callback from RF to start the application reconciliation */
ListenableFuture<Boolean> startReconciliation(DeviceInfo deviceInfo);

/* This method will be a callback from RF when openflow switch disconnects during reconciliation */
ListenableFuture<Boolean> endReconciliation(DeviceInfo deviceInfo);

/* Priority of the application */
int getPriority();

/* Name of the application */
String getName();

/* Application's intent when the application's reconciliation fails */
ResultState getResultState();

Priority

Framework will maintain the list of registered applications in an order based on the priority. Applications having the
same priority will be executed in parallel and once those are done. Next priority applications will be called.
Consider 2 applications, A and B. A is handling of programming groups and flows and B is handling of programming
flows which is dependent of the groups programmed by A. So, B has to register with lower priority than A.

Application don’t do any conflict resolution or guarantee any specific order among the application registered at the
same priority level.

Result State - Intent Action

When the application fails to reconcile, what is the action that framework should take.

	DO_NOTHING - continue with the next reconciliation

	DISCONNECT - disconnect the switch (reconciliation will start again once the switch connects back)

Name

Name of the application who wants to register for reconciliation

ReconciliationNotificationListener

Applications who wants to register should implement ReconciliationNotificationListener interface.

	ReconciliationNotificationListener having api’s like startReconciliation and endReconciliation

	startReconciliation –> applications can take action to trigger reconciliation

	endReconciliation –> application can take action to cancel their current reconcile tasks

Command Line Interface (CLI)

CLI interface will be provided to get all the registered services and their status

	List of registered services

	Status of each application for respective openflow switch

Other Changes

Pipeline changes

None.

Yang changes

None

Configuration impact

None

Clustering considerations

None

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release

Nitrogen.

Alternatives

N.A.

Usage

Features to Install

Will be updated

REST API

None

CLI

None

Implementation

Assignee(s)

	Primary assignee:

	
	Prasanna Huddar(prasanna.k.huddar@ericsson.com)

	Arunprakash D (d.arunprakash@ericsson.com)

	Gobinath Suganthan (gobinath@ericsson.com)

Other contributors:

Work Items

N.A.

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

Unit Tests

None

Integration Tests

None

CSIT

None

Documentation Impact

This feature will not require any change in User Guide.

References

[1] Openflowplugin reconciliation enhancements [https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:Reconciliation#Future_Enhancements]

SFC Documentation

This documentation provides critical information needed to help you write ODL
Applications/Projects that can co-exist with other ODL Projects.

Contents:

	SFC Design Specifications

SFC Design Specifications

Starting from Nitrogen, SFC uses RST format Design Specification document for
all new features. These specifications are perfect way to understand various
SFC features.

Contents:

	Design Specification Template

	Karaf Command Line Interface (CLI) for SFC

Table of Contents

	Title of the feature

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Title of the feature

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:cool-topic]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

example.yang

 module example {
 namespace "urn:opendaylight:sfc:example";
 prefix "example";

 import ietf-yang-types {prefix yang; revision-date "2013-07-15";}

 description "An example YANG model.";

 revision 2017-02-14 { description "Initial revision"; }
 }

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-sfc-openflow-renderer

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assignee and other contributors.

	Primary assignee:

	<developer-a>, <irc nick>, <email>

	Other contributors:

	<developer-b>, <irc nick>, <email>
<developer-c>, <irc nick>, <email>

Work Items

Break up work into individual items. This should be a checklist on a
Trello card for this feature. Provide the link to the trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc]. This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing projects that depend on SFC.

	Following projects currently depend on SFC:

	GBP
Netvirt

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is the impact on documentation for this change? If documentation
changes are needed call out one of the <contributors> who will work with
the Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Karaf Command Line Interface (CLI) for SFC

	Problem description

	Use Cases

	Proposed change

	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Karaf Command Line Interface (CLI) for SFC

[S: https://git.opendaylight.org/gerrit/#/q/topic:sfc-shell]

The Karaf Container offers a very complete Unix-like console that allows managing
the container. This console can be extended with custom commands to manage the
features deployed on it. This feature will add some basic commands to show the
provisioned SFC’s entities.

Problem description

This feature will implement commands to show some of the provisioned SFC’s
entities:

	Service Functions

	Service Function Forwarders

	Service Function Chains

	Service Function Paths

	Service Function Classifiers

	Service Nodes

	Service Function Types

Use Cases

	Use Case 1: list one/all provisioned Service Functions.

	Use Case 2: list one/all provisioned Service Function Forwarders.

	Use Case 3: list one/all provisioned Service Function Chains.

	Use Case 4: list one/all provisioned Service Function Paths.

	Use Case 5: list one/all provisioned Service Function Classifiers.

	Use Case 6: list one/all provisioned Service Nodes.

	Use Case 7: list one/all provisioned Service Function Types.

Proposed change

Details of the proposed change.

Pipeline changes

None

Yang changes

None

Configuration impact

None

Clustering considerations

None

Other Infra considerations

Creation of new commands for the Karaf’s console.

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Nitrogen

Alternatives

None

Usage

The feature will add CLI commands to the Karaf’s console to list some of the
provisioned SFC’s entities. See the CLI section for details about the syntax of
those commands.

Features to Install

odl-sfc-shell

REST API

None

CLI

	UC 1: list one/all provisioned Service Functions.

sfc:sf-list [–name <name>]

	UC 2: list one/all provisioned Service Function Forwarders.

sfc:sff-list [–name <name>]

	UC 3: list one/all provisioned Service Function Chains.

sfc:sfc-list [–name <name>]

	UC 4: list one/all provisioned Service Function Paths.

sfc:sfp-list [–name <name>]

	UC 5: list one/all provisioned Service Function Classifiers.

sfc:sc-list [–name <name>]

	UC 6: list one/all provisioned Service Nodes.

sfc:sn-list [–name <name>]

	UC 7: list one/all provisioned Service Function Types.

sfc:sft-list [–name <name>]

Implementation

Assignee(s)

	Primary assignee:

	David Suárez, #edavsua, david.suarez.fuentes@gmail.com
Brady Johson, #ebrjohn, bradyallenjohnson@gmail.com

Work Items

	Implement UC 1: list one/all provisioned Service Functions.

	Implement UC 2: list one/all provisioned Service Function Forwarders.

	Implement UC 3: list one/all provisioned Service Function Chains.

	Implement UC 4: list one/all provisioned Service Function Paths.

	Implement UC 5: list one/all provisioned Service Function Classifiers.

	Implement UC 6: list one/all provisioned Service Nodes.

	Implement UC 7: list one/all provisioned Service Types.

Dependencies

This feature uses the new Karaf 4.x API to create CLI commands.

No changes needed on projects depending on SFC.

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

None

Documentation Impact

The new CLI for SFC will be documented in both the User and Developer guides.

References

Add any useful references. Some examples:

	https://docs.google.com/presentation/d/1RKkJsTUF65t40ASXVztNMcKAxMzI_owyZ-c6Mpm4Ss8/edit?usp=sharing

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

Index

	The Table Type Patterns project formally joins the OpenDaylight Nitrogen Simultaneous Release
and agrees to the activities and timeline documented on the Nitrogen Release Plan Page:
https://wiki.opendaylight.org/view/Simultaneous_Release:Nitrogen_Release_Plan

	Project Offset: 2

	Project Category: Protocol

	Do you confirm that the list of Active Project Committers is updated and accurate? Yes

	Project PTL Contact: Colin Dixon / colin@colindixon.com / colindixon (name/email/IRC)

	Project Contact: same

	Test Contact: same

	Documentation Contact: same

	Draft Release Plan: https://wiki.opendaylight.org/view/Table_Type_Patterns/Nitrogen/Release_Plan

About this Document

Note

This was an intentionally a verbatim copy of sections from the Project
Lifecycle & Releases Document [http://www.opendaylight.org/project-lifecycle-releases#MatureReleaseProcess]
which has the following to say about the Release Review Document:

Both the Release Plan and Release review document are intended to be
relatively short, simple, posted publicly on the wiki documents to assist
projects in coordinating among themselves, and the general world in gaining
visibility.

Insofar as this has been changed, it has kept with in that spirit folding in
our experience conducting release reviews.

Important

When copying, please remove this entire “About this Document” section and
simply fill out the next sections.

Important

Please do not remove any sections. Also, short sentences are better than
“n/a” or “none” as it is often confusing as to whether that means there are
no issues or you simply didn’t think about or address anything.

Project Name

Major Features

For each top-level feature, identify the name, url, description, etc.
User-facing features are used directly by end users. Remove this paragraph.

Feature Name

	Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sample.git;a=blob;f=features/src/main/features/features.xml

	Feature Description: This is a sample feature that performs various
sample tasks and provides the implementation of RFC 0000.

	Top Level: Yes

	User Facing: Yes

	Experimental: Yes

	CSIT Test: https://jenkins.opendaylight.org/releng/view/sample/job/sample-csit-1node-feature-all-carbon/

Documentation

	Installation Guide(s):

	Guide Name

	User Guide(s):

	Link to Guide. Should be formatted something like:

:ref:`Guide name <guide-label-name>`

Where the <guide-label-name> is something like:

.. _guide-label-name:

Project User Guide
==================
....

As described in Cross-referencing arbitrary locations [http://www.sphinx-doc.org/en/stable/markup/inline.html#cross-referencing-arbitrary-locations].

	Developer Guide(s):

	Link to Guide. Use same format as above.

Security Considerations

	Do you have any external interfaces other than RESTCONF?

	If so, how are they secure?

	What port numbers do they use?

	Other security issues?

Quality Assurance

	Link to Sonar Report (Test coverage percent)

	Link to CSIT Jobs

	Other manual testing and QA information

	Testing methodology. How extensive was it? What should be expected to work?
What has not been tested as much?

Migration

	Is it possible to migrate from the previous release? If so, how?

Note

This is asking if somebody can move from an installation of the
previous release while keeping data. This isn’t currently, natively
supported in Opendaylight, so if it’s possible, it is because of
some project-speicific work and instructions which should be
explained here. Remove this note.

Compatibility

	Is this release compatible with the previous release?

	Any API changes?

	Any configuration changes?

Bugs Fixed

	List of bugs fixed since the previous release

Known Issues

	List key known issues with workarounds

	Link to Open Bugs

End-of-life

	List of features/APIs which are EOLed, deprecated, and/or removed in this
release

Standards

	List of standrads implemented and to what extent

Release Mechanics

	Link to release plan

	Describe any major shifts in release schedule from the release plan

Note

We will also ask about your testing of the latest SR, but that should
probably not formally be part of this document. Remove this note.

Ansible Role

Ansible role for the OpenDaylight SDN controller [https://www.opendaylight.org/project/technical-overview].

Installing Ansible-OpenDaylight

The Ansible Galaxy tool that ships with Ansible can be used to install
ansible-opendaylight.

To install the latest version of Ansible on Red Hat-based OSs:

$ sudo yum install -y ansible

To install the latest version of Ansible on Debian-based OSs:

$ sudo apt-add-repository ppa:ansible/ansible
$ sudo apt-get update
$ sudo apt-get install -y ansible

After you install ansible-galaxy, install ansible-opendaylight:

$ ansible-galaxy install git+ssh://<LF ID>@git.opendaylight.org:29418/integration/packaging/ansible-opendaylight.git

The OpenDaylight Ansible role doesn’t depend on any other Ansible roles.

Role Variables

Karaf Features

To set extra Karaf features to be installed at OpenDaylight start time, pass
them in a list to the extra_features variable. The extra features you pass
will typically be driven by the requirements of your use case.

OpenDaylight normally installs a default set of Karaf features at boot. They
are recommended, so the ODL Ansible role defaults to installing them. This can
be customized by overriding the default_features variable. You shouldn’t
normally need to do so.

REST API Port

To change OpenDaylight’s northbound REST API port from the default of 8181, use
the odl_rest_port variable.

For example, in an Openstack deployment, the Swift project uses 8181 and
conflicts with OpenDaylight.

The Ansible role will handle opening this port in FirewallD if it’s active.

Install Method

OpenDaylight supports RPM and deb-based installs, either from a repository
or directly from a URL to a package. Use the instal_method var to configure
which deployment scenario is used.

	Valid options:

	rpm_repo: Install ODL using its Yum repo config
rpm_path: Install ODL RPM from a local path or remote URL
dep_repo: Install ODL using a Debian repository
deb_path: Install ODL .deb from a local path or remote URL

Installing OpenDaylight

To install OpenDaylight via ansible-opendaylight, use ansible-playbook.

sudo ansible-playbook -i "localhost," -c local examples/<playbook>

Example playbooks are provided for various deployments.

Example Playbooks

The playbook below would install and configure OpenDaylight using all defaults.

- hosts: example_host
 sudo: yes
roles:
 - opendaylight

To override default settings, pass variables to the opendaylight role.

- hosts: all
 sudo: yes
 roles:
 - role: opendaylight
 extra_features: ['odl-netvirt-openstack']

Results in:

opendaylight-user@root>feature:list | grep odl-netvirt-openstack
odl-netvirt-openstack | <odl-release> | x | odl-netvirt-<odl-release> | OpenDaylight :: NetVirt :: OpenStack

License

OpenDaylight is Open Source. Contributions encouraged!

Author Information

The OpenDaylight Integration/Packaging project [https://wiki.opendaylight.org/view/Integration/Packaging] maintains this role.

Autorelease Builds

OpenDaylight’s primary build pipeline is called “autorelease”. It is managed by
the RelEng/Autorelease [https://git.opendaylight.org/gerrit/gitweb?p=releng/autorelease.git;a=tree;h=refs/heads/master;hb=refs/heads/master] project, and primarily takes the form of
Autorelease’s Jenkins jobs [https://jenkins.opendaylight.org/releng/view/autorelease/].

Autorelease builds every project from source. Artifact versions are rewritten
from the -SNAPSHOT suffixes in version control to release versions, like
-Carbon-SR1 or -Nitrogen. This contrasts with distribution jobs, which build
only a few projects from source and use -SNAPSHOT artifact versions. This makes
autorelesae builds slow, but identical to actual releases, whereas distribution
builds are fast but slightly less similar to official releases.

Daily Releases

Autorelease’s Jenkins jobs [https://jenkins.opendaylight.org/releng/view/autorelease/] run daily for every active branch, including
master.

	Boron autorelease job [https://jenkins.opendaylight.org/releng/view/autorelease/job/autorelease-release-boron/]

	Carbon autorelease job [https://jenkins.opendaylight.org/releng/view/autorelease/job/autorelease-release-carbon/]

	Nitrogen autorelease job [https://jenkins.opendaylight.org/releng/view/autorelease/job/autorelease-release-nitrogen/]

Each of those jobs, when the build is successful, produces build artifacts that
include an OpenDaylight distribution. To download the distribution, pick an
autorelease job that completed successfully (yellow or blue dot) and access its
logged console output. Logs are hosted on logs.opendaylight.org, at URLs like
https://logs.opendaylight.org/releng/jenkins092/autorelease-release-<stream>/
<build_number>/, where stream could be “boron” build_number “228”. There will
be a link at the top of build’s Jenkins page. Open console.log.gz in browser
and search for “staging repository with ID”. Find the repositoiry ID, which
will be of the form “autorelease-1432”. Navigate to OpenDaylight’s Nexus [https://nexus.opendaylight.org/content/repositories/] and
find the staging repository with the same name. Drill down into the directory
tree org/opendaylight/integration/distribution-karaf/ to find the build
artifacts. Autorelease build artifacts are persevered for 60 days.

Autorelease jobs trigger OpenDaylight’s distribution tests when they complete.
To see the test results, go to integration-distribution-test-<branch> job’s
Jenkins page and find the job that started after the autorelease in question
finished. Open it and explore the subprojects section for test results of all
the jobs triggered. For example, in case of Nitrogen, you can find the list and
the results of jobs triggered here [https://jenkins.opendaylight.org/releng/job/integration-distribution-test-nitrogen/].

The latest successful autorelease builds can also be easily found in Nexus at
staging/org/opendaylight/integration/distribution-karaf/ [https://nexus.opendaylight.org/content/repositories/staging/org/opendaylight/integration/distribution-karaf/]. Look for
0.5.4-Boron-SR4, 0.6.1-Carbon-SR1, 0.7.0-Nitrogen or similar staging
repositories. Note that the artifacts in these repositories are not
static - they are replaced each time new artifacts are generated. Use the
“autorelease-XXXX” repositories described above for semi-persistent URLs.

Official Releases

As a part of the OpenDaylight community’s efforts to move towards Continuous
Delivery, there is very little mechanical difference between the automated
daily releases documented above and official releases. The same autorelease
job runs, builds artifacts and kicks off distribution tests against them. When
doing official releases, the OpenDaylight community iterates through those
builds (calling them Release Candidate 1, RC2, …) until no blocking bugs are
found. The OpenDaylight Technical Steering Committee then hears feedback from
the Release Engineering and Integration/Test teams, and if all’s well blesses
the build as an official release. The build’s Nexus staging repo is then
promoted to a release repo and publicized (example: opendaylight.release/org
/opendaylight/integration/distribution-karaf/0.6.0-Carbon [https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/integration/distribution-karaf/0.6.0-Carbon/]). Official
releases are persevered forever.

For more information about OpenDaylight releases, including timelines, see the
Release Plans [https://wiki.opendaylight.org/view/Release_Plan].

Configuration Management

The Configuration Management Layer of the packaging and delivery stack
provided by upstream OpenDaylight installs OpenDaylight via the Packaging
Layer and then does any additional configuration required by the particular
deployment’s requirements. Examples include setting Karaf features to install
at boot, remapping OpenDaylight ports, opening OpenDaylight ports in firewalld
and managing OpenDaylight’s systemd service. As additional knobs are required
to configure deployments, upstream support should be added here.

	Ansible Role
	Installing Ansible-OpenDaylight

	Role Variables
	Karaf Features

	REST API Port

	Install Method

	Installing OpenDaylight

	Example Playbooks

	License

	Author Information

Debs

The build.py [https://github.com/opendaylight/integration-packaging/blob/master/packages/build.py] helper script is used for building OpenDaylight .debs. It can
build a set of .debs based on provided version arguments. The dynamic aspects
of builds, such as ODL and deb version info, have all been extracted to single
YAML configuration file.

The variables available for configuration and instructions on how to install
are documented here [https://github.com/opendaylight/integration-packaging/blob/master/deb/README.markdown].

Build Deb Job

The Jenkins build_deb job [https://jenkins.opendaylight.org/releng/job/packaging-build-deb-master/] builds the .deb package described by the given
build description [https://jenkins.opendaylight.org/releng/job/packaging-build-deb-master/], using build.py inside the deb directory.

Distribution Job Builds

Unlike autorelease builds, which build every project from source, distribution
jobs only build a few Karaf features. The other artifacts are pulled pre-built
from OpenDaylight’s Nexus repository and packaged into the Karaf distribution.
This makes them much quicker (minutes instead of ~4 hours).

The other major difference between autorelease and distribution job builds is
that distribution jobs use the -SNAPSHOT artifact version suffixes that are
actually stored in version control, whereas autorelease builds rewrite versions
to use the suffix for the next release, like -Carbon-SR1 or -Nitrogen. Because
of this, distribution builds are sometimes called “snapshot builds”.

For each active branch, builds created by distribution jobs can be found in the
subdirectories at opendaylight.snapshot/org/opendaylight/integration
/distribution-karaf/ [https://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/org/opendaylight/integration/distribution-karaf/]. Each build artifact is versioned with a timestamp and
unique, incrementing build number.

Distribution Builds Triggered by Merge Jobs

Distribution job builds are typically kicked off when a patch is merged into
a project. Projects define <project>-merge-<branch> Jenkins jobs, which are
kicked off by Gerrit merge event. To find the merge job for a Gerrit, look
for comments from the jenkins-releng user like “Build Started
https://jenkins.opendaylight.org/releng/job/netvirt-merge-boron/216/”.

Alternatively, browse a project’s Jenkins tab and look at the recent runs.
For example, go to https://jenkins.opendaylight.org/releng/, select
Merge-Carbon and you’ll find the list of all project merge jobs in the format
<project>-merge-carbon. Click any to view the recent build job details and
logs.

Custom Distributions

Distributions can be built with an additional set of unmerged patches. The
integration-multipatch-test-<branch> [https://jenkins.opendaylight.org/releng/search/?q=integration-multipatch-test] jobs allow users to specify a set of
patches to cherry-pick onto a project’s source code before building. This is
very useful for testing complex changes that impact multiple projects.

To build a custom distribution that includes a set of unmerged patches, first
make sure you have permission to trigger Jenkins jobs. Send an email to the
OpenDaylight Helpdesk (helpdesk@opendaylight.org) to request access. Be sure
to include your Linux Foundation user ID in the request.

Once you can trigger Jenkins jobs, navigate to the Jenkins web UI for the
multipatch-test job of the branch you’re interested in. Make sure you’re
logged in, then click on the “Build with Parameters” link in the sidebar.
The only parameter that requires configuration is PATCHES_TO_BUILD. This is
a CSV list of patches in project[=checkout][:cherry-pick]* format. For each
given project, the job will checkout 0 or 1 specified patches, then cherry-pick
0 or more additional patches on top of that checkout. If no checkout is
specified, cherry-picks will be done on top of the tip of the branch of the
multipatch-test job you’re using.

For example, to build with a single unmerged patch from NetVirt:

netvirt:59/50259/47

Because of the colon, this would cherry-pick the change on top of the tip
of the multipatch-test job branch.

To build with the same NetVirt patch, but by directly checking it out, use
an equals sign.

netvirt=59/50259/47

This will be the same thing if the patch has recently been rebased on top
of the tip of the branch, but may be different if the patch is based on a
different set of patches.

To build with checked-out patches from Genius and NetVirt:

genius=32/53632/9,netvirt=59/50259/47

To checkout a patch from controller, then cherry-pick another on top of it:

controller=61/29761/5:45/29645/6

The numbers in the changeset are the Gerrit change ID of the patch (middle
number) and the patchset of the Gerrit (last number). The first number is
just the last two digits of the Gerrit change ID (I’m not sure why this is
necessary). I belive it’s required that patches be listed in the order the
projects are built (NetVirt depends on Genius, so Genius is listed first).

For the definitive explination of how the multipatch job works, see the JJB
source that defines it [https://github.com/opendaylight/releng-builder/blob/master/jjb/integration/include-raw-integration-multipatch-distribution-test.sh].

Integration/Packaging Guide

This guide provides details on how Packaging and Deployment of OpenDaylight is
supported. Including packaging (RPMs), configuration management tools (Ansible,
Puppet) and pre-built images (containers, Vagrant base boxes).

