
OpenDaylight Documentation
Documentation

Release Carbon

OpenDaylight Project

Jun 04, 2018

Contents

1 Content for OpenDaylight Users 3

2 Content for OpenDaylight Developers 1191

3 Content for OpenDaylight Contributors 1511

Bibliography 1675

i

ii

OpenDaylight Documentation Documentation, Release Carbon

This handbook provides details on various aspects of OpenDaylight from the user guides to the developer guides and
tries to act as a single point of contact for all documentation related articles in OpenDaylight. If you would like to
contribute to the Handbook please refer to the Documentation Guide.

Contents 1

OpenDaylight Documentation Documentation, Release Carbon

2 Contents

CHAPTER 1

Content for OpenDaylight Users

The following content is intended for people who would like to deploy, use, or just learn more about OpenDaylight.

1.1 Release Notes

1.1.1 Target Environment

For Execution

The OpenDaylight Karaf container, OSGi bundles, and Java class files are portable and should run on any Java 7- or
Java 8-compliant JVM to run. Certain projects and certain features of some projects may have additional requirements.
Those are noted in the project-specific release notes.

Projects and features which have known additional requirements are:

• TCP-MD5 requires 64-bit Linux

• TSDR has extended requirements for external databases

• Persistence has extended requirements for external databases

• SFC requires addition features for certain configurations

• SXP depends on TCP-MD5 on thus requires 64-bit Linux

• SNBI has requirements for Linux and Docker

• OpFlex requires Linux

• DLUX requires a modern web browser to view the UI

• AAA when using federation has additional requirements for external tools

• VTN has components which require Linux

3

OpenDaylight Documentation Documentation, Release Carbon

For Development

OpenDaylight is written primarily in Java project and primarily uses Maven as a build tool Consequently the two main
requirements to develop projects within OpenDaylight are:

• A Java 8-compliant JDK

• Maven 3.1.1 or later

Applications and tools built on top of OpenDaylight using it’s REST APIs should have no special requirements beyond
whatever is needed to run the application or tool and make the REST calls.

In some places, OpenDaylight makes use of the Xtend language. While Maven will download the appropriate tools to
build this, additional plugins may be required for IDE support.

The projects with additional requirements for execution typically have similar or more extensive additional require-
ments for development. See the project-specific release notes for details.

1.1.2 Known Issues and Limitations

Other than as noted in project-specific release notes, we know of the following limitations:

• Migration from prior OpenDaylight releases to Carbon has not been extensively tested. The per-project release
notes include migration and compatibility information when it is known.

• There are scales beyond which the controller has been unreliable when collecting flow statistics from OpenFlow
switches. In tests, these issues became apparent when managing thousands of OpenFlow switches, however this
may vary depending on deployment and use cases.

1.1.3 Security Limitations

All OpenDaylight Security Advisories can be found on the Security Advisories wiki page.

The following Security Advisory is of special note to OpenDaylight Carbon users:

• CVE-2017-1000406

1.1.4 Project-specific Release Notes

AAA

Major Features

For each top-level feature, identify the name, url, description, etc. User-facing features are used directly by end users.

odl-aaa-shiro

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob_plain;f=features/shiro/
features-aaa-shiro/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: ODL Shiro-based AAA implementation

• Top Level: Yes

• User Facing: Yes

4 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Security:Advisories
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000406
https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob_plain;f=features/shiro/features-aaa-shiro/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob_plain;f=features/shiro/features-aaa-shiro/src/main/features/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-carbon/

odl-aaa-authn

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/
main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Existing AAA infrastructure, now wrapped by odl-aaa-shiro

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-carbon/

odl-aaa-cert

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/
main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: MD-SAL based encrypted certificate management

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-carbon/

odl-aaa-cli

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/
main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Basic karaf CLI commands for interacting with AAA

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-carbon/

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the document is under review, provide a link to
the change in Gerrit.

• User Guide(s):

– Authentication, Authorization and Accounting (AAA) Services

• Developer Guide(s):

1.1. Release Notes 5

https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=aaa.git;a=blob;f=features/authn/features-aaa/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-csit-1node-authn-all-carbon/

OpenDaylight Documentation Documentation, Release Carbon

– Authentication, Authorization and Accounting (AAA) Services

Security Considerations

• Do you have any external interfaces other than RESTCONF?

No.

• Other security issues?

N/A.

Quality Assurance

• Link to Sonar Report (56.39% code coverage)

• Link to CSIT Jobs

Migration

• No data model changes occurred, so everything should work. You can either copy the existing idmlight.db.mv.db
into the new karaf distribution folder, or just start fresh with a new one.

Compatibility

• Is this release compatible with the previous release?

Yes.

• Any API changes?

No.

• Any configuration changes?

Some CLI commands were modified for security and ease of use purposes. Nothing else.

Bugs Fixed

• 8373 Unable to start blueprint container for bundle org.opendaylight.aaa.idmlight

• 8062 Bad padding in encrypted data

• 8214 NPE in org.opendaylight.aaa.shiro.realm.MDSALDynamicAuthorizationFilter

• 8313 AAA dependencies cause it not to come up

• 8157 Deleting a user and recreating it fails using the aaa-cli-jar

• 7527 Karaf 4 migration: provide Karaf 4 aaa features

6 Chapter 1. Content for OpenDaylight Users

https://jenkins.opendaylight.org/releng/view/aaa/job/aaa-sonar/
https://jenkins.opendaylight.org/releng/view/aaa/
https://bugs.opendaylight.org/show_bug.cgi?id=8373
https://bugs.opendaylight.org/show_bug.cgi?id=8062
https://bugs.opendaylight.org/show_bug.cgi?id=8214
https://bugs.opendaylight.org/show_bug.cgi?id=8313
https://bugs.opendaylight.org/show_bug.cgi?id=8157
https://bugs.opendaylight.org/show_bug.cgi?id=7527

OpenDaylight Documentation Documentation, Release Carbon

Known Issues

• List key known issues with workarounds

N/A

• Link to Open Bugs

End-of-life

• N/A

Standards

• LDAP, ActiveDirectory (less tested)

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

None.

Application-Layer Traffic Optimization (ALTO)

odl-alto-release

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=alto.git;a=blob;f=alto-release-features/
features-alto/src/main/features/features.xml

• Feature Description: This is a summary feature containing the default functionalities provided by ALTO
project.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/alto/job/alto-csit-1node-setup-all-carbon/

Documentation

• User Guide(s):

– ALTO User Guide

• Developer Guide(s):

– ALTO Developer Guide

1.1. Release Notes 7

https://bugs.opendaylight.org/buglist.cgi?component=General&list_id=78831&product=aaa&resolution=---
https://wiki.opendaylight.org/view/AAA:Carbon:Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=alto.git;a=blob;f=alto-release-features/features-alto/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=alto.git;a=blob;f=alto-release-features/features-alto/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/alto/job/alto-csit-1node-setup-all-carbon/

OpenDaylight Documentation Documentation, Release Carbon

Security Considerations

Besides RESTCONF, ALTO also uses customized Jetty interfaces because YANG model is not compatible with for-
mats specified in RFC 7285.

The customized interfaces use port 8080 and are NOT protected by the AAA project. All resources exposed by
customized interfaces are read-only.

Quality Assurance

• Link to Sonar Report 22.0%

• Link to CSIT Jobs

• The tests are using the OpenDaylight CSIT infrastructure.

– How extensive was it? Not very extensive since the tests are customized to test certain functionalities.

– What should be expected to work? The core modules (northbound and resourcepool) and also some basic
components (simple-ird)

– What has not be tested as much? Some basic components (simple-ecs and spce) and extended components
(multicost, incremental update and RSA service).

Migration

Migration with data from Boron to Carbon isn’t supported.

Compatibility

This release is not compatible with the previous release from the developer’s point of view because we have changed
the namespaces for most YANG models, which involves both API changes and configuration changes (blueprint con-
figuration files).

Java projects using the ALTO classes generated by yangtools MUST change the packages for the classes because of
the namespace migration. The incompatibility can be fixed using regex replacement.

Projects using RESTCONF or the customized ALTO service do not need to migrate.

Since ALTO is migrating services to Blueprint, services depending on ALTO may also need to migrate to Blueprint
instead of using CONFIG subsystem.

Bugs Fixed

No bug is fixed in this release.

Known Issues

• Bug 5753

Both Jersey 1.0 and 2.0 are imported in karaf.

This seems like a general bug which resides in several projects.

8 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview?id=50636
https://jenkins.opendaylight.org/releng/view/alto/job/alto-csit-1node-setup-all-carbon/
https://bugs.opendaylight.org/show_bug.cgi?id=5753

OpenDaylight Documentation Documentation, Release Carbon

End-of-life

• Namespaces:

– urn:opendaylight:alto:core

– urn:opendaylight:alto:basic

• Packages:

– org.opendaylight.yang.gen.v1.urn.opendaylight.alto.core.*

– org.opendaylight.yang.gen.v1.urn.opendaylight.alto.basic.*

Standards

• ALTO protocols are not compatible with YANG model

• Message types for RFC 7285 have been implemented

• ALTO project provides several basic services in RFC 7285

• Work-in-progress Internet drafts for multi-cost, incremental updates and RSA service are also scheduled but not
fully implemented.

Release Mechanics

• Link to release plan

• Major shifts:

– Unable to finish the extensions (multi-cost, incremental update and RSA service)

– Unable to reach the goal of improving code quality

BGP LS PCEP

Major Features

odl-bgpcep-bgp

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/bgp/features-bgp/src/
main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: OpenDaylight Border Gateway Protocol (BGP) plugin.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/bgpcep-csit-1node-userfeatures-all-carbon

1.1. Release Notes 9

urn:opendaylight:alto:core
urn:opendaylight:alto:basic
https://wiki.opendaylight.org/view/ALTO:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/bgp/features-bgp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/bgp/features-bgp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/bgpcep-csit-1node-userfeatures-all-carbon

OpenDaylight Documentation Documentation, Release Carbon

odl-bgpcep-bmp

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/bmp/features-bmp/
src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: OpenDaylight BGP Monitoring Protocol (BMP) plugin.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/bgpcep-csit-1node-userfeatures-all-carbon

odl-bgpcep-pcep

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/pcep/features-pcep/
src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: OpenDaylight Path Computation Element Configuration Protocol (PCEP) plugin.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/bgpcep-csit-1node-userfeatures-all-carbon

Documentation

• User Guide(s):

– BGP User Guide

– BGP Monitoring Protocol User Guide

– PCEP User Guide

• Developer Guide(s):

– BGP Developer Guide

– BGP Monitoring Protocol Developer Guide

– PCEP Developer Guide

Security Considerations

None Known - all protocol implements the TCP Authentication Option (TCP MD5)

Quality Assurance

• Link to Sonar Report (80,8%)

• Link to CSIT Jobs

• User features test

10 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/bmp/features-bmp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/bmp/features-bmp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/bgpcep-csit-1node-userfeatures-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/pcep/features-pcep/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=features/pcep/features-pcep/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/bgpcep-csit-1node-userfeatures-all-carbon
https://sonar.opendaylight.org/overview?id=10075
https://jenkins.opendaylight.org/releng/view/bgpcep/
https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-userfeatures-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

• PCEP performance and scale tests

• BGP Application peer performance and scale tests

• BGP performance and scale test

• BGP clustering

The BGP extensions were tested manually with vendor’s BGP router implementation or other software imple-
mentations (exaBGP, bagpipeBGP). Also, they are covered by the unit tests and automated system tests.

• New BGP Openconfig statistics feature requires more testing.

Migration

BGP:

Protocol Configuration

First we get old configuration

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols

Method: GET

where example-bmp-monitor old bmp monitor id

Then we insert it

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Topology Configuration

First we get old configuration

URL: /restconf/config/network-topology:network-topology

Method: GET

Then we insert it

URL: /restconf/config/network-topology:network-topology

Method: POST

BMP:

First we get old configuration

URL: /restconf/config/network-topology:network-topology/topology/
topology-netconf/node/controller-config/yang-ext:mount/config:modules/
config:module/odl-bmp-impl-cfg:bmp-monitor-impl/example-bmp-monitor

Method: GET

example-bmp-monitor old bmp monitor id

1.1. Release Notes 11

https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-periodic-throughpcep-only-carbon/
https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-periodic-bgp-ingest-only-carbon/
https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-periodic-bgp-ingest-mixed-only-carbon/
https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-3node-periodic-bgpclustering-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

Then we insert it

URL: /restconf/config/network-topology:network-topology/topology/
topology-netconf/node/controller-config/yang-ext:mount/config:modules/
config:module/odl-bmp-impl-cfg:bmp-monitor-impl/example-bmp-monitor

Method: PUT

PCEP:

There are no additional steps needed for migration to this release.

Compatibility

• Is this release compatible with the previous release? Yes

• Any API changes?

• Any configuration changes? BGP OpenConfig configuration should be used instead of previous BGP CSS
configuration.

Bugs Fixed

• List of bugs fixed since the previous release

Known Issues

• BUG-6562 Support add-path in base BGP NLRI

End-of-life

• None

Standards

• RFC4271 - A Border Gateway Protocol 4 (BGP-4)

• RFC4760 - Multiprotocol Extensions for BGP-4

• RFC1997 - BGP Communities Attribute

• RFC4360 - BGP Extended Communities Attribute

• RFC4486 - Subcodes for BGP Cease Notification Message

• RFC5004 - Avoid BGP Best Path Transitions from One External to Another

• RFC7752 - North-Bound Distribution of Link-State and TE Information using BGP

• RFC5440 - Path Computation Element (PCE) Communication Protocol (PCEP)

• RFC5541 - Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)

• RFC5455 - Diffserv-Aware Class-Type Object for the Path Computation Element Communication Protocol

12 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/buglist.cgi?columnlist=product%2Ccomponent%2Cassigned_to%2Cbug_severity%2Ccf_issue_type%2Cshort_desc%2Cbug_status%2Cpriority%2Cdeadline%2Ccf_target_milestone&f1=cf_target_milestone&f2=cf_issue_type&known_name=Lithium%3A%20bgpcep&o1=substring&o2=equals&product=bgpcep&query_based_on=Lithium%3A%20bgpcep&query_format=advanced&resolution=FIXED&v1=Carbon&v2=Bug
https://bugs.opendaylight.org/show_bug.cgi?id=6562
https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc4760
https://tools.ietf.org/html/rfc1997
https://tools.ietf.org/html/rfc4360
https://tools.ietf.org/html/rfc4486
https://tools.ietf.org/html/rfc5004
https://tools.ietf.org/html/rfc7752
https://tools.ietf.org/html/rfc5440
https://tools.ietf.org/html/rfc5541
https://tools.ietf.org/html/rfc5455

OpenDaylight Documentation Documentation, Release Carbon

• RFC5492 - Capabilities Advertisement with BGP-4

• RFC5521 - Extensions to the Path Computation Element Communication Protocol (PCEP) for Route Exclusions

• RFC5557 - Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions
in Support of Global Concurrent Optimization

• RFC5575 - Flow Specification

• RFC5886 - A Set of Monitoring Tools for Path Computation Element (PCE)-Based Architecture

• RFC6286 - Autonomous-System-Wide Unique BGP Identifier for BGP-4

• RFC6793 - BGP Support for Four-Octet Autonomous System (AS) Number Space

• RFC7311 - The Accumulated IGP Metric Attribute for BGP

• ‘RFC7674 <http://tools.ietf.org/html/rfc7674 >‘_ - Clarification of the Flowspec Redirect Extended Commu-
nity

• RFC5668 - 4-Octet AS Specific BGP Extended Community

• RFC3107 - Carrying Label Information in BGP-4

• RFC4364 - BGP/MPLS IP Virtual Private Networks (VPNs)

• RFC7432 - BGP MPLS-Based Ethernet VPN

• RFC7911 - Advertisement of Multiple Paths in BGP

• RFC2918 - Route Refresh Capability for BGP-4

• draft-ietf-bess-evpn-overlay - A Network Virtualization Overlay Solution using EVPN

• draft-ietf-pce-pceps - Secure Transport for PCEP

• draft-gredler-idr-bgp-ls-segment-routing-ext-03 - BGP Link-State extensions for Segment Routing

• draft-ietf-idr-bgpls-segment-routing-epe-05 - Segment Routing Egress Peer Engineering BGP-LS Extensions

• draft-ietf-idr-flow-spec-v6-06 - Dissemination of Flow Specification Rules for IPv6

• draft-ietf-idr-flowspec-redirect-ip-01 - BGP Flow-Spec Redirect to IP Action

• Stateful extensions to the Path Computation Element Protocol, December 2013

– draft-ietf-pce-stateful-pce-07 - PCEP Extensions for Stateful PCE

– draft-ietf-pce-pce-initiated-lsp-00 - PCEP Extensions for PCE-initiated LSP Setup in a Stateful PCE Model

• Segment routing extension to the Path Computation Element Protocol, October 2014

– draft-ietf-pce-segment-routing-01 - PCEP Extension for segment routing

– draft-ietf-pce-lsp-setup-type-01 - PCEP Extension for path setup type

– draft-ietf-pce-stateful-sync-optimizations-03 - Optimizations of Label Switched Path State Synchroniza-
tion Procedures for a Stateful PCE

– draft-sivabalan-pce-binding-label-sid-01 - Carrying Binding Label/Segment-ID in PCE-based Networks

– RFC7854 - BGP Monitoring Protocol

Release Mechanics

• Link to release plan

• Release plan not achieved

1.1. Release Notes 13

https://tools.ietf.org/html/rfc5492
https://tools.ietf.org/html/rfc5521
https://tools.ietf.org/html/rfc5557
https://tools.ietf.org/html/rfc5575
https://tools.ietf.org/html/rfc5886
https://tools.ietf.org/html/rfc6286
https://tools.ietf.org/html/rfc6793
https://tools.ietf.org/html/rfc7311
https://tools.ietf.org/html/rfc5668
https://tools.ietf.org/html/rfc3107
https://tools.ietf.org/html/rfc4364
https://tools.ietf.org/html/rfc7432
https://tools.ietf.org/html/rfc7911
https://tools.ietf.org/html/rfc2918
https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-04
https://tools.ietf.org/html/draft-ietf-pce-pceps-03
https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-03
https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-05
https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-06
https://tools.ietf.org/html/draft-ietf-idr-flowspec-redirect-ip-01
https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-07
https://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp-00
https://tools.ietf.org/html/draft-ietf-pce-segment-routing-01
https://tools.ietf.org/html/draft-ietf-pce-lsp-setup-type-01
https://tools.ietf.org/html/draft-ietf-pce-stateful-sync-optimizations-03
https://tools.ietf.org/html/draft-sivabalan-pce-binding-label-sid-01
https://tools.ietf.org/html/rfc7854
https://wiki.opendaylight.org/view/BGP_LS_PCEP:Carbon_Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

– BUG-6966 Introduce infrastructure for inbound/outbound routing policies

– BUG-6973 Migrate PCEP topology provider to use BP wiring

– BUG-6976 Migrate BMP collector to use BP wiring

– BUG-6978 Integrate BMP collector with Cluster Singleton Service

Bit Indexed Explicit Replication (BIER)

odl-bier-all

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=bier.git;a=blob;f=features/features-bier/src/main/
features/features.xml

• Feature Description: This is a summary feature containing the default functionalities provided by BIER
project.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/bier/job/bier-csit-1node-basic-all-carbon/

Documentation

• User Guide(s):

– BIER User Guide

• Developer Guide(s):

– BIER Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF?

– BIER project needs to get topology information via OpenFlow and BIER configuration via NETCONF.

• Other security issues?

– The required security issues are provided in the RESTCONF, NETCONF and OpenFlow project.

Quality Assurance

• Link to Sonar Report 76.5%

• Link to CSIT Jobs

• Testing methodology. How extensive was it? What should be expected to work? What has not been tested as
much?

• There are unit tests and integration test available under folder “test” and system test in CSIT but the NETCONF
interface is not tested and will be completed in next release.

14 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/show_bug.cgi?id=6966
https://bugs.opendaylight.org/show_bug.cgi?id=6973
https://bugs.opendaylight.org/show_bug.cgi?id=6976
https://bugs.opendaylight.org/show_bug.cgi?id=6978
https://git.opendaylight.org/gerrit/gitweb?p=bier.git;a=blob;f=features/features-bier/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=bier.git;a=blob;f=features/features-bier/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/bier/job/bier-csit-1node-basic-all-carbon/
https://sonar.opendaylight.org/overview?id=72693
https://jenkins.opendaylight.org/releng/view/bier/job/bier-csit-1node-basic-all-carbon/

OpenDaylight Documentation Documentation, Release Carbon

Migration

• Is it possible to migrate from the previous release? If so, how?

• Not applicable as there is no previous release.

Compatibility

• Is this release compatible with the previous release? No previous release.

• Any API changes? No.

• Any configuration changes? No.

Bugs Fixed

• Not applicable as there is no previous release.

Known Issues

• Not applicable as there is no previous release.

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

• N/A

Standards

• Multicast using Bit Index Explicit Replication

• YANG Data Model for BIER Protocol

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

• N/A

Cardinal

Major Features

odl-cardinal

• Feature URL: https://github.com/opendaylight/cardinal/blob/stable/carbon/features/cardinal-features/src/
main/features/features.xml

1.1. Release Notes 15

https://datatracker.ietf.org/doc/draft-ietf-bier-architecture
https://datatracker.ietf.org/doc/draft-ietf-bier-bier-yang
https://wiki.opendaylight.org/view/BIER:Carbon:Release_Plan
https://github.com/opendaylight/cardinal/blob/stable/carbon/features/cardinal-features/src/main/features/features.xml
https://github.com/opendaylight/cardinal/blob/stable/carbon/features/cardinal-features/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

• Feature Description: This feature installs the odl-cardinal application which provides opendaylight health
statistics, Karaf and Bundle statistics, Openflow/NETCONF specific statistics to a NMS server via SNMP pro-
tocol. And it also provides REST service to expose these statistics.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: NA

Documentation

• User Guide(s):

– Cardinal User Guide

• Developer Guide(s):

– Cardinal Developer Guide

Security Considerations

• SNMP agent runs on port 161,2001,2003

– Current support is for SNMPv2c (no encryption or authentication)

• Are all interfaces exposed using RESTCONF?

– Cardinal supports two interfaces - SNMP and RESTCONF

– Cardinal REST APIs are RESTCONF (authentication) enabled

– Cardinal SNMP support is through SNMP Agent (SNMPv2c as mentioned above)

– Link to all RESTCONF API

Quality Assurance

• Link to Sonar Report

Code coverage is 25.7% (User required to be as root to cover more coverage)

• Link to CSIT Jobs

N/A

• Other manual testing and QA information

There are some manual tests written to check if snmp daemon started on feature installation and sn-
mpget/snmpwalk command is working.

Compatibility

• Any API changes:

• Change 50715 Patch for monitoring Multiple Openflow Devices statistics via SNMP and REST

• Change 51145 Patch for monitoring multiple NETCONF devices statistics via SNMP and REST

16 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview?id=66521
https://wiki.opendaylight.org/view/Cardinal:Boron_Feature_Integration_System_Test
https://git.opendaylight.org/gerrit/50715
https://git.opendaylight.org/gerrit/51145

OpenDaylight Documentation Documentation, Release Carbon

Bugs Fixed

• Bug 7617 Karaf 4 migration: provide Karaf 4 cardinal features

Known Issues

• N/A

End-of-life

• N/A

Standards

• MIB OIDS were compiled for generating java classes using 3rd party library Open-DMK(mib-gen)

Release Mechanics

• Release plan

• Another functionality was added - Cardinal as an “SNMP Agent as a Service” in M4

Controller

Major Features

odl-mdsal-broker

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=features/mdsal/
features-mdsal/src/main/features/features.xml

• Feature Description: Core MD-SAL implementations.

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-verify-3node-clustering/

Documentation

• User Guide(s):

– User Guide

• Developer Guide(s):

– Controller

1.1. Release Notes 17

https://bugs.opendaylight.org/show_bug.cgi?id=7617
https://wiki.opendaylight.org/view/Cardinal:_Carbon_Release_Plan
https://git.opendaylight.org/gerrit/52204
https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=features/mdsal/features-mdsal/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=features/mdsal/features-mdsal/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-verify-3node-clustering/

OpenDaylight Documentation Documentation, Release Carbon

Security Considerations

• Do you have any external interfaces other than RESTCONF?

– Yes, akka uses port 2550 and by default communicates with unencrypted, unauthenticated messages. Se-
curing akka communication isn’t described here, but those concerned should look at the “Configuring
SSL/TLS for Akka Remoting” section at http://doc.akka.io/docs/akka//2.4.17/scala/remoting.html.

• Other security issues?

– No

Quality Assurance

• Link to Sonar Report (60%)

• Link to CSIT Jobs

Migration

• Is it possible to migrate from the previous release? If so, how?

– There are no issues with migration from Boron to Carbon.

Compatibility

• Is this release compatible with the previous release?

– Yes

• Any API changes?

– No

• Any configuration changes?

– Preview for Distributed Datastore Tell-Based protocol. This is enabled using
etc/org.opendaylight.controller.cluster.datastore.cfg’s use-tell-based-protocol knob and should elimi-
nate most sources of AskTimeouts.

Bugs Fixed

• List of bugs fixed since the previous release

– Bugs Fixed

Known Issues

• List key known issues with workarounds

– None

• Link to Open Bugs

18 Chapter 1. Content for OpenDaylight Users

http://doc.akka.io/docs/akka//2.4.17/scala/remoting.html
https://jenkins.opendaylight.org/releng/view/controller/job/controller-sonar/
https://jenkins.opendaylight.org/releng/view/controller/
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-9&chfieldto=2017-05-25&list_id=78854&product=controller&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&chfieldfrom=2016-08-9&chfieldto=2017-05-25&list_id=78855&product=controller&query_format=advanced

OpenDaylight Documentation Documentation, Release Carbon

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

– The XSQL component packaged in odl-mdsal-xsql has been deprecated and will be removed in the next
release.

– The following API elements are deprecated, pending future removal:

* org.opendaylight.controller.md.sal.binding.api.ClusteredDataChangeListener

* org.opendaylight.controller.md.sal.binding.api.DataChangeListener

* org.opendaylight.controller.sal.binding.api.AbstractBindingAwareConsumer

* org.opendaylight.controller.sal.binding.api.AbstractBindingAwareProvider

* org.opendaylight.controller.sal.binding.api.data.DataBrokerService

* org.opendaylight.controller.sal.binding.api.data.DataChangeListener

* org.opendaylight.controller.sal.binding.api.data.DataModificationTransaction

* org.opendaylight.controller.sal.binding.api.data.DataProviderService

* org.opendaylight.controller.sal.binding.api.data.SynchronizedTransaction

* org.opendaylight.controller.sal.binding.api.NotificationListener

* org.opendaylight.controller.sal.binding.api.NotificationProviderService

* org.opendaylight.controller.sal.binding.api.NotificationService

* org.opendaylight.controller.sal.common.util.RpcErrors.java

* org.opendaylight.controller.sal.common.util.Rpcs.java

* org.opendaylight.controller.sal.core.api.model.SchemaService

Standards

• List of standards implemented and to what extent

– None

Release Mechanics

• Link to release plan

DIDM

Major Features

odl-didm-all

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=didm.git;a=blob;f=features/src/main/features/
features.xml;hb=HEAD

• Feature Description: Device Identification and device driver framework

1.1. Release Notes 19

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Carbon:Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=didm.git;a=blob;f=features/src/main/features/features.xml;hb=HEAD
https://git.opendaylight.org/gerrit/gitweb?p=didm.git;a=blob;f=features/src/main/features/features.xml;hb=HEAD

OpenDaylight Documentation Documentation, Release Carbon

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: None

odl-didm-ovs-all

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=didm.git;a=blob;f=vendor/ovs/features/src/main/
features/features.xml;hb=HEAD

• Feature Description: DIDM OVS reference driver

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: NA

odl-didm-ovs-all

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=didm.git;a=blob;f=vendor/hp/features/src/main/
features/features.xml;hb=HEAD

• Feature Description: DIDM HP device identification and driver management

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: NA

Documentation

• User Guide(s):

– DIDM User Guide

• Developer Guide(s):

– DIDM Developer Guide

Security Considerations

• There are no security issue found.

20 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=didm.git;a=blob;f=vendor/ovs/features/src/main/features/features.xml;hb=HEAD
https://git.opendaylight.org/gerrit/gitweb?p=didm.git;a=blob;f=vendor/ovs/features/src/main/features/features.xml;hb=HEAD
https://git.opendaylight.org/gerrit/gitweb?p=didm.git;a=blob;f=vendor/hp/features/src/main/features/features.xml;hb=HEAD
https://git.opendaylight.org/gerrit/gitweb?p=didm.git;a=blob;f=vendor/hp/features/src/main/features/features.xml;hb=HEAD

OpenDaylight Documentation Documentation, Release Carbon

Quality Assurance

• Link to Sonar Report

• Link to CSIT Jobs

• Testing is done manually.

Migration

• No changes has been done from the last release.

Compatibility

• Release is compatible with previous release.

• No API changes has been done.

• No configuration changes has been done.

Bugs Fixed

• No bugfix has been done.

Known Issues

• Initial release for device driver support. The release only supports device driver feature for HP 3800 and OVS
(Open vSwitch).

• RPC “adjustFlow” is not adjusting the flows as expected for HP switch platform.

End-of-life

• No changes has been done from previous supported API.

Standards

• Flow Objective API

Release Mechanics

• Link to release plan

1.1. Release Notes 21

https://sonar.opendaylight.org/overview?id=org.opendaylight.didm%3Adidm-aggregator
https://jenkins.opendaylight.org/releng/view/didm/job/didm-csit-1node-discovery-only-carbon/
https://wiki.opendaylight.org/view/DIDM:Carbon

OpenDaylight Documentation Documentation, Release Carbon

Integration/Distribution

Major Features

odl-integration-all

• Gitweb URL: https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features3-test/
src/main/features/features.xml;hb=refs/heads/stable/carbon

• Description: An aggregate feature grouping all user-facing ODL features which can be installed together with-
out Karaf becoming unusable or without port conflicts.

• Top Level: Yes

• User Facing: No (CSIT purposes only)

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/distribution/job/distribution-deploy-carbon

odl-integration-compatible-with-all

• Gitweb URL: https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features3-test/
src/main/features/features.xml;hb=refs/heads/stable/carbon

• Description: An aggregate feature grouping all user-facing ODL features which are not pro-active and which
(as a group) should be compatible with most other ODL features.

• Top Level: Yes

• User Facing: No (CSIT purposes only)

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/distribution/job/distribution-csit-1node-userfeatures-all-carbon

odl-distribution-version

• Gitweb URL: https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=
features3-distribution/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Description: Allows NETCONF/RESTCONF users to determine the version of ODL they are communicating
with.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/distribution/job/distribution-csit-1node-userfeatures-only-carbon

Karaf 3 distribution archive

• Gitweb URL: https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=
distribution-karaf/pom.xml;hb=refs/heads/stable/carbon

• Description: Zip or tar.gz; when extracted, a self-consistent ODL installation is created.

22 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features3-test/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features3-test/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/distribution/job/distribution-deploy-carbon
https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features3-test/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features3-test/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/distribution/job/distribution-csit-1node-userfeatures-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features3-distribution/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=features3-distribution/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/distribution/job/distribution-csit-1node-userfeatures-only-carbon
https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=distribution-karaf/pom.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=distribution-karaf/pom.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/distribution/job/distribution-offline-carbon

Karaf 4 distribution archive

• Gitweb URL: https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=karaf/pom.
xml;hb=refs/heads/stable/carbon

• Description: Zip or tar.gz; when extracted, a self-consistent ODL installation is created.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: Removed to save resources.

Documentation

• User Guide:

– Clustering scripts

• Developer Guide:

– Distribution Version reporting

Security Considerations

• Karaf 3 exposes ssh console on port 8101. The security basically basically the same as in upstream Karaf of
corresponding versions, except library version overrides implemented in odlparent:karaf-parent.

See Securing the Karaf container

Quality Assurance

• Sonar Report (0%)

– Only 42 lines of java code.

• Test report page

• No additional manual testing.

Migration

• Version feature works exactly the same as in Boron. After migration the versions are set to the new default,
configurable in runtime or via configfile. The Boron configfile would work, but users are advised to consider
reporting a bumped version.

• No upgrade path for other features.

1.1. Release Notes 23

https://jenkins.opendaylight.org/releng/view/distribution/job/distribution-offline-carbon
https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=karaf/pom.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=blob;f=karaf/pom.xml;hb=refs/heads/stable/carbon
https://sonar.opendaylight.org/overview?id=61911
https://git.opendaylight.org/gerrit/gitweb?p=integration/distribution.git;a=tree;f=version/src/main/java/org/opendaylight/yang/gen/v1/urn/opendaylight/params/xml/ns/yang/integration/distribution/version/rev160316;hb=refs/heads/stable/carbon
https://wiki.opendaylight.org/view/Integration/Distribution/Carbon_Test_Report

OpenDaylight Documentation Documentation, Release Carbon

Compatibility

• No API changes in Karaf 3.

• Karaf features are not compatible with Boron.

– even odl-distribution-version depends on different version of Config Subsystem.

Bugs Fixed

• Bug 4296: At the time of Boron release, the default versions were not being set properly. Now they are.

• Bug 7255: During Carbon deveopment -all- jobs for NETCONF started to fail. Turns out NETCONF provides
two NETCONF topology managers (single node or cluster) which are incompatible with each other. Fixed by
moving both out of odl-integration-compatible-with-all.

• Bug 7493: Controller briefly used Artery, but distribution scripts were not compatible with that. After all, Artery
is not used in Carbon release, but the scripts now contain information how to make them compatible if needed.

• Bug 4219: Karaf 4 features and archives are available, but in experimental state only. NETCONF server and
NETCONF connectors do not work. RESTCONF works only up to attempted re-install.

Known Issues

• No known issues for Karaf 3.

• Karaf 4 is highly experimental.

End-of-life

No features/APIs which are EOLed, deprecated, and/or removed in this release.

Standards

No standard implemented directly (see upstream projects).

Release Mechanics

• Release plan

• Major shifts in release schedule

– Karaf 4 was running late due to difficulty of making CSIT work. Eventually Karaf 4 was moved to
experimental status.

– Team Lead was often busy, neglecting status updates.

DluxApps

Major Features

For each top-level feature, identify the name, url, description, etc. User-facing features are used directly by end users.

24 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/show_bug.cgi?id=4296
https://bugs.opendaylight.org/show_bug.cgi?id=7255
https://bugs.opendaylight.org/show_bug.cgi?id=7493
https://bugs.opendaylight.org/show_bug.cgi?id=4219
https://wiki.opendaylight.org/view/Integration/Distribution/Carbon_Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

odl-dluxapps-nodes

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/
features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423

• Feature Description: Application displays list of nodes in openflow (flow:1) topology.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

odl-dluxapps-topology

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/
features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423

• Feature Description: Basic topology application. Displays nodes and links from openflow (flow:1) topology.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

odl-dluxapps-yangman

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/
features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423

• Feature Description: GUI for data manipulation in controller. Generates forms based on loaded Yang models.
User can interact with controller without knowledge of Yang models, test them, etc. Replacement of YangUI
app.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/dluxapps/job/dluxapps-csit-1node-yangman-only-carbon/

odl-dluxapps-yangui

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/
features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423

• Feature Description: Previous version of YangUI. Will be removed in next release.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

1.1. Release Notes 25

https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423
https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423
https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423
https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423
https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423
https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423
https://jenkins.opendaylight.org/releng/view/dluxapps/job/dluxapps-csit-1node-yangman-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423
https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423

OpenDaylight Documentation Documentation, Release Carbon

odl-dluxapps-yangvisualizer

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/
features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423

• Feature Description: Topology-like visualization of Yang models loaded in controller.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

Documentation

• Developer Guide(s):

– DluxApps Developer Guide

Security Considerations

• There are no security issues found.

Quality Assurance

• Link to Sonar Report

• Link to CSIT Jobs

• GUI is tested mostly manually, CSITs are on the way.

Migration

• All applications are moved from Dlux project to DluxApps. Also feature names changed, so instead odl-dlux-*
use odl-dluxapps-*. Everything else works same.

Compatibility

• Release is compatible with previous.

• API changes are in feature names - odl-dlux-* changes to odl-dluxapps-*

Bugs Fixed

https://bugs.opendaylight.org/buglist.cgi?bug_status=__closed__&content=&no_redirect=1&order=Importance&
product=dluxapps&query_format=specific

26 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423
https://git.opendaylight.org/gerrit/gitweb?p=dluxapps.git;a=blob;f=features/src/main/features/features.xml;hb=621a9e576e15233177a20f89f83b3992999b9423
https://wiki.opendaylight.org/view/DluxApps:DeveloperGuide
https://sonar.opendaylight.org/overview?id=72613
https://jenkins.opendaylight.org/releng/view/dluxapps/search/?q=dluxapps-csit
https://bugs.opendaylight.org/buglist.cgi?bug_status=__closed__&content=&no_redirect=1&order=Importance&product=dluxapps&query_format=specific
https://bugs.opendaylight.org/buglist.cgi?bug_status=__closed__&content=&no_redirect=1&order=Importance&product=dluxapps&query_format=specific

OpenDaylight Documentation Documentation, Release Carbon

Known Issues

• Link to Open Bugs

End-of-life

• odl-dluxapps-yangui - deprecated

Standards

• List of standrads implemented and to what extent

– N/A

Release Mechanics

• Link to release plan

• UT coverage is not increased

• Yang Visualized refactor and redesign is not started

Documentation

Major Features

Not Applicable. The documentation project does not produce any code artifacts for the release.

Documentation

• Installation Guide(s):

– The Getting Started Guide includes details about installation.

• User Guide(s):

– The OpenDaylight User Guide includes sub-guides for each major feature in each project.

• Developer Guide(s):

– The Developer Guide includes sub-guides for each major feature in each project.

Security Considerations

• Do you have any external interfaces other than RESTCONF?

– No.

• Other security issues?

– None.

1.1. Release Notes 27

https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&content=&no_redirect=1&order=Importance&product=dluxapps&query_format=specific
https://wiki.opendaylight.org/view/DluxApps:Carbon_Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

Quality Assurance

Not applicable.

Migration

Not applicable.

Compatibility

Not applicable.

Bugs Fixed

Not applicable.

Known Issues

None.

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release.

– None.

Standards

• List of standrads implemented and to what extent

– None.

Release Mechanics

• Documentation Carbon Release Plan

• Describe any major shifts in release schedule from the release plan

– Dropped delivery of code-snippet import from projects.

– Didn’t provide a general service chaining deployment guide.

28 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Documentation/Release_Plans/Carbon_Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

eman

Major Features

odl-eman

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=eman.git;a=blob;f=features/features-eman/src/
main/features/features.xml;hb=stable/carbon

• Feature Description: This provides a Northbound API to the eman Information Model

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: none

Documentation

• User Guide(s):

– eman User Guide

• Developer Guide(s):

– eman Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF?

While eman does not expose other external interfaces, it does rely upon the external interfaces exposed by the
SNMP plugin.

• Other security issues?

None

Quality Assurance

• Link to Sonar Report -

• Link to CSIT Jobs - No CSIT jobs for this experimental release

• Other manual testing and QA information - Manual testing via RESTCONF and DLUX

• Testing methodology. How extensive was it? What should be expected to work? What hasn’t been tested as
much?

Testing has been manual interaction via DLUX using an SNMP simulator as described in eman User Guide.

1.1. Release Notes 29

https://git.opendaylight.org/gerrit/gitweb?p=eman.git;a=blob;f=features/features-eman/src/main/features/features.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=eman.git;a=blob;f=features/features-eman/src/main/features/features.xml;hb=stable/carbon
https://sonar.opendaylight.org/overview?id=69960

OpenDaylight Documentation Documentation, Release Carbon

Migration

• Is it possible to migrate from the previous release? If so, how?

N/A as this is first release

Compatibility

N/A as this is first release

Bugs Fixed

• List of bugs fixed since the previous release

N/A as this is first release

Known Issues

• List key known issues with workarounds

no known issues

• Link to Open Bugs

no open bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

N/A as this is first release

Standards

• List of standards implemented and to what extent

– IETF Energy Management (eman) standards. Only powerMeasurement table currently implemented.

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

None

30 Chapter 1. Content for OpenDaylight Users

https://datatracker.ietf.org/wg/eman/charter/
https://wiki.opendaylight.org/view/Eman:Carbon_Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

FaaS - Fabric As A Service

Major Features

odl-faas-all

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=faas.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: This is a top level wrapper feature which includes all the sub features faas offers.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

Documentation

• User Guide(s):

– Fabric As A Service

• Developer Guide(s):

– Fabric As A Service

Security Considerations

• Do you have any external interfaces other than RESTCONF?

– No

• Other security issues?

– N/A

Quality Assurance

• Link to Sonar Report (N/A)

• There are unit tests and integration test scripts available under folder “demo” in the faas repo, these scripts can
be manually invoked for testing. these tests only depends on minnet and ovs which can easily been installed on
one VM.

Migration

• Is it possible to migrate from the previous release? If so, how?

– No

1.1. Release Notes 31

https://git.opendaylight.org/gerrit/gitweb?p=faas.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=faas.git;a=blob;f=features/src/main/features/features.xml
https://sonar.opendaylight.org/overview?id=58232

OpenDaylight Documentation Documentation, Release Carbon

Compatibility

• Is this release compatible with the previous release? Yes

• Any API changes? No.

• Any configuration changes? No.

Bugs Fixed

• List of bugs fixed since the previous release

– None

Known Issues

https://bugs.opendaylight.org/buglist.cgi?quicksearch=faas

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

– None

Standards

• List of standrads implemented and to what extent

– None

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

– None

Federation

Major Features

federation-with-rabbit

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=federation.git;a=blob;f=features/
features-federation/src/main/features/features.xml

• Feature Description: The federation service is a project that facilitates the exchange of state between mul-
tiple OpenDaylight deployments (henceforth ‘sites’). These sites may be single node deployments or cluster
deployments. The ‘federation-with-rabbit’ feature is a specific implementation of the federation service, based
on Rabbit MQ broker. Federation service currently only supports the Rabbit MQ implementation.

32 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/buglist.cgi?quicksearch=faas
https://wiki.opendaylight.org/view/FaaS:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=federation.git;a=blob;f=features/features-federation/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=federation.git;a=blob;f=features/features-federation/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: No (tested via NetVirt CSIT)

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the document is under review, provide a link to
the change in Gerrit.

• Installation Guide(s):

– ../../submodules/federation/docs/install-guide/federation-install-guide

• Developer Guide(s):

– ../../submodules/federation/docs/developer-guide/federation-developer-guide

Security Considerations

• No dedicated port numbers are used.

• Securing of RabbitMQ is beyond the scope of this project but it is suggested that standard RabbitMQ security
procedures are applied.

Quality Assurance

• This project was not independently tested. Rather it was tested indirectly by means of the NetVirt Federation
Plugin.

Migration

• Not applicable. Federation is a new project released in the Carbon release for the first time.

Compatibility

• Not applicable. Federation is a new project released in the Carbon release for the first time.

Bugs Fixed

• Not applicable. Federation is a new project released in the Carbon release for the first time.

Known Issues

• There are no known issues with respect of the usage flow tested via the NetVirt Federation Plugin

1.1. Release Notes 33

OpenDaylight Documentation Documentation, Release Carbon

End-of-life

• Not applicable. Federation is a new project released in the Carbon release for the first time.

Standards

• Not applicable

Release Mechanics

• https://wiki.opendaylight.org/view/Federation:Carbon_Release_Plan

Groupbasedpolicy (GBP)

Major Features

• GBP UI - Groupbasedpoilicy User Interface

• Neutron Provider - maps neutron configuration to GBP service model

• FaaS Renderer - maps GBP service model to the common abstraction logical network models of the Fabric As
A Service

• IOS-XE Renderer - maps GBP service model to IOS-XE based devices

• IOvisor Renderer - maps GBP service model to agents of the IOVisor Linux Foundation project

• Netconf Renderer - maps GBP service model to NETCONF based network elements

• OpenFlow Overlay Renderer - enable network virtualization behavior using OpenFlow

• SXP Distribution Service - enables SGT Exchange Protocol

• VPP Renderer - enable network virtualization behavior for VPP devices

odl-groupbasedpolicy-ofoverlay

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Feature can be added to the base to enable a Network Virtualization behavior using
OpenFlow

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/
groupbasedpolicy-csit-1node-3-node-only-carbon/

• CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/
groupbasedpolicy-csit-1node-6node-only-carbon/

34 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Federation:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-only-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-only-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-only-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

odl-groupbasedpolicy-ovssfc

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Feature can be added to the base to enable a Network Virtualization behavior using
OpenFlow that integrates with the SFC project

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/
groupbasedpolicy-csit-1node-3-node-only-carbon/

• CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/
groupbasedpolicy-csit-1node-6node-only-carbon/

odl-groupbasedpolicy-faas

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This renderer maps GBP service model to the common abstraction logical network mod-
els of the Fabric As A Service (FAAS). In turns, FAAS maps those abstraction models to the physical networks.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

odl-groupbasedpolicy-iovisor

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This renderer maps GBP service model to agents of the IOVisor Linux Foundation project

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

odl-groupbasedpolicy-netconf

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This renderer maps GBP service model to NETCONF based network elements

• Top Level: Yes

1.1. Release Notes 35

https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-only-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-only-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-only-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

odl-groupbasedpolicy-neutronmapper

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This renderer maps Neutron northbound configuration to GBP service model

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/
groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/

odl-groupbasedpolicy-neutron-and-ofoverlay

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Neutron and OpenFlow Overlay

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/
groupbasedpolicy-csit-1node-3-node-only-carbon/

• CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/
groupbasedpolicy-csit-1node-6node-only-carbon/

• CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/
groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/

odl-groupbasedpolicy-vpp

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This renderer maps GBP service model to VPP devices

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

36 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-only-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-only-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-only-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-only-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

odl-groupbasedpolicy-neutron-vpp-mapper

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Neutron Northbound services for VPP renderer

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/
groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/

odl-groupbasedpolicy-ui

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Groupbasedpolicy User Interface

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

odl-groupbasedpolicy-ip-sgt-distribution-service

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: SXP Distribution Service

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

odl-groupbasedpolicy-ios-xe

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This renderer maps GBP service model to IOS-XE devices

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

1.1. Release Notes 37

https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

odl-groupbasedpolicy-sxp-ep-provider

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: SXP integration: Endpoint provider

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

odl-groupbasedpolicy-sxp-ise-adapter

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/
features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: SXP integration: ISE adapter

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

Documentation

• Installation Guide(s):

– Groupbasedpolicy Installation Guide

• User Guide(s):

– Group Based Policy User Guide

Security Considerations

• No other external interfaces than RESTCONF

• No known security issues

Quality Assurance

Sonar report (67%)

Groupbasedpolicy CSIT:

• https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-all-carbon/

• https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-all-carbon/

• https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/

• https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-3node-clustering-all-carbon/

38 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=groupbasedpolicy.git;a=blob;f=features/features-groupedpolicy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)/Installation_guide
https://sonar.opendaylight.org/overview?id=51201
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-3-node-all-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-6node-all-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-1node-openstack-liberty-openstack-carbon/
https://jenkins.opendaylight.org/releng/view/groupbasedpolicy/job/groupbasedpolicy-csit-3node-clustering-all-carbon/

OpenDaylight Documentation Documentation, Release Carbon

Other manual testing and QA information

• GBP devstack demo

• GBP-SFC demo

• VPP demo

Guides about how to run demo can be found on GBP wiki under Demo

Migration

Migration from previous releases is not supported.

Compatibility

• Is this release compatible with the previous release?

Yes

• Any API changes?

Yes

https://git.opendaylight.org/gerrit/#/c/49041/ - Minor updates in names and descriptions for VPP renderer and
adapter model to make it more readable.

https://git.opendaylight.org/gerrit/#/c/49190/ - Replacing InstanceIdentifier in VPP renderer model with NodeId.

• Any configuration changes?

N/A

Bugs Fixed

• Fixed Bugs

Known Issues

• List key known issues with workarounds

N/A

• Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

N/A

Standards

• List of standrads implemented and to what extent

N/A

1.1. Release Notes 39

https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)/Consumability/Demo
https://git.opendaylight.org/gerrit/#/c/49041/
https://git.opendaylight.org/gerrit/#/c/49190/
https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&chfield={[}Bug%20creation{]}&chfieldfrom=2016-09-21&chfieldto=2017-05-25&list_id=78798&product=groupbasedpolicy&query_format=advanced&resolution=FIXED
bugs.opendaylight.org/buglist.cgi?bug_status=CONFIRMED&bug_status=OPEN&bug_status=IN_PROGRESS&chfield={[}Bugcreation{]}&chfieldfrom=2016-09-21&chfieldto=2017-05-25&list_id=78797&product=groupbasedpolicy&query_format=advanced&resolution=---

OpenDaylight Documentation Documentation, Release Carbon

Release Mechanics

• Release plan

• Describe any major shifts in release schedule from the release plan

N/A

Genius (Generic Network Interface, Utilities & Services)

Genius project provides Generic Network Interfaces, Utilities & Services. Any ODL application can use these to
achieve interference-free co-existence with other applications using Genius. OpendayLight Carbon Genius provides
following modules –

• Interface (logical port) Manager allows bindings/registration of multiple services to logical ports/interfaces

• Overlay Tunnel Manager creates and maintains overlay tunnels between configured tunnel endpoints

• Aliveness Monitor provides tunnel/nexthop aliveness monitoring services

• ID Manager generates cluster-wide persistent unique integer IDs

• MD-SAL Utils provides common generic APIs for interaction with MD-SAL

• Resource Manager provides a resource sharing framework for applications sharing common resources e.g.
table-ids, group-ids etc.

• FCAPS Application generates various alarms and counters for the different genius modules

• FCAPS Framework module collectively fetches all data generated by fcaps application. Any underlying in-
frastructure can subscribe for its events to have a generic overview of the various alarms and counters

Major Features

• Features URL: https://git.opendaylight.org/gerrit/gitweb?p=genius.git;a=blob;f=features/genius-features/src/
main/features/features.xml

odl-genius-rest

• Feature Description: Provides all functionalities provided by genius modules, including interface manager,
tunnel manager, resource manager and ID manager and MDSAL Utils.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Tests:

– https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-1node-genius-all-carbon/

– https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-3node-genius-all-carbon/

40 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)/Releases/Carbon/Release_plan
https://git.opendaylight.org/gerrit/gitweb?p=genius.git;a=blob;f=features/genius-features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=genius.git;a=blob;f=features/genius-features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-1node-genius-all-carbon/
https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-3node-genius-all-carbon/

OpenDaylight Documentation Documentation, Release Carbon

odl-genius-fcaps-application

• Feature Description: includes genius FCAPS application.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Tests: None

odl-genius-fcaps-framework

• Feature Description: includes genius FCAPS Framework.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Tests: None

New capabilities and enhancements added in Carbon

Planned new capabilities added

• OF Tunnels

• ITM Tunnel Auto-Configuration

• Service Binding On Tunnels

Unplanned new capabilities added (needed by Netvirt Project)

• Load balancing and high availability of multiple VxLAN tunnels

Enhancements added to existing features/services

• Interface manager : Increase max services bind on an interface to 16

• ITM to support same TEP in multiple Transport Zones

• Various performance and scale improvements

Enhancements added to project

1. Migration to Blueprint

2. Checkstyle enforcement

3. IT framework enhancements

4. Junits and CSIT enhancements

1.1. Release Notes 41

OpenDaylight Documentation Documentation, Release Carbon

Documentation

• Installation Guide(s):

– N/A

• User Guide(s):

– User Guide

• Developer Guide(s):

– Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF?

– No

• Other security issues?

– N/A

Quality Assurance

• Sonar Report (40.7%)

• CSIT Jobs

• Netvirt CSIT for Genius patches

• Netvirt Cluster CSIT for Genius patches

Note: Genius is used extensively in NetVirt, so NetVirt’s CSIT also provides confidence in genius.

• Other manual testing and QA information

– N/A

• Testing methodology. How extensive was it? What should be expected to work? What hasn’t been tested as
much?

– fcaps_framework and fcaps_application features hasn’t been tested much.

Migration

• Is it possible to migrate from the previous release? If so, how?

– No. OpenDaylight doesn’t support migration natively for applications that use datastore.

Compatibility

• Is this release compatible with the previous release?

– Functionality is fully backwards compatible.

42 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview?id=64114
https://jenkins.opendaylight.org/releng/view/genius/job/genius-csit-1node-genius-all-carbon//
https://jenkins.opendaylight.org/releng/job/genius-patch-test-netvirt-carbon/
https://jenkins.opendaylight.org/releng/job/genius-patch-test-cluster-netvirt-carbon/

OpenDaylight Documentation Documentation, Release Carbon

• Any API changes?

– No

• Any configuration changes?

– No

Bugs Fixed

• List of bugs fixed since the previous release

– Fixed BUGS

Known Issues

• List key known issues with workarounds

– None

• Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

– MDSalUtil Async*ListenerBase classes deprecated

Standards

• List of standards implemented and to what extent

– N/A

Release Mechanics

• Release plan

• Describe any major shifts in release schedule from the release plan

– N/A

Infrautils

Major Features

odl-infrautils-all

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=infrautils.git;a=blob;f=common/features/
infrautils-features/src/main/features/features.xml;hb=stable/carbon

• Feature Description: This feature exposes all infrautils framework features

• Top Level: Yes

1.1. Release Notes 43

https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-9&chfieldto=2017-05-25&list_id=78466&product=genius&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-9&chfieldto=2017-05-25&list_id=78466&product=genius&query_format=advanced&bug_status=__open__
https://git.opendaylight.org/gerrit/#/c/51913/
https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=infrautils.git;a=blob;f=common/features/infrautils-features/src/main/features/features.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=infrautils.git;a=blob;f=common/features/infrautils-features/src/main/features/features.xml;hb=stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

• User Facing: No

• Experimental: Yes

• CSIT Test: none

Documentation

• User Guide(s):

– Infrautils provides low-level technical framework utilities and therefore has no user guide

• Developer Guide(s):

– Infrautils

Security Considerations

• No external interfaces

Quality Assurance

• Link to Sonar Report (82.8% line coverage)

• Project infrautils provides low-level technical framework utilities and therefore no CSIT automated system
testing is available

Migration

• No additional migration steps needed

Compatibility

• This release is compatible with previous release

• Async API was removed (dead code, not used by any odl projects)

• No configuration changes made

Bugs Fixed

• List of bugs fixed since the previous release:

Known Issues

• There are no currently known issues

End-of-life

• This section is N/A

44 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview?id=66717
https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&chfield=target_milestone&chfieldto=Now&component=General&f1=cf_target_milestone&f2=cf_target_milestone&f3=cf_target_milestone&f4=cf_target_milestone&f5=cf_target_milestone&j_top=AND_G&list_id=78956&o1=substring&product=infrautils&query_format=advanced&resolution=FIXED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE&resolution=WORKSFORME&v1=Carbon

OpenDaylight Documentation Documentation, Release Carbon

Standards

• This section is N/A

Release Mechanics

• Link to release plan

IoTDM

Major Features

odl-onem2m-core

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/
onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This feature implements CSE services described in OneM2M specifications and provides
some APIs simplifying development and usage of new plugins. These APIs and related services are considered
as IoTDM’s plugin infrastructure.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/

odl-onem2m-http

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/
onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Implements communication over HTTP and HTTPS according to OneM2M specifica-
tions.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/

odl-onem2m-coap

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/
onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Implements communication over CoAP and CoAPS according to OneM2M specifica-
tions.

• Top Level: Yes

• User Facing: Yes

1.1. Release Notes 45

https://wiki.opendaylight.org/view/Infrastructure_Utilities:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/

odl-onem2m-mqtt

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/
onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Implements communication over MQTT according to OneM2M specifications.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/

odl-onem2m-websocket

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/
onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Implements communication over websocket according to OneM2M specifications.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/

odl-iotdmbundleloader

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2mplugins/
iotdmbundleloader/features/features-iotdmbundleloader/src/main/features/features.xml;hb=refs/heads/stable/
carbon

• Feature Description: Provides REST API to dynamically install/uninstall/reinstall new OSGI bundles to Karaf.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

odl-iotdmkaraffeatureloader

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2mplugins/
iotdmkaraffeatureloader/features/features-iotdmkaraffeatureloader/src/main/features/features.xml;hb=refs/
heads/stable/carbon

• Feature Description: Provides REST API to dynamically install/uninstall/reinstall new Karaf features from
Karaf archive file.

46 Chapter 1. Content for OpenDaylight Users

https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2m/onem2m-features/features-onem2m/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2mplugins/iotdmbundleloader/features/features-iotdmbundleloader/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2mplugins/iotdmbundleloader/features/features-iotdmbundleloader/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2mplugins/iotdmbundleloader/features/features-iotdmbundleloader/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2mplugins/iotdmkaraffeatureloader/features/features-iotdmkaraffeatureloader/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2mplugins/iotdmkaraffeatureloader/features/features-iotdmkaraffeatureloader/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=iotdm.git;a=blob_plain;f=onem2mplugins/iotdmkaraffeatureloader/features/features-iotdmkaraffeatureloader/src/main/features/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

Documentation

There is some outdated documentation at our wiki page: https://wiki.opendaylight.org/view/IoTDM:Main

Some general information can be found in developer guide for IoTDM, see IoTDM Developer Guide.

There is more actual developers documentation as README files in IoTDM’s sources.

Security Considerations

Since this project implements OneM2M specifications including protocol bindings it is also opening multiple ports for
plugins providing mapping between protocol specific representation of data to the common format used by onem2m-
core. Port numbers opened by IoTDM depends on configuration of these plugins and also depends on number of
instances of the plugins.

There are some default server port numbers pre-configured for OneM2M related plugins, e.g.: HTTP: 8282(TCP),
CoAP: 5683(UDP), Websocket: 8888(TCP) which are enabled by default.

HTTPS and CoAPS communication can be used instead of unsecured versions but it must be configured properly.
There are implemented also other experimental plugins opening ports by default: odl-onem2mexample:: 8283(TCP),
dl-onem2medevice:: 8284(TCP) and 123(UDP)

The experimental features odl-iotdmbundleloader and odl-iotdmkaraffeatureloader are insecure in this version since
there are not implemented any security mechanisms yet.

Quality Assurance

• Link to Sonar Report (0.6 %)

• Link to CSIT Jobs

• Other manual testing and QA information HTTP communication tested manually by Postman collections and
other communication (MQTT, CoAP, Websocket) tested occasionally using some opensource tools. We are
using code coverage achieved by our CSIT test suites as QA metrics what is currently 35 %.

• Testing methodology. How extensive was it? What should be expected to work? What hasn’t been tested as
much? We have defined CSIT test suites including list of test cases without implementation including description
only. These tests are marked as “excluded” so they are not executed by CSIT jobs. There are described 736 tests
and 278 of them are implemented. These tests are testing HTTP communication only. Other communication
protocols are not being tested by CSIT jobs now.

Migration

• Is it possible to migrate from the previous release? If so, how? No, current release is backward incompatible.

1.1. Release Notes 47

https://wiki.opendaylight.org/view/IoTDM:Main
https://sonar.opendaylight.org/overview?id=org.opendaylight.iotdm%3Aiotdm-aggregator
https://jenkins.opendaylight.org/releng/view/iotdm/job/iotdm-csit-1node-basic-all-carbon/

OpenDaylight Documentation Documentation, Release Carbon

Compatibility

• Is this release compatible with the previous release? No

• Any API changes? Yes, the REST API of onem2m-api feature has been modified and implementations of the
OneM2M APIs have been modified as well.

• Any configuration changes? There was not any configurable module in previous releases.

Bugs Fixed

• List of bugs fixed since the previous release Only bugs related to current release have been fixed.

Known Issues

There are several low priority issues opened in IoTDM’s Bugzilla. Here are some major issues: 7990 - Race condition
after resource delete - https://bugs.opendaylight.org/show_bug.cgi?id=7990 4316 - “mni” and “mbs” does not work
stable - https://bugs.opendaylight.org/show_bug.cgi?id=4316

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release N/A

Standards

Subset of functionality described in OneM2M specifications: http://onem2m.org/technical/published-documents

• TS 0001, version 2.10.0

• TS 0004, version 2.7.1

• TS 0008, version 1.3.2

• TS 0009, version 2.6.1

• TS 0010, version 2.4.1

• TS 0020, version 2.1.0

Release Mechanics

• Link to release plan

L2Switch

odl-l2switch-switch

• Feature URL: https://github.com/opendaylight/l2switch/blob/stable/carbon/features/features-l2switch/src/
main/features/features.xml

• Feature Description: Provides a basic L2 Switch abstraction over multiple switches using OpenFlow

• Top Level: Yes

48 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/show_bug.cgi?id=7990
https://bugs.opendaylight.org/show_bug.cgi?id=4316
http://onem2m.org/technical/published-documents
https://wiki.opendaylight.org/view/Iotdm:_Carbon_Release_Plan
https://github.com/opendaylight/l2switch/blob/stable/carbon/features/features-l2switch/src/main/features/features.xml
https://github.com/opendaylight/l2switch/blob/stable/carbon/features/features-l2switch/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

• User Facing: Yes

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-switch-all-carbon/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-integration-carbon/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-merge-carbon/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-sonar/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-validate-autorelease-carbon/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-clm-carbon/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-periodic-host-scalability-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-scalability-all-carbon/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-scalability-only-carbon/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-switch-all-carbon/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-switch-only-carbon/

– https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-distribution-check-carbon/

Documentation

• User Guide(s):

– L2 Switch User Guide

• Developer Guide(s):

– L2Switch Developer Guide

Security Considerations

• Are there any known security issues?

None.

Quality Assurance

• Link to Sonar Report (22.0% code coverage)

• Link to CSIT Jobs

• The tests are using the OpenDaylight CSIT infrastructure.

– How extensive was it? Extensive, covers functionality, scalability tests.

– What should be expected to work? The core modules like Address tracker, Packet handler, Host tracker,
loop removal, simple mininet ping.

– What has not be tested as much? Basic scalablity tests exists today, extensive scalability could be per-
formed.

1.1. Release Notes 49

https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-switch-all-carbon/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-integration-carbon/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-merge-carbon/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-sonar/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-validate-autorelease-carbon/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-clm-carbon/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-periodic-host-scalability-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-scalability-all-carbon/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-scalability-only-carbon/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-switch-all-carbon/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-csit-1node-switch-only-carbon/
https://jenkins.opendaylight.org/releng/view/l2switch/job/l2switch-distribution-check-carbon/
https://sonar.opendaylight.org/overview?id=50636
https://jenkins.opendaylight.org/releng/view/l2switch/

OpenDaylight Documentation Documentation, Release Carbon

Migration

Migration with data from Boron to Carbon is not supported.

Compatibility

This release is compatible with the previous release.

Since l2switch is migrating services to Blueprint, services depending on l2switch may also need to migrate to Blueprint
instead of using CONFIG subsystem.

Bugs Fixed

No bug is fixed in this release.

Known Issues

• Bug 6654

l2switch does not work well when mininet is stopped/started with no delay.

End-of-life

No Changes

Standards

None.

Release Mechanics

• Link to release plan

• No major changes.

LACP

Major Features

odl-lacp-plugin

• Feature URL: https://github.com/opendaylight/lacp/blob/stable/carbon/features/src/main/features/features.xml

• Feature Description: Southbound plugin for adding Link Aggregation Control Protocol support (via Open-
Flow)

• Top Level: Yes

• User Facing: Yes

50 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/show_bug.cgi?id=6654
https://wiki.opendaylight.org/view/L2_Switch:Carbon_Release_Plan
https://github.com/opendaylight/lacp/blob/stable/carbon/features/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

• Experimental: Yes

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/lacp/job/lacp-csit-1node-lacp-all-carbon/

– https://jenkins.opendaylight.org/releng/view/lacp/job/lacp-integration-carbon/

Documentation

• User Guide(s):

– Link Aggregation Control Protocol User Guide

• Developer Guide(s):

– LACP Developer Guide

Security Considerations

No known issues

Quality Assurance

• Sonar report (76.8% code coverage)

Migration

It is not currently supported

Compatibility

Yes, It is compatible with previous release. There are no API or config changes.

Bugs Fixed

No bugs fixed

Known Issues

No known issues

End-of-life

No deprecated or EoLed features.

1.1. Release Notes 51

https://jenkins.opendaylight.org/releng/view/lacp/job/lacp-csit-1node-lacp-all-carbon/
https://jenkins.opendaylight.org/releng/view/lacp/job/lacp-integration-carbon/
https://sonar.opendaylight.org/overview?id=43929

OpenDaylight Documentation Documentation, Release Carbon

Standards

IEEE 802.11ad-2012

Release Mechanics

• Link to release plan

LISP Flow Mapping

Major Features

odl-lispflowmapping-msmr

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/
features-lispflowmapping/src/main/features/features.xml

• Feature Description: This is the core feature that provides the Mapping Services and includes the LISP south-
bound plugin feature as well.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/lispflowmapping/job/
lispflowmapping-csit-1node-msmr-all-carbon/

odl-lispflowmapping-neutron

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/
features-lispflowmapping/src/main/features/features.xml

• Feature Description: This feature provides neutron integration.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

odl-lispflowmapping-ui

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/
features-lispflowmapping/src/main/features/features.xml

• Feature Description: This feature provides a GUI to access the Mapping Service data.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

52 Chapter 1. Content for OpenDaylight Users

http://www.techstreet.com/ieee/standards/ieee-802-11ad-2012?product_id=1820568
https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/features-lispflowmapping/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/features-lispflowmapping/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/lispflowmapping/job/lispflowmapping-csit-1node-msmr-all-carbon/
https://jenkins.opendaylight.org/releng/view/lispflowmapping/job/lispflowmapping-csit-1node-msmr-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/features-lispflowmapping/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/features-lispflowmapping/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/features-lispflowmapping/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=features/features-lispflowmapping/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

Documentation

• User Guide(s): LISP Flow Mapping User Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF?

• Yes, the southbound plugin

– If so, how are they secure? * LISP southbound plugin follows LISP RFC6833 security guidelines.

– What port numbers do they use? * Port used: 4342

• Other security issues? * None

Quality Assurance

• Link to Sonar Report (68%)

• Link to CSIT Jobs

• All modules have been unit tested. Integration tests have been performed for all major features. System tests
have been performed on most major features.

• Registering and retrieval of basic mappings have been tested more thoroughly. More complicated mapping
policies have gone through less testing.

Migration

• Is it possible to migrate from the previous release? If so, how?

– LISP Flow Mapping service will auto-populate the datastructures from existing MD-SAL data upon service
start if the data has already been migrated separately.

Compatibility

• Is this release compatible with the previous release?

– Yes

• Any API changes?

– No

• Any configuration changes?

– No

Bugs Fixed

• List of bugs fixed since the previous release:

• 6536 Clustering: operational data is not showing up in the in-memory map-cache on the replicas 2016-09-08

• 6754 No serializer defined for IPv6 prefix SimpleAddress 2016-09-20

1.1. Release Notes 53

https://tools.ietf.org/html/rfc6833
https://sonar.opendaylight.org/overview?id=31299
https://jenkins.opendaylight.org/releng/view/lispflowmapping/
https://bugs.opendaylight.org/show_bug.cgi?id=6536
https://bugs.opendaylight.org/show_bug.cgi?id=6754

OpenDaylight Documentation Documentation, Release Carbon

• 6759 Expired mappings are not returned from SimpleMapCache before deletion. 2016-09-21

• 6634 LispNeutronService give exception: java.lang.NullPointerException 2016-10-13

• 6782 RadixTrie parent insertion not done correctly for non-empty children 2016-10-13

• 6925 Error during Map-Register performance test 2016-10-13

• 7018 Null pointer exception when SMR map request is received 2016-10-25

• 7035 Boron autorelease failing on lispflowmapping tests 2016-11-01

• 6361 LispSouthboundHandler is marked @ChannelHandler.Sharable but is not stateless 2016-11-23

• 7293 Radix trie node removals that update the root don’t work 2016-12-05

• 7586 Fix broken lispflowmapping features failing the new extended SingleFeatureTest incl. TestBundleDiag
2017-01-23

• 7789 Odl-lispflowmapping-ui breaks DLUX 2017-02-15

• 7628 Karaf 4 migration: provide Karaf 4 lispflowmapping features 2017-03-24

• 7818 Map-Register fast path not working correctly 2017-03-27

• 6071 Map Notify Authentication Data is not computed correctly 2017-03-27

• 6381 Expired xTR-ID mappings are not removed 2017-03-27

• 8248 Intermittent SingleFeatureTest failures in autorelease 2017-04-26

• 8429 Integration tests fail intermittently with unexpected SMR (a.k.a. the Heisenbug) 04:21:56

• 7272 Map-resolver replies with wrong mapping record and TTL 05:04:17

Known Issues

• Clustering is still an experimental feature and may have some issues particularly related to operational datastore
consistency.

• Link to Open Bugs

End-of-life

• None

Standards

• The LISP implementation module and southbound plugin conforms to the IETF RFC6830 and RFC6833 , with
the following exceptions:

– In Map-Request message, M bit(Map-Reply Record exist in the MapRequest) is processed but any map-
ping data at the bottom of a Map-Request are discarded.

– LISP LCAFs are limited to only up to one level of recursion, as described in the IETF LISP YANG draft.

– No standards exist for the LISP Mapping System northbound API as of this date.

54 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/show_bug.cgi?id=6759
https://bugs.opendaylight.org/show_bug.cgi?id=6634
https://bugs.opendaylight.org/show_bug.cgi?id=6782
https://bugs.opendaylight.org/show_bug.cgi?id=6925
https://bugs.opendaylight.org/show_bug.cgi?id=7018
https://bugs.opendaylight.org/show_bug.cgi?id=7035
https://bugs.opendaylight.org/show_bug.cgi?id=6361
https://bugs.opendaylight.org/show_bug.cgi?id=7293
https://bugs.opendaylight.org/show_bug.cgi?id=7586
https://bugs.opendaylight.org/show_bug.cgi?id=7789
https://bugs.opendaylight.org/show_bug.cgi?id=7628
https://bugs.opendaylight.org/show_bug.cgi?id=7818
https://bugs.opendaylight.org/show_bug.cgi?id=6071
https://bugs.opendaylight.org/show_bug.cgi?id=6381
https://bugs.opendaylight.org/show_bug.cgi?id=8248
https://bugs.opendaylight.org/show_bug.cgi?id=8429
https://bugs.opendaylight.org/show_bug.cgi?id=7272
https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&list_id=78877&order=Importance&product=lispflowmapping&query_format=specific
https://tools.ietf.org/html/rfc6830
https://tools.ietf.org/html/rfc6833
https://tools.ietf.org/html/draft-ietf-lisp-yang-04

OpenDaylight Documentation Documentation, Release Carbon

Release Mechanics

• Link to release plan

– No major shifts from the release plan.

MD-SAL

Major Features

odl-mdsal-binding

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=mdsal.git;a=blob;f=common/features/
features-mdsal/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: MDSAL Binding layer, representing mapping of YANG modeled data to respective Java
Objects

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/mdsal/job/mdsal-csit-1node-periodic-bindingv1-only-carbon/

odl-mdsal-binding2

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=mdsal.git;a=blob;f=common/features/
features-mdsal/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: MDSAL Binding v2 layer, representing mapping of YANG modeled data to respective
Java Objects

• Top Level: Yes

• User Facing: No

• Experimental: Yes

Documentation

• Developer Guide(s):

– MDSAL Developer guide

– MDSAL Binding v2 guide

Security Considerations

• MDSAL libraries are designed to be embedded and not to be a stand-alone application so security concerns need
to be addressed by the application using this library.

1.1. Release Notes 55

https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=mdsal.git;a=blob;f=common/features/features-mdsal/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=mdsal.git;a=blob;f=common/features/features-mdsal/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/mdsal/job/mdsal-csit-1node-periodic-bindingv1-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=mdsal.git;a=blob;f=common/features/features-mdsal/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=mdsal.git;a=blob;f=common/features/features-mdsal/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://github.com/opendaylight/mdsal/blob/stable/carbon/docs/src/main/asciidoc/developer/analysis/binding-v2.adoc

OpenDaylight Documentation Documentation, Release Carbon

Quality Assurance

• Link to Sonar Report (70.6% line coverage)

• Link to CSIT Jobs

Migration

• no additional steps needed for migration

Compatibility

• Release is compatible with the previous one

• No configuration changes

Bugs Fixed

• Link of fixed bugs

Known Issues

• List key known issues with workarounds

• Link to Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

none

Standards

• relies on processing according to RFC 6020 and RFC 7950.

Release Mechanics

• Link to release plan

NEtwork MOdeling(NEMO)

Major Features

• odl nemo rest provides an abstracted intent model whose target is to enable network users/applications to de-
scribe their intent in an intuitive way without caring about the underlying physical network.

56 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview?id=55311
https://jenkins.opendaylight.org/releng/view/mdsal/job/mdsal-csit-1node-periodic-bindingv1-only-carbon/
https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&chfield=target_milestone&chfieldto=Now&component=General&f1=cf_target_milestone&f2=cf_target_milestone&f3=cf_target_milestone&f4=cf_target_milestone&j_top=AND_G&list_id=78839&o1=substring&product=mdsal&query_format=advanced&resolution=FIXED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE&resolution=WORKSFORME&v1=Carbon
https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&chfield=target_milestone&chfieldto=Now&component=General&f1=cf_target_milestone&f2=cf_target_milestone&f3=cf_target_milestone&f4=cf_target_milestone&f5=cf_target_milestone&j_top=AND_G&list_id=78842&o1=substring&product=mdsal&query_format=advanced&resolution=---&v1=Carbon
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7950
https://wiki.opendaylight.org/view/MD-SAL:Carbon:Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

• nemo engine is the core module of NEMO project, which releases the mapping from intent to physical network.
It includes two import process: intent-virtual network(VN) and virtual network-physical network(PN).

• openflow renderer is a sourthbound render to translate the mapping result of VN-PN to flow table in devices
supporting for openflow protocol.

• cli render is also a sourthbound render to translate the mapping result of VN-PNinto forwarding table in devices
supporting for traditional protocol.

• nemo engine ui is reponsible for showing the status of physical network, intent, generated virtual network and
mapping result of VN-PN, which facilitate users to understand better the intent handling process if they want to.

NEMO Engine UI

• Feature Name: odl-nemo-engine-ui

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=nemo.git;a=blob;f=nemo-features/src/main/
features/features.xml;

• Feature Description: DSL based for the abstraction of network models and conclusion of operation patterns.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/nemo/job/nemo-csit-1node-engine-all-carbon/

Documentation

• User Guide(s):

– NEtwork MOdeling (NEMO)

• Developer Guide(s):

– NEtwork MOdeling (NEMO)

Security Considerations

• There are no security issues found.

Quality Assurance

• Link to Sonar Report 42.8%

• Link to CSIT Jobs

• Manual Tests

• External System Test is done manually, since the sandbox environment could not satisfy NEMO’s requirements.

Migration

• Nothing beyond general Carbon migration requirements.

1.1. Release Notes 57

https://git.opendaylight.org/gerrit/gitweb?p=nemo.git;a=blob;f=nemo-features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=nemo.git;a=blob;f=nemo-features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/nemo/job/nemo-csit-1node-engine-all-carbon/
https://sonar.opendaylight.org/overview?id=53347
https://jenkins.opendaylight.org/releng/view/nemo/job/nemo-csit-1node-engine-all-carbon/
https://wiki.opendaylight.org/view/NEMO:Carbon:System_Test

OpenDaylight Documentation Documentation, Release Carbon

Compatibility

• Nothing beyond general Carbon compatibility constraints.

Bugs Fixed

• Bug Report

Known Issues

• For using openflow-renderer, requiring special switch to construct physical network. The install guide is in
https://github.com/zhangmroy?tab=repositories. Other virtual switch, such as, ovs, will be support in the Carbon
version.

• For using cli-renderer, the physical network should be constructed with HuaWei’s device: NE40E. More devices
will be considered in the Carbon version.

End-of-life

• Nothing deprecated, EOL.

Standards

• N/A

Release Mechanics

• NEMO Release Plan

• Project was on schedule

NETCONF

Major Features

For each top-level feature, identify the name, url, description, etc. User-facing features are used directly by end users.

odl-netconf-topology

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/
features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: NETCONF southbound plugin, configuration through mdsal

• Top Level: Yes

• User Facing: Yes

• Experimental: No

58 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&bug_status=VERIFIED&list_id=47710&product=nemo&query_format=advanced&resolution=---
https://github.com/zhangmroy?tab=repositories
https://wiki.opendaylight.org/view/NEMO:Carbon:Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

• CSIT Test: https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-userfeatures-only-carbon/

odl-netconf-clustered-topology

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/
features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: NETCONF southbound plugin, configuration through mdsal

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-3node-clustering-only-carbon/

odl-netconf-console

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/
features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: NETCONF southbound configuration with karaf cli

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

odl-netconf-connector-all

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/
features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: NETCONF southbound plugin, configuration with configub subsystem

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-userfeatures-only-carbon/

odl-netconf-mdsal

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf/
features-netconf/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: NETCONF server for mdsal

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-userfeatures-only-carbon/

1.1. Release Notes 59

https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-userfeatures-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-3node-clustering-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-userfeatures-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf/features-netconf/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf/features-netconf/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-userfeatures-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

odl-restconf

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/restconf/
features-restconf/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Restconf

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: Tested by any suit that uses Restconf

odl-mdsal-apidocs

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/restconf/
features-restconf/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: MDSal - apidocs

• Top Level: Yes

• User Facing: Yes

• Experimental: No

odl-yanglib

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/yanglib/
features-yanglib/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Yanglib server

• Top Level: Yes

• User Facing: Yes

• Experimental: No

odl-netconf-callhome-ssh

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/
features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Netconf call home

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-callhome-only-carbon/

60 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/restconf/features-restconf/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/restconf/features-restconf/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/restconf/features-restconf/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/restconf/features-restconf/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/yanglib/features-yanglib/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/yanglib/features-yanglib/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=netconf.git;a=blob;f=features/netconf-connector/features-netconf-connector/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-1node-callhome-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the document is under review, provide a link to
the change in Gerrit.

• User Guide(s):

– NETCONF User Guide

• Developer Guide(s):

– NETCONF Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF?

Yes, we have md-sal and css netconf servers. Also server for netconf call-home.

– If so, how are they secure?

NETCONF over SSH

– What port numbers do they use?

Please see https://wiki.opendaylight.org/view/Ports. Netconf call-home uses TCP 6666

• Other security issues?

None that we are aware of

Quality Assurance

• Link to Sonar Report Test coverage percent: 63.3%

• Link to CSIT Jobs

Migration

• Is it possible to migrate from the previous release? If so, how?

Yes, no specific steps needed apart from migrating netconf’s topology configuration from DS.

Compatibility

• Is this release compatible with the previous release?

Yes

• Any API changes?

No

• Any configuration changes?

md-sal netconf northbound is started via blueprint instead of config subsystem.

1.1. Release Notes 61

https://wiki.opendaylight.org/view/Ports
https://sonar.opendaylight.org/overview?id=54548
https://jenkins.opendaylight.org/releng/view/netconf/

OpenDaylight Documentation Documentation, Release Carbon

Bugs Fixed

• List of bugs fixed since the previous release

https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&bug_status=VERIFIED&chfield=
resolution&chfieldfrom=2016-09-08&chfieldto=Now&chfieldvalue=FIXED&list_id=78801&product=
netconf&query_format=advanced&resolution=FIXED

Known Issues

• List key known issues with workarounds

None

• Link to Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

NETCONF southbound plugin, configuration with configub subsystem is deprecated

Standards

• RFC 6241 - Network Configuration Protocol (NETCONF)

• RFC 6470 - Base Notifications partly supported, netconf-config-change unsupported

• draft-ietf-yang-library-06

• draft-bierman-netconf-restconf-04

• RFC 8040 - RESTCONF protocol

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

No shifts

NetIDE Project

Major Features

odl-netide-api

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netide.git;a=blob;f=features/features-netide/src/
main/features/features.xml

• Feature Description: This feature provides the YANG models for NetIDE interoperability layer for SDN Ap-
plications written for other SDN Controllers to run on OpenDaylight managed infrastructure.

62 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&bug_status=VERIFIED&chfield=resolution&chfieldfrom=2016-09-08&chfieldto=Now&chfieldvalue=FIXED&list_id=78801&product=netconf&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&bug_status=VERIFIED&chfield=resolution&chfieldfrom=2016-09-08&chfieldto=Now&chfieldvalue=FIXED&list_id=78801&product=netconf&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&bug_status=VERIFIED&chfield=resolution&chfieldfrom=2016-09-08&chfieldto=Now&chfieldvalue=FIXED&list_id=78801&product=netconf&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&list_id=78793&product=netconf&query_format=advanced&resolution=---
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6470
https://tools.ietf.org/html/draft-ietf-netconf-yang-library-06
https://tools.ietf.org/html/draft-bierman-netconf-restconf-04
https://tools.ietf.org/html/rfc8040
https://wiki.opendaylight.org/view/NETCONF:Carbon:Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=netide.git;a=blob;f=features/features-netide/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=netide.git;a=blob;f=features/features-netide/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-all-carbon/ https:
//jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-only-carbon/

odl-netide-impl

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netide.git;a=blob;f=features/features-netide/src/
main/features/features.xml

• Feature Description: This feature is the main feature of NetIDE. This plugin provides the implementation to
transfer Openflow commands from other SDN controllers to the switches.

• Top Level: Yes

• User Facing: No

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-all-carbon/ https:
//jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-only-carbon/

odl-netide-rest

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netide.git;a=blob;f=features/features-netide/src/
main/features/features.xml

• Feature Description: This feature is the wrapper feature that installs the odl-netide-api & odl-netide-impl
feature with other required features for restconf access to provide a functional Openflow commands to the
switches.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-all-carbon/ https:
//jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-only-carbon/

Documentation

• User Guide(s):

– NetIDE User Guide

• Developer Guide(s):

– NetIDE Developer Guide

1.1. Release Notes 63

https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-all-carbon/
https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-only-carbon/
https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=netide.git;a=blob;f=features/features-netide/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=netide.git;a=blob;f=features/features-netide/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-all-carbon/
https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-only-carbon/
https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=netide.git;a=blob;f=features/features-netide/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=netide.git;a=blob;f=features/features-netide/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-all-carbon/
https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-only-carbon/
https://jenkins.opendaylight.org/releng/view/netide/job/netide-csit-1node-basic-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

Security Considerations

• Do you have any external interfaces other than RESTCONF? No

• Other security issues? none

Quality Assurance

• Link to Sonar Report (74.4)

• Link to CSIT Jobs

• NetIDE was tested through Unit Tests, IT test and system tests. A manual testing plan was also completed. See
Carbon Test Plan

Migration

• Is it possible to migrate from the previous release? If so, how?

Yes. No state data kept in datastore. User facing features and interfaces have not changed between releases,
only enhancements/bugfixes were added.

Compatibility

• Is this release compatible with the previous release? Yes

• Any API changes? No changes in the yang models from previous release. Only enhancements completed.

• Any configuration changes? No

Bugs Fixed

• List of bugs fixed since the previous release: None

Known Issues

• List key known issues with workarounds: None

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release: None

Standards

Openflow versions:

• OpenFlow1.3.2

• OpenFlow1.0.0

64 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview/coverage?id=org.opendaylight.netide%3Anetide-aggregator
https://jenkins.opendaylight.org/releng/view/netide/
https://wiki.opendaylight.org/view/NetIDE:Carbon:System_Test
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf

OpenDaylight Documentation Documentation, Release Carbon

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan: None

NetVirt

Major Features

Feature Name

• Feature Name: odl-netvirt-openstack

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=netvirt.git;a=blob_plain;f=vpnservice/features/src/
main/features/features.xml

• Feature Description: This feature provides a network virtualization solution.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/netvirt-csit/job/netvirt-csit-1node-openstack-newton-nodl-v2-upstream-stateful-carbon/

Documentation

• User Guide(s):

– NetVirt User Guide

– OpenStack with NetVirt

• Developer Guide(s):

– NetVirt Developer Guide

• Contributor Guide(s):

– NetVirt Contributor Guide

Security Considerations

No known issues.

Quality Assurance

• Sonar Report

• All CSIT Jobs

• Default stateful tests

• Conntrack SNAT stateful tests

• v1 tests

1.1. Release Notes 65

https://wiki.opendaylight.org/view/NetIDE:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=netvirt.git;a=blob_plain;f=vpnservice/features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=netvirt.git;a=blob_plain;f=vpnservice/features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/netvirt-csit/job/netvirt-csit-1node-openstack-newton-nodl-v2-upstream-stateful-carbon/
https://sonar.opendaylight.org/overview?id=64219
https://jenkins.opendaylight.org/releng/view/netvirt-csit
https://jenkins.opendaylight.org/releng/view/netvirt-csit/job/netvirt-csit-1node-openstack-newton-nodl-v2-upstream-stateful-carbon
https://jenkins.opendaylight.org/releng/view/netvirt-csit/job/netvirt-csit-1node-openstack-newton-nodl-v2-upstream-stateful-snat-conntrack-carbon
https://jenkins.opendaylight.org/releng/view/netvirt-csit/job/netvirt-csit-1node-openstack-newton-upstream-stateful-carbon

OpenDaylight Documentation Documentation, Release Carbon

• Learn tests

• Transparent tests

Migration

Nothing beyond general Carbon migration requirements.

Compatibility

Nothing beyond general Carbon Compatibility requirements.

Bugs Fixed

• Closed Bugs

Known Issues

• Open Bugs

End-of-life

• odl-ovsdb-openstack: the feature was replaced with odl-netvirt-openstack

Standards

N/A

Release Mechanics

• Release Plan

• Project was on schedule

Neutron Northbound

Major Features

• YANG model for OpenStack Neutron integration

• REST API for OpenStack Neutron integration which stores necessary information into Neutron YANG model

• Logger to log activity on Neutron YANG models

• helper library to support for OpenStack service providers

66 Chapter 1. Content for OpenDaylight Users

https://jenkins.opendaylight.org/releng/view/netvirt-csit/job/netvirt-csit-1node-openstack-newton-nodl-v2-upstream-learn-carbon
https://jenkins.opendaylight.org/releng/view/netvirt-csit/job/netvirt-csit-1node-openstack-newton-nodl-v2-upstream-transparent-carbon
https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&bug_status=VERIFIED&component=General&list_id=78695&order=changeddate%2Cpriority%2Cbug_severity&product=netvirt&query_based_on=&query_format=advanced&resolution=FIXED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE&resolution=WORKSFORME&version=Carbon
https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&component=General&list_id=78574&order=bugs.bug_severity%2Cbugs.priority&product=netvirt&query_format=advanced&resolution=---
https://wiki.opendaylight.org/view/NetVirt:Carbon:Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

odl-neutron-service

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/
features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This is a top level feature to load Neutron northbound functionality.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: no CSIT tests as test weiver had been requested. OpenStack CI results can be found from https:
//review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-northbound-api

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/
features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This feature provides REST API for OpenStack Neutron

• Top Level: No

• User Facing: No

• Experimental: No

• CSIT Test: no CSIT tests as test weiver had been requested. OpenStack CI results can be found from https:
//review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-spi

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/
features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: SPI for Neutron northbound feature

• Top Level: No

• User Facing: No

• Experimental: No

• CSIT Test: no CSIT tests as test weiver had been requested. OpenStack CI results can be found from https:
//review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-transcriber

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/
features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Data converter from/to REST API to/from MD-SAL YANG model

• Top Level: No

• User Facing: No

• Experimental: No

1.1. Release Notes 67

https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://review.openstack.org/#/q/project:openstack/networking-odl
https://review.openstack.org/#/q/project:openstack/networking-odl
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://review.openstack.org/#/q/project:openstack/networking-odl
https://review.openstack.org/#/q/project:openstack/networking-odl
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://review.openstack.org/#/q/project:openstack/networking-odl
https://review.openstack.org/#/q/project:openstack/networking-odl
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

• CSIT Test: no CSIT tests as test weiver had been requested. OpenStack CI results can be found from https:
//review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-logger

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/
features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Logger on activity on Neutron YANG models

• Top Level: No

• User Facing: No

• Experimental: No

• CSIT Test: no CSIT tests as test weiver had been requested. OpenStack CI results can be found from https:
//review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-hostconfig-ovs

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/
features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Helper library to support hostconfig for OpenStack service provider with Open vSwitch

• Top Level: No

• User Facing: No

• Experimental: No

• CSIT Test: no CSIT tests as test weiver had been requested. OpenStack CI results can be found from https:
//review.openstack.org/#/q/project:openstack/networking-odl

odl-neutron-hostconfig-vpp

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/
features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Helper library to support hostconfig for OpenStack service provider with VPP

• Top Level: No

• User Facing: No

• Experimental: No

• CSIT Test: no CSIT tests as test weiver had been requested. OpenStack CI results can be found from https:
//review.openstack.org/#/q/project:openstack/networking-odl

Documentation

• User Guide(s):

– Neutron Service User Guide is a guide for cloud admin who deploys OpenStack with OpenDaylight.

• Developer Guide(s):

68 Chapter 1. Content for OpenDaylight Users

https://review.openstack.org/#/q/project:openstack/networking-odl
https://review.openstack.org/#/q/project:openstack/networking-odl
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://review.openstack.org/#/q/project:openstack/networking-odl
https://review.openstack.org/#/q/project:openstack/networking-odl
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://review.openstack.org/#/q/project:openstack/networking-odl
https://review.openstack.org/#/q/project:openstack/networking-odl
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=features/production/features-neutron/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://review.openstack.org/#/q/project:openstack/networking-odl
https://review.openstack.org/#/q/project:openstack/networking-odl

OpenDaylight Documentation Documentation, Release Carbon

– Neutron Northbound is a guide for those who develops new Neutron Northbound API which OpenStack
Neutron talks to.

– Neutron Service Developer Guide is a guide for those who develops new OpenStack Service Provider like
netvirt, group-based-policy.

Security Considerations

• Do you have any external interfaces other than RESTCONF?

Yes. REST API for OpenStack Neutron.

– If so, how are they secure? It’s authenticated by AAA.

– What port numbers do they use? 8080 and 8181 by default. 8087 is also used by networking-odl/devstack.

• Other security issues?

None.

Quality Assurance

• Link to Sonar Report (78.2%)

• Link to CSIT Jobs N/A

• Other manual testing and QA information

– OpenStack CI results can be found from https://review.openstack.org/#/q/project:openstack/
networking-odl

– failure rate of OpenStack CI http://grafana.openstack.org/dashboard/db/networking-odl-failure-rate

– Other OpenDaylight projects which provides OpenStack Service (e.g. netvirt, group-based-policy and vtn
etc..) have their own system tests which also exercise Neutron Norhtbound. Which give coverage.

• Testing methodology. How extensive was it? What should be expected to work? What hasn’t been tested as
much?

– Unit test: coverage 26.5%

– Integration test(Karaf 3): coverage 75.9%

– Integration test(karaf 4): doens’t work reliably. https://git.opendaylight.org/gerrit/#/c/55128/ is pending to
migrate integration test to karaf4

– OpenStack CI

Migration

• Is it possible to migrate from the previous release? If so, how?

No as incompatble change was introduced.

Compatibility

• Is this release compatible with the previous release?

Yes.

1.1. Release Notes 69

https://sonar.opendaylight.org/overview?id=org.opendaylight.neutron%3Aproject-neutron
https://review.openstack.org/#/q/project:openstack/networking-odl
https://review.openstack.org/#/q/project:openstack/networking-odl
http://grafana.openstack.org/dashboard/db/networking-odl-failure-rate
https://git.opendaylight.org/gerrit/#/c/55128/

OpenDaylight Documentation Documentation, Release Carbon

• Any API changes?

Yes. adding new YANG models/nodes and REST API.

– TRUNK API

– add configuration string

– add service provider feature model

– Neutron YANG model update

• Any configuration changes?

No.

Bugs Fixed

• List of bugs fixed since the previous release

– Link to Bugs fixed

Known Issues

• List key known issues with workarounds

None

• Link to Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

N/A

Standards

• List of standrads implemented and to what extent

OpenStack Neutron API ODL Neutron Northbound REST API is based on OpenStack Neutron API and Open-
Stack Neutron implementation. So the two REST APIs are similar inherently, but different if necessary for
technical reason. The goal of ODL Neutron Northbound project is to help OpenStack ODL driver for Open-
Stack Neutron (networking-odl) and ODL OpenStack Service Provider(netvirt, group-based-policy, and vtn
etc...). Not re-implement OpenStack Neutron API.

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

– Postponed YANG model change to drop tenant-id, make status operational to Nitrogen cycle

70 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/c/50615/
https://git.opendaylight.org/gerrit/#/c/51817/
https://git.opendaylight.org/gerrit/#/c/52081/
https://git.opendaylight.org/gerrit/#/c/51534/
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-09&chfieldto=2017-05-25&list_id=78675&product=neutron&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&list_id=78677&order=Importance&product=neutron&query_format=specific
https://developer.openstack.org/api-ref/networking/v2/
https://wiki.opendaylight.org/view/NeutronNorthbound:Carbon_Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

NIC

Major Features

odl-nic-core-mdsal

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/
odl-nic-core-mdsal/pom.xml;hb=stable/carbon

• Feature Description: This feature contains the dependencies to use MDSAL features on NIC

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/

odl-nic-intent-common

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/
odl-nic-intent-common/pom.xml;hb=stable/carbon

• Feature Description: This feature contains the lifecycle management for Intents, also is used to join two major
features ‘intent-statemachine’ and ‘intent-listeners’. This feature enable NIC to work with different renderers at
the same time.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/

odl-nic-statemachine

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/
odl-nic-intent-statemachine/pom.xml;hb=stable/carbon

• Feature Description: This feature is used to manage Intent state transactions and then share those transactions
on MD-SAL.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/

odl-nic-listeners

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-listeners/
pom.xml;hb=stable/carbon

1.1. Release Notes 71

https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-core-mdsal/pom.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-core-mdsal/pom.xml;hb=stable/carbon
https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-intent-common/pom.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-intent-common/pom.xml;hb=stable/carbon
https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-intent-statemachine/pom.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-intent-statemachine/pom.xml;hb=stable/carbon
https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-listeners/pom.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-listeners/pom.xml;hb=stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

• Feature Description: This feature dependes of ‘odl-nic-core-mdsal’ to listen about changes on MDSAL, it
works as a listener for Intent and network events.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/

odl-nic-renderer-of

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/
odl-nic-renderer-of/pom.xml;hb=stable/carbon

• Feature Description: This feature is responsible to apply network configurations based in Intents. Once an
Intent is created, the ‘intent-common’ module will extract all information and then, send to ‘renderer-of’.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/

Documentation

• User Guide(s):

– Network Intent Composition (NIC) User Guide

• Developer Guide(s):

– Network Intent Composition (NIC) Developer Guide

Additional information can be found at the NIC wiki page.

Security Considerations

• Do you have any external interfaces other than RESTCONF?

No

• Other security issues?

N/A

Quality Assurance

• Link to Sonar Report (48.1% code coverage)

• Link to CSIT Jobs

• Other manual testing and QA information

72 Chapter 1. Content for OpenDaylight Users

https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-renderer-of/pom.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=nic.git;a=blob_plain;f=features/odl-nic-renderer-of/pom.xml;hb=stable/carbon
https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/
https://wiki.opendaylight.org/view/Network_Intent_Composition:Main
https://sonar.opendaylight.org/overview?id=44164
https://jenkins.opendaylight.org/releng/view/nic/job/nic-csit-1node-basic-all-carbon/

OpenDaylight Documentation Documentation, Release Carbon

• Testing methodology. How extensive was it? What should be expected to work? What has not been tested as
much?

There are a guide to evaluate manual tests using NIC on our wiki page

Migration

• Is it possible to migrate from the previous release? If so, how?

Migration with user configuration and state is not supported.

Compatibility

• Is this release compatible with the previous release?

Yes

• Any API changes?

No

• Any configuration changes?

No

Bugs Fixed

• List of bugs fixed since the previous release

Known Issues

• List key known issues with workarounds

For Carbon release, NIC contains multiple renderers, but just one renderer can be used at the same time to use
another renderer after start NIC, you have to uninstall NIC and restart ODL.

• Link to Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

• odl-nic-renderer-nemo

• odl-nic-renderer-vtn

• odl-nic-core-hazelcast

Standards

• List of standards implemented and to what extent

N/A

1.1. Release Notes 73

https://wiki.opendaylight.org/view/Network_Intent_Composition:Main
https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&list_id=79901&product=nic

OpenDaylight Documentation Documentation, Release Carbon

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

Increase code coverage and initial implementation of Intent life cycle management.

OCP-plugin

Major Features

odl-ocpplugin-southbound

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ocpplugin.git;a=blob;f=features/
features-ocpplugin/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Handling of OCP v4.1.1 request/response messages

• Top Level: No

• User Facing: No

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/ocpplugin/job/ocpplugin-csit-1node-get-all-carbon

odl-ocpplugin-app-ocp-service

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ocpplugin.git;a=blob;f=features/
features-ocpplugin/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: User facing interface and rrh-agent registration and lifecycle management

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/ocpplugin/job/ocpplugin-csit-1node-get-all-carbon

Documentation

• User Guide(s):

– OCP Plugin User Guide

• Developer Guide(s):

– OCP Plugin Developer Guide

74 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/NIC:Carbon:Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=ocpplugin.git;a=blob;f=features/features-ocpplugin/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=ocpplugin.git;a=blob;f=features/features-ocpplugin/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/ocpplugin/job/ocpplugin-csit-1node-get-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=ocpplugin.git;a=blob;f=features/features-ocpplugin/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=ocpplugin.git;a=blob;f=features/features-ocpplugin/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/ocpplugin/job/ocpplugin-csit-1node-get-all-carbon

OpenDaylight Documentation Documentation, Release Carbon

Security Considerations

• Do you have any external interfaces other than RESTCONF?

– There is no futher secure description on the OCP 4.1.1 spec, it’s out of our design scope, so there is no
extenal security interface other than RESTCONF.

• Other security issues?

– No other security issue

Quality Assurance

• Link to Sonar Report (61.7%)

• Link to CSIT Jobs

• Other manual testing and QA information

– More detail testing, https://wiki.opendaylight.org/view/OCP_Plugin:Carbon_System_Test_Report

Migration

• Is it possible to migrate from the previous release? If so, how?

– Yes, there is no change in config and no need to migrate data in the datastore.

Compatibility

• Is this release compatible with the previous release?

– Release is compatible with previous.

• Any API changes?

– N/A

• Any configuration changes?

– N/A

Bugs Fixed

• List of bugs fixed since the previous release

– 7634 Karaf 4 migration: provide Karaf 4 ocpplugin features

Known Issues

• List key known issues with workarounds

– N/A

1.1. Release Notes 75

https://sonar.opendaylight.org/overview?id=64810
https://jenkins.opendaylight.org/releng/view/ocpplugin/job/ocpplugin-csit-1node-get-all-carbon
https://wiki.opendaylight.org/view/OCP_Plugin:Carbon_System_Test_Report
https://bugs.opendaylight.org/show_bug.cgi?id=7634

OpenDaylight Documentation Documentation, Release Carbon

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

– Nothing deprecated, EOL.

Standards

• List of standards implemented and to what extent

– OCP(ORI [Open Radio Interface] C&M [Control and Management]) v4.1.1

– The ocpplugin poeject extended connection establishment and state machines used on both ends of the
connection.

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

– N/A

ODL SDNi

Major Features

odl-sdninterfaceapp-all

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sdninterfaceapp.git;a=blob;f=features/
features-sdninterfaceapp/src/main/features/features.xml;hb=stable/carbon

• Feature Description: This feature installs the odl-sdni application which connects with switch, topology, host-
tracker managers of controller, fetches the topology and QoS data and exchanges the same to the peer controllers.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sdninterfaceapp/

Documentation

• User Guide(s):

– ODL-SDNi User Guide

• Developer Guide(s):

– ODL-SDNi Developer Guide

76 Chapter 1. Content for OpenDaylight Users

http://www.etsi.org/deliver/etsi_gs/ORI/001_099/00202/04.01.01_60/gs_ORI00202v040101p.pdf
https://wiki.opendaylight.org/view/OCP_Plugin:Carbon:Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=sdninterfaceapp.git;a=blob;f=features/features-sdninterfaceapp/src/main/features/features.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=sdninterfaceapp.git;a=blob;f=features/features-sdninterfaceapp/src/main/features/features.xml;hb=stable/carbon
https://jenkins.opendaylight.org/releng/view/sdninterfaceapp/

OpenDaylight Documentation Documentation, Release Carbon

Security Considerations

ODL SDNi uses BGP to exchange information and leaves securing the BGP connections and any implications of (not)
doing so out of scope.

There are no other known security issues.

Quality Assurance

• 8 APIs, tested via REST API

Topology:

– Self Topology:1 API

– Peer Topology:1 API

QoS:

– Self Qos :1 API

– Peer Qos :1 API

Peer Controller configuration:

– 4 APIs(Addition, deletion, fetching the configured controllers etc)

• Link to Sonar Report (11.9 %)

• Link to CSIT Jobs

Migration

• Is it possible to migrate from the previous release? If so, how? No, current release is backward incompatible.

Compatibility

• Is this release compatible with the previous release? No

• Any API changes? Yes, four new REST APIs are added for peer controller configuration are added in this
release.

• Any configuration changes? No

Bugs Fixed

• Bug 6202 Refactored sdninterfaceapp and removed the copies of bgpcep artifacts.

Known Issues

• N/A

1.1. Release Notes 77

https://sonar.opendaylight.org/overview?id=57255
https://jenkins.opendaylight.org/releng/view/sdninterfaceapp/
https://bugs.opendaylight.org/show_bug.cgi?id=6202

OpenDaylight Documentation Documentation, Release Carbon

End-of-life

• N/A

Standards

• The ODL SDNi project leverages BGP to exchange state.

Release Mechanics

• Release plan

• Bug 6202 which was targeted for M3 is resolved in M5

ODL Parent

Major Features

There are no user-visible features.

Documentation

• Developer Guide(s):

– ODL Parent Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF?

No

• Other security issues?

No

Quality Assurance

• Link to Sonar Report (6.9% coverage)

• There are no CSIT jobs, ODL Parent has a system test waiver

• ODL Parent is tested by all builds, and manually tested by running the basic Karaf container and verifying the
scripts we modify (client in particular).

• We verify the following:

– start starts the Karaf container. (in a working state, capable of installing features)

– client can connect to a running Karaf container.

– stop stops a running Karaf container.

78 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/ODL-SDNi_App:Carbon_Release_Plan
https://sonar.opendaylight.org/overview?id=23179

OpenDaylight Documentation Documentation, Release Carbon

Migration

• Is it possible to migrate from the previous release? If so, how?

Yes. There are no specific migration aspects related to ODL Parent.

Compatibility

• Is this release compatible with the previous release?

Yes.

• Any API changes?

Yes, but they are backwards-compatible.

• Any configuration changes?

No. ODL Parent has no user-visible configuration.

Bugs Fixed

• 6236: Code generation performance optimization required in YangTemplate

• 6523: RuntimeException at MethodVisitor.visitParameter

• 6790: Karaf ssh EOFError

• 7537: Add git.properties

• 7745: Port already in use: 1099

• 7813: Karaf: do not package Spring

Known Issues

• The Karaf 4 distribution doesn’t work; the workaround is to use Karaf 3 for Carbon.

• Link to Open Bugs

End-of-life

• All the Karaf 3 features are deprecated and will be removed in Nitrogen.

Standards

• N/A.

Release Mechanics

• Link to release plan

• We failed to implement the switch to Karaf 4; this has been postponed to Nitrogen.

1.1. Release Notes 79

https://bugs.opendaylight.org/show_bug.cgi?id=6236
https://bugs.opendaylight.org/show_bug.cgi?id=6523
https://bugs.opendaylight.org/show_bug.cgi?id=6790
https://bugs.opendaylight.org/show_bug.cgi?id=7537
https://bugs.opendaylight.org/show_bug.cgi?id=7745
https://bugs.opendaylight.org/show_bug.cgi?id=7813
https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&product=odlparent
https://wiki.opendaylight.org/view/ODL_Parent:Carbon_Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

OF-CONFIG

Major Features

odl-of-config-all

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob;f=features/features-of-config/
src/main/features/features.xml;hb=stable/carbon

• Feature Description: This is a top level wrapper feature which includes all the sub features OF-CONFIG offers.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

Documentation

• User Guide(s):

– OF-CONFIG User Guide

• Developer Guide(s):

– OF-CONFIG Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF?

– No. This project indirectly uses the NETCONF project to connect to devices.

• Other security issues?

– N/A

Quality Assurance

• Link to Sonar Report (71.4% code coverage)

• Other manual testing and QA information

• Testing methodology. How extensive was it? What should be expected to work? What has not been tested as
much?

• External System Test is almost done manually, since the sandbox environment could not satisfy OF-CONFIG’s
requirement. The test has covered all external APIs of OF-CONFIG and all supplementary options based on
OF-CONFIG 1.2.

80 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob;f=features/features-of-config/src/main/features/features.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob;f=features/features-of-config/src/main/features/features.xml;hb=stable/carbon
https://sonar.opendaylight.org/overview?id=org.opendaylight.of-config%3Aofconf

OpenDaylight Documentation Documentation, Release Carbon

Migration

• Is it possible to migrate from the previous release? If so, how?

There is no additional support for migration in OF-CONFIG than there is in general. User configuration and
state will need to be manually migrated when upgrading between major versions of OpenDaylight.

Compatibility

• Is this release compatible with the previous release? Yes.

• Any API changes? No.

• Any configuration changes? No.

Bugs Fixed

• List of bugs fixed since the previous release

Replace mockito-all by mockito-core

Known Issues

• No known issues.

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

N/A

Standards

• List of standrads implemented and to what extent

• OF-CONFIG 1.2

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

N/A

1.1. Release Notes 81

https://git.opendaylight.org/gerrit/#/c/50878/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://wiki.opendaylight.org/view/OF-CONFIG:Carbon:Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

Openflowjava

Major Features

odl-openflowjava-protocol

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowjava.git;a=blob;f=features/
features-openflowjava/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This feature exposes SwitchConnectionProvider for building openflow connections

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/

Documentation

• User Guide(s):

– user guide

• Developer Guide(s):

– developer guide

Security Considerations

• openflowjava listens on given TCP/UDP ports and propagates messages to consumer (by default TCP:6633 and
TCP:6653)

• OpenFlow messages can inflict high load on consumer which needs to be handled there

Quality Assurance

• Link to Sonar Report (85.8% line coverage)

• Link to CSIT Jobs (supplied by openflowplugin)

82 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=openflowjava.git;a=blob;f=features/features-openflowjava/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=openflowjava.git;a=blob;f=features/features-openflowjava/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/
https://wiki.opendaylight.org/view/Openflow_Protocol_Library:Startup_Guide
TCP:6633
TCP:6653
https://sonar.opendaylight.org/overview?id=11724
https://jenkins.opendaylight.org/releng/view/openflowplugin/

OpenDaylight Documentation Documentation, Release Carbon

Migration

• no additional migration steps needed

Compatibility

• release is compatible with the previous release

• no API changes

• no configuration changes

Bugs Fixed

• List of bugs fixed since the previous release:

Known Issues

• List key known issues with workarounds

• Link to Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

none

Standards

• based on openflow switch specification 1.3.2

Release Mechanics

• Link to release plan

OpenFlowPlugin Project

Major Features

odl-openflowplugin-app-config-pusher

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/
odl-openflowplugin-app-config-pusher/pom.xml

• Feature Description: Pushes node configuration changes to OpenFlow device

• Top Level: Yes

• User Facing: No

1.1. Release Notes 83

https://bugs.opendaylight.org/buglist.cgi?bug_status=RESOLVED&chfield=target_milestone&chfieldto=Now&component=General&f1=cf_target_milestone&f2=cf_target_milestone&f3=cf_target_milestone&f4=cf_target_milestone&f5=cf_target_milestone&j_top=AND_G&list_id=78956&o1=substring&product=openflowjava&query_format=advanced&resolution=FIXED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE&resolution=WORKSFORME&v1=Carbon
https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&chfield=target_milestone&chfieldto=Now&component=General&f1=cf_target_milestone&f2=cf_target_milestone&f3=cf_target_milestone&f4=cf_target_milestone&f5=cf_target_milestone&f6=cf_target_milestone&j_top=AND_G&list_id=78961&o1=substring&product=openflowjava&query_format=advanced&resolution=---&v1=Carbon
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf
https://wiki.opendaylight.org/view/Openflow_Protocol_Library:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-config-pusher/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-config-pusher/pom.xml

OpenDaylight Documentation Documentation, Release Carbon

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/

odl-openflowplugin-app-forwardingrules-manager

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/
odl-openflowplugin-app-forwardingrules-manager/pom.xml

• Feature Description: Sends changes in config datastore to OpenFlow device incrementally. forwardingrules-
manager can be replaced with forwardingrules-sync and vice versa.

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/

odl-openflowplugin-app-forwardingrules-sync

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/
odl-openflowplugin-app-forwardingrules-sync/pom.xml

• Feature Description: Sends changes in config datastore to OpenFlow devices taking previous state in account
and doing diffs between previous and new state. forwardingrules-sync can be replaced with forwardingrules-
manager and vice versa.

• Top Level: Yes

• User Facing: No

• Experimental: Yes

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

84 Chapter 1. Content for OpenDaylight Users

https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-forwardingrules-manager/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-forwardingrules-manager/pom.xml
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-forwardingrules-sync/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-forwardingrules-sync/pom.xml
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

odl-openflowplugin-app-table-miss-enforcer

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/
odl-openflowplugin-app-table-miss-enforcer/pom.xml

• Feature Description: Sends table miss flows to OpenFlow device when it connects

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/

odl-openflowplugin-app-topology

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/
odl-openflowplugin-app-topology/pom.xml

• Feature Description: Discovers topology of connected OpenFlow devices

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/

odl-openflowplugin-nxm-extensions

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=extension/
features-extension-aggregator/odl-openflowplugin-nxm-extensions/pom.xml

• Feature Description: Support for OpenFlow Nicira Extensions

• Top Level: Yes

• User Facing: Yes

• Experimental: No

1.1. Release Notes 85

https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-table-miss-enforcer/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-table-miss-enforcer/pom.xml
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-topology/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-app-topology/pom.xml
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=extension/features-extension-aggregator/odl-openflowplugin-nxm-extensions/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=extension/features-extension-aggregator/odl-openflowplugin-nxm-extensions/pom.xml

OpenDaylight Documentation Documentation, Release Carbon

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/netvirt/job/netvirt-csit-1node-openstack-newton-upstream-stateful-snat-conntrack-carbon/

odl-openflowplugin-flow-services

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/
odl-openflowplugin-flow-services/pom.xml

• Feature Description: Wrapper feature for standard applications

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/

odl-openflowplugin-flow-services-rest

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/
odl-openflowplugin-flow-services-rest/pom.xml

• Feature Description: Wrapper + REST interface

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

86 Chapter 1. Content for OpenDaylight Users

https://jenkins.opendaylight.org/releng/view/netvirt/job/netvirt-csit-1node-openstack-newton-upstream-stateful-snat-conntrack-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-flow-services/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-flow-services/pom.xml
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-flow-services-rest/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-flow-services-rest/pom.xml
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/

odl-openflowplugin-flow-services-ui

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/
odl-openflowplugin-flow-services-ui/pom.xml

• Feature Description: Wrapper + REST interface + UI

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/

odl-openflowplugin-nsf-model

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/
odl-openflowplugin-nsf-model/pom.xml

• Feature Description: OpenFlowPlugin YANG models

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

1.1. Release Notes 87

https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-flow-services-ui/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-flow-services-ui/pom.xml
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-nsf-model/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-nsf-model/pom.xml
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/

odl-openflowplugin-southbound

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/
odl-openflowplugin-southbound/pom.xml

• Feature Description: Southbound API implementation

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/

– https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/

Documentation

• User Guide(s):

– OpenFlow Plugin Project User Guide

• Developer Guide(s):

– OpenFlow Plugin Project Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF? Yes, OpenFlow devices

• Other security issues?

– Insecure OpenFlowPlugin <–> OpenFlow device connections

– Topology spoofing: non authenticated LLDP packets to detect links between switches which makes it
vulnerable to a number of attacks, one of which is topology spoofing The problem is that all controllers we
have tested set chassisSubtype value to the MAC address of the local port of the switch, which makes it
easy for an adversary to spoof that switch since controllers use that MAC address as a unique identifier of
the switch. By intercepting clear LLDP packets containing MAC addresses, a malicious switch can spoof
other switches to falsify the controller’s topology graph.

88 Chapter 1. Content for OpenDaylight Users

https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-southbound/pom.xml
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=features-aggregator/odl-openflowplugin-southbound/pom.xml
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-flow-services-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-clustering-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-bulkomatic-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-3node-periodic-bulkomatic-clustering-perf-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-gate-scale-stats-collection-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-scale-stats-collection-daily-frs-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-sw-scalability-daily-only-carbon/
https://jenkins.opendaylight.org/releng/view/openflowplugin/job/openflowplugin-csit-1node-periodic-link-scalability-daily-only-carbon/
https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:_TLS_Support

OpenDaylight Documentation Documentation, Release Carbon

– DoS: an adversary switch could generate LLDP flood resulting in bringing down the openflow network

– DoS attack when the switch rejects to receive packets from the controller

Quality Assurance

• Link to Sonar Report (73.8)

• Link to CSIT Jobs

Migration

• Is it possible to migrate from the previous release? If so, how?