Contents:

	Packages
	RPMs
	Build Jobs
	packaging-build-rpm

	packaging-build-rpm-snap

	Test Jobs
	packaging-test-rpm

	Repositories
	OpenDaylight Nexus
	Continious Delivery Repositories

	CentOS Community Build System
	Testing Repositories

	Release Repositories

	Repository Configuration Files

	Custom RPMs

	Debs
	Build Deb Job

	Autorelease Builds
	Daily Releases

	Official Releases

	Distribution Job Builds
	Distribution Builds Triggered by Merge Jobs

	Custom Distributions

	Versioning
	Overview

	RPMs

	Debs

	Docker Images

	Vagrant Base Boxes

	Ansible Role

	Puppet Module

	Configuration Management
	Ansible Role
	Installing Ansible-OpenDaylight

	Role Variables
	Karaf Features

	REST API Port

	Install Method

	Installing OpenDaylight

	Example Playbooks

	License

	Author Information

Packages

Builds can be packaged as RPMs or .debs. To provide inputs into OpenDaylight’s
Continious Delivery pipelines to downstream projects, many builds are
automatically packaged. Every succesful autorelease build is packaged as an
RPM. Every day, the latest distribution snapshot build is packaged as an RPM.
This keeps new artifacts flowing even if some projects are breaking
autorelease. Custom packages can be built from custom distributions, for
example with yet-to-be merged patches that need system testing.

	RPMs
	Build Jobs
	packaging-build-rpm

	packaging-build-rpm-snap

	Test Jobs
	packaging-test-rpm

	Repositories
	OpenDaylight Nexus
	Continious Delivery Repositories

	CentOS Community Build System
	Testing Repositories

	Release Repositories

	Repository Configuration Files

	Custom RPMs

	Debs
	Build Deb Job

RPMs

OpenDaylight has a mature RPM Continuous Delivery pipeline. Every autorelease
build is automatically packaged as an RPM, and even if autorelease is broken
a daily job builds the latest distribution snapshot build into an RPM.

RPMs can be passed to test jobs that install them, start OpenDaylight with its
systemd service, connect to the Karaf shell and verify basic functionality.

RPMs are hosted on the CentOS Community Build system repositories. Some repos
are updated very frequently with the latest builds, while others are permanent
homes of official releases.

Developers can build custom RPMs with pre-merge patches for testing by first
creating a custom distribution with the integration-multipatch-test job and
then feeding the resulting artifact to the packaging-build-rpm job.

Build Jobs

OpenDaylight Integration/Packaging has added support for many variations of
fully automated RPM builds.

packaging-build-rpm

The packaging-build-rpm job [https://jenkins.opendaylight.org/releng/job/packaging-build-rpm-master/] is the primary way to build an RPM from an
OpenDaylight distribution (built by autorelease
or the snapshot distribution <distribution-job-builds.html> job). It accepts
a set of parameters [https://jenkins.opendaylight.org/releng/job/packaging-build-rpm-master/build] that can be used to configure the build and passes them
to the RPM build logic in Integration/Packaging’s repo [https://github.com/opendaylight/integration-packaging/blob/master/packages/build.py]. The job produces
both a noarch RPM and source RPM. The noarch RPM can be passed to test jobs for
validation. The source RPM can be downloaded to a system with the required
credentials and then pushed to the CentOS Community Build system to be built
into a noarch RPM on their servers and hosted in their repos.

The RPM and SRPM artifacts of the job are handled differently depending on the
Jenkins silo the job is executing in.

When running in production (releng silo), artifacts are hosted on Nexus. There
are RPM repos for each active branch (oxygen-devel [https://nexus.opendaylight.org/content/repositories/opendaylight-oxygen-epel-7-x86_64-devel/org/opendaylight/integration-packaging/opendaylight/]). New builds are
automatically added to the appropriate devel for their branch.

When running in the sandbox, artifacts are thrown away by default. To keep an
artifact for further testing, add a path regex that matches it to the Archive
Artifacts param of the job (ARCHIVE_ARTIFACTS=/home/jenkins/rpmbuild/RPMS/
noarch/opendaylight*.rpm). The files matched will be stored in OpenDaylight’s
log archive along with the other job logs.

packaging-build-rpm-snap

The packaging-build-rpm-snap job [https://jenkins.opendaylight.org/releng/job/packaging-build-rpm-snap-master/] packages the most recent snapshot
distribution <distribution-job-builds.html> build from a given branch as an
RPM. This could be used by a developer to test code that was just merged, but
which has not been included in an autorelease build yet. The job is also triggered daily, to ensure
that OpenDaylight’s Continuous Delivery pipeline is fed new builds even if
autorelease is broken.

Test Jobs

packaging-test-rpm

The packaging-test-rpm job [https://jenkins.opendaylight.org/releng/job/packaging-test-rpm-master/] accepts a link to an RPM and validates it. It
installs the package with the system’s package manager, starts OpenDaylight’s
systemd service, verifies that it’s reported as active, connects to the Karaf
shell and checks that some key bundles are present.

Repositories

OpenDaylight Nexus

Packages resulting from build jobs running on OpenDaylight’s infrastructure are
automatically hosted on OpenDaylight’s Nexus repositories.

Continious Delivery Repositories

OpenDaylight provides fully-automated Continuous Delivery pipelines for RPMs.

Every RPM built in the production RelEng Jenkins silo is pushed to the devel
repo appropriate for its branch. Builds are triggered for every successful
autorelase job, as well as daily using the latest available snapshot build.

Continuous Delivery repos for Carbon, Nitrogen and Oxygen:

	opendaylight-carbon-epel-7-x86_64-devel [https://nexus.opendaylight.org/content/repositories/opendaylight-carbon-epel-7-x86_64-devel/org/opendaylight/integration-packaging/opendaylight/]

	opendaylight-nitrogen-epel-7-x86_64-devel [https://nexus.opendaylight.org/content/repositories/opendaylight-nitrogen-epel-7-x86_64-devel/org/opendaylight/integration-packaging/opendaylight/]

	opendaylight-oxygen-epel-7-x86_64-devel [https://nexus.opendaylight.org/content/repositories/opendaylight-oxygen-epel-7-x86_64-devel/org/opendaylight/integration-packaging/opendaylight/]

CentOS Community Build System

While most RPM builds are triggered automatically in OpenDaylight’s Jenkins,
some RPMs are promoted to be hosted in OpenDaylight’s CentOS repositories.
There are a series of repos that are updated at varying frequencies, from
testing repos that are updated with pre-release versions very frequently to
release repos that are the permanent home of official OpenDaylight releases.

Testing Repositories

Repositories with the -testing suffix are updated very frequently with
pre-release versions of OpenDaylight from the appropriate branch. New RPMs
replace the old ones, so installing from these repos will always provide the
most recent versions.

Testing repos for Carbon, Nitrogen and Oxygen:

	nfv7-opendaylight-6-testing [http://cbs.centos.org/repos/nfv7-opendaylight-6-testing/x86_64/os/Packages/]

	nfv7-opendaylight-7-testing [http://cbs.centos.org/repos/nfv7-opendaylight-7-testing/x86_64/os/Packages/]

	nfv7-opendaylight-8-testing [http://cbs.centos.org/repos/nfv7-opendaylight-8-testing/x86_64/os/Packages/]

Release Repositories

Repositories with the -release suffix host official OpenDaylight releases. They
are updated infrequently to never, and will host their release artifacts
forever. Release repos are subdivided into two groups based version numbers.
Repositories with both a major and minor version number (62, 70, 71) are pinned
to a specific OpenDaylight release or service release (Carbon SR2 6.2.0, Nitrogen
7.0.0, Nitrogen SR1 7.1.0). Repositories with only a major version (6, 7) will
always host the latest service release from that major release. If a new SR
comes out, the repo will get the update (Nitrogen 2 will replace Nitrogen SR1).

Release repos for the latest Carbon and Nitrogen service releases:

	nfv7-opendaylight-6-release [http://cbs.centos.org/repos/nfv7-opendaylight-6-release/x86_64/os/Packages/]

	nfv7-opendaylight-7-release [http://cbs.centos.org/repos/nfv7-opendaylight-7-release/x86_64/os/Packages/]

Release repos that will permanently host specific Carbon and Nitrogen releases:

	nfv7-opendaylight-60-release [http://cbs.centos.org/repos/nfv7-opendaylight-60-release/x86_64/os/Packages/]

	nfv7-opendaylight-61-release [http://cbs.centos.org/repos/nfv7-opendaylight-61-release/x86_64/os/Packages/]

	nfv7-opendaylight-62-release [http://cbs.centos.org/repos/nfv7-opendaylight-62-release/x86_64/os/Packages/]

	nfv7-opendaylight-70-release [http://cbs.centos.org/repos/nfv7-opendaylight-70-release/x86_64/os/Packages/]

	nfv7-opendaylight-71-release [http://cbs.centos.org/repos/nfv7-opendaylight-71-release/x86_64/os/Packages/]

Repository Configuration Files

While it’s possible to install RPMs directly (dnf install -y <URL>), it’s
often easier to use a repository configuration file to install whatever the
latest RPM is in a given repo.

The OpenDaylight Integration/Packaging project provides example repo config
files for each official repository [https://git.opendaylight.org/gerrit/gitweb?p=integration/packaging.git;a=tree;f=packages/rpm/example_repo_configs;hb=refs/heads/master].

Package managers like Yum and DNF will automatically find repo configuration
files placed in the /etc/yum.repos.d/ directory. Curl them into place with
something like:

	sudo curl -o /etc/yum.repos.d/opendaylight-7-testing.repo

	“https://git.opendaylight.org/gerrit/gitweb?p=integration/packaging.git;a=blob_plain;f=packages/rpm/example_repo_configs/opendaylight-8-devel.repo”

Standard install commands will now find the repository as expected.

sudo dnf install -y opendaylight

The latest RPM in the repo will be installed.

Custom RPMs

It’s possible for developers to build custom RPMs, typically with unmerged
patches that need system testing. First, use the integration-multipatch-test [https://jenkins.opendaylight.org/releng/search/?q=integration-multipatch-test]
job to create a custom distribution that includes the set of unmerged patches.
See the Custom Distributions section for extensive docs. Once you have a custom
distribution artifact, pass it to the packaging-build-rpm job [https://jenkins.opendaylight.org/releng/job/packaging-build-rpm-master/] to package it
as an RPM. See the packaging-build-rpm section for docs.

Versioning

Documentation about OpenDaylight’s upstream versioning.

Overview

Opendaylight has a variety of types of version numbers. Internal ODL features
have versions, but they are not visible to external consumers of OpenDaylight.
OpenDaylight, built into a distribution of many features, has a version number.
OpenDaylight is repackaged in a variety of formats (RPMs, .debs, Docker images,
Vagrant base boxes, etc) and follows the guidelines for each. OpenDaylight
packages are consumed by configuration management tooling (Ansible, Puppet),
which also have their own types of versioning.

RPMs

The RPM versioning follows the Fedora Packaging Guidelines [http://fedoraproject.org/wiki/Packaging:Versioning].

	Major Version numbers that increment with each Simultaneous Release (5=Boron,
6=Carbon, 7=Nitrogen, 8=Oxygen…).

	Minor Version numbers that increment with each Service Release (5.0=Boron,
5.1=Boron SR1, 5.2=Boron SR2…).

	Patch Version is currently unused.

	Package Version numbers that increment for each new package build of the same
ODL build (5.0.0-1=Boron, 5.0.0-2=Boron with RPM update).

	Snapshot/autorelease versions with timestamps and incrementing build numbers
for pre-release builds (8.0.0-0.1.20171020rel2011=Oxygen pre-release
autorelease build, 8.0.0-0.1.20171101snap835=Oxygen pre-release snapshot
build…).

See the OpenDaylight builds on the Nexus [https://nexus.opendaylight.org/content/repositories/opendaylight-oxygen-epel-7-x86_64-devel/org/opendaylight/integration-packaging/opendaylight/] or the CentOS [http://cbs.centos.org/koji/packageinfo?packageID=755] Community Build
System for examples.

Debs

Mostly the same as RPMs, slightly different way of denoting pre-release builds.

Docker Images

Docker uses Major, Minor and Patch versions. It doesn’t support pre-release
version numbers, which is okay since we don’t currently build Docker images for
pre-release versions. See the tags of the opendaylight/odl image [https://hub.docker.com/r/opendaylight/odl/tags/] for
examples.

Vagrant Base Boxes

Vagrant follows Rubygems versioning [http://guides.rubygems.org/patterns/#semantic-versioning], which uses Major, Minor and Patch
versions for semver. It doesn’t support pre-release version numbers, which is
okay since we don’t currently build Vagrant base boxes for pre-release
versions. See the versions of the opendaylight/odl base box [https://app.vagrantup.com/opendaylight/boxes/odl] for examples.

Ansible Role

The Ansible role follows Semantic Versioning [http://semver.org/]. Version bumps are based on API
changes. Backwards incompatible API changes cause Major Version bumps,
backwards compatible API changes cause minor version bumps, bugfixes and minor
updates can be batched into patch version bumps.

Puppet Module

The Puppet module follows Semantic Versioning [http://semver.org/]. Version bumps are based on
API changes. Backwards incompatible API changes cause Major Version bumps,
backwards compatible API changes cause minor version bumps, bugfixes and minor
updates can be batched into patch version bumps. See the changelog [https://git.opendaylight.org/gerrit/gitweb?p=integration/packaging/puppet-opendaylight.git;a=blob;f=CHANGELOG] and
metadata [https://git.opendaylight.org/gerrit/gitweb?p=integration/packaging/puppet-opendaylight.git;a=blob;f=metadata.json;h=713b3ef3f602ac5fdc4d11b655b8acf9f6908639;hb=HEAD#l3] for examples of correctly bumping versions.

Federation Documentation

This documentation provides critical information needed to help you use and
write code for the Federation project.

Contents:

	Developer Guide

	Install Guide

federation-with-rabbit Developer Guide

Overview

The federation service is a project that facilitates the exchange of state between multiple
OpenDaylight deployments (henceforth ‘sites’). These sites may be single node deployments or cluster deployments. The ‘federation-with-rabbit’ feature is a specific implementation of the federation service, based on Rabbit MQ broker. Federation service currently only supports the Rabbit MQ implementation.

federation-with-rabbit Architecture

In the context of federation, each site can wear two hats. A site can be a producer of messages and/or a consumer or messages. This is why each component is logically divided to two parts: Egress(Producer) part and Ingress(Consumer) part.

High-Level Components

Federation Plugin SPI

This plugin SPI is implemented by applications that want to use the federation capabilities.
The plugin declares which entities in the MD-SAL it wants the federation infrastructure to listen to, and it gets notified when the state of the entity in the MD-SAL changes. Upon a notification, the plugin can decide to do what ever it wants with the entity -> Send it to the other site, filter it out, transform it and even send a completely different entity.

In each site, the amount of instances of the plugin is equal to the amount of remote connected sites.

Federation Service Infrastructure

This layer hosts the Federation Plugins. In the producer side, it is responsible for the creation and destruction of the plugins, listening to the MD-SAL and passing of the modification notifications to the plugin themselves, and the tunnel for publishing remote messages by the plugins.

In the consumer side, it is responsible for consuming the remote sites messages and passing them to the corresponding plugins.

Rabbit MQ Infrastructure

This layer is used by the Federation Service Infrastructure for sending and receiving messages from other sites. It also exposes the ability to create and destroy queues for the messages themselves. This component communicates directly with the Rabbit Broker. A prerequisite for the federation service is the existence of at least one Rabbit Broker that each site can reach, and all the exchanging of messages happens through this broker/s.

Lifecycle

Subscription

To establish the initial connection between sites, a subscribe() must be invoked on the Federation Service Infrastructure. A subscription is a request between a consumer-site to a producer-site. This means that in order connect Site A with Site B, Site A will have to subscribe to Site B, and Site B will have to subscribe to Site A.

Stages of State Synchronization

After the initial connection, the sites transition into Full Sync stage.

In Full Sync stage, the producer site sends all the existing relevant state to the consumer site. The Full Sync stage start with a StartFullSyncFederationMessage, follows with all the entity messages, and ends with a EndFullSyncFederationMessage. When the Full Sync stage is over, the sites transition into the next stage - Steady Sync.

In the Steady Sync stage, ongoing MD-SAL updates for the relevant state are notified in the producer site to the instances of the plugins. The plugins then send the interesting state to the consumer sites using the federation infrastructure.

Key APIs and Interfaces

Introduction

When observing the federation service in a perspective of Egress and Ingress, the classes and interfaces responsible for each task are divided in the following way.

Egress/Producer

	Federation plugin SPI - IFederationPluginEgress

	Federation service infrastructure - FederationProducerMgr

	Rabbit MQ infrastructure - RabbitMessageBus.sendMsg()

Ingress/Consumer

	Federation plugin SPI - IFederationPluginIngress

	Federation service infrastructure - FederationConsumerMgr

	Rabbit MQ infrastructure - RabbitMessageBus.attachHandler()

API Reference Documentation

IFederationPluginEgress

JavaDocs link

IFederationPluginIngress

JavaDocs link

FederationProducerMgr

JavaDocs link

FederationConsumerMgr

JavaDocs link

RabbitMessageBus

JavaDocs link

Developer Guide

	federation-with-rabbit Developer Guide
	Overview

	federation-with-rabbit Architecture

	Key APIs and Interfaces

	API Reference Documentation

federation-with-rabbit Installation Guide

Overview

The federation service is a project that facilitates the exchange of state between multiple
OpenDaylight deployments. Detailed explanation can be found in the developers guide. It comes
as part of the ODL installation package, but not activated by default.

Pre Requisites for Installing federation-with-rabbit

Software Requirements

The federation service which is based on the Rabbit MQ implementation, expects a Rabbit MQ Broker to be installed on a machine that is reachable by the OpenDaylight. If the broker is installed on the same machine as the OpenDaylight, the default user and password can be used (guest/guest). If the broker is installed on a different machine, the broker will deny access for the default user, and a new user needs to created and given permissions.

The creation of the user should happen in the rabbit broker machine. For example:

sudo /usr/sbin/rabbitmqctl add_user newusername newuserpass

sudo rabbitmqctl set_permissions -p / newusername “.*” “.*” “.*”

Preparing for Installation

The federation service consists of a default configuration that should be modified in order to enable its functionality, and connect it to the correct rabbit broker. The YANG model that declares the configuration knobs and defaults is defined in federation-service.yang. The configuration that is used to override the defaults is federation-service-config.xml.

Verifying your Installation

FederationProducerMgr and FederationConsumerMgr logs prints seems valid and do not indicate an ERROR.

Install Guide

	federation-with-rabbit Installation Guide
	Overview

	Pre Requisites for Installing federation-with-rabbit

	Preparing for Installation

	Verifying your Installation

Table of Contents

	Status And Diagnostics Framework

	Problem description

	Use Cases

	Proposed change

	Service startup Requirements

	Service API requirements

	Service Internal Functionality Requirements

	Service Shutdown Requirements

	Instrumentation Requirements

	YANG changes

	Workflow

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release(s)

	Known Limitations

	Alternatives

	Usage

	Features to Install

	REST API

	CLI

	Implementation

	Assignee(s)

	Work Items

	Dependencies

	Testing

	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Status And Diagnostics Framework

https://git.opendaylight.org/gerrit/#/q/topic:s-n-d

Status reporting is an important part of any system. This document explores and
describes various implementation options for achieving the feature.

Problem description

Today ODL does not have a centralized mechanism to do status and diagnostics of
the various service modules, and have predictable system initialization. This leads
to a lot of confusions on when a particular service should start acting upon the
various incoming system events, because in many cases(like restarts) services
end up doing premature service handling.

The feature aims at developing a status and diagnostics framework for ODL, which
can :

	Orchestrate predictable system initialization, by enabling external interfaces,
including northbound and southbound interfaces depending on a set of selected
services declaring their availability. This in turn can prevent the system from
processing northbound (eg: OpenStack), or southbound (eg: OVSDB or OpenFlow)
events prematurely before all services are ready.

	Perform continuous monitoring of registered modules or internal services to
ensure overall health of the system. This can additionally trigger alarms, or
node reboots when individual services fail.

Use Cases

This feature will support following use cases:

	Use case 1: status-and-diag module exposes a config file which user can update.
This file will include a set of core networking services, that are necessary to
declare the system as UP.

	Use case 2: Core services can include existing netvirt and genius services like
ELAN, L3VPN, ITM, interface-manager, and additional services may be ACL, QoS etc
as needed. Applications can take necessary actions based on the aggregate system status,
for eg: OpenFlow port open, OVSDB port open, and S&D status
update(for consumption by other NBs such as ODL Mechanism Driver)

	Use case 3: Registered Service Modules should expose their status to status-and-diag
module which inturn will use this information to expose the service status to others.

	Use case 4: All southbound plugins should leverage the status provided by status-and-diag
module, as well as config file settings, to block or unblock the southbound interface

	Use case 5: status-and-diag module should monitor the health of all dependant
services on a regular basis using JMX.

	Use case 6: status-and-diag module should raise traps whenever health check on a
module fails.

	Use case 7 : status-and-diag module should develop the capability to do a node/cluster
reboot in future for scenarios mentioned in usecase 6.

	Use case 8 : status-and-diag module should leverage on the counters support provided
by infrautils to expose some debug and diagnostics counters.

Proposed change

The proposed feature adds a new module in infrautils called “diagstatus”,
which allows CLI or alternative suitable interface to query the status of the services running
in context of the controller (interface like Openflow, OVSDB, ELAN,ITM etc.). This also allows
individual services to push status-changes to this centralized module via suitable API-based notification.
There shall be a generic set of events which application can report to the central monitoring module/service
which shall be used by the service to update the latest/current status of the services.

Service startup Requirements

	Since the statuses are stored local to the node and represents the states of individual
services instances of the node, there is no data-sync-up requirements for this service

	When the service starts-up, required local map for managing service-wise status entries
shall be initialized

	It must be ensured that the status-monitoring-service starts-up fast as service
whenever is started/re-booted.