Yes. single-layer-serialization needs to be disabled in order to achieve same functionality as in previous release.

Compatibility

• Is this release compatible with the previous release? Yes

• Any API changes? No changes in the yang models from previous release

• Any configuration changes? Other than addition of single-layer-serialization configuration parameter there were
no changes.

Bugs Fixed

• List of bugs fixed since the previous release

https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-09&chfieldto=2017-05-25&list_id=78767&
product=openflowplugin&query_format=advanced&resolution=FIXED

Known Issues

• List key known issues with workarounds: None

• Link to Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release:

Beryllium design (a.k.a. Helium design) was deprecated in Boron and projects were moved to the Boron (a.k.a.
Lithium) design. All new Boron development in Carbon was on the Boron design only - and future development
will only be on the Boron design going forward. Helium design is planned to be removed in Nitrogen release.

1.1. Release Notes 89

https://wiki.opendaylight.org/view/Security_Advisories#.5BModerate.5D_CVE-2017-1000357_Denial_of_Service_attack_when_the_switch_rejects_to_receive_packets_from_the_controller
https://sonar.opendaylight.org/overview?id=org.opendaylight.openflowplugin%3Aopenflowplugin-aggregator
https://jenkins.opendaylight.org/releng/view/openflowplugin/
https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:OF13%2B_Single_Layer_Serialization#Enabling.2FDisabling_Single_Layer_Serialization
https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:OF13%2B_Single_Layer_Serialization
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-09&chfieldto=2017-05-25&list_id=78767&product=openflowplugin&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-09&chfieldto=2017-05-25&list_id=78767&product=openflowplugin&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?bug_severity=blocker&bug_severity=critical&bug_severity=major&bug_severity=normal&bug_severity=minor&bug_severity=trivial&bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&component=General&list_id=78939&product=openflowplugin&query_format=advanced&resolution=---

OpenDaylight Documentation Documentation, Release Carbon

Standards

OpenFlow versions:

• OpenFlow1.3.2

• OpenFlow1.0.0

Release Mechanics

• Link to release plan

OpFlex

Major Features

OpFlex Agent

OpFlex Agent provides support for local enforcement of group-based policy model synced using the OpFlex protocol
using an Open vSwitch-based bridge. Supported renderer currently works with Cisco ACI.

libopflex

libopflex provides an implementation of the OpFlex protocol along with an in-memory managed object database for
managing OpFlex data.

genie

Genie provides a modeling language and code generator for producing data models that work with libopflex. Genie
also contains the group-based policy model that is used by the OpFlex Agent.

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the document is under review, provide a link to
the change in Gerrit.

• Installation Guide(s):

– OpFlex agent-ovs Install Guide

• User Guide(s):

– OpFlex agent-ovs User Guide

• Developer Guide(s):

– OpFlex libopflex Developer Guide

– OpFlex genie Developer Guide

– OpFlex agent-ovs Developer Guide

90 Chapter 1. Content for OpenDaylight Users

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:Carbon_Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

Security Considerations

• Do you have any external interfaces other than RESTCONF?

– No.

• Other security issues?

– None.

Quality Assurance

• OpFlex projects are tested with extensive unit testing as well as Cisco-internal automated testing with ACI.

• Unit tests run as part of regular build

Migration

• Simply install and restart daemons.

Compatibility

OpFlex GBP model and configuration files remain backward compatible.

Bugs Fixed

• Flows that are routed are allowed to hairpin out the same interface

• Allow working with newer compilers and development environments

– Newest versions of boost remove support for comments in JSON; we work around this by stripping com-
ments before doing JSON parsing for configuration files

– Various changes and improvements to enable working with musl and alpine linux

Known Issues

• None

End-of-life

• None

Standards

• OpFlex protocol (reference implementation)

1.1. Release Notes 91

https://jenkins.opendaylight.org/releng/view/opflex/job/opflex-merge-carbon/34/
https://tools.ietf.org/html/draft-smith-opflex-03

OpenDaylight Documentation Documentation, Release Carbon

OVSDB Project

Major Features

odl-ovsdb-southbound-api

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/
southbound-features/features/src/main/features/features.xml

• Feature Description: This feature provides the YANG models for northbound users to configure the OVSDB
device. These YANG models are designed based on the OVSDB schema. This feature does not provide the
implementation of YANG models. If user/developer prefer to write their own implementation they can use this
feature to load the YANG models in the controller.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-carbon/

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-only-carbon/

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-carbon/

odl-ovsdb-southbound-impl

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/
southbound-features/features/src/main/features/features.xml

• Feature Description: This feature is the main feature of the OVSDB Southbound plugin. This plugin handle
the OVS device that supports the OVSDB schema and uses the OVSDB protocol. This feature provides the
implementation of the defined YANG models. Developers developing the in-controller application and want to
leverage OVSDB for device configuration can add dependency on this feature and it will load all the required
modules.

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-carbon/

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-only-carbon/

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-carbon/

odl-ovsdb-southbound-impl-rest

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/
southbound-features/features/src/main/features/features.xml

92 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/southbound-features/features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/southbound-features/features/src/main/features/features.xml
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-carbon/
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-only-carbon/
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/southbound-features/features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/southbound-features/features/src/main/features/features.xml
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf
https://tools.ietf.org/html/rfc7047
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-carbon/
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-only-carbon/
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/southbound-features/features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=southbound/southbound-features/features/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

• Feature Description: This feature is the wrapper feature that installs the odl-ovsdb-southbound-api & odl-
ovsdb-southbound-impl feature with other required features for restconf access to provide a functional OVSDB
southbound plugin. Users, who want to develop application that manages the OVSDB supported devices but
want to runs the application outside of the OpenDaylight controller must install this feature.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-carbon/

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-only-carbon/

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-carbon/

odl-ovsdb-hwvtepsouthbound-api

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/
hwvtepsouthbound-features/features/src/main/features/features.xml

• Feature Description: This feature provides the YANG models for northbound users to configure the device that
supports OVSDB Hardware vTEP schema. These YANG models are designed based on the OVSDB Hardware
vTEP schema. This feature does not provide the implementation of YANG models. If user/developer prefer
to write their own implementation of the defined YANG model, they can use this feature to install the YANG
models in the controller.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: Currently no CSIT Tests are available, but work is in progress and will be available by nitrogen
release.

odl-ovsdb-hwvtepsouthbound

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/
hwvtepsouthbound-features/features/src/main/features/features.xml

• Feature Description: This feature is the main feature of the OVSDB Hardware vTep Southbound plugin. This
plugin handle the OVS device that supports the OVSDB Hardware vTEP schema and uses the OVSDB protocol.
This feature provides the implementation of the defined YANG models. Developers developing the in-controller
application and want to leverage OVSDB Hardware vTEP plugin for device configuration can add dependency
on this feature and it will load all the required modules.

• Top Level: Yes

• User Facing: No

• Experimental: Yes

• CSIT Test: Currently no CSIT Tests are available, but work is in progress and will be available by nitrogen
release.

1.1. Release Notes 93

https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-carbon/
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-only-carbon/
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/hwvtepsouthbound-features/features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/hwvtepsouthbound-features/features/src/main/features/features.xml
http://openvswitch.org/docs/vtep.5.pdf
http://openvswitch.org/docs/vtep.5.pdf
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/hwvtepsouthbound-features/features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/hwvtepsouthbound-features/features/src/main/features/features.xml
http://openvswitch.org/docs/vtep.5.pdf
https://tools.ietf.org/html/rfc7047

OpenDaylight Documentation Documentation, Release Carbon

odl-ovsdb-hwvtepsouthbound-rest

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/
hwvtepsouthbound-features/features/src/main/features/features.xml

• Feature Description: This feature is the wrapper feature that installs the odl-ovsdb-hwvtepsouthbound-api &
odl-ovsdb-hwvtepsouthbound feature with other required features for restconf access to provide a functional
OVSDB Hardware vTEP plugin. Users, who want to develop application that manages the hardware vTEP
supported devices but want to runs the application outside of the OpenDaylight controller must install this
feature.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: Currently no CSIT Tests are available, but work is in progress and will be available by nitrogen
release.

odl-ovsdb-library

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=library/features/features/src/
main/features/features.xml

• Feature Description: Encode/decoder library for OVSDB and Hardware vTEP schema.

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-carbon/

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-only-carbon/

– https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-carbon/

Documentation

• User Guide(s):

– OVSDB User Guide

• Developer Guide(s):

– OVSDB Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF? Yes, Southbound Connection to OVSDB/Hardware
vTEP devices.

• Other security issues?

Plugin’s connection to device is by default unsecured. User need to explicitly enable the TLS support through
ovsdb library configuration file. User can refer to the wiki page here for the instructions.

94 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/hwvtepsouthbound-features/features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=hwvtepsouthbound/hwvtepsouthbound-features/features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=library/features/features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=ovsdb.git;a=blob;f=library/features/features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-all-carbon/
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-1node-upstream-southbound-only-carbon/
https://jenkins.opendaylight.org/releng/view/ovsdb/job/ovsdb-csit-3node-upstream-clustering-only-carbon/
https://wiki.opendaylight.org/view/OVSDB_Integration:TLS_Communication

OpenDaylight Documentation Documentation, Release Carbon

Quality Assurance

• Link to Sonar Report (57%)

• Link to CSIT Jobs

•

• OVSDB southbound plugin is extensively tested through Unit Tests, IT test and system tests. OVSDB
southbound plugin is tested in both single node setup as well as three node cluster setup. Hard-
ware vTEP plugin is currently tested through (1) Unit testing (2) NetVirt project L2 Gateway fea-
tures CSIT tests and (3) Manual Testing. (2) https://jenkins.opendaylight.org/releng/view/netvirt/job/
netvirt-csit-hwvtep-1node-openstack-newton-nodl-v2-upstream-stateful-carbon

Migration

• Is is possible migrate from the previous release? If so, how? Yes. User facing features and interfaces are not
changed, only enhancements are done.

Compatibility

• Is this release compatible with the previous release? No

• Any API changes? No changes in the YANG models from previous release. Only one minor enhancement is
being done. https://git.opendaylight.org/gerrit/#/c/50993/

• Any configuration changes? No

Bugs Fixed

• List of bugs fixed since the previous release https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=
2016-08-09&chfieldto=2017-05-25&list_id=78767&product=ovsdb&query_format=advanced&resolution=
FIXED

Known Issues

• List key known issues with workarounds None

• Link to Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in thisrelease

None

Standards

• Open vSwitch Database Management Protocol

• OVSDB Schema

1.1. Release Notes 95

https://sonar.opendaylight.org/overview/coverage?id=org.opendaylight.ovsdb%3Aovsdb
https://jenkins.opendaylight.org/releng/view/ovsdb/
https://jenkins.opendaylight.org/releng/view/netvirt/job/netvirt-csit-hwvtep-1node-openstack-newton-nodl-v2-upstream-stateful-carbon
https://jenkins.opendaylight.org/releng/view/netvirt/job/netvirt-csit-hwvtep-1node-openstack-newton-nodl-v2-upstream-stateful-carbon
https://git.opendaylight.org/gerrit/#/c/50993/
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-09&chfieldto=2017-05-25&list_id=78767&product=ovsdb&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-09&chfieldto=2017-05-25&list_id=78767&product=ovsdb&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-09&chfieldto=2017-05-25&list_id=78767&product=ovsdb&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?bug_severity=blocker&bug_severity=critical&bug_severity=major&bug_severity=normal&bug_severity=minor&bug_severity=trivial&bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&list_id=78768&product=ovsdb&query_format=advanced&resolution=---
https://tools.ietf.org/html/rfc7047
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

OpenDaylight Documentation Documentation, Release Carbon

• Hardware vTep Schema

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

We planned to do some exploratory work to improve the performance, scalability and robustness, but it didn’t
make the expected progress in this release. Project will continue this effort in the next release.

PacketCable

Major Features

odl-packetcable-policy-server

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=blob;f=
features-packetcable-policy/features-packetcable-policy/src/main/features/features.xml;hb=refs/heads/stable/
carbon

• Feature Description: Plugin that provides PCMM model implementation based on CMTS structure and COPS
protocol and provides the implementation of RFC 2748.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/packetcable/job/packetcable-csit-1node-pcmm-all-carbon/

Documentation

• User Guide(s):

– PacketCable User Guide

• Developer Guide(s):

– PacketCable Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF? No.

• The PacketCable project talks to southbound devices using the COPS protocol. Securing this communication is
outslide the scope of this project.

Quality Assurance

• Link to Sonar Report (Test coverage percent - 53.21%)

• Link to CSIT Jobs:

96 Chapter 1. Content for OpenDaylight Users

http://openvswitch.org/docs/vtep.5.pdf
https://wiki.opendaylight.org/view/OpenDaylight_OVSDB:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=blob;f=features-packetcable-policy/features-packetcable-policy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=blob;f=features-packetcable-policy/features-packetcable-policy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=blob;f=features-packetcable-policy/features-packetcable-policy/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://tools.ietf.org/html/rfc2748
https://jenkins.opendaylight.org/releng/view/packetcable/job/packetcable-csit-1node-pcmm-all-carbon/
https://jenkins.opendaylight.org/releng/view/packetcable/job/packetcable-sonar

OpenDaylight Documentation Documentation, Release Carbon

– https://jenkins.opendaylight.org/releng/view/packetcable/job/packetcable-csit-1node-pcmm-only-carbon

– https://jenkins.opendaylight.org/releng/view/packetcable/job/packetcable-csit-1node-pcmm-all-carbon

• Other manual testing and QA information - While the CSIT jobs run the PacketCable plugin against a simple
“emulated” instance of a CMTS network device, the code is frequently tested during the development cycle
against actual CMTS devices.

• Testing methodology. There is substantial unit testing associated with the project build process and CSIT testing
is executed against an “emulated” CMTS device. All product APIs are validated during the development cycle
but CSIT testing has not been upgraded to cover some of the most recent feature additions that are incorporated
in the Carbon release.

Migration

• Is it possible to migrate from the previous release? Yes

• Migration from PacketCable Boron version to Carbon version can be accomplished by replacement of the Pack-
etCable plugin components.

– Any data stored in COPS models will need to be manually copied over.

• All previous API calls will work with the new release.

Compatibility

• Is this release compatible with the previous release? Yes

• Any API changes? No

• Any configuration changes? No

Bugs Fixed

• List of Bugzilla bugs fixed since the previous release

• 6302

• 6762

• 6763

• 7108

• 7109

• 7110

• 7111

• 7112

• 7113

• 7114

• 7115

• 7636

1.1. Release Notes 97

https://jenkins.opendaylight.org/releng/view/packetcable/job/packetcable-csit-1node-pcmm-only-carbon
https://jenkins.opendaylight.org/releng/view/packetcable/job/packetcable-csit-1node-pcmm-all-carbon
https://bugs.opendaylight.org/show_bug.cgi?id=6302
https://bugs.opendaylight.org/show_bug.cgi?id=6762
https://bugs.opendaylight.org/show_bug.cgi?id=6763
https://bugs.opendaylight.org/show_bug.cgi?id=7108
https://bugs.opendaylight.org/show_bug.cgi?id=7109
https://bugs.opendaylight.org/show_bug.cgi?id=7110
https://bugs.opendaylight.org/show_bug.cgi?id=7111
https://bugs.opendaylight.org/show_bug.cgi?id=7112
https://bugs.opendaylight.org/show_bug.cgi?id=7113
https://bugs.opendaylight.org/show_bug.cgi?id=7114
https://bugs.opendaylight.org/show_bug.cgi?id=7115
https://bugs.opendaylight.org/show_bug.cgi?id=7636

OpenDaylight Documentation Documentation, Release Carbon

Known Issues

• There are no known issues with the Carbon release of PacketCable

End-of-life

• No PacketCable features or APIs are EOLed, deprecated, or removed in this release

Standards

• CableLabs “PacketCable 1.5 Specification: MTA Device Provisioning” PKT-SP-PROV1.5-I04-090624 The
Packetcable plug-in implements a subset of the provisioning operations defined in this specification.

Release Mechanics

• Link to release plan

• There were no major shifts in release schedule from the release plan

Service Function Chaining

Major Features

odl-sfc-netconf

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: Provides functionality to communicate with netconf capable Service Functions.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-scf-openflow

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: SFC stand-alone openflow classifier.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

98 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/PacketCablePCMM:Release_Plan_Carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

OpenDaylight Documentation Documentation, Release Carbon

odl-sfc-scf-vpp

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: SFC stand-alone vpp classifier.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-openflow-renderer

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: Renderer functionality for OpenFlow capable switches.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfclisp

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: Programs LISP capable switches.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-sb-rest

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: Implements a South Bound Rest interface to send configuration to REST-capable
switches.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

1.1. Release Notes 99

https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

OpenDaylight Documentation Documentation, Release Carbon

odl-sfc-ui

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: This feature is the SFC User Interface.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-vnfm-tacker

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: Tacker VNF Manager interface.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-ios-xe-renderer

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: Renderer functionality for IO XE switches that use netconf.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-vpp-renderer

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: Renderer functionality for fd.io VPP (Vector Packet Processor) switches that use netconf.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

100 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

OpenDaylight Documentation Documentation, Release Carbon

odl-sfc-pot

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: This feature implements a Proof of Transit for the Service Functions.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

These features are consumed by the User facing features above

odl-sfc-genius

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: This feature implements the Genius utilities created by SFC project.

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-model

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: This feature defines and implements the SFC data model as specified here https:
//datatracker.ietf.org/doc/rfc7665/

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-pot-netconf-renderer

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: This feature implements the Netconf rendering for the Proof of Transit for the Service
Functions.

• Top Level: Yes

• User Facing: No

1.1. Release Notes 101

https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://datatracker.ietf.org/doc/rfc7665/
https://datatracker.ietf.org/doc/rfc7665/
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-provider

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: This feature provides an easy-to-use interface to the sfc-model.

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-provider-rest

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: This feature provides no functionality, and just installs the necessary features for SFC
restconf.

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-ovs

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: This feature provides functionality for SFC to communicate with OVSDB for SFF con-
figuration.

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

odl-sfc-test-consumer

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/
features.xml

• Feature Description: This feature is used for testing only.

• Top Level: Yes

102 Chapter 1. Content for OpenDaylight Users

https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=sfc.git;a=blob;f=features/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

• User Facing: No

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon

Features removed in this release

• odl-sfc-bootstrap - used to load an initial configuration that is no longer needed

• odl-sfcofl2 - was deprecated since it was renamed to odl-sfc-openflow-renderer

Documentation

• User Guide(s):

– Service Function Chaining

• Developer Guide(s):

– Service Function Chaining

Security Considerations

None.

Quality Assurance

• Link to Sonar Report (55.9%)

• Link to CSIT Jobs

• All modules have been unit tested. Integration tests have been performed for all major features. System tests
have been performed on most major features.

Migration

The impacts on the SFC data models in this release are minimal. Several fields that were marked as deprecated in
Beryllium and Boron have been removed in Carbon, as follows. No automatic data migration is supported.

Service Chain Symmetry

Previously a Service Chain could be marked symmetric by using either the symmetric flag in the Service Function
Chain (SFC), the Service Function Path (SFP), or the Rendered Service Path (RSP). This approach can be confusing
if the SFC, SFP, or RSP have different values for the symmetric flag. The symmetric flag has been removed from the
SFC and RSP and can now only be set in the SFP. Additionally, if the symmetric flag is not present in the SFP, if any
of the Service Functions is of a Service Funtion Type (SFT) that has the bidirectional flag set true, then the Service
Chain will be symmetric. The SFP symmetric flag overides the SFT bidirectional flag. To say that a Service Chain is
symmetric means that 2 RSPs will be created internally, one uplink and another downlink.

Deprecated Service Function fields

The Service Function nsh-aware and requires-classification fields have been moved to the Service
Function Type.

1.1. Release Notes 103

https://jenkins.opendaylight.org/releng/view/sfc/job/sfc-csit-3node-clustering-all-carbon
https://sonar.opendaylight.org/overview?id=19574
https://jenkins.opendaylight.org/releng/view/sfc/

OpenDaylight Documentation Documentation, Release Carbon

Compatibility

Other than the API changes mentioned in the previous section, this release is compatible with the previous release.

Bugs Fixed

List of bugs fixed since the previous release

• https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-09&chfieldto=2017-05-25&list_id=78767&
product=sfc&query_format=advanced&resolution=FIXED

Known Issues

SFC needs changes in OVS to include the Network Service Headers (NSH) Chaining encapsulation feature. This patch
has been ongoing for quite a while (2 years+), and still has not been officially merged. Until NSH is officially merged
in OVS, SFC will use a branched version of OVS based on 2.6.1, called the “Yi Yang Patch”, located here. Previous
versions of this OVS patch only supported VXLAN-GPE + NSH encapsulation, but this version supports both ETH +
NSH and VXLAN-GPE + ETH + NSH.

• Link to Open Bugs

The following bug was found during Carbon RC testing, which was originally marked as a blocker. Upon further
investigation, the MDSAL team decided its not a blocker and decided to postpone fixing it until Carbon SR1.

• https://bugs.opendaylight.org/show_bug.cgi?id=8501

End-of-life

List of features/APIs which are EOLed, deprecated, and/or removed in this release

• In the Beryllium release, the Service Function nsh-aware and request-classification API fields were deprecated,
and were subsequently removed in Carbon.

– Use the corresponding fields in the Service Function Type instead.

• In the Boron release, the symmetrice API field was deprecated in the Service Function Chain and Rendered
Service Path data models, and were subsequently removed in Carbon.

– Use the Service Function Path (SFP) symmetric field instead of the SFC or RSP symmetric field.

– Or, if the SFP symmetric field is not present and any of the Service Functions has a Service Function type
that sets bidirection true, then the resulting Rendered Service Path will be symmetric.

Standards

• List of standards implemented and to what extent

• IETF SFC RFC

• IETF NSH Only NSH Metadata type 1 is implemented.

• OpenFlow v1.3

104 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-09&chfieldto=2017-05-25&list_id=78767&product=sfc&query_format=advanced&resolution=FIXED
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-09&chfieldto=2017-05-25&list_id=78767&product=sfc&query_format=advanced&resolution=FIXED
https://github.com/yyang13/ovs_nsh_patches
https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&list_id=78823&order=Importance&product=sfc&query_format=specific
https://bugs.opendaylight.org/show_bug.cgi?id=8501
https://datatracker.ietf.org/doc/rfc7665
https://tools.ietf.org/html/draft-ietf-sfc-nsh-07
http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf

OpenDaylight Documentation Documentation, Release Carbon

Release Mechanics

• ODL SFC Carbon release plan

• No major shifts in the release schedule from the release plan

SNMP Plug-in

Major Features

odl-snmp-plugin

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=snmp.git;a=blob;f=features/features-snmp/src/
main/features/features.xml;hb=stable/carbon

• Feature Description: Provides NB API to SB SNMP interface

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test:

– https://jenkins.opendaylight.org/releng/view/snmp/job/snmp-csit-1node-basic-all-carbon/

– https://jenkins.opendaylight.org/releng/view/snmp/job/snmp-csit-1node-basic-only-carbon/

Documentation

• Getting Started:

– SNMP Plugin:Getting Started

• User Guide:

– SNMP Plugin User Guide

• SNMP Simulator:

– SNMP simulator guide

Security Considerations

• Do you have any external interfaces other than RESTCONF?

Yes, this plugin provides SNMP endpoints for talking to southbound devices.

• Other security issues?

Securing communication to devices (or not) over SNMP is outside the scope ofthis project and left to users.

1.1. Release Notes 105

https://wiki.opendaylight.org/view/Service_Function_Chaining:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=snmp.git;a=blob;f=features/features-snmp/src/main/features/features.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=snmp.git;a=blob;f=features/features-snmp/src/main/features/features.xml;hb=stable/carbon
https://jenkins.opendaylight.org/releng/view/snmp/job/snmp-csit-1node-basic-all-carbon/
https://jenkins.opendaylight.org/releng/view/snmp/job/snmp-csit-1node-basic-only-carbon/
https://wiki.opendaylight.org/view/SNMP_Plugin:Getting_Started
https://wiki.opendaylight.org/view/SNMP_Plugin:SNMP_Simulator

OpenDaylight Documentation Documentation, Release Carbon

Quality Assurance

• Link to Sonar Report (3.5% code coverage)

• Link to CSIT Jobs:

– https://jenkins.opendaylight.org/releng/view/snmp/job/snmp-csit-1node-basic-all-carbon/

– https://jenkins.opendaylight.org/releng/view/snmp/job/snmp-csit-1node-basic-only-carbon/

• Other manual testing and QA information: None

Migration

• Is it possible to migrate from the previous release? If so, how?

It is possible to seamlessly migrate consumers to this iteration of the plug-in as there has been no functional
change to features. Migration of state data is not defined.

Compatibility

Compatible with previous release. No functional change to features

Bugs Fixed

• List of bugs fixed since the previous release

None. No functional change to features

Known Issues

• List key known issues with workarounds

No known issues

• Link to Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

none

Standards

• List of standards implemented and to what extent

– SNMP

106 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview?id=69960
https://jenkins.opendaylight.org/releng/view/snmp/job/snmp-csit-1node-basic-all-carbon/
https://jenkins.opendaylight.org/releng/view/snmp/job/snmp-csit-1node-basic-only-carbon/
https://bugs.opendaylight.org/buglist.cgi?component=General&list_id=29216&product=snmp
https://www.ietf.org/rfc/rfc1157.txt/

OpenDaylight Documentation Documentation, Release Carbon

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan

None

SNMP4SDN

Major Features

odl-snmp4sdn-snmp4sdn

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=snmp4sdn.git;a=blob;f=features/
features-snmp4sdn/src/main/resources/features.xml

• Feature Description: This feature will install all bundles required for SNMP4SDN Plugin

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: NA

Documentation

• User Guide:

– SNMP4SDN User Guide

• Developer Guide(s):

– SNMP4SDN Developer Guide

Security Considerations

• The interface or configurable resource exposed to users includes RESTCONF API and the switch list file. Switch
list file, which is a plain-text file, contains security information such as SNMP community.

• SNMP4SDN Plugin configures switches via SNMP protocol, and listens to SNMP listen port for link-up/down
trap. SNMP v2c is used.

Quality Assurance

• Link to Sonar Report (Test coverage percent NA)

• Link to CSIT Jobs

• Other manual testing and QA information

• For each function of SNMP4SDN Plugin, use REST API to confirm it’s availability and correctness. Existing
functions includes flow configuration (such as VLAN and forwarding table) and topology discovery.

1.1. Release Notes 107

https://wiki.opendaylight.org/view/SNMP_Plugin:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=snmp4sdn.git;a=blob;f=features/features-snmp4sdn/src/main/resources/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=snmp4sdn.git;a=blob;f=features/features-snmp4sdn/src/main/resources/features.xml
https://sonar.opendaylight.org/overview?id=44354
https://jenkins.opendaylight.org/releng/view/snmp4sdn/

OpenDaylight Documentation Documentation, Release Carbon

Migration

• Is it possible to migrate from the previous release? If so, how?

Yes. Features as well as interfaces are not changed.

Compatibility

• Is this release compatible with the previous release?

Yes

• Any API changes?

No

• Any configuration changes?

No

Bugs Fixed

• None (no bugs reported since the previous release)

Known Issues

• List key known issues with workarounds

None

• Link to Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

None

Standards

• List of standards implemented and to what extent

None (no standards implemented, and use a third-party library to configure switches in standard SNMP protocol)

Release Mechanics

• Link to release plan

• No changes in this release

108 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/buglist.cgi?bug_status=__open__&list_id=78998&order=Importance&product=snmp4sdn&query_format=specific
https://wiki.opendaylight.org/view/SNMP4SDN:Release_Plan_Carbon

OpenDaylight Documentation Documentation, Release Carbon

Scalable-Group Tag eXchange Protocol (SXP)

Major Features

odl-sxp-api

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/
features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This feature provides models based on RFC.

• Top Level: No

• User Facing: No

• Experimental: Yes

• CSIT Test: N/A

odl-sxp-core

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/
features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This feature performs tasks for managing SXP devices and provides the implementation
of RFC.

• Top Level: No

• User Facing: No

• Experimental: Yes

• CSIT Test: N/A

odl-sxp-controller

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/
features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This feature performs tasks regarding managing SXP devices via RESTCONF.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-basic-all-carbon/

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-filtering-all-carbon/

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-topology-all-carbon/

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-3node-periodic-clustering-all-carbon/

1.1. Release Notes 109

https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://tools.ietf.org/pdf/draft-smith-kandula-sxp-05.pdf
https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://tools.ietf.org/pdf/draft-smith-kandula-sxp-05.pdf
https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-basic-all-carbon/
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-filtering-all-carbon/
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-topology-all-carbon/
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-3node-periodic-clustering-all-carbon/

OpenDaylight Documentation Documentation, Release Carbon

odl-sxp-robot

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/
features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This is a sample feature used in CSIT testing.

• Top Level: No

• User Facing: No

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-periodic-performance-all-carbon/

odl-sxp-route

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/
features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This feature that performs managing of SXP devices in cluster environment.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-3node-periodic-routing-all-carbon/

Documentation

• Installation Guide(s):

– Installation Guide

• User Guide(s):

– SXP User Guide

• Developer Guide(s):

– SXP Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF?

– Yes on port 64999 based on SXP RFC secured by TCP-MD5, optionally also with SSL.

• Other security issues?

– TCP-MD5 security option is now deprecated, and in future will replaced by TCP-AO

110 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-periodic-performance-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=sxp.git;a=blob;f=features/features-sxp/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-3node-periodic-routing-all-carbon/
https://wiki.opendaylight.org/view/SXP:Lithium:Installation_Guide
https://tools.ietf.org/pdf/draft-smith-kandula-sxp-05.pdf

OpenDaylight Documentation Documentation, Release Carbon

Quality Assurance

• Link to Sonar Report (80%)

• Link to CSIT Jobs

– CSIT Job basic

– CSIT Job filtering

– CSIT Job topology

– CSIT Job clustering

– CSIT Job performance

– CSIT Job routing

• Other manual testing and QA information

– N/A

• Testing methodology. How extensive was it? What should be expected to work? What hasn’t been tested as
much?

– CSIT Test document 1

– CSIT Test document 2

– CSIT Test document 3

Migration

• Is it possible to migrate from the previous release? If so, how?

– Yes, no data models were changed that would break the migration.

Compatibility

• Is this release compatible with the previous release?

– Functionality is fully backwards compatible.

• Any API changes?

– Add SSL option to be used for security Patch 1

– Add models for configuring routed SXP devices in cluster Patch 2

• Any configuration changes?

– N/A

Bugs Fixed

• List of bugs fixed since the previous release

– Fixed BUGS

1.1. Release Notes 111

https://sonar.opendaylight.org/overview?id=45270
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-basic-all-carbon/
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-filtering-all-carbon/
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-topology-all-carbon/
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-3node-periodic-clustering-all-carbon/
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-1node-periodic-performance-all-carbon/
https://jenkins.opendaylight.org/releng/view/sxp/job/sxp-csit-3node-periodic-routing-all-carbon/
https://wiki.opendaylight.org/view/File:SXP_Automated_testing.pdf
https://wiki.opendaylight.org/view/File:SXP_Automated_testing_filtering.pdf
https://wiki.opendaylight.org/view/File:SXP_Automated_testing_cluster.pdf
https://git.opendaylight.org/gerrit/#/c/52278/
https://git.opendaylight.org/gerrit/#/c/49656/
https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-9&chfieldto=2017-05-25&list_id=78466&product=sxp&query_format=advanced&resolution=FIXED

OpenDaylight Documentation Documentation, Release Carbon

Known Issues

• List key known issues with workarounds

– N/A

• Open Bugs

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

– Added models for managing of feature odl-sxp-route API

Standards

• List of standards implemented and to what extent

– SXP Fully implemented

Release Mechanics

• Release plan

• Describe any major shifts in release schedule from the release plan

– N/A

Topology Processing Framework

Major Features

odl-topoprocessing-framework

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/
resources/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Topology processing core

• Top Level: No

• User Facing: No

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/
topoprocessing-csit-1node-topology-operations-all-carbon/

odl-topoprocessing-mlmt

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/
resources/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Multi-Layer and Multi-Technology (MLMT) module

112 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/buglist.cgi?chfieldfrom=2016-08-9&chfieldto=2017-05-25&list_id=78466&product=sxp&query_format=advanced&bug_status=__open__
https://git.opendaylight.org/gerrit/#/c/49656/
https://tools.ietf.org/pdf/draft-smith-kandula-sxp-05.pdf
https://wiki.opendaylight.org/view/SXP:Carbon:Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

• Top Level: Yes

• User Facing: No

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/
topoprocessing-csit-1node-topology-operations-all-carbon/

odl-topoprocessing-network-topology

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/
resources/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Support for network-topology model

• Top Level: Yes

• User Facing: No

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/
topoprocessing-csit-1node-topology-operations-all-carbon/

odl-topoprocessing-inventory

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/
resources/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Support for inventory model

• Top Level: Yes

• User Facing: No

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/
topoprocessing-csit-1node-topology-operations-all-carbon/

odl-topoprocessing-I2rs

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/
resources/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Support for i2rs model

• Top Level: Yes

• User Facing: No

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/
topoprocessing-csit-1node-topology-operations-all-carbon/

1.1. Release Notes 113

https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/

OpenDaylight Documentation Documentation, Release Carbon

odl-topoprocessing-inventory-rendering

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/
resources/features.xml;hb=refs/heads/stable/carbon

• Feature Description: Rendering demo

• Top Level: Yes

• User Facing: No

• Experimental: Yes

• CSIT Test: https://jenkins.opendaylight.org/releng/view/topoprocessing/job/
topoprocessing-csit-1node-topology-operations-all-carbon/

Documentation

• Developer Guide(s):

– Topology Processing Framework Developer Guide

– Wiki

Security Considerations

• No external interfaces other then restconf

• No known security issues

Quality Assurance

• Link to Sonar Report (80.2%)

• Link to CSIT Jobs

Migration

• Not supported

Compatibility

• Compatible

Bugs Fixed

• Link to fixed bugs

114 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=features/src/main/resources/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://wiki.opendaylight.org/view/Topology_Processing_Framework:Developer_Guide
https://sonar.opendaylight.org/overview?id=31056
https://jenkins.opendaylight.org/releng/view/topoprocessing/job/topoprocessing-csit-1node-topology-operations-all-carbon/
https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&bug_status=RESOLVED&bug_status=VERIFIED&chfield=bug_status&chfieldfrom=2016-09-08&chfieldto=2017-04-24&component=General&product=topoprocessing&query_format=advanced&resolution=FIXED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE&resolution=WORKSFORME

OpenDaylight Documentation Documentation, Release Carbon

Known Issues

• Leafs which are children (direct or indirect) of list can’t be used as target fields

• Aggregation of termination points in case of more mappings works only if all underlay topologies are from the
same model and only if that model is Network Topology or I2RS

• Aggregation of termination points in combination with aggregation of nodes doesn’t work with inventory model

• Aggregation of termination points in combination with aggregation of nodes in case of more mappings works
only if aggregation of termination points is specified on each underlay topology and only if model of all underlay
topologies is the same

• Filtration of termination points in case of more filters works only if all underlay topologies are from the same
model

• Maximum of one correlation per correlation item (aggregation may not work correctly in case of more correla-
tion with the same correlation item)

• Link aggregation works only if user specify also link computation

MLMT limitations

• The mlmt module provides YANG models as based on: * network-topology YANG model version 2013-10-21
* TED YANG model version 2013-10-21

• The mlmt module works with underlay topologies based on: * network-topology YANG model version 2013-
10-21 * isis-topology YANG model version 2013-10-21

• The mlmt module does not support underlay topologies based on ospf-topology YANG model 2013-10-21.

End-of-life

• Network Topology model is not supported for overlay topologies

Release Mechanics

• Link to release plan

TSDR

Major Features

The Time Series Data Repository (TSDR) project in OpenDaylight (ODL) creates a framework for collecting, storing,
querying, and maintaining time series data.

odl-tsdr-syslog-collector

• Feature URL: https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/
features/features.xml

• Feature Description: Collect syslog data from the network.

• Top Level: Yes

• User Facing: Yes

1.1. Release Notes 115

https://wiki.opendaylight.org/view/Topology_Processing_Framework:CARBON_Release_Plan
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hsqldb-datastore-all-carbon/

odl-tsdr-netflow-collector

• Feature URL: https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/
features/features.xml

• Feature Description: Collect netflow data from the network.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hsqldb-datastore-all-carbon/

odl-tsdr-restconf-collector

• Feature URL: https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/
features/features.xml

• Feature Description: Collect restconf web activities from the network.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hsqldb-datastore-all-carbon/

odl-tsdr-controller-metrics-collector

• Feature URL: https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/
features/features.xml

• Feature Description: Collect ODL controller metrics.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hsqldb-datastore-all-carbon/

odl-tsdr-hsqldb

• Feature URL: https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/
features/features.xml

• Feature Description: Store the collected data into hsqldb that is embedded in ODL controller.

• Top Level: Yes

• User Facing: Yes

116 Chapter 1. Content for OpenDaylight Users

https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hsqldb-datastore-all-carbon/
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hsqldb-datastore-all-carbon/
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hsqldb-datastore-all-carbon/
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hsqldb-datastore-all-carbon/
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml

OpenDaylight Documentation Documentation, Release Carbon

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hsqldb-datastore-all-carbon/

odl-tsdr-hbase

• Feature URL: https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/
features/features.xml

• Feature Description: Store the collected data into hbase data store.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hbase-datastore-all-carbon/

odl-tsdr-cassandra

• Feature URL: https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/
features/features.xml

• Feature Description: Store the collected data into cassandra data store.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-cassandra-datastore-only-carbon/

odl-tsdr-elasticsearch

• Feature URL: https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/
features/features.xml

• Feature Description: Store the collected data into ElasticSearch data store.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-elasticsearch-datastore-only-carbon/

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the document is under review, provide a link to
the change in Gerrit.

• Installation Guide(s):

– TSDR Installation Guide

• User Guide(s):

1.1. Release Notes 117

https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hsqldb-datastore-all-carbon/
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hbase-datastore-all-carbon/
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-cassandra-datastore-only-carbon/
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://github.com/opendaylight/tsdr/blob/stable/carbon/features/features-tsdr/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-elasticsearch-datastore-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

– TSDR User Guide

Security Considerations

• TSDR northbound query supports authentication and authorization using AAA features.

• Since ODL OpenFlow Plugin supports TLS, the OpenFlow Stats data transported from OpenFlow enabled
appliances to ODL will be encrypted when TLS is enabled.

• Syslog, NetFlow, and RestConf collectors do not support encryption at this moment.

Quality Assurance

• Link to Sonar Report 76.9%

• Link to CSIT Jobs

• Other manual testing and QA information

• Testing methodology. How extensive was it? What should be expected to work? What hasn’t been tested as
much?

– Relying on automation for regression on features carried over from previous releases. Manual testing on
new features with test report.

Migration

• Is it possible to migrate from the previous release? If so, how?

– Yes, since there’s no change of features from the previous releases.

Compatibility

• Is this release compatible with the previous release? Yes.

• Any API changes? No.

• Any configuration changes? No.

Bugs Fixed

• List of bugs fixed since the previous release

Known Issues

• List key known issues with workarounds

End-of-life

• List of features/APIs which are EOLed, deprecated, and/or removed in this release

– SNMP data collector was removed.

118 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview?id=31699
https://jenkins.opendaylight.org/releng/view/tsdr/job/tsdr-csit-1node-hbase-datastore-all-carbon/
https://wiki.opendaylight.org/view/TSDR_Carbon_:TSDR_Integration_System_Test/

OpenDaylight Documentation Documentation, Release Carbon

Standards

• List of standards implemented and to what extent

Release Mechanics

• Link to release plan

• Describe any major shifts in release schedule from the release plan * N/A.

Table Type Patterns

Major Features

odl-ttp-model

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=features/features-ttp/src/main/
features/features.xml;hb=stable/carbon

• Feature Description: Provides a YANG model for describing ONF TTP
1.0 <https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf> Table Type Patterns (TTPs)
in JSON as well as a database of TTPs and an augmentation adding supported and active TTPs on OpenFlow
nodes.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: None.

TTP CLI Tools

• Feature URL: The Carbon executable jar can be found here: https://nexus.opendaylight.org/content/
repositories/public/org/opendaylight/ttp/parser/0.4.0-Carbon/parser-0.4.0-Carbon-jar-with-dependencies.jar

• Feature Description: Provides stand-alone command line tools to validate and interact with TTPs in XML or
JSON.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: None.

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the document is under review, provide a link to
the change in Gerrit.

• User Guide(s):

1.1. Release Notes 119

https://wiki.opendaylight.org/view/TSDR:TSDR_Carbon_Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=features/features-ttp/src/main/features/features.xml;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=features/features-ttp/src/main/features/features.xml;hb=stable/carbon
https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/ttp/parser/0.4.0-Carbon/parser-0.4.0-Carbon-jar-with-dependencies.jar
https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/ttp/parser/0.4.0-Carbon/parser-0.4.0-Carbon-jar-with-dependencies.jar

OpenDaylight Documentation Documentation, Release Carbon

– TTP CLI Tools User Guide

• Developer Guide(s):

– TTP CLI Tools Developer Guide

– TTP Model Developer Guide

Security Considerations

• Do you have any external interfaces other than RESTCONF?

– No.

• Other security issues?

– None.

Quality Assurance

• Link to Sonar Report (43.3% Test Coverage)

• No CSIT testing.

• There was minimal manual testing in Carbon, but also there were no changes beyond keeping up-to-date with
changes in upstream projects. Unit tests cover the basics of the model.

Migration

• Is it possible to migrate from the previous release? If so, how?

While it should be possible to export all TTP-related information by doing RESTCONF GETs and then import
it by doing RESTCONF PUTs after the fact, this has not been tested and isn’t officially supported.

Compatibility

• Is this release compatible with the previous release?

Yes. There have been no code changes except to tolerate changes in upstream projects.

• Any API changes?

No. No changes in models or APIs.

• Any configuration changes?

No. The TTP project has no configuration.

Bugs Fixed

None fixed.

120 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview/coverage?id=org.opendaylight.ttp%3Attp-parent

OpenDaylight Documentation Documentation, Release Carbon

Known Issues

The TTP YANG model does not match the ONF TTP JSON precisely. Exact details are documented in the TTP model
YANG file.

Open Bugs

End-of-life

None.

Standards

ONF TTP 1.0

Release Mechanics

• Carbon Table Type Patterns Release Plan

– Dropped all new features including TTP 1.1 support, Dynamic Mapping, and auto-loading of TTP reposi-
tories.

Unimgr

Major Features

odl-unimgr-netvirt

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=blob;f=features/features-unimgr/src/
main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: MEF Legato implementation using netvirt.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

odl-unimgr-cisco-xr-driver

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=blob;f=features/features-unimgr/src/
main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: MEF presto implementation with cisco xr

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

1.1. Release Notes 121

https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=ttp-model/src/main/yang/ttp.yang;hb=stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=ttp-model/src/main/yang/ttp.yang;hb=stable/carbon
https://bugs.opendaylight.org/buglist.cgi?component=General&list_id=79056&product=ttp&resolution=---
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://wiki.opendaylight.org/view/Table_Type_Patterns/Carbon/Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=blob;f=features/features-unimgr/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=blob;f=features/features-unimgr/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=blob;f=features/features-unimgr/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=blob;f=features/features-unimgr/src/main/features/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

Documentation

• User Guide(s):

– User Network Interface Manager Plug-in (Unimgr) User Guide

• Developer Guide(s):

– User Network Interface Manager Plug-in (Unimgr) Developer Guide

Security Considerations

No known security issues

Quality Assurance

• Link to Sonar Report (49.4% code coverage)

• Link to CSIT Jobs

• Tested Manually all main features.

I installed the feature, connect to the dlux ui, configured some services, and run traffic between the ports config-
ured in the services.

Migration

• Is it possible to migrate from the previous release? No, Current release is backward incompatible.

Compatibility

• Is this release compatible with the previous release?

• Any API changes?

• Any configuration changes?

No, all API’s are new or have not been modified.

Bugs Fixed

• Only Bugs related to current release have been fixed

Known Issues

• No known issues

End-of-life

none

122 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview/coverage?id=org.opendaylight.unimgr%3Aunimgr-aggregator
https://jenkins.opendaylight.org/releng/view/unimgr/job/unimgr-csit-1node-basic-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

Standards

• MEF PRESTO API

• MEF LEGATO API

Release Mechanics

• Link to release plan

Unified Secure Channel

Major Features

• USC Agent provides proxy and agent functionality on top of all standard protocols supported by the device.
It initiates call-home with the controller, maintains live connections with with the controller, acts as a de-
muxer/muxer for packets with the USC header, and authenticates the controller.

• USC Plugin is responsible for communication between the controller and the USC agent . It responds to call-
home with the controller, maintains live connections with the devices, acts as a muxer/demuxer for packets with
the USC header, and provides support for TLS/DTLS.

• USC Manager handles configurations, high availability, security, monitoring, and clustering support for USC.

• USC UI is responsible for displaying a graphical user interface representing the state of USC in the OpenDay-
light DLUX UI.

USC Channel UI

• Feature Name: odl-usc-channel-ui

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=usc.git;a=blob;f=usc-features/src/main/features/
features.xml;

• Feature Description: Responsible for communication between the controller and the USC agent . It responds
to call-home with the controller, maintains live connections with the devices, acts as muxer/demuxer for packets
with the USC header, and provides support for TLS/DTLS.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/usc/job/usc-csit-1node-tcp-all-carbon/

Documentation

Please provide the URL to each document at docs.opendaylight.org. If the document is under review, provide a link to
the change in Gerrit.

• User Guide(s):

– Unified Secure Channel

• Developer Guide(s):

1.1. Release Notes 123

https://wiki.mef.net/display/CESG/LSO+Presto
https://wiki.mef.net/display/CESG/LSO+Legato
https://wiki.opendaylight.org/view/Unimgr:Release_Plan_Carbon
https://git.opendaylight.org/gerrit/gitweb?p=usc.git;a=blob;f=usc-features/src/main/features/features.xml
https://git.opendaylight.org/gerrit/gitweb?p=usc.git;a=blob;f=usc-features/src/main/features/features.xml
https://jenkins.opendaylight.org/releng/view/usc/job/usc-csit-1node-tcp-all-carbon/

OpenDaylight Documentation Documentation, Release Carbon

– Unified Secure Channel

Security Considerations

• USC uses TLS and DTLS to secure the channels. Asymmetric authentication handshake when establishing the
channels. Mutual authentication achieved with certificates configured in usc.properties for both the controller
and the device.

Quality Assurance

• Link to Sonar Report

• Link to CSIT Jobs

• Link to Additional Details

• Code is covered by unit and integration tests

• System Tests are performed by CSIT jobs using java test agent.

Migration

• Nothing beyond general Carbon migration requirements.

Compatibility

• Nothing beyond general Carbon compatibility constraints.

Bugs Fixed

• Bug Report

Known Issues

• 3402 USC features has configuration issues with 3-node cluster environment.

End-of-life

• Nothing deprecated, EOL.

Standards

• N/A

124 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview?id=44336
https://jenkins.opendaylight.org/releng/view/usc/job/usc-csit-1node-tcp-all-carbon/
https://wiki.opendaylight.org/view/USC:Carbon:Integration_Test
https://bugs.opendaylight.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=WAITING_FOR_REVIEW&bug_status=VERIFIED&list_id=47710&product=usc&query_format=advanced&resolution=---
https://bugs.opendaylight.org/show_bug.cgi?id=4558

OpenDaylight Documentation Documentation, Release Carbon

Release Mechanics

• USC Release Plan

• Project was on schedule

Honeycomb Virtual Bridge Domain

Major Features

odl-vbd

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=honeycomb/vbd.git;a=blob;f=features/
vbd-features/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This feature provides models to configure Virtual Bridge Domains on VPP.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

odl-vbd-ui

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=honeycomb/vbd.git;a=blob;f=features/
vbd-features/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: This feature provides the GUI for VBD.

• Top Level: Yes

• User Facing: Yes

• Experimental: Yes

• CSIT Test: N/A

Documentation

• Wiki

• VBD API

Security Considerations

• N/A

1.1. Release Notes 125

https://wiki.opendaylight.org/view/USC:Carbon:Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=honeycomb/vbd.git;a=blob;f=features/vbd-features/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=honeycomb/vbd.git;a=blob;f=features/vbd-features/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=honeycomb/vbd.git;a=blob;f=features/vbd-features/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=honeycomb/vbd.git;a=blob;f=features/vbd-features/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://wiki.opendaylight.org/view/Honeycomb/VBD
https://wiki.opendaylight.org/view/Honeycomb/VBD/API

OpenDaylight Documentation Documentation, Release Carbon

Quality Assurance

• Sonar Report (0% - no coverage results available)

• VBD project is tested within FastDataStacks (FDS) testing suite, where severeal automated tests are performed.
More information about FDS testing can be found here: FDS testing and test results are available here: FDS test
results

• FDS automated tests perform series of functests where the whole stack is beeing tested (Openstack/ODL
(GBP,VBD)/HC/VPP).

Migration

• Please upgrade to VPP 17.04 stable.

Compatibility

• Not compatible with previous VPP 17.01 or older stable versions.

Bugs Fixed

• Bug 6077 RESOLVED Bridge domain is not created when topology and node are created at the same time

• Bug 6078 RESOLVED BVI is set to true and should be false when creating VXLAN tunnel

• Bug 6101 RESOLVED Error when creating VLAN flood domain

• Bug 6104 RESOLVED Ip addresses nullPointerException

• Bug 6105 RESOLVED Error when removing nodes from bridge domain

• Bug 6241 RESOLVED Split horizon group is not set for VXLAN tunnel interfaces

• Bug 6285 RESOLVED HONEYCOMB/VBD Missing from Distribution Feature Index

• Bug 6591 RESOLVED VXLAN tunnels are not created correctly

• Bug 7117 RESOLVED Cannot add Virtual Bridge Domains in DLUX

• Bug 7118 RESOLVED Cannot remove VPP from inventory in DLUX

• Bug 7148 RESOLVED VBD Carbon Autorelease Build Failure

• Bug 7655 RESOLVED Karaf 4 migration: provide Karaf 4 honeycomb-vbd features

• Bug 8009 RESOLVED Mismatched VXLAN tunnel endpoint addresses

• Bug 8167 RESOLVED Default startup configuration file not created

• Bug 8172 RESOLVED VBD missing yangs for configuring LISP in VPP

• Bug 8173 RESOLVED Mismatch of v3po yangs between vbd and hc2vpp

• Bug 8354 RESOLVED Feature installs fails if installed in a particular order

126 Chapter 1. Content for OpenDaylight Users

https://sonar.opendaylight.org/overview?id=68028
https://wiki.opnfv.org/display/fds/FastDataStacks+Home
https://wiki.opnfv.org/display/fds/FDS+Testing
http://testresults.opnfv.org/reporting/functest/release/danube/index-status-apex.html
http://testresults.opnfv.org/reporting/functest/release/danube/index-status-apex.html
https://bugs.opendaylight.org/show_bug.cgi?id=6077
https://bugs.opendaylight.org/show_bug.cgi?id=6078
https://bugs.opendaylight.org/show_bug.cgi?id=6101
https://bugs.opendaylight.org/show_bug.cgi?id=6104
https://bugs.opendaylight.org/show_bug.cgi?id=6105
https://bugs.opendaylight.org/show_bug.cgi?id=6241
https://bugs.opendaylight.org/show_bug.cgi?id=6285
https://bugs.opendaylight.org/show_bug.cgi?id=6591
https://bugs.opendaylight.org/show_bug.cgi?id=7117
https://bugs.opendaylight.org/show_bug.cgi?id=7118
https://bugs.opendaylight.org/show_bug.cgi?id=7148
https://bugs.opendaylight.org/show_bug.cgi?id=7655
https://bugs.opendaylight.org/show_bug.cgi?id=8009
https://bugs.opendaylight.org/show_bug.cgi?id=8167
https://bugs.opendaylight.org/show_bug.cgi?id=8172
https://bugs.opendaylight.org/show_bug.cgi?id=8173
https://bugs.opendaylight.org/show_bug.cgi?id=8354

OpenDaylight Documentation Documentation, Release Carbon

Known Issues

• Due to yang updates for keeping VPP Rendering compatible with the latest stable for VPP, 17.04, we are not
going to be compatible with previous stable VPPs. This, on the other hand, comes with a lot of augmentations
of features.

End-of-life

• N/A

Standards

• N/A

Release Mechanics

• Release plan

• no major shifts from official release plan

VTN

Major Features

odl-vtn-manager-rest

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=vtn.git;a=blob;f=manager/features/
features-vtn-manager/src/main/features/features.xml;hb=refs/heads/stable/carbon#l41

• Feature Description: This is the feature that allows users to use the VTN virtualization, by creating the various
components as needed for the network.

• Top Level: Yes

• User Facing: Yes

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/vtn/job/vtn-csit-1node-manager-only-carbon/,https://
jenkins.opendaylight.org/releng/view/vtn/job/vtn-csit-1node-manager-all-carbon/

odl-vtn-manager-neutron

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=vtn.git;a=blob;f=manager/features/
features-vtn-manager/src/main/features/features.xml;hb=refs/heads/stable/carbon#l49

• Feature Description: This feature provides support for integration with Openstack (L2 API)

• Top Level: Yes

• User Facing: Yes

• Experimental: No

1.1. Release Notes 127

https://wiki.opendaylight.org/view/Honeycomb/VBD/Carbon/Release_Plan
https://git.opendaylight.org/gerrit/gitweb?p=vtn.git;a=blob;f=manager/features/features-vtn-manager/src/main/features/features.xml;hb=refs/heads/stable/carbon#l41
https://git.opendaylight.org/gerrit/gitweb?p=vtn.git;a=blob;f=manager/features/features-vtn-manager/src/main/features/features.xml;hb=refs/heads/stable/carbon#l41
https://jenkins.opendaylight.org/releng/view/vtn/job/vtn-csit-1node-manager-only-carbon/,https://jenkins.opendaylight.org/releng/view/vtn/job/vtn-csit-1node-manager-all-carbon/
https://jenkins.opendaylight.org/releng/view/vtn/job/vtn-csit-1node-manager-only-carbon/,https://jenkins.opendaylight.org/releng/view/vtn/job/vtn-csit-1node-manager-all-carbon/
https://git.opendaylight.org/gerrit/gitweb?p=vtn.git;a=blob;f=manager/features/features-vtn-manager/src/main/features/features.xml;hb=refs/heads/stable/carbon#l49
https://git.opendaylight.org/gerrit/gitweb?p=vtn.git;a=blob;f=manager/features/features-vtn-manager/src/main/features/features.xml;hb=refs/heads/stable/carbon#l49

OpenDaylight Documentation Documentation, Release Carbon

• CSIT Test: https://jenkins.opendaylight.org/releng/view/vtn/job/vtn-csit-1node-openstack-newton-neutron-carbon/

Documentation

• Installation Guide(s):

– VTN Installation Guide

• User Guide(s):

– VTN User Guide

• Developer Guide(s):

– VTN Developer Guide

– VTN Openstack Developer Guide

Security Considerations

• No Issues.

Quality Assurance

• Link to Sonar Report (56.2%)

• Link to CSIT Jobs

• CSIT covers most of the options in RESTCONF

• The 3 node deployment has not been tested well.

Migration

• Not Supported.

Compatibility

• No Specific Compatibility issues.

Bugs Fixed

• 6632 - VTN Coordinator Build Issues with Fedora 24

• 7360 - VTN Coordinator Build Issues in Fedora 25

• 7402 - VTN Coordinator Tomcat Upgrade to 7.0.73

• 6859 - Clean up package names across ODL for yangtools

• 7969 - VTN Coordinator Issues with recent Postgres Versions

• 7652 - VTN Manager Support for Karaf 4

• 8191 - VTN Manager Addressed some Checkstyle/findbugs warnings

128 Chapter 1. Content for OpenDaylight Users

https://jenkins.opendaylight.org/releng/view/vtn/job/vtn-csit-1node-openstack-newton-neutron-carbon/
https://sonar.opendaylight.org/dashboard?id=org.opendaylight.vtn%3Adistribution&did=1
https://jenkins.opendaylight.org/releng/view/vtn/

OpenDaylight Documentation Documentation, Release Carbon

• 8184 - VTN Manager Removed some log messages when handling send-barrier RPC

• 8211 - VTN Manager Addressed Problems in mapping VTN Flow and MD-SAL Flow

• 8212 - VTN Manager Fixed Failure in retrieving dataflow

Known Issues

• Link to Open Bugs

End-of-life

• None

Standards

• None

Release Mechanics

• Link to release plan

• There was no deviation from the plan.