Service API requirements

Status model object encapsulating the metadata of status such as :
* Node-name – may be this could be populated internally by framework if the node-name is available

from within the framework with lesser / no external dependencies

	Module-name – populated by status-reporting module

	Service-name – populated by status-reporting module

	Service-status – populated by status-reporting module

	Current timestamp – internally populated

	Status Description – Any specific textual content which service can add to aid better troubleshooting
of reported status

Service Internal Functionality Requirements

	Data for current status of the changes alone must be maintained. Later we can improve it to maintain
history of statuses for a given service

	Since the statuses of services are dynamic there is no persistence requirement to store the statuses

	Status entry of given service shall be updated based on the metadata of provided by services

	Entries for service statuses shall be created lazily - if they are not already present,
as and when first API invocation is made by the application-module towards the status/health monitoring service

	Monitoring-Service shall internally store entries of service-statuses with URI style representation as following.
This allows fair level of flattening of hierarchical data so that lookup for a specific key to be handled is made easier

/<cluster-node-name>/<module-name>:<service-name>

	Read APIs of Monitoring-Service expose the service statuses on per cluster-node basis only. A separate
module shall be developed as part of “cluster-services” user-story which can combine cross-cluster status collation

	All output of the read-APIs shall return results as Map with URI as key and current service-status
and last-update timestamp combined as value

	In order to check the status of registered services, Status-Monitoring Service shall use standard scheduled
timer service to invoke status-check callback on registered services

	Scheduled probe timer interval shall be configurable in config.ini. Any changes to this
configuration shall require the system restart

Service Shutdown Requirements

	Currently no specific requirements around this area as restarting or node moving to quiescent state
results in loss of all local data

Instrumentation Requirements

Applications must invoke status-reporting APIs as required across the lifecycle of the services in start-up,
operational and graceful shutdown phases
In order to emulate a simpler state-machine, we can have services report following statuses
* STARTING – at the start of onSessionInitiated() on instrumented service
* OPERATIONAL – at the end of onSessionInitiated() on instrumented service
* ERROR – during onSessionInitiated() of service if any exceptions are caught, then ERROR status is reported

YANG changes

N/A

Workflow

Define Configuration file

diagstatusservice.properties file will be added which will list down all the
mbean names which services are exposing. Sample format based on the mbeans to be
exposed by Genius - ITM and interfacemanager modules can be as below:

ITM=org.opendaylight.genius.itm.status:type=SvcItmService
INTERFACE_SERVICE=org.opendaylight.genius.interfacemanager.status:type=SvcInterfaceService

There is an implicit assumption that the content of the file is correct, if at all
is not correct, the corresponding service will be shown in ERROR state.

Load Configuration file on startup

Whenever the diagstatus bundle comes up, diagstatus.properties configuration file
will be loaded and the properties will be maintained in an internal data structure.
All the Mbeans read will be registered one by one.

Read Service Status

Whenever applications/CLI try to fetch the service status, diagstatus module will query the
status through the respective mbeans(both local and remote),and an aggregated result is provided
as response.

Configuration impact

The configuration file provided by diagstatus needs to be updated by user, so that
their service will be tracked for status.

Clustering considerations

	The CLIs/APIs provided by diagstatus module will be cluster wide.

	Every node shall expose a Status Check MBean for querying the current status which is local to
the node being queried.

	Every node shall also expose a Clusterwide Status Check MBean for querying the clusterwide
Status of services.

	For local status CLI shall query local MBean.

	For clusterwide status CLI shall query local MBean AS WELL AS and remote MBean instances across
all current members of the cluster by accessing respective PlatformMBeanServer locally and remotely.

	It is assumed that IP Addresses of the current nodes of cluster and standard JMX Port details are available for clusterwide MBeans

	CLI local to any of the cluster members shall invoke clusterwide MBean on ANY ONE of current set of cluster nodes

	Every node of cluster shall query all peer nodes using the JMX interface and consolidate the
statuses reported by each node of cluster and return combined node-wise statuses across the cluster

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

N/A as it is a new feature which does not impact any current functionality.

Targeted Release(s)

Carbon.

Known Limitations

The initial feature will not have the health check functionality.
The initial feature will not have integration to infrautils counter framework
for dispalying diag-counters.

Alternatives

N/A

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Following are the service APIs which must be supported by the Framework :
* Accept Service-status from services which invoke the framework
* Get the current statuses of all services of a given cluster-node
* A registration API to allow monitored service to register the callback
* An interface which is to be implemented by monitored module which could be periodically

invoked by Status-Monitoring framework on each target module to check status

	Each service implements their own logic to check the local-health status using the
interface and report the status

CLI

Following CLIs will be supported as part of this feature:

	showstatus - get all service status

	showSvcStatus - get remote service status

Implementation

Assignee(s)

	Primary assignee:

	<Faseela K>

	Other contributors:

	<Vacancies available>

Work Items

	spec review

	diagstatus module bring-up

	API definitions

	Addition of Configuration file

	initialize status monitoring service by loading the config file

	initialize services by registering mbeans

	Reading the status of Mbeans specified in config file

	Aggregate the status of services from each node

	Add CLI.

	Add UTs.

	Add Documentation

Dependencies

This is a new module and requires the below libraries:

	org.apache.httpcomponents

	com.google.code.gson

	com.google.guava

This change is backwards compatible, so no impact on dependent projects.
Projects can choose to start using this when they want.

Following projects currently depend on InfraUtils:

	Netvirt

	Genius

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

Since Component Style unit tests will be added for the feature, no need for ITs

CSIT

N/A

Documentation Impact

This will require changes to User Guide and Developer Guide.

User Guide will need to add information on how to use status-and-diag APIs
and CLIs

Developer Guide will need to capture how to use the APIs of status-and-diag
module to derive service specific actions. Also, the documentation needs to
capture how services can expose their status via Mbean and integrate the same
to status-and-diag module

References

	https://wiki.opendaylight.org/view/Infrastructure_Utilities:Carbon_Release_Plan

Service Function Chaining

Service Function Chaining provides the ability to define an ordered list of a
network services (e.g. firewalls, load balancers). These services are then
“stitched” together in the network to create a service chain. This project
provides the infrastructure (chaining logic, APIs) needed for ODL to provision
a service chain in the network and an end-user application for defining such
chains.

Installation

The installation has been tested on Ubuntu Linux.

1.- SFC needs to have Python 3.4 installed

2.- openssl-devel MUST BE INSTALLED as it is pip dependency

sudo apt-get install libssl-dev openssl

	3.- Before you run installation from Pypi,

	be sure you have installed libnetfilter-queue.
To run installation of libnetfilter-queue:

sudo apt-get install libnetfilter-queue-dev

	4.- Be sure you have installed pip3

	to run installation of pip3:

sudo apt-get install python3-pip

5.- Finally the installation of the SFC package:

sudo pip3 install sfc

All other dependencies are handled in the SFC setup.

There is still possibility to download
the sfc-xxx.tar.gz file from Pypi repository,
unzip it, locate setup.py file and use the python installer as

python3 setup.py install

Usage

cd sfc/
sudo python3.4 sfc_agent.py --rest --nfq-class ---odl-ip-port=<ODL REST IP:port> --auto-sff-name

Note

root privileges are required if –nfq-class flag is used

SFC Agent

	optional arguments:

	
	-h, --help

	show this help message and exit

	--odl-get-sff

	Get SFF from ODL

	--auto-sff-name

	Automatically get SFF name

	--nfq-class

	Flag to use NFQ Classifier

	-r, --rest

	Flag to use REST

	--sff-name SFF_NAME

	Set SFF name

	--odl-ip-port ODL_IP_PORT

	Set ODL IP and port in form <IP>:<PORT>. Default is
localhost:8181

	--ovs-sff-cp-ip OVS_SFF_CP_IP

	Set local SFF Open vSwitch IP. Default is 0.0.0.0

–sff-os {XE,XR,OVS} Set SFF switch OS
–agent-port AGENT_PORT

Set SFC Agent port. Default is 5000

Example

sudo python3.4 sfc_agent.py --rest --odl-ip-port 192.168.33.11:8181 --auto-sff-name --nfq-class

this command will run the sfc_agent using REST, trying to recognize its own SFF name and running
also NFQ classifier instance.

NetfilterQueue

NetfilterQueue provides access to packets matched by an iptables rule in
Linux. Packets so matched can be accepted, dropped, altered, or given a mark.

Libnetfilter_queue (the netfilter library, not this module) is part of the
Netfilter project [http://netfilter.org/projects/libnetfilter_queue/].

Example

The following script prints a short description of each packet before accepting
it.

from netfilterqueue import NetfilterQueue

def print_and_accept(pkt):
 print pkt
 pkt.accept()

nfqueue = NetfilterQueue()
nfqueue.bind(1, print_and_accept)
try:
 nfqueue.run()
except KeyboardInterrupt:
 print

To send packets destined for your LAN to the script, type something like:

iptables -I INPUT -d 192.168.0.0/24 -j NFQUEUE --queue-num 1

Installation

NetfilterQueue is a C extention module that links against libnetfilter_queue.
Before installing, ensure you have:

	A C compiler

	Python development files

	Libnetfilter_queue development files and associated dependencies

On Debian or Ubuntu, install these files with:

apt-get install build-essential python-dev libnetfilter-queue-dev

From PyPI

To install from PyPI by pip:

pip install NetfilterQueue

From source

To install from source:

wget http://pypi.python.org/packages/source/N/NetfilterQueue/NetfilterQueue-0.3.tar.gz
tar -xvzf NetfilterQueue-0.3.tar.gz
cd NetfilterQueue-0.3
python setup.py install

If Cython is installed, Distutils will use it to regenerate the .c source from the .pyx. It will then compile the .c into a .so.

API

NetfilterQueue.COPY_NONE

NetfilterQueue.COPY_META

	NetfilterQueue.COPY_PACKET

	These constants specify how much of the packet should be given to the
script- nothing, metadata, or the whole packet.

NetfilterQueue objects

A NetfilterQueue object represents a single queue. Configure your queue with
a call to bind, then start receiving packets with a call to run.

	QueueHandler.bind(queue_num, callback[, max_len[, mode[, range]]])

	Create and bind to the queue. queue_num must match the number in your
iptables rule. callback is a function or method that takes one
argument, a Packet object (see below). max_len sets the largest number
of packets that can be in the queue; new packets are dropped if the size of
the queue reaches this number. mode determines how much of the packet
data is provided to your script. Use the constants above. range defines
how many bytes of the packet you want to get. For example, if you only want
the source and destination IPs of a IPv4 packet, range could be 20.

	QueueHandler.unbind()

	Remove the queue. Packets matched by your iptables rule will be dropped.

	QueueHandler.run()

	Send packets to your callback. This method blocks.

Packet objects

Objects of this type are passed to your callback.

	Packet.get_payload()

	Return the packet’s payload as a string.

	Packet.get_payload_len()

	Return the size of the payload.

	Packet.set_mark(mark)

	Give the packet a kernel mark. mark is a 32-bit number.

	Packet.accept()

	Accept the packet.

	Packet.drop()

	Drop the packet.

Callback objects

Your callback can be function or a method and must accept one argument, a
Packet object. You must call either Packet.accept() or Packet.drop() before
returning.

	callback(packet) or callback(self, packet)

	Handle a single packet from the queue. You must call either
packet.accept() or packet.drop().

Usage

To send packets to the queue:

iptables -I <table or chain> <match specification> -j NFQUEUE --queue-num <queue number>

For example:

iptables -I INPUT -d 192.168.0.0/24 -j NFQUEUE --queue-num 1

The only special part of the rule is the target. Rules can have any match and
can be added to any table or chain.

Valid queue numbers are integers from 0 to 65,535 inclusive.

To view libnetfilter_queue stats, refer to /proc/net/netfilter/nfnetlink_queue:

cat /proc/net/netfilter/nfnetlink_queue
1 31621 0 2 4016 0 0 2 1

The fields are:

	Queue ID

	Bound process ID

	Number of currently queued packets

	Copy mode

	Copy size

	Number of packets dropped due to reaching max queue size

	Number of packets dropped due to netlink socket failure

	Total number of packets sent to queue

	Something for libnetfilter_queue’s internal use

Limitations

More details coming soon…

	Compiled with a 4096-byte buffer for packets, so it probably won’t work on
loopback or Ethernet with jumbo packets. If this is a problem, either lower
MTU on your loopback, disable jumbo packets, or get Cython,
change DEF BufferSize = 4096 in netfilterqueue.pyx, and rebuild.

	Full libnetfilter_queue API is not yet implemented:

	Omits packet.set_payload() for altering packet data

	Omits methods for getting information about the interface a packet has
arrived on or is leaving on

	Probably other stuff is omitted too

	When a packet has been marked, we use nfq_set_verdict_mark rather than
nfq_set_verdict2. Apparently nfq_set_verdict_mark is
broken [http://netfilter.org/projects/libnetfilter_queue/doxygen/group__Queue.html#ga1986d6387c5aa2a837c02e87ae3b45ff],
although it works for me.

Source

https://github.com/kti/python-netfilterqueue

License

Copyright (c) 2011, Kerkhoff Technologies, Inc.

MIT licensed [https://github.com/kti/python-netfilterqueue/blob/master/LICENSE.txt]

NFQP3 - NetfilterQueue patched for Python3.4

NetfilterQueue provides access to packets matched by an iptables rule in
Linux. Packets so matched can be accepted, dropped, altered, or given a mark.

Libnetfilter_queue (the netfilter library, not this module) is part of the
Netfilter project [http://netfilter.org/projects/libnetfilter_queue/].

Installation

NFQP3 is a python3.4 patched NetFilterQueue module that links against libnetfilter_queue.

From PyPI

To install from PyPI by pip3:

pip3 install NFQP3

OVSDB documentation

This documentation provides critical information needed to help you to use OVSDB
as a southbound plugin.

Contents:

Netvirt Documentation

This documentation provides critical information needed to help you write
code for the NetVirt project.

Contents:

	NetVirt Contributor Guide

	NetVirt Developer Guide

	NetVirt Installation Guide

	OpenStack with NetVirt

	NetVirt User Guide

	NetVirt Design Specifications

Coe Documentation

This documentation provides critical information needed to help you understand the
Container Orchestration Engine project in Opendaylight.The project aims at developing a framework
for integrating Container Orchestration Engine (like Kuberenetes) and OpenDaylight.

Contents:

DLUX Applications

Setup and Run

Required Technology Stack

	AngularJS (JavaScript client-side framework, http://www.angularjs.org
)

Run DLUX

To turn on the DLUX Applications, install feature via running following
command on the Karaf console -

feature:install odl-dluxapps-applications

The above command will install odl-dlux-core along with all DLUX applications. Once this
feature is successfully installed, access the UI at
http://localhost:8181/index.html. The default credentials for login are
admin/admin.

DLUX Modules

DLUX modules are the individual features such as nodes and topology.
Each module has a defined structure and you can find all existing
modules at
https://github.com/opendaylight/dlux/tree/stable/boron/modules.

Module Structure

	module_folder

	<module_name>.module.js

	<module_name>.controller.js

	<module_name>.services.js

	<module_name>.directives.js

	<module_name>.filter.js

	index.tpl.html

	<a_stylesheet>.css

Create New Module

Define the module

	Create an empty maven project and create your module folder under
src/main/resources.

	Create an empty file with pattern <module_name>.module.js.

	Next, you need to surround the angular module with a define function.
This allows RequireJs to see our module.js files. The first argument
is an array which contains all the module’s dependencies. The second
argument is a callback function, whose body contain the AngularJS
code base. The function parameters correspond with the order of
dependencies. Each dependency is injected into a parameter, if it is
provided.

	Finally, you will return the angular module to be able to inject it
as a parameter in others modules.

For each new module, you must have at least these two dependencies :

	angularAMD : It’s a wrapper around AngularJS to provide an AMD
(Asynchronous Module Definition) support, which is used by RequireJs.
For more information see the AMD
documentation [https://github.com/amdjs/amdjs-api/blob/master/AMD.md].

	app/core/core.services : This one is mandatory, if you want to add
content in the navigation menu, the left bar or the top bar.

The following are not mandatory, but very often used.

	angular-ui-router : A library to provide URL routing.

	routingConfig : To set the level access to a page.

Your module.js file might look like this:

define(['angularAMD','app/routingConfig', 'angular-ui-router','app/core/core.services'], function(ng) {
 var module = angular.module('app.a_module', ['ui.router.state', 'app.core']);
 // module configuration
 module.config(function() {
 [...]
 });
 return module;
});

Set the register function

AngularJS allows lazy registration of a module’s components such as
controller, factory etc. Once you will install your application, DLUX
will load your module javascript, but not your angular component during
bootstrap phase. You have to register your angular components to make
sure they are available at the runtime.

Here is how to register your module’s component for lazy initialization
-

module.config(function($compileProvider, $controllerProvider, $provide) {
 module.register = {
 controller : $controllerProvider.register,
 directive : $compileProvider.directive,
 factory : $provide.factory,
 service : $provide.service
 };
});

Set the route

The next step is to set up the route for your module. This part is also
done in the configuration method of the module. We have to add
$stateProvider as a parameter.

module.config(function($stateProvider) {
 var access = routingConfig.accessLevels;
 $stateProvider.state('main.module', {
 url: 'module',
 views : {
 'content' : {
 templateUrl: 'src/app/module/module.tpl.html',
 controller: 'ModuleCtrl'
 }
 }
 });
});

Adding element to the navigation menu

To be able to add item to the navigation menu, the module requires the
NavHelperProvider parameter in the configuration method.
addToMenu method in NavMenuHelper helper allows an item addition
to the menu.

var module = angular.module('app.a_module', ['app.core']);
module.config(function(NavMenuHelper) {
 NavMenuHelper.addToMenu('myFirstModule', {
 "link" : "#/module/index",
 "active" : "module",
 "title" : "My First Module",
 "icon" : "icon-sitemap",
 "page" : {
 "title" : "My First Module",
 "description" : "My first module"
 }
 });
});

The first parameter is an ID that refers to the level of your menu and
the second is a object. For now, The ID parameter supports two levels of
depth. If your ID looks like rootNode.childNode, the helper will look
for a node named rootNode and it will append the childNode to it. If
the root node doesn’t exist, it will create it.

Link the AngularJS module’s controller file

To include the module’s controller file, you can use the
NavHelperProvider. It contains a method that will load the given file.

[...]
 NavHelperProvider.addControllerUrl('<path_to_module_folder>/<module_name>.controller');

This completes your module.js file.

Create the controller, factory, directive, etc

Creating the controller and other components is similar to the module.

	First, add the define method.

	Second, add the relative path to the module definition.

	Last, create your methods as you usually do it with AngularJS.

For example -

define(['<relative_path_to_module>/<module_name>.module'], function(module) {
 module.register.controller('ModuleCtrl', function($rootScope, $scope) {
 });
});

Add new application using DLUX modularity

DLUX works as a Karaf based UI platform, where you can create a new
Karaf feature of your UI component and install that UI applications in
DLUX using blueprint. This page will help you to create and load a new
application for DLUX. You don’t have to add new module in DLUX
repository.

Add a new OSGi blueprint bundle

The OSGi Blueprint Container specification allows us to use dependency
injection in our OSGi environment. Each DLUX application module
registers itself via blueprint configuration. Each application will have
its own blueprint.xml to place its configuration.

	Create a maven project to place blueprint configuration. For
reference, take a look at topology bundle, present at
https://github.com/opendaylight/dlux/tree/stable/boron/bundles/topology.
All the existing DLUX modules’ configurations are available under
bundles directory of DLUX code.

	In pom.xml, you have to add a maven plugin to unpack your module code
under generated-resources of this project. For reference, you can
check pom.xml of dlux/bundles/topology at
https://github.com/opendaylight/dlux/tree/stable/boron/bundles/topology.
Your bundle will eventually get deployed in Karaf as feature, so your
bundle should contain all your module code. If you want to combine
module and bundle project, that should not be an issue either.

	Create a blueprint.xml configuration file under
src/main/resources/OSGI-INF/blueprint. Below is the content of the
blueprint.xml taken from topology bundles’s blueprint.xml. Any new
application should create a blueprint.xml in following format -

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <reference id="httpService" availability="mandatory" activation="eager" interface="org.osgi.service.http.HttpService"/>
 <reference id="loader" availability="mandatory" activation="eager" interface="org.opendaylight.dlux.loader.DluxModuleLoader"/>

 <bean id="bundle" init-method="initialize" destroy-method="clean" class="org.opendaylight.dlux.loader.DluxModule">
 <property name="httpService" ref="httpService"/>
 <property name="loader" ref="loader"/>
 <property name="moduleName" value="topology "/>
 <property name="url" value="/src/app/topology"/>
 <property name="directory" value="/topology"/>
 <property name="requireJs" value="app/topology/topology.module"/>
 <property name="angularJs" value="app.topology"/>
 <property name="cssDependencies">
 <list>
 <value>http://yui.yahooapis.com/3.18.1/build/cssreset/cssreset-min.css</value>
 <value>src/app/topology/topology-custom.css</value>
 </list>
 </property>
 </bean>
</blueprint>

In above configuration, there are two references with id httpService and
loader. These two beans will already be initialized by dlux-core, so any
new application can use them. Without these two bean references, a new
application will not be able to register.

Next is the initialization of your application bean, which will be an
instance of class org.opendaylight.dlux.loader.DluxModule. There are 5
properties that you should provide in this bean besides the references
of httpService and loader. Lets talk about those bean properties in
little more detail.

moduleName : Name of your module. This name should be unique in
DLUX.

url: This is the url via which RequireJS in DLUX will try to load
your module JS/HTML files. Also, this is the url that browser will use
to load the static HTML, JS or CSS files. RequireJS in DLUX has a base
path of src, so all the url should start with /src so RequireJS and
the browser can correctly find the files.

directory: In your bundle’s pom.xml, you unpack your module code.
This is the directory where your actual static files will reside. The
above mentioned url is registered with httpService, so when browser
makes a call to that url, it will be redirected to the directory
mentioned here. In the above example, all the topology files are present
under /topology directory and the browser/RequireJS can access those
files with uri /src/app/topology.

requireJS: This is the path to your RequireJS module. If you notice
closely, you will see the initial path of RequireJS app/topology in the
above example matches with the last part of url. This path will be be
used by RequireJS. As mentioned above, we have kept src as base path
in RequireJS, that is the exact reason that url start with /src.

angularJS: name of your AngularJS module.

cssDependencies: If the application has any external/internal css
dependencies, then those can be added here. If you create your own css
files, just point to those css files here. Use the url path that you
mentioned above, so the browser can find your css file.

OSGi understands blueprint.xml, once you will deploy your bundle in
karaf (or you can create a new feature for your application), karaf will
read your blueprint.xml and it will try to register your application
with dlux. Once successful, if you refresh your dlux UI, you will see
your application in left hand navigation bar of dlux.