YANG Tools

Major Features

Carbon release marks the sixth release of YANG Tools components. We have fixed 56 issues ranging from small
annoyances to major reworks.

New major features delivered in this release are

• Introduction of YANG 1.1 (RFC 7950) support in YANG parser (Bug 2305)

• Introduction of deviation statements support, i.e., when assembling a SchemaContext, target nodes of deviations
are updated according to the deviate type (Bug 6261).

odl-yangtools-yang-data

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/
features-yangtools/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: to install YANG Data APIs and implementation.

• Top Level: Yes

• User Facing: No

• Experimental: Yes

• CSIT Test: System test waiver request pending.

1.1. Release Notes 129

https://bugs.opendaylight.org/buglist.cgi?component=VTN%20Manager&list_id=78860&product=vtn&resolution=---
https://wiki.opendaylight.org/view/VTN:Carbon_Release_Plan
https://bugs.opendaylight.org/buglist.cgi?bug_severity=blocker&bug_severity=critical&bug_severity=major&bug_severity=normal&bug_severity=minor&bug_severity=trivial&bug_severity=enhancement&columnlist=product%2Ccomponent%2Cassigned_to%2Cbug_severity%2Ccf_issue_type%2Cshort_desc%2Cbug_status%2Cpriority%2Cdeadline%2Ccf_target_milestone&component=General&f1=cf_target_milestone&known_name=Carbon%3A%20Yangtools&list_id=78630&o1=substring&order=bug_id&product=yangtools&query_based_on=Carbon%3A%20Yangtools&query_format=advanced&resolution=FIXED&v1=Carbon
https://tools.ietf.org/html/rfc7950
https://bugs.opendaylight.org/show_bug.cgi?id=2305
https://bugs.opendaylight.org/show_bug.cgi?id=6261
https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/features-yangtools/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/features-yangtools/src/main/features/features.xml;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

odl-yangtools-common

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/
features-yangtools/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: to install common concepts and utilities.

• Top Level: Yes

• User Facing: No

• Experimental: Yes

• CSIT Test: System test waiver request pending.

odl-yangtools-yang-parser

• Feature URL: https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/
features-yangtools/src/main/features/features.xml;hb=refs/heads/stable/carbon

• Feature Description: to install YANG model APIs and YANG Parser

• Top Level: Yes

• User Facing: No

• Experimental: No

• CSIT Test: https://jenkins.opendaylight.org/releng/view/yangtools/job/yangtools-csit-1node-periodic-system-only-carbon/

Documentation

• Developer Guide(s):

– YANG Tools Developer Guide

Security Considerations

• YANG Tools libraries are designed to be embedded and not to be a stand-alone application so security concerns
need to be addressed by the application using this library.

Quality Assurance

• Link to Sonar Report (Test coverage 76%)

• Link to CSIT Jobs

Migration

• It is possible to migrate from the previous release. Aside from adjusting to the removal of deprecated API
elements and changed elements, there are no additional steps needed for migration to this release.

130 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/features-yangtools/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/features-yangtools/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/features-yangtools/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=yangtools.git;a=blob;f=features/features-yangtools/src/main/features/features.xml;hb=refs/heads/stable/carbon
https://jenkins.opendaylight.org/releng/view/yangtools/job/yangtools-csit-1node-periodic-system-only-carbon/
https://sonar.opendaylight.org/overview?id=13079
https://jenkins.opendaylight.org/releng/view/yangtools/job/yangtools-csit-1node-periodic-system-only-carbon/

OpenDaylight Documentation Documentation, Release Carbon

Compatibility

• Release is compatible with the previous one.

• API changes:

– Change of if-feature related API

– Change in yangtools’s yang-model-api

– Changes in yang-model-api in order to support Yang 1.1

• No configuration changes.

Bugs Fixed

• List of fixed Bugs (56).

Known Issues

• Link to Open Bugs

End-of-life

• This release has not introduced any new deprecation of a major feature or API. However, there are some minor
deprecations such as:

– YangStatementSourceImpl has been deprecated

– YinStatementSourceImpList has been deprecated

– some methods in DataTreeFactory have been deprecated

Standards

• YANG parser processing according to RFC 6020 and RFC 7950.

Release Mechanics

• Link to the release plan

1.1.5 Service Release Notes

Carbon-SR1 Release Notes

This page details changes and bug fixes between the Carbon Release and the Carbon Stability Release 1 (Carbon-SR1)
of OpenDaylight.

1.1. Release Notes 131

https://wiki.opendaylight.org/view/Weather#Yangtools:_Change_of_if-feature_related_API
https://wiki.opendaylight.org/view/Weather#Change_in_yangtools.27s_yang-model-api
https://bugs.opendaylight.org/show_bug.cgi?id=6989
https://bugs.opendaylight.org/buglist.cgi?bug_severity=blocker&bug_severity=critical&bug_severity=major&bug_severity=normal&bug_severity=minor&bug_severity=trivial&bug_severity=enhancement&columnlist=product%2Ccomponent%2Cassigned_to%2Cbug_severity%2Ccf_issue_type%2Cshort_desc%2Cbug_status%2Cpriority%2Cdeadline%2Ccf_target_milestone&component=General&f1=cf_target_milestone&known_name=Carbon%3A%20Yangtools&list_id=78630&o1=substring&order=bug_id&product=yangtools&query_based_on=Carbon%3A%20Yangtools&query_format=advanced&resolution=FIXED&v1=Carbon
https://bugs.opendaylight.org/buglist.cgi?bug_severity=blocker&bug_severity=critical&bug_severity=major&bug_severity=normal&bug_severity=minor&bug_severity=trivial&bug_severity=enhancement&columnlist=product%2Ccomponent%2Cassigned_to%2Cbug_severity%2Ccf_issue_type%2Cshort_desc%2Cbug_status%2Cpriority%2Cdeadline%2Ccf_target_milestone&component=General&f1=cf_target_milestone&known_name=Carbon%3A%20Yangtools&list_id=78805&o1=substring&product=yangtools&query_based_on=Carbon%3A%20Yangtools&query_format=advanced&resolution=---&v1=Carbon
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7950
https://wiki.opendaylight.org/view/YANG_Tools:Carbon:Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

Projects with No Noteworthy Changes

• bier

• cardinal

• didm

• dlux

• dluxapps

• eman

• faas

• federation

• infrautils

• integration/distribution

• iotdm

• l2switch

• lacp

• nemo

• netide

• next

• nic

• ocpplugin

• of-config

• packetcable

• sdninterfaceapp

• snmp

• snmp4sdn

• topoprocessing

• tsdr

• ttp

• unimgr

• usc

• vtn

aaa

• 2a5c42e : Utility service to encode/decode public/private keys of type RSA, DSA and ECDSA. Placing it here
to make a common place to access this service.

• aec3cb5 : Fix a parameter description in the CLI

• 6050784 BUG-8352 : Bug 8352: Explicitly set the SecurityManager

132 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/2a5c42e
https://git.opendaylight.org/gerrit/#/q/aec3cb5
https://git.opendaylight.org/gerrit/#/q/6050784
https://bugs.opendaylight.org/show_bug.cgi?id=8352

OpenDaylight Documentation Documentation, Release Carbon

• 0a73ed4 BUG-8382 : Bug 8382: Update idmtool to not utilize ids in payload

• 59037c1 BUG-8382 : Bug 8382: disallow client specified ids

• 8479ba0 : Remove <prerequisites><maven> from pom.xml to avoid WARNING

alto

• 60773394 : Fix yang model validity

• dfeb1414 : Drop incomplete features

bgpcep

• fa65215b0 BUG-8156 : Revert “BUG-8156 Terminate PCEP session properly when ServerSessionManager is
closed”

• 361265e3d BUG-8156 : BUG-8156 Terminate PCEP session properly when ServerSessionManager is closed

• edd1a955e BUG-7027 : BUG-7027 : wired data-change-counter with Blueprint

• 4d94edbf0 : Code Cleanup: unused var and imports

• 40059ebe6 : Code cleanup: Duplicate Code

• 51646d108 BUG-8292 : BUG-8292 Fix BGP flowspec NLRI length read

• d6ab593f2 BUG-8156 : BUG-8156 Fix PCEP topology registration

• 7740fa89b : Remove unused LOG

• 9483e0a24 BUG-8548 : BUG-8548: Pass missing parameter to

• ec677a582 : Fix RD pattern in RouteDistinguisherBuilder

• f91691688 : migrate yangtools deprecated BindingNormalizedNodeSerializer

controller

• 1e07329c0 BUG-8704 : BUG-8704: rework seal mechanics to not wait during replay

• 35b7e5959 BUG-8768 : Bug 8768: Close itemProducer for every code path

• b7657c3ac BUG-8494 : BUG-8494: rework AbstractTransactionHandler

• 741013a2d : Improve ShardBackendInfo.toString()

• 0ea09c71a BUG-8445 : BUG-8445: ignore responses from mismatched sessions

• 5e986f532 BUG-8494 : BUG-8494: fix failure path thinko

• 1c495bceb BUG-8445 : BUG-8445: check sessionId before propagating failures

• d97061af6 BUG-8494 : BUG-8494: Cleanup clustering-it-provider

• bc5486e6d BUG-8629 : BUG 8629: Try to allow notification processing to finish in unsubscribe of listeners.

• bdf02e09c BUG-8621 : Bug 8621 - Add shutdown-prefix-shard-replica rpc to MdsalLowLevelTestProvider

• d5fcf5d66 BUG-8621 : Bug 8621 - Add shutdown-shard-replica rpc to MdsalLowLevelTestProvider

• b6a43d9e3 BUG-8494 : BUG-8494: propagate submit failure immediately

1.1. Release Notes 133

https://git.opendaylight.org/gerrit/#/q/0a73ed4
https://bugs.opendaylight.org/show_bug.cgi?id=8382
https://git.opendaylight.org/gerrit/#/q/59037c1
https://bugs.opendaylight.org/show_bug.cgi?id=8382
https://git.opendaylight.org/gerrit/#/q/8479ba0
https://git.opendaylight.org/gerrit/#/q/60773394
https://git.opendaylight.org/gerrit/#/q/dfeb1414
https://git.opendaylight.org/gerrit/#/q/fa65215b0
https://bugs.opendaylight.org/show_bug.cgi?id=8156
https://git.opendaylight.org/gerrit/#/q/361265e3d
https://bugs.opendaylight.org/show_bug.cgi?id=8156
https://git.opendaylight.org/gerrit/#/q/edd1a955e
https://bugs.opendaylight.org/show_bug.cgi?id=7027
https://git.opendaylight.org/gerrit/#/q/4d94edbf0
https://git.opendaylight.org/gerrit/#/q/40059ebe6
https://git.opendaylight.org/gerrit/#/q/51646d108
https://bugs.opendaylight.org/show_bug.cgi?id=8292
https://git.opendaylight.org/gerrit/#/q/d6ab593f2
https://bugs.opendaylight.org/show_bug.cgi?id=8156
https://git.opendaylight.org/gerrit/#/q/7740fa89b
https://git.opendaylight.org/gerrit/#/q/9483e0a24
https://bugs.opendaylight.org/show_bug.cgi?id=8548
https://git.opendaylight.org/gerrit/#/q/ec677a582
https://git.opendaylight.org/gerrit/#/q/f91691688
https://git.opendaylight.org/gerrit/#/q/1e07329c0
https://bugs.opendaylight.org/show_bug.cgi?id=8704
https://git.opendaylight.org/gerrit/#/q/35b7e5959
https://bugs.opendaylight.org/show_bug.cgi?id=8768
https://git.opendaylight.org/gerrit/#/q/b7657c3ac
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://git.opendaylight.org/gerrit/#/q/741013a2d
https://git.opendaylight.org/gerrit/#/q/0ea09c71a
https://bugs.opendaylight.org/show_bug.cgi?id=8445
https://git.opendaylight.org/gerrit/#/q/5e986f532
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://git.opendaylight.org/gerrit/#/q/1c495bceb
https://bugs.opendaylight.org/show_bug.cgi?id=8445
https://git.opendaylight.org/gerrit/#/q/d97061af6
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://git.opendaylight.org/gerrit/#/q/bc5486e6d
https://bugs.opendaylight.org/show_bug.cgi?id=8629
https://git.opendaylight.org/gerrit/#/q/bdf02e09c
https://bugs.opendaylight.org/show_bug.cgi?id=8621
https://git.opendaylight.org/gerrit/#/q/d5fcf5d66
https://bugs.opendaylight.org/show_bug.cgi?id=8621
https://git.opendaylight.org/gerrit/#/q/b6a43d9e3
https://bugs.opendaylight.org/show_bug.cgi?id=8494

OpenDaylight Documentation Documentation, Release Carbon

• 4a2b10bdd : Fix format string mismatch

• da09aa703 BUG-8445 : BUG-8445: Guard against NPE

• 27193873c : Lower UnboundedDequeBasedControlAwareMailbox logging

• 9797fc8e5 : Cleanup ProduceTransactionsHandler

• d3c5dc3b0 : Optimize Follower.isOutOfSync()

• bdb818fbf BUG-8618 : BUG-8618: update sync status only after processing

• 890e4bbf4 BUG-8618 : BUG-8618: make sync threshold tuneable

• 22e817f68 BUG-8618 : BUG-8618: improve debug logs

• 2c42c1d35 BUG-8618 : BUG-8618: refactor SyncStatusTracker state

• a816f1394 BUG-8618 : BUG-8618: make sure we refresh backend info

• 97875ef26 BUG-8618 : BUG-8618: add threshold crossing debugs

• 8e1dd830b : Log data after in IdIntsDOMDataTreeLIstener

• 715bf60ac : Improve timeout message

• 8ed5603b4 BUG-8665 : BUG-8665: fix memory leak around RangeSets

• 92308eaeb BUG-8606 : Bug 8606: Continue leadership transfer on pauseLeader timeout

• 872a40f7a : Fix intermittent PreLeaderScenarioTest failure

• 072303707 BUG-8494 : BUG 8494 log possibly hanged futures in tx handlers

• ec7342454 BUG-8604 : BUG 8604 set proper tag when producer creation times out

• 8a298158f BUG-8649 : BUG 8649: remove bounded mailbox from ShardManager and notification actors

• 2c510d40d BUG-8629 : BUG 8629: log inconsistent notifications as warn

• 0849bf398 BUG-8618 : BUG 8618: Log leader status when rejecting request

• 31a52c56c : Catch all exceptions when submitting in tx handlers

• 11b30d768 : Do not flood logs with modifications

• 70ce27dbe BUG-5740 : Bug 5740: Configure control-aware mailbox

• 6c4aaa51a BUG-5740 : Bug 5740: Add Deque-based control-aware mailbox

• 721e8da78 BUG-5740 : Bug 5740: Add ControlMessage interface to raft messages

• 169a0c062 BUG-5740 : Bug 5740: Remove Serializable where not necessary

• b84289ee6 BUG-5740 : Bug 5740: Change TimeoutNow and Shutdown to externalizable proxy

• 600535590 BUG-5740 : Bug 5740: Change RequestVote(Reply) to externalizable proxy

• da42d2ffc BUG-8620 : BUG-8620: handle direct commit and disconnect correctly

• 09630b9ae BUG-8602 : BUG 8602: Skip initial fill of idints

• 188b3e7bb : Fix RecoveryIntegrationSingleNodeTest failure

• 584be7bf6 BUG-8494 : BUG-8494: do not attempt to reconnect ReconnectingClientConnection

• b135d9ab1 BUG-8403 : BUG-8403: fix DONE state propagation

• 9da46962e : Replace LOGGER by LOG

• 851fb56fb BUG-8494 : BUG-8494: fix throttling during reconnect

134 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/4a2b10bdd
https://git.opendaylight.org/gerrit/#/q/da09aa703
https://bugs.opendaylight.org/show_bug.cgi?id=8445
https://git.opendaylight.org/gerrit/#/q/27193873c
https://git.opendaylight.org/gerrit/#/q/9797fc8e5
https://git.opendaylight.org/gerrit/#/q/d3c5dc3b0
https://git.opendaylight.org/gerrit/#/q/bdb818fbf
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://git.opendaylight.org/gerrit/#/q/890e4bbf4
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://git.opendaylight.org/gerrit/#/q/22e817f68
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://git.opendaylight.org/gerrit/#/q/2c42c1d35
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://git.opendaylight.org/gerrit/#/q/a816f1394
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://git.opendaylight.org/gerrit/#/q/97875ef26
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://git.opendaylight.org/gerrit/#/q/8e1dd830b
https://git.opendaylight.org/gerrit/#/q/715bf60ac
https://git.opendaylight.org/gerrit/#/q/8ed5603b4
https://bugs.opendaylight.org/show_bug.cgi?id=8665
https://git.opendaylight.org/gerrit/#/q/92308eaeb
https://bugs.opendaylight.org/show_bug.cgi?id=8606
https://git.opendaylight.org/gerrit/#/q/872a40f7a
https://git.opendaylight.org/gerrit/#/q/072303707
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://git.opendaylight.org/gerrit/#/q/ec7342454
https://bugs.opendaylight.org/show_bug.cgi?id=8604
https://git.opendaylight.org/gerrit/#/q/8a298158f
https://bugs.opendaylight.org/show_bug.cgi?id=8649
https://git.opendaylight.org/gerrit/#/q/2c510d40d
https://bugs.opendaylight.org/show_bug.cgi?id=8629
https://git.opendaylight.org/gerrit/#/q/0849bf398
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://git.opendaylight.org/gerrit/#/q/31a52c56c
https://git.opendaylight.org/gerrit/#/q/11b30d768
https://git.opendaylight.org/gerrit/#/q/70ce27dbe
https://bugs.opendaylight.org/show_bug.cgi?id=5740
https://git.opendaylight.org/gerrit/#/q/6c4aaa51a
https://bugs.opendaylight.org/show_bug.cgi?id=5740
https://git.opendaylight.org/gerrit/#/q/721e8da78
https://bugs.opendaylight.org/show_bug.cgi?id=5740
https://git.opendaylight.org/gerrit/#/q/169a0c062
https://bugs.opendaylight.org/show_bug.cgi?id=5740
https://git.opendaylight.org/gerrit/#/q/b84289ee6
https://bugs.opendaylight.org/show_bug.cgi?id=5740
https://git.opendaylight.org/gerrit/#/q/600535590
https://bugs.opendaylight.org/show_bug.cgi?id=5740
https://git.opendaylight.org/gerrit/#/q/da42d2ffc
https://bugs.opendaylight.org/show_bug.cgi?id=8620
https://git.opendaylight.org/gerrit/#/q/09630b9ae
https://bugs.opendaylight.org/show_bug.cgi?id=8602
https://git.opendaylight.org/gerrit/#/q/188b3e7bb
https://git.opendaylight.org/gerrit/#/q/584be7bf6
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://git.opendaylight.org/gerrit/#/q/b135d9ab1
https://bugs.opendaylight.org/show_bug.cgi?id=8403
https://git.opendaylight.org/gerrit/#/q/9da46962e
https://git.opendaylight.org/gerrit/#/q/851fb56fb
https://bugs.opendaylight.org/show_bug.cgi?id=8494

OpenDaylight Documentation Documentation, Release Carbon

• 59ffaa4e9 BUG-8403 : BUG-8403: propagate DONE state to successor

• 9b4c07ca2 BUG-8403 : BUG-8403: go through the DONE transition

• 720292646 BUG-8403 : BUG-8403: add state documentation and DONE state

• cc5009b8f BUG-8403 : BUG-8403: move successor allocation to AbstractProxyTransaction

• 15a67bd10 BUG-8494 : BUG-8494: Cap queue sleep time

• ea6ba6660 BUG-8446 : Bug 8446 - Increase timeout in leadership transfer

• a0f85a19b : Cleanup time access

• 51a85b6c8 BUG-8515 : BUG-8515: make sure we retry connection on NotLeaderException

• 20ece8c54 BUG-8403 : BUG-8403: do not throttle purge requests

• 8fca604f2 BUG-8538 : BUG-8538: rework transaction abort paths

• 8123d0fc5 BUG-8538 : BUG-8538: do not invoke read callbacks during replay.

• 8f18717f6 BUG-8371 : BUG-8371: Respond to CreateLocalHistoryRequest after replication

• a3b2c1a05 BUG-8540 : BUG-8540: suppress ConnectingClientConnection backend timeout

• 7ef280776 BUG-8525 : BUG 8525 Listeners not getting triggered from followers

• 7426d4050 : Do not retain initial SchemaContext

• b24517538 BUG-8402 : BUG-8402: correctly propagate read-only bit

• 5d2832361 BUG-8402 : BUG 8402: Close readonly tx

• 7ea291d0c BUG-8318 : BUG 8318: Add section for remoting transport-failure-detector

• 773f2f6b0 BUG-8525 : BUG 8525: Prevent NPE in test-app listeners

• bf9e4dc04 BUG-8403 : BUG 8403 Timeout writetransactions on initial ensure

• 956797bba BUG-8403 : BUG-8403: raise misordered request log message

• f336a5c15 BUG-8371 : BUG-8371: raise unknown history log to warn

• acded3392 : Don’t use File(In/Out)putStream in FileBackedOutputStream

genius

• 8b143a87 BUG-8528 : BUG 8528: Fix duplicate Apply Actions Instruction

• 208655aa : Genius wide blueprint xml path change: /OSGI-INF/ -> /org/opendaylight/

• cb8ef123 BUG-8146 : Bug 8146:BFD tunnel monitoring interval update fix

• 9a5c5ae5 : Fixing a typo in DJC log statement

• 1e630b73 : Use polymorphism instead of Optional

• 19edb799 : Neutron Port Allocation For DHCP Service

• bdbd660d BUG-8008 : Bug 8008: NPE detected in IfMgrRpcService.getDpnInterfaceList

• e8ca1d21 BUG-8555 : Bug 8555 - Too many log info print to the console

• 631c662e : Fix checkstyle problems not detected by the current version

• 0e3074a6 : Add missing @Override and serialVersionUID to genius.mdsalutil

• 9a9cff70 : EVPN RT2 : L2VNI Demux Table id

1.1. Release Notes 135

https://git.opendaylight.org/gerrit/#/q/59ffaa4e9
https://bugs.opendaylight.org/show_bug.cgi?id=8403
https://git.opendaylight.org/gerrit/#/q/9b4c07ca2
https://bugs.opendaylight.org/show_bug.cgi?id=8403
https://git.opendaylight.org/gerrit/#/q/720292646
https://bugs.opendaylight.org/show_bug.cgi?id=8403
https://git.opendaylight.org/gerrit/#/q/cc5009b8f
https://bugs.opendaylight.org/show_bug.cgi?id=8403
https://git.opendaylight.org/gerrit/#/q/15a67bd10
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://git.opendaylight.org/gerrit/#/q/ea6ba6660
https://bugs.opendaylight.org/show_bug.cgi?id=8446
https://git.opendaylight.org/gerrit/#/q/a0f85a19b
https://git.opendaylight.org/gerrit/#/q/51a85b6c8
https://bugs.opendaylight.org/show_bug.cgi?id=8515
https://git.opendaylight.org/gerrit/#/q/20ece8c54
https://bugs.opendaylight.org/show_bug.cgi?id=8403
https://git.opendaylight.org/gerrit/#/q/8fca604f2
https://bugs.opendaylight.org/show_bug.cgi?id=8538
https://git.opendaylight.org/gerrit/#/q/8123d0fc5
https://bugs.opendaylight.org/show_bug.cgi?id=8538
https://git.opendaylight.org/gerrit/#/q/8f18717f6
https://bugs.opendaylight.org/show_bug.cgi?id=8371
https://git.opendaylight.org/gerrit/#/q/a3b2c1a05
https://bugs.opendaylight.org/show_bug.cgi?id=8540
https://git.opendaylight.org/gerrit/#/q/7ef280776
https://bugs.opendaylight.org/show_bug.cgi?id=8525
https://git.opendaylight.org/gerrit/#/q/7426d4050
https://git.opendaylight.org/gerrit/#/q/b24517538
https://bugs.opendaylight.org/show_bug.cgi?id=8402
https://git.opendaylight.org/gerrit/#/q/5d2832361
https://bugs.opendaylight.org/show_bug.cgi?id=8402
https://git.opendaylight.org/gerrit/#/q/7ea291d0c
https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://git.opendaylight.org/gerrit/#/q/773f2f6b0
https://bugs.opendaylight.org/show_bug.cgi?id=8525
https://git.opendaylight.org/gerrit/#/q/bf9e4dc04
https://bugs.opendaylight.org/show_bug.cgi?id=8403
https://git.opendaylight.org/gerrit/#/q/956797bba
https://bugs.opendaylight.org/show_bug.cgi?id=8403
https://git.opendaylight.org/gerrit/#/q/f336a5c15
https://bugs.opendaylight.org/show_bug.cgi?id=8371
https://git.opendaylight.org/gerrit/#/q/acded3392
https://git.opendaylight.org/gerrit/#/q/8b143a87
https://bugs.opendaylight.org/show_bug.cgi?id=8528
https://git.opendaylight.org/gerrit/#/q/208655aa
https://git.opendaylight.org/gerrit/#/q/cb8ef123
https://bugs.opendaylight.org/show_bug.cgi?id=8146
https://git.opendaylight.org/gerrit/#/q/9a5c5ae5
https://git.opendaylight.org/gerrit/#/q/1e630b73
https://git.opendaylight.org/gerrit/#/q/19edb799
https://git.opendaylight.org/gerrit/#/q/bdbd660d
https://bugs.opendaylight.org/show_bug.cgi?id=8008
https://git.opendaylight.org/gerrit/#/q/e8ca1d21
https://bugs.opendaylight.org/show_bug.cgi?id=8555
https://git.opendaylight.org/gerrit/#/q/631c662e
https://git.opendaylight.org/gerrit/#/q/0e3074a6
https://git.opendaylight.org/gerrit/#/q/9a9cff70

OpenDaylight Documentation Documentation, Release Carbon

• 406c34a6 : Support API that configures IPv6 address as sourceAddress

• 22b652f2 : Support for moving Src/Dest IPv6 addresses in NxRegMove action

• 0aad230b : Utility api to configure icmpv6 type

• 2e01048c : Avoid extending Object

• 00259552 : @Immutable GroupEntity

• a35ef1a0 : Make testutils a JAR instead of a POM

• eb011c16 : Make ActionInfo.toString() generic

• a91282fc : Remove TestableDataTreeChangeListenerModule from ResourceManagerTest

• aae81869 : Listener base classes should not throw exception if close()’d

• cc7ec571 : Replace LOGGER by LOG

• e7a333d9 : Simplify boolean expressions

• 6cd063e4 : Fix vlanIdModified test

• 5b721418 : Simplify ResourceManager

• bb738955 : Replace toUpperCase().equals by equalsIgnoreCase()

• 83517ba7 : Incorrect handling of admin state update for interface

• 60f334a0 : fix for indefinite wait on the resource lock

• dc0f5aa0 : IMdsalApiManager API simplification

• 7fb63878 : Remove <prerequisites><maven> from pom.xml to avoid WARNING

• 186fdef0 BUG-7826 : Bug 7826: Data validation failed for path

groupbasedpolicy

• ec50b66e BUG-8701 : Bug 8701 - Location provider in VPP cleared + UT

• 3457d49a BUG-8608 : Bug 8608 - quick fix for async transaction creation

• 11a10da6 BUG-8559 : Bug 8559 - updating metadata endpoints

• 249331d0 : Support for metadata in HA

• 2c4309ca BUG-8584 : Bug 8584 - missing implementation in NM for floating IPs

honeycomb/vbd

• edb9630 : Tiny fix for failing transaction

lispflowmapping

• 113e820b : Don’t build Karaf 4 features

• 6b16fcac BUG-8679 : Bug 8679: Fix widest negative prefix calculation

• 1ab0ea0f : Add CSR1Kv configs

• f384b983 BUG-8503 : Bug 8503: Remove empty structures in DAO

136 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/406c34a6
https://git.opendaylight.org/gerrit/#/q/22b652f2
https://git.opendaylight.org/gerrit/#/q/0aad230b
https://git.opendaylight.org/gerrit/#/q/2e01048c
https://git.opendaylight.org/gerrit/#/q/00259552
https://git.opendaylight.org/gerrit/#/q/a35ef1a0
https://git.opendaylight.org/gerrit/#/q/eb011c16
https://git.opendaylight.org/gerrit/#/q/a91282fc
https://git.opendaylight.org/gerrit/#/q/aae81869
https://git.opendaylight.org/gerrit/#/q/cc7ec571
https://git.opendaylight.org/gerrit/#/q/e7a333d9
https://git.opendaylight.org/gerrit/#/q/6cd063e4
https://git.opendaylight.org/gerrit/#/q/5b721418
https://git.opendaylight.org/gerrit/#/q/bb738955
https://git.opendaylight.org/gerrit/#/q/83517ba7
https://git.opendaylight.org/gerrit/#/q/60f334a0
https://git.opendaylight.org/gerrit/#/q/dc0f5aa0
https://git.opendaylight.org/gerrit/#/q/7fb63878
https://git.opendaylight.org/gerrit/#/q/186fdef0
https://bugs.opendaylight.org/show_bug.cgi?id=7826
https://git.opendaylight.org/gerrit/#/q/ec50b66e
https://bugs.opendaylight.org/show_bug.cgi?id=8701
https://git.opendaylight.org/gerrit/#/q/3457d49a
https://bugs.opendaylight.org/show_bug.cgi?id=8608
https://git.opendaylight.org/gerrit/#/q/11a10da6
https://bugs.opendaylight.org/show_bug.cgi?id=8559
https://git.opendaylight.org/gerrit/#/q/249331d0
https://git.opendaylight.org/gerrit/#/q/2c4309ca
https://bugs.opendaylight.org/show_bug.cgi?id=8584
https://git.opendaylight.org/gerrit/#/q/edb9630
https://git.opendaylight.org/gerrit/#/q/113e820b
https://git.opendaylight.org/gerrit/#/q/6b16fcac
https://bugs.opendaylight.org/show_bug.cgi?id=8679
https://git.opendaylight.org/gerrit/#/q/1ab0ea0f
https://git.opendaylight.org/gerrit/#/q/f384b983
https://bugs.opendaylight.org/show_bug.cgi?id=8503

OpenDaylight Documentation Documentation, Release Carbon

• 18c55905 BUG-8591 : Bug 8591: Add knob to disable authentication

mdsal

• 2e10d2796 BUG-8769 : Bug 8769 YangTextTemplate throw exception during yang binding Code Generator

• 23f792397 : Binding v2 runtime - write transaction fix

• 0ff85fbec : Binding generator v2 - namespace fix #4

• 691e52c36 : Binding generator v2 - namespace fix #3

• 881c8a173 : Binding generator v2 - namespace fix #2

• d4a474872 : Binding generator v2 - namespace fix #1

• 34c2cb2c3 : Binding generator v2 - Action, ListAction fix

• 1ccbd41d3 : Binding generator v2 - Binary key fix

• abc714a3f : Binding generator v2 - Identities fix

• bc7da02e5 : Binding generator v2 - Augments fix

• ce7de27a2 : Binding v2 runtime - adapters - abstract data broker test

• 655637498 : MDSAL Binding2 Features - Carbon only

• 49493c2eb : Binding v2 runtime - adapters - impl - operations

• f66597152 : Recover removed test case for JavaIdentifierNormalizerTest

• 4e32d91d1 : Binding v2 runtime - adapters - impl - operations invoker

• 6e395a9ed : Binding v2 runtime - adapters - impl - notifications

• 09daf490a : Binding generator v2 - augments fix #3

• de80b14d6 : Binding generator v2 - augments fix #2

• e3ea7da70 : Binding generator v2 - Namespace - Typedef package name fix

• 7e9798790 : Binding v2 runtime - adapters - impl - mount point

• ad84b3019 : Binding v2 runtime - adapters - transactions

• 9abf11a6a : Binding generator v2 - augments fix #1

• dcb7ee994 : Binding v2 runtime - adapters - impl - data tree

• 1968d644a : Binding v2 runtime - adapters - registration

• 680ac63ca : Binding v2 runtime - adapters - spi

• 7aba6e53e : Binding v2 runtime - adapters - extractors

• 859ff0409 : Binding2 runtime - Codecs - serialized

• 8a5686706 : Binding v2 runtime - codecs - modificators

• 9b16d5fb7 : Binding2 runtime - Codecs impl - codecs - part4

• b60f81f89 : Binding2 runtime version fix

• 8e224c826 : Binding generator v2 - Decimal* - getDefaultInstance() fix

• 5a198b3d1 : Binding generator v2 - Bits - getDefaultInstance() fix

• f63cd5bd2 : Binding generator v2 - Identityref - Compilability fix

1.1. Release Notes 137

https://git.opendaylight.org/gerrit/#/q/18c55905
https://bugs.opendaylight.org/show_bug.cgi?id=8591
https://git.opendaylight.org/gerrit/#/q/2e10d2796
https://bugs.opendaylight.org/show_bug.cgi?id=8769
https://git.opendaylight.org/gerrit/#/q/23f792397
https://git.opendaylight.org/gerrit/#/q/0ff85fbec
https://git.opendaylight.org/gerrit/#/q/691e52c36
https://git.opendaylight.org/gerrit/#/q/881c8a173
https://git.opendaylight.org/gerrit/#/q/d4a474872
https://git.opendaylight.org/gerrit/#/q/34c2cb2c3
https://git.opendaylight.org/gerrit/#/q/1ccbd41d3
https://git.opendaylight.org/gerrit/#/q/abc714a3f
https://git.opendaylight.org/gerrit/#/q/bc7da02e5
https://git.opendaylight.org/gerrit/#/q/ce7de27a2
https://git.opendaylight.org/gerrit/#/q/655637498
https://git.opendaylight.org/gerrit/#/q/49493c2eb
https://git.opendaylight.org/gerrit/#/q/f66597152
https://git.opendaylight.org/gerrit/#/q/4e32d91d1
https://git.opendaylight.org/gerrit/#/q/6e395a9ed
https://git.opendaylight.org/gerrit/#/q/09daf490a
https://git.opendaylight.org/gerrit/#/q/de80b14d6
https://git.opendaylight.org/gerrit/#/q/e3ea7da70
https://git.opendaylight.org/gerrit/#/q/7e9798790
https://git.opendaylight.org/gerrit/#/q/ad84b3019
https://git.opendaylight.org/gerrit/#/q/9abf11a6a
https://git.opendaylight.org/gerrit/#/q/dcb7ee994
https://git.opendaylight.org/gerrit/#/q/1968d644a
https://git.opendaylight.org/gerrit/#/q/680ac63ca
https://git.opendaylight.org/gerrit/#/q/7aba6e53e
https://git.opendaylight.org/gerrit/#/q/859ff0409
https://git.opendaylight.org/gerrit/#/q/8a5686706
https://git.opendaylight.org/gerrit/#/q/9b16d5fb7
https://git.opendaylight.org/gerrit/#/q/b60f81f89
https://git.opendaylight.org/gerrit/#/q/8e224c826
https://git.opendaylight.org/gerrit/#/q/5a198b3d1
https://git.opendaylight.org/gerrit/#/q/f63cd5bd2

OpenDaylight Documentation Documentation, Release Carbon

• f181f88e4 : Binding generator v2 - Augmentation - Fix package name for recursively uses augment

• b7b78e4ca : Binding generator v2 - Package name

• 3f2e012b1 : Binding generator v2 - Enumeration fix

• d629df699 : Binding generator v2 - Instantiable compilability fix

• 2975744b8 : Binding generator v2 - Unions - Union’s builder fix

• a6a89419d : Binding generator v2 - Unions - fix getValue()

• 875e9cb51 : Binding generator v2 - Unions - Enclosing type fix

• 926a6022a : Binding2 runtime - Codecs impl - tests

• eb01ab81d : Binding2 runtime - Codecs

• 89a052a3a : Binding2 runtime - Module info context

• 42341be6d : Binding2 runtime - Codecs impl - codecs - part3

• 7d19e16c3 : Binding2 runtime - Codecs impl - context - part3

• 842da41ce : Binding2 runtime - Codecs impl - codecs - part2

• 5bae96b11 : Binding2 runtime - Codecs impl - context - part2

• 12181d1ed : Binding2 runtime - Codecs impl - codecs

• 38e5738c6 : Binding2 runtime - Codecs impl - cache

• 82044665e : Binding2 runtime - Codecs impl - writers

• 853ac32db : Binding2 runtime - Codecs impl - context

• 0c1f5e979 : Binding2 runtime - Codecs impl #2

• ec66b2ce6 : Binding v2 runtime - refactor - part3

• 4ecf20777 : Binding v2 runtime - refactor - part2

• 918a0567e : Binding v2 runtime - refactor - part1

• 46afb6058 : Binding v2 runtime - init module

• 2c51cf4bf BUG-8634 : Bug 8634: list & leaf-list compilability fix

• a48a8dd53 : Add endline to gettermethod and property

• 0b719c159 : Support for Yang 1.1 Anydata statement in mdsal-binding2-generator

• d9c754afe : Add implement type ‘BindingTypes.INSTANTIABLE’ to augment type -Add implement type
‘BindingTypes.INSTANTIABLE’ to augment type to replace ‘DataObject’ as to override the interface “im-
plementedInterface” in it’s builder.

• 22f672062 : Binding v2 DOM Codec - generator - SPI - part 2

• 6487567fe : Binding generator v2 - leaf-list support

• 7d3c2791b : Binding v2 DOM Codec - generator - SPI - part 1

• 8c88fc1f6 : Binding v2 DOM Codec - choice serializer implementation

• 5f27be897 : Binding v2 DOM Codec - augmentation

• b29c4d806 : Binding generator v2 - Choice/Cases support

• 1d900bb8a BUG-8583 : Bug 8583 - Duplicate appending rank to augement class

• 996e1c53e BUG-8593 : Bug 8593 - Augmentation’s Builder overrides a method from interface Augmentable.

138 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/f181f88e4
https://git.opendaylight.org/gerrit/#/q/b7b78e4ca
https://git.opendaylight.org/gerrit/#/q/3f2e012b1
https://git.opendaylight.org/gerrit/#/q/d629df699
https://git.opendaylight.org/gerrit/#/q/2975744b8
https://git.opendaylight.org/gerrit/#/q/a6a89419d
https://git.opendaylight.org/gerrit/#/q/875e9cb51
https://git.opendaylight.org/gerrit/#/q/926a6022a
https://git.opendaylight.org/gerrit/#/q/eb01ab81d
https://git.opendaylight.org/gerrit/#/q/89a052a3a
https://git.opendaylight.org/gerrit/#/q/42341be6d
https://git.opendaylight.org/gerrit/#/q/7d19e16c3
https://git.opendaylight.org/gerrit/#/q/842da41ce
https://git.opendaylight.org/gerrit/#/q/5bae96b11
https://git.opendaylight.org/gerrit/#/q/12181d1ed
https://git.opendaylight.org/gerrit/#/q/38e5738c6
https://git.opendaylight.org/gerrit/#/q/82044665e
https://git.opendaylight.org/gerrit/#/q/853ac32db
https://git.opendaylight.org/gerrit/#/q/0c1f5e979
https://git.opendaylight.org/gerrit/#/q/ec66b2ce6
https://git.opendaylight.org/gerrit/#/q/4ecf20777
https://git.opendaylight.org/gerrit/#/q/918a0567e
https://git.opendaylight.org/gerrit/#/q/46afb6058
https://git.opendaylight.org/gerrit/#/q/2c51cf4bf
https://bugs.opendaylight.org/show_bug.cgi?id=8634
https://git.opendaylight.org/gerrit/#/q/a48a8dd53
https://git.opendaylight.org/gerrit/#/q/0b719c159
https://git.opendaylight.org/gerrit/#/q/d9c754afe
https://git.opendaylight.org/gerrit/#/q/22f672062
https://git.opendaylight.org/gerrit/#/q/6487567fe
https://git.opendaylight.org/gerrit/#/q/7d3c2791b
https://git.opendaylight.org/gerrit/#/q/8c88fc1f6
https://git.opendaylight.org/gerrit/#/q/5f27be897
https://git.opendaylight.org/gerrit/#/q/b29c4d806
https://git.opendaylight.org/gerrit/#/q/1d900bb8a
https://bugs.opendaylight.org/show_bug.cgi?id=8583
https://git.opendaylight.org/gerrit/#/q/996e1c53e
https://bugs.opendaylight.org/show_bug.cgi?id=8593

OpenDaylight Documentation Documentation, Release Carbon

• 1d5c1ce06 BUG-8575 : Bug 8575 - IllegalArgumentException thrown when uses a grouping which name is not
unique

• 6a5bdd0e9 BUG-706 : Bug 706: - Missing support for anyxml statement in java generator and mapping service

• db8eaf0d9 : Binding generator v2 - Unions compilability fix

• 4ed1730aa : Binding v2 DOM Codec - generator - base implementation

• 535a0e0d7 : Binding v2 DOM Codec - generator - API

• dd829b575 : Binding v2 DOM Codec - Javassist part

• e8c52d628 : Binding2 runtime - Codecs impl #1

• bf496a42e : Binding v2 DOM Codec - codecs API - Part 2

• 335cbc7b4 : Binding v2 runtime context

• 6c6fc1583 : Binding v2 DOM Codec - codecs API - Part 1

• cbd735efa : Binding spec runtime v2 - TreeNodeSerializer & relatives

• 6742ba2b4 : Binding2 runtime - API #7

• df9528682 : Binding2 runtime - API #6

• a9831c2db : Binding2 runtime - API #5

• 770f7cbfd : Binding2 runtime - API #4

• f87a95ab6 : Binding2 runtime - API #3

• dc5cacd6d : Binding2 runtime - API #2

• 19393f668 : Binding2 runtime - API #1

• ad2fd7f3a : Binding generator v2 - Identities support

• b99e965cb : Binding v2 runtime

• 419106173 : Binding generator v2 - Unions fix

• f70cbe576 : Binding generator v2 - Notifications

• 2a454020b BUG-8226 : BUG-8226: do not import nested classes

• 8df2cadfa BUG-8307 : Bug 8307: Add the option for activating deviation statements

• b3e33459a : BindingDOMRpcProviderServiceAdapter should implement its interface

netconf

• 30de8f44 BUG-8839 : BUG 8839: Revert “Make netconf utilize encrypted passwords only”

• 1867bf17 : Make netconf utilize encrypted passwords only

• 32621d57 BUG-8697 : BUG-8697: select correct transformer for schemaless netconf mounts

• e51312f7 : Remove UriInfo from JSONRestconfService API methods

• 557006cd : Un-deprecate JSONRestconfService(Impl)

• 6c78a97e BUG-8085 : BUG-8085: create missing parent augmentation node

• 9318c37a BUG-8566 : BUG 8566 direct writes to ordered list fail

• 848c94b7 : Fixing NPE caused when rpc definition does not include “input” or “output”

1.1. Release Notes 139

https://git.opendaylight.org/gerrit/#/q/1d5c1ce06
https://bugs.opendaylight.org/show_bug.cgi?id=8575
https://git.opendaylight.org/gerrit/#/q/6a5bdd0e9
https://bugs.opendaylight.org/show_bug.cgi?id=706
https://git.opendaylight.org/gerrit/#/q/db8eaf0d9
https://git.opendaylight.org/gerrit/#/q/4ed1730aa
https://git.opendaylight.org/gerrit/#/q/535a0e0d7
https://git.opendaylight.org/gerrit/#/q/dd829b575
https://git.opendaylight.org/gerrit/#/q/e8c52d628
https://git.opendaylight.org/gerrit/#/q/bf496a42e
https://git.opendaylight.org/gerrit/#/q/335cbc7b4
https://git.opendaylight.org/gerrit/#/q/6c6fc1583
https://git.opendaylight.org/gerrit/#/q/cbd735efa
https://git.opendaylight.org/gerrit/#/q/6742ba2b4
https://git.opendaylight.org/gerrit/#/q/df9528682
https://git.opendaylight.org/gerrit/#/q/a9831c2db
https://git.opendaylight.org/gerrit/#/q/770f7cbfd
https://git.opendaylight.org/gerrit/#/q/f87a95ab6
https://git.opendaylight.org/gerrit/#/q/dc5cacd6d
https://git.opendaylight.org/gerrit/#/q/19393f668
https://git.opendaylight.org/gerrit/#/q/ad2fd7f3a
https://git.opendaylight.org/gerrit/#/q/b99e965cb
https://git.opendaylight.org/gerrit/#/q/419106173
https://git.opendaylight.org/gerrit/#/q/f70cbe576
https://git.opendaylight.org/gerrit/#/q/2a454020b
https://bugs.opendaylight.org/show_bug.cgi?id=8226
https://git.opendaylight.org/gerrit/#/q/8df2cadfa
https://bugs.opendaylight.org/show_bug.cgi?id=8307
https://git.opendaylight.org/gerrit/#/q/b3e33459a
https://git.opendaylight.org/gerrit/#/q/30de8f44
https://bugs.opendaylight.org/show_bug.cgi?id=8839
https://git.opendaylight.org/gerrit/#/q/1867bf17
https://git.opendaylight.org/gerrit/#/q/32621d57
https://bugs.opendaylight.org/show_bug.cgi?id=8697
https://git.opendaylight.org/gerrit/#/q/e51312f7
https://git.opendaylight.org/gerrit/#/q/557006cd
https://git.opendaylight.org/gerrit/#/q/6c78a97e
https://bugs.opendaylight.org/show_bug.cgi?id=8085
https://git.opendaylight.org/gerrit/#/q/9318c37a
https://bugs.opendaylight.org/show_bug.cgi?id=8566
https://git.opendaylight.org/gerrit/#/q/848c94b7

OpenDaylight Documentation Documentation, Release Carbon

• b140321b BUG-8533 : Bug 8533: Not possible to invoke RPC on mount points with new Restconf

• eb8a4d94 BUG-7933 : Bug 7933: NPE when posting using XML

• 3b0ec164 BUG-7933 : Bug 7933: NPE when posting using XML

• 514af3f6 BUG-8455 : Bug 8455: Yang Patch response is not having the error details

• 0fb6a272 BUG-8490 : Bug 8490 - Ignore unstable SSHServerTest

netvirt

• acfe4033b BUG-8793 : Bug 8793: Null Pointer Exceptions in Carbon CSIT

• c29f9e25d BUG-8793 : Bug 8793: Null Pointer Exceptions in Carbon CSIT

• b2879380e BUG-8793 : Bug 8793: Null Pointer Exceptions in Carbon CSIT

• 015dd2dc5 : Adding logs in ACL.

• f60e325b9 : Fix NPE in aclService test

• ba9b4d33f : Fix clear bug in BgpConfigurationManager’s interVpnLinkService

• ceed744f1 : Revert “Neutron Port allocation for DHCP Service”

• c4fea9383 BUG-7824 : BUG 7824: Handling Optimistic lock exception for elanmodule

• 11831b359 : Remove sfc-translator MdsalUtils::put()

• 4fcd543ea : Remove sfc-translator MdsalUtils::merge()

• c7adf8be7 : Remove sfc-translator MdsalUtils::delete()

• 67c6932b3 : Remove sfc-translator MdsalUtils::read()

• 4e72f268d : Remove NatUtil::read()

• 4db213e80 : Use documenting constants for put()

• 0361f8d06 : Remove old NetVirt

• bdb38f669 : Fix NPE triggered after disabling SG on a port

• 7b3aae5bb BUG-8398 : Bug 8398 - communication between two tenant network failed while using default SG
(stateful mode)

• 631dae5c8 BUG-8398 : Bug 8398 - communication between two tenant network failed while using default SG
(stateful mode)

• e773730bb BUG-8645 : Bug 8645: Alarm not cleared while deleting the bgp neighbor

• b0eaccad8 BUG-7599 : bug 7599 hwvtep ucast mac add performance improv

• 0babe2d94 : VrfEntryListener refactoring using chain of responsibility pattern

• 6f525ec4f : Neutron Port allocation for DHCP Service

• 77003ee0c BUG-7939 : Bug 7939 - CSIT Sporadic failures - Flow(s) missing in VPNService suite on compute
node

• 1228741cc BUG-8553 : BUG 8553: Rules are not deleted/added to the SG.

• ef8c8b711 BUG-8743 : Bug 8743 : Fix NAT Service to safely use vpn-to-dpn list.

• 8b517bd58 : Move fibmanager-shell blueprint.xml from OSGI-INF/blueprint to org/opendaylight/blueprint

• 88673d301 : Netvirt wide blueprint xml path change: /OSGI-INF/ -> /org/opendaylight/

140 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/b140321b
https://bugs.opendaylight.org/show_bug.cgi?id=8533
https://git.opendaylight.org/gerrit/#/q/eb8a4d94
https://bugs.opendaylight.org/show_bug.cgi?id=7933
https://git.opendaylight.org/gerrit/#/q/3b0ec164
https://bugs.opendaylight.org/show_bug.cgi?id=7933
https://git.opendaylight.org/gerrit/#/q/514af3f6
https://bugs.opendaylight.org/show_bug.cgi?id=8455
https://git.opendaylight.org/gerrit/#/q/0fb6a272
https://bugs.opendaylight.org/show_bug.cgi?id=8490
https://git.opendaylight.org/gerrit/#/q/acfe4033b
https://bugs.opendaylight.org/show_bug.cgi?id=8793
https://git.opendaylight.org/gerrit/#/q/c29f9e25d
https://bugs.opendaylight.org/show_bug.cgi?id=8793
https://git.opendaylight.org/gerrit/#/q/b2879380e
https://bugs.opendaylight.org/show_bug.cgi?id=8793
https://git.opendaylight.org/gerrit/#/q/015dd2dc5
https://git.opendaylight.org/gerrit/#/q/f60e325b9
https://git.opendaylight.org/gerrit/#/q/ba9b4d33f
https://git.opendaylight.org/gerrit/#/q/ceed744f1
https://git.opendaylight.org/gerrit/#/q/c4fea9383
https://bugs.opendaylight.org/show_bug.cgi?id=7824
https://git.opendaylight.org/gerrit/#/q/11831b359
https://git.opendaylight.org/gerrit/#/q/4fcd543ea
https://git.opendaylight.org/gerrit/#/q/c7adf8be7
https://git.opendaylight.org/gerrit/#/q/67c6932b3
https://git.opendaylight.org/gerrit/#/q/4e72f268d
https://git.opendaylight.org/gerrit/#/q/4db213e80
https://git.opendaylight.org/gerrit/#/q/0361f8d06
https://git.opendaylight.org/gerrit/#/q/bdb38f669
https://git.opendaylight.org/gerrit/#/q/7b3aae5bb
https://bugs.opendaylight.org/show_bug.cgi?id=8398
https://git.opendaylight.org/gerrit/#/q/631dae5c8
https://bugs.opendaylight.org/show_bug.cgi?id=8398
https://git.opendaylight.org/gerrit/#/q/e773730bb
https://bugs.opendaylight.org/show_bug.cgi?id=8645
https://git.opendaylight.org/gerrit/#/q/b0eaccad8
https://bugs.opendaylight.org/show_bug.cgi?id=7599
https://git.opendaylight.org/gerrit/#/q/0babe2d94
https://git.opendaylight.org/gerrit/#/q/6f525ec4f
https://git.opendaylight.org/gerrit/#/q/77003ee0c
https://bugs.opendaylight.org/show_bug.cgi?id=7939
https://git.opendaylight.org/gerrit/#/q/1228741cc
https://bugs.opendaylight.org/show_bug.cgi?id=8553
https://git.opendaylight.org/gerrit/#/q/ef8c8b711
https://bugs.opendaylight.org/show_bug.cgi?id=8743
https://git.opendaylight.org/gerrit/#/q/8b517bd58
https://git.opendaylight.org/gerrit/#/q/88673d301

OpenDaylight Documentation Documentation, Release Carbon

• 70391261d BUG-8179 : Bug 8179 - Data validation failed for path bgp/networks

• 0174759f6 BUG-7824 : Bug 7824: Handling CSIT Exception under Elan module

• 06dae48ec BUG-8710 : Bug 8710: Bgp afi related bug fixes

• 12ffded5a : VrfEntryListener refactoring using chain of responsibility pattern

• 5c7a7b61a : Spec update for DHCP Neutron Port Allocation

• 230a53309 BUG-8441 BUG-8630 : Bug 8441, 8630 - LB groups not deleted after extra route deletion

• 7b5cdf963 : Fix null Optional instantiations

• 1393b174d : Restore VRF imported routes case

• 86dfa5406 BUG-8706 : Bug 8706: Restore null-check in createLocalFibEntry

• 1fff16efb : Minor code clean-up

• 60de18928 BUG-8657 : Bug 8657: Fix for failure seen with IPv6 extra-route

• 9be663c46 BUG-8552 : Bug 8552 - [l3vpn]Stale flow entries not getting removed even when all the VM config
are deleted

• d24cb415e : Use optional for dataBroker

• f92712962 : Fix SingleFeatureTest breakage on fibmanager-shell bundle

• 407be04a2 BUG-8520 : Bug 8520 - NPE at org.opendaylight.netvirt.vpnmanager.arp.responder.ArpResponderUtil.getActions

• a0b48836d BUG-8374 : Bug 8374: NPE observed on fib-show command

• c59ae8ba9 : Fixes: - BgpAlarms: avoid un-necessary reading of neighbor list

• 470f4b05a BUG-8646 : Bug 8646: QoS log level changed to debug

• ba90814c9 : Use TestInterfaceManager that’s now in testutils

• 26b3f40e0 BUG-8615 : Bug 8615 - Stale flows in table 46, 47 and 44 when SNAT is disabled (Conntrack Based)

• 9a252a3cb : Support ping6 for Neutron internal router interfaces

• 664629b24 BUG-8302 : Bug 8302 fix for ELAN TS table flow leftovers

• 384d1a08a BUG-8588 : Revert “Bug 8588 - NPE at at org.opendaylight.netvirt.fibmanager.VrfEntryListener.createLocalFibEntry”

• 190a4fc87 : EVPN RT2 : UT Bug fixes

• c4e4cfd94 BUG-8610 : Bug 8610 - In NAPT HA(Conntrack based) NAT rules are not programmed when a
switch comes back after a failure.

• bc9c45bca BUG-8440 : Bug 8440: Traffic from remote OVS to LB Group

• 01bd86175 : Fix NPE in DhcpAllocationPoolManager close()

• 2ceab8669 BUG-8588 : Bug 8588 - NPE at at org.opendaylight.netvirt.fibmanager.VrfEntryListener.createLocalFibEntry

• 371da7bea BUG-8609 : Bug 8609 - CSIT Sporadic failures - vpnservice suite - l3 rule leftover in table=19

• 990c2dbdc : Simplify some streaming constructs

• 6a01861e4 BUG-8549 : Bug 8549 - Inter OVS traffic over EVPN does not work with openstack-vni-semantics-
enforce set to true

• 199a312cf : Bug7830:Conflict modification exception for NAT

• c42a0b2ec BUG-8614 : Bug 8614: NPE observed in cloud-sc’s VrfListener

• 29d13afd0 BUG-8595 : Bug 8595 - DNAT traffic from DC gateway to FIP fails

1.1. Release Notes 141

https://git.opendaylight.org/gerrit/#/q/70391261d
https://bugs.opendaylight.org/show_bug.cgi?id=8179
https://git.opendaylight.org/gerrit/#/q/0174759f6
https://bugs.opendaylight.org/show_bug.cgi?id=7824
https://git.opendaylight.org/gerrit/#/q/06dae48ec
https://bugs.opendaylight.org/show_bug.cgi?id=8710
https://git.opendaylight.org/gerrit/#/q/12ffded5a
https://git.opendaylight.org/gerrit/#/q/5c7a7b61a
https://git.opendaylight.org/gerrit/#/q/230a53309
https://bugs.opendaylight.org/show_bug.cgi?id=8441
https://bugs.opendaylight.org/show_bug.cgi?id=8630
https://git.opendaylight.org/gerrit/#/q/7b5cdf963
https://git.opendaylight.org/gerrit/#/q/1393b174d
https://git.opendaylight.org/gerrit/#/q/86dfa5406
https://bugs.opendaylight.org/show_bug.cgi?id=8706
https://git.opendaylight.org/gerrit/#/q/1fff16efb
https://git.opendaylight.org/gerrit/#/q/60de18928
https://bugs.opendaylight.org/show_bug.cgi?id=8657
https://git.opendaylight.org/gerrit/#/q/9be663c46
https://bugs.opendaylight.org/show_bug.cgi?id=8552
https://git.opendaylight.org/gerrit/#/q/d24cb415e
https://git.opendaylight.org/gerrit/#/q/f92712962
https://git.opendaylight.org/gerrit/#/q/407be04a2
https://bugs.opendaylight.org/show_bug.cgi?id=8520
https://git.opendaylight.org/gerrit/#/q/a0b48836d
https://bugs.opendaylight.org/show_bug.cgi?id=8374
https://git.opendaylight.org/gerrit/#/q/c59ae8ba9
https://git.opendaylight.org/gerrit/#/q/470f4b05a
https://bugs.opendaylight.org/show_bug.cgi?id=8646
https://git.opendaylight.org/gerrit/#/q/ba90814c9
https://git.opendaylight.org/gerrit/#/q/26b3f40e0
https://bugs.opendaylight.org/show_bug.cgi?id=8615
https://git.opendaylight.org/gerrit/#/q/9a252a3cb
https://git.opendaylight.org/gerrit/#/q/664629b24
https://bugs.opendaylight.org/show_bug.cgi?id=8302
https://git.opendaylight.org/gerrit/#/q/384d1a08a
https://bugs.opendaylight.org/show_bug.cgi?id=8588
https://git.opendaylight.org/gerrit/#/q/190a4fc87
https://git.opendaylight.org/gerrit/#/q/c4e4cfd94
https://bugs.opendaylight.org/show_bug.cgi?id=8610
https://git.opendaylight.org/gerrit/#/q/bc9c45bca
https://bugs.opendaylight.org/show_bug.cgi?id=8440
https://git.opendaylight.org/gerrit/#/q/01bd86175
https://git.opendaylight.org/gerrit/#/q/2ceab8669
https://bugs.opendaylight.org/show_bug.cgi?id=8588
https://git.opendaylight.org/gerrit/#/q/371da7bea
https://bugs.opendaylight.org/show_bug.cgi?id=8609
https://git.opendaylight.org/gerrit/#/q/990c2dbdc
https://git.opendaylight.org/gerrit/#/q/6a01861e4
https://bugs.opendaylight.org/show_bug.cgi?id=8549
https://git.opendaylight.org/gerrit/#/q/199a312cf
https://git.opendaylight.org/gerrit/#/q/c42a0b2ec
https://bugs.opendaylight.org/show_bug.cgi?id=8614
https://git.opendaylight.org/gerrit/#/q/29d13afd0
https://bugs.opendaylight.org/show_bug.cgi?id=8595

OpenDaylight Documentation Documentation, Release Carbon

• 94f619722 BUG-8585 : Bug 8585: Exception with invalid QoS Alert params

• 3d41f9439 : Fix checkstyle problems not detected by the current version

• 847e42b30 BUG-7451 : Bug 7451 - guarding NPE

• 45bbaabf2 BUG-8581 : Bug 8581: DNAT failure with openstack/ocata

• 536500961 : elanName is null

• 02f5ecf18 BUG-8586 : Bug 8586: Alarm raised due to stale stats polling

• 323f1d925 : Replace LOGGER by LOG

• f2c425ad6 : Clean up Optional uses

• 4fa31a70a : Replace logger and log by LOG

• c9ef771d1 BUG-8589 : Bug 8589: Fix regression in Ipv6PktHandler

• 7ace0f995 : Use named constants in ElanUtils

• 0180e6634 : Use direct comparisons instead of Objects.isNull

• 0cc35f770 BUG-7451 : Bug 7451 - VPN service cleanup of Table 17

• bff012f8a : SNAT performance improvement for Controller-Based SNAT

• 1d8c463d7 BUG-8417 : Bug 8417 - [l3vpn_ecmp] Deleting MPLS GRE Tunnel port doesn’t delete the

• b34b78a26 : Minor Checkstyle fix Custom Import Order error

• e4a51eec3 BUG-7451 : Bug 7451 - Leftovers in dispatcher table when unbind and ietf-state delete

• 87175b44b BUG-8498 : Bug 8498 - ICMP traffic from DHCP NS not blocked when ICMP rule to allow VM-
VM traffic is added in learn mode.

• b44f0dee0 : Add JUnits for InterVpnLinkLocator

• 7aa5b477a : Fix a few non-null collections

• 0ac9ee70b BUG-8376 : Bug 8376: Fix DHCP for external tunnels

• f4dd180e7 : BUG:8341 IAE seen in CSIT logs when port/vlan name is not matching UUID

• 2e8189e05 BUG-7599 : bug 7599 hwvtep ucast mac add performance improv

• e3f31f88d : elanmanager-impl <dependency> interfacemanager-impl <scope>test

• 46ddf16f5 : Use named constants for PolicyAceFlowWrapper

• 5d8147468 : Adjust tunnel state listeners for logical tunnel

• b0f7dae78 : BUG:8232 updating BGPVPN with the List of RDs

• 863faf4ec : Fix Unused log and private final

• ed6133931 : EVPN RT2 : Silent host changes

• 0a673e695 BUG-8508 : Bug 8508 : Id-manager exception during releasing id for router

• f6834b105 BUG-8539 : Bug 8539: IPv6 L3 Forwarding broken.

• a7f9131ed BUG-8485 : Bug 8485 : EVPN was also coming as Layer_3 VRF

• a322e2c43 BUG-8358 : Bug 8358 - Local next hop group not deleted after VM migration

• d0f10882f BUG-8412 : Bug 8412 - NPE while adding and removing elanmacentry

• e19a8ac22 BUG-8537 : BUG 8537: Get destination from interface remote ip

142 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/94f619722
https://bugs.opendaylight.org/show_bug.cgi?id=8585
https://git.opendaylight.org/gerrit/#/q/3d41f9439
https://git.opendaylight.org/gerrit/#/q/847e42b30
https://bugs.opendaylight.org/show_bug.cgi?id=7451
https://git.opendaylight.org/gerrit/#/q/45bbaabf2
https://bugs.opendaylight.org/show_bug.cgi?id=8581
https://git.opendaylight.org/gerrit/#/q/536500961
https://git.opendaylight.org/gerrit/#/q/02f5ecf18
https://bugs.opendaylight.org/show_bug.cgi?id=8586
https://git.opendaylight.org/gerrit/#/q/323f1d925
https://git.opendaylight.org/gerrit/#/q/f2c425ad6
https://git.opendaylight.org/gerrit/#/q/4fa31a70a
https://git.opendaylight.org/gerrit/#/q/c9ef771d1
https://bugs.opendaylight.org/show_bug.cgi?id=8589
https://git.opendaylight.org/gerrit/#/q/7ace0f995
https://git.opendaylight.org/gerrit/#/q/0180e6634
https://git.opendaylight.org/gerrit/#/q/0cc35f770
https://bugs.opendaylight.org/show_bug.cgi?id=7451
https://git.opendaylight.org/gerrit/#/q/bff012f8a
https://git.opendaylight.org/gerrit/#/q/1d8c463d7
https://bugs.opendaylight.org/show_bug.cgi?id=8417
https://git.opendaylight.org/gerrit/#/q/b34b78a26
https://git.opendaylight.org/gerrit/#/q/e4a51eec3
https://bugs.opendaylight.org/show_bug.cgi?id=7451
https://git.opendaylight.org/gerrit/#/q/87175b44b
https://bugs.opendaylight.org/show_bug.cgi?id=8498
https://git.opendaylight.org/gerrit/#/q/b44f0dee0
https://git.opendaylight.org/gerrit/#/q/7aa5b477a
https://git.opendaylight.org/gerrit/#/q/0ac9ee70b
https://bugs.opendaylight.org/show_bug.cgi?id=8376
https://git.opendaylight.org/gerrit/#/q/f4dd180e7
https://git.opendaylight.org/gerrit/#/q/2e8189e05
https://bugs.opendaylight.org/show_bug.cgi?id=7599
https://git.opendaylight.org/gerrit/#/q/e3f31f88d
https://git.opendaylight.org/gerrit/#/q/46ddf16f5
https://git.opendaylight.org/gerrit/#/q/5d8147468
https://git.opendaylight.org/gerrit/#/q/b0f7dae78
https://git.opendaylight.org/gerrit/#/q/863faf4ec
https://git.opendaylight.org/gerrit/#/q/ed6133931
https://git.opendaylight.org/gerrit/#/q/0a673e695
https://bugs.opendaylight.org/show_bug.cgi?id=8508
https://git.opendaylight.org/gerrit/#/q/f6834b105
https://bugs.opendaylight.org/show_bug.cgi?id=8539
https://git.opendaylight.org/gerrit/#/q/a7f9131ed
https://bugs.opendaylight.org/show_bug.cgi?id=8485
https://git.opendaylight.org/gerrit/#/q/a322e2c43
https://bugs.opendaylight.org/show_bug.cgi?id=8358
https://git.opendaylight.org/gerrit/#/q/d0f10882f
https://bugs.opendaylight.org/show_bug.cgi?id=8412
https://git.opendaylight.org/gerrit/#/q/e19a8ac22
https://bugs.opendaylight.org/show_bug.cgi?id=8537

OpenDaylight Documentation Documentation, Release Carbon

• 196760494 : Replace toUpperCase().equals by equalsIgnoreCase()

neutron

• a159f5a6 BUG-8660 : Bug 8660: use southbound-artifacts

odlparent

• 6166f35 : Add method to skip karaf4 featureTest

• a20d9dd : Bump akka to 2.4.18

• d897d97 : Bump scala to 2.11.11

• 3213a5a BUG-4219 : BUG-4219: fix karaf CLI reload

openflowjava

• 15d34417 BUG-8772 : Add method to register listener for unknown msg

openflowplugin

• d01b87519 : Solves compilation error

• 2417e3acd BUG-8762 : Fix NPE in ConnectionContextImpl

• 364cfe697 : Revert “Remove lifecycle service from tx chain manager”

• 5bbffc61f : Remove lifecycle service from tx chain manager

• fba409c7e BUG-8668 : Fix context chain closing

• e8c589841 BUG-2188 : Report (TCP) port number for switches

• 6d1003040 BUG-8411 : Fix “stale” state after controller disconnected.

• 68b13d25b BUG-8635 : Ensure that statistics gathering is terminated

• ca350d22e BUG-7664 : Fix connection when slave role request is unsupported

• 2e39bb6bb BUG-4747 : Fix port update

• 4dea3ebb4 BUG-2095 : Fix ‘INPORT’ keyword in port field

• 3a64e2719 BUG-4422 : Fix onSwitchIdleEvent echo request-reply xid

• 94517229c BUG-8607 : BUG-8607: Replace logger and log by LOG

• 2793d643d : Make create-parents in bulk-o-matic not required

• c952c2e25 BUG-8647 : Bug 8647: remove odl-dlux-core as artifact POM

• b0f6f2271 BUG-7332 : BUG 7332: Cleanup queue after switch disconnect

• a10509a8b BUG-8598 : Close OpenFlowPluginProvider during shutdown

• 965c67fa6 BUG-7940 : Stop reschedule stat. after device disconnected

• 3d1016e73 BUG-4862 : HeaderDeserializer and HeaderSerializer for codecs

• ab267d4e6 BUG-6908 : Write port statistics when needed

1.1. Release Notes 143

https://git.opendaylight.org/gerrit/#/q/196760494
https://git.opendaylight.org/gerrit/#/q/a159f5a6
https://bugs.opendaylight.org/show_bug.cgi?id=8660
https://git.opendaylight.org/gerrit/#/q/6166f35
https://git.opendaylight.org/gerrit/#/q/a20d9dd
https://git.opendaylight.org/gerrit/#/q/d897d97
https://git.opendaylight.org/gerrit/#/q/3213a5a
https://bugs.opendaylight.org/show_bug.cgi?id=4219
https://git.opendaylight.org/gerrit/#/q/15d34417
https://bugs.opendaylight.org/show_bug.cgi?id=8772
https://git.opendaylight.org/gerrit/#/q/d01b87519
https://git.opendaylight.org/gerrit/#/q/2417e3acd
https://bugs.opendaylight.org/show_bug.cgi?id=8762
https://git.opendaylight.org/gerrit/#/q/364cfe697
https://git.opendaylight.org/gerrit/#/q/5bbffc61f
https://git.opendaylight.org/gerrit/#/q/fba409c7e
https://bugs.opendaylight.org/show_bug.cgi?id=8668
https://git.opendaylight.org/gerrit/#/q/e8c589841
https://bugs.opendaylight.org/show_bug.cgi?id=2188
https://git.opendaylight.org/gerrit/#/q/6d1003040
https://bugs.opendaylight.org/show_bug.cgi?id=8411
https://git.opendaylight.org/gerrit/#/q/68b13d25b
https://bugs.opendaylight.org/show_bug.cgi?id=8635
https://git.opendaylight.org/gerrit/#/q/ca350d22e
https://bugs.opendaylight.org/show_bug.cgi?id=7664
https://git.opendaylight.org/gerrit/#/q/2e39bb6bb
https://bugs.opendaylight.org/show_bug.cgi?id=4747
https://git.opendaylight.org/gerrit/#/q/4dea3ebb4
https://bugs.opendaylight.org/show_bug.cgi?id=2095
https://git.opendaylight.org/gerrit/#/q/3a64e2719
https://bugs.opendaylight.org/show_bug.cgi?id=4422
https://git.opendaylight.org/gerrit/#/q/94517229c
https://bugs.opendaylight.org/show_bug.cgi?id=8607
https://git.opendaylight.org/gerrit/#/q/2793d643d
https://git.opendaylight.org/gerrit/#/q/c952c2e25
https://bugs.opendaylight.org/show_bug.cgi?id=8647
https://git.opendaylight.org/gerrit/#/q/b0f6f2271
https://bugs.opendaylight.org/show_bug.cgi?id=7332
https://git.opendaylight.org/gerrit/#/q/a10509a8b
https://bugs.opendaylight.org/show_bug.cgi?id=8598
https://git.opendaylight.org/gerrit/#/q/965c67fa6
https://bugs.opendaylight.org/show_bug.cgi?id=7940
https://git.opendaylight.org/gerrit/#/q/3d1016e73
https://bugs.opendaylight.org/show_bug.cgi?id=4862
https://git.opendaylight.org/gerrit/#/q/ab267d4e6
https://bugs.opendaylight.org/show_bug.cgi?id=6908

OpenDaylight Documentation Documentation, Release Carbon

• 06c47763e : Add Nicira extension support for matching IPv6 Src/Dst

• d0ca4c70c BUG-6755 : Fix auxiliary connections

• fad3e013d : Optimize port status and hello message handling

• 8f2534284 ‘BUG-8497

7957 <https://bugs.opendaylight.org/show_bug.cgi?id=8497 7957>‘_

: Bug 8497 - Provide config knob to disable the Forwarding Rule Manager reconciliation

• 657983013 BUG-8527 : Add missing convertors for OF1.0 actions

• ebcbab40c BUG-8253 : Bug 8253: Set-Field can not accept vendor extension fields.

• 05000c40b BUG-8535 : Bug 8535: Fix IPv6 OXMHeader Mask issue

• ad3e26b7f : Adding Reason Attribute to FlowCapableNodeConnector

• b3f50be0d : Though shall not use org.eclipse.tycho’s osgi.. you don’t even need it!

• 628814041 : Fix logging of exception in HandshakeListenerImpl

• 284858037 : Fix no reserved xid

• f82bbc324 : Remove unused method

• 4e38a2e15 BUG-8293 : Bug 8293: Add table writer to bulk-o-matic

ovsdb

• 47e43793 BUG-8674 : bug 8674 fix port vlan bindings reconciliation

• 74520bb3 BUG-8720 : BUG 8720: Add schema version information to Hwvtep node

• 063f6d04 BUG-8529 : BUG 8529: Deleted vlantag and trunks present in operational

• 45209f5c BUG-8257 : bug 8257 handling back to back ucast mac updates

• 737f2979 BUG-8257 : bug 8257 handling back to back logical switches

• 4b0913ac BUG-8257 : bug 8257 handling back to back mcast mac updates

sfc

• c934c445 : Disable odl-sfclisp Karaf 4 feature

• 4044bd2c BUG-8543 : Bug 8543: Pop_nsh should be last

• ebfc926d : Remove redundant modifier

sxp

• 1f32353 : Fix byte pointing and shortened ipv4 in lua dissector

• ed37cec BUG-8504 : Bug 8504 - jrobot test library fails with IllegalArgumentException

• 6c0ad59 BUG-8428 : Bug 8428 - DS listeners creates conflicting transactions

• 9ebe0f0 BUG-8368 : Bug 8368 - UT - ThreadsWorker tests consist of race conditions

144 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/06c47763e
https://git.opendaylight.org/gerrit/#/q/d0ca4c70c
https://bugs.opendaylight.org/show_bug.cgi?id=6755
https://git.opendaylight.org/gerrit/#/q/fad3e013d
https://git.opendaylight.org/gerrit/#/q/8f2534284
https://bugs.opendaylight.org/show_bug.cgi?id=8497
https://git.opendaylight.org/gerrit/#/q/657983013
https://bugs.opendaylight.org/show_bug.cgi?id=8527
https://git.opendaylight.org/gerrit/#/q/ebcbab40c
https://bugs.opendaylight.org/show_bug.cgi?id=8253
https://git.opendaylight.org/gerrit/#/q/05000c40b
https://bugs.opendaylight.org/show_bug.cgi?id=8535
https://git.opendaylight.org/gerrit/#/q/ad3e26b7f
https://git.opendaylight.org/gerrit/#/q/b3f50be0d
https://git.opendaylight.org/gerrit/#/q/628814041
https://git.opendaylight.org/gerrit/#/q/284858037
https://git.opendaylight.org/gerrit/#/q/f82bbc324
https://git.opendaylight.org/gerrit/#/q/4e38a2e15
https://bugs.opendaylight.org/show_bug.cgi?id=8293
https://git.opendaylight.org/gerrit/#/q/47e43793
https://bugs.opendaylight.org/show_bug.cgi?id=8674
https://git.opendaylight.org/gerrit/#/q/74520bb3
https://bugs.opendaylight.org/show_bug.cgi?id=8720
https://git.opendaylight.org/gerrit/#/q/063f6d04
https://bugs.opendaylight.org/show_bug.cgi?id=8529
https://git.opendaylight.org/gerrit/#/q/45209f5c
https://bugs.opendaylight.org/show_bug.cgi?id=8257
https://git.opendaylight.org/gerrit/#/q/737f2979
https://bugs.opendaylight.org/show_bug.cgi?id=8257
https://git.opendaylight.org/gerrit/#/q/4b0913ac
https://bugs.opendaylight.org/show_bug.cgi?id=8257
https://git.opendaylight.org/gerrit/#/q/c934c445
https://git.opendaylight.org/gerrit/#/q/4044bd2c
https://bugs.opendaylight.org/show_bug.cgi?id=8543
https://git.opendaylight.org/gerrit/#/q/ebfc926d
https://git.opendaylight.org/gerrit/#/q/1f32353
https://git.opendaylight.org/gerrit/#/q/ed37cec
https://bugs.opendaylight.org/show_bug.cgi?id=8504
https://git.opendaylight.org/gerrit/#/q/6c0ad59
https://bugs.opendaylight.org/show_bug.cgi?id=8428
https://git.opendaylight.org/gerrit/#/q/9ebe0f0
https://bugs.opendaylight.org/show_bug.cgi?id=8368

OpenDaylight Documentation Documentation, Release Carbon

yangtools

• 9a17ea82c : Fix uninitialized ExtensionDefinition for openconfig-version

• 2653c7610 : Bypass array-based sort

• 7315c8fa8 BUG-6897 : Bug 6897: [YANG 1.1] Allow notifications to be tied to data nodes

• 3c6798fa8 : Make getOriginalCtx() give out an Optional

• 7c9b9c8e6 BUG-6972 : BUG-6972: inline copy operation modifications

• 177924d2a BUG-6972 : BUG-6972: Do not allow root StmtContext to be copied

• 28fc34ebe : Eliminate StmtContext.isRootContext()

• ab5da769a : Remove appendCopyHistory from public view

• 75402d418 BUG-7052 : BUG-7052: Move qnameFromArgument to StmtContextUtils

• 79c91b337 : Do not tolerate invalid status arguments

• 82187ad56 BUG-7052 : BUG-7052: reduce StatementContextBase proliferation even more

• 0ac84541b BUG-7052 : BUG-7052: Move RecursiveObjectLeader to util

• beca28535 BUG-7052 : BUG-7052: reduce StatementContextBase proliferation

• b08219c63 : Enforce namespace listener compatibility

• 3eb67390c : Refactor InferenceAction

• ed48d7fc4 : Move DeviateKind parsing

• 9cb460f49 : ModifierImpl has no use for phase

• d85b112f9 : Cleanup effectiveStatements() access

• e8134d5d1 : Do not duplicate findModuleByNamespaceAndRevision()

• 59d8d58a8 : Optimize ModuleDependencySort

• 2d529417d : Do not create temporary array for module sorting

• 7fd91ede7 : Intern low-cardinality statement arguments

• f590351ee : Do not throw IllegalArgumentException

• fa6156735 BUG-8523 : Bug 8523: Add support for parsing restconf:yang-data extension

• e68ea7a73 BUG-8597 : Bug 8597 - Empty description and reference of ModuleImport in some cases

• d3185b26d BUG-4640 : Bug 4640: Change semantic-version to openconfig-version

• ea4c6b36a BUG-7037 : Bug 7037 - Improve mapping of YANG extensions

• afe3c3170 BUG-8566 : BUG 8566 Introduce a fallback for ChoiceSchemaNode lookup

• 00c086821 : Add hook for interning raw argument

• f4cfbeded BUG-8307 : Bug 8307: Add the option for activating deviation statements

• 241baf414 : Do not use FileInputStream

• c53db9088 BUG-7844 : Bug 7844 - Unable to create LeafRefContext for leafref

1.1. Release Notes 145

https://git.opendaylight.org/gerrit/#/q/9a17ea82c
https://git.opendaylight.org/gerrit/#/q/2653c7610
https://git.opendaylight.org/gerrit/#/q/7315c8fa8
https://bugs.opendaylight.org/show_bug.cgi?id=6897
https://git.opendaylight.org/gerrit/#/q/3c6798fa8
https://git.opendaylight.org/gerrit/#/q/7c9b9c8e6
https://bugs.opendaylight.org/show_bug.cgi?id=6972
https://git.opendaylight.org/gerrit/#/q/177924d2a
https://bugs.opendaylight.org/show_bug.cgi?id=6972
https://git.opendaylight.org/gerrit/#/q/28fc34ebe
https://git.opendaylight.org/gerrit/#/q/ab5da769a
https://git.opendaylight.org/gerrit/#/q/75402d418
https://bugs.opendaylight.org/show_bug.cgi?id=7052
https://git.opendaylight.org/gerrit/#/q/79c91b337
https://git.opendaylight.org/gerrit/#/q/82187ad56
https://bugs.opendaylight.org/show_bug.cgi?id=7052
https://git.opendaylight.org/gerrit/#/q/0ac84541b
https://bugs.opendaylight.org/show_bug.cgi?id=7052
https://git.opendaylight.org/gerrit/#/q/beca28535
https://bugs.opendaylight.org/show_bug.cgi?id=7052
https://git.opendaylight.org/gerrit/#/q/b08219c63
https://git.opendaylight.org/gerrit/#/q/3eb67390c
https://git.opendaylight.org/gerrit/#/q/ed48d7fc4
https://git.opendaylight.org/gerrit/#/q/9cb460f49
https://git.opendaylight.org/gerrit/#/q/d85b112f9
https://git.opendaylight.org/gerrit/#/q/e8134d5d1
https://git.opendaylight.org/gerrit/#/q/59d8d58a8
https://git.opendaylight.org/gerrit/#/q/2d529417d
https://git.opendaylight.org/gerrit/#/q/7fd91ede7
https://git.opendaylight.org/gerrit/#/q/f590351ee
https://git.opendaylight.org/gerrit/#/q/fa6156735
https://bugs.opendaylight.org/show_bug.cgi?id=8523
https://git.opendaylight.org/gerrit/#/q/e68ea7a73
https://bugs.opendaylight.org/show_bug.cgi?id=8597
https://git.opendaylight.org/gerrit/#/q/d3185b26d
https://bugs.opendaylight.org/show_bug.cgi?id=4640
https://git.opendaylight.org/gerrit/#/q/ea4c6b36a
https://bugs.opendaylight.org/show_bug.cgi?id=7037
https://git.opendaylight.org/gerrit/#/q/afe3c3170
https://bugs.opendaylight.org/show_bug.cgi?id=8566
https://git.opendaylight.org/gerrit/#/q/00c086821
https://git.opendaylight.org/gerrit/#/q/f4cfbeded
https://bugs.opendaylight.org/show_bug.cgi?id=8307
https://git.opendaylight.org/gerrit/#/q/241baf414
https://git.opendaylight.org/gerrit/#/q/c53db9088
https://bugs.opendaylight.org/show_bug.cgi?id=7844

OpenDaylight Documentation Documentation, Release Carbon

Carbon-SR2 Release Notes

This page details changes and bug fixes between the Carbon Stability Release 1 (Carbon-SR1) and the Carbon Stability
Release 2 (Carbon-SR2) of OpenDaylight.

Projects with No Noteworthy Changes

• alto

• bier

• cardinal

• didm

• dlux

• dluxapps

• eman

• faas

• federation

• iotdm

• l2switch

• lacp

• nemo

• netide

• ocpplugin

• of-config

• openflowjava

• packetcable

• sdninterfaceapp

• snmp

• snmp4sdn

• sxp

• topoprocessing

• tsdr

• ttp

• usc

aaa

• c1ea553 AAA-144 : Bug 9040: avoid using dynamicAuthorization for cluster-admin operations

• 0c97134 : Revert “Propagate exceptions from encrypt and decrypt services in aaa-encryption-service API.”

146 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/c1ea553
https://jira.opendaylight.org/browse/AAA-144
https://git.opendaylight.org/gerrit/#/q/0c97134

OpenDaylight Documentation Documentation, Release Carbon

• def98d6 : Propagate exceptions from encrypt and decrypt services in aaa-encryption-service API.

• 0ed8405 : Export aaa-cli-jar in the artifacts

bgpcep

• d3c0a1e BGPCEP-683 : BUG-8987: Print Exception when Css registration fails

• 93dbe1f BGPCEP-682 : Bug-8942: Fix DelegatedLspsCount

• e8c3219 BGPCEP-652 : BUG-8156 : conflicting listener fix

• 32eccfc BGPCEP-652 : BUG-8156 : fixed start of session manager

• 7d9607f BGPCEP-652 : BUG-8156 : duplicate session up fixed

• 385b5f6 : Enforce no split packages

• ad75deb : BUG-8722: fix regression introduced by BUG-5876

• bf16dcb BGPCEP-677 : Bug 8667 - PCEP: When peer closes got IO exception

• 91fe407 BGPCEP-590 : BUG-7027 : Remove Data change counter CSS configuration

controller

• c67ff04 : Lower verbosity in SimpletxDomRead

• 3bcdbbb CONTROLLER-1771 : Bug 9165: Log config subsystem readiness as INFO

• 3d65041 CONTROLLER-1739 : Bug 8829: Ignore error when initializing dsbenchmark

• 3b16b0d CONTROLLER-1760 : Bug 9060: Filter TracingBroker stack trace elements

• 39b7a26 CONTROLLER-1713 : BUG-8639: always invalidate primary info cache

• 274b3b9 CONTROLLER-1757 : BUG-9054: add a ClusterSingletonService integration test

• 0cb983d : BUG-8858: remove sleeps from test driver

• 9ea02d2 CONTROLLER-1752 : Bug 9008: Fix the error of the persisted journal data format

• c18c8af : Fix intermitent testFollowerResyncWith*LeaderRestart failure

• 334cb5c : Fix intermittent testOwnerChangesOnPeerAvailabilityChanges failure

• 71a4b63 CONTROLLER-1757 : BUG-9054: do not use BatchedModifications needlessly

• 892d03c CONTROLLER-1760 : Bug 9060: Karaf CLI command to print open transactions

• 36b7ca9 CONTROLLER-1760 : Bug 9060: TracingBroker printOpenTransactions

• d5606ac CONTROLLER-1760 : Bug 9060: Remove un-used Instant getObjectCreated() from CloseTracked

• d119e43 CONTROLLER-1760 : Bug 9060: mdsal-trace tooling with getAllUnique() to find Tx leaks

• c1579d0 CONTROLLER-1760 : Bug 9060: TracingBroker with transaction-debug-context-enabled

• 28739e1 CONTROLLER-1756 : Bug 9034: TracingBroker with TracingReadOnlyTransaction

• 4a09cad CONTROLLER-1756 : Bug 9034: TracingBroker with TracingTransactionChain

• 644bc12 CONTROLLER-1743 : Bug 8885: Fix DistributedShardedDOMDataTree initialization

• b66d618 CONTROLLER-1755 : BUG-9028: make NonPersistentDataProvider schedule invocation

1.1. Release Notes 147

https://git.opendaylight.org/gerrit/#/q/def98d6
https://git.opendaylight.org/gerrit/#/q/0ed8405
https://git.opendaylight.org/gerrit/#/q/d3c0a1e
https://jira.opendaylight.org/browse/BGPCEP-683
https://git.opendaylight.org/gerrit/#/q/93dbe1f
https://jira.opendaylight.org/browse/BGPCEP-682
https://git.opendaylight.org/gerrit/#/q/e8c3219
https://jira.opendaylight.org/browse/BGPCEP-652
https://git.opendaylight.org/gerrit/#/q/32eccfc
https://jira.opendaylight.org/browse/BGPCEP-652
https://git.opendaylight.org/gerrit/#/q/7d9607f
https://jira.opendaylight.org/browse/BGPCEP-652
https://git.opendaylight.org/gerrit/#/q/385b5f6
https://git.opendaylight.org/gerrit/#/q/ad75deb
https://git.opendaylight.org/gerrit/#/q/bf16dcb
https://jira.opendaylight.org/browse/BGPCEP-677
https://git.opendaylight.org/gerrit/#/q/91fe407
https://jira.opendaylight.org/browse/BGPCEP-590
https://git.opendaylight.org/gerrit/#/q/c67ff04
https://git.opendaylight.org/gerrit/#/q/3bcdbbb
https://jira.opendaylight.org/browse/CONTROLLER-1771
https://git.opendaylight.org/gerrit/#/q/3d65041
https://jira.opendaylight.org/browse/CONTROLLER-1739
https://git.opendaylight.org/gerrit/#/q/3b16b0d
https://jira.opendaylight.org/browse/CONTROLLER-1760
https://git.opendaylight.org/gerrit/#/q/39b7a26
https://jira.opendaylight.org/browse/CONTROLLER-1713
https://git.opendaylight.org/gerrit/#/q/274b3b9
https://jira.opendaylight.org/browse/CONTROLLER-1757
https://git.opendaylight.org/gerrit/#/q/0cb983d
https://git.opendaylight.org/gerrit/#/q/9ea02d2
https://jira.opendaylight.org/browse/CONTROLLER-1752
https://git.opendaylight.org/gerrit/#/q/c18c8af
https://git.opendaylight.org/gerrit/#/q/334cb5c
https://git.opendaylight.org/gerrit/#/q/71a4b63
https://jira.opendaylight.org/browse/CONTROLLER-1757
https://git.opendaylight.org/gerrit/#/q/892d03c
https://jira.opendaylight.org/browse/CONTROLLER-1760
https://git.opendaylight.org/gerrit/#/q/36b7ca9
https://jira.opendaylight.org/browse/CONTROLLER-1760
https://git.opendaylight.org/gerrit/#/q/d5606ac
https://jira.opendaylight.org/browse/CONTROLLER-1760
https://git.opendaylight.org/gerrit/#/q/d119e43
https://jira.opendaylight.org/browse/CONTROLLER-1760
https://git.opendaylight.org/gerrit/#/q/c1579d0
https://jira.opendaylight.org/browse/CONTROLLER-1760
https://git.opendaylight.org/gerrit/#/q/28739e1
https://jira.opendaylight.org/browse/CONTROLLER-1756
https://git.opendaylight.org/gerrit/#/q/4a09cad
https://jira.opendaylight.org/browse/CONTROLLER-1756
https://git.opendaylight.org/gerrit/#/q/644bc12
https://jira.opendaylight.org/browse/CONTROLLER-1743
https://git.opendaylight.org/gerrit/#/q/b66d618
https://jira.opendaylight.org/browse/CONTROLLER-1755

OpenDaylight Documentation Documentation, Release Carbon

• 361c7f2 : Add debug to pinpoint lastApplied movement

• d1de9c5 : Make testTransactionForwardedToLeaderAfterRetry purge-aware

• 3e86a2e : Make ShardTest.testCommitWhenTransactionHasModifications() wait a bit

• 456e2fa CONTROLLER-1746 : BUG-8941: enqueue purges once ask-based transactions resolve

• babc1ee CONTROLLER-1724 : BUG-8733: eliminate ProxyRegistration

• 606c917 CONTROLLER-1724 : BUG-8733: refactor IdInts listeners

• 2ac32ea CONTROLLER-1745 : BUG-8898: prioritize InternalCommand

• 53afb54 : Switch from config-parent to bundle-parent in mdsal-trace

• 4367f45 CONTROLLER-1745 : BUG-8898: do not invoke timeouts directly

• f795484 : Revert “Revert “BUG-7464: use yangtools.triemap”“

• 4bc5f74 : Revert “BUG-7464: use yangtools.triemap”

• 8744119 CONTROLLER-1687 : Bug 8494: Separate writing and completion threads

• 5df3476 : Explicitly load the real DataBroker with component-name

• 31283ab : fix config file for mdsal-trace and filtering mechanism

• db65d6f CONTROLLER-1724 : BUG-8733: use DataTreeCandidateNodes.empty()

• b83c7f5 CONTROLLER-1708 : BUG-8619: do not touch forward path during purge enqueue

• 5e00c9f : BUG-7464: use yangtools.triemap

• 1529bb8 CONTROLLER-1707 : BUG-8618: refresh transaction access when isolated

• 55661ed CONTROLLER-1737 : BUG-8792: allow transactions to not time out after reconnect

• 7633a2a CONTROLLER-1707 : BUG-8618: record LeaderFrontendState time

• 12b4928 CONTROLLER-1708 : Bug 8619: Introduce inheritance of progress trackers

• 80e6514 : ProgressTracker: Decrease delay due nearestAllowed

• 2be77b3 CONTROLLER-1707 : BUG-8618: fix test driver

• 40d27d4 CONTROLLER-1707 : BUG-8618: add pause/unpause mechanics for tell-based protocol

• a15d7e4 : Fix .1 version references

• 1734dcc : mdsaltrace utility for debugging

• 3a10a45 CONTROLLER-1707 : BUG-8618: introduce RaftActor.unpauseLeader()

• 2783c9d CONTROLLER-1707 : BUG-8618: eliminate SimpleShardDataTreeCohort subclasses

• c525e5f CONTROLLER-1707 : BUG-8618: rework AbstractProxyTransaction.flushState()

• 70f2875 CONTROLLER-1707 : BUG-8618: reconnect connections more aggressively

• 0d5408c CONTROLLER-1707 : BUG-8618: turn timeouts in READY state into canCommit failures

• d2d9179 CONTROLLER-1707 : BUG-8618: improve logging

• 773ee5e : Fix Verify/Preconditions string format

148 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/361c7f2
https://git.opendaylight.org/gerrit/#/q/d1de9c5
https://git.opendaylight.org/gerrit/#/q/3e86a2e
https://git.opendaylight.org/gerrit/#/q/456e2fa
https://jira.opendaylight.org/browse/CONTROLLER-1746
https://git.opendaylight.org/gerrit/#/q/babc1ee
https://jira.opendaylight.org/browse/CONTROLLER-1724
https://git.opendaylight.org/gerrit/#/q/606c917
https://jira.opendaylight.org/browse/CONTROLLER-1724
https://git.opendaylight.org/gerrit/#/q/2ac32ea
https://jira.opendaylight.org/browse/CONTROLLER-1745
https://git.opendaylight.org/gerrit/#/q/53afb54
https://git.opendaylight.org/gerrit/#/q/4367f45
https://jira.opendaylight.org/browse/CONTROLLER-1745
https://git.opendaylight.org/gerrit/#/q/f795484
https://git.opendaylight.org/gerrit/#/q/4bc5f74
https://git.opendaylight.org/gerrit/#/q/8744119
https://jira.opendaylight.org/browse/CONTROLLER-1687
https://git.opendaylight.org/gerrit/#/q/5df3476
https://git.opendaylight.org/gerrit/#/q/31283ab
https://git.opendaylight.org/gerrit/#/q/db65d6f
https://jira.opendaylight.org/browse/CONTROLLER-1724
https://git.opendaylight.org/gerrit/#/q/b83c7f5
https://jira.opendaylight.org/browse/CONTROLLER-1708
https://git.opendaylight.org/gerrit/#/q/5e00c9f
https://git.opendaylight.org/gerrit/#/q/1529bb8
https://jira.opendaylight.org/browse/CONTROLLER-1707
https://git.opendaylight.org/gerrit/#/q/55661ed
https://jira.opendaylight.org/browse/CONTROLLER-1737
https://git.opendaylight.org/gerrit/#/q/7633a2a
https://jira.opendaylight.org/browse/CONTROLLER-1707
https://git.opendaylight.org/gerrit/#/q/12b4928
https://jira.opendaylight.org/browse/CONTROLLER-1708
https://git.opendaylight.org/gerrit/#/q/80e6514
https://git.opendaylight.org/gerrit/#/q/2be77b3
https://jira.opendaylight.org/browse/CONTROLLER-1707
https://git.opendaylight.org/gerrit/#/q/40d27d4
https://jira.opendaylight.org/browse/CONTROLLER-1707
https://git.opendaylight.org/gerrit/#/q/a15d7e4
https://git.opendaylight.org/gerrit/#/q/1734dcc
https://git.opendaylight.org/gerrit/#/q/3a10a45
https://jira.opendaylight.org/browse/CONTROLLER-1707
https://git.opendaylight.org/gerrit/#/q/2783c9d
https://jira.opendaylight.org/browse/CONTROLLER-1707
https://git.opendaylight.org/gerrit/#/q/c525e5f
https://jira.opendaylight.org/browse/CONTROLLER-1707
https://git.opendaylight.org/gerrit/#/q/70f2875
https://jira.opendaylight.org/browse/CONTROLLER-1707
https://git.opendaylight.org/gerrit/#/q/0d5408c
https://jira.opendaylight.org/browse/CONTROLLER-1707
https://git.opendaylight.org/gerrit/#/q/d2d9179
https://jira.opendaylight.org/browse/CONTROLLER-1707
https://git.opendaylight.org/gerrit/#/q/773ee5e

OpenDaylight Documentation Documentation, Release Carbon

genius

• 1c695e1 : Lower log level for non errors

• 47cc44e : bug 7380: Add getIfaceInfoFromConfigDataStore

• be08b29 : Genius Logging enhancements

• 02d9b88 : ITM mesh creation issue - teps added in succession.

• a8e92f1 : Cleanup

• 96500cf : Replace *Index(” by *Index(‘

• cd76d6e : Use INFO for logging null DPID

• 6fa10a2 GENIUS-89 : Bug 9099 - Suspected WriteOnlyTransaction leak in interfacemanager

• cd9be0c : Remove start() method

• db86a18 : Bug 9034: LockManager cancel() ReadWriteTransaction if it’s not submit()

• 6bb41bb : Log enhancements for better debuggability

• e9189b2 : Changing the default value of Interfacemanager statistics polling interval to 15 Minutes

• 9cfde26 : Bug 8882 - With conntrack SNAT communication with PNF fails

• cf06e14 : Bug 7599 -hwvtep ucast mac consumption improvement

• cccc6c2 : Bug 8859 : Table 220 programmed with wrong service-index

• 847c03a : Fix Service-binding flowRef

• cff98cc : @Ignore flaky newl2vlanInterfaceTests InterfaceManagerConfigurationTest

• df7d10c : Make DJC to be more concurrent and fixing signal issue b/w enqueue jobs

• 143d681 : Bug 8882 - With conntrack SNAT communication with PNF fails

• efd8a1d : BUG 8876 - Fix to remove ELAN interface flows when external network deleted

• 81510d5 : Cleanup

• 1ca0f40 : Add private constructor to this utility class

• c69a795 : IdManager: Use lock only when required

• 0a7a33d : Cleanup

• b2e6235 : Fix IfmClusterUtils logs

• e6a9ca0 : Enqueued Job not getting cleaned up in some cases

• afd2b46 : Bug 8476 Add support for logical switch replication mode

• 49f2167 : Capture flow addition to debug log

• 8e8cc01 : hwvtep transaction batching separation across shards

• 5c21c1e : Exception in service-binding logic when a neutron port is deleted

• 6822bc8 : Guard some TRACE logs in DJC

• 083980f : Removing unnecessary TRACE log in service-binding

• 277a7b2 : Bug 8800: Prevent xtendbeans NPE warn.log in InstructionApplyActions

• bb14bf1 : Making ActionConverterUtil log to DEBUG

1.1. Release Notes 149

https://git.opendaylight.org/gerrit/#/q/1c695e1
https://git.opendaylight.org/gerrit/#/q/47cc44e
https://git.opendaylight.org/gerrit/#/q/be08b29
https://git.opendaylight.org/gerrit/#/q/02d9b88
https://git.opendaylight.org/gerrit/#/q/a8e92f1
https://git.opendaylight.org/gerrit/#/q/96500cf
https://git.opendaylight.org/gerrit/#/q/cd76d6e
https://git.opendaylight.org/gerrit/#/q/6fa10a2
https://jira.opendaylight.org/browse/GENIUS-89
https://git.opendaylight.org/gerrit/#/q/cd9be0c
https://git.opendaylight.org/gerrit/#/q/db86a18
https://git.opendaylight.org/gerrit/#/q/6bb41bb
https://git.opendaylight.org/gerrit/#/q/e9189b2
https://git.opendaylight.org/gerrit/#/q/9cfde26
https://git.opendaylight.org/gerrit/#/q/cf06e14
https://git.opendaylight.org/gerrit/#/q/cccc6c2
https://git.opendaylight.org/gerrit/#/q/847c03a
https://git.opendaylight.org/gerrit/#/q/cff98cc
https://git.opendaylight.org/gerrit/#/q/df7d10c
https://git.opendaylight.org/gerrit/#/q/143d681
https://git.opendaylight.org/gerrit/#/q/efd8a1d
https://git.opendaylight.org/gerrit/#/q/81510d5
https://git.opendaylight.org/gerrit/#/q/1ca0f40
https://git.opendaylight.org/gerrit/#/q/c69a795
https://git.opendaylight.org/gerrit/#/q/0a7a33d
https://git.opendaylight.org/gerrit/#/q/b2e6235
https://git.opendaylight.org/gerrit/#/q/e6a9ca0
https://git.opendaylight.org/gerrit/#/q/afd2b46
https://git.opendaylight.org/gerrit/#/q/49f2167
https://git.opendaylight.org/gerrit/#/q/8e8cc01
https://git.opendaylight.org/gerrit/#/q/5c21c1e
https://git.opendaylight.org/gerrit/#/q/6822bc8
https://git.opendaylight.org/gerrit/#/q/083980f
https://git.opendaylight.org/gerrit/#/q/277a7b2
https://git.opendaylight.org/gerrit/#/q/bb14bf1

OpenDaylight Documentation Documentation, Release Carbon

groupbasedpolicy

• c682e50 : Fix AddressEndpointWithLocation issues

• f5d5698 : Code improvements for FDS scenarios

• d21ad1b GBP-292 : Bug 8900 - fixing ACL updates

• cf962d0 : Policy exclusions & parallel netconf transactions

honeycomb/vbd

• e74240b HONEYVBD-22 : Bug 9009: Add cache mechanism for Tenant interface IP

• 1ebf97b : implementing parallel netconf transactions

infrautils

• 82d4449 : Add bind2ToInstance to AbstractGuiceJsr250Module

integration/distribution

• d38a8f5 : Remove karaf (not distribution-karaf)

• 8e1089e : Ignore extracted distros in Coala linting

• 0576951 : Improve Coala linting, add section stubs/ignores

• bf50225 : Bug 9060: Add odl-mdsal-trace

lispflowmapping

• bc9d18d LISPMAP-160 : Bug 8746: Multi-threading improvements

• a54b02e LISPMAP-155 : Bug 8469: Account for losing prefix length in Source EID

• 46e3e48 LISPMAP-161 : Bug 8764: Fix handling of old negative

• 37f612c : Make negative mapping TTL configurable

• 7b13285 : Return negative mapping with 0 TTL for deletion

mdsal

• ae88651 MDSAL-291 : BUG-9145: rework singleton service group state tracking

• 34745e0 : Fix use of deprecated Futures.addCallback()

• c262922 MDSAL-275 : BUG-8858: add integration test suite

• cb1f6cc MDSAL-275 : BUG-8858: rework singleton group locking

• e84146b MDSAL-280 : Bug 8910 - Binding v2 generator exception: Failed to find leafref target

• 2befd71 : Binding generator v2 - fix units field name

• ce0ef9d : Binding generator v2 - fix choice

150 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/c682e50
https://git.opendaylight.org/gerrit/#/q/f5d5698
https://git.opendaylight.org/gerrit/#/q/d21ad1b
https://jira.opendaylight.org/browse/GBP-292
https://git.opendaylight.org/gerrit/#/q/cf962d0
https://git.opendaylight.org/gerrit/#/q/e74240b
https://jira.opendaylight.org/browse/HONEYVBD-22
https://git.opendaylight.org/gerrit/#/q/1ebf97b
https://git.opendaylight.org/gerrit/#/q/82d4449
https://git.opendaylight.org/gerrit/#/q/d38a8f5
https://git.opendaylight.org/gerrit/#/q/8e1089e
https://git.opendaylight.org/gerrit/#/q/0576951
https://git.opendaylight.org/gerrit/#/q/bf50225
https://git.opendaylight.org/gerrit/#/q/bc9d18d
https://jira.opendaylight.org/browse/LISPMAP-160
https://git.opendaylight.org/gerrit/#/q/a54b02e
https://jira.opendaylight.org/browse/LISPMAP-155
https://git.opendaylight.org/gerrit/#/q/46e3e48
https://jira.opendaylight.org/browse/LISPMAP-161
https://git.opendaylight.org/gerrit/#/q/37f612c
https://git.opendaylight.org/gerrit/#/q/7b13285
https://git.opendaylight.org/gerrit/#/q/ae88651
https://jira.opendaylight.org/browse/MDSAL-291
https://git.opendaylight.org/gerrit/#/q/34745e0
https://git.opendaylight.org/gerrit/#/q/c262922
https://jira.opendaylight.org/browse/MDSAL-275
https://git.opendaylight.org/gerrit/#/q/cb1f6cc
https://jira.opendaylight.org/browse/MDSAL-275
https://git.opendaylight.org/gerrit/#/q/e84146b
https://jira.opendaylight.org/browse/MDSAL-280
https://git.opendaylight.org/gerrit/#/q/2befd71
https://git.opendaylight.org/gerrit/#/q/ce0ef9d

OpenDaylight Documentation Documentation, Release Carbon

• ec6debe : Binding generator v2 - uses statement - uses inner type

• 5718362 : Binding generator v2 - uses statement - uses grouping choice”

• fb411f7 : Binding generator v2 - fix getter in builder

• 2131dc1 : Binding generator v2 - fix getter method name

• a0d2d0a : Binding generator v2 - uses statement - uses inner type #2

• 5e3f23b : Binding generator v2 - uses statement - uses inner type #1

• 5a8a3fd : Binding generator v2 - uses statement - uses of list

• 318b055 : Binding generator v2 - fix leaflist return type

• 94180b8 : Binding generator v2 - fix choice’s parent

• 29446c1 : Binding generator v2 - fix double dot package name

• 735201c : Binding generator v2 - fix submodule class name

• 7038c5d : Binding generator v2 - fix format javadoc text

• caed335 : Binding generator v2 - uses implement - fix finding target grouping

• 74f818b : Binding generator v2 - uses statement - uses leafref #2

• e214685 : Binding generator v2 - uses statement - uses leafref #1

• 5a2d5d6 : Binding generator v2 - fix InstanceIdentifier package path in classTemplate

• eb050ae : Binding generator v2 - uses statement - uses of cases

• c2f5a3a : Binding generator v2 - fix action #3

• bf39a1f : Binding generator v2 - fix action #2

• d4b8df9 : Binding generator v2 - fix action #1

• 67b940d : JavaIdentifierNormalizer ThreadSafe/Memory leak fix

• 5281fa9 : BUG-8733: switch to using DOMDataTreeListener-based APIs

• f09e240 : BUG-8733: Add ListenableDOMDataTreeShard

• 02b1222 : Cleanup ShardRootModificationContext

• b7c1f34 MDSAL-253 : Bug 8449 - BindingToNormalizedNodeCodec fails to deserialize union of leafrefs

• b2aa3f4 : Fix a few warnings

• 20d2832 : BUG-8733: use DataTreeCandidateNodes.empty()

• 55490ce : Optimize transaction collection

• a7a06d4 : Do not obfuscate constant 0/1

• afb9c35 : Optimize JavaIdentifierNormalizer reserved words lookup

• e35ab39 : Binding2-runtime JUnit code coverage increase

• 9f590ba : Binding generator v2 - fix union getter name in camel-case

• 4a9e8f9 : Binding generator v2 - code style & cleanup

• 191a88c : Binding generator v2 - augment statement #4

• 94b1de7 : Binding generator v2 - augment statement #3

• ecd068d : Optimize JavaIdentifierNormalizer.normalizeClassIdentifier()

1.1. Release Notes 151

https://git.opendaylight.org/gerrit/#/q/ec6debe
https://git.opendaylight.org/gerrit/#/q/5718362
https://git.opendaylight.org/gerrit/#/q/fb411f7
https://git.opendaylight.org/gerrit/#/q/2131dc1
https://git.opendaylight.org/gerrit/#/q/a0d2d0a
https://git.opendaylight.org/gerrit/#/q/5e3f23b
https://git.opendaylight.org/gerrit/#/q/5a8a3fd
https://git.opendaylight.org/gerrit/#/q/318b055
https://git.opendaylight.org/gerrit/#/q/94180b8
https://git.opendaylight.org/gerrit/#/q/29446c1
https://git.opendaylight.org/gerrit/#/q/735201c
https://git.opendaylight.org/gerrit/#/q/7038c5d
https://git.opendaylight.org/gerrit/#/q/caed335
https://git.opendaylight.org/gerrit/#/q/74f818b
https://git.opendaylight.org/gerrit/#/q/e214685
https://git.opendaylight.org/gerrit/#/q/5a2d5d6
https://git.opendaylight.org/gerrit/#/q/eb050ae
https://git.opendaylight.org/gerrit/#/q/c2f5a3a
https://git.opendaylight.org/gerrit/#/q/bf39a1f
https://git.opendaylight.org/gerrit/#/q/d4b8df9
https://git.opendaylight.org/gerrit/#/q/67b940d
https://git.opendaylight.org/gerrit/#/q/5281fa9
https://git.opendaylight.org/gerrit/#/q/f09e240
https://git.opendaylight.org/gerrit/#/q/02b1222
https://git.opendaylight.org/gerrit/#/q/b7c1f34
https://jira.opendaylight.org/browse/MDSAL-253
https://git.opendaylight.org/gerrit/#/q/b2aa3f4
https://git.opendaylight.org/gerrit/#/q/20d2832
https://git.opendaylight.org/gerrit/#/q/55490ce
https://git.opendaylight.org/gerrit/#/q/a7a06d4
https://git.opendaylight.org/gerrit/#/q/afb9c35
https://git.opendaylight.org/gerrit/#/q/e35ab39
https://git.opendaylight.org/gerrit/#/q/9f590ba
https://git.opendaylight.org/gerrit/#/q/4a9e8f9
https://git.opendaylight.org/gerrit/#/q/191a88c
https://git.opendaylight.org/gerrit/#/q/94b1de7
https://git.opendaylight.org/gerrit/#/q/ecd068d

OpenDaylight Documentation Documentation, Release Carbon

• 8a87cb7 : Do not use temporary string to extract last character

• 61ad1fa : Optimize JavaIdentifierNormalizer.normalizeClassIdentifier()

• 585fc0b : Optimize fixCasesByJavaType for packages

• e1a0089 : Optimize convertIdentifierEnumValue()

• 1446c18 : Optimize JavaIdentifierNormalizer.fixCases()

• 78f471f : Binding generator v2 - uses statement - uses augment

• 17cf88e : Binding generator v2 - augment statement #2

• eac6852 : Binding generator v2 - augment statement #1

• e20f0f5 : Binding generator v2 - uses statement - uses of list

• a26de04 : Binding generator v2 - uses statement - uses of module

• 398f49e : Binding generator v2 - uses statement - support choice

• 0f0884a : Binding generator v2 - uses statement - uses of rpc & action

• b469d95 : Binding generator v2 - uses statement - restore getter

• 3aa24f4 : Binding generator v2 - Type reference fix

• 4178b9a : Binding generator v2 - Identity fix

• 5428e29 : Optimize JavaIdentifierNormalizer.convertFirst()

• 692617f : Binding generator v2 - uses statement - support list

• 8fe6ecf : Binding generator v2 - uses statement - resolve uses node

• a02749e : Binding generator v2 - uses statement - uses of notification

• 518f2b4 : Optimize JavaIdentifierNormalizer.normalizePartialPackageName()

• 29219aa : Optimize JavaIdentifierNormalizer.normalizeFullPackageName()

• c102296 : Optimize JavaIdentifierNormalizer.existNext()

• e1b0b50 : Binding generator v2 - uses statement - uses implements

• 76ec951 : Binding2-dom-adapter JUnit code coverage increase

• f5808d2 : Binding generator v2 - fix case builder to dto

• f88d9a1 : Cleanup JavaIdentifierNormalizer

• 3deb239 : Binding v2 - remove checked future

netconf

• 9956117 NETCONF-469 : BUG-9132: don’t provide a value for restconf/streams/events

• f4b545a : Minor cleanup of blueprint config

• d4a44ff NETCONF-453 : Bug 8989 - Create just one DS for each test-tool’s simulated netconf device

• f2becfb NETCONF-451 : Bug 8977 - Failed on binary key type

• 36f684f : RPC for netconf node addition. Supports encrypt option for password encryption.

• 0a347d8 : Enable public key based authentication for netconf

• 6de81fd : Do not pull in yang-maven-plugin

152 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/8a87cb7
https://git.opendaylight.org/gerrit/#/q/61ad1fa
https://git.opendaylight.org/gerrit/#/q/585fc0b
https://git.opendaylight.org/gerrit/#/q/e1a0089
https://git.opendaylight.org/gerrit/#/q/1446c18
https://git.opendaylight.org/gerrit/#/q/78f471f
https://git.opendaylight.org/gerrit/#/q/17cf88e
https://git.opendaylight.org/gerrit/#/q/eac6852
https://git.opendaylight.org/gerrit/#/q/e20f0f5
https://git.opendaylight.org/gerrit/#/q/a26de04
https://git.opendaylight.org/gerrit/#/q/398f49e
https://git.opendaylight.org/gerrit/#/q/0f0884a
https://git.opendaylight.org/gerrit/#/q/b469d95
https://git.opendaylight.org/gerrit/#/q/3aa24f4
https://git.opendaylight.org/gerrit/#/q/4178b9a
https://git.opendaylight.org/gerrit/#/q/5428e29
https://git.opendaylight.org/gerrit/#/q/692617f
https://git.opendaylight.org/gerrit/#/q/8fe6ecf
https://git.opendaylight.org/gerrit/#/q/a02749e
https://git.opendaylight.org/gerrit/#/q/518f2b4
https://git.opendaylight.org/gerrit/#/q/29219aa
https://git.opendaylight.org/gerrit/#/q/c102296
https://git.opendaylight.org/gerrit/#/q/e1b0b50
https://git.opendaylight.org/gerrit/#/q/76ec951
https://git.opendaylight.org/gerrit/#/q/f5808d2
https://git.opendaylight.org/gerrit/#/q/f88d9a1
https://git.opendaylight.org/gerrit/#/q/3deb239
https://git.opendaylight.org/gerrit/#/q/9956117
https://jira.opendaylight.org/browse/NETCONF-469
https://git.opendaylight.org/gerrit/#/q/f4b545a
https://git.opendaylight.org/gerrit/#/q/d4a44ff
https://jira.opendaylight.org/browse/NETCONF-453
https://git.opendaylight.org/gerrit/#/q/f2becfb
https://jira.opendaylight.org/browse/NETCONF-451
https://git.opendaylight.org/gerrit/#/q/36f684f
https://git.opendaylight.org/gerrit/#/q/0a347d8
https://git.opendaylight.org/gerrit/#/q/6de81fd

OpenDaylight Documentation Documentation, Release Carbon

• cdc6e07 NETCONF-439 : Bug 8824 - NETCONF request hangs when rpc-rply has invalid xml

• 6053c09 NETCONF-440 : Bug 8832 - rpc-error in keepalive rpc-reply shouldn’t bounce the session

netvirt

• 2a54b32 NETVIRT-843 : Bug 8976 - Upstreaming fixes to master

• 923bbe7 NETVIRT-835 : Bug 8964 - Neutron test neutron.tests.tempest.scenario.test_floatingip.FloatingIpSameNetwork.test_east_west
fails

• 95fc265 : Test SNAT mostSignificantBit()

• e1779ca NETVIRT-931 : Bug 9226: VPN Traffic fails after VM Migration

• cf2b4bf NETVIRT-936 : Bug 9237 - NPE: InternalToExternalPortMapKey

• a9a9e25 NETVIRT-918 : Bug 9180: Conflicting modification Exception from NAT Module

• f7172d8 NETVIRT-437 : BUG 7596 - Update to handle change in Neutron Network external attribute

• 9789605 : Remove unneeded mdsal and yangtools artifacts

• 64b80ca : Remove unneeded pom version values

• 4edc358 : Undo incorrect code changes made during merge conflict.