Yang Utils

Yang Utils are used by UI to perform all CRUD operations. All of these
utilities are present in yangutils.services.js file. It has following
AngularJS factories -

	arrayUtils – defines functions for working with arrays.

	pathUtils – defines functions for working with xpath (paths to
APIs and subAPIs). It divides xpath string to array of elements, so
this array can be later used for search functions.

	syncFact – provides synchronization between requests to and from
OpenDaylight when it’s needed.

	custFunct – it is linked with
apiConnector.createCustomFunctionalityApis in yangui controller in
yangui.controller.js. That function makes it possible to create some
custom function called by the click on button in index.tpl.html. All
custom functions are stored in array and linked to specific subAPI.
When particular subAPI is expanded and clicked, its inputs (linked
root node with its child nodes) are displayed in the bottom part of
the page and its buttons with custom functionality are displayed
also.

	reqBuilder – Builds object in JSON format from input fields of
the UI page. Show Preview button on Yang UI use this builder.
This request is sent to OpenDaylight when button PUT or POST is
clicked.

	yinParser – factory for reading .xml files of yang models and
creating object hierarchy. Every statement from yang is represented
by a node.

	nodeWrapper – adds functions to objects in tree hierarchy created
with yinParser. These functions provide functionality for every type
of node.

	apiConnector – the main functionality is filling the main
structures and linking them. Structure of APIs and subAPIs which is
two level array - first level is filled by main APIs, second level is
filled by others sub APIs. Second main structure is array of root
nodes, which are objects including root node and its children nodes.
Linking these two structures is creating links between every subAPI
(second level of APIs array) and its root node, which must be
displayed like inputs when subAPI is expanded.

	yangUtils – some top level functions which are used by yangui
controller for creating the main structures.

ElasticSearch

Setting Up the environment

To setup and run the TSDR data store ElasticSearch feature, you need to have
an ElasticSearch node (or a cluster of such nodes) running. You can use a
customized ElasticSearch docker image for this purpose.

Your ElasticSearch (ES) setup must have the “Delete By Query Plugin” installed.
Without this, some of the ES functionality won’t work properly.

Creating a custom ElasticSearch docker image

(You can skip this section if you already have an instance of ElasticSearch running)

Run the following set of commands:

cat << EOF > Dockerfile
FROM elasticsearch:2
RUN /usr/share/elasticsearch/bin/plugin install --batch delete-by-query
EOF

To build the image, run the following command in the directory where the
Dockerfile was created:

docker build . -t elasticsearch-dd

You can check whether the image was properly created by running:

docker images

This should print all your container images including the elasticsearch-dd.

Now we can create and run a container from our image by typing:

docker run -d -p 9200:9200 -p 9300:9300 --name elasticsearch-dd elasticsearch-dd

To see whether the container is running, run the following command:

docker ps

The output should include a row with elasticsearch-dd in the NAMES column.
To check the std out of this container use

docker logs elasticsearch-dd

Running the ElasticSearch feature

Once the features have been installed, you can change some of its properties. For
example, to setup the URL where your ElasticSearch installation runs,
change the serverUrl parameter in tsdr/persistence-elasticsearch/src/main/resources/configuration/initial/:

tsdr-persistence-elasticsearch.properties

All the data are stored into the TSDR index under a type. The metric data are
stored under the metric type and the log data are store under the log type.
You can modify the files in tsdr/persistence-elasticsearch/src/main/resources/configuration/initial/:

tsdr-persistence-elasticsearch_metric_mapping.json
tsdr-persistence-elasticsearch_log_mapping.json

to change or tune the mapping for those types. The changes in those files will be promoted after
the feature is reloaded or the distribution is restarted.

Testing the setup

We can now test whether the setup is correct by downloading and installing mininet,
which we use to send some data to the running ElasticSearch instance.

Installing the necessary features:

start OpenDaylight
feature:install odl-restconf odl-l2switch-switch odl-tsdr-core odl-tsdr-openflow-statistics-collector
feature:install odl-tsdr-elasticsearch

We can check whether the distribution is now listening on port 6653:

netstat -an | grep 6653

Run mininet

sudo mn --topo single,3 --controller 'remote,ip=distro_ip,port=6653' --switch ovsk,protocols=OpenFlow13

where the distro_ip is the IP address of the machine where the OpenDaylight distribution
is running. This command will create three hosts connected to one OpenFlow capable
switch.

We can check if data was stored by ElasticSearch in TSDR by running the
following command:

tsdr:list FLOWTABLESTATS

The output should look similar to the following:

[NID=openflow:1][DC=FLOWTABLESTATS][MN=ActiveFlows][RK=Node:openflow:1,Table:50][TS=1473427383598][3]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,Table:50][TS=1473427383598][12]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketLookup][RK=Node:openflow:1,Table:50][TS=1473427383598][12]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=ActiveFlows][RK=Node:openflow:1,Table:80][TS=1473427383598][3]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,Table:80][TS=1473427383598][17]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,Table:246][TS=1473427383598][19]
...

Or you can query your ElasticSearch instance:

curl -XPOST "http://elasticseach_ip:9200/_search?pretty" -d'{ "from": 0, "size": 10000, "query": { "match_all": {} } }'

The elasticseach_ip is the IP address of the server where the ElasticSearch is running.

Web Activity Collector

The Web Activity Collector records the meaningful REST requests made through the
OpenDaylight RESTCONF interface.

How to test the RESTCONF Collector

	Install some other feature that has a RESTCONF interface, for example. “odl-tsdr-syslog-collector”

	Issue a RESTCONF command that uses either POST,PUT or DELETE.
For example, you could call the register-filter RPC of tsdr-syslog-collector.

	Look up data in TSDR database from Karaf.

tsdr:list RESTCONF

	You should see the request that you have sent, along with its information
(URL, HTTP method, requesting IP address and request body)

	Try to send a GET request, then check again, your request should not be
registered, because the collector does not register GET requests by default.

	Open the file: “etc/tsdr.restconf.collector.cfg”, and add GET to the list of
METHODS_TO_LOG, so that it becomes:

METHODS_TO_LOG=POST,PUT,DELETE,GET

	Try again to issue your GET request, and check if it was recorded this time,
it should be recorder.

	Try manipulating the other properties (PATHS_TO_LOG (which URLs do we want
to log from), REMOTE_ADDRESSES_TO_LOG (which requesting IP addresses do we
want to log from) and CONTENT_TO_LOG (what should be in the request’s body
in order to log it)), and see if the requests are getting logged.

	Try providing invalid properties (unknown methods for the METHODS_TO_LOG
parameter, or the same method repeated multiple times, and invalid regular
expressions for the other parameters), then check karaf’s log using
“log:display”. It should tell you that the value is invalid, and that it
will use the default value instead.

 _images/PathAttributesSerialization.png
PathAttributesParser

| 1: serializeAttribute(PathAttributes, ByteBuf)

Type: 1

Type: 2

OriginAttribLteParser

AsPathAttributeParser

,,,,,,,,,,,,, il

2: serializeAttribute(PathAttrlbutes, ByteBurf)

_images/Pathmap.png

_images/OpenStackGui.png
BED I &R aaaa i
B oo - Openstack Da- x

€ > ‘D 192.168.64.20/auth/login/

openstack

e

_images/OpenStack_Demo_Picture.png
OpenStack Control Node

OpenDaylight Controller

OpenStack Compute Node

_images/Put.png
onf/config/MN

T] nstanceident
DataSchemaNode

Mountinstance

nfigurationData Tri

CompositeNode

-isonToCompositeNodeProvider
XmiToCompositeNodeProvider

RESTCONF

Operational
datastore

_images/RESTClient-snapshot.png
Fie - Authentication - Headers ~ View Favorie Requests - Settng RESTClient

[-] Request

Method | pUT v | URL | ocalhost 8181/restconflconfig/senice-function-scheduler-typesenvice-function-schedulertypes/| % v SEN

Headers i Remove A1

Content-Type: appicationison

Body

{ <
"senicefunction-schedulertypes™
“senicefunction-schedulertype™ [

“name" "random”,
‘senice-function-schedulertype:random”,

“roundrobin’”, a
"senice-function-schedulertype:round-robin”,

_images/ODL_lfm_Be_component.jpg
ODL LISPFlowMapping Service

oy B ST

£
7 s
£ | Mapserver 8
< 253
£ gasg
Dl = Map Resolver zZg
[| £ :
| Eroto 4

_images/OpenStackDeveloperGuide.png
Open Stack Control Node

ML2 DRIVER

Interface Creation Notificatio

Neutron Interface

OVSDBPLUGIN

Open Stack Compute

VTN Manager

OF Interface (OF
Messages)

Port Mapping]
OFPLUGIN

OpenDaylight Controller

Open Stack Compute

_images/Node_connector_added_updated_DCN_handling.png
RestConf

Manager

D Interface Manager —
Type 1 Renderer OfPlugin

Opendaylight

ConfigDS

1. OF switch connects to ODL

"l 2. Flow-Node Inventory Update

3. Node-Corjnector DCN

4. Allocate Iport th

—

6. Read operstate, pf

5. Create Ipart tag interface map

sAddr for of-port from inventory

7.Update OperState, PhysAddr in|odl-interface
T

OperState,

_images/Node_connector_removed_DCN_handling.png
RestConf

Switch

D Interface Manager

Manager Type 1 Renderer

Opendaylight

OfPlugin ConfigDS

OperDS

1. OF switch connects to ODL.

Release Iport

& o

"l 2. Flow-Node Inventory Update

3. Node-Corjnector DCN

5. Get InterfaceState

for Port from oper DS

6. Remove |

Iport tag interface map

7. Remove interface state from oper DS.

_images/File:Updation_of_vlan_interface_in_pre_provisioning_mode.png

 		[image: OpenDaylight Project]

		

 		
 File

 		File

		Discussion

		View source

		History

 		

 Tools

 		Page information

		Permanent link

		Printable version

		

		Special pages

		Related changes

		

		What links here

 		

 		

 		

		Log in

 		OpenDaylight.org

 		Get Software

 		Documentation

 		User Stories

 		Community

 		Blog

 		IRC Meeting Minutes

 		Wiki

 Jump to: navigation,
 search

 File:Updation of vlan interface in pre provisioning mode.png

 		File

		File history

		File usage

[image: File:Updation of vlan interface in pre provisioning mode.png]Size of this preview: 800 × 308 pixels. Other resolution: 996 × 383 pixels.

Original file ‎(996 × 383 pixels, file size: 22 KB, MIME type: image/png)

File history

Click on a date/time to view the file as it appeared at that time.

				Date/Time		Thumbnail		Dimensions		User		Comment

		current		18:46, 1 June 2016		[image: Thumbnail for version as of 18:46, 1 June 2016]		996 × 383 (22 KB)		Esravik (Talk | contribs)		

		You cannot overwrite this file.

File usage

The following page links to this file:

		Genius:Design doc

 Retrieved from "https://wiki.opendaylight.org/index.php?title=File:Updation_of_vlan_interface_in_pre_provisioning_mode.png&oldid=46722"

 		Privacy policy

 		About OpenDaylight Project

 		Disclaimers

 		
 [image: Powered by MediaWiki]

_images/GBPTerminology1.png
endpoint

ep-group

contract
subject
rule
classifier action
13

context

subnet L2 bridge
domain
12 flood
domain

_images/Dlux_login.png
cH

«2. Nodes

_images/Dlux_topology.png

_images/GBP_AccessModel_simple.png
tenant

epgroup [contract
s
characteristic dause |—O>] subject
identifier J: dlassifier
rule
property

action set

_images/GBP_Endpoint_EPG_Contract.png
ssh

[Faich:
tep destport 80
drection: in

laction:
allow

[Faich:
tep destport 22
drection: in

laction:
allow

direction: in
laction:
allow

_images/GBPTerminology2.png
endpoint ... the things they
can talk about,
defined by...
ep-group
contract
subject
rule
..and what they do
classifier | [_action when they hear it.
context
subnet Lg bridge ... what they are
omain listening for....
12 flood
domain

_images/GBPTerminology3.png
endpoint

ep-group

contract

subject

rule]

classifier | | _action

13
context

subnet L2 bridge
domain

12 flood

domain

Layer3 based
namespace... like a

VRF, or other
L3VPN.
.. Layer2
namespace... a
L2VPN...
... where
broadcasts

are limited to.

_images/GBP_Endpoint_EPG_Forwarding.png
L3 Context:
Finance

_images/GBP_ForwardingModel_simple.png
tenant

endpoint

network
container

——

subnetset ——>) network

context

—I#l

12 flood
context

12 bridge
context

sy 12bridge __

13
context

_images/Get.png
GET restconf/config/M:N

Instanceldentifier
DataSchemaNode
Mountinstance

readConfigurationDatanstant

- StructuredDataToXmlProvider
- StructuredDataTolsonProvider

RESTCONF

Operational
datastore

_images/High-levelBerylliumArchitectureEvolution2.png
NFV

Application

reteont (2

0 feeon

— reteont
reteont

WPLS

_images/GBP_High-levelExtraRenderer.png

_images/Genius_overview.png
NetVirt SFC GBP

Genius

Interface Tunnel Resource

Manager Manager Manager

Openflow Plugin OVSDB Plugin

_images/ITM_top_lvl.png
KarafCLl

ResT

Interface

/ Creates Turkel Intrfaces in

Ds
Fetches Intecface 14,

m Triggers el
towards DC Gateway|

VN MANAGER

Interface Manager | nteriace

_images/Ifmarch.png
Interface Manager
~

~—
Create tunnel —

ports ~

inerface i
ConfiaDS | || configDs.

Interface-

Senice— ovsDB
Binding ConfigDS

Confians

_images/How_to_provision_virtual_L2_network.png
Virtual L2 network for hostl and host3

Virtual tenant

Virtual bridge

_images/Hypervisors.png
] odi-scvmm:10 (wineuser) - TightVNC Viewer

HED I & ®

D Hypervisors - Openstac x L) OpenDaylight Dlux

€« c 192.168.64.20,

£ openstack [mn
= All Hypervisors

Admin Hypervisor Summary

System Panel

VCPU Usage Memory Usage
Used 0 0f 8 Used 1GB of 10GB Used OBytes of 98.0GB

Hypervisors

vepUs

Hostname Type (total)

QEMU

QEMU

Displaying 2 tems

X

Storage
(used) Instances

OBytes

OBytes

_images/Ifmsbirenderers.png
NBI/API

Interface Config Change Listener

IFM Topology State Listener
Listeners i -

Config Helpers Config Helpers Config Helpers
IFM

Renderers
State Helpers State Helpers State Helpers

OVSDB Plugin OpenFlow Plugin Netconf Plugin SBI

_images/GBP_High-levelBerylliumArchitecture.png
OpenStack
Neutron V2.0 API

(=] S

o @

HIERERE

_images/Inventory_Rendering_Use_case.png
module opendaylight-topology-inventory

{(Network Topology
>

— Topology

topology-id
[— node

— supporting-node

| — node-connector

id

name

hardware-address
current-speed
maximum-speed

manufacturer

hardware

software

serial-number

description

ip-address

—~
X,

S O e S

module inventory-rendering

L

twork Topology |

—Topology

topology 14 1]

= node H

=M node-id J

— supporting-node |

| termination-point |H

tp-id

tp-ref

tp-augmentation

name H

S hardware-a

ddress H

current-speed

—~

maximum-speed |

node-augmentation |H

manufacturer

hardware

software

serial-number

description

ip-address

_images/Inventory_model_listener_diagram.png
Network-topology.yang

network-topology node

Opendaylight-inventory.yang

UnderlayTopologyListener inventory node

InventoryListener

Underlayltem(item, null, topologyld, nodeld, CorrelationItemEnura:Node)
Underlayltem (nuli; leafNode, topologyld, null, CorrelationltemEnum.Node)

NotificationInterConnector

Underlayitem(item, leafNode, topologyld, nodeld, CorrelationltemEnum.Node)

—y
| TopologyOperator \

_images/Instance_ping.png
ifconfig
e tho Link encap:Ethernet HWaddr FA:16:3E:OE:8A:89
inet addr:10.11.12.11 Bcast:10.11.12.255 Mask:255.
Network inet6 addr: feBO::f816:3eff :fede:BaBI/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1560 Metric:l
RX packets:112 errors:© dropped:20 overruns:® frame:
TX packets:20 errors:0 dropped:0 overruns:@ carrier:
collisions:0 txqueuelen:1000
RX bytes:13768 (13.3 KiB) TX bytes:2112 (2.0 KiB)

Orchestration

Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1,128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:© errors:0 dropped:® overruns:@ frame:0
TX packets:O errors:@ dropped:® overruns:® carrier:0
collisions:0 txqueuelen:0

RX bytes:® (6.0 B) TX bytes:0 (0.0 B)

s ping 10.11.12.10
JFING 10.11.12.16 (16.11.12.10): 56 data bytes
b4 bytes from 10.11.12.11
b4 bytes fromg10.11.12. 11
b4 bytes from’$0.11.12. 11

_images/IntentSystemPolicySurfaces.png
expressed intent

s
>

capabilities and state

governance

Sjulesisuod sdo

_images/Launch_Instance.png
OpenDaylight Diux.

192.168.64.2

Launch Instance

Availability Zone:
Y hing an i

nova by this pr

in relation to the project's quot;
Instance Name: *
Flavor Details
t
Name mLnan

Flavor: * vepUs 1
mnar Root Disk 0
Instance Count: * Ephemeral Disk

10 Total Disk

RAM
Instance Boot Source: *

ot from imag Project Limits
Number of Instances.
Image Name: L]
Number of VCPUs

Total RAM

_images/Launch_Instance_network.png
OpenDaylight Diux.

192.168.64.2

Launch Instance

Networking *

lected Networl 1 Available network
 push button or drag and drop, you may

by drag and
$vtnl 9

Available networ

_images/Itmcodestructure.png
4 ¥y > itm-impl [vpnservice master 11]
4 (& > src/main/java

4 # > org.opendaylightvpnservice.itm.confighelpers
> [§} > ItmExternalTunnelAddWorkerjava
> [> tmExternalTunnelDeleteWorker java
» [> ItmInternalTunnelAddWorker java
v [> ItminternalTunnelDeleteWorker.java
> i > ItmTepAddWorker,java
> [> ItmTepRemoveWorkerjava

4 # > org.opendaylightvpnservice.itm.impl
v [> ITMManagerjava
> [i > ItmProviderjava
> [@ > ItmUtilsjava

4} > org.opendaylightvpnservice.itm.listeners
> [> TransportZoneListenerjava

4§ > org.opendaylightvpnservice.itm.rpc
> [1} > ItmManagerRpcServicejava

_images/LSFF_pipeline.png
Dispatcher
(table 17)
DHCP Service (1)
ACL Service (2]
IPV6 Service (3)

'SCFISFG Service (4)
L3VPN Service (5)
ELAN Service (6)

SFC_TRANSPORT_CLASSIFIER
(table 82)

SFC_TRANSPORT_INGRESS
(table 83)

Map subscriber traffic to RSPs
ACL matching, action push NSH

Match on expected transport types

SFC_TRANSPORT_PATH_MAPPER

SFC_TRANSPORT_PATH_MAPPER_ACL

(table 84) (table 85)
Goto tatle &5 Goto tabe 86
SFC_TRANSPORT_NEXT_HOP SFC_TRANSPORT_EGRESS
(table 86) (table 87)
Match on NSP+NSI, determines where to send Set output port or output tunnel or resubmit to
packets next

dispatcher depending on NSP+NS| match

_images/Instance_Console.png
“cirros’ user. default password: ’cubswini)’. use 'sudo’ for root.
est-d3adf d40-£286-422f -b124-94397cfcd179 login: cirros

Network

ifconfig
e tho Link encap:Ethernet HWaddr FA:16:3E:OE:8A:89
inet addr:10.11.12.11 Beast:10.11.12.255 Mask:255.255.255.0
inet6 addr: feBO::f816:3eff :fede:BaBI/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1560 Metric:l
RX packets:112 errors:© dropped:20 overruns:® frame:

Orchestration

TX packets:20 errors:0 dropped:0 overruns:@ carrier:
collisions:0 txqueuelen:1000
RX bytes:13768 (13.3 KiB) TX bytes:2112 (2.0 KiB)

Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1,128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:l

RX packets:0 errors:0 dropped:® overruns:0 frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:@
collisions:0 txqueuelen:@

RX bytes:® (0.0 B) TX bytes:® (0.0 B)

_images/Instance_Creation.png
] odi-scvmm:10 (wineuser) - TightVNC Viewer

HED I & ®

Instances - OpenStack x || OpenDaylight Diux.

€« x 192.168.64.20,

3 openstack e

Project Instances

Compute
Instances

Instance Image
Name Name

Displaying 0 tems

Network
Orchestration

Admin

192.168.64.20/project/instances/launch

P
Address

size

Key Availability
Pair Stats Zone

No items to display

Q| Fer

Power
Task State

+ Lggneh nstance

Uptime.

Actions

_images/Mininet_Configuration.png
—

srvcl

mininet

L]

__206msdelay 300msdefay—

srvc2

_—

—

_images/ModelAdapter.png
modelAdapter

createTopologyRequestListener(...)

registerUnderlayTopologyListener(...)

createOverlayItemTranslatorf

_images/Load_All_Instances.png
D instances - Openstack x || ¢

c 192.168.64.20,

Instance
Name

Network
Orches

Admin

Image
Name

cirros-
032
X86_64-
uec

cirros-
032
X86_64-
uec

cirros-
032
X86_64-
uec

cirros-

032-

ciros-

1P Address

10111211

10111213

10111212

10111214

size

mLnano
| 64ME
RAM |1
VeRU |
OBytes
Disk

mLnano
| 64ME
RAM |1
veRU |
OBytes
Disk

mLnano
| 64ME
RAM |1
VeRU |
OBytes
Disk

mLnano
| 64MB

RAM |1
VeRU |

OBytes

Disk

mLnano
164ME.

Availability Power
Status Zone state

Spawning

Build Spawning

Spawning

Build

Uptime.

0 minutes,

0 minutes|

0 minutes,

0 minutes,

_images/MPLS_VPN_Service_Diagram.png
‘Customer Site 72

Customer Site #1

Provider Domain

Customer Ste 73

_images/Network_topology_model_flow_diagram.png
(Network-topology.yang |

network-topology node

—_—-

UnderlayTopologyListener |

Underlayltem(item, leafNode, topologyld, nodeld, CorrelationltemEnum.Node)

TopologyOperator

_images/MonitorResponse.png
0VsSDB
SB-Plugin

Configuration
Service

6. Notify Monitor Response
to listeners

Inventory 5. Monitor Response cached
Service

] 4. Monitor Response PoJO

3. Response mapping

ovsdb pojo mapper | response.id -> Monitor

Response POJO

I 2. demarshaled Json Object

json-rpc library

1. Monitor Response message from the
ovsdb-server for an earlier monitor request

host1 : ovsdb-server

_images/MutiController_Example_diagram.png

_images/LinkComputation.png

_images/LinkComputationFlowDiagram.png
OverlayTopologyListener Underlay TopologyListeners

TopologyRequestHandler

‘Overlay Nodes initLinkComputation Underlay Links

LinkCalculator

processChanges.