• d68b40a NETVIRT-872 : Bug 9066:Use Single Transaction for DNAT Flow Install and Remove

• f85a8d9 NETVIRT-875 : Bug 9077: Fix of issue that the existing NW communication failure when new NW is
created

• e51a9de : Lower log level for non errors

• 11c3dda NETVIRT-927 : Bug 9209: PNF learned on external networks to skip local FIB Processing

• 35e6b1d : Renamed acl-impl.rst to acl-reflection-on-existing-traffic.rst

• c804c13 : Remove explicit default super-constructor calls

• 95d7b1a NETVIRT-923 : bug-9190: NullPointerException at getIsExternal

• 1d0e2af : Lower log level for non errors

• 1c0b279 : Bug9091 : Removing uncessary MD-SAL Read Operation in NAT

• 4116fbc : bgpmanager: change API of bgpmanager to add VRF IPv4 or IPv6

• 16c55ed : neutronvpn: create ipv4 or ipv6 context

• d9945bb : Dualstack support for L3VPN - single router Dual stack

• b2d6020 NETVIRT-829 : Bug 8953 - IllegalArgumentException: vrfEntry is missing mandatory descendant
origin

• a90e996 : lower log levels for non-errors

• f17c140 : ClearBgpCli reads from socket to send/receive from bgpd (some previous commit modifed to read
from session parameters)

• 325f481 NETVIRT-926 : Bug 9196 - Maxpath value should be between 1 to 64 in BGP multipath

• be22588 NETVIRT-834 : Bug 8963 - Option to configure EVPN address family

• ed2fe65 : bgpmanager thrift upgrade to 0.9.3

• d7d4b5b NETVIRT-821 : BUG 8930 - delete Op VPN interface when deleting external network

1.1. Release Notes 153

https://git.opendaylight.org/gerrit/#/q/cdc6e07
https://jira.opendaylight.org/browse/NETCONF-439
https://git.opendaylight.org/gerrit/#/q/6053c09
https://jira.opendaylight.org/browse/NETCONF-440
https://git.opendaylight.org/gerrit/#/q/2a54b32
https://jira.opendaylight.org/browse/NETVIRT-843
https://git.opendaylight.org/gerrit/#/q/923bbe7
https://jira.opendaylight.org/browse/NETVIRT-835
https://git.opendaylight.org/gerrit/#/q/95fc265
https://git.opendaylight.org/gerrit/#/q/e1779ca
https://jira.opendaylight.org/browse/NETVIRT-931
https://git.opendaylight.org/gerrit/#/q/cf2b4bf
https://jira.opendaylight.org/browse/NETVIRT-936
https://git.opendaylight.org/gerrit/#/q/a9a9e25
https://jira.opendaylight.org/browse/NETVIRT-918
https://git.opendaylight.org/gerrit/#/q/f7172d8
https://jira.opendaylight.org/browse/NETVIRT-437
https://git.opendaylight.org/gerrit/#/q/9789605
https://git.opendaylight.org/gerrit/#/q/64b80ca
https://git.opendaylight.org/gerrit/#/q/4edc358
https://git.opendaylight.org/gerrit/#/q/d68b40a
https://jira.opendaylight.org/browse/NETVIRT-872
https://git.opendaylight.org/gerrit/#/q/f85a8d9
https://jira.opendaylight.org/browse/NETVIRT-875
https://git.opendaylight.org/gerrit/#/q/e51a9de
https://git.opendaylight.org/gerrit/#/q/11c3dda
https://jira.opendaylight.org/browse/NETVIRT-927
https://git.opendaylight.org/gerrit/#/q/35e6b1d
https://git.opendaylight.org/gerrit/#/q/c804c13
https://git.opendaylight.org/gerrit/#/q/95d7b1a
https://jira.opendaylight.org/browse/NETVIRT-923
https://git.opendaylight.org/gerrit/#/q/1d0e2af
https://git.opendaylight.org/gerrit/#/q/1c0b279
https://git.opendaylight.org/gerrit/#/q/4116fbc
https://git.opendaylight.org/gerrit/#/q/16c55ed
https://git.opendaylight.org/gerrit/#/q/d9945bb
https://git.opendaylight.org/gerrit/#/q/b2d6020
https://jira.opendaylight.org/browse/NETVIRT-829
https://git.opendaylight.org/gerrit/#/q/a90e996
https://git.opendaylight.org/gerrit/#/q/f17c140
https://git.opendaylight.org/gerrit/#/q/325f481
https://jira.opendaylight.org/browse/NETVIRT-926
https://git.opendaylight.org/gerrit/#/q/be22588
https://jira.opendaylight.org/browse/NETVIRT-834
https://git.opendaylight.org/gerrit/#/q/ed2fe65
https://git.opendaylight.org/gerrit/#/q/d7d4b5b
https://jira.opendaylight.org/browse/NETVIRT-821

OpenDaylight Documentation Documentation, Release Carbon

• e1015de : elanmanager: clean up Futures collections

• a0087dd NETVIRT-924 : Bug 9193 - In conntrack SNAT , flows are programmed twice on a router g/w set.

• ad94beb : Lower log levels for non error’s

• a64737e : IfMgr clean-up

• 6a1dea5 : Restrict NeutronvpnUtils.read

• 8a5c4d1 NETVIRT-838 : BUG 8969 - Fix Exeption when clearing external router GW

• 6e1747b NETVIRT-923 : bug-9190: NullPointerException at getIsExternal

• 04441af NETVIRT-888 : Bug 9105: close removeElanInterface transaction

• 02d4647 : ElanUtils clean-up: ElanL2GatewayUtils

• c9a42e7 : ElanUtils clean-up: L2GatewayConnectionUtils

• 861f942 : ElanUtils clean-up: remove unnecessary references

• a16c5e7 : ElanUtils clean-up: ElanL2Gateway{Multicast,}Utils

• be8fca0 : ElanUtils clean-up: more ElanL2GatewayMulticastUtils

• 1b467f0 : ElanUtils clean-up: ElanL2GatewayMulticastUtils

• 6cee458 : ElanUtils clean-up: make read() static

• a7bd956 NETVIRT-851 : Bug 8998 - L2GW:Vlan bindings missing on reboot

• d91afa7 : aclservice: clean up Futures collections

• f5e4696 : dhcpservice: clean up Futures collections

• 9b5727e NETVIRT-844 : Bug 8978 - Network deletion issue.

• fda3885 : Remove un-used SynchronousEachOperationNewWriteTransaction

• d71df4d : cleanup sync

• 8880929 NETVIRT-859 : bug 9018 l2gw designated dhcp fix

• 16dd4e6 NETVIRT-841 : Bug 8973 : DHCP fixes

• b28c5d7 : Fix cloud-servicechain YANG

• 4c17474 NETVIRT-855 : BUG 9014 : Remove unnecessary log statements in VPN Engine

• 5ff7c1f : Remove aggregator from artifactId

• a17284b : rm it module

• 573530c NETVIRT-836 : Bug 8965 - L2gw update is not suported

• 58e9af3 NETVIRT-367 : Bug 7380: service-binding exceptions from ACL

• f85a2e7 NETVIRT-829 : Bug 8953: Fix exceptions raised due to PNF confused with FIP

• fa4669d NETVIRT-862 : Bug 9026: ACL issue in handling port-create

• bd66523 NETVIRT-829 : Bug 8953 - IllegalArgumentException: vrfEntry is missing mandatory descendant
origin.

• e484f5a : Remove learn mode from aclserivce.

• fbecdd4 : Fix exception handling in neutronvpn shell

• 8a716d5 NETVIRT-789 : Bug 8860 : Populate elantag at time of elanInstance creation

154 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/e1015de
https://git.opendaylight.org/gerrit/#/q/a0087dd
https://jira.opendaylight.org/browse/NETVIRT-924
https://git.opendaylight.org/gerrit/#/q/ad94beb
https://git.opendaylight.org/gerrit/#/q/a64737e
https://git.opendaylight.org/gerrit/#/q/6a1dea5
https://git.opendaylight.org/gerrit/#/q/8a5c4d1
https://jira.opendaylight.org/browse/NETVIRT-838
https://git.opendaylight.org/gerrit/#/q/6e1747b
https://jira.opendaylight.org/browse/NETVIRT-923
https://git.opendaylight.org/gerrit/#/q/04441af
https://jira.opendaylight.org/browse/NETVIRT-888
https://git.opendaylight.org/gerrit/#/q/02d4647
https://git.opendaylight.org/gerrit/#/q/c9a42e7
https://git.opendaylight.org/gerrit/#/q/861f942
https://git.opendaylight.org/gerrit/#/q/a16c5e7
https://git.opendaylight.org/gerrit/#/q/be8fca0
https://git.opendaylight.org/gerrit/#/q/1b467f0
https://git.opendaylight.org/gerrit/#/q/6cee458
https://git.opendaylight.org/gerrit/#/q/a7bd956
https://jira.opendaylight.org/browse/NETVIRT-851
https://git.opendaylight.org/gerrit/#/q/d91afa7
https://git.opendaylight.org/gerrit/#/q/f5e4696
https://git.opendaylight.org/gerrit/#/q/9b5727e
https://jira.opendaylight.org/browse/NETVIRT-844
https://git.opendaylight.org/gerrit/#/q/fda3885
https://git.opendaylight.org/gerrit/#/q/d71df4d
https://git.opendaylight.org/gerrit/#/q/8880929
https://jira.opendaylight.org/browse/NETVIRT-859
https://git.opendaylight.org/gerrit/#/q/16dd4e6
https://jira.opendaylight.org/browse/NETVIRT-841
https://git.opendaylight.org/gerrit/#/q/b28c5d7
https://git.opendaylight.org/gerrit/#/q/4c17474
https://jira.opendaylight.org/browse/NETVIRT-855
https://git.opendaylight.org/gerrit/#/q/5ff7c1f
https://git.opendaylight.org/gerrit/#/q/a17284b
https://git.opendaylight.org/gerrit/#/q/573530c
https://jira.opendaylight.org/browse/NETVIRT-836
https://git.opendaylight.org/gerrit/#/q/58e9af3
https://jira.opendaylight.org/browse/NETVIRT-367
https://git.opendaylight.org/gerrit/#/q/f85a2e7
https://jira.opendaylight.org/browse/NETVIRT-829
https://git.opendaylight.org/gerrit/#/q/fa4669d
https://jira.opendaylight.org/browse/NETVIRT-862
https://git.opendaylight.org/gerrit/#/q/bd66523
https://jira.opendaylight.org/browse/NETVIRT-829
https://git.opendaylight.org/gerrit/#/q/e484f5a
https://git.opendaylight.org/gerrit/#/q/fbecdd4
https://git.opendaylight.org/gerrit/#/q/8a716d5
https://jira.opendaylight.org/browse/NETVIRT-789

OpenDaylight Documentation Documentation, Release Carbon

• 1a4aeb7 : Remove transparent mode from aclservice.

• 09ad109 NETVIRT-809 : BUG-8893 patch port mysteriously deleted

• 8f7fdba NETVIRT-835 : Bug 8964 - Neutron test neutron.tests.tempest.scenario.test_floatingip.FloatingIpSameNetwork.test_east_west
fails

• 010d057 : Spec for Acl change reflection on existing communication

• 77d2276 : Remove deprecated CheckedFuture

• 6102452 : Remove unused references to DataChangeListener

• b991f2a : Bug7380:CSIT FIP ping is getting failed for Ext Flat/VLAN Network

• 5bbfc3c NETVIRT-899 : Bug 9136 - Suspected ReadOnlyTransaction leak in QosNeutronUtils

• e41f59b NETVIRT-367 : Bug 7380: service-binding exceptions from ACL

• ae6f198 : Remove stateless mode from AclService.

• 0a80bce : Minor code cleanup in QoS

• dd2529d : Cleanup cherry-pick of 61888

• 9a28be3 NETVIRT-884 : Bug 9100 : tx leak in DhcpExternalTunnelManager

• c1610df : Replace <? extends Object> by <?>

• 1b10231 NETVIRT-853 : Bug 9012 : BGP not connecting to config server

• 270e114 : Cluster support for netvirt QoS

• 5dab330 : vpnmanager DJC enqueueJob without using AbstractDataStoreJob API

• 5533d26 NETVIRT-852 : BUG 9003: Fix classifier entry processing order

• 5ba7f1e NETVIRT-852 : BUG 9003: Fix port chain event triggered two times

• 3385dee : BUG: Adapt SFC translator to SFC code in Nitrogen

• 0c6ecdf : BUG9094 Bind to last SF interface if origin node

• 43bc42f : BUG9095 Capture SFC tunnel traffic for path egress

• e219b22 NETVIRT-852 : BUG 9003: Support source-logical-port acl match

• 9a86ded : Replace size()==0 by isEmpty()

• 65e4729 : Cleanup

• 683ceee NETVIRT-867 : Bug 9035: - NPE at org.opendaylight.netvirt.elan.arp.responder.ArpResponderUtil.getMatchCriteria

• fea76a1 : Add missing null check

• b079a62 : Bug:9013 ElanUtils: RPC Call to Get egress actions for interface, OptimisticLockFailedException

• 050842d NETVIRT-879 : Bug 9085 - CSIT Sporadic failures -
test_security_groups_basic_ops.TestSecurityGroupsBasicOps.test_cross_tenant_traffic

• 68e5dd1 : bgpmanager BgpUtil code clean-up: Make private what can, and rm unused

• f13b13e : lower BGPconnect logs to debug level

• 7d542cf : Remove unused NatNodeEventListener

• 0a5f992 NETVIRT-49 : Bug 6349: try connecting to qthrift only when configured. - default values are set to
invalid host/port. - verify whether port/host configured before connecting

• 004eb5a : Bug 9034: bgpmanager BgpUtil rm unused pendingWrTransaction

1.1. Release Notes 155

https://git.opendaylight.org/gerrit/#/q/1a4aeb7
https://git.opendaylight.org/gerrit/#/q/09ad109
https://jira.opendaylight.org/browse/NETVIRT-809
https://git.opendaylight.org/gerrit/#/q/8f7fdba
https://jira.opendaylight.org/browse/NETVIRT-835
https://git.opendaylight.org/gerrit/#/q/010d057
https://git.opendaylight.org/gerrit/#/q/77d2276
https://git.opendaylight.org/gerrit/#/q/6102452
https://git.opendaylight.org/gerrit/#/q/b991f2a
https://git.opendaylight.org/gerrit/#/q/5bbfc3c
https://jira.opendaylight.org/browse/NETVIRT-899
https://git.opendaylight.org/gerrit/#/q/e41f59b
https://jira.opendaylight.org/browse/NETVIRT-367
https://git.opendaylight.org/gerrit/#/q/ae6f198
https://git.opendaylight.org/gerrit/#/q/0a80bce
https://git.opendaylight.org/gerrit/#/q/dd2529d
https://git.opendaylight.org/gerrit/#/q/9a28be3
https://jira.opendaylight.org/browse/NETVIRT-884
https://git.opendaylight.org/gerrit/#/q/c1610df
https://git.opendaylight.org/gerrit/#/q/1b10231
https://jira.opendaylight.org/browse/NETVIRT-853
https://git.opendaylight.org/gerrit/#/q/270e114
https://git.opendaylight.org/gerrit/#/q/5dab330
https://git.opendaylight.org/gerrit/#/q/5533d26
https://jira.opendaylight.org/browse/NETVIRT-852
https://git.opendaylight.org/gerrit/#/q/5ba7f1e
https://jira.opendaylight.org/browse/NETVIRT-852
https://git.opendaylight.org/gerrit/#/q/3385dee
https://git.opendaylight.org/gerrit/#/q/0c6ecdf
https://git.opendaylight.org/gerrit/#/q/43bc42f
https://git.opendaylight.org/gerrit/#/q/e219b22
https://jira.opendaylight.org/browse/NETVIRT-852
https://git.opendaylight.org/gerrit/#/q/9a86ded
https://git.opendaylight.org/gerrit/#/q/65e4729
https://git.opendaylight.org/gerrit/#/q/683ceee
https://jira.opendaylight.org/browse/NETVIRT-867
https://git.opendaylight.org/gerrit/#/q/fea76a1
https://git.opendaylight.org/gerrit/#/q/b079a62
https://git.opendaylight.org/gerrit/#/q/050842d
https://jira.opendaylight.org/browse/NETVIRT-879
https://git.opendaylight.org/gerrit/#/q/68e5dd1
https://git.opendaylight.org/gerrit/#/q/f13b13e
https://git.opendaylight.org/gerrit/#/q/7d542cf
https://git.opendaylight.org/gerrit/#/q/0a5f992
https://jira.opendaylight.org/browse/NETVIRT-49
https://git.opendaylight.org/gerrit/#/q/004eb5a

OpenDaylight Documentation Documentation, Release Carbon

• 54db8fe NETVIRT-853 : Bug 9012 : BGP reconnect and retry logic to QBGP

• f99399a NETVIRT-850 : Bug 8996 : BGP EOR and some minor fixes

• 1f350e9 : Bug9016:Using Single Transaction during NAPT SwitchOver

• bb32ca9 : Replace size()==0 by isEmpty()

• 79acd5d NETVIRT-803 : Bug 8882 - With conntrack SNAT communication with PNF fails

• a28cd05 NETVIRT-861 : Bug 9022: ACL: Broadcast traffic is dropped in ACL tables

• bd093eb NETVIRT-843 : Bug 8976 - Upstreaming fixes to master

• 19f5c2b NETVIRT-885 : Bug 9102 Fix ReadOnlyTransaction leak in NeutronvpnUtils

• 72f8097 : Fix bad cherry-pick of 61976

• 486c42d NETVIRT-843 : Bug 8976 - Upstreaming fixes to master

• 142616d NETVIRT-789 : Bug 8860: NPE in getElanTag from SubnetmapChangeListener

• 167386d NETVIRT-829 : Bug 8953 - IllegalArgumentException: vrfEntry is missing mandatory descendant
origin

• 56e5a95 NETVIRT-864 : Bug 9030 - port and port security groups cannot be null

• 7d78ac9 NETVIRT-829 : Bug 8953 - IllegalArgumentException: vrfEntry is missing mandatory descendant
origin

• 2c9ee9d NETVIRT-870 : Bug 9051 - Failed to handle router GW flow in GW-MAC table. DPN id is missing
for router-id

• c354cb1 NETVIRT-864 : Bug 9030 - port and port security groups cannot be null

• 679376d NETVIRT-828 : Bug 8945 - Missing key is getVrfId. Supplied key is VpnInstanceOpDataEntryKey

• 7ff240d NETVIRT-855 : BUG 9014: Remove unnecessary Log statements for evpn/subnetroute

• 0f47bfb NETVIRT-831 : Bug 8960: port information for 1 dpn is missing in subnet-op-data and port-op-data

• c705463 NETVIRT-855 : Bug 9014 - ElanUtils: buildRemoteDmacFlowEntry

• 62ad72f : cleanup for erros that should be info

• 9d2df47 NETVIRT-842 : Bug 8974: Fix subnet-directed-broadcast-addr ARP issue

• c5d7574 : Use INFO for logging GW search misses

• a8d0345 NETVIRT-856 : Bug 9015 - Unable to install group

• 7d7267d : Fix Junit failures in master in ACL & SFC

• 3df86fe NETVIRT-753 : Bug 8774 DHCP Service to use DHCP Port MAC Address

• 3dfb294 : set BGP connect problem to be info

• 1a0a6b2 NETVIRT-846 : Bug 8981: ACL: ARP/DHCP anti-spoofing flows does not include VM/AAP ip/mac
matches in VM egress direction

• 9160eb5 NETVIRT-845 : Bug 8979: Logging enhancements for VPNService

• 25d4c88 : Bug 8801 - EVPN remote routes are not pushed to ovs flow table

• 433bc24 : Bug 9060: Package mdsal trace utility in netvirt Karaf distribution

• b465f01 NETVIRT-868 : Bug 9039 - In Conntrack SNAT, when a router g/w is cleared traffic is dropped for
other routers

• 35509ed NETVIRT-847 : Bug 8982: avoid .transform() NPEs

156 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/54db8fe
https://jira.opendaylight.org/browse/NETVIRT-853
https://git.opendaylight.org/gerrit/#/q/f99399a
https://jira.opendaylight.org/browse/NETVIRT-850
https://git.opendaylight.org/gerrit/#/q/1f350e9
https://git.opendaylight.org/gerrit/#/q/bb32ca9
https://git.opendaylight.org/gerrit/#/q/79acd5d
https://jira.opendaylight.org/browse/NETVIRT-803
https://git.opendaylight.org/gerrit/#/q/a28cd05
https://jira.opendaylight.org/browse/NETVIRT-861
https://git.opendaylight.org/gerrit/#/q/bd093eb
https://jira.opendaylight.org/browse/NETVIRT-843
https://git.opendaylight.org/gerrit/#/q/19f5c2b
https://jira.opendaylight.org/browse/NETVIRT-885
https://git.opendaylight.org/gerrit/#/q/72f8097
https://git.opendaylight.org/gerrit/#/q/486c42d
https://jira.opendaylight.org/browse/NETVIRT-843
https://git.opendaylight.org/gerrit/#/q/142616d
https://jira.opendaylight.org/browse/NETVIRT-789
https://git.opendaylight.org/gerrit/#/q/167386d
https://jira.opendaylight.org/browse/NETVIRT-829
https://git.opendaylight.org/gerrit/#/q/56e5a95
https://jira.opendaylight.org/browse/NETVIRT-864
https://git.opendaylight.org/gerrit/#/q/7d78ac9
https://jira.opendaylight.org/browse/NETVIRT-829
https://git.opendaylight.org/gerrit/#/q/2c9ee9d
https://jira.opendaylight.org/browse/NETVIRT-870
https://git.opendaylight.org/gerrit/#/q/c354cb1
https://jira.opendaylight.org/browse/NETVIRT-864
https://git.opendaylight.org/gerrit/#/q/679376d
https://jira.opendaylight.org/browse/NETVIRT-828
https://git.opendaylight.org/gerrit/#/q/7ff240d
https://jira.opendaylight.org/browse/NETVIRT-855
https://git.opendaylight.org/gerrit/#/q/0f47bfb
https://jira.opendaylight.org/browse/NETVIRT-831
https://git.opendaylight.org/gerrit/#/q/c705463
https://jira.opendaylight.org/browse/NETVIRT-855
https://git.opendaylight.org/gerrit/#/q/62ad72f
https://git.opendaylight.org/gerrit/#/q/9d2df47
https://jira.opendaylight.org/browse/NETVIRT-842
https://git.opendaylight.org/gerrit/#/q/c5d7574
https://git.opendaylight.org/gerrit/#/q/a8d0345
https://jira.opendaylight.org/browse/NETVIRT-856
https://git.opendaylight.org/gerrit/#/q/7d7267d
https://git.opendaylight.org/gerrit/#/q/3df86fe
https://jira.opendaylight.org/browse/NETVIRT-753
https://git.opendaylight.org/gerrit/#/q/3dfb294
https://git.opendaylight.org/gerrit/#/q/1a0a6b2
https://jira.opendaylight.org/browse/NETVIRT-846
https://git.opendaylight.org/gerrit/#/q/9160eb5
https://jira.opendaylight.org/browse/NETVIRT-845
https://git.opendaylight.org/gerrit/#/q/25d4c88
https://git.opendaylight.org/gerrit/#/q/433bc24
https://git.opendaylight.org/gerrit/#/q/b465f01
https://jira.opendaylight.org/browse/NETVIRT-868
https://git.opendaylight.org/gerrit/#/q/35509ed
https://jira.opendaylight.org/browse/NETVIRT-847

OpenDaylight Documentation Documentation, Release Carbon

• 3661b68 : Bug 9034: bgpmanager BgpUtil rm unused BindingTransactionChain & Co.

• b795753 : Bug8861 : Data validation failed for path /snatint-ip-port-map

• ae32206 NETVIRT-819 : Bug 8926: Fix instance doesn’t get an IP after deployment

• 64fddf7 NETVIRT-831 : Revert “Bug 8960: port information for 1 dpn is missing in subnet-op-data and port-
op-data”

• 9396559 : Do not catch Throwable

• ca2f69a NETVIRT-840 : Bug 8972: dhcp-show does not display the defaults

• 4e48655 NETVIRT-810 : BUG-8894 : display VPN interface count number for each VPN instance.

• c2f2212 NETVIRT-772 : Bug 8821 : BGP Manager / BGP counter incorrect with VPNv6 prefixes

• 42ecc05 : Neutron Port allocation for DHCP Service

• 27eb806 NETVIRT-831 : Bug 8960: port information for 1 dpn is missing in subnet-op-data and port-op-data

• 1a55cb7 NETVIRT-792 : Bug 8863: NPE at VpnFloatingIpHandler

• 6cee873 NETVIRT-833 : Bug 8962: Fix non-parameterized LOG statements as per guidelines

• bb6d621 : Docs: add supported combinations

• b9077c1 NETVIRT-830 : Bug 8958: Java Null pointer exception for display vpn-config after deleting a vpn
from CLI

• 335f02f NETVIRT-803 : Bug 8882 - With conntrack SNAT communication with PNF fails Changed set_field
to load action and set only the relevent bits and other bits are preserved.

• 71eab1b NETVIRT-826 : Bug 8937 : High CPU utilization of Java process due to SNAT packet looping

• 3038140 : ELAN service is not unbound when nova delete followed by neutron port delete

• ae08e69 NETVIRT-804 : BUG 8883 : LOG enhancement for NAT service module

• 107d12e NETVIRT-430 : Bug 7545 - FIP-FIP traffic between vm in same n/w in same compute is not working
in stateful SG mode.

• fea4f94 NETVIRT-800 : BUG 8876 - Fix to remove ELAN interface flows when external network deleted

• a957f6d NETVIRT-803 : Revert “Bug 8882 - With conntrack SNAT communication with PNF fails “

• 5a57c87 NETVIRT-825 : Bug 8936: Fix IPv6 IPAM issues when an IPv6 subnet is added to IPv4 network

• 182068e NETVIRT-755 : Bug 8789 - Designated DHCP DPN is missing.

• 1075f5c : Add chain egress classifier support

• 84d0243 : Fix some logs

• aa214fc : Replace size()==0 by isEmpty()

• 3f868b0 NETVIRT-803 : Bug 8882 - With conntrack SNAT communication with PNF fails

• d08947a NETVIRT-815 : BUG 8914: Fix NPE in sfc.classifier-impl

• 10b553c NETVIRT-645 : Bug 8346 - Conflicting modification for vpnNextHops.

• 9232295 : Cleanup

• e1f96c3 NETVIRT-816 : Bug 8917 - CSIT Sporadic failures - Arp learning suite - missing flow on compute
node

• 56098b2 NETVIRT-799 : Bug 8875 - fix in handleNeutronPortUpdated

• f2a6b9f NETVIRT-665 : Bug 8439: Handling interface update event for ECMP extra routes.

1.1. Release Notes 157

https://git.opendaylight.org/gerrit/#/q/3661b68
https://git.opendaylight.org/gerrit/#/q/b795753
https://git.opendaylight.org/gerrit/#/q/ae32206
https://jira.opendaylight.org/browse/NETVIRT-819
https://git.opendaylight.org/gerrit/#/q/64fddf7
https://jira.opendaylight.org/browse/NETVIRT-831
https://git.opendaylight.org/gerrit/#/q/9396559
https://git.opendaylight.org/gerrit/#/q/ca2f69a
https://jira.opendaylight.org/browse/NETVIRT-840
https://git.opendaylight.org/gerrit/#/q/4e48655
https://jira.opendaylight.org/browse/NETVIRT-810
https://git.opendaylight.org/gerrit/#/q/c2f2212
https://jira.opendaylight.org/browse/NETVIRT-772
https://git.opendaylight.org/gerrit/#/q/42ecc05
https://git.opendaylight.org/gerrit/#/q/27eb806
https://jira.opendaylight.org/browse/NETVIRT-831
https://git.opendaylight.org/gerrit/#/q/1a55cb7
https://jira.opendaylight.org/browse/NETVIRT-792
https://git.opendaylight.org/gerrit/#/q/6cee873
https://jira.opendaylight.org/browse/NETVIRT-833
https://git.opendaylight.org/gerrit/#/q/bb6d621
https://git.opendaylight.org/gerrit/#/q/b9077c1
https://jira.opendaylight.org/browse/NETVIRT-830
https://git.opendaylight.org/gerrit/#/q/335f02f
https://jira.opendaylight.org/browse/NETVIRT-803
https://git.opendaylight.org/gerrit/#/q/71eab1b
https://jira.opendaylight.org/browse/NETVIRT-826
https://git.opendaylight.org/gerrit/#/q/3038140
https://git.opendaylight.org/gerrit/#/q/ae08e69
https://jira.opendaylight.org/browse/NETVIRT-804
https://git.opendaylight.org/gerrit/#/q/107d12e
https://jira.opendaylight.org/browse/NETVIRT-430
https://git.opendaylight.org/gerrit/#/q/fea4f94
https://jira.opendaylight.org/browse/NETVIRT-800
https://git.opendaylight.org/gerrit/#/q/a957f6d
https://jira.opendaylight.org/browse/NETVIRT-803
https://git.opendaylight.org/gerrit/#/q/5a57c87
https://jira.opendaylight.org/browse/NETVIRT-825
https://git.opendaylight.org/gerrit/#/q/182068e
https://jira.opendaylight.org/browse/NETVIRT-755
https://git.opendaylight.org/gerrit/#/q/1075f5c
https://git.opendaylight.org/gerrit/#/q/84d0243
https://git.opendaylight.org/gerrit/#/q/aa214fc
https://git.opendaylight.org/gerrit/#/q/3f868b0
https://jira.opendaylight.org/browse/NETVIRT-803
https://git.opendaylight.org/gerrit/#/q/d08947a
https://jira.opendaylight.org/browse/NETVIRT-815
https://git.opendaylight.org/gerrit/#/q/10b553c
https://jira.opendaylight.org/browse/NETVIRT-645
https://git.opendaylight.org/gerrit/#/q/9232295
https://git.opendaylight.org/gerrit/#/q/e1f96c3
https://jira.opendaylight.org/browse/NETVIRT-816
https://git.opendaylight.org/gerrit/#/q/56098b2
https://jira.opendaylight.org/browse/NETVIRT-799
https://git.opendaylight.org/gerrit/#/q/f2a6b9f
https://jira.opendaylight.org/browse/NETVIRT-665

OpenDaylight Documentation Documentation, Release Carbon

• 495bece NETVIRT-805 : Bug 8884: SNAT traffic is getting dropped when router gateway is removed

• d8e1926 NETVIRT-718 : Bug 8632: ECMP LB group not updated during tunnel events

• 1989e09 : Remove not needed Thread.sleep() from aclservice component tests

• 34dbc7c NETVIRT-778 : Bug 8838: aclservice NPE’s

• bf5d2f9 NETVIRT-677 : Bug 8476 Add support for logical switch replication mode

• f6b5925 NETVIRT-808 : Bug 8892 - LOG.error format error(VpnManagerImpl.java:176)

• c20d1db NETVIRT-793 : Bug 8864: DNAT to SNAT traffic is getting failed on same DPN for VXLAN

• c81fd69 NETVIRT-802 : BUG 8880: Trunk port flows not created for subports

• 8139526 : Remove derivation from controller config-parent

• 6e7f481 NETVIRT-786 : Bug 8853 - In conntrack SNAT , FIB flows are not created for existing Non-NAPT
switch ports.

• 8cf2c15 NETVIRT-750 : Bug 8753 : Changes to create bgpvpn without VPN target

• 619dbc0 NETVIRT-779 : Bug 8841 : add fib-show option to select entries per address-family or prefix

• f2ddba6 NETVIRT-727 : Bug 8683: Aclservice releaseId IdManager Exception

• d139deb : Move statistics into org.opendaylight.netvirt

• f272f13 : Clean up lambdas and streams

• fe51f67 NETVIRT-787 : Bug 8857 - SNAT Conntrack - VM MAC is used as Source MAC for all outbound
traffic

• 327dc13 NETVIRT-765 : Bug 8810 : BGP Manager / support for EVPN on OAM submodule missing

• 66a9682 NETVIRT-764 : Bug 8809 : BGP Manager / neighbor summary for VPNv6 wrongly parsed

• b38b6a5 NETVIRT-766 : Bug 8811 : BGP Manager / bgp-nbr shell config with afi vpnv6 / evpn

• 223a9b6 NETVIRT-769 : Bug 8818 : BGP Manager. VPNv6 prefixes injected to QBGP

• 0c6928a NETVIRT-773 : Bug 8822 : Bgp Manager / bgp-cache dumps unknown address-families

• 37b2520 : Spec to support dualstack VMs in L3VPN

• da481cc NETVIRT-752 : Bug 8770: Stale NAT entries are not getting removed for external FLAT

• ee23cd9 : Add a private constructor to this utility class

• 8bc1f08 : Revert “Ship aaa-cli-jar.jar in the distribution”

• 1d7be7f : natservice-impl: propagate upstream non-null annotations

• f92f853 : Bug 8835: Java NullPointerException in display-bgp-config command

• 5c035b5 NETVIRT-699 : Bug 8567: Addition of new flows after addng extra route

• 34201d9 : New Yang model container for Neutron DHCP Port service. Updated spec with correct yang.

• 9c846dc : Enforce non-null collection returns in NatUtil

• b7a19dc NETVIRT-781 : Bug 8844: CSIT Job: NullPointerException from NAT feature

• cbf6784 : SNAT performance improvement for Controller-Based SNAT

• 85a50a3 NETVIRT-760 : Bug 8796: Fix of issue that vxlan port is created with remote_ip set to the node itself

• 22ec593 : Ship aaa-cli-jar.jar in the distribution

• 97579dd NETVIRT-757 : Bug 8791 - L2gateway delete is not clearing l2gwCo

158 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/495bece
https://jira.opendaylight.org/browse/NETVIRT-805
https://git.opendaylight.org/gerrit/#/q/d8e1926
https://jira.opendaylight.org/browse/NETVIRT-718
https://git.opendaylight.org/gerrit/#/q/1989e09
https://git.opendaylight.org/gerrit/#/q/34dbc7c
https://jira.opendaylight.org/browse/NETVIRT-778
https://git.opendaylight.org/gerrit/#/q/bf5d2f9
https://jira.opendaylight.org/browse/NETVIRT-677
https://git.opendaylight.org/gerrit/#/q/f6b5925
https://jira.opendaylight.org/browse/NETVIRT-808
https://git.opendaylight.org/gerrit/#/q/c20d1db
https://jira.opendaylight.org/browse/NETVIRT-793
https://git.opendaylight.org/gerrit/#/q/c81fd69
https://jira.opendaylight.org/browse/NETVIRT-802
https://git.opendaylight.org/gerrit/#/q/8139526
https://git.opendaylight.org/gerrit/#/q/6e7f481
https://jira.opendaylight.org/browse/NETVIRT-786
https://git.opendaylight.org/gerrit/#/q/8cf2c15
https://jira.opendaylight.org/browse/NETVIRT-750
https://git.opendaylight.org/gerrit/#/q/619dbc0
https://jira.opendaylight.org/browse/NETVIRT-779
https://git.opendaylight.org/gerrit/#/q/f2ddba6
https://jira.opendaylight.org/browse/NETVIRT-727
https://git.opendaylight.org/gerrit/#/q/d139deb
https://git.opendaylight.org/gerrit/#/q/f272f13
https://git.opendaylight.org/gerrit/#/q/fe51f67
https://jira.opendaylight.org/browse/NETVIRT-787
https://git.opendaylight.org/gerrit/#/q/327dc13
https://jira.opendaylight.org/browse/NETVIRT-765
https://git.opendaylight.org/gerrit/#/q/66a9682
https://jira.opendaylight.org/browse/NETVIRT-764
https://git.opendaylight.org/gerrit/#/q/b38b6a5
https://jira.opendaylight.org/browse/NETVIRT-766
https://git.opendaylight.org/gerrit/#/q/223a9b6
https://jira.opendaylight.org/browse/NETVIRT-769
https://git.opendaylight.org/gerrit/#/q/0c6928a
https://jira.opendaylight.org/browse/NETVIRT-773
https://git.opendaylight.org/gerrit/#/q/37b2520
https://git.opendaylight.org/gerrit/#/q/da481cc
https://jira.opendaylight.org/browse/NETVIRT-752
https://git.opendaylight.org/gerrit/#/q/ee23cd9
https://git.opendaylight.org/gerrit/#/q/8bc1f08
https://git.opendaylight.org/gerrit/#/q/1d7be7f
https://git.opendaylight.org/gerrit/#/q/f92f853
https://git.opendaylight.org/gerrit/#/q/5c035b5
https://jira.opendaylight.org/browse/NETVIRT-699
https://git.opendaylight.org/gerrit/#/q/34201d9
https://git.opendaylight.org/gerrit/#/q/9c846dc
https://git.opendaylight.org/gerrit/#/q/b7a19dc
https://jira.opendaylight.org/browse/NETVIRT-781
https://git.opendaylight.org/gerrit/#/q/cbf6784
https://git.opendaylight.org/gerrit/#/q/85a50a3
https://jira.opendaylight.org/browse/NETVIRT-760
https://git.opendaylight.org/gerrit/#/q/22ec593
https://git.opendaylight.org/gerrit/#/q/97579dd
https://jira.opendaylight.org/browse/NETVIRT-757

OpenDaylight Documentation Documentation, Release Carbon

• 23aced2 NETVIRT-756 : Bug 8790 - Local Macs getting cleared

• 912deac : Fix dpnId handling in SRISCListener

• 2611d29 NETVIRT-775 : BUG 8828: Fix NPE when no remote IP on interface

• bcf70ca : Filter notifications for unwanted interfaces

• ec9b17a : Revert “Spec to support dualstack VMs in L3VPN”

• c573f20 : Fix ActionNxResubmit in FlowEntryObjectsStateless for aclservice

• 53e54a7 : Use right version for statistics pom

• e9ed39a : Fix cherry-pick of 56902

• 2806c87 : Fix cherry-pick of 56875

• 1065b20 : Fix cherry-pick of 58749

• a0cc3c1 : Fix funny character in ebgp.yang (slanted quotation mark)

• 76a76a2 : Adding Log statements, helps during debugging

• 146521d NETVIRT-761 : Bug 8800: Fix AclServiceStatefulTest newInterfaceWithMultipleAcl()

• 1407e68 NETVIRT-778 : Bug 8838 - aclservice NPE’s

• c7d20f1 NETVIRT-778 : Bug 8838 - aclservice NPE’s

• 507b59b : Fix NullPointerException in QosInterfaceStateChangeListener

• 301589e : Use manual setters instead @Immutable in IdentifiedAceBuilder.xtend

• 590dcb2 : Spec to support dualstack VMs in L3VPN

neutron

• e2db0a9 : Karaf 3 features must only use other K3 features

• 7db7a1c : Add missing Karaf 3 dependency

nic

• 86ae4b1 : Fix autorelease by moving neutron dependency

odlparent

• 4fece59 ODLPARENT-126 : Bug 9228: Package bcprov-ext-jdk15on jar

openflowplugin

• ba0f1d1 : Fix possible NPE on ContextChainHolderImpl

• 8f1b3ed : This patch implements ct-mark support in nicira extensions.

• 0cdf07a OPNFLWPLUG-949 : Do not try to close context with null deviceInfo

• 654c8c4 OPNFLWPLUG-948 : Sort bucket actions

• 1f56ac9 OPNFLWPLUG-939 : Use HashedWheelTimer instead of item scheduler

1.1. Release Notes 159

https://git.opendaylight.org/gerrit/#/q/23aced2
https://jira.opendaylight.org/browse/NETVIRT-756
https://git.opendaylight.org/gerrit/#/q/912deac
https://git.opendaylight.org/gerrit/#/q/2611d29
https://jira.opendaylight.org/browse/NETVIRT-775
https://git.opendaylight.org/gerrit/#/q/bcf70ca
https://git.opendaylight.org/gerrit/#/q/ec9b17a
https://git.opendaylight.org/gerrit/#/q/c573f20
https://git.opendaylight.org/gerrit/#/q/53e54a7
https://git.opendaylight.org/gerrit/#/q/e9ed39a
https://git.opendaylight.org/gerrit/#/q/2806c87
https://git.opendaylight.org/gerrit/#/q/1065b20
https://git.opendaylight.org/gerrit/#/q/a0cc3c1
https://git.opendaylight.org/gerrit/#/q/76a76a2
https://git.opendaylight.org/gerrit/#/q/146521d
https://jira.opendaylight.org/browse/NETVIRT-761
https://git.opendaylight.org/gerrit/#/q/1407e68
https://jira.opendaylight.org/browse/NETVIRT-778
https://git.opendaylight.org/gerrit/#/q/c7d20f1
https://jira.opendaylight.org/browse/NETVIRT-778
https://git.opendaylight.org/gerrit/#/q/507b59b
https://git.opendaylight.org/gerrit/#/q/301589e
https://git.opendaylight.org/gerrit/#/q/590dcb2
https://git.opendaylight.org/gerrit/#/q/e2db0a9
https://git.opendaylight.org/gerrit/#/q/7db7a1c
https://git.opendaylight.org/gerrit/#/q/86ae4b1
https://git.opendaylight.org/gerrit/#/q/4fece59
https://jira.opendaylight.org/browse/ODLPARENT-126
https://git.opendaylight.org/gerrit/#/q/ba0f1d1
https://git.opendaylight.org/gerrit/#/q/8f1b3ed
https://git.opendaylight.org/gerrit/#/q/0cdf07a
https://jira.opendaylight.org/browse/OPNFLWPLUG-949
https://git.opendaylight.org/gerrit/#/q/654c8c4
https://jira.opendaylight.org/browse/OPNFLWPLUG-948
https://git.opendaylight.org/gerrit/#/q/1f56ac9
https://jira.opendaylight.org/browse/OPNFLWPLUG-939

OpenDaylight Documentation Documentation, Release Carbon

• 6896f57 OPNFLWPLUG-939 : Terminate SLAVE task before sending role change

• 575b503 OPNFLWPLUG-933 : Fix transaction manager closing.

• 7601f12 OPNFLWPLUG-933 : Fix TransactionChainManager IllegalStateException

• ffc9c24 OPNFLWPLUG-912 : Solves issue with two connections from one device.

• bf886e6 OPNFLWPLUG-905 : Fix context state comparison

• c338fe9 : Bug 8882 - With conntrack SNAT communication with PNF fails

• 4da1fac OPNFLWPLUG-920 : Close CSS registration in separate thread

• b2ebefe OPNFLWPLUG-920 : Fix context chain initialization and SLAVE change

• 3b5d944 OPNFLWPLUG-922 : Fix match extensions deserialization

• 2629a08 OPNFLWPLUG-841 : Improve flow collection

ovsdb

• 476e2bb OVSDB-429 : BUG 9166 - Fix Netvirt L2GW Illegal state exception

• b26aa38 : Refactor compareDbVersionToMinVersion

• 5f045af OVSDB-423 : BUG 9072 - Fix OVSDB TransactionChain memory leak

• c997346 OVSDB-424 : BUG 9073 Fix memory leak - close TransactionChain

• 189c271 OVSDB-421 : Bug 8874 - Tunnel_ips of hardware_vtep is cleared when Open vSwitch process
restarted in Open vSwitch HWVTEP Emulator

• c9bbb9b : Bug 8476 Add support for logical switch replication mode

• 9779ec5 : Bug 8476 Add support for logical switch replication mode

• 9fd9d97 OVSDB-417 : bug 8673 physical switch node is not removed

sfc

• fb1f7da : Replace size()==0 by isEmpty()

• 79939f8 : Add private constructor to this utility class

• cb233bb : Fix some logs

• e8f1c20 : Join and simplify if(s) statements

unimgr

• f5e14b4 : Fix autorelease: update adjacency changes

vtn

• 1a8cac8 VTN-167 : Bug 9225: Upgrade Apache Tomcat for VTN coordinator to 7.0.82.

• eea766b VTN-167 : Bug 9225: Upgrade Apache Tomcat for VTN coordinator to 7.0.81.

• 97305e0 VTN-164 : Bug 9174: Fix for VTN Coordinator Flowlistentry Creation failure

160 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/6896f57
https://jira.opendaylight.org/browse/OPNFLWPLUG-939
https://git.opendaylight.org/gerrit/#/q/575b503
https://jira.opendaylight.org/browse/OPNFLWPLUG-933
https://git.opendaylight.org/gerrit/#/q/7601f12
https://jira.opendaylight.org/browse/OPNFLWPLUG-933
https://git.opendaylight.org/gerrit/#/q/ffc9c24
https://jira.opendaylight.org/browse/OPNFLWPLUG-912
https://git.opendaylight.org/gerrit/#/q/bf886e6
https://jira.opendaylight.org/browse/OPNFLWPLUG-905
https://git.opendaylight.org/gerrit/#/q/c338fe9
https://git.opendaylight.org/gerrit/#/q/4da1fac
https://jira.opendaylight.org/browse/OPNFLWPLUG-920
https://git.opendaylight.org/gerrit/#/q/b2ebefe
https://jira.opendaylight.org/browse/OPNFLWPLUG-920
https://git.opendaylight.org/gerrit/#/q/3b5d944
https://jira.opendaylight.org/browse/OPNFLWPLUG-922
https://git.opendaylight.org/gerrit/#/q/2629a08
https://jira.opendaylight.org/browse/OPNFLWPLUG-841
https://git.opendaylight.org/gerrit/#/q/476e2bb
https://jira.opendaylight.org/browse/OVSDB-429
https://git.opendaylight.org/gerrit/#/q/b26aa38
https://git.opendaylight.org/gerrit/#/q/5f045af
https://jira.opendaylight.org/browse/OVSDB-423
https://git.opendaylight.org/gerrit/#/q/c997346
https://jira.opendaylight.org/browse/OVSDB-424
https://git.opendaylight.org/gerrit/#/q/189c271
https://jira.opendaylight.org/browse/OVSDB-421
https://git.opendaylight.org/gerrit/#/q/c9bbb9b
https://git.opendaylight.org/gerrit/#/q/9779ec5
https://git.opendaylight.org/gerrit/#/q/9fd9d97
https://jira.opendaylight.org/browse/OVSDB-417
https://git.opendaylight.org/gerrit/#/q/fb1f7da
https://git.opendaylight.org/gerrit/#/q/79939f8
https://git.opendaylight.org/gerrit/#/q/cb233bb
https://git.opendaylight.org/gerrit/#/q/e8f1c20
https://git.opendaylight.org/gerrit/#/q/f5e14b4
https://git.opendaylight.org/gerrit/#/q/1a8cac8
https://jira.opendaylight.org/browse/VTN-167
https://git.opendaylight.org/gerrit/#/q/eea766b
https://jira.opendaylight.org/browse/VTN-167
https://git.opendaylight.org/gerrit/#/q/97305e0
https://jira.opendaylight.org/browse/VTN-164

OpenDaylight Documentation Documentation, Release Carbon

• 35a07a7 VTN-162 : Bug 9024: Set null to bundle version qualifier if it is empty.

• 010288c : Disable VSEM Provider Build temporarily

• f765574 : BUG:8761 Portmapping fails due to unnecessary hex conversion

yangtools

• 842b35b : Fix AnyXml node handling

• 3f22345 YANGTOOLS-720 : Bug 7246 - Fix of SchemaTracker initialization and lookup of schema nodes

• 9a23a08 YANGTOOLS-790 : Bug 8713 - BGP models not compatible with leafref context

• ee3185a : Throw SourceException instead of IllegalArgumentException

• 8b3dc57 YANGTOOLS-806 : Bug 9005 - scope of model import prefix should be module/submodule

• 6d56ef0 YANGTOOLS-803 : Bug 8922 - Evaluation of if-features is done regardless of ancestors

• 0334db2 YANGTOOLS-705 : Bug 7051 - Refactoring of StmtContextUtils

• 1d93c8c YANGTOOLS-705 : Bug 7051 - moving of SubstatementValidator into spi.meta package

• 2ea61b9 YANGTOOLS-796 : Bug 8831 - Yang 1.1 default values are not checked correctly

• 8c3d5c7 : Cleanup SchemaTracker logic

• 2bee5fa YANGTOOLS-732 : BUG-7464: do not depend on odlparent’s triemap

• ffab937 YANGTOOLS-732 : BUG-7464: Switch to use forked TrieMap

• c53dce1 YANGTOOLS-794 : Bug 8803: check for null return NamespaceContext.getNamespaceURI()

• 2671dcb : BUG-8733: add YangInstanceIdentifierBuilder.append()

• 14f1f13 : BUG-8733: add EmptyDataTreeCandidateNode

• 104b5d9 YANGTOOLS-694 : BUG-6972: eliminate StmtContext.getOrder()

• e856047 YANGTOOLS-694 : BUG-6972: Add OptionaBoolean utility

Carbon-SR3 Release Notes

This page details changes and bug fixes between the Carbon Stability Release 2 (Carbon-SR2) and the Carbon Stability
Release 3 (Carbon-SR3) of OpenDaylight.

Projects with No Noteworthy Changes

• alto

• bier

• cardinal

• didm

• dlux

• dluxapps

• eman

• faas

1.1. Release Notes 161

https://git.opendaylight.org/gerrit/#/q/35a07a7
https://jira.opendaylight.org/browse/VTN-162
https://git.opendaylight.org/gerrit/#/q/010288c
https://git.opendaylight.org/gerrit/#/q/f765574
https://git.opendaylight.org/gerrit/#/q/842b35b
https://git.opendaylight.org/gerrit/#/q/3f22345
https://jira.opendaylight.org/browse/YANGTOOLS-720
https://git.opendaylight.org/gerrit/#/q/9a23a08
https://jira.opendaylight.org/browse/YANGTOOLS-790
https://git.opendaylight.org/gerrit/#/q/ee3185a
https://git.opendaylight.org/gerrit/#/q/8b3dc57
https://jira.opendaylight.org/browse/YANGTOOLS-806
https://git.opendaylight.org/gerrit/#/q/6d56ef0
https://jira.opendaylight.org/browse/YANGTOOLS-803
https://git.opendaylight.org/gerrit/#/q/0334db2
https://jira.opendaylight.org/browse/YANGTOOLS-705
https://git.opendaylight.org/gerrit/#/q/1d93c8c
https://jira.opendaylight.org/browse/YANGTOOLS-705
https://git.opendaylight.org/gerrit/#/q/2ea61b9
https://jira.opendaylight.org/browse/YANGTOOLS-796
https://git.opendaylight.org/gerrit/#/q/8c3d5c7
https://git.opendaylight.org/gerrit/#/q/2bee5fa
https://jira.opendaylight.org/browse/YANGTOOLS-732
https://git.opendaylight.org/gerrit/#/q/ffab937
https://jira.opendaylight.org/browse/YANGTOOLS-732
https://git.opendaylight.org/gerrit/#/q/c53dce1
https://jira.opendaylight.org/browse/YANGTOOLS-794
https://git.opendaylight.org/gerrit/#/q/2671dcb
https://git.opendaylight.org/gerrit/#/q/14f1f13
https://git.opendaylight.org/gerrit/#/q/104b5d9
https://jira.opendaylight.org/browse/YANGTOOLS-694
https://git.opendaylight.org/gerrit/#/q/e856047
https://jira.opendaylight.org/browse/YANGTOOLS-694

OpenDaylight Documentation Documentation, Release Carbon

• federation

• groupbasedpolicy

• honeycomb/vbd

• integration/distribution

• iotdm

• l2switch

• lacp

• nemo

• netide

• neutron

• nic

• ocpplugin

• odlparent

• of-config

• openflowjava

• packetcable

• sdninterfaceapp

• sfc

• snmp

• snmp4sdn

• sxp

• topoprocessing

• tsdr

• ttp

• unimgr

• usc

aaa

• f8af7c2 AAA-151 : AAA-151: Invalidate claim cache for CLI initiated changes

bgpcep

• 4bd353d PCEP-724 : BGPCEP-724 Make BGP Session recoverable

• 8ab787d PCEP-728 : BGPCEP-728: BMP Mock clustering

• b44d1a8 : Improve CheckUtil testss

• 494fc72 PCEP-717 : BGPCEP-717: Add logback config file

162 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/f8af7c2
https://jira.opendaylight.org/browse/AAA-151
https://git.opendaylight.org/gerrit/#/q/4bd353d
https://jira.opendaylight.org/browse/PCEP-724
https://git.opendaylight.org/gerrit/#/q/8ab787d
https://jira.opendaylight.org/browse/PCEP-728
https://git.opendaylight.org/gerrit/#/q/b44d1a8
https://git.opendaylight.org/gerrit/#/q/494fc72
https://jira.opendaylight.org/browse/PCEP-717

OpenDaylight Documentation Documentation, Release Carbon

• 314a2c8 PCEP-717 : BGPCEP-717: Add logback config file

• a82ddce PCEP-711 : BGPCEP-711: BMP test tool clustering support

• af95a6c PCEP-706 : BGPCEP-706: Fix BGP Flowspec NumbericOphrand

• 8ba07f7 BGPCEP-686 : BUG-9079 Make PCEP session recoverable from exception

• cfa08e0 BGPCEP-691 : Bug 9205: NPE received while receiving BGP peers

• 033f370 BGPCEP-680 : BUG-8929: NPE during singleton startup

controller

• 6910bd6 CONTROLLER-1760 : Bug 9060: Minor mdsaltrace_config.xml /this/will/never/exist

• a92c795 : Correct logging in FrontendClientMetadataBuilder

• 68e4774 CONTROLLER-1792 : Tracing Transaction wrappers delegate equals/hashCode/equals

• fa1d3fe : Toaster is shardless

• fccaf5f : ForwardingRead[Only]/WriteTransaction implementations

• 3475c7c : ForwardingDataBroker

• 4633116 : TracingBroker: collapse ellipses

genius

• 08b088a ENIUS-102 : GENIUS-102: interface manager: use transaction manager

• 468144c NETVIRT-985 : Fix possible transaction leak in ItmInternalTunnelDeleteWorker

• eaa4fe3 ENIUS-102 : Fix bad transaction leak in SouthboundUtils

• f8e155a : Bug 8400 - ACL changes doesn’t affect the existing connections

• 2a6c509 : @Ignore IdManagerTest testMultithreadedIdAllocationFromReleasedIds

• 00af977 NETVIRT-985 : Fix bad transaction leak in ItmInternalTunnelAddWorker

• e8e0d0b : Fix too long service binding INFO logs

• 8409df3 NETVIRT-985 : Add ReadWriteTransaction support

• 59caf78 NETVIRT-985 : ManagedTransactionRunner utility to help close transactions

• 8b1861b : Enable bound services update

• c01faf2 : This patch implements the genius mdsal interface for supporting conntrack ct_mark match (with mask)
and action (without mask).

infrautils

• 39550b6 : ListenableFutures util to simplify adding error logging callbacks

1.1. Release Notes 163

https://git.opendaylight.org/gerrit/#/q/314a2c8
https://jira.opendaylight.org/browse/PCEP-717
https://git.opendaylight.org/gerrit/#/q/a82ddce
https://jira.opendaylight.org/browse/PCEP-711
https://git.opendaylight.org/gerrit/#/q/af95a6c
https://jira.opendaylight.org/browse/PCEP-706
https://git.opendaylight.org/gerrit/#/q/8ba07f7
https://jira.opendaylight.org/browse/BGPCEP-686
https://git.opendaylight.org/gerrit/#/q/cfa08e0
https://jira.opendaylight.org/browse/BGPCEP-691
https://git.opendaylight.org/gerrit/#/q/033f370
https://jira.opendaylight.org/browse/BGPCEP-680
https://git.opendaylight.org/gerrit/#/q/6910bd6
https://jira.opendaylight.org/browse/CONTROLLER-1760
https://git.opendaylight.org/gerrit/#/q/a92c795
https://git.opendaylight.org/gerrit/#/q/68e4774
https://jira.opendaylight.org/browse/CONTROLLER-1792
https://git.opendaylight.org/gerrit/#/q/fa1d3fe
https://git.opendaylight.org/gerrit/#/q/fccaf5f
https://git.opendaylight.org/gerrit/#/q/3475c7c
https://git.opendaylight.org/gerrit/#/q/4633116
https://git.opendaylight.org/gerrit/#/q/08b088a
https://jira.opendaylight.org/browse/ENIUS-102
https://git.opendaylight.org/gerrit/#/q/468144c
https://jira.opendaylight.org/browse/NETVIRT-985
https://git.opendaylight.org/gerrit/#/q/eaa4fe3
https://jira.opendaylight.org/browse/ENIUS-102
https://git.opendaylight.org/gerrit/#/q/f8e155a
https://git.opendaylight.org/gerrit/#/q/2a6c509
https://git.opendaylight.org/gerrit/#/q/00af977
https://jira.opendaylight.org/browse/NETVIRT-985
https://git.opendaylight.org/gerrit/#/q/e8e0d0b
https://git.opendaylight.org/gerrit/#/q/8409df3
https://jira.opendaylight.org/browse/NETVIRT-985
https://git.opendaylight.org/gerrit/#/q/59caf78
https://jira.opendaylight.org/browse/NETVIRT-985
https://git.opendaylight.org/gerrit/#/q/8b1861b
https://git.opendaylight.org/gerrit/#/q/c01faf2
https://git.opendaylight.org/gerrit/#/q/39550b6

OpenDaylight Documentation Documentation, Release Carbon

lispflowmapping

• 318e94e LISPMAP-171 : Bug 9311: Remove expired mappings before printing

• 7d3f781 LISPMAP-169 : Bug 9172: Don’t store subscribers with “No Address” source EID

mdsal

• 1cd647e MDSAL-302 : MDSAL-302: make sure uses+augment works in RPCs

• 3c6b129 : Binding v2 generator - fix getting elements from empty array.

netconf

• 7d25cfd : Support for patch command

• 59f61a6 SR-1 : Extra superfluous edit-config RPC sent - Netconf-482

• a6bd566 NETCONF-475 : Bug 9256: Add websocket server config knob for ip (CSS for carbon)

• 2429f19 : Transition ListenerAdapter to ClusteredDOMDataTreeListener

• 829c5ce : Add unit tests for ListenerAdapter

• 5f608f5 : Add local MultivaluedHashMap implementation

netvirt

• ba9c5cf NETVIRT-1047 : NETVIRT-1047 : On vm subnet delete from a router SG flows are not updated with
elan id

• f13fede NETVIRT-1063 : NETVIRT-1063 SNAT flows fails to install sporadically(conntrack SNAT)

• 44621ab : Remove policyservice

• 34c8634 NETVIRT-1030 : NETVIRT-1030 Unbinding elan service during interface state change

• 6eb0f10 NETVIRT-1065 : NETVIRT-1065 Handle new bridges

• 6623aac : Unbind and bind DHCP service as part of state.