Node Node or Link Link

update storedOverlayNodes. update waitingLinks

(caleulatePossibleLink for each link in waitingLinks |

src found? Ves — set srcFound

srcFound && dstFound?

Yes

waitingLinks -> matchedLinks
write matched link

_images/Library_lifecycle.png
SwitchConnectionProvider

[configure(Collection <ConnectionConfiguration>) |

setSwitchConnectionHandler()

i
E

—
Tcp Handlerw

—

] accept() - false
7] accept() - true

TLS Detector

3 e TLS Handler
"{8] onSwitchConnected(ConnectionFacade)
R e OF Frame Decoder

OF Version Detector
OF Decoder
OF Encoder
Delegating Inbound Handler

[9] set system, message
and connectionReady listener

N

Connection Adapter

nav.xhtml

 Table of Contents

 		
 Welcome to the OpenDaylight Handbook!

 		
 Release Notes

 		
 Target Environment

 		
 For Execution

 		
 For Development

 		
 Known Issues and Limitations

 		
 Security Limitations

 		
 Project-specific Release Notes

 		
 AAA

 		
 Application-Layer Traffic Optimization (ALTO)

 		
 BGP LS PCEP

 		
 Bit Indexed Explicit Replication (BIER)

 		
 Cardinal

 		
 Controller

 		
 Data Export/Import

 		
 Integration/Distribution

 		
 Dlux

 		
 DluxApps

 		
 eman

 		
 FaaS - Fabric As A Service

 		
 Groupbasedpolicy (GBP)

 		
 Genius (Generic Network Interface, Utilities & Services)

 		
 Infrautils

 		
 L2Switch

 		
 LISP Flow Mapping

 		
 MD-SAL

 		
 NEtwork MOdeling(NEMO)

 		
 NETCONF

 		
 NetVirt

 		
 Neutron Northbound

 		
 NIC

 		
 OCP-plugin

 		
 ODL Parent

 		
 OF-CONFIG

 		
 OpenFlowPlugin Project

 		
 OpFlex

 		
 OVSDB Project

 		
 PacketCable

 		
 Service Function Chaining

 		
 SNMP Plug-in

 		
 SNMP4SDN

 		
 Scalable-Group Tag eXchange Protocol (SXP)

 		
 Topology Processing Framework

 		
 Table Type Patterns

 		
 Unimgr

 		
 Unified Secure Channel

 		
 Honeycomb Virtual Bridge Domain

 		
 VTN

 		
 YANG Tools

 		
 Service Release Notes

 		
 Nitrogen-SR1 Release Notes

 		
 Nitrogen-SR2 Release Notes

 		
 Getting Started Guide

 		
 Introduction

 		
 What’s different about OpenDaylight

 		
 What you’ll find in this guide

 		
 Overview

 		
 Who should use this guide?

 		
 OpenDaylight concepts and tools

 		
 OpenDaylight Karaf Features

 		
 AAA

 		
 ALTO

 		
 Border Gateway Protocol (including Link-state Distribution (BGP)

 		
 Border Gateway Monitoring Protocol (BMP)

 		
 Control and Provisioning of Wireless Access Points (CAPWAP)

 		
 Controller Shield

 		
 Device Identification and Driver Management (DIDM)

 		
 DLUX

 		
 Fabric as a Service (FaaS)

 		
 Group Based Policy (GBP)

 		
 Internet of Things Data Management (IoTDM)

 		
 Link Aggregation Control Protocol (LACP)

 		
 Location Identifier Separation Protocol (LISP) Flow Mapping Service (LISP)

 		
 NEMO

 		
 NETCONF

 		
 NetIDE

 		
 OVSDB-based Network Virtualization Services

 		
 OpenFlow Configuration Protocol (OF-CONFIG)

 		
 OpenFlow plugin

 		
 Path Computation Element Protocol (PCEP)

 		
 Secure Network Bootstrapping Interface (SNBi)

 		
 Service Function Chaining (SFC)

 		
 SNMP Plugin

 		
 SNMP4SDN

 		
 Source-Group Tag Exchange Protocol (SXP)

 		
 Topology Processing Framework

 		
 Time Series Data Repository (TSDR)

 		
 Unified Secure Channel (USC)

 		
 Virtual Tenant Network (VTN)

 		
 OpenDaylight Experimental Features

 		
 Network Intent Composition (NIC)

 		
 UNI Manager Plug-in (Unimgr)

 		
 YANG-PUBSUB

 		
 Other features

 		
 OpFlex

 		
 Network embedded Experience (NeXt)

 		
 API

 		
 Installing OpenDaylight

 		
 Install OpenDaylight

 		
 Install the Karaf features

 		
 Karaf OpenDaylight Features

 		
 Other OpenDaylight features

 		
 Experimental OpenDaylight Features

 		
 Install support for REST APIs

 		
 Project-Specific Installation Guides

 		
 Centinel Installation Guide

 		
 NetVirt Installation Guide

 		
 OpFlex agent-ovs Install Guide

 		
 TSDR Installation Guide

 		
 VTN Installation Guide

 		
 Common OpenDaylight Features

 		
 OpenDaylight User Interface (DLUX)

 		
 Setting Up Clustering

 		
 Persistence and Backup

 		
 Running XSQL Console Commands and Queries

 		
 OpenDaylight Version

 		
 Security Considerations

 		
 Overview of OpenDaylight Security

 		
 OpenDaylight Security Resources

 		
 Deployment Recommendations

 		
 Securing OSGi bundles

 		
 Securing the Karaf container

 		
 Securing Southbound Plugins

 		
 Securing OpenDaylight using AAA

 		
 Security Considerations for Clustering

 		
 How to Get Help

 		
 OpenDaylight User Guide

 		
 Overview

 		
 OpenDaylight Controller Overview

 		
 Using the OpenDaylight User Interface (DLUX)

 		
 Setting Up Clustering

 		
 Persistence and Backup

 		
 Project-specific User Guides

 		
 ALTO User Guide

 		
 Authentication, Authorization and Accounting (AAA) Services

 		
 BGP User Guide

 		
 BGP Monitoring Protocol User Guide

 		
 BIER User Guide

 		
 CAPWAP User Guide

 		
 Cardinal: OpenDaylight Monitoring as a Service

 		
 Centinel User Guide

 		
 Data Export/Import User Guide

 		
 DIDM User Guide

 		
 Distribution Version reporting

 		
 eman User Guide

 		
 Fabric As A Service

 		
 Genius User Guide

 		
 Group Based Policy User Guide

 		
 L2 Switch User Guide

 		
 Link Aggregation Control Protocol User Guide

 		
 LISP Flow Mapping User Guide

 		
 NEtwork MOdeling (NEMO)

 		
 NETCONF User Guide

 		
 NetIDE User Guide

 		
 NetVirt User Guide

 		
 Neutron Service User Guide

 		
 Network Intent Composition (NIC) User Guide

 		
 OCP Plugin User Guide

 		
 ODL-SDNi User Guide

 		
 OF-CONFIG User Guide

 		
 OpenFlow Plugin Project User Guide

 		
 OpFlex agent-ovs User Guide

 		
 OVSDB User Guide

 		
 PCEP User Guide

 		
 PacketCable User Guide

 		
 Service Function Chaining

 		
 SNMP Plugin User Guide

 		
 SNMP4SDN User Guide

 		
 SXP User Guide

 		
 TSDR User Guide

 		
 TTP CLI Tools User Guide

 		
 User Network Interface Manager Plug-in (Unimgr) User Guide

 		
 Unified Secure Channel

 		
 Virtual Tenant Network (VTN)

 		
 OpenDaylight with Openstack Guide

 		
 Overview

 		
 Installing OpenStack

 		
 Installing OpenDaylight

 		
 OpenStack with NetVirt

 		
 OpenStack with GroupBasedPolicy

 		
 Using Groupbasedpolicy’s Neutron VPP Mapper

 		
 OpenStack with Virtual Tenant Network

 		
 Developer Guide

 		
 Overview

 		
 Developing Apps on the OpenDaylight controller

 		
 Project-specific Developer Guides

 		
 ALTO Developer Guide

 		
 Authentication, Authorization and Accounting (AAA) Services

 		
 BGP Developer Guide

 		
 BGP Monitoring Protocol Developer Guide

 		
 BIER Developer Guide

 		
 CAPWAP Developer Guide

 		
 Cardinal: OpenDaylight Monitoring as a Service

 		
 Controller

 		
 Data Export/Import Developer Guide

 		
 DIDM Developer Guide

 		
 Distribution Version reporting

 		
 Distribution features

 		
 DLUX

 		
 eman Developer Guide

 		
 Fabric As A Service

 		
 Infrautils

 		
 IoTDM Developer Guide

 		
 L2Switch Developer Guide

 		
 LACP Developer Guide

 		
 LISP Flow Mapping User Guide

 		
 NEtwork MOdeling (NEMO)

 		
 NETCONF Developer Guide

 		
 Network Intent Composition (NIC) Developer Guide

 		
 NetIDE Developer Guide

 		
 NetVirt Developer Guide

 		
 Neutron Service Developer Guide

 		
 Neutron Northbound

 		
 ODL Parent Developer Guide

 		
 OCP Plugin Developer Guide

 		
 ODL-SDNi Developer Guide

 		
 OF-CONFIG Developer Guide

 		
 OpenFlow Protocol Library Developer Guide

 		
 OpenFlow Plugin Project Developer Guide

 		
 OpFlex agent-ovs Developer Guide

 		
 OpFlex genie Developer Guide

 		
 OpFlex libopflex Developer Guide

 		
 OVSDB Developer Guide

 		
 PCEP Developer Guide

 		
 PacketCable Developer Guide

 		
 Service Function Chaining

 		
 SNMP4SDN Developer Guide

 		
 SXP Developer Guide

 		
 Topology Processing Framework Developer Guide

 		
 TTP Model Developer Guide

 		
 TTP CLI Tools Developer Guide

 		
 User Network Interface Manager Plug-in (Unimgr) Developer Guide

 		
 Unified Secure Channel

 		
 Virtual Tenant Network (VTN)

 		
 YANG Tools Developer Guide

 		
 Java API Documentation

 		
 Documentation Guide

 		
 Style Guide

 		
 Formatting Preferences

 		
 Key terms

 		
 Common writing style mistakes

 		
 reStructuredText-based Documentation

 		
 Directory Structure

 		
 Documentation Layout and Style

 		
 Troubleshooting

 		
 Project Documentation Requirements

 		
 Submitting Documentation Outlines (M2)

 		
 Expected Output From Documentation Project

 		
 Project Documentation Requirements

 		
 OpenDaylight Release Process Guide

 		
 Overview

 		
 Processes

 		
 Project Standalone Release

 		
 Namespaces

 		
 Autorelease

 		
 Project lifecycle

 		
 Branch Cutting

 		
 Release Schedule

 		
 Simultaneous Release

 		
 Milestone Readouts

 		
 Supporting Documentation

 		
 Genius Documentation

 		
 Genius Pipeline

 		
 High Level Pipeline

 		
 Services Pipelines

 		
 Genius Design Overview

 		
 Genius Module Dependencies

 		
 Genius based packet pipeline

 		
 Genius Design Specifications

 		
 Design Specification Template

 		
 ITM Tunnel Auto-Configuration

 		
 Load balancing and high availability of multiple VxLAN tunnels

 		
 OF Tunnels

 		
 Traffic shaping with Ovsdb QoS queues

 		
 Service Binding On Tunnels

 		
 Service Recovery Framework

 		
 Infrautils Documentation

 		
 InfraUtils Design Specifications

 		
 Design Specification Template

 		
 Job Coordinator

 		
 NetVirt Contributor Guide

 		
 NetVirt Design Specifications

 		
 Design Specification Template

 		
 ACLs - ACL Statistics

 		
 ACLs - Remote ACL - Indirection Table to Improve Scale

 		
 ACLs - ACL reflection on existing traffic

 		
 Conntrack Based SNAT

 		
 Cross site connectivity with Federation service

 		
 DHCP Server with Dynamic Allocation Pool

 		
 Discovery of directly connected PNFs in Flat/VLAN provider networks

 		
 ECMP Support for BGP based L3VPN

 		
 Element Counters

 		
 Hairpinning of floating IPs in flat/VLAN provider networks

 		
 IPv6 Data Center to internet connectivity using L3VPN

 		
 IPv6 Inter Data Center connectivity using L3VPN

 		
 IPv6 L3 North-South support for Flat/VLAN based Provider Networks

 		
 L3VPN Dual Stack for VMs

 		
 Listener Dependency Helper, avoids waiting for dependent IID

 		
 Migrate the SFC classifier from the old to the new netvirt

 		
 Netvirt counters

 		
 Policy based path selection for multiple VxLAN tunnels

 		
 QoS Alert

 		
 Quality of Service

 		
 Setup Source-MAC-Address for routed packets to virtual endpoints

 		
 Support for TCP MD5 Signature Option configuration of Quagga BGP

 		
 Support of VXLAN based L2 connectivity across Datacenters

 		
 Support of VXLAN based connectivity across Datacenters

 		
 Temporary SMAC Learning

 		
 VLAN provider network enhancement

 		
 VNI based L2 switching, L3 forwarding and NATing

 		
 Neutron Port Allocation For DHCP Service

 		
 Openflowplugin Documentation

 		
 Openflowplugin Design Specifications

 		
 Reconciliation Framework

 		
 SFC Documentation

 		
 SFC Design Specifications

 		
 Design Specification Template

 		
 Karaf Command Line Interface (CLI) for SFC

_images/ocpplugin-state-machine.jpg
| tisten/-

R connpced NOtOCP_IND[Hello} & Nygo
Disconnect
Moo Tuo Timeout/Disconney

Disconnection/-

\ oct oty geveyhine e Moo emetin
oo oyl

/

Dischnnection
I

o) —
T e s

_images/odl-neutron-service-developer-architecture.png
admin/user requests on neutron resource

l OpenStack Neutron REST API

New
extension

OpenStack Neutron

/ Neutron REST API OpenDayLight

OpenDaylight YANG-modeled RESTCONF

U -

MD-SAL: Neutron Service model
new extenslon

New provider
provider for
new extension

A

_images/odl-neutron-service-architecture.png
OpenStack Neutron

Neutron REST API

OpenDaylight YANG-modeled RESTCONF

3

¥

Neutron Service

) [

OpenDayLight

_images/odl-ofp-feature-tree.png
odaperdlom plugin-alli

od-operfiom plugin-

edbopenfon uginflom series i

[——

. S
- edboperfionpluginfom-seriesdi

[——

-
adboperfionpusin-apporfgpusherds

odboperfionplugn-app bl-mis-enforr

[——

-

adbopenflonplugin-tmodebi

v
adlaiaal s ———y

[r—

_images/odl-ofp-add-flow.png
sdl User RPC request (sucess))

OpenFlowjava

Statistics Context

Device Context

Callback

T
|
2 comm\tEnt‘ry()

2.1: onMessage(OFPT BARRIER REPLY)

4: createCallback()

r<

<<OFPMP_FLOW>>
7: onMessage()

<<success>>
5: setResult()

6: notification()

Request context SalFlowService RPC Broker User

T T T T
| | | |
| | | 3: invokeRPC() : future |
Il 1 1.1: addFlow() : future

reateRequestContext() | | . _ 5

————————— >

N

_images/odl-ofp-ofplugin-debug-stats.png
Java Monitoring & Management Console

Connection Window _Help

eo0eo pid: 96118 org.apache karaf.main.Main
Overview | Memory | Threads | Classes | VM Summary b=
» [ZMimplementation ‘Operation invocation
» {1 com.sun.management RS etege
» (2 connector
> @java.lang MBeanOperationinfo
> @javanio Name Value
> @java.uiiogging Operation:
» [org.apache aries.blueprint Name makeMsgStatistics
» & org.apache.karaf Description makeMsgstatistics
» [org.eclipse.equinox.region.domain impact UNKNOWN
v org.opendaylight controller RewmType Java.lang.String
» @ ConfigRegistry
» [DOMDataBroker
» [inMemonyConfigbatastore
» [InMemoryOperationalDatastore
» [Module
» @ NetconfNotificationProvider
v (8 RuntimeBean
¥ 8 msg-spy-service-impl L
¥ @ msg-spy-service-impl
> Atributes
Descriptor
Name Value
Operation:
openType javax management openmbean SimpleType(nam
> [shutdown originalType Java.langString

» [serviceReference
» [osgi.compendium
» [osgi.core

_images/odl-ofp-handshake.png
act handshake J

HELLO
message

received

i [false]

hag version D! P
[false]

lastReceived\Version
eceivedVersion

commaNyversion

lastPpefoseMersion
<ceivedVerghon

[falge]

Ifalfe] ttrde)
Ifaife]

BposecdVRgsion ==
remgreVgréion

get features |<

_images/ofoverlay-1-components.png
‘Group Based Policy Neutron AP!

> Dota Change Notification
— Dot store write
——> Arcy/Notfications

_images/odl-ofp-session-establishment.jpg
OpenFlowjava

Connection Manager

RPC Manager RPC Broker

| 1: onSwitchConnected()() gy
M L1 new() >| Connection Context
1.1.1: OFPT HELLOQ
'k f 7777777777 i
,,,,,,,,,,,,, |
2: OFPT_HELLOQ)
i L
2.1: OFPT_FEATURES REQUEST()
e e T
3: OFPT_FATURES REPLY() N
o TTETET e
4: deviceConnected() I
» i 4.1: newTransactionChain() ;
3 > <<create>>
<<create>> . |fTansactionChain |k ———____________________ AW
4.3: OFPMP_DESC()() el
Het bescoo 1L e I U
,,,,,,,,,,,,,,,,,,,,,,,, e st s s s s |
4.2.1: createDeviceFegt{iresForOF <sufix>()
4.2.1.1: OFPMP| TABLE() f z
7 e e [
M b/ currently suffix is
At this point we x 5 -
continue processing We fopen éh‘s a3 -13
notifications coming neeaed Lo giscover
it Sta?cho(kzjebc‘ts onthe
swicigepe oo Sk £ || e (o
puting them nto the meter features, port <
i description). Sending
Imultiple requests in
e do ot ot paralelisanopton. | |]
| |
5. OFPT_MULTIPART REPLY() |
5.1: callback() ‘ |
T » 1 5.1.1: onDeviceCtxLevelUp(deviceContex) P
as needed to <<create>>
clscoven oy L __5LLlinew _ _ _ 5] stats Context
objects on the switch
(groups, meters,
flows etc.) | S
Y . i o 5.1.1.2: sendMessage(requestContext, msg)
\ sehiiMessage!
5.1.1.2.1.1: ofp_aggredjaté stats request() T 7777777777 1
|
a0 0 Hh—_— >
emsmsmsmsne pem s ns s s s s e s s s e e e e B R R R e
6: ofp_aggregate stits reply()
P 6.1: onMeEsage() > |
e e e e e e e] 1 6.1.1: onMessage() | Nl
! 6.1.1.1: put()
6.1.1.2: stateSynchronized() !
|
|
|
|
6.1.1.2.1: onDeviceContextLelelUp(deviceContext) <<create>>
; RPC Context
} 6.1.1.2.1)1.1: register()
| | A A | R | o S—— gl
D‘ 6.1.1.2.12 or\Dev\ceConte><tLeve\Up(de‘v\ceContext) | Eemmm—————
. T
|
| PSR T | e ———— T .
6.1.1.2(2: inftiaiSubmitTransaction()
| bi
e
6.1.1.2.3: commit) T
.
6.1.1.2.3.1: submit(J]
T
j
h
i i S S S S S T '
U | !
|
| T)
e e T | | !
e e e e S e S S T I I I
Ll | | | [At this point the
‘ | | | switch s fully
| | controlled, stats
| | | | | manager polls
| | | | | statistics and users
| | | | can request things
| | i | | via RPCs
|
| | | | |

_images/ofoverlay-2-components.png
OfOverlayRenderer

Swich Update Task Polyanager
(iows) nes
Swicn Engpoit s
Manager Manager Polley "
invertory
Inventory Inventory Endpoints CDNFlGlIRATK)N 'OPERATIONAL
CONFIGURATION OPERRTIONAL OPERATIONAL plsiay datasiore
Gatastore " catastors ‘Gatastors

_images/neutronmapper-gbp-mapping-securitygroup1.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/neutronmapper-gbp-mapping-securitygroup.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/neutronmapper-gbp-mapping-subnet-example1.png
has parent

has parent

has parent

Neutron entities Group Based Policy entities

_images/neutronmapper-gbp-mapping-subnet-example.png
has parent

has parent

has parent

Neutron entities Group Based Policy entities

_images/neutronmapper-gbp-mapping-subnet1.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

port

é#é}.éﬂ

_images/neutronmapper-gbp-mapping-subnet.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

port

é#é}.éﬂ

_images/ocp-sb-plugin.jpg
OPEN

Tase Newo R Seniee Funenans
2oty £ opensack service
Shorest
Topclouy Host 5 Networic
Tracker | coraring | - Comie

Service Abstraction Layer (SAL)
(plug-in mgr., capability absiractions, flow programming,

Southbound Interfaces
ovsos s ecer Wl & Protocol Plugins

DataPlane Elements
‘AdditionalVirtual & Vatuet St

Physi

Controller Piatform

OpenFiow

OpenFlow Enabled

[
2 | Head
1
- - ((3

Physical Device
Interfaces)

_images/nsh-pkt-headers.jpg
NSH

Service Path:
The Service Chain ID

Index:
The hop in the
Service Chain

Et NSH

th hdr Et

EtherType=0x894f
Example: NSH encapsulated in Ethernet

_images/ocpagent-state-machine.jpg
RRHstartup /-

conotercomectatteipt

faled/-

cLosen. -

Moo Trag Timeout/
Disconnect

TraTimecut/
s Ty Timegut/ Disconnect
AT R e b

/

Establishing

Niao* TyoTimeout/
Discomnect
Discomection/

oce_ACK(FAIL/
restart Ty

oc?_ack(oK)/
Testart T

Established Maintenance

I Oy S A

SendResponse, restar Ty, Senderror Response, SendResponse, estat Ty,
restart Ty

_images/ocp-sb-plugin1.jpg
OPEN

Tase Newo R Seniee Funenans
2oty £ opensack service
Shorest
Topclouy Host 5 Networic
Tracker | coraring | - Comie

Service Abstraction Layer (SAL)
(plug-in mgr., capability absiractions, flow programming,

Southbound Interfaces
ovsos s ecer Wl & Protocol Plugins

DataPlane Elements
‘AdditionalVirtual & Vatuet St

Physi

Controller Piatform

OpenFiow

OpenFlow Enabled

[
2 | Head
1
- - ((3

Physical Device
Interfaces)

_images/dlux-yang-topology1.png
=} Yangul

SR

opentiows

_images/ui-4-governanceview-delivered-1-subject.png
- _Subject detail

Click to view rule info

_images/ui-4-governanceview-delivered-0.png
Double-click to
dispay EPG detal

Delivered policy

Rules

_images/dlux-yang-ui-screen1.png

_images/ui-4-governanceview-renderer.png
[Je=—=ren)
O (ctorsvintion) _enan stow

anscrpuon
“

ascription
temquieg
e

anscrpion

e

@ (comsmerarmmon) 1+ omer woe

Click to
select node

Sen the st through a Service Function Chain
688GBT058-4cH Hber-0356004083)

stonunaum

The named chain to mateh against
raureg
stechainname

—
=

Renderer stte

Operational constraints

_images/dlux-yang-ui-screen.png

_images/ui-4-governanceview-delivered-2-epg.png
Epg st

oneP_group

Endpoint group
detail

Click to view info

_images/gerrit-update-committer-rights.png
Reference: [refsheads/stable/<release-name>

elease Engineering Team

A o
Label Code-Review
[ERa elease Engineering Team

Add Growp

Submit
Registered Users

Release Engineering Team
Ada Gro

O excusive

O excusive

O excusive

XXX XX XX X

_images/ui-5-expresssion-2.png
ndpoint groups

CRUD Buttons

0a875417.1833 4086 8221 1808535405

Descryon

Inra group oty

_images/flow_filter_example.png

_images/ui-5-expresssion-1.png
Pollcy expression > Poly.

Tenants st
Choose tenant -
Policy
Choose section
for CRUD operation Tenans
Enapom grouss

- L

]

_images/graphviz-cd368286bc4284e7831b14160c0081188356f87a.png
etf-inet-types-2013-07-15
etf-yang-types-20130715
iana-if-type-2014-05-08

\ yang-binding

southbound-api

ietf-interfaces

openflowplugin-extensic a

/
!

’ idmanager-api

interfacemanager-shell org.apache karaf.shell.console

Z
D
<

lockmanager-impl

_images/ui-5-expresssion-4.png
Config
Topology.

Topapsy typ

_images/gerrit-update-create-reference.png
Reference: refsiheads/stable/carbon
Create Reference
Release Engineering Team

Exclusive

_images/ui-5-expresssion-3.png

_images/host-only-vbox.png
Oracle VM VirtualBox Manager

Snapshots

Mininet-VM - Network

=9 P »

Display Storage Audio Ports Shared Folders

{Adapter 1 |RGEPIEHEN] Adapter 3 | Adapter 4 |

V| Enable Network Adapter

Attached to: [Host-only Adapter _ +

Name:

: [vboxnet0

9 Advanced

Adapter Type: | Intel PRO/1000 MT Server (82545EM)

Promiscuous Mode: [Deny

MAC Address: 080027065EC6

[Cable connected

Port Forwarding

[Cancel |

| Device Filters: 0 (0 active)

_images/unimgr-lso-arch.png
'REFERENCE ARCHITECTURE

Customer Domain

SP Domain

v
Customer
Application

Coordinator
-~

> Business
Applications

LEGATO
(BUS:SOF)

Service Orchestration
Functionality

Infrastructure Control
and Management

ADAGIO (ICM:ECM)

Element Control
and Management

Network Infrastructure

Partner Domain

Business
Applications

LEGATO
(BUS:SOF)

INTERLUDE Service Orchestration
Functionality
PRESTO
SOF:ICM)

Infrastructure Control
and Management

ADAGIO (ICM:ECM)

Element Control
and Management

_images/graphviz-f4d10d9c862bf74c4e8180c182f32909207da27a.png
resourcemanager - resourcemanager-impl - resourcemanager-api

alivenessmonitor
alivenessmonitor-impl-protocols

alivenessmonitor-impl

‘ alivenessmonitor-api

"
=

P
A‘l

idmanager

_images/ui-6-wizard.png
Access model wizard

Tonants
m i
endponnt
s Aga contat

Contracts

subject st

Rule st

_images/dlux-yang-topology.png
=} Yangul

SR

opentiows

_images/dlux-yang-sub-api-screen1.png
of st element key

—

O ficid which mokes key of st element

_images/ui-3-governanceview-expressed.png
Govamance > rstes potey

e Sxrsse oy
=

S [- =y G =

Oeteres oy

[Ep——

Endpoint groups

v\ e
(ko seect olement (oaa of slected sement f———

_images/transport_processors_class_diagram.png
fcofRspProcessor

.SfcRspTranspuancessurEase

configureTransportingressFlows()
configurePathMapperFlows()
configureNextHopFlows(]
configure TransportegressFlows()

.SfcRsmecessuMan .SfcRsmecessurMp\s .SfcRsmecessurNsthgpe .SfcRsmecessurLug\ca\Sﬂ

Transport processors used by the Rsp Processor (simplfied)

_images/dlux-yang-list-button1.png
Open vswitch
200

.

button for forwarding and bockwarding
of list elements aome butcons (n row fist

_images/ttp-screen2-applied-basic-auth.png
POSTMAN

History Collections f | Normal | BasicAuth | DigestAuth | OAuth1.0 | OAuth2.0 | @ Noenvironment~
Nothing in your history yet. You can automatically

http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/ PUT 4| @URLparams | @ Headers(2)
save and access your sent requests here.

Content-Type application/json

Add preset~ Manage presets

Header

Value &

formdata x-www-form-urlencoded raw binary JSON(application/json) v

“table-type-patterns”: {
“table-type-pattern”: [
{

"security’
“doc”
“This TTP is not published for use by ONF. It is an example and for",
“illustrative purposes only.”,
“If this TTP were published for use it would include”,
“guidance as to any security considerations in this doc member."
]

NoM_netadat:
authority”: "org.opennetuorking. faug",

4
m Preview Prerequestscript Tests Addto collection

Type to filter

_images/dlux-yang-api-specification1.png

_images/ttp-screen1-basic-auth.png
806
POSTMAN

History Collections

& o .gemh OAuth1.0 | OAWth2.0 | @ Noenvionment~

Nothing in your history yet. You can automatically

Clserame_aomin > te
save and access your sent requests here. -

- The authorization header willbe generated

and added as 2 custom header.

@ URL params (| @ Headers (1)

Sntent-Type application/ison Add preset~ Manage presets
Header

Value &
9

form-data x'www'lcrmrurlenccdmary J50N (application/json) +
{

[
“This TTP is not published for use by ONF. It is an example and for"
“illustrative purposes only.”,
“If this TTP were published for use it would include”,
“guidance as to any security considerations in this doc member."

authority”: “org.opennetworking. fawg",

B oo oo T

Add to collection

Type to filter

_images/dlux-yang-list-elements.png

_images/ttp-screen4-get-json.png
806
POSTMAN

History Collections

[E=3 httpi//localhost:8181 /restconf/config/on
fttpopendaylight ttps/onf-ttp:table-ty...

https//localhost:8181 restconf/config/on
fetpopendaylight ttps/onf-ttp:table-ty...

Type to filter

o

Normal | Basic Auth | Digest Auth | OAuth1.0 | OAuth2.0 | @ Noenvironment~
http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/

Authorization Basic YWRtaW46YWRtaWd= Add preset ~

‘Accept application/json
Value &

Prerequestscript | Tests Addto collection

sody | Cooies | teaders(3) | Tess | (G oo e

Pretty Raw Preview Q gk JSONT

{
- table-type-pattems: {

"If this TTP were published for use it would include",

"guidance as to any security considerations in this doc member.",
ustrative purposes only.",

"This TTP is not published for use by ONF. It is an example and for"

}
- NDM_metadata:
type: "TTPVI",
- doc:[

"and an ACL table.",
"Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast only),"

1

authority: "org.opennetworking fawg",

name: "1 9.1 LACT <"

@ URL params

Manage presets.

@ Headers (2)

_images/dlux-yang-list-button11.png
Open vswitch
200

.

button for forwarding and bockwarding
of list elements aome butcons (n row fist

_images/ttp-screen3-sent-put.png
6 00 e
POSTMAN

History Collections o Normal | BasicAuth | Digest Auth | OAuth1.0 | OAuth2.0 =~ @ Noenvionment~
[htp//localhost:8181 restconf/config/on http://localhost:818 1/restcont/config/onf-ttp:opendaylight-ttps/ont-ttpitable-type-patterns/ PUT 4| @URLparams | @ Headers(2)
fetpopendaylight ttps/onf-ttp:table-ty...

Content-Type application/json Addpreset~ Manage presets

Authorization Basic YWRtaW46YWRtaW4=

Header Value &

formdata x-www-form-urlencoded raw binary JSON(application/json) v

“table-type-patterns
“table-type-patter
{

"security”: {
“doc’

his TTP is not published for use by ONF. It is an example and for”,
illustrative purposes only.”,

“If this TTP were published for use it would include”,

“guidance as to any security considerations in this doc member."

org.opennetworking. fawg", 2

review Prerequestscript Tests Add to collection m

Sody | Cooies | tenders(s) | Tess | (AT ook [

Pretty Raw Preview

Q g HTMLY Copy

Type to filter «

_images/dlux-yang-list-warning.png

_images/tutorial_architecture_diagram.png
@ 1111132

192.168.16.30

oDL

192.168.16.11

192.168.16.33

192.168.16.31 ﬁ 22232

192.168.16.32

=
0

2222132

0

0

_images/dlux-yang-list-elements1.png

_images/ttp-screen5-get-xml.png
POSTMAN
History Collections f Normal | BasicAuth | DigestAuth | OAuth1.0 | OAuth2.0 | @ Noenvironment~
(=3 hitpi/localhost:8181 restconf/config/on http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/ GET 4| @URLparams | @ Headers(2)

Fttpiopendaylight-ttps/onf-ttp:table-ty...

[httpiocalhost 181 restconf/configlon Authorization Basic YWRtaW46YWRtaWd= | e

Fttpropendaylight-ttps/onf-ttp:table-ty...

Accept
https//localhost:8181 /restconf/config/on
fetpopendaylight ttps/onf-ttpitable-ty... Header Value [:4

eview Prerequestscript Tests Addto collection m

Sody | Cooies | teaders(3) | Tess | (G o0 e

Pretty Raw Preview Q gk oxML~ Copy
<table-type-patterns xnlns="urn:onf:ttp">
<table-type-pattern>

<security>
<doc> If this TTP were published for use it would include </doc> v table-type-patterns xmins: urn:onf:ttp
<doc> guidance as to any security considerations in this doc member. </doc> v table-type-pattern
<doc> illustrative purposes only. </doc> > security
<doc> This TTP is ot published for use by ONF. It is an example and for </doc> » < NDM_metadata

</security> O

<NM_netadata> O
<type> TTPVL </type> o
<doc> and an ACL table. </doc> 9 ——
<doc> Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast
only), </doc> > meter_table
<authority> org.opennetuorking. faug </authority> > Jable map
<name> 12-13-ACLs </nane> > Qablemap,
<version> 1.8.@ </version> »> table map
<OF _protocol_version> 1.3.3 </0F _protocol_version> > table_map

</NOM_metadata> > table_map

Type tofilter i <identifiers> > table_map

_images/dlux-yang-sub-api-screen.png
of st element key

—

O ficid which mokes key of st element

_images/ui-2-governanceview.png
Expressed

policy

-
Sewet o

Renderer

configuration

Renderer

state

Soramsnce

[p—

[ET—

Govermance)
Exresedory
Deteres ey

porational consraints

_images/dlux-yang-list-warning1.png

_images/ui-1-basicview.png
GBP

Policy expressi

V]

Governance e e erational constraints

derer configuration

_images/dlux-with-switches.png
OpenDaylight Dlux x || Login - OpenStack Dashbc x /[OpenDaylight Diux
() OpenDayiigt gin - Op () OpenDayiigt

& *® @G [10.3.8.209:8181/dlux/index.htmi/topology|

OPEN

S Topology

Controls

R

-

openflow 41913073631822

openflow 9923240777543

(|

Host

=

openflow:38315752453967

b

Dl

ol

]

_images/snmp4sdn_modules.jpg
/ SNMP4SDN Plugin \

User—expusmg modules:

Flow configuration

Switch-talking modules:

SNMPListener /

_images/dlux-topology1.png
S Topology

Controls

% Topology
Reload

host:06:5:75:3

hosti7a:8b:40:25:¢5:30

opentio:1

host:42:6¢:62:64:08:56

Posti36:1c4a:3:cbiat

host:f2:b3:63:50:28:40

_images/snmp4sdn_in_odl_architecture1.jpg
BERTVEI R E RN RLIRE Proposed MD-SAL API

vendor-specific
interfaces

Ethernet switches

_images/dlux-yang-api-specification.png

_images/neutronmapper-gbp-mapping-network-example.png
has parent
has parent

Group Based Policy entities

_images/neutronmapper-gbp-mapping-network.png
OPEN

DAYLIGHT

endpoint

ep-group

contract

13
context

]

o
P
<in

_images/neutronmapper-gbp-mapping-network-example1.png
has parent
has parent

Group Based Policy entities

_images/neutronmapper-gbp-mapping-port-example.png
Subnet

Neutron entities

has parent

has parent

has L3-context

has L2-context

has network containment

Group Based Policy entities

_images/neutronmapper-gbp-mapping-network1.png
OPEN

DAYLIGHT

endpoint

ep-group

contract

13
context

]

o
P
<in

_images/neutronmapper-gbp-mapping-port.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/neutronmapper-gbp-mapping-port-example1.png
Subnet

Neutron entities

has parent

has parent

has L3-context

has L2-context

has network containment

Group Based Policy entities

_images/neutronmapper-gbp-mapping-router.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/neutronmapper-gbp-mapping-port1.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/neutronmapper-gbp-mapping-router1.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/validation.png
<<interface>>
MessageParser

<<interface>>
MessageSerializer

+ parseMessage() : Message

+ serlalizeMessage() : void

AbstractMessageParser

+ validate() : Message
+ serializeMessage() : void

i

PCEPErrorMessageParser

+ valdate() : void
+ serializeMessage() : void

T

Stateful07ErrorMessageParser

+ valdate() : void
+ serializeMessage() : void

_images/keystonerealm-authentication1.png
Co

oller

AAA

uthRealm)

®

Keystone
Server (v3)

_images/vtn-coordinator-api-architecture.png
VTN Application (Web Client)
|
Web Server (Apache Tomcat)
Web API Serviet

VTN Service Java API Library

Proprietary IPC Framework

_images/keystonerealm-authentication.png
Co

oller

AAA

uthRealm)

®

Keystone
Server (v3)

_images/vlanmap_using_mininet.png

_images/l2switch-hosts.png
€ - C [} 10.194.126.91:8080/restconf/operational /network-topology:network-topology/topology/flow:1/
i Apps [CEC [Floorplans ik CiscoMac

Raly G Jenkins g Labvan [} oMuthsigCheck (3] Quad (I NOSTG

‘This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<topology xmlng="urn:TBD:params:xmlins:yang:network-topology”>
<topology-id>£flow:1</topology-id>
v<node>
v<host-track:attachnent-points xmlns:host-track="urn:opendaylight :host-tracker">
<tp-id xmlns="urn:opendaylight:host-tracker">openflow:2:1</tp-id>

host-tracks"urn:opendaylight :host-tracker">
pendaylight :host-tracker">e6:42:3£:4b:80:5d</mac>
cen xmlns="urn:opendaylight :host-tracker">1408583775527</ first-seen>
<ip xmlns="urn:opendaylight:host-tracker">10.0.0.2</ip>

<id xmlns="urn:opendaylight:host-tracker">1</id>

<last-seen xmlns="urn:opendaylight:host-tracker">1408583780536</last-seen>
</host-track:addresses>
<id xmlns="urn:opendaylight:host-tracker">e6:42:3£:4b:80:5d</id>
<node-id>host:e6:42:3£:4b:80:5d</node-id>

</node>
> <node>. . .</node>
» <node>. . .</node>
v<node>

<inventory-node-ref xmlns:wxtj="urn:opendaylight:inventory’ xmlns="urn:opendaylight:model:top
<node-id>opentlow: 1</node-id>
</node>
v<link>
v<destination>
<dest-tp>openflow:1:2</dest-tp>
<dest-node>opentlow: 1</dest-node>
</destination>
<source-node>openflow:2</source-node>
<source-tp>openflow:2:2</source-tp>
</source>
<link-id>openflow:2:2</link-id>
</link>
»<link>...</link>
</topology>

_images/vtn-single-controller-topology-example.png

_images/l2switch-address-observations.png
|€ = € [10.194.126.91:8080/restconf/ operational /opendaylight-inventory:nodes/node/openflow: 1/node-connector/openflow:1: 1
i Apps @ CEC [Floorplans s CiscoMac itk Rally (G Jenkins g LabMan [oAuthsigCheck (i Quad (IINOSTG [Leaning [Chr o

‘This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<node-connector xmlns="urn:opendaylight:inventory”>
v<portstat: flow-capable-node-connector-statistics xmlns:portstat="urn:opendaylight:port:statistics">
<transmit-errors xmlns="urn:opendaylight:port:statistics">0</transmit-errors>
v<portstat:bytes>
<received xmlns="urn:opendaylight:port:statistics">784</received>
<transmitted xmlns="urn:opendaylight:port:statistics'>2475</transmitted>
</portstatbytes>
‘urn:opendaylight :port:statistics">0</transmit-drops>
‘urn:opendaylight :port:statistics">0</receive-crc-error>
pendaylight :port:statistics">0</collision-count>
‘urn:opendaylight :port:statistics">0</receive-frame-error>
ve<portstat:packets>
<received xmlns="urn:opendaylight:port:statistics">12</received>
<transmitted xmlns="urn:opendaylight:port:statistics'>20</transmitted>
</portstat:packets>
v<portstat:duration>
“<nanosecond xmlns="urn:opendaylight:port:statistics">229000000</nanosecond>

<second xmlns="urn:opendaylight:port:statistics">49</second>
</portstat:duration>
<receive-drops xmlns="urn:opendaylight:port:statistics">0</receive-drops>
<receive-over-run-error xmlns="urn:opendaylight:port:statistics">0</receive-over-run.
<receive-errors xmlns="urn:opendaylight:port:statistics">0</receive-errors>
</portstat: flow-capable-node-connector-statistics>
<id>openflow:1:1</id>

“urn:opendaylight :£low: inventory”>0</maxinum-speed>
“urn:opendaylight :flow:inventory”>10000000</current -
+£1ownode="urn:opendaylight: flow: inventory”>

_images/vtn-overview.png
OPEN R

L5 Locwo e e Pt

DAYLIGHT B

Management Vi DDos Lralournd
suijeLl Coordinator Protection dons & Services

‘OpenDaylight APls (REST)

Base Network Service Functions
p—)
R o [0

Service Abstraction Layer (SAL)
Manager, Capability Abstractions, Flow Programming, Inventory, etc.)

Controller

Platform

OpenFlow Enabled
Devices

l_ l_ Device Inerfaces)

S| S >l >

_images/logical-sff-datamodel.png
#¥logical-interface-locator 7

‘ O\ Isfe-sfiservice-functions/sfc-sf:service-function/sfc-sf:sf-data-pl.11|
i

Hinterface-name: string

% dpn-id-type: uini64 8

CLUsfe-sff:service-function-forwarders-state/sfc-sff:service-..12
“(3uses dpnid-rsps -

& dpn-grouping

CL/rsp:rendered-service-paths/rsp:rendered-service-path/rs..13

dpn-id: dpn-id-type

«i2uses dpn-grouping -

& dpnid-rsps

10]

| #dpn-rsps

+i2uses dpn-grouping
¥ dpn-id

irsps-for-dpnid

BErsps

¥ name

[B=dpn
name: sfc-common:sfp-name

_images/vtn_stations.png

_images/l2switch-stp-status.png
odes/node/openflow:1/node-connector/openflow:1:2

€ - C |[10.194.126.91:8080/ restconf/operational/opendaylight-inventor

#h CiscoMac s Rally € Jenkins g LabMan | oAuthsigCheck [Quad (I NOSTG (] Learning (] Chr 0

‘This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<node-connector xmlns="urn:opendaylight:inventory”>
v<portstat: flow-capable-node-connector-statistics xmlns:portstat="urn:opendaylight:port:statistics">
<transmit-errors xmlns="urn:opendaylight:port:statistics">0</transmit-errors>
v<portstat:bytes>
<received xmlns
<transmitted xmln
</portstatbytes>
<transmit-drops xmlns:

‘urn:opendaylight :port:statistics">28054</received>
‘urn:opendaylight :port:statistics">2856</transmitted>

>0</transnit-drops>

‘urn:opendaylight :port:statistic
‘urn:opendaylight :port:statistics">0</receive-crc-error>
pendaylight :port:statistics">0</collision-count>
<receive-frame-error xmlns="urn:opendaylight:port:statistics'>0</receive-frame-error>
ve<portstat:packets>
<received xmlns
<transmitted xmln
</portstat:packets>
v<portstat:duration>
“<nanosecond xmlns="urn:opendaylight:port:statistics">415000000</nanosecond>
<second xmlns="urn:opendaylight:port:
</portstat:duration>
<receive-drops xmlns="urn:opendaylight:port:statistics">0</receive-drops>
<receive-over-run-error xmlns="urn:opendaylight:port:statistics">0</receive-over-run-error>
<receive-errors xmlns="urn:opendaylight:port:statistics">0</receive-errors>
</portstat: flow-capable-node-connector-statistics>

‘urn:opendaylight :port:statistics">153</received>
‘urn:opendaylight :port:statistics">46</transmitted>

‘urn:opendaylight: £low: inventory”>0</maximun-speed>
"urn:opendaylight:flow: inventory”>10000000</current-speed>

_images/vtn_devstack_setup.png
Note:
etho/eth1 -> the interface names as
listed in the output of ifconfig

Management N/W: the Network to
[eth1] exchange OF Messages and other
REST interface interations from
OpensStack to ODL.

[etho) Network for VM's: If OpenFlow
switches are used, please add ODL
1P Address as the OpenFlow
Controller IP Address for the Switch.