• 13bc1a6 NETVIRT-1038 : NETVIRT-1038 Fix bind logic in policymgr

• cde86d9 : Updated to call bind/unbind from ACL interface state listener to avoid stale flows during VM migra-
tion

• cc3d55c NETVIRT-916 : Fix ConflictingModificationAppliedException with 3 retries

• 4a9828f : Updated two display commands provided by 6wind

• 6116ca4 NETVIRT-1023 : NETVIRT-1023 - OptimisticLockFailedException: infrautils.jobcoordinator-impl

• e15d9d2 : Net-odl full-sync. Set router ext gw MAC

• a66d5ee NETVIRT-937 : NETVIRT-937: Fix NPE in ElanInstanceManager

• de3071d : Fix NPE in VpnSubnetRouteHandler

• 665c061 : Fix NPE in SubnetmapChangeListener

• 515f439 NETVIRT-985 : Fix the fix for the bad transaction leak in VpnInterfaceManager

164 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/318e94e
https://jira.opendaylight.org/browse/LISPMAP-171
https://git.opendaylight.org/gerrit/#/q/7d3f781
https://jira.opendaylight.org/browse/LISPMAP-169
https://git.opendaylight.org/gerrit/#/q/1cd647e
https://jira.opendaylight.org/browse/MDSAL-302
https://git.opendaylight.org/gerrit/#/q/3c6b129
https://git.opendaylight.org/gerrit/#/q/7d25cfd
https://git.opendaylight.org/gerrit/#/q/59f61a6
https://jira.opendaylight.org/browse/SR-1
https://git.opendaylight.org/gerrit/#/q/a6bd566
https://jira.opendaylight.org/browse/NETCONF-475
https://git.opendaylight.org/gerrit/#/q/2429f19
https://git.opendaylight.org/gerrit/#/q/829c5ce
https://git.opendaylight.org/gerrit/#/q/5f608f5
https://git.opendaylight.org/gerrit/#/q/ba9c5cf
https://jira.opendaylight.org/browse/NETVIRT-1047
https://git.opendaylight.org/gerrit/#/q/f13fede
https://jira.opendaylight.org/browse/NETVIRT-1063
https://git.opendaylight.org/gerrit/#/q/44621ab
https://git.opendaylight.org/gerrit/#/q/34c8634
https://jira.opendaylight.org/browse/NETVIRT-1030
https://git.opendaylight.org/gerrit/#/q/6eb0f10
https://jira.opendaylight.org/browse/NETVIRT-1065
https://git.opendaylight.org/gerrit/#/q/6623aac
https://git.opendaylight.org/gerrit/#/q/13bc1a6
https://jira.opendaylight.org/browse/NETVIRT-1038
https://git.opendaylight.org/gerrit/#/q/cde86d9
https://git.opendaylight.org/gerrit/#/q/cc3d55c
https://jira.opendaylight.org/browse/NETVIRT-916
https://git.opendaylight.org/gerrit/#/q/4a9828f
https://git.opendaylight.org/gerrit/#/q/6116ca4
https://jira.opendaylight.org/browse/NETVIRT-1023
https://git.opendaylight.org/gerrit/#/q/e15d9d2
https://git.opendaylight.org/gerrit/#/q/a66d5ee
https://jira.opendaylight.org/browse/NETVIRT-937
https://git.opendaylight.org/gerrit/#/q/de3071d
https://git.opendaylight.org/gerrit/#/q/665c061
https://git.opendaylight.org/gerrit/#/q/515f439
https://jira.opendaylight.org/browse/NETVIRT-985

OpenDaylight Documentation Documentation, Release Carbon

• 0e3235d NETVIRT-999 : NETVIRT-999 - Interface leak when subnet deleted

• b719fc6 NETVIRT-989 : BugId: NETVIRT-989 TEP not deleted when subnet is deleted

• 2756f4d NETVIRT-1000 : NETVIRT-1000: protect VpnInterfaceManager::remove

• 88ef62e NETVIRT-1000 : NETVIRT-1000: protect VrfEntryListener (partially)

• 8d1d1c8 NETVIRT-1000 : NETVIRT-1000: protect TunnelEndPointChangeListener

• 3eb7add NETVIRT-1000 : NETVIRT-1000: protect manageRemoteRouteOnDPN

• c3be18b NETVIRT-1000 : NETVIRT-1000: protect handleNeutronPortUpdated

• 58e1d7d NETVIRT-1000 : NETVIRT-1000: protect handleNeutronPortCreated

• a54964c NETVIRT-985 : Fix bad transaction leak in VpnInterfaceManager

• 40e95fd : Shell Commands to Display Ipv6Service Cache

• 6faaf63 NETVIRT-886 : Fix bad transaction leak in NeutronvpnManager

• 4b57bdc NETVIRT-985 : Fix bad transaction leak in InterfaceStateChangeListener

• 81b3233 NETVIRT-981 : NETVIRT-981 CSIT Sporadic failures - snat conntrack job failing many tem-
pest scenario tests Changes are made to avoid stale entries when an external network is deleted. https:
//jira.opendaylight.org/browse/NETVIRT-981

• e34d572 NETVIRT-886 : Fix bad transaction leak in StatisticsImpl

• ff76704 NETVIRT-968 : NETVIRT-968 : Conntrack SNAT fails in a cluster setup.

• abd30a4 : Bug9298 : ModifiedNodeDoesNotExistException for FIP

• 7a69cdd NETVIRT-959 : Bug 9297 : Adjacency doesn’t exist exception fo FIP

• 7b83854 NETVIRT-961 : Bug 9299 - In conntrack SNAT Vpn to dpn maps fails to update when a subnet is
added/removed

• 1463d51 : 21->nat-group flow is not present on OVS after “upgrade”

• 596b05e NETVIRT-926 : NETVIRT-926 - Maxpath value should be between 1 to 64 in BGP multipath

• eb0afb3 NETVIRT-940 : Bug9245: Table=21 related exceptions fixes

• df3f7c2 : Updated to use bind-service update instead of bind and unbind in Acl VPN listener

• 0332dad : Handle usecase when ELAN is null, and ACL service BIND/ADD fails due to NPE

• 58efa60 NETVIRT-919 : Bug 9181: Code changes for conflicting modifications exceptions of table=19

• c47835c NETVIRT-941 : Bug 9246: Conflicting modification from ARP and Router-GW-Mac

openflowplugin

• cfd1b87 : openflowplugin-975

• c9fc0fe NETVIRT-1022 : NETVIRT-1022 : fix csit failures

• f5f97a5 : Rename addDeleteOperationTotTxChain => addDeleteOperationToTxChain

• dc71a44 OPNFLWPLUG-858 : Bug 7826 Identified the root cause for issue TransactionCommitFailed for group
during statistic collection.

• d9d4102 OPNFLWPLUG-961 : Fix possible transaction leak in StatisticsGatheringUtils

• cd12bde : Lower logging level of FRM reconciliation process

1.1. Release Notes 165

https://git.opendaylight.org/gerrit/#/q/0e3235d
https://jira.opendaylight.org/browse/NETVIRT-999
https://git.opendaylight.org/gerrit/#/q/b719fc6
https://jira.opendaylight.org/browse/NETVIRT-989
https://git.opendaylight.org/gerrit/#/q/2756f4d
https://jira.opendaylight.org/browse/NETVIRT-1000
https://git.opendaylight.org/gerrit/#/q/88ef62e
https://jira.opendaylight.org/browse/NETVIRT-1000
https://git.opendaylight.org/gerrit/#/q/8d1d1c8
https://jira.opendaylight.org/browse/NETVIRT-1000
https://git.opendaylight.org/gerrit/#/q/3eb7add
https://jira.opendaylight.org/browse/NETVIRT-1000
https://git.opendaylight.org/gerrit/#/q/c3be18b
https://jira.opendaylight.org/browse/NETVIRT-1000
https://git.opendaylight.org/gerrit/#/q/58e1d7d
https://jira.opendaylight.org/browse/NETVIRT-1000
https://git.opendaylight.org/gerrit/#/q/a54964c
https://jira.opendaylight.org/browse/NETVIRT-985
https://git.opendaylight.org/gerrit/#/q/40e95fd
https://git.opendaylight.org/gerrit/#/q/6faaf63
https://jira.opendaylight.org/browse/NETVIRT-886
https://git.opendaylight.org/gerrit/#/q/4b57bdc
https://jira.opendaylight.org/browse/NETVIRT-985
https://git.opendaylight.org/gerrit/#/q/81b3233
https://jira.opendaylight.org/browse/NETVIRT-981
https://jira.opendaylight.org/browse/NETVIRT-981
https://jira.opendaylight.org/browse/NETVIRT-981
https://git.opendaylight.org/gerrit/#/q/e34d572
https://jira.opendaylight.org/browse/NETVIRT-886
https://git.opendaylight.org/gerrit/#/q/ff76704
https://jira.opendaylight.org/browse/NETVIRT-968
https://git.opendaylight.org/gerrit/#/q/abd30a4
https://git.opendaylight.org/gerrit/#/q/7a69cdd
https://jira.opendaylight.org/browse/NETVIRT-959
https://git.opendaylight.org/gerrit/#/q/7b83854
https://jira.opendaylight.org/browse/NETVIRT-961
https://git.opendaylight.org/gerrit/#/q/1463d51
https://git.opendaylight.org/gerrit/#/q/596b05e
https://jira.opendaylight.org/browse/NETVIRT-926
https://git.opendaylight.org/gerrit/#/q/eb0afb3
https://jira.opendaylight.org/browse/NETVIRT-940
https://git.opendaylight.org/gerrit/#/q/df3f7c2
https://git.opendaylight.org/gerrit/#/q/0332dad
https://git.opendaylight.org/gerrit/#/q/58efa60
https://jira.opendaylight.org/browse/NETVIRT-919
https://git.opendaylight.org/gerrit/#/q/c47835c
https://jira.opendaylight.org/browse/NETVIRT-941
https://git.opendaylight.org/gerrit/#/q/cfd1b87
https://git.opendaylight.org/gerrit/#/q/c9fc0fe
https://jira.opendaylight.org/browse/NETVIRT-1022
https://git.opendaylight.org/gerrit/#/q/f5f97a5
https://git.opendaylight.org/gerrit/#/q/dc71a44
https://jira.opendaylight.org/browse/OPNFLWPLUG-858
https://git.opendaylight.org/gerrit/#/q/d9d4102
https://jira.opendaylight.org/browse/OPNFLWPLUG-961
https://git.opendaylight.org/gerrit/#/q/cd12bde

OpenDaylight Documentation Documentation, Release Carbon

• bf10fc6 : Add Docs for Openflowplugin

• 1c37cc2 OPNFLWPLUG-858 : bug-7826: Data validation failed for group-id

• c38f49c OPNFLWPLUG-930 : OPNFLWPLUG-930 Inconsistent flow IDs between flows in config and opera-
tional data stores

• 81e79ed OPNFLWPLUG-950 : BUG-9223:Remove hardcoded value of lldp interval

ovsdb

• d212bdd OVSDB-435 : OVSDB-435: fix transaction leak in BridgeOperationState

• d1723dd OVSDB-425 : Fix transaction leak in BridgeConfigReconciliationTask

• b4d2a15 NETVIRT-985 : Fix transaction leak in OvsdbConnectionManager

• 8bad9e3 NETVIRT-985 : Fix possible transaction leak in BridgeOperationalState

vtn

• 782e9c5 VTN-166 : Bug 9224 - Fix for mapping issue of protocol and dscp values

• f6ed2f8 VTN-165 : Bug 9208: Fixed UDP L4 match details creation failures

yangtools

• 5d19e59 : Handling empty text nodes

• 90a5fb4 YANGTOOLS-804 : BUG 8927: Netconf response payload fails to render in JSON

• a370484 YANGTOOLS-827 : YANGTOOLS-827: fix revision compare

• e7ce81c YANGTOOLS-823 : YANGTOOLS-823: take modifier into account when enforcing patterns

• a003b20 YANGTOOLS-815 : Bug 9242: Reuse deviating statement contexts

• b8a1214 YANGTOOLS-817 : Bug 9244: Fix deviate replace of implicit substatements

• 6f5637a YANGTOOLS-814 : Bug 9241: Action definition should implicitly define input/output

Carbon-SR4 Release Notes

This page details changes and bug fixes between the Carbon Stability Release 3 (Carbon-SR3) and the Carbon Stability
Release 4 (Carbon-SR4) of OpenDaylight.

Projects with No Noteworthy Changes

• bier

• cardinal

• didm

• dlux

• dluxapps

166 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/bf10fc6
https://git.opendaylight.org/gerrit/#/q/1c37cc2
https://jira.opendaylight.org/browse/OPNFLWPLUG-858
https://git.opendaylight.org/gerrit/#/q/c38f49c
https://jira.opendaylight.org/browse/OPNFLWPLUG-930
https://git.opendaylight.org/gerrit/#/q/81e79ed
https://jira.opendaylight.org/browse/OPNFLWPLUG-950
https://git.opendaylight.org/gerrit/#/q/d212bdd
https://jira.opendaylight.org/browse/OVSDB-435
https://git.opendaylight.org/gerrit/#/q/d1723dd
https://jira.opendaylight.org/browse/OVSDB-425
https://git.opendaylight.org/gerrit/#/q/b4d2a15
https://jira.opendaylight.org/browse/NETVIRT-985
https://git.opendaylight.org/gerrit/#/q/8bad9e3
https://jira.opendaylight.org/browse/NETVIRT-985
https://git.opendaylight.org/gerrit/#/q/782e9c5
https://jira.opendaylight.org/browse/VTN-166
https://git.opendaylight.org/gerrit/#/q/f6ed2f8
https://jira.opendaylight.org/browse/VTN-165
https://git.opendaylight.org/gerrit/#/q/5d19e59
https://git.opendaylight.org/gerrit/#/q/90a5fb4
https://jira.opendaylight.org/browse/YANGTOOLS-804
https://git.opendaylight.org/gerrit/#/q/a370484
https://jira.opendaylight.org/browse/YANGTOOLS-827
https://git.opendaylight.org/gerrit/#/q/e7ce81c
https://jira.opendaylight.org/browse/YANGTOOLS-823
https://git.opendaylight.org/gerrit/#/q/a003b20
https://jira.opendaylight.org/browse/YANGTOOLS-815
https://git.opendaylight.org/gerrit/#/q/b8a1214
https://jira.opendaylight.org/browse/YANGTOOLS-817
https://git.opendaylight.org/gerrit/#/q/6f5637a
https://jira.opendaylight.org/browse/YANGTOOLS-814

OpenDaylight Documentation Documentation, Release Carbon

• eman

• faas

• federation

• groupbasedpolicy

• honeycomb/vbd

• infrautils

• iotdm

• l2switch

• lacp

• nemo

• netide

• ocpplugin

• of-config

• openflowjava

• packetcable

• sdninterfaceapp

• snmp

• snmp4sdn

• tsdr

• ttp

• unimgr

• usc

aaa

• 320971a : Add Karaf build profile

• 324c296 AAA-167 : AAA-167: Fix AAA test cert

alto

• 1de27c7 : Add Karaf build profile

bgpcep

• a6f2f54 : Use byte[].clone()

• 20d3481 PCEP-786 : Use dedicated executor for BGPCEP Stats

• 05a24c4 RELENG-86 : Add Karaf build profile

• 790b06a : Remove obsolete Maven Site configuration

1.1. Release Notes 167

https://git.opendaylight.org/gerrit/#/q/320971a
https://git.opendaylight.org/gerrit/#/q/324c296
https://jira.opendaylight.org/browse/AAA-167
https://git.opendaylight.org/gerrit/#/q/1de27c7
https://git.opendaylight.org/gerrit/#/q/a6f2f54
https://git.opendaylight.org/gerrit/#/q/20d3481
https://jira.opendaylight.org/browse/PCEP-786
https://git.opendaylight.org/gerrit/#/q/05a24c4
https://jira.opendaylight.org/browse/RELENG-86
https://git.opendaylight.org/gerrit/#/q/790b06a

OpenDaylight Documentation Documentation, Release Carbon

• 873e63b PCEP-740 : BGPCEP-740: Fix logic for MED comparison in BGP best path selection

• 2c93558 : Fix model compliance

• 157a73a PCEP-732 : BGPCEP-732: Pass IpAddress as BGP Peer identifier

• 175db42 PCEP-770 : BGPCEP-770: Lock file before processing

• 4e74ed4 PCEP-774 : BGPCEP-774: Improver error message when missing AFI/SAFI

• 31b7930 PCEP-764 : BGPCEP-764: Use full Ipv6 form under StrictBGPPeerRegistry

• a88e3bb PCEP-739 : BGPCEP-739: Fix “raced with transaction PingPongTransaction”

• 55ab216 PCEP-760 : BGPCEP-760: Fix Dead lock

• 0b48f10 : Document path-id reserved value

• fea02a0 PCEP-742 : BGPCEP-742 Fix BGP NPE filter null BGP State

• 757e290 PCEP-672 : BGPCEP-672: Fix key storage un adj-rib-out

• c33474f PCEP-737 : BGPCEP-737: Implement BMP client reconnection

• 8c759e6 PCEP-748 : BGPCEP-748: Fix AFI/SAFI

• 4cf4e8c PCEP-736 : BGPCEP-736: BMP Testtool retry connection

• 77db3ac PCEP-758 : BGPCEP-758: Use random ip for Pcc mock tests

controller

• 489279a CONTROLLER-1825 : Release permits as transactions are replayed

• d6a2de2 CONTROLLER-1814 : Fix TransactionContextWrapper limiter accounting

• 621482f : Move OperationLimiter.acquire() warnings to callers

• 73b138d MDSAL-298 : MDSAL-298: properly handle unkeyed lists

• b8716b0 : Do not inline javax.annotation

• 11aa17d CONTROLLER-1814 : Fix RemoteTransactionContext limiter accounting

• 478f345 : Fixup test referring to description statement

• efff2ad : Fix intermittent RemoteRpcRegistryMXBeanImplTest failures

• b1b86bd : register RemoteRpcRegistryMXBean

• bec1436 : Fix ModificationType.APPEARED mapping

• 32d315b : Fix ReadyLocalTransactionSerializer

• 84bd1ca : Guards iteration against concurrent modification

• 25831b6 CONTROLLER-1802 : ConcurrentDOMDataBroker LOG debug instead of error

• dd05c1f CONTROLLER-1812 : Fix infinite loop on cancel transaction

genius

• 9c9d9a2 ENIUS-103 : GENIUS-103: use a callback to start LLDP monitoring

• 4ef9379 RELENG-86 : Add Karaf build profile

168 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/873e63b
https://jira.opendaylight.org/browse/PCEP-740
https://git.opendaylight.org/gerrit/#/q/2c93558
https://git.opendaylight.org/gerrit/#/q/157a73a
https://jira.opendaylight.org/browse/PCEP-732
https://git.opendaylight.org/gerrit/#/q/175db42
https://jira.opendaylight.org/browse/PCEP-770
https://git.opendaylight.org/gerrit/#/q/4e74ed4
https://jira.opendaylight.org/browse/PCEP-774
https://git.opendaylight.org/gerrit/#/q/31b7930
https://jira.opendaylight.org/browse/PCEP-764
https://git.opendaylight.org/gerrit/#/q/a88e3bb
https://jira.opendaylight.org/browse/PCEP-739
https://git.opendaylight.org/gerrit/#/q/55ab216
https://jira.opendaylight.org/browse/PCEP-760
https://git.opendaylight.org/gerrit/#/q/0b48f10
https://git.opendaylight.org/gerrit/#/q/fea02a0
https://jira.opendaylight.org/browse/PCEP-742
https://git.opendaylight.org/gerrit/#/q/757e290
https://jira.opendaylight.org/browse/PCEP-672
https://git.opendaylight.org/gerrit/#/q/c33474f
https://jira.opendaylight.org/browse/PCEP-737
https://git.opendaylight.org/gerrit/#/q/8c759e6
https://jira.opendaylight.org/browse/PCEP-748
https://git.opendaylight.org/gerrit/#/q/4cf4e8c
https://jira.opendaylight.org/browse/PCEP-736
https://git.opendaylight.org/gerrit/#/q/77db3ac
https://jira.opendaylight.org/browse/PCEP-758
https://git.opendaylight.org/gerrit/#/q/489279a
https://jira.opendaylight.org/browse/CONTROLLER-1825
https://git.opendaylight.org/gerrit/#/q/d6a2de2
https://jira.opendaylight.org/browse/CONTROLLER-1814
https://git.opendaylight.org/gerrit/#/q/621482f
https://git.opendaylight.org/gerrit/#/q/73b138d
https://jira.opendaylight.org/browse/MDSAL-298
https://git.opendaylight.org/gerrit/#/q/b8716b0
https://git.opendaylight.org/gerrit/#/q/11aa17d
https://jira.opendaylight.org/browse/CONTROLLER-1814
https://git.opendaylight.org/gerrit/#/q/478f345
https://git.opendaylight.org/gerrit/#/q/efff2ad
https://git.opendaylight.org/gerrit/#/q/b1b86bd
https://git.opendaylight.org/gerrit/#/q/bec1436
https://git.opendaylight.org/gerrit/#/q/32d315b
https://git.opendaylight.org/gerrit/#/q/84bd1ca
https://git.opendaylight.org/gerrit/#/q/25831b6
https://jira.opendaylight.org/browse/CONTROLLER-1802
https://git.opendaylight.org/gerrit/#/q/dd05c1f
https://jira.opendaylight.org/browse/CONTROLLER-1812
https://git.opendaylight.org/gerrit/#/q/9c9d9a2
https://jira.opendaylight.org/browse/ENIUS-103
https://git.opendaylight.org/gerrit/#/q/4ef9379
https://jira.opendaylight.org/browse/RELENG-86

OpenDaylight Documentation Documentation, Release Carbon

• b48e189 : Remove obsolete Maven Site configuration

• 7139ccb : increase max time out in AbstractTestableListenerTest from 50ms to 500ms

• fd35275 NETVIRT-1009 : NETVIRT-1009 - Enable genius auto-tz

• a1374db : Handle br-int dpid update for genius auto tunnels

• c01aa26 ENIUS-104 : GENIUS-104 Genius auto-tz: use local_ip for TEP IP

integration/distribution

• 2c8a2f6 : Remove VTN from Carbon distribution

lispflowmapping

• 90372a0 : Revert “Add Karaf build profile”

• 4f610ac RELENG-86 : Add Karaf build profile

• 922498c : Remove obsolete Maven Site configuration

mdsal

• 7b7b4c9 : Use QName.withModule()

• 1b48126 MDSAL-335 : Fix derived types missing pattern restrictions

• bdce7d5 MDSAL-309 : Add alternative enum assigned name mapping

• ae32189 : Share pre-generated non-verbose string

• d9cff37 : Add DataTreeIdentifier.toString()

• cf6c107 YANGTOOLS-424 : Lookup leaf key methods in parents

• 23a532b MDSAL-298 : MDSAL-298: properly handle unkeyed lists

• e43f08f CONTROLLER-1812 : Fix infinite loop on cancel transaction

netconf

• a6571ab NETCONF-526 : NETCONF-526 : edit-config payload default-operation needs to be set to default-
value For the PUT/POST calls right now default-operation tag in the edit-config is set to “none”. As per RFC
with this value devices can reject a config operation when elements present in the request whose structure is not
already present in the tree. For example a nested parent-child structure where parent structure does not yet exist
yet in the tree may result in an error based on implementation. We should leave this field out (which will default
to merge) and let the device make the right decision.

• a279abf NETCONF-505 : NETCONF-505: fix decoding of URLs with external leafref

• 64314de NETCONF-506 : NETCONF-506: fix YII deserialization in FilterContentValidator

1.1. Release Notes 169

https://git.opendaylight.org/gerrit/#/q/b48e189
https://git.opendaylight.org/gerrit/#/q/7139ccb
https://git.opendaylight.org/gerrit/#/q/fd35275
https://jira.opendaylight.org/browse/NETVIRT-1009
https://git.opendaylight.org/gerrit/#/q/a1374db
https://git.opendaylight.org/gerrit/#/q/c01aa26
https://jira.opendaylight.org/browse/ENIUS-104
https://git.opendaylight.org/gerrit/#/q/2c8a2f6
https://git.opendaylight.org/gerrit/#/q/90372a0
https://git.opendaylight.org/gerrit/#/q/4f610ac
https://jira.opendaylight.org/browse/RELENG-86
https://git.opendaylight.org/gerrit/#/q/922498c
https://git.opendaylight.org/gerrit/#/q/7b7b4c9
https://git.opendaylight.org/gerrit/#/q/1b48126
https://jira.opendaylight.org/browse/MDSAL-335
https://git.opendaylight.org/gerrit/#/q/bdce7d5
https://jira.opendaylight.org/browse/MDSAL-309
https://git.opendaylight.org/gerrit/#/q/ae32189
https://git.opendaylight.org/gerrit/#/q/d9cff37
https://git.opendaylight.org/gerrit/#/q/cf6c107
https://jira.opendaylight.org/browse/YANGTOOLS-424
https://git.opendaylight.org/gerrit/#/q/23a532b
https://jira.opendaylight.org/browse/MDSAL-298
https://git.opendaylight.org/gerrit/#/q/e43f08f
https://jira.opendaylight.org/browse/CONTROLLER-1812
https://git.opendaylight.org/gerrit/#/q/a6571ab
https://jira.opendaylight.org/browse/NETCONF-526
https://git.opendaylight.org/gerrit/#/q/a279abf
https://jira.opendaylight.org/browse/NETCONF-505
https://git.opendaylight.org/gerrit/#/q/64314de
https://jira.opendaylight.org/browse/NETCONF-506

OpenDaylight Documentation Documentation, Release Carbon

netvirt

• 523fc69 : Switch to using lfdocs-conf to pull in theme

• 2e4261c RELENG-86 : Add Karaf build profile

• b47ed5a : Remove obsolete Maven Site configuration

• cec5d03 NETVIRT-1009 : NETVIRT-1009 - Disable netvirt dynamic tunnels

• 3317517 NETVIRT-1043 : NETVIRT-1043: L3 VPN flows remain when the router unattaches from the subnet

• 902616d NETVIRT-1103 : NETVIRT-1103 : display issue in ip bgp vpnv4 all summary command White spaces
inbetween the text was getting deleted which caused the display issue,so changing the regex in replaceAll to
resolve the issue Signed-off-by: Loshmitha <loshmitha@ericsson.com>

• d9091dd : Fix AclStatefulTest

• 6489a0b : Minor: fix two log statements

• b7ba40c NETVIRT-659 : Bug 8400 - ACL changes doesn’t affect the existing connections

• c2267d9 NETVIRT-984 : NETVIRT-984: Fix of issue that l2gw connection creation failed in L2GW HA
environment.

• a2d04f0 NETVIRT-1044 : NETVIRT-1044 fix for Exception in karaf when delete neutron port

neutron

• a66421b : Revert “Add Karaf build profile”

• 3cacce5 RELENG-86 : Add Karaf build profile

nic

• 397bb0f : Remove VTN dependencies.

odlparent

• 7c30203 : Bump akka to 2.4.20

• 18135e1 : Bump scala to 2.11.12

openflowplugin

• 6e11f06 OPNFLWPLUG-995 : must use full node-connector string when writing queue stats

• f9b5004 RELENG-86 : Add Karaf build profile

• 0eb9f05 OPNFLWPLUG-945 : OPNFLWPLUG-945

• b318a06 OPNFLWPLUG-984 : OPNFLWPLUG-984: always use ingress node for link discovery

• a7fba2a OPNFLWPLUG-983 : OPNFLWPLUG-983 Group and flow removal stats are not reported in order

• 70dd971 OPNFLWPLUG-952 : OPNFLWPLUG-952: All links disappear from the topology

170 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/523fc69
https://git.opendaylight.org/gerrit/#/q/2e4261c
https://jira.opendaylight.org/browse/RELENG-86
https://git.opendaylight.org/gerrit/#/q/b47ed5a
https://git.opendaylight.org/gerrit/#/q/cec5d03
https://jira.opendaylight.org/browse/NETVIRT-1009
https://git.opendaylight.org/gerrit/#/q/3317517
https://jira.opendaylight.org/browse/NETVIRT-1043
https://git.opendaylight.org/gerrit/#/q/902616d
https://jira.opendaylight.org/browse/NETVIRT-1103
mailto:loshmitha@ericsson.com
https://git.opendaylight.org/gerrit/#/q/d9091dd
https://git.opendaylight.org/gerrit/#/q/6489a0b
https://git.opendaylight.org/gerrit/#/q/b7ba40c
https://jira.opendaylight.org/browse/NETVIRT-659
https://git.opendaylight.org/gerrit/#/q/c2267d9
https://jira.opendaylight.org/browse/NETVIRT-984
https://git.opendaylight.org/gerrit/#/q/a2d04f0
https://jira.opendaylight.org/browse/NETVIRT-1044
https://git.opendaylight.org/gerrit/#/q/a66421b
https://git.opendaylight.org/gerrit/#/q/3cacce5
https://jira.opendaylight.org/browse/RELENG-86
https://git.opendaylight.org/gerrit/#/q/397bb0f
https://git.opendaylight.org/gerrit/#/q/7c30203
https://git.opendaylight.org/gerrit/#/q/18135e1
https://git.opendaylight.org/gerrit/#/q/6e11f06
https://jira.opendaylight.org/browse/OPNFLWPLUG-995
https://git.opendaylight.org/gerrit/#/q/f9b5004
https://jira.opendaylight.org/browse/RELENG-86
https://git.opendaylight.org/gerrit/#/q/0eb9f05
https://jira.opendaylight.org/browse/OPNFLWPLUG-945
https://git.opendaylight.org/gerrit/#/q/b318a06
https://jira.opendaylight.org/browse/OPNFLWPLUG-984
https://git.opendaylight.org/gerrit/#/q/a7fba2a
https://jira.opendaylight.org/browse/OPNFLWPLUG-983
https://git.opendaylight.org/gerrit/#/q/70dd971
https://jira.opendaylight.org/browse/OPNFLWPLUG-952

OpenDaylight Documentation Documentation, Release Carbon

• 6fb1245 OPNFLWPLUG-958 : Bug : OPNFLWPLUG-958 Description : ConcurrentModificationEx-
ception: at org.opendaylight.openflowplugin.impl.registry.flow.DeviceFlowRegistryImpl.getExistingKey Hash-
BiMap throws ConcurrentModifcationException when there are modification by multiple threads. This is ob-
served in cluster environment.

• 815bc83 OPNFLWPLUG-974 : OPNFLWPLUG-974: Message deserialization failed

ovsdb

• ce6ef26 : Revert “Add Karaf build profile”

• 29c97ae RELENG-86 : Add Karaf build profile

• 6676239 : Remove obsolete Maven Site configuration

sfc

• 291f92b RELENG-86 : Add Karaf build profile

• beaa131 SFC-217 : SFC-217: Fix sfc-py pep8 issues and packaging

• 2ca0f11 SFC-216 : SFC-216: Fix exception message check for bad macs

sxp

• e7059ff RELENG-86 : Add Karaf build profile

topoprocessing

• 1ac02e3 RELENG-86 : Add Karaf build profile

• d25df58 : Remove obsolete Maven Site configuration

yangtools

• 6a95892 YANGTOOLS-806 : Consider submodule imports when sorting modules

• fb17e66 : Add ModuleDependencyInfoTest

• 56ba123 : Optimize QName constructor

• 275d1ae : Add YangConstants.operation{Input,Output}QName()

• 6e82e82 : Add QName.withModule(QNameModule) method

• 4099732 : Improve ClassLoaderUtils.loadClassWithTCCL()

• d6b3963 YANGTOOLS-872 : Fix leafref require-instance implementation

• f73a7a2 YANGTOOLS-870 : Revert “Realign ImmutableMapNodeBuilder and XML JSON builder”

• 86d0422 NETCONF-486 : Realign ImmutableMapNodeBuilder and XML JSON builder

• ffae353 : Optimize augment conflict checking

• 2ca4ae8 : Fix format string

1.1. Release Notes 171

https://git.opendaylight.org/gerrit/#/q/6fb1245
https://jira.opendaylight.org/browse/OPNFLWPLUG-958
https://git.opendaylight.org/gerrit/#/q/815bc83
https://jira.opendaylight.org/browse/OPNFLWPLUG-974
https://git.opendaylight.org/gerrit/#/q/ce6ef26
https://git.opendaylight.org/gerrit/#/q/29c97ae
https://jira.opendaylight.org/browse/RELENG-86
https://git.opendaylight.org/gerrit/#/q/6676239
https://git.opendaylight.org/gerrit/#/q/291f92b
https://jira.opendaylight.org/browse/RELENG-86
https://git.opendaylight.org/gerrit/#/q/beaa131
https://jira.opendaylight.org/browse/SFC-217
https://git.opendaylight.org/gerrit/#/q/2ca0f11
https://jira.opendaylight.org/browse/SFC-216
https://git.opendaylight.org/gerrit/#/q/e7059ff
https://jira.opendaylight.org/browse/RELENG-86
https://git.opendaylight.org/gerrit/#/q/1ac02e3
https://jira.opendaylight.org/browse/RELENG-86
https://git.opendaylight.org/gerrit/#/q/d25df58
https://git.opendaylight.org/gerrit/#/q/6a95892
https://jira.opendaylight.org/browse/YANGTOOLS-806
https://git.opendaylight.org/gerrit/#/q/fb17e66
https://git.opendaylight.org/gerrit/#/q/56ba123
https://git.opendaylight.org/gerrit/#/q/275d1ae
https://git.opendaylight.org/gerrit/#/q/6e82e82
https://git.opendaylight.org/gerrit/#/q/4099732
https://git.opendaylight.org/gerrit/#/q/d6b3963
https://jira.opendaylight.org/browse/YANGTOOLS-872
https://git.opendaylight.org/gerrit/#/q/f73a7a2
https://jira.opendaylight.org/browse/YANGTOOLS-870
https://git.opendaylight.org/gerrit/#/q/86d0422
https://jira.opendaylight.org/browse/NETCONF-486
https://git.opendaylight.org/gerrit/#/q/ffae353
https://git.opendaylight.org/gerrit/#/q/2ca4ae8

OpenDaylight Documentation Documentation, Release Carbon

• 2f29e87 YANGTOOLS-846 : Validate parsed QName to identity

• dbef811 YANGTOOLS-846 : Validate parsed QName to identity

• d89398f YANGTOOLS-798 : Encapsulate regexes in a non-capturing group

• 0c14a1e : Move Bug4079/Bug5410 tests from yang-parser to yang-model-util

• c8e2399 YANGTOOLS-845 : Correct double-quoted string whitespace trimming

1.2 Getting Started Guide

1.2.1 Introduction

The OpenDaylight project is an open source platform for Software Defined Networking (SDN) that uses open protocols
to provide centralized, programmatic control and network device monitoring. Like many other SDN controllers,
OpenDaylight supports OpenFlow, as well as offering ready-to-install network solutions as part of its platform.

Much as your operating system provides an interface for the devices that comprise your computer, OpenDaylight
provides an interface that allows you to connect network devices quickly and intelligently for optimal network perfor-
mance.

It’s extremely helpful to understand that setting up your networking environment with OpenDaylight is not a single
software installation. While your first chronological step is to install OpenDaylight, you install additional functionality
packaged as Karaf features to suit your specific needs.

Before walking you through the initial OpenDaylight installation, this guide presents a fuller picture of OpenDaylight’s
framework and functionality so you understand how to set up your networking environment. The guide then takes you
through the installation process.

What’s different about OpenDaylight

Major distinctions of OpenDaylight’s SDN compared to traditional SDN options are the following:

• A microservices architecture, in which a “microservice” is a particular protocol or service that a user wants to
enable within their installation of the OpenDaylight controller, for example:

– A plugin that provides connectivity to devices via the OpenFlow or BGP protocols

– An L2-Switch or a service such as Authentication, Authorization, and Accounting (AAA).

• Support for a wide and growing range of network protocols beyond OpenFlow, including SNMP, NETCONF,
OVSDB, BGP, PCEP, LISP, and more.

• Support for developing new functionality comprised of additional networking protocols and services.

Note: A thorough understanding of the microservices architecture is important for experienced network developers
who want to create new solutions in OpenDaylight. If you are new to networking and OpenDaylight, you most likely
won’t design solutions, but you should comprehend the microservices concept to understand how OpenDaylight works
and how it differs from other SDN programs.

172 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/2f29e87
https://jira.opendaylight.org/browse/YANGTOOLS-846
https://git.opendaylight.org/gerrit/#/q/dbef811
https://jira.opendaylight.org/browse/YANGTOOLS-846
https://git.opendaylight.org/gerrit/#/q/d89398f
https://jira.opendaylight.org/browse/YANGTOOLS-798
https://git.opendaylight.org/gerrit/#/q/0c14a1e
https://git.opendaylight.org/gerrit/#/q/c8e2399
https://jira.opendaylight.org/browse/YANGTOOLS-845

OpenDaylight Documentation Documentation, Release Carbon

What you’ll find in this guide

To set up your environment, you first install OpenDaylight followed by the Apache Karaf features that offer the func-
tionality you require. The OpenDaylight Getting Started Guide covers feature descriptions, OpenDaylight installation
procedures, and feature installation.

The Getting Started Guide also includes other helpful information, with the following organization:

1. An overview of OpenDaylight and common use models

2. Who should use this guide?

3. OpenDaylight concepts and tools

4. Explanations of OpenDaylight Apache Karaf features and other features that extend network functionality

5. OpenDaylight system requirements and Release Notes

6. OpenDaylight installation instructions

7. Feature tables with installation names and compatibility notes

1.2.2 Overview

OpenDaylight performs the following functions:

• Logically centralizes programmatic control of the physical and virtual devices in your network.

• Controls devices with standard, open protocols.

• Provides higher-level abstractions of its capabilities so experienced network engineers and developers can create
new applications to customize network setup and administration.

Common use cases for SDN are as follows:

1. Centralized network monitoring, management, and orchestration

2. Proactive network management and traffic engineering

3. Chaining packets through the different VMs, which is known as service function chaining (SFC). SFC enables
Network Functions Virtualization (NFV), which is a network architecture concept that virtualizes entire classes
of network node functions into building blocks that may connect, or chain together, to create communication
services.

4. Cloud - managing both the virtual overlay and the physical underlay beneath it.

1.2.3 Who should use this guide?

OpenDaylight is for users considering open options in network programming. This guide provides information for the
following types of users:

1. Those new to OpenDaylight who want to install it and select the features they need to run their network envi-
ronment using only the command line and GUI. Such users include:

(a) Students

(b) Network administrators and engineers.

2. Network engineers and network application developers who want to use OpenDaylight’s REST APIs to manage
their network programmatically.

1.2. Getting Started Guide 173

OpenDaylight Documentation Documentation, Release Carbon

3. Network engineers and network application developers who want to write their own OpenDaylight services and
plugins for greater functionality. This group of users needs a significant level of expertise in the following areas,
which is beyond the scope of this document:

(a) The YANG modeling language

(b) The Model-Driven Service Abstraction Layer (MD-SAL)

(c) Maven build tool

(d) Management of the shared data store

(e) How to handle notifications and/or Remote Procedure Calls (RPCs)

4. Developers who would like to join the OpenDaylight community and contribute code upstream. People in this
group design offerings such as applications/services, protocol implementations, and so on, to increase Open-
Daylight functionality for the benefit of all end-users.

Note: If you develop code to build new functionality for OpenDaylight and push it upstream (not required), it can
become part of the OpenDaylight release. Users can then install the features to implement the solution you’ve created.

1.2.4 OpenDaylight concepts and tools

In this section we discuss some of the concepts and tools you encounter with basic use of OpenDaylight. The guide
walks you through the installation process in a subsequent section, but for now familiarize yourself with the informa-
tion below.

• To date, OpenDaylight developers have formed more than 50 projects to address ways to extend network func-
tionality. The projects are a formal structure for developers from the community to meet, document release
plans, code, and release the functionality they create in an OpenDaylight release.

The typical OpenDaylight user will not join a project team, but you should know what projects are as we refer
to their activities and the functionality they create. The Karaf features to install that functionality often share the
project team’s name.

• Apache Karaf provides a lightweight runtime to install the Karaf features you want to implement and is included
in the OpenDaylight platform software. By default, OpenDaylight has no pre-installed features.

• After installing OpenDaylight, you install your selected features using the Karaf console to expand networking
capabilities. In the Karaf feature list below are the ones you’re most likely to use when creating your network
environment.

As a short example of installing a Karaf feature, OpenDaylight offers Application Layer Traffic Optimization
(ALTO). The Karaf feature to install ALTO is odl-alto-all. On the Karaf console, the command to install it is:

feature:install odl-alto-all

• DLUX is a web-based interface that OpenDaylight provides for you to manage your network. Its Karaf feature
installation name is “odl-dlux-core”.

1. DLUX draws information from OpenDaylight’s topology and host databases to display the following in-
formation:

(a) The network

(b) Flow statistics

(c) Host locations

174 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

2. To enable the DLUX UI after installing OpenDaylight, run:

feature:install odl-dlux-core

on the Karaf console.

• Network embedded Experience (NeXt) is a developer toolkit that provides tools to draw network-centric
topology UI elements that offer visualizations of the following:

1. Large complex network topologies

2. Aggregated network nodes

3. Traffic/path/tunnel/group visualizations

4. Different layout algorithms

5. Map overlays

6. Preset user-friendly interactions

NeXt can work with DLUX to build OpenDaylight applications. Check out the NeXt_demo for more informa-
tion on the interface.

• Model-Driven Service Abstraction Layer (MD-SAL) is the OpenDaylight framework that allows developers to
create new Karaf features in the form of services and protocol drivers and connects them to one another. You
can think of the MD-SAL as having the following two components:

1. A shared datastore that maintains the following tree-based structures:

1. The Config Datastore, which maintains a representation of the desired network state.

2. The Operational Datastore, which is a representation of the actual network state based on data from the
managed network elements.

2. A message bus that provides a way for the various services and protocol drivers to notify and communicate
with one another.

• If you’re interacting with OpenDaylight through DLUX or the REST APIs while using the the OpenDaylight
interfaces, the microservices architecture allows you to select available services, protocols, and REST APIs.

1.2.5 OpenDaylight Karaf Features

This section provides brief descriptions of the most commonly used Karaf features developed by OpenDaylight project
teams. They are presented in alphabetical order. OpenDaylight installation instructions and a feature table that lists
installation commands and compatibility follow.

• AAA

• ALTO

• Border Gateway Protocol (including Link-state Distribution (BGP)

• Border Gateway Monitoring Protocol (BMP)

• Control and Provisioning of Wireless Access Points (CAPWAP)

• Controller Shield

• Device Identification and Driver Management (DIDM)

• DLUX

1.2. Getting Started Guide 175

https://www.youtube.com/watch?v=gBsUDu8aucs

OpenDaylight Documentation Documentation, Release Carbon

• Fabric as a Service (FaaS)

• Group Based Policy (GBP)

• Internet of Things Data Management (IoTDM)

• Link Aggregation Control Protocol (LACP)

• Location Identifier Separation Protocol (LISP) Flow Mapping Service (LISP)

• NEMO

• NETCONF

• NetIDE

• OVSDB-based Network Virtualization Services

• OpenFlow Configuration Protocol (OF-CONFIG)

• OpenFlow plugin

• Path Computation Element Protocol (PCEP)

• Secure Network Bootstrapping Interface (SNBi)

• Service Function Chaining (SFC)

• SNMP Plugin

• SNMP4SDN

• Source-Group Tag Exchange Protocol (SXP)

• Topology Processing Framework

• Time Series Data Repository (TSDR)

• Unified Secure Channel (USC)

• Virtual Tenant Network (VTN)

AAA

Standards-compliant Authentication, Authorization and Accounting Services. RESTCONF is the most common con-
sumer of AAA, which installs the AAA features automatically. AAA provides:

• Support for persistent data stores

• Federation and SSO with OpenStack Keystone

This release of AAA includes experimental support for having the database of users and credentials stored in the
cluster-aware MD-SAL datastore.

ALTO

Implements the Application-Layer Traffic Optimization (ALTO) base IETF protocol to provide network information
to applications. It defines abstractions and services to enable simplified network views and network services to guide
application usage of network resources and includes five services:

1. Network Map Service - Provides batch information to ALTO clients in the forms of ALTO network maps.

2. Cost Map Service - Provides costs between defined groupings.

176 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

3. Filtered Map Service - Allows ALTO clients to query an ALTO server on ALTO network maps and/or cost maps
based on additional parameters.

4. Endpoint Property Service - Allows ALTO clients to look up properties for individual endpoints.

5. Endpoint Cost Service - Allows an ALTO server to return costs directly amongst endpoints.

Border Gateway Protocol (including Link-state Distribution (BGP)

Is a southbound plugin that provides support for Border Gateway Protocol (including Link-state Distribution) as a
source of L3 topology information.

Border Gateway Monitoring Protocol (BMP)

Is a southbound plugin that provides support for BGP Monitoring Protocol as a monitoring station.

Control and Provisioning of Wireless Access Points (CAPWAP)

Enables OpenDaylight to manage CAPWAP-compliant wireless termination point (WTP) network devices. Intelligent
applications, e.g., radio planning, can be developed by tapping into the operational states made available via REST
APIs of WTP network devices.

Controller Shield

Creates a repository called the Unified-Security Plugin (USecPlugin) to provide controller security information to
northbound applications, such as the following:

• Collating the source of different attacks reported in southbound plugins

• Gathering information on suspected controller intrusions and trusted controllers in the network

Information collected at the plugin may also be used to configure firewalls and create IP blacklists for the network.

Device Identification and Driver Management (DIDM)

Provides device-specific functionality, which means that code enabling a feature understands the capability and lim-
itations of the device it runs on. For example, configuring VLANs and adjusting FlowMods are features, and there
may be different implementations for different device types. Device-specific functionality is implemented as Device
Drivers.

DLUX

Web based OpenDaylight user interface that includes:

• An MD-SAL flow viewer

• Network topology visualizer

• A tool box and YANG model that execute queries and visualize the YANG tree

1.2. Getting Started Guide 177

OpenDaylight Documentation Documentation, Release Carbon

Fabric as a Service (FaaS)

Creates a common abstraction layer on top of a physical network so northbound APIs or services can be more easily
mapped onto the physical network as a concrete device configuration.

Group Based Policy (GBP)

Defines an application-centric policy model for OpenDaylight that separates information about application connec-
tivity requirements from information about the underlying details of the network infrastructure. Provides support
for:

• Integration with OpenStack Neutron

• Service Function Chaining

• OFOverlay support for NAT, table offsets

Internet of Things Data Management (IoTDM)

Developing a data-centric middleware to act as a oneM2M-compliant IoT Data Broker (IoTDB) and enable authorized
applications to retrieve IoT data uploaded by any device.

Link Aggregation Control Protocol (LACP)

LACP can auto-discover and aggregate multiple links between an OpenDaylight-controlled network and LACP-
enabled endpoints or switches.

Location Identifier Separation Protocol (LISP) Flow Mapping Service (LISP)

LISP (RFC6830) enables separation of Endpoint Identity (EID) from Routing Location (RLOC) by defining an overlay
in the EID space, which is mapped to the underlying network in the RLOC space.

LISP Mapping Service provides the EID-to-RLOC mapping information, including forwarding policy (load balancing,
traffic engineering, and so on) to LISP routers for tunneling and forwarding purposes. The LISP Mapping Service can
serve the mapping data to data plane nodes as well as to OpenDaylight applications.

To leverage this service, a northbound API allows OpenDaylight applications and services to define the mappings and
policies in the LISP Mapping Service. A southbound LISP plugin enables LISP data plane devices to interact with
OpenDaylight via the LISP protocol.

NEMO

Is a Domain Specific Language (DSL) for the abstraction of network models and identification of operation patterns.
NEMO enables network users/applications to describe their demands for network resources, services, and logical
operations in an intuitive way that can be explained and executed by a language engine.

NETCONF

Offers four features:

• odl-netconf-mdsal: NETCONF Northbound for MD-SAL and applications

• odl-netconf-connector: NETCONF Southbound plugin - configured through the configuration subsystem

178 Chapter 1. Content for OpenDaylight Users

http://www.onem2m.org/

OpenDaylight Documentation Documentation, Release Carbon

• odl-netconf-topology: NETCONF Southbound plugin - configured through the MD-SAL configuration datas-
tore

• odl-restconf: RESTCONF Northbound for MD-SAL and applications

NetIDE

Enables portability and cooperation inside a single network by using a client/server multi-controller architecture. It
provides an interoperability layer allowing SDN Applications written for other SDN Controllers to run on OpenDay-
light. NetIDE details:

• Architecture follows a client/server model: other SDN controllers represent clients with OpenDaylight acting as
the server.

• OpenFlow v1.0/v1.3 is the only southbound protocol supported in this initial release. We are planning for other
southbound protocols in later releases.

• The developer documentation contains the protocol specifications required for developing plugins for other
client SDN controllers.

• The NetIDE Configuration file contains the configurable elements for the engine.

OVSDB-based Network Virtualization Services

Several services and plugins in OpenDaylight work together to provide simplified integration with the OpenStack
Neutron framework. These services enable OpenStack to offload network processing to OpenDaylight while enabling
OpenDaylight to provide enhanced network services to OpenStack.

OVSDB Services are at parity with the Neutron Reference Implementation in OpenStack, including support for:

• L2/L3

– The OpenDaylight Layer-3 Distributed Virtual Router is fully on par with what OpenStack offers and now
provides completely decentralized Layer 3 routing for OpenStack. ICMP rules for responding on behalf
of the L3 router are fully distributed as well.

– Full support for distributed Layer-2 switching and distributed IPv4 routing is now available.

• Clustering - Full support for clustering and High Availability (HA) is available in the this OpenDaylight release.
In particular, the OVSDB southbound plugin supports clustering that any application can use, and the Openstack
network integration with OpenDaylight (through OVSDB Net-Virt) has full clustering support. While there is
no specific limit on cluster size, a 3-node cluster has been tested extensively as part of the release.

• Security Groups - Security Group support is available and implemented using OpenFlow rules that provide
superior functionality and performance over OpenStack Security Groups, which use IPTables. Security Groups
also provide support for ConnTrack with stateful tracking of existing connections. Contract-based Security
Groups require OVS v2.5 with contract support.

• Hardware Virtual Tunnel End Point (HW-VTEP) - Full HW-VTEP schema support has been implemented in the
OVSDB protocol driver. Support for HW-VTEP via OpenStack through the OVSDB-NetVirt implementation
has not yet been provided as we wait for full support of Layer-2 Gateway (L2GW) to be implemented within
OpenStack.

• Service Function Chaining

• Open vSwitch southbound support for quality of service and Queue configuration Load Balancer as service
(LBaaS) with Distributed Virtual Router

• Network Virtualization User interface for DLUX

1.2. Getting Started Guide 179

OpenDaylight Documentation Documentation, Release Carbon

OpenFlow Configuration Protocol (OF-CONFIG)

Provides a process for an Operation Context containing an OpenFlow Switch that uses OF-CONFIG to communicate
with an OpenFlow Configuration Point, enabling remote configuration of OpenFlow datapaths.

OpenFlow plugin

Supports connecting to OpenFlow-enabled network devices via the OpenFlow specification. It currently supports
OpenFlow versions 1.0 and 1.3.2.

In addition to support for the core OpenFlow specification, OpenDaylight also includes preliminary support for the
Table Type Patterns and OF-CONFIG specifications.

Path Computation Element Protocol (PCEP)

Is a southbound plugin that provides support for performing Create, Read, Update, and Delete (CRUD) operations on
Multiprotocol Label Switching (MPLS) tunnels in the underlying network.

Secure Network Bootstrapping Interface (SNBi)

Leverages manufacturer-installed IEEE 802.1AR certificates to secure initial communications for a zero-touch ap-
proach to bootstrapping using Docker. SNBi devices and controllers automatically do the following:

1. Discover each other, which includes:

(a) Revealing the physical topology of the network

(b) Exposing each type of a device

(c) Assigning the domain for each device

2. Get assigned an IP-address

3. Establish secure IP connectivity

SNBi creates a basic infrastructure to host, run, and lifecycle-manage multiple network functions within a network
device, including individual network element services, such as:

• Performance measurement

• Traffic-sniffing functionality

• Traffic transformation functionality

SNBi also provides a Linux side abstraction layer to forward elements as well as enhancements to feature the abstrac-
tion and bootstrapping infrastructure. You can also use the device type and domain information to initiate controller
federation processes.

Service Function Chaining (SFC)

Provides the ability to define an ordered list of network services (e.g. firewalls, load balancers) that are then “stitched”
together in the network to create a service chain. SFC provides the chaining logic and APIs necessary for OpenDaylight
to provision a service chain in the network and an end-user application for defining such chains. It includes:

• YANG models to express service function chains

• SFC receiver for Intent expressions from REST & RPC

• UI for service chain construction

180 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• LISP support

• Function grouping for load balancing

• OpenFlow renderer for Network Service Headers, MPLS, and VLAN

• Southbound REST interface

• IP Tables-based classifier for grouping packets into selected service chains

• Integration with OpenDaylight GBP project

• Integration with OpenDaylight OVSDB NetVirt project

SNMP Plugin

The SNMP southbound plugin allows applications acting as an SNMP Manager to interact with devices that support
an SNMP agent. The SNMP plugin implements a general SNMP implementation, which differs from the SNMP4SDN
as that project leverages only select SNMP features to implement the specific use case of making an SNMP-enabled
device emulate some features of an OpenFlow-enabled device.