_images/message_flow.jpg
= Device Management

= Health Check

"health-check-nb" {
"input {
"nodeld": "ocp:MTI-101-666",
“tepLinkMonTimeout': "50"

<megTypeaREQ</msgType>
<msgUiD>80</msgUib>
<fhesder>
- Zbody>
“healthCheckiea>
tcpinkMonTimeout>50</tepLinkMonTimeout>
</heahCheckReas
<foodys
</msg>

OCP Service
OCP Plugin/Library

<2l version:

Sl o tsi.ora/ri/002-2/vA 11>

" eheaders
migType>RESP</msqType>
<msgUID>80</msgUID>

<fheader>
- Zhody>
<heatthcheckesp>
<resuli> SUCCESS < resit>
</healthCheckResp>
</oody>
</msg>

_images/yang-data-api.png
<<Java Interface>>
©DataContainerChild<K,V>
org opendaylight yangtools yang data api.schema

© getidentifer()

<<Java Interface>>
©NormalizedNode<K,V>
org opendaylight yangtools yang data api.schema

<<Java Interface
©LeafSetEntryN
org.opendaylight yangtools.yang.

© getNodeType()-QName
© getidentifer()
© getValue()

<<Java Interface>>

©NormalizedNodeContainer<l,K,V>
;chema org.opendaylight yangtools.yang.data.api.schema
o getldentifier()-NodeWithValue o getldentifier()
© getValue() S ystalue() terable<V>
© getCRITHK). Optional<V/>

<<Java Interface>> <<Java Interface>> ° Da;z’a“:}e"a‘;‘e: o <<Java Interface>>

@ AnyXmiNode ©LeafNode<T> et °"l 'I"e' le< " O LeafSetNode<T>
org.opendaylightyangtools.yang.data.api.schemal| org.opendaylight yangtools.yang.data.api.schema org-opendaylightyangtools yang A org.opent gtools yang.data.api.schema
= getdentiter) Nodeldentiier o getvauel) © getValue() terable<DataContainerChild<? extends PathArgument }>>
© getValue() Node<?>

org opendaylight yangtools ang data api.schema

<<Java Interface>>

@ ContainerNode

<<Java Interface>>
©MapEntryNode

org opendaylight yangtools yang data api.schema

opendaylight yangtools yang data api schen|

<<Java Interface>>
©UnkeyedListEntryNode

org opendaylight yangtools yang data aphschema

© getldentifier()NodeldentifierWithPredicates

org opendaylight yangtools yang

ema

<<Java Interface>>
©OrderedNodeContainer<V>
org opendaylight yangtools yang data api.schema

© getChild(int)
[S-gatSize()int

<<Java Interface>>

<<Java Interface>>
©AugmentationNode
org.opendaylight yangtools.yang.data.api.schema

© getidentifer()Augmentationidentifier

©OrderedLeafSetNode<T>

org opendaylight yangtools yang data api.schema

<<Java Interface>>
©OrderedMapNode
opendaylight yangtools.yang.data.api.schema

<<Java Interface>>

@UnkeyedListNode
org opendaylight yangtools yang data api.schema

_images/logical-sff-datamodel1.png
#¥logical-interface-locator 7

‘ O\ Isfe-sfiservice-functions/sfc-sf:service-function/sfc-sf:sf-data-pl.11|
i

Hinterface-name: string

% dpn-id-type: uini64 8

CLUsfe-sff:service-function-forwarders-state/sfc-sff:service-..12
“(3uses dpnid-rsps -

& dpn-grouping

CL/rsp:rendered-service-paths/rsp:rendered-service-path/rs..13

dpn-id: dpn-id-type

«i2uses dpn-grouping -

& dpnid-rsps

10]

| #dpn-rsps

+i2uses dpn-grouping
¥ dpn-id

irsps-for-dpnid

BErsps

¥ name

[B=dpn
name: sfc-common:sfp-name

_images/wrapper.png
wrapperl

PN PN2 PN2 PN3

LN1 N2

_images/netidearch.jpg
Network Application

module| |module

module module

module| |module

Client Controller Framework 1

Client Controller Framework 2

Backend

Backend

NetIDE Intermediate Protocol

Tools

Core Layer

NetIDE Intermediate Protocol|

Shim layer

Server Controller Framework

Network
Element

Network
Element

Network
Element

auibug ylomaN

_images/netide-flow.jpg
Module Backend : Network
Core Shim Layer|
(ID=X) (ID=Y) I | ¥ Element
re t:lest ms:
_q—g_b(xld —N) NetIDE msg
NetIDE msg
(module_id=X)
request msg b
(xid = N)
compute new unique xid
e.g.: M = hash(N,X)
request msg B
(xid = M)
reply msg
(xid = M)
restore the old xid
xid=N module_id=X
NetIDE msg
4 (module_id=X)
NetIDE msg reply msg
(module_id=X) (KId=i
< A
reply msg reply msg
4 (xid = N) (xid = N)

_images/yang-model-api.png
<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Enumeration>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Class>>

©Modulelmport ©Deviation © ConstraintDefinition O status ©UsesNode © SchemaContextListener ©RevisionAwareXPath © SchemaContextProvider | ©NamespaceRevisionAware © SchemaContextHolder ©DocumentedNode © ConstraintMetaDefinition @SchemaPath
org.opendaylight yangtools yang model 3| org opendaylightyangtools yang model.api org opendaylightyangools yang model.api | org opendaylightyangtools yang modslaj_org opendaylightyangtools yang model.api org opendaylightyangtools yang model.api | org.opendaylightyangtools yang model ap] org opendaylight yangtools yang. model ap{ org opendaylight yangtools yang model.ap| org opendaylight yangtools yang model api brg opendaylightyangtools yang model af org opendaylightyangtools yang model api org opendaylightyangtools yang model.api
o getModuleName()-String o getTargetPath(): SchemaPath ‘getWhenCondition() RevisionAwareXPath | * CURRENT: Status © getGroupingPath():SchemaPath © onGlobalContextUpdated(SchemaContext)voi{ isAbsolute():boolean © getSchemaContext():SchemaContext| © getNamespace():URI © getSchemaContext() SchemaContgss. [o getDescription() String o getDescription() String “fLEGACYPATH_UPDATER: AtomicReferenceFieldUpdater<SchemaPath ImmutableList>
© getRevision(:Date © getDeviate() Deviate getMustConstraints () Set<MustDefintions| */ DEPRECATED: Status © getAugmentations () Set<AugmentationSchema> © toSting() String © getRevision() Date ‘© getReference():String © getErorAppTag():String gname: QName
© getPrefix():String o getReference():String isMandatory()-boolean % OBSOLETE: Status © isAugmenting()-boolean © getStatus():Status © getErmorMessage():Sting hash: int
o getUnknownSchemalodes() List<UnknownSchemaNlode> [o getMinElements() Integer &Status() o isAddedByUses() boolean © getReference():String © legacyPath: ImmutableList<QName>
© getMaxElements() Integer © getRefines(): Map<SchemaPath, SchemaNode> ' getLegacyPath() ImmutableList<QName>
© getPath) List<QName>
<SchemaPath(SchemaPath QName)
e L e
create(boolean,QName[]):SchemaPath
oreatelnstance(SchemaPath, QName):SchemaPath
B © createChild(terable<QName>):SchemaPath
© SchemaNode © createChild(SchemaPath):SchemaPath
TS T T R T o createChild(QName) SchemaPath
© getPathFromRoot() ferable<QName>
© getQName()QName © getPathTowardsRoot{:Hterable<QName>
© getPath(): SchemaPath © getParent():SchemaPath
© getUnknownSchemaNlodes)-List<UnknownSchemaNode> e T
isAbsolute():boolean
hashCode()int +SAME
© equals(Object) boolean ent
toString():String T
© addToStringAttributes(ToStringHelper) ToStringHelper ‘jn |
<<Java Enumeration>> <<Java Interface>> <<Java Class>> <<Java Class>>
©Deviate ©MustDefinition ©AbsoluteSchemaPath ©RelativeSchemaPath
org.opendaylight yangtools yang model.api org opendaylightyanglools yang model.api | org opendaylightyangtools yang model api org opendaylightyangtools yang model.api
S/NOT_SUPPORTED: Deviate © getXpath() RevisionAwareXPath ‘AbsoluteSchemaPath(SchemaPath,QName) | &¥RelativeSchemaPath(SchemaPath, QName)
S/ADD: Deviate 3 isAbsolute()boolean o isAbsolute()boolean
SREPLACE: Deviate © createlnstance(SchemaPath, QName):SchemaPa o createlnstance(SchemaPath,QName)-SchemaPath
SDELETE: Deviate
& Deviate()
<<Java Interface>>
<<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>> ©DataNodeContainer <<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>>
©RpeDefinition ©UnknownSchemaNode ©ExtensionDefinition ©ldentitySchemaNode ©FeatureDefinition © TypeDefinition<T> e ©AugmentationTarget ©DataSchemaNode ©Moduleldentifier © SourceStreamAware
org.opendaylight yangtools yang model.api org opendaylightyangtools yang model.api | org opendaylightyangtools yang model.aj _org opendaylightyanglools yang model.api | org opendaylightyangtools yang model af org opendaylightyangtools yang model org opendaylightyangtools yang model.api org opendayligntyangtools yang mode.api org opendayligntyangtools yang model.a{ org opendaylight yangtools yang model.api
© getTypeDefintions()-Set<TypeDefinition<?>> \getNodeType()-QName © getArgument()String © getBaseldentity() IdentitySchemaNlode © getBaseType() . mﬁm’;’:gﬂé&ﬁj‘gﬁ;ﬁzﬂﬁ;e © getAvailableAugmentations():Set<AugmentationSchema> © isAugmenting()-boolean © getQNameModule()QNameModule | © getModuleSourcePath()String
© getGroupings():Set<GroupingDefiition> © YetNodeParameter()String o isYinElement()boolean © getDerivedldentities():Set<ldentitySchemaNiode> © getUnits():String © getGroupings()-Set<GroupingDefntion> © isAddedByUses()boolean © getName():String
© getinput()-ContainerSchemaNode © i3AddedByUses()-boolean © getDefaultVal o getDataChidByName(QName) DataScl o isConfiguration()-boolean © getNamespace()URI
© getOutput() ContainerSchemaiode © gé{ExtensionDefinition() ExtensionDefinition o getDataChidByName(String © getConstraints () ConstraintDefinition © getRevision()-Date
© getUses() Set<Uses|
<<Java Interface>> Z<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>> B e>> <<Java Interface>> <<Java Interface> <<Java Interface>> <<Java Interface>>
© GroupingDefinition ©NotificationDefinition © ContainerSchemaNode ©ListSchemaNode © ChoiceCaseNode ©ChoiceNode ©LeafSchemaNode ©DerivableSchemaNode ©LeafListSchemaNode ©Module

org opendaylight yangtools yang.model.api

© isAddedByUses()boolean

<<Java Interface>>
©AugmentationSchema
org.opendaylight yangtools.yang.model.api

© getDescription() String
© getReference() String
© getStatus) Status

© getWhenCondition() RevisionAwareXPath

© getTargetPath() SchemaPath
© getUnknownSchemaNodes() List<UnknownSchemaNlode>
© getOriginalDefinition()-Optional<AugmentationSchema>

org opendaylight yangtools yang model.api [g opendaylight yangtools yang model.api [g opendaylight yangtools yang model.

org opendaylight yangtools yang.model.api

org.opendaylight yangtools yang.model.api

9.0pendaylight yangtools yang.model.a

AnyXmISchemaNode
org.openday g model af

org.opendaylight yangtools yang.model.api

org.opendaylight yangtools yang.model.api

org.opendaylight yangtools yang.model.api

<<Java Interface>>
@ SchemaContext

org.opendaylight yangtools yang.model.api

SFNAME: QName

© getDataDefinitions() Set<DataSchemaNode>

© gethodules():Set<Module>

© getatifications() Set<NotificationDefinition>

© getOperations():Set<RpcDefinition>
© getExtensions():Set<ExtensionDefinition>
© findModuleByName(String Date)- Module

© findModuleByNamespace(URI) Set<Module>

© findModuleByNamespaceAndRevision(UR| Date) Module
© gethoduleSource(Moduleldentifier)-Optional<String>

© getAllModuleldentifiers() Set<Moduleldentier>

© isPresenceContainer()-boolean ‘getKeyDefinition() List<QName> "© getCases() Set<ChoiceCaseNode> ‘getType() TypeDefinition<?> {[© eetorigine#:Qptional<? extends SchemaNode] o getType() TypeDefinition<? extends TypeDefinition<?>> | getPrefix() String
® isUserOrdered() boolean © getCaseNodeByName(QName) ChoiceCaseNode p getDefault()-String @ isUserOrdered() boolean ‘getYangVersion() String

© getCaseNodeByName(String) ChoiceCaseNode p getUnits()-String ® getDescription()-String

@ getDefaultCase() String @ getReference() String
@ getOrganization() String
@ getContact() String
© getimports() Set<Modulelmport>
@ getSubmodules() Set<Module>

© getFeatures() Set<FeatureDefinition>

© getatifications() Set<NotificationDefinition>

© getAugmentations() Set<AugmentationSchema>

© getRpcs() Set<RpcDefnition>

© getDeviations() Set<Deviation>

© getidentities() Set<IdentitySchemaNode>

© getExtensionSchemaNodes() List<ExtensionDefinition>

© getUnknownSchemaNodes() List<UnknownSchemaNlode>
© getSource() String

_images/karaf-webui-select-a-type.png
Enter unique path name:

Select a schedule type:

_images/Service_Chaining_With_Two_Services_LLD.png
/srvcl 1 \srvcl D srch D Crvcz D
N/

% t ! vTermina)

FlowFilter: ey

-
M ch cond 1 =—-

_images/sf-selection-arch.png
Random Round-Robin Load-Balance Shortest-Path 3"’—Parly

Algorithm Algorithm Algorithm Algorithm Algorithm

_images/sf-schedule-type.png
Creating Service Function Path based on chain 'SFC2'

Enter unique path name:

Selecta schedule type: Selecta type.

Shortest Path

_images/Tenant2.png
@ o,
Tenant2 Pﬁﬁt

_images/sfc-2-symmetric.png
classifier: HTTP (dst 80) IN
action: chain: web

chain: web
symmetric = True
{firewall, dpi}

classifier: HTTP (src 80) OUT
action: chain: web

_images/Single_Controller_Mapping.png

_images/sfc-1-topology.png
| ovsaspnose

() docker container | GBPEGP "clent”

BP £GP v
O servicofuncton

_images/Transaction.jpg
Commit sjuccessful

Validation exception

Commit
configuration

Create

Validated

Configured commit started

Transactiq n aborted Commit unfsuccessful

_images/sfc-classifier-genius-integration.png
8 sfc-classifier | | sfc-genius interface manager | | tunnel manager
MDSAL

| classifier provisionsd :

bind interface
(e Terace 5,

| classifier attachment-point
(R TR

| wiite table miss flow

J

1 bind SFC seice to '

Get classifier dataplane ID
e SRR S

Telassitier co-located wifirst SF7]

1 wite apply-actions (push NSH) instruction !
1 Wite apply-actions (push NSH) instruction ;
1 wite go-to-table instruction !
i Wite gotodable instruction

1 get Egress actians for interface
<

wiite apply-actions (push NSH) instruction
i ¢+ set output port (read from genius

MDESAL sfe-classifier | | sfc-genius interface manager | | tunnel manager

_images/TopologyRequestHandler_classesRelationship.png
[1]initialization

!
!
!
!

[1a]initialization

writeNode()
deleteNode(]

-

UnderlayTopologyListener

processCreatedData + [processCreatedchanges(
processUpdatedbata ! [processUpdatedchanges()
processhemovedData ! [processhemovedchanges() 3ddLogicalNods

UpdateLogicalNode

removeLogicalNode

processCreatedchanges()

processCreatedchanges()

processUpdatedchanges(]

processUpdatedchanges(]

processhemovedchanges()

processhemovedchanges()

_images/sfc-3-asymmetric.png
classifier: HTTP (dst 80) IN
action: chain: web

chain: web
symmetric = True
{firewall, dpi}

classifier: HTTP (src 80) OUT
action: chain: web

_images/Service_Chaining.png
h1

h2

h3

_images/sb-rest-architecture-user.png
1 pure REST (e.g.
sfeul POSTMAN)

I

RESTconf

Northbound

_images/SDNiWrapper.png
SDN Domain

Esst.West
Interface

SO Wrapper

‘OpenDaylignt Controller

Restap!

sse Network Service
Functions

=

SDNiAggregator

1

Network Capabilies

_images/plugin_design.jpg
Model Driven SAL fe——r>| Hard SAL

;

Topology

Service

S
g
£
12
a
w
o

Connection and State
Session Manager Manager

Netty.io 4.x

Controller

Switches

OpenFlow 1 OpenFlow 1.3.1

_images/Service_Chaining_With_One_Service_LLD.png
Grvcl_D Grvcl_b
— L—
1
FlowFilter: Flow-Filter:
\

B 1 Match: an
Match: cond_1 \ \ y
\

ction: redirect ', Action: redirect

e =)

Tenant2 \é/

£ h22

_images/setup_diagram_SCVMM.png
vin
Coordinator

Host 1
192.168.1301

_images/Service_Chaining_With_One_Service.png
h12

el I l Service2

h22

h23

_images/sb-rest-architecture.png
reate/Update/Delete MD-SAL SBREST
DataObject > Datastore listeners
new SbRest Task(
RestOperation, DataObject, ExecutorService)

‘

SBREST
json exporters

lsupporting REST API

SBREST
e]
tasks JSON representation
‘ of DataObject
POSTRUTDELETE
JSON
5B Devices

_images/Service_Chaining_With_Two_Services.png
200ms delay 300ms delay

Sgmicel I l Sgyvice2

h22

h12

N

h23

_images/Service_Chaining_With_One_Service_Verification.png
h12

el I l Service2

h22

h23

_images/sf-rendered-service-path.png
arders Service Functions Service Function Chains Access Lists/Classifiers

Service Function Paths | Rendered Service Paths ‘

Rendered Service Path

SFC2-123-Path-1 (Parent Path: SFC2-123) (Path-ID: 1, starting index: 255) X

S~ .

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_images/pcep-update.png
PcC PCE

1.LSP State PCRpt, Delegate=1
Synchronization R
: 2. PCE decides to
: update the LSP
PCUpd message 3. PCUpd message sent
topCC
4.LSP Status Report PCRpt messag

sent (Going-up)

5. LSP Status Report PCRp! messag:
sent (Up | Down)

_images/Redirect_flow.png

_images/plugin-config.jpg
<modules xmins="urn:opendaylight:params:xml:ns:yang:controller:config">
<1 default OCP-radiohead-connection-provider (port 1033) —->
- <module>
<type xmins:prefix="urn:opendaylight:params:xml:ns:yang:ocp:radiohead:connection:provic

samezocp-radiohead-connection-provider-default-impl</name>
33 </port>

Possible transport-protocol options: TCP, TLS, UDP -->
/transport-protocol>
5000</radioHead-idle-timeout>

</
- <module>
<type xmins:prefix="urn:opendaylight:params:xml:ns:yang:config:
<name>ocp-plugin-provider-impl</name>
- <ocp-radiohead-connection-provider>
<type xmins:ocpRadiohead="urn:opendaylight:params:xml:ns:yang:ocp:radiohead:connec
<name>ocp-radiohead-connection-provider-default</name>
</ocp-radiohead-connection-provider>
- <data-broker>
<type xmins:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">
<name>pingpong-binding-data-broker</name>
</data-broker>
- <rpc-registry>
<type xmlins:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">
<name>binding-rpc-broker</name>
</rpc-registry>
- <notification-adapter>
<type xmins:bindin
<name>binding-not
</notification-adapter>
- <notification-publish-adapter>
<type xmins:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:in
<name>binding-notification-publish-adapter</name>
hoadapter>

mpl"> prefix:c

"urn:opendaylight:params:xml:nstyang:controller:md:sal:binding:ir
ation-adapter</name>

<rpc-requests-quota>2000
<global-notification-quotg

</rpc-requests-quota>
64000</global-notification-quota>

- <module>

_images/RIB.png
cmpbgp J

DCN: DataChangeNotification

Import Policy

EffectiveRibInWriter

BI: Binding-Independent 7 -
i 1
DCN | BI |
. :
! Datastore] g]
g Vi
InboundBGPPeer |- _--___-. AdRibln : Datastore EffectiveRibln : Datastore |- -
Notification
LocRib : Datastore |<7
OutboundBGPPeer k- - - g AdRIbOUE ; Datastore -
DCN

LocRibWriter

Export
Policy

_images/pcep.png
MPLS network

_images/Removal_of_Tunnel_Interfaces_in_Pre_provisioning_Mode.png
Opendaylight

D Interface Manager

RestConf | [Switch Manager OVS Renderer OfPlugin ConfigDS

OperDS

1. Removal of Tunnel|interface from NBI

2. odl-interface DEN

3. Translate Int--Name to OF Port Name
e

4. Read of-port-id for|portName from ogerDS.

lar

_images/plugin-design1.jpg
Controller Platform

_images/Removal_of_Tunnel_Interface_When_OF_Switch_is_Connected.png
Interface Manager

1D OVS Renderer OfPlugin ConfigDS

RestConf || Switch Manager

1. OF switch connects to ODL

>
2. Flow-Node Inventory Update

4. Release Iport tag |, 3. Node-Corjnector DCN
1 5. odl-interface-ppenflow OperDS ypdate)

6. Removal of Tunnel Interface from NBI|

7. odl-interface DCN

8. Read of-port-id forjportName from operDS
>

9. Check if poftName found. If not, skip.

[—
10.Remove intf|details from odl-interface-openflow

¥

11. Send OVSDB cmds to remove the tunnel.

I«

_images/plugin-design.jpg
Controller Platform

_images/pcep-revoke-delegation.png
PCC

1. Orphan LSP Status
Report sent

4.LSP delegation
configrmed

PCE

2. PCE decides to take
control of the LSP

3. PCinitate message sent
toPCC

_images/pcep-re-sync.png
PCC PCE

IPCE-tiiggered
[Re-synchronization

Do sync
Isync done

LsP Re-sync triggered

_images/pcep-sync-initial.png
PCC PCE

IPCE-triggered Inital State
Isynchronization

Do not sync
Isync triggered

Initial Sync starts

_images/pcep-sync-incremental.png
PCC

Do sync
Delia

Delta Sync starts

PCRpt, DBV=46, SYNC=1:
PCRpt, DBV=46, SYNC=0:

PCRpt, DBV=47, SYNC=0:

PCRpt, DBV=48, SYNC=0:

PCE

[Expect Detta Sync
Do not Purge LSP State

_images/pcep-sync.png
PCC

PCRpL.

PCRpL.

PCRpL.

PCRpL.

PCE

sync start

Sync done

_images/pcep-sync-skipped.png
PCC

skip sync

PCRpt, DBV=43, SYNC=0:

PCRpt, DBV=44, SYNC=0:

PCRpt, DBV=45, SYNC=0:

PCE

_images/direct-authentication1.png
ODL token

0DL Controller

‘o', password’

ohw, Adrin, ‘P

Admin, create_network’

_images/sfcofrenderer_nwtopo.png
SFC OF Renderer Typical Network topology

Bidirectional/Symmetric
Rendered Service Path

HTTP HTTP
Client Server
SF1 SF2
Classifier Classifier

T
(OVS-OF) (0VS-0F)

Simple mininet command to create topology
sudo mn ~topo finear,4 —switch ovsk protocols=OpenFlow13 —controller remote,ip=192.168.1.103

_images/sfcofrenderer_architecture.png
SFC OF Renderer Architecture

SFC
Model
SfcOfRspDatalListener
OpenFlow Programming Business Logic
SFC OF
Renderer

SfcOfFlowProgrammerimpl "
implements SfcOpenFlowUtils
sfcOfFlowProgrammerinterface

SouthBound OpenFlow

_images/dlux-login1.png

_images/single-logical-sff-concept1.png

_images/dlux-login.png
€« C fi | localhost:8181/dlux/index.html#/node/index

™ Gmail - Decent Pro: Create UML diagrarr L.l Imported From Fire Other Bookmarks
. SEN
¥ DAY LIGHT =i Nodes
& Nodkg;

openflow:6
openflow:7
openflow:4
openflow:5
openflow:2

openflow:3

openflow:1

localhost:8181 /dlux/index.htmi#/node/index

_images/single-logical-sff-concept.png

_images/dlux-ocp-apis.jpg
[©OpenDaylight Dlux - Mozilla Firefox
OpenDaylight Dlux

€ £ @localhost:

EN

Module

1 Yang Ul »Expand all | Collapse others

+ ocp-resourcemodel rev.2015-08-11
— ocp-service rev.2015-08-11
[moperons

& create-obj-nb

B delete-obj-nb

B get-fault-nb

& get-param-nb

B get-state-nb

& health-check-nb

& modify-param-nb

& modify-state-nb

B re-reset-nb

B set-time-nb

+ opendayiight-action-types rev.2013-11-12

_images/single-logical-sff-example.png
Node 1 Node 3
LIENT] SF1
ove ovVs

Com Comput

OpenDaylight

Node 5

ERV|

ovy

Compute

_images/dlux-login2.png
€« C fi | localhost:8181/dlux/index.html#/node/index

™ Gmail - Decent Pro: Create UML diagrarr L.l Imported From Fire Other Bookmarks
. SEN
¥ DAY LIGHT =i Nodes
& Nodkg;

openflow:6
openflow:7
openflow:4
openflow:5
openflow:2

openflow:3

openflow:1

localhost:8181 /dlux/index.htmi#/node/index

_images/single-logical-sff-example-migration.png
NO VM (MOVED TO
Node 4 3535

OpenDaylight

_images/dlux-topology.png
S Topology

Controls

% Topology
Reload

host:06:5:75:3

hosti7a:8b:40:25:¢5:30

opentio:1

host:42:6¢:62:64:08:56

Posti36:1c4a:3:cbiat

host:f2:b3:63:50:28:40

_images/snmp4sdn_in_odl_architecture.jpg
BERTVEI R E RN RLIRE Proposed MD-SAL API

vendor-specific
interfaces

Ethernet switches

_images/dlux-ocp-nodes.jpg
OpenDaylight Dlux

_images/snmp4sdn_getvlantable_postman.jpg
Normal @ Noenvironment v * A

@//Iocalhost 8181/restconf/operations/vian:get-vian-t tabD ‘ POST ’ @ URL pamms@

Accept application/jsoiz Manage presets
& Tontent-type application/json—> Q
Header Value

form-data x-www—form-unencode JSON +

1 {input:{node-id:158969157063648}}

Preview Add to collection m

Body 2000k (3 3095 ms

Pretty = Raw | Preview - = JSON XML

1 {

2 "output”: {

3 “vlan-table-entry": [

4 {

5 “port-list": [

6 24,

7 23

8 >

o “vlan-id": 1
DT I8

_images/bmp.png
Monitoring Station

pGp ” Monitored Router ~ |
- BGP

=

Monitored Peer
Monitored Peer

_images/sfc-sf-selection-arch.png
Round
Rand.
.

YANG Model

_images/bmp-plugin.png
Monitored Router

_images/sfc-pot-time-seq.png
PUT ACUSF
config

POST/RPC:

RSP Create

Read

Config

RSP|

_images/direct-authentication.png
ODL token

0DL Controller

‘o', password’

ohw, Adrin, ‘P

Admin, create_network’

_images/configuration.jpg
Validation

Create Commit

Proposed Validated

Unsucpessful
validhtion

_images/sfc-ui-architecture.png

_images/sfc-genius-example-auxiliary-graph.png
SfrGraphentry 0 SGraphentry 1 SfrGraphentry 2

st ares

L5 dastr
SsFL <=
pathid=3315 pathid=3315
Serviceindex=255 Serviceindex=254 Servicelndex=253

Example graph for a RSP including two different SFs

_images/VTN_Overview.jpg
Virtual Tenant
Network (VTN)

111

_images/sfc-in-cloud.png
@
Compute

2]
Cor ute
/4 "
s
‘Compute ﬂ
Compute | | Compute | [Compute | [Compute .
node node node node EJ

=

'WJ L2

_images/VTN_Mapping.jpg
Virtual network

VRT

BRI

Rz

OFs2,GBE0R
VLAN 1D=200

Servert e

Servers) seves
oFs3 OFs4

OpenFlow network (physical network)

Legend: €—> Portmapping €—> VLAN mapping () interface

_images/sfc-genius-interaction.png
Controller

Resource Manager ™

N J

OFPlugin

ovsos

_images/bgp-app-pipeline.png
‘OpenDaylight BGP

e otepProgammate i sy oo 5o Outrare, (==}
e B AdpRIBIn [— o Seecion LocREB il g

_images/sfc-ovs-architecture.png
a. mapping from OVSDB to SFC (SFF)

Createtupdateidelete |, VS Node o [createnupdateidelets
SFF (cfg) Listener (oper) [<"| OVS Node (open) |1,
] (" ovsnoce
: OVSDBMDSAL | I omnecieato 0DL
o
SFF (Createiupdateidelete
iy o &>
yes!
noop
b. mapping from SFC (SFF) to OVSDB
RESTcon!
createlupdate/delete
SFF (cfg)
VS Node (Createiupdateidelete
Listener (oper) ~ [<"| " OVS Node (oper) [X,
[
ovs Node
©OVSDBMDSAL nnected 1o ODL
[s|

SFF
Listener (clg)

[createnpateidelete
OVS Node (cig)

lno!/v
>

es)

noop

_images/arch-engine.jpg
Network Application

module| |module

module module

module| |module

Client Controller Framework 1

Client Controller Framework 2

Backend

Backend

NetIDE Intermediate Protocol

Tools

Core Layer

NetIDE Intermediate Protocol|

Shim layer

Server Controller Framework

Network
Element

Network
Element

Network
Element

auibug ylomaN

_images/sfc-ovs-architecture-user.png
pure REST (e.g.

Al POSTMAN)
~a e
RESTcon!
Nortbound I
(ODL controller S

Datastore

_images/bgp-pipeline.png
‘OpenDaylight BGP

@_WM preEn H;;:;;%E"ecmm%g;gg‘;h Loom Oy agreou upwg@

_images/sfc-pot-intro.png
Controller

_images/bgp-dependency-tree.png
odI-bgpcep-bgp-all

! odl-mdsal-broker r

,'(odI-bgpcep-bgp-inet \\ odl-protocol-framework | |
\ . < \ v
' , ~ \ -
N SN T
odI-bgpcep-dependencies r

od|-config-api

v

odl-yangtools-models

_images/sfc-pot-int-arch.png
2. POST RPC
RSP Create

5. POST RPC
Enablp SFC PoT
Disablp SFC PoT

(with minimum iOAM
PoT flag and params)

11.i0AM PoT
Config Generation

_images/Updation_of_vlan_interface_when_switch_is_connected.png
RestConf

Switch

Manager

Interface Manager

OVS Renderer

Opendayl

ConfigDS Opel

. OF

itch connects to DL

5. Update of vlan Intefface from NBI

"l 2. Flow-Node Inventory Update

L 3. Node-Connector DCN
4. odl-interla:e-hpenﬂow OperDS update

6. odl-interface D

[~ 7.Compare ol
[«—! same, break

8. Read of-pol

and new Admin State. If

t-id for portName ffom operDS

9. Update Intelface OpState

[~ 10. Check if p}

o)

prtName found. If Wot, Break Here.

_images/sfc-genius-at-rsp-render.png
M@L sfc-genius I interface manage:l tunnel managerl

| first RSP added to SF_| |
e A S |
| bind SFC service to SF Interface. |

| get SF dataplane node] |
etofddaplnencde |

[(S) Thirst SF on datapiane noaer1 |

| create terminating service action'on SF dataplane nod:

MDESAL sfc-genius. I interface manage:l tunnel managerl

_images/Updating_of_Tunnel_Interfaces_in_Pre_provisioning_Mode.png
Opendaylight

Interface Manager -
RestConf || Switch Marlgger Type 2 Renderer OfPlugin ConfigD$ OperDS

1. Update of TunnelInterface from NBI

2. odl-interface DEN

3.Compare old and new Admin $tate. If
«—— same, break here

4. Read of-port-id for dpid/portName|from operDS

_images/sfc-genius-at-rsp-removal.png
last RSP removed from SF_|

| unbind SFC service from SF interface, |

| get SF dataplane node]
e —

MDSAL

8 interface managet] | tunnel manager|

_images/VTN_Construction.jpg
VTN1
VRT

BR1 BR2
Q vBridge vBridge interface
. VRouter interface

vLink

a VRouter

_images/sfc-genius-example-auxiliary-graph-logical-sff.png
SfrGraphentry 0 SGraphentry 1 SfrGraphentry 2

Serviceindex=255 Serviceindex=254 Servicaindex=253

Example graph for a RSP including two different SFs that are configured using a Logical SFF.
It can be observed that the service functions SFL, SF2 are hosted in different compute nodes

_images/VTN_API.jpg
Orchestration Software

Web App

Web App

I Web API (REST) I

]

Virtual Tenant Network (VTN)

_images/sfc-genius-at-vm-migration.png
sfc-provider|

sfc-of-renderer|

Tror every RSP1|

Tre-renderRse |

TSF configured on $uch interface?]
! get all RSPs of SF_!
1get AL RSPs O SF,

sfc-genius
MD%AL ;

| interface location change_|

| [[loop /
MDSAL

sfc-genius

sfc-provider|

sfc-of-renderer|

_images/VTN_Flow_Filter.jpg

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/odl.png

_static/odl_small.png

_static/up-pressed.png

_static/up.png

_images/800px-Extensibility.png
s e
¢ e MiegiterCusomDeserlizrtey, imph |

(OrDeserazer & ===
eends [lvolue]
Headereserilizer| "
s can
msgVersion
value

_images/800px-Extensibility2.png
SwitchComnectionProvider

registerCustomSerialzerty.

Headerserialzer

)

msgVersion

msgType

msgType2

_images/500px-UdpChannelPipeline.png
Connection Adapter

Pipeline
components

InboundHandler

inbound & Outbound

OutboundHandler

UDP Handler
Switch Conn. Provider

_images/BGP_HA_failure.png
OpenDaylight 3-node cluster

OpenDaylight Node-1 OpenDaylight Node-3
Stand-by BGP Speaker Stand-by BGP Speaker
Instance Instance

BGP router

_images/BGP_HA_recovery.png
OpenDaylight 3-node cluster

repication.

5 OpenDaylight Node-3
OpenDaylight Node-1 Stand-by BGP Speaker
Active BGP Speaker Instance Instance

active session

BGP router

_images/App_co_exist_new.png
IFM Ingress is
responsible for
classification and

decapsulation

IFM
classifier

tables

Table 0

Afterclassification Service dispatcher
aunique dataplane delivers the packet
1d is associated to specific serviee
with packet pipeline based on
priority
Service
>{ Dispatcher table

Range of table/Group
Tdsallocated to
different services by

resource shaging.
framework

Servicel|pipeline

Egress Service Binding

Egress Service 1

Egress Service 2

TFM Egress is
responsible for egress
packet edits, e.g., mac
re-write, encapsulation
headers

Egess €
Dispatcher

table

_images/BGP_HA.png
OpenDaylight 3-node cluster

OpenDaylight Node-1
Stand-by BGP Speaker
Instance

< replcation.

OpenDaylight Node-2
Active BGP Speaker Instance

active session

|——replication—

OpenDaylight Node-3
Stand-by BGP Speaker
Instance

_images/pcep-initiate.png
PcC PCE

1.LSP State PCRpt, Delegate=1
Synchronization R
: 2.PCE decides to
: niiate the LSP
PCIniate Mmessag 3. PClnitiate message sent
topcc
4.LSP Status Report PCRpt messag

sent (Going-up)

5. LSP Status Report PCRp! messag:
sent (Up | Down)

_images/pcep-dependency-tree.png
od|-bgpcep-pcep-segment-routing

'

od|-bgpcep-pcep-all

. o
. [AERN
\ N

'
1 N

o
'
|

m S

odI-bgpcep-pcep-tunnel-provider \

N .

BN ¥ |

od|I-bgpcep-pcep-topology-provider 1

'
'
'
I
'
P

7

T N
' ~ /

' B2

v I
odI-bgpcep-pcep-statefuloﬁ odl-bgpcep-pcep-stateful02 | | :
I

odI-bgpcep-programming-impl

' - AR

\2Vas , N

odl-mdsal-broker ’ \

N K

4 od|-bgpcep-programming

N
N

N

odl-conﬁg-nets‘

od|-protocol-framework

= 4
odl-tcpmd5-netty Todl-bgpcep-dependencies

od|-config-api

Y

odl-yangtools-models

_images/pcep-plugin.png
"
: 4
LSP operations

H ReadLsPs

v H

OpenDaylight

_images/pcep-parsing.png
ByteToMessageDecoder

SimpleMessageRegistry

|
| Li parseMessage(ByteBur, List<Message>) : Message |

AbstractMessageParser

1.1: parseMessage(ByteBLf, List<Message>) : Message

RequestMessageParser

_images/ovsdb-sb-oper-crud.jpg
MD-SAL OVSDB SB
Operational Data
Store
/ 3) Map changes in OVSDB to

OVSDB SB Config
Data Store

Operational MD-SAL nofles

OVSDB SB Provider

[}

2) OVSDB update
message indicates
changes that have
occurred in the OVSDB
tables

1) Changes are
madetoOVSDB ___1 | oyspB server
Node independent
of ODL (e.g. locally
with ovs-vsctl)

OVSDB Node

_images/ovsdb-sb-config-crud.jpg
1) Make changes. E.g.

- Add a bridge to an OVSDB Node

- Add a port to bridge

- Set attributes of OVSDB Node, Bridge, etc.

Y
MD-SAL OVSDB SB
OVSDBSB Contle Operational Data
Data Store S
2) Data Changes 5) Map changes in OVSPB to
Operational MD-SAL nofles

OVSDB SB Provider

3) OVSDB transaction
to update the OVSDB
tables as appropriate
to the changes made
in the Config MD-SAL

%
4) OVSDB update
message indicates
changes that have
occurred in the OVSDB
tables
V.
OVSDB server

OVSDB Node

_images/packetcable-developer-wireshark.png
e EGit View Go Capture Anahze Satatcs Teephony Toots nternal Help

coaANd 2RX2 A¢rs=F2[EF QA FOBL B

B - —

sl e Lo [l (|

T
hmes e iz G mmmmiesy e

T T T —
e — ey e ————r |

Gbject Length 200

Ehim Dciean hpct xcsatond (1 I

i Mo 10 s caion

Tosd e GOTONE (P DeTaaT

_images/ovsdb-sb-passive-connection.jpg
OVSDB SB Config
Data Store

MD-SAL OVSDB SB

Operational Data
Store

/2) Add OVSDB Node

OVSDB SB Provider

1) OVSDB Node
activelt connects
to ODL Manager

A

3) Query Schemas and
Databases supported
by OVSDB Node

4) Register to Monitor
changes to the OVSDB
tables.

Y

OVSDB server

OVSDB Node

_images/pcep-delegation-return.png
PCC

PCRpt, Delegate=1:

PCUpd, Délegate=

PCRpL, Delegate=0:

PCE

LSP delegated

Delegation retured

No delegation for LSP

_images/packetcable-postman.png
POSTMAN i00

s wa

Miine Damo 0VS08 + OF
e e——.
seccane

[E———

R oo v ot
@ overtonmivnstonrosd
[—

D ot st ots

[m—

(R okt cris et e
[T——

R pocknaso s il

G peckioatlooms ow estfor .

[
D ekt s et

(G ecketcaiocms fonovspec kren
"

(I ekttt cisfowspec e
[ocr mm——

Normal ® Noendranment+

[—
et o packacato amis g

e 181 stcoticontopencfignineony sl psietestle st el

e | oo | At 1o ctictin

™ R o EE e

Proty | now pwiow | w | [&F|[J50N

mdsante s cssnoe's (

e

@ UnLpaars

Gresten)

_images/pcep-deletion.png
PCC PCE

1. PCE decides to
Gelete the LSP.

PClnitiate, R=1- 2. PClnitiate message sent
toPCC

3.LSP Status Report PCRp! messag
sent

_images/Creare_Network_Step_1.png
OpenDaylight Diux.

192.168.64.2

Create Network

Swrete suone

Network Name:
enworic Name: From here you can create a

[wn In addition a sut
created inthe next panel,

Admin State:

_images/Create_Network.png
] odi-scvmm:10 (wineuser) - TightVNC Viewer

HED I & ®

B Networks - Openstack . x L), OpenDaylisht Dlux

€« c 192.168.64.20,

B8 openstack Lz
Project Networks

Compute

Networks + CresteNewgork

Network
Name Subnets Associated Shared Status Admin State Actions

private-subnet 10.0.0.0/24 No ACTIVE UP Edit Network | More

Displaying L tem

Router

Orchestration

Admin

192.168.64.20/project/networks/create

_images/ConfigurationService-example1.png
Controller

Network Confi

SAL Service
1. createBridgeDomain(node, brt”,nul)
I 2.node >
OVSDB Configuration| "8l | connection
SB-Plugin | service Service
3, Create

e
| BridgeCort)

ovsdb pojo mapper

4. marshal Bridge
| poio ntojson

json-rpc library

5. json equivalent of
| ovs-vset add-bridge br1

host1 : ovsdb-server

_images/Creation_of_tunnel-interface_when_OF_switch_is_connected_and_PortName_already_in_OperDS.png
RestConf

Manager

D Interface Manager

Opendaylight

Type 2 Renderer OfPlugin ConfigDS OperDS

5.‘-"

1. OF switch connects to ODL

4. Allocate Iporttag for

"l 2. Flow-Node Inventory Update

3. Node-Corjnector DCN

interface lroT ID Manager. -

5. o_dl-interla:e-Lnenﬂow OperDS yj

pdate

reation of tunnel Ipterface from

6. odl-interface DEN

9. Read of-poft-id for portName ffom

operDS

10. Check if pprtName found. If nj

12. Read operstate, PhysAddrlor of-port from |nventory

ot skip the steps

13.Update Operlp‘tate PhysAddr in

pdl-interface

_images/Creation_of_vlan_interface_in_pre_provisioning_mode.png
Opendaylight

D Interface Manager

OVS Renderer OfPlugin ConfigDS OperDS

RestConf || Switch Manager

1. Creation of Vian Interface from NBI

2. odl-interface DEN

3. Translate Intf-Name to OF Port Name

4. Read of-poyt-id for portName from operDS.

This will return Empty. It not, Tse regular ¥

procedure.

_images/Create_Network_Step_2.png
OpenDaylight Diux.

192.168.64.2

Create Network

a subnet a
@ cified. If

Subnet Name:

tnl-subnet

Network Addr,

1P Version: *

P

Gateway IP:

sable Gateway:

_images/Create_Network_Step_3.png
OpenDaylight Diux.

Create Network

B

Enable DHCP:
y additional attribut
v

Allocation Pool
1P address alocation pools. Each enty &

aitstartip_addressag; Gitend_ip_addres;
(¢, 1521681100192 168.1.120) and.
one entry per ine.
DNS Name S

_images/Deletion_of_vlan_interface_when_switch_is_connected.png
Opendaylight

D Interface Manager

OVS Renderer OfPlugin ConfigDS OperDS

RestConf || Switch Manager

1. OF switch connects to ODL

>
2. Flow-Node Inventory Update

3. Node-Corjnector DCN

* 4. odl-interface bgerDS update

5. Removal of Vian|Interface from NBI

6. odl-interface DEN

7. Translate Intf-Name to OF Port Name

e
8. Read of-port-id for[portName from
TinventoryoperDS |

|

9. Check if poftName found. If not, return
o

. ,
10.Mark interface gper state as down in
odl-interfdce-oper DS

o »

_images/Creation_of_vlan_interface_when_switch_is_connected.png
Opendaylight
D Interface Manager —
RestConf || Switch Manager OVS Renderer OfPlugin ConfigDS OperDS

1. OF switch connects to ODL

| 2. Flow-Node Invéntory Update
3. Node-Connector DCN

4. odl-interface-gpenflow OperDS update

5. Creation of Vlan Interface from NBI

6. odkinterface DEN .

7. Translate Inff-Name to OF Poq Name
—

8.Add interface-of-infoin configDS

>
9. Read of-port-id for portName flom operDS

10. Check if pgrtName found. If npt, break here.
—

11. Read operstate,

'sAddr for ol—por‘ from inventory
>
12.Update Operétate PhysAddr in

dl-interface

_images/Deletion_of_vlan_interface_in_pre_provisioning_mode.png
Opendaylight

D Interface Manager

RestConf Switch Manager Type 1Renderer OfPlugin ConﬁgDS OperDS

1. Removal of Vian Interface from NBI

2. odl-interface DEN

3. Translate Int--Name to OF Port Name

e

portName from operDS.
lar

4. Read of-port-id for|

pro

_images/ofoverlay-3-flowpipeline.png

_images/ovsdb-sb-active-connection.jpg
1) Add an OVSDB node

Y
OVSDB SB Config | MDA OENIEs
Operational Data
Data Store
Store
2) Data Change \ /4) Add OVSDB Node

OVSDB SB Provider

3) Connect to OVSDB

Node as a Manager 5) Query Schemas and

Databases supported
6) Register to Monitor by OVSDB Node
changes to the OVSDB
tables.

Y

OVSDB server

OVSDB Node

_images/one_ODL_architecture.png
6.0.22 6.0.3.100 6.0.44

6.0.3.1 6.0.3.2
vppl vpp2
6.0.21 6.0.41

6.0.3.3