SNMP4SDN

Provides a southbound SNMP plugin to optimize delivery of SDN controller benefits to traditional/legacy ethernet
switches through the SNMP interface. It offers support for flow configuration on ACLs and enables flow configuration
via REST API and multi-vendor support.

Source-Group Tag Exchange Protocol (SXP)

Enables creation of a tag that allows you to filter traffic instead of using protocol-specific information like addresses
and ports. Via SXP an external entity creates the tags, assigns them to traffic appropriately, and publishes information
about the tags to network devices so they can enforce the tags appropriately.

More specifically, SXP Is an IETF-published control protocol designed to propagate the binding between an IP address
and a source group, which has a unique source group tag (SGT). Within the SXP protocol, source groups with common
network policies are endpoints connecting to the network. SXP updates the firewall with SGTs, enabling the firewalls
to create topology-independent Access Control Lists (ACLs) and provide ACL automation.

SXP source groups have the same meaning as endpoint groups in OpenDaylight’s Group Based Policy (GBP), which is
used to manipulate policy groups, so you can use OpenDaylight GPB with SXP SGTs. The SXP topology-independent
policy definition and automation can be extended through OpenDaylight for other services and networking devices.

Topology Processing Framework

Provides a framework for simplified aggregation and topology data query to enable a unified topology view, including
multi-protocol, Underlay, and Overlay resources.

Time Series Data Repository (TSDR)

Creates a framework for collecting, storing, querying, and maintaining time series data in OpenDaylight. You can
leverage various data-driven applications built on top of TSDR when you install a datastore and at least one collector.

Functionality of TDSR includes:

• Data Query Service - For external data-driven applications to query data from TSDR through REST APIs

1.2. Getting Started Guide 181

OpenDaylight Documentation Documentation, Release Carbon

• ElasticSearch - Use external elastic search engine with TSDR integrated support.

• NBI integration with Grafana - Allows visualization of data collected in TSDR using Grafana

• Data Aggregation Service - Periodically aggregates raw data into larger time granularities

• Data Purging Service - Periodically purges data from TSDR

• Data Collection Framework - Data Collection framework to allow plugging in of various types of collectors

• HSQL data store - Replacement of H2 data store to remove third party component dependency from TSDR

• Cassandra data store - Cassandra implementation of TSDR SPIs

• NetFlow data collector - Collect NetFlow data from network elements

• NetFlowV9 - version 9 Netflow collector

• sFlowCollector - Collects sFlow data from network elements

• SNMP Data Collector - Integrates with SNMP plugin to bring SNMP data into TSDR

• Syslog data collector - Collects syslog data from network elements

• Web Activity data collector - Collects ODL RESTCONF queries made to TSDR

TSDR has multiple features to enable the functionality above. To begin, select one of these data stores:

• odl-tsdr-hsqldb-all

• odl-tsdr-hbase

• odl-tsdr-cassandra

Then select any “collectors” you want to use:

• odl-tsdr-openflow-statistics-collector

• odl-tsdr-netflow-statistics-collector

• odl-tsdr-sflow-statistics-collector

• odl-tsdr-controller-metrics-collector

• odl-tsdr-snmp-data-collector

• odl-tsdr-syslog-collector

• odl-tsdr-restconf-collector

Enable ElasticSearch support:

• odl-tsdr-elasticsearch

See these TSDR_Directions for more information.

Unified Secure Channel (USC)

Provides a central server to coordinate encrypted communications between endpoints. Its client-side agent informs the
controller about its encryption capabilities and can be instructed to encrypt select flows based on business policies.

A possible use case is encrypting controller-to-controller communications; however, the framework is very flexible,
and client side software is available for multiple platforms and device types, enabling USC and OpenDaylight to
centralize the coordination of encryption across a wide array of endpoint and device types.

182 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Grafana_Integration_with_TSDR_Step-by-Step

OpenDaylight Documentation Documentation, Release Carbon

Virtual Tenant Network (VTN)

Provides multi-tenant virtual network on an SDN controller, allowing you to define the network with a look and feel
of a conventional L2/L3 network. Once the network is designed on VTN, it automatically maps into the underlying
physical network and is then configured on the individual switch, leveraging the SDN control protocol.

By defining a logical plane with VTN, you can conceal the complexity of the underlying network and better manage
network resources to reduce network configuration time and errors.

1.2.6 OpenDaylight Experimental Features

• Network Intent Composition (NIC)

• UNI Manager Plug-in (Unimgr)

• YANG-PUBSUB

Network Intent Composition (NIC)

Offers an interface with an abstraction layer for you to communicate “intentions,” i.e., what you expect from the
network. The Intent model, which is part of NIC’s core architecture, describes your networking services requirements
and transforms the details of the desired state to OpenDaylight. NIC has four features:

• odl-nic-core-hazelcast: Provides the following:

– A distributed intent mapping service implemented using hazelcast, which stores metadata needed to pro-
cess Intent correctly

– An intent REST API to external applications for Create, Read, Update, and Delete (CRUD) operations on
intents, conflict resolution, and event handling

• odl-nic-core-mdsal: Provides the following:

– A distributed Intent mapping service implemented using MD-SAL, which stores metadata needed to pro-
cess Intent correctly

– An Intent rest API to external applications for CRUD operations on Intents, conflict resolution, and event
handling

• odl-nic-console: Provides a Karaf CLI extension for Intent CRUD operations and mapping service operations

• Four renderers to provide specific implementations to render the Intent:

– Virtual Tenant Network Renderer

– Group Based Policy Renderer

– OpenFlow Renderer

– Network MOdeling Renderer

UNI Manager Plug-in (Unimgr)

Formed to initiate the development of data models and APIs that facilitate OpenDaylight software applications’ and/or
service orchestrators’ ability to configure and provision connectivity services.

1.2. Getting Started Guide 183

OpenDaylight Documentation Documentation, Release Carbon

YANG-PUBSUB

An experimental feature Plugin that allows subscriptions to be placed on targeted subtrees of YANG datastores residing
on remote devices. Changes in YANG objects within the remote subtree can be pushed to OpenDaylight as specified
and don’t require OpenDaylight to make continuous fetch requests. YANG-PUBSUB is developed as a Java project.
Development requires Maven version 3.1.1 or later.

1.2.7 Other features

OpFlex

Provides the OpenDaylight OpFlex Agent , which is a policy agent that works with Open vSwitch (OVS), to enforce
network policy, e.g., from Group-Based Policy, for locally-attached virtual machines or containers.

Network embedded Experience (NeXt)

Provides a network-centric topology UI that offers visualizations of the following:

1. Large complex network topologies

2. Aggregated network nodes

3. Traffic/path/tunnel/group visualizations

4. Different layout algorithms

5. Map overlays

6. Preset user-friendly interactions

NeXt can work with DLUX to build OpenDaylight applications. NeXt does not support Internet Explorer. Check out
the NeXt_demo for more information on the interface.

1.2.8 API

We are in the process of creating automatically generated API documentation for all of OpenDaylight. The following
are links to the preliminary documentation that you can reference. We will continue to add more API documentation
as it becomes available.

• mdsal

• odlparent

• yangtools

1.2.9 Installing OpenDaylight

You complete the following steps to install your networking environment, with specific instructions provided in the
subsections below.

Before detailing the instructions for these, we address the following: Java Runtime Environment (JRE) and operating
system information Target environment Known issues and limitations

184 Chapter 1. Content for OpenDaylight Users

https://www.youtube.com/watch?v=gBsUDu8aucs
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.mdsal/carbon/apidocs/
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.odlparent/carbon/apidocs/index.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.yangtools/carbon/apidocs/index.html

OpenDaylight Documentation Documentation, Release Carbon

Install OpenDaylight

Downloading and installing OpenDaylight

The default distribution can be found on the OpenDaylight software download page: http://www.opendaylight.org/
software/downloads

The Karaf distribution has no features enabled by default. However, all of the features are available to be installed.

Note: For compatibility reasons, you cannot enable all the features simultaneously. We try to document known
incompatibilities in the Install the Karaf features section below.

Running the karaf distribution

To run the Karaf distribution:

1. Unzip the zip file.

2. Navigate to the directory.

3. run ./bin/karaf.

For Example:

$ ls distribution-karaf-0.6.x-Carbon.zip
distribution-karaf-0.6.x-Carbon.zip
$ unzip distribution-karaf-0.6.x-Carbon.zip
Archive: distribution-karaf-0.6.x-Carbon.zip

creating: distribution-karaf-0.6.x-Carbon/
creating: distribution-karaf-0.6.x-Carbon/configuration/
creating: distribution-karaf-0.6.x-Carbon/data/
creating: distribution-karaf-0.6.x-Carbon/data/tmp/
creating: distribution-karaf-0.6.x-Carbon/deploy/
creating: distribution-karaf-0.6.x-Carbon/etc/
creating: distribution-karaf-0.6.x-Carbon/externalapps/
...
inflating: distribution-karaf-0.6.x-Carbon/bin/start.bat
inflating: distribution-karaf-0.6.x-Carbon/bin/status.bat
inflating: distribution-karaf-0.6.x-Carbon/bin/stop.bat

$ cd distribution-karaf-0.6.x-Carbon
$./bin/karaf

________ ________ .__ .__ .__ __
_____ \ ______ ____ ____ ______ \ _____ ___.__.\| \| \|__\| ____ \| \|__

→˓_/ \|_
/ \| ____ _/ __ \ / \ \| \| __ \< \| \|\| \| \| \|/ ___\\|

→˓ \| \ __\
/ \| \ \|_> > ___/\| \| \\| ` \/ __ ___ \|\| \|_\| / /_/ >

→˓ Y \ \|
_______ / __/ ___ >___\| /_______ (____ / ____\|\|____/_____ /\|___\|

→˓/__\|
\/\|__\| \/ \/ \/ \/\/ /_____/ \/

• Press tab for a list of available commands

• Typing [cmd] --help will show help for a specific command.

1.2. Getting Started Guide 185

http://www.opendaylight.org/software/downloads
http://www.opendaylight.org/software/downloads

OpenDaylight Documentation Documentation, Release Carbon

• Press ctrl-d or type system:shutdown or logout to shutdown OpenDaylight.

Note: Please take a look at the Deployment Recommendations and following sections under Security Considerations
if you’re planning on running OpenDaylight outside of an isolated test lab environment.

Install the Karaf features

To install a feature, use the following command, where feature1 is the feature name listed in the table below:

feature:install <feature1>

You can install multiple features using the following command:

feature:install <feature1> <feature2> ... <featureN-name>

Note: For compatibility reasons, you cannot enable all Karaf features simultaneously. The table below documents
feature installation names and known incompatibilities.Compatibility values indicate the following:

• all - the feature can be run with other features.

• self+all - the feature can be installed with other features with a value of all, but may interact badly with other
features that have a value of self+all. Not every combination has been tested.

Uninstalling features

To uninstall a feature, you must shut down OpenDaylight, delete the data directory, and start OpenDaylight up again.

Important: Uninstalling a feature using the Karaf feature:uninstall command is not supported and can cause unex-
pected and undesirable behavior.

Listing available features

To find the complete list of Karaf features, run the following command:

feature:list

To list the installed Karaf features, run the following command:

feature:list -i

Features to implement networking functionality provide release notes, which you can find in the proj_rel_notes section.

Karaf running on Windows 10

Windows 10 cannot be identify by Karaf (equinox). Issue occurs during installation of karaf features e.g.:

186 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

opendaylight-user@root>feature:install odl-restconf
Error executing command: Can't install feature odl-restconf/0.0.0:
Could not start bundle mvn:org.fusesource.leveldbjni/leveldbjni-all/1.8-odl in
→˓feature(s) odl-akka-leveldb-0.7: The bundle "org.fusesource.leveldbjni.leveldbjni-
→˓all_1.8.0 [300]" could not be resolved. Reason: No match found for native code:
→˓META-INF/native/windows32/leveldbjni.dll; processor=x86; osname=Win32, META-INF/
→˓native/windows64/leveldbjni.dll; processor=x86-64; osname=Win32, META-INF/native/
→˓osx/libleveldbjni.jnilib; processor=x86; osname=macosx, META-INF/native/osx/
→˓libleveldbjni.jnilib; processor=x86-64; osname=macosx, META-INF/native/linux32/
→˓libleveldbjni.so; processor=x86; osname=Linux, META-INF/native/linux64/
→˓libleveldbjni.so; processor=x86-64; osname=Linux, META-INF/native/sunos64/amd64/
→˓libleveldbjni.so; processor=x86-64; osname=SunOS, META-INF/native/sunos64/sparcv9/
→˓libleveldbjni.so; processor=sparcv9; osname=SunOS

Workaround is to add

org.osgi.framework.os.name = Win32

to the karaf file

etc/system.properties

The workaround and further info are in this thread: http://stackoverflow.com/questions/35679852/
karaf-exception-is-thrown-while-installing-org-fusesource-leveldbjni

Karaf OpenDaylight Features

Table 1.1: Karaf OpenDaylight features

Feature Name Feature Description Karaf feature name Compatibility
Authentication Enables authentication

with support for fed-
eration using Apache
Shiro

odl-aaa-shiro all

BGP Provides support for Bor-
der Gateway Protocol (in-
cluding Link-State Distri-
bution) as a source of L3
topology information

odl-bgpcep-bgp all

BMP Provides support for BGP
Monitoring Protocol as a
monitoring station

odl-bgpcep-bmp all

DIDM Device Identification and
Driver Management

odl-didm-all all

Centinel Provides interfaces for
streaming analytics

odl-centinel-all all

DLUX Provides an intuitive
graphical user interface
for OpenDaylight

odl-dluxapps-applications all

Continued on next page

1.2. Getting Started Guide 187

http://stackoverflow.com/questions/35679852/karaf-exception-is-thrown-while-installing-org-fusesource-leveldbjni
http://stackoverflow.com/questions/35679852/karaf-exception-is-thrown-while-installing-org-fusesource-leveldbjni

OpenDaylight Documentation Documentation, Release Carbon

Table 1.1 – continued from previous page
Feature Name Feature Description Karaf feature name Compatibility
Fabric as a Service (Faas) Creates a common ab-

straction layer on top of
a physical network so
northbound APIs or ser-
vices can be more easiliy
mapped onto the physical
network as a concrete de-
vice configuration

odl-faas-all all

Group Based Policy Enables Endpoint Reg-
istry and Policy Reposi-
tory REST APIs and as-
sociated functionality for
Group Based Policy with
the default renderer for
OpenFlow renderers

odl-groupbasedpolicy-
ofoverlay

all

GBP User Interface Enables a web-based user
interface for Group Based
Policy

odl-groupbasedpolicyi-ui all

GBP FaaS renderer Enables the Fabric as
a Service renderer for
Group Based Policy

odl-groupbasedpolicy-
faas

self+all

GBP Neutron Support Provides OpenStack Neu-
tron support using Group
Based Policy

odl-groupbasedpolicy-
neutronmapper

all

L2 Switch Provides L2 (Ether-
net) forwarding across
connected OpenFlow
switches and support for
host tracking

odl-l2switch-switch-ui self+all

LACP Enables support for the
Link Aggregation Control
Protocol

odl-lacp-ui self+all

LISP Flow Mapping Enables LISP control
plane services including
the mapping system
services REST API and
LISP protocol SB plugin

odl-lispflowmapping-
msmr

all

NEMO CLI Provides intent mappings
and implementation with
CLI for legacy devices

odl-nemo-cli-renderer all

NEMO OpenFlow Provides intent mapping
and implementation for
OpenFlow devices

odl-nemo-openflow-
renderer

self+all

NetIDE Enables portabilty and
cooperation inside a
single network by using
a client/server multi-
controller architecture

odl-netide-rest all

Continued on next page

188 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Table 1.1 – continued from previous page
Feature Name Feature Description Karaf feature name Compatibility
NETCONF over SSH Provides support to man-

age NETCONF-enabled
devices over SSH

odl-netconf-connector-ssh all

OF-CONFIG Enables remote configura-
tion of OpenFlow datap-
aths

odl-of-config-rest all

OVSDB OpenStack Neu-
tron

OpenStack Network Vir-
tualization using Open-
Daylight’s OVSDB sup-
port

odl-ovsdb-openstack all

OVSDB Southbound OVSDB MDSAL
southbound plugin for
Open_vSwitch schema

odl-ovsdb-southbound-
impl-ui

all

OVSDB HWVTEP
Southbound

OVSDB MDSAL hwvtep
southbound plugin for the
hw_vtep schema

odl-ovsdb-
hwvtepsouthbound-ui

all

OVSDB NetVirt SFC OVSDB NetVirt support
for SFC

odl-ovsdb-sfc-ui all

OpenFlow Flow Program-
ming

Enables discovery and
control of OpenFlow
switches and the topool-
ogy between them

odl-openflowplugin-flow-
services-ui

all

OpenFlow Table Type
Patterns

Allows OpenFlow Table
Type Patterns to be man-
ually associated with net-
work elements

odl-ttp-all all

Packetcable PCMM Enables flow-based dy-
namic QoS management
of CMTS use in the DOC-
SIS infrastructure and a
policy server

odl-packetcable-policy-
server

self+all

PCEP Enables support for PCEP odl-bgpcep-pcep all
RESTCONF API Support Enables REST API access

to the MD-SAL including
the data store

odl-restconf all

SDNinterface Provides support for inter-
action and sharing of state
between (non-clustered)
OpenDaylight instances

odl-sdninterfaceapp-all all

SFC over L2 Supports implement-
ing Service Function
Chaining using Layer 2
forwarding

odl-sfcofl2 self+all

SFC over LISP Supports implement-
ing Service Function
Chaining using LISP

odl-sfclisp all

Continued on next page

1.2. Getting Started Guide 189

OpenDaylight Documentation Documentation, Release Carbon

Table 1.1 – continued from previous page
Feature Name Feature Description Karaf feature name Compatibility
SFC over REST Supports implementing

Service Function Chain-
ing using REST CRUD
operations on network
elements

odl-sfc-sb-rest all

SFC over VXLAN Supports implement-
ing Service Function
Chaining using VXLAN
tunnels

odl-sfc-ovs self+all

SNMP Plugin Enables monitoring and
control of network ele-
ments via SNMP

odl-snmp-plugin all

SNMP4SDN Enables OpenFlow-
like control of network
elements via SNMP

odl-snmp4sdn-all all

SSSD Federated Authen-
tication

Enables support for feder-
ated authentication using
SSSD

odl-aaa-sssd-plugin all

Secure tag eXchange Pro-
tocol (SXP)

Enables distribution of
shared tags to network
devices

odl-sxp-controller all

Time Series Data Reposi-
tory (TSDR)

Enables support for
collecting, storing and
querying time series
data. TSDR supports the
following collection data:

• OpenFlow statistics
• NETFLOW statis-

tics
• sFlow statistics
• OpenFlow Con-

troller metrics
• SNMP data
• SysLog data
• RestConf data

TSDR supports the fol-
lowing data stores:

• HSQLDB
• HBase
• Cassandra

TSDR supports the
default OpenDaylight
RESTCONF and API
interfaces and an Elastic-
Search interface for all
data stores.

odl-tsdr-core, odl-tsdr-
hsqldb

all

Continued on next page

190 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Table 1.1 – continued from previous page
Feature Name Feature Description Karaf feature name Compatibility
TSDR Data Collectors TSDR collector features

include support for col-
lecting the following data:

• OpenFlow statistics
• NETFLOW statis-

tics
• sFlow statistics
• OpenFlow Con-

troller metrics
• SNMP data
• SysLog data
• RESTCONF data.

• odl-tsdr-openflow-
statistics-collector

• odl-tsdr-netflow-
statistics-collector

• odl-tsdr-sflow-
statistics-collector

• odl-tsdr-controller-
metrics-collector

• odl-tsdr-snmp-data-
collector

• odl-tsdr-syslog-
collector

• odl-tsdr-restconf-
collector

all

TSDR Data Stores TSDR enables support for
the following data stores:
* HSQLDB * HBase *
Cassandra

• odl-tsdr-hsqldb
• odl-tsdr-hbase
• odl-tsdr-cassandra

all

TSDR Data Query TSDR supports the
default OpenDaylight
RESTCONF and ODL
API interfaces for queries
to all data stores. It also
supports an integrated
ElasticSearch query.

odl-tsdr-elasticsearch all

Topology Processing
Framework

Enables merged and fil-
tered views of network
topologies

odl-topoprocessing-
framework

all

Unified Secure Channel
(USC)

Enables support for se-
cure, remote connections
to network devices

odl-usc-channel-ui all

VTN Manager Enables Virtual Tenant
Network support

odl-vtn-manager-rest self+all

VTN Manager Neutron Enables OpenStack Neu-
tron support of VTN Man-
ager

odl-vtn-manager-neutron self+all

Other OpenDaylight features

Table 1.2: Other OpenDaylight features

Feature
Name

Feature Description Karaf
feature
name

Com-
patibil-
ity

OpFlex Provides OpFlex agent for Open vSwitch to enforce network policy, such
as GBP, for locally-attached virtual machines or containers

n/a all

NeXt Provides a developer toolkit for designing network-centric topology user
interfaces

n/a all

1.2. Getting Started Guide 191

OpenDaylight Documentation Documentation, Release Carbon

Experimental OpenDaylight Features

The following functionality is labeled as experimental in this OpenDaylight release and should be used accordingly.
In general, it is not supposed to be used in production unless its limitations are well understood by those deploying it.

Table 1.3: Other features

Feature Name Feature Description Karaf feature
name

Com-
pati-
bility

Authorization Enables configurable role-based authorization odl-aaa-authz all
ALTO Enables support for Application-Layer Traffic Optimization odl-alto-core self+all
CAPWAP Enables control of supported wireless APs odl-capwap-ac-

rest
all

Clustered
Authentication

Enables the use of the MD-SAL clustered data store for the
authentication database

odl-aaa-authn-
mdsal-cluster

all

Controller Shield Provides controller security information to northbound
applications

odl-usecplugin all

GBP IO Visor
Renderer

Provides support for rendering Group Based Policy to IO
Visor

odl-
groupbasedpolicy-
iovisor

all

Internet of Things
Data Management

Enables support for the oneM2M specification odl-iotdm-
onem2m

all

LISP Flow Mapping
OpenStack Network
Virtualization

Experimental support for OpenStack Neutron virtualization odl-
lispflowmapping-
neutron

self+all

Network Intent
Composition (NIC)

Provides abstraction layer for communcating network intents
(including a distributed intent mapping service REST API)
using either Hazelcast or the MD-SAL as the backing data
store for intents

odl-nic-core-
hazelcast or
odl-nic-core-
mdsal

all

NIC Console Provides a Karaf CLI extension for intent CRUD operations
and mapping service operations

odl-nic-console all

NIC VTN renderer Virtual Tenant Network renderer for Network Intent
Composition

odl-nic-
renderer-vtn

self+all

NIC GBP renderer Group Based Policy renderer for Network Intent Composition odl-nic-
renderer-gbp

self+all

NIC OpenFlow
renderer

OpenFlow renderer for Network Intent Composition odl-nic-
renderer-of

self+all

NIC NEMO
renderer

NEtwork MOdeling renderer for Network Intent Composition odl-nic-
renderer-nemo

self+all

OVSDB NetVirt UI OVSDB DLUX UI odl-ovsdb-ui all
Secure Networking
Bootstrap

Defines a SNBi domain and associated white lists of devices
to be accommodated to the domain

odl-snbi-all self+all

UNI Manager Initiates the development of data models and APIs to facilitate
configuration and provisioning connectivity services for
OpenDaylight applications and services

odl-unimgr all

YANG PUBSUB Allows subscriptions to be placed on targeted subtrees of
YANG datastores residing on remote devices to obviate the
need for OpenDaylight to make continuous fetch requests

odl-yangpush-
rest

all

192 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Install support for REST APIs

Most components that offer REST APIs will automatically load the RESTCONF API Support component, but if for
whatever reason they seem to be missing, install the “odl-restconf” feature to activate this support.

1.2.10 Project-Specific Installation Guides

Centinel Installation Guide

This document is for the user to install the artifacts that are needed for using Centinel functionality in the OpenDaylight
by enabling the default Centinel feature. Centinel is a distributed reliable framework for collection, aggregation and
analysis of streaming data which is added in this OpenDaylight release.

Overview

The Centinel project aims at providing a distributed, reliable framework for efficiently collecting, aggregating and
sinking streaming data across Persistence DB and stream analyzers (e.g., Graylog, Elasticsearch, Spark, Hive). This
framework enables SDN applications/services to receive events from multiple streaming sources (e.g., Syslog, Thrift,
Avro, AMQP, Log4j, HTTP/REST).

In this release, we develop a “Log Service” and plug-in for log analyzer (e.g., Graylog). The Log service process
real time events coming from log analyzer. Additionally, we provide stream collector (Flume- and Sqoop-based) that
collects logs from OpenDaylight and sinks them to persistence service (integrated with TSDR). Centinel also includes
a RESTCONF interface to inject events to north bound applications for real-time analytic/network configuration.
Further, a Centinel User Interface (web interface) will be available to operators to enable rules/alerts/dashboard etc.

Pre Requisites for Installing Centinel

• Recent Linux distribution - 64bit/16GB RAM

• Java Virtual Machine 1.7 or above

• Apache Maven 3.1.1 or above

Preparing for Installation

There are some additional pre-requisites for Centinel, which can be done by integrate Graylog server, Apache Drill,
Apache Flume and HBase.

Graylog server2 Installation

• Install MongoDB

– import the MongoDB public GPG key into apt:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10

– Create the MongoDB source list:

echo 'deb http://downloads-distro.mongodb.org/repo/debian-sysvinit dist 10gen
→˓' | sudo tee /etc/apt/sources.list.d/mongodb.list

1.2. Getting Started Guide 193

OpenDaylight Documentation Documentation, Release Carbon

– Update your apt package database:

sudo apt-get update

– Install the latest stable version of MongoDB with this command:

sudo apt-get install mongodb-org

• Install Elasticsearch

– Graylog2 v0.20.2 requires Elasticsearch v.0.90.10. Download and install it with these commands:

cd ~; wget https://download.elasticsearch.org/elasticsearch/elasticsearch/
→˓elasticsearch-0.90.10.deb
sudo dpkg -i elasticsearch-0.90.10.deb

– We need to change the Elasticsearch cluster.name setting. Open the Elasticsearch configuration file:

sudo vi /etc/elasticsearch/elasticsearch.yml

– Find the section that specifies cluster.name. Uncomment it, and replace the default value with graylog2:

cluster.name: graylog2

– Find the line that specifies network.bind_host and uncomment it so it looks like this:

network.bind_host: localhost
script.disable_dynamic: true

– Save and quit. Next, restart Elasticsearch to put our changes into effect:

sudo service elasticsearch restart

– After a few seconds, run the following to test that Elasticsearch is running properly:

curl -XGET 'http://localhost:9200/_cluster/health?pretty=true'

• Install Graylog2 server

– Download the Graylog2 archive to /opt with this command:

cd /opt; sudo wget https://github.com/Graylog2/graylog2-server/releases/
→˓download/0.20.2/graylog2-server-0.20.2.tgz

– Then extract the archive:

sudo tar xvf graylog2-server-0.20.2.tgz

– Let’s create a symbolic link to the newly created directory, to simplify the directory name:

sudo ln -s graylog2-server-0.20.2 graylog2-server

– Copy the example configuration file to the proper location, in /etc:

sudo cp /opt/graylog2-server/graylog2.conf.example /etc/graylog2.conf

– Install pwgen, which we will use to generate password secret keys:

194 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

sudo apt-get install pwgen

– Now must configure the admin password and secret key. The password secret key is configured in gray-
log2.conf, by the password_secret parameter. Generate a random key and insert it into the Graylog2
configuration with the following two commands:

SECRET=$(pwgen -s 96 1)
sudo -E sed -i -e 's/password_secret =.*/password_secret = '$SECRET'/' /etc/
→˓graylog2.conf

PASSWORD=$(echo -n password | shasum -a 256 | awk '{print $1}')
sudo -E sed -i -e 's/root_password_sha2 =.*/root_password_sha2 = '$PASSWORD'/
→˓' /etc/graylog2.conf

– Open the Graylog2 configuration to make a few changes: (sudo vi /etc/graylog2.conf):

rest_transport_uri = http://127.0.0.1:12900/
elasticsearch_shards = 1

– Now let’s install the Graylog2 init script. Copy graylog2ctl to /etc/init.d:

sudo cp /opt/graylog2-server/bin/graylog2ctl /etc/init.d/graylog2

– Update the startup script to put the Graylog2 logs in /var/log and to look for the Graylog2 server JAR file
in /opt/graylog2-server by running the two following sed commands:

sudo sed -i -e 's/GRAYLOG2_SERVER_JAR=\${GRAYLOG2_SERVER_JAR:=graylog2-server.
→˓jar}/GRAYLOG2_SERVER_JAR=\${GRAYLOG2_SERVER_JAR:=\/opt\/graylog2-server\/
→˓graylog2-server.jar}/' /etc/init.d/graylog2
sudo sed -i -e 's/LOG_FILE=\${LOG_FILE:=log\/graylog2-server.log}/LOG_FILE=\$
→˓{LOG_FILE:=\/var\/log\/graylog2-server.log}/' /etc/init.d/graylog2

– Install the startup script:

sudo update-rc.d graylog2 defaults

– Start the Graylog2 server with the service command:

sudo service graylog2 start

Install Graylog Server using Virtual Machine

• Download the OVA image from link given below and save it to your disk locally: https://github.com/Graylog2/
graylog2-images/tree/master/ova

• Run the OVA in many systems like VMware or VirtualBox.

HBase Installation

• Download hbase-0.98.15-hadoop2.tar.gz

• Unzip the tar file using below command:

tar -xvf hbase-0.98.15-hadoop2.tar.gz

1.2. Getting Started Guide 195

https://github.com/Graylog2/graylog2-images/tree/master/ova
https://github.com/Graylog2/graylog2-images/tree/master/ova

OpenDaylight Documentation Documentation, Release Carbon

• Create directory using below command:

sudo mkdir /usr/lib/hbase

• Move hbase-0.98.15-hadoop2 to hbase using below command:

mv hbase-0.98.15-hadoop2/usr/lib/hbase/hbase-0.98.15-hadoop2 hbase

• Configuring HBase with java

– Open your hbase/conf/hbase-env.sh and set the path to the java installed in your system:

export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_25

– Set the HBASE_HOME path in bashrc file

* Open bashrc file using this command:

gedit ~/.bashrc

* In bashrc file append the below 2 statements:

export HBASE_HOME=/usr/lib/hbase/hbase-0.98.15-hadoop2

export PATH=$PATH:$HBASE_HOME/bin

• To start HBase issue following commands:

HBASE_PATH$ bin/start-hbase.sh

HBASE_PATH$ bin/hbase shell

• Create centinel table in HBase with stream,alert,dashboard and stringdata as column families using below com-
mand:

create 'centinel','stream','alert','dashboard','stringdata'

• To stop HBase issue following command:

HBASE_PATH$ bin/stop-hbase.sh

Apache Flume Installation

• Download apache-flume-1.6.0.tar.gz

• Copy the downloaded file to the directory where you want to install Flume.

• Extract the contents of the apache-flume-1.6.0.tar.gz file using below command. Use sudo if necessary:

tar -xvzf apache-flume-1.6.0.tar.gz

• Starting flume

– Navigate to the Flume installation directory.

– Issue the following command to start flume-ng agent:

196 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

./flume-ng agent --conf conf --conf-file multiplecolumn.conf --name a1 -
→˓Dflume.root.logger=INFO,console

Apache Drill Installation

• Download apache-drill-1.1.0.tar.gz

• Copy the downloaded file to the directory where you want to install Drill.

• Extract the contents of the apache-drill-1.1.0.tar.gz file using below command:

tar -xvzf apache-drill-1.1.0.tar.gz

• Starting Drill:

– Navigate to the Drill installation directory.

– Issue the following command to launch Drill in embedded mode:

bin/drill-embedded

• Access the Apache Drill UI on link: http://localhost:8047/

• Go to “Storage” tab and enable “HBase” storage plugin.

Deploying plugins

• Use the following command to download git repository of Centinel:

git clone https://git.opendaylight.org/gerrit/p/centinel

• Navigate to the installation directory and build the code using maven by running below command:

mvn clean install

• After building the maven project, a jar file named centinel-SplittingSerializer-0.0.
1-SNAPSHOT.jar will be created in centinel/plugins/centinel-SplittingSerializer/
target inside the workspace directory. Copy and rename this jar file to
centinel-SplittingSerializer.jar (as mentioned in configuration file of flume) and save at
location apache-flume-1.6.0-bin/lib inside flume directory.

• After successful build, copy the jar files present at below locations to /opt/graylog/plugin in graylog
server(VM):

centinel/plugins/centinel-alertcallback/target/centinel-alertcallback-0.1.0-
→˓SNAPSHOT.jar

centinel/plugins/centinel-output/target/centinel-output-0.1.0-SNAPSHOT.jar

• Restart the server after adding plugin using below command:

sudo graylog-ctl restart graylog-server

1.2. Getting Started Guide 197

http://localhost:8047/

OpenDaylight Documentation Documentation, Release Carbon

Configure rsyslog

Make changes to following file:

/etc/rsyslog.conf

• Uncomment $InputTCPServerRun 1514

• Add the following lines:

module(load="imfile" PollingInterval="10") #needs to be done just once
input(type="imfile"
File="<karaf.log>" #location of log file
StateFile="statefile1"
Tag="tag1")

. @@127.0.0.1:1514 # @@used for TCP

– Use the following format and comment the previous one:

$ActionFileDefaultTemplate RSYSLOG_SyslogProtocol23Format

• Use the below command to send Centinel logs to a port:

tail -f <location of log file>/karaf.log|logger

• Restart rsyslog service after making above changes in configuration file:

sudo service rsyslog restart

Install the following feature

Finally, from the Karaf console install the Centinel feature with this command:

feature:install odl-centinel-all

Verifying your Installation

If the feature install was successful you should be able to see the following Centinel commands added:

centinel:list

centinel:purgeAll

Troubleshooting

Check the ../data/log/karaf.log for any exception related to Centinel related features

Upgrading From a Previous Release

Only fresh installation is supported.

198 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Uninstalling Centinel

To uninstall the Centinel functionality, you need to do the following from Karaf console:

feature:uninstall centinel-all

Its recommended to restart the Karaf container after uninstallation of the Centinel functionality.

NetVirt Installation Guide

NetVirt Design Specifications

Starting from Carbon, NetVirt uses an RST format Design Specification document for all new features. These specifi-
cations are a perfect way to understand various NetVirt features.

Contents:

Table of Contents

• Title of the feature

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

1.2. Getting Started Guide 199

OpenDaylight Documentation Documentation, Release Carbon

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Title of the feature

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:cool-topic]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

Listing 1.1: example.yang

module example {
namespace "urn:opendaylight:netvirt:example";
prefix "example";

import ietf-yang-types {prefix yang; revision-date "2013-07-15";}

description "An example YANG model.";

revision 2017-02-14 { description "Initial revision"; }
}

200 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:cool-topic

OpenDaylight Documentation Documentation, Release Carbon

Configuration impact

Any configuration parameters being added/deprecated for this feature? What will be defaults for these? How will it
impact existing deployments?

Note that outright deletion/modification of existing configuration is not allowed due to backward compatibility. They
can only be deprecated and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but not limited to use of CDTCL, EOS, Cluster
Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change? Does it help improve scale and performance or
make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature will be used in an actual deployment.

e.g. For most netvirt features this will include OpenStack APIs.

This section will be primary input for Test and Documentation teams. Along with above this should also capture REST
API and CLI.

1.2. Getting Started Guide 201

OpenDaylight Documentation Documentation, Release Carbon

Features to Install

odl-netvirt-openstack

Identify existing karaf feature to which this change applies and/or new karaf features being introduced. These can be
user facing features which are added to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assignee and other contributors.

Primary assignee: <developer-a>, <irc nick>, <email>

Other contributors: <developer-b>, <irc nick>, <email> <developer-c>, <irc nick>, <email>

Work Items

Break up work into individual items. This should be a checklist on a Trello card for this feature. Provide the link to
the trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal [other ODL projects] as well as external
[OVS, karaf, JDK etc]. This should also capture specific versions if any of these dependencies. e.g. OVS version,
Linux kernel version, JDK etc.

This should also capture impacts on existing projects that depend on Netvirt.

Following projects currently depend on Netvirt: Unimgr

Testing

Capture details of testing that will need to be added.

202 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is the impact on documentation for this change? If documentation changes are needed call out one of the
<contributors> who will work with the Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

• Links to Summit presentation, discussion etc.

• Links to mail list discussions

• Links to patches in other projects

• Links to external documentation

[1] OpenDaylight Documentation Guide

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note: This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. http://creativecommons.org/
licenses/by/3.0/legalcode

Table of Contents

• ACL Statistics

– Problem description

* Use Cases

– Proposed change

* ACL Changes

* Drop packets statistics support

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

1.2. Getting Started Guide 203

http://docs.opendaylight.org/en/latest/documentation.html
https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenDaylight Documentation Documentation, Release Carbon

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

ACL Statistics

https://git.opendaylight.org/gerrit/#/q/topic:acl-stats

This feature is to provide additional operational support for ACL through statistical counters. ACL rules provide
security to VMs by filtering packets in either directions (ingress/egress). Using OpenFlow statistical counters, ODL
will provide additional information on the number of packets dropped by the ACL rules. This information is made
available to the operator “on demand”.

Drop statistics will be provided for below cases:

• Packets dropped due to ACL rules

• Packets dropped due to INVALID state. The INVALID state means that the packet can’t be identified or that it
does not have any state. This may be due to several reasons, such as the system running out of memory or ICMP
error messages that do not respond to any known connections.

The packet drop information provided through the statistical counters enable operators to trouble shoot any misbehav-
ior and take appropriate actions through automated or manual intervention.

Collection and retrieval of information on the number of packets dropped by the SG rules

• Done for all (VM) ports in which SG is configured

• Flow statistical counters (in OpenFlow) are used for this purpose

• The information in these counters are made available to the operator, on demand, through an API

This feature will only be supported with Stateful ACL mode.

204 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:acl-stats

OpenDaylight Documentation Documentation, Release Carbon

Problem description

With only ACL support, operators would not be able to tell how many packets dropped by ACL rules. This enhance-
ment planned is about ACL module supporting aforementioned limitation.

Use Cases

Collection and retrieval of information on the number of packets dropped by the ACL rules

• Done for all (VM) ports in which ACL is configured

• The information in these counters are made available to the operator, on demand, through an API

• Service Orchestrator/operator can also specify ports selectively where ACL rules are configured

Proposed change

ACL Changes

Current Stateful ACL implementation has drop flows for all ports combined for a device. This needs to be modified to
have drop flows for each of the OF ports connected to VMs (Neutron Ports).

With the current implementation, drop flows are as below:

cookie=0x6900000, duration=938.964s, table=252, n_packets=0, n_bytes=0,
→˓priority=62020,

ct_state=+inv+trk actions=drop

cookie=0x6900000, duration=938.969s, table=252, n_packets=0, n_bytes=0, priority=50,
ct_state=+new+trk actions=drop

Now, for supporting Drop packets statistics per port, ACL will be updated to replace above flows with new DROP
flows with lport tag as metadata for each of the VM (Neutron port) being added to OVS as specified below:

cookie=0x6900001, duration=938.964s, table=252, n_packets=0, n_bytes=0,
→˓priority=62015,

metadata=0x10000000000/0xffffff0000000000, ct_state=+inv+trk actions=drop

cookie=0x6900001, duration=938.969s, table=252, n_packets=0, n_bytes=0, priority=50,
metadata=0x10000000000/0xffffff0000000000, ct_state=+new+trk actions=drop

Drop flows details explained above are for pipeline egress direction. For ingress side, similar drop flows would be
added with table=41.

Also, new cookie value 0x6900001 would be added with drop flows to identify it uniquely and priority 62015
would be used with +inv+trk flows to give higher priority for +est and +rel flows.

Drop packets statistics support

ODL Controller will be updated to provide a new RPC/NB REST API <get-acl-port-statistics> in ACL
module with ACL Flow Stats Request and ACL Flow Stats Response messages. This RPC/API will
retrieve details of dropped packets by Security Group rules for all the neutron ports specified as part of ACL Flow
Stats Request. The retrieved information (instantaneous) received in the OF reply message is formatted as ACL
Flow Stats Response message before sending it as a response towards the NB.

1.2. Getting Started Guide 205

OpenDaylight Documentation Documentation, Release Carbon

<get-acl-port-statistics> RPC/API implementation would be triggering
opendaylight-direct-statistics:get-flow-statistics request of OFPlugin towards OVS to
get the flow statistics of ACL tables (ingress / egress) for the required ports.

ACL Flow Stats Request/Response messages are explained in subsequent sections.

Pipeline changes

No changes needed in OF pipeline. But, new flows as specified in above section would be added for each of the
Neutron ports being added.

Yang changes

New yang file will be created with RPC as specified below:

Listing 1.2: acl-live-statistics.yang

module acl-live-statistics {
namespace "urn:opendaylight:netvirt:acl:live:statistics";

prefix "acl-stats";

import ietf-interfaces {prefix if;}
import aclservice {prefix aclservice; revision-date "2016-06-08";}

description "YANG model describes RPC to retrieve ACL live statistics.";

revision "2016-11-29" {
description "Initial revision of ACL live statistics";

}

typedef direction {
type enumeration {

enum ingress;
enum egress;
enum both;

}
}

grouping acl-drop-counts {
leaf drop-count {

description "Packets/Bytes dropped by ACL rules";
type uint64;

}
leaf invalid-drop-count {

description "Packets/Bytes identified as invalid";
type uint64;

}
}

grouping acl-stats-output {
description "Output for ACL port statistics";
list acl-interface-stats {

key "interface-name";
leaf interface-name {

type leafref {

206 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

path "/if:interfaces/if:interface/if:name";
}

}
list acl-drop-stats {

max-elements "2";
min-elements "0";
leaf direction {

type identityref {
base "aclservice:direction-base";

}
}
container packets {

uses acl-drop-counts;
}
container bytes {

uses acl-drop-counts;
}

}
container error {

leaf error-message {
type string;

}
}

}
}

grouping acl-stats-input {
description "Input parameters for ACL port statistics";

leaf direction {
type identityref {

base "aclservice:direction-base";
}
mandatory "true";

}
leaf-list interface-names {

type leafref {
path "/if:interfaces/if:interface/if:name";

}
max-elements "unbounded";
min-elements "1";

}
}

rpc get-acl-port-statistics {
description "Get ACL statistics for given list of ports";

input {
uses acl-stats-input;

}
output {

uses acl-stats-output;
}

}
}

1.2. Getting Started Guide 207

OpenDaylight Documentation Documentation, Release Carbon

Configuration impact

No configuration parameters being added/deprecated for this feature

Clustering considerations

No additional changes required to be done as only one RPC is being supported as part of this feature.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

N.A.

Targeted Release

Carbon

Alternatives

Dispatcher table (table 17 and table 220) based approach of querying drop packets count was considered. ie., arriving
drop packets count by below rule:

<total packets entered ACL tables> - <total packets entered subsequent service>

This approach was not selected as this only provides total packets dropped count per port by ACL services and does
not provide details of whether it’s dropped by ACL rules or for some other reasons.

Usage

Features to Install

odl-netvirt-openstack

REST API

Get ACL statistics

Following API gets ACL statistics for given list of ports.

Method: POST

208 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

URI: /operations/acl-live-statistics:get-acl-port-statistics

Parameters:

Parameter Type Possible Values Comments
“direction” Enum ingress/egress/both Required
“interface-names” Array [UUID String] [<UUID String>,<UUID String>,..] Required (1,N)

Example:

{
"input":
{

"direction": "both",
"interface-names": [

"4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
"6c53df3a-3456-11e5-a151-feff819cdc9f"

]
}

}

Possible Responses:

RPC Success:

{
"output": {
"acl-port-stats": [
{

"interface-name": "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
"acl-drop-stats": [
{

"direction": "ingress",
"bytes": {

"invalid-drop-count": "0",
"drop-count": "300"

},
"packets": {

"invalid-drop-count": "0",
"drop-count": "4"

}
},
{

"direction": "egress",
"bytes": {

"invalid-drop-count": "168",
"drop-count": "378"

},
"packets": {

"invalid-drop-count": "2",
"drop-count": "9"

}
}]

},
{

"interface-name": "6c53df3a-3456-11e5-a151-feff819cdc9f",
"acl-drop-stats": [
{

"direction": "ingress",
"bytes": {

1.2. Getting Started Guide 209

OpenDaylight Documentation Documentation, Release Carbon

"invalid-drop-count": "1064",
"drop-count": "1992"

},
"packets": {

"invalid-drop-count": "18",
"drop-count": "23"

}
},
{

"direction": "egress",
"bytes": {

"invalid-drop-count": "462",
"drop-count": "476"

},
"packets": {

"invalid-drop-count": "11",
"drop-count": "6"

}
}]

}]
}

RPC Success (with error for one of the interface):

{
"output":
{

"acl-port-stats": [
{

"interface-name": "4ae8cd92-48ca-49b5-94e1-b2921a2661c5",
"acl-drop-stats": [
{

"direction": "ingress",
"bytes": {

"invalid-drop-count": "0",
"drop-count": "300"

},
"packets": {

"invalid-drop-count": "0",
"drop-count": "4"

}
},
{

"direction": "egress",
"bytes": {

"invalid-drop-count": "168",
"drop-count": "378"

},
"packets": {

"invalid-drop-count": "2",
"drop-count": "9"

}
},
{

"interface-name": "6c53df3a-3456-11e5-a151-feff819cdc9f",
"error": {

"error-message": "Interface not found in datastore."
}

210 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

}]
}]

}
}

Note: Below are error messages for the interface:

1. “Interface not found in datastore.”

2. “Failed to find device for the interface.”

3. “Unable to retrieve drop counts due to error: <<error message>>”

4. “Unable to retrieve drop counts as interface is not configured for statistics collection.”

5. “Operation not supported for ACL <<Stateless/Transparent/Learn>> mode”

CLI

No CLI being added for this feature

Implementation

Assignee(s)

Primary assignee: <Somashekar Byrappa>

Other contributors: <Shashidhar R>

Work Items

1. Adding new drop rules per port (in table 41 and 252)

2. Yang changes

3. Supporting new RPC

Dependencies

This doesn’t add any new dependencies.

This feature has dependency on below bug reported in OF Plugin:

Bug 7232 - Problem observed with “get-flow-statistics” RPC call

Testing

Unit Tests

Following test cases will need to be added/expanded

1. Verify ACL STAT RPC with single Neutron port

1.2. Getting Started Guide 211

https://bugs.opendaylight.org/show_bug.cgi?id=7232

OpenDaylight Documentation Documentation, Release Carbon

2. Verify ACL STAT RPC with multiple Neutron ports

3. Verify ACL STAT RPC with invalid Neutron port

4. Verify ACL STAT RPC with mode set to “transparent/learn/stateless”

Also, existing unit tests will be updated to include new drop flows.

Integration Tests

Integration tests will be added, once IT framework is ready

CSIT

Following test cases will need to be added/expanded

1. Verify ACL STAT RPC with single Neutron port with different directions (ingress, egress, both)

2. Verify ACL STAT RPC with multiple Neutron ports with different directions (ingress, egress, both)

3. Verify ACL STAT RPC with invalid Neutron port

4. Verify ACL STAT RPC with combination of valid and invalid Neutron ports

5. Verify ACL STAT RPC with combination of Neutron ports with few having port-security-enabled as true and
others having false

Documentation Impact

This will require changes to User Guide. User Guide needs to be updated with details about new RPC being supported
and also about its REST usage.

References

N.A.

Note: This work is licensed under a Creative Commons Attribution 3.0 Unported License. http://creativecommons.
org/licenses/by/3.0/legalcode

Table of Contents

• ACL Remote ACL - Indirection Table to Improve Scale

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

212 Chapter 1. Content for OpenDaylight Users

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenDaylight Documentation Documentation, Release Carbon

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

ACL Remote ACL - Indirection Table to Improve Scale

ACL Remote ACL Indirection patches: https://git.opendaylight.org/gerrit/#/q/topic:remote_acl_indirection

This spec is to enhance the initial implementation of ACL remote ACLs filtering which was released in Boron. The
Boron release added full support for remote ACLs, however the current implementation does not scale well in terms
of flows. The Carbon release will update the implementation to introduce a new indirection table for ACL rules with
remote ACLs, to reduce the number of necessary flows, in cases where the port is associated with a single ACL. Due
to the complication of supporting multiple ACLs on a single port, the current implementation will stay the same for
these cases.

Problem description

Today, for each logical port, an ACL rule results in a flow in the ACL table (ACL2). When a remote ACL is configured
on this rule, this flow is multiplied for each VM in the remote ACL, resulting in a very large number of flows.

For example, consider we have:

• 100 computes

• 50 VMs on each compute (5000 VMs total),

• All VMs are in a SG (SG1)

1.2. Getting Started Guide 213

https://git.opendaylight.org/gerrit/#/q/topic:remote_acl_indirection

OpenDaylight Documentation Documentation, Release Carbon

• This SG has a security rule configured on it with remote SG=SG1 (it is common to set the remote SG as itself,
to set rules within the SG).

This would result in 50*5000 = 250,000 flows on each compute, and 25M flows in ODL MDSAL (!).

Use Cases

Neutron configuration of security rules, configured with remote SGs. This optimization will be relevant only when
there is a single security group that is associated with the port. In case more than one security group is associated with
the port - we will fallback to the current implementation which allows full functionality but with possible flow scaling
issues.

Rules with a remote ACL are used to allow certain types of packets only between VMs in certain security groups.
For example, configuring rules with the parent security group also configured as a remote security group, allows to
configure rules applied only for traffic between VMs in the same security group.

This will be done in the ACL implementation, so any ACL configured with a remote ACL via a different northbound
or REST would also be handled.

Proposed change

This blueprint proposes adding a new indirection table in the ACL service in each direction, which will attempt to
match the “remote” IP address associated with the packet (“dst_ip” in Ingress ACL, “src_ip” in Egress ACL), and set
the ACL ID as defined by the ietf-access-control-list in the metadata. This match will also include the ELAN ID to
handle ports with overlapping IPs.

These flows will be added to the ACL2 table. In addition, for each such ip->SG flow inserted in ACL2, we will insert
a single SG metadata match in ACL3 for each SG rule on the port configured with this remote SG.

If the IP is associated with multiple SGs - it is impossible to do a 1:1 matching of the SG, so we will not set the
metadata at this time and fallback to the current implementation of matching all possible IPs in the ACL table - for
this ACL2 will have a default flow passing the unmatched packets to ACL3 with an empty metadata SG_ID write (e.g.
0x0), to prevent potential garbage in the metadata SG ID.

This means that on transition from a single SG on the port to multiple SG (and back), we would need to remove/add
these flows from ACL2, and insert the correct rules into ACL3.

ACL1 (211/241):

• This is the ACL that has default allow rules - it is left untouched, and usually goes to ACL2.

ACL2 (212/242):

• For each port with a single SG - we will match on the IPs and the ELAN ID (for tenant awareness) here, and set
the SG ID in the metadata, before going to the ACL3 table.

• For any port with multiple SGs (or with no SG) - an empty value (0x0) will be set as the SG ID in the metadata,
to avoid potential garbage in the SG ID, and goto ACL3 table.

ACL3 (213/243):

• For each security rule that doesn’t have a remote SG, we keep the behavior the same: ACL3 matches on rule,
and resubmits to dispatcher if there is a match (Allow). The SG ID in the metadata will not be matched.

• For each security rule that does have a remote SG, we have two options:

– For ports belonging to the remote SG that are associated with a single SG - there will be a single flow
per rule, matching the SG ID from the metadata (in addition to the other rule matches) and allowing the
packet.

214 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

– For ports belonging to the remote SG that are associated with multiple SGs - the existing implementation
will stay the same, multiplying the rule with all possible IP matches from the remote security groups.

Considering the example from the problem description above, the new implementation would result in a much reduced
number of flows:

5000+50 = 5050 flows on each compute, and 505,000 flows in ODL MDSAL.

As noted above, this would require using part of the metadata for writing/matching of an ACL ID. We would likely
require at least 12 bits for this, to support up to 4K SGs, where 16 bits to support up to 65K would be ideal. If the
metadata bits are not available, we can use a register for this purpose (16 bits).

In addition, the dispatcher will set the ELAN ID in the metadata before entering the ACL services, to allow tenant
aware IP to SG detection, supporting multi-tenants with IP collisions.

Pipeline changes

ACL3 will be added, and the flows in ACL2/ACL3 will be modified as noted above in the proposed change:

Table Match Action
Dispatcher metadata=service_id:ACL write_metadata:(elan_id=ELAN, service_id=NEXT),

goto_table:ACL1
ACL1
(211/241)

goto_table:ACL2

ACL2
(212/242)

metadata=ELAN_ID,
ip_src/dst=VM1_IP

write_metadata:(remote_acl=id), goto_table:ACL3

ACL2
(212/242)

metadata=ELAN_ID,
ip_src/dst=VM2_IP

write_metadata:(remote_acl=id), goto_table:ACL3

...
ACL2
(212/242)

goto_table:ACL3

ACL3
(213/243)

metadata=lport, <acl_rule> resubmit(,DISPATCHER) (X)

ACL3
(213/243)

metadata=lport+remote_acl,
<acl_rule>

resubmit(,DISPATCHER) (XX)

ACL3
(213/243)

metadata=lport,ip_src/dst=VM1_IP,
<acl_rule>

resubmit(,DISPATCHER) (XXX)

ACL3
(213/243)

metadata=lport,ip_src/dst=VM2_IP,
<acl_rule>

resubmit(,DISPATCHER) (XXX)

...

(X) These are the regular rules, not configured with any remote SG.
(XX) These are the proposed rules with the optimization - assuming the lport is using a single ACL.
(XXX) These are the remote SG rules in the current implementation, which we will fall back to if the lport has
multiple ACLs.

Table Numbering:

Currently the Ingress ACLs use tables 40,41,42 and the Egress ACLs use tables 251,252,253.

Table 43 is already proposed to be taken by SNAT, and table 254 is considered invalid by OVS. To overcome this and
align Ingress/Egress with symmetric numbering, I propose the following change:

• Ingress ACLs: 211, 212, 213, 214

1.2. Getting Started Guide 215

OpenDaylight Documentation Documentation, Release Carbon

• Egress ACLs: 241, 242, 243, 244

ACL1: INGRESS/EGRESS_ACL_TABLE ACL2: INGRESS/EGRESS_ACL_REMOTE_ACL_TABLE ACL3:
INGRESS/EGRESS_ACL_FILTER_TABLE

ACL4 is used only for Learn implementation for which an extra table is required.

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

See example in description. The scale of the flows will be drastically reduced when using remote ACLs.

Targeted Release

Carbon

Alternatives

For fully optimized support in all scenarios for remote SGs, meaning including support for ports with multiple ACLs
on them, we did consider implementing a similar optimization.

However, for this to happen due to OpenFlow limitations we would need to introduce an internal dispatcher inside the
ACL services, meaning we loop the ACL service multiple times, each time setting a different metadata SG value for
the port.

For another approach we could use a bitmask, but this would limit the number of possible SGs to be the number of
bits in the mask, which is much too low for any reasonable use case.

216 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Usage

Any configuration of ACL rules with remote ACLs will receive this optimization if the port is using a single SG.

Functionality should remain as before in any case.

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

• odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference1 for the Neutron CLI command syntax for managing Security Rules with Remote
Security Groups.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other contributors.

Primary assignee:

• Alon Kochba <alonko@hpe.com>

• Aswin Suryanarayanan <asuryana@redhat.com>

Other contributors:

• ?

Work Items

Task list in Carbon Trello

Dependencies

None.
1 Neutron Security Groups http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

1.2. Getting Started Guide 217

mailto:alonko@hpe.com
mailto:asuryana@redhat.com
https://trello.com/c/6WBbSSkr/145-acl-remote-acls-indirection-table-to-improve-scale-remote-acl-indirection
http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

OpenDaylight Documentation Documentation, Release Carbon

Testing

Unit Tests

Integration Tests

CSIT

We should add tests verifying remote SG configuration functionality. There should be at least:

• One security rule allowing ICMP traffic between VMs in the same SG.

• One positive test, checking ICMP connectivity works between two VMs using the same SG.

• One negative test, checking ICMP connectivity does not work between two VMs, one using the SG configured
with the rule above, and the other using a separate security group with all directions allowed.

Documentation Impact

None.

References

Table of Contents

• ACL - Reflecting the ACL changes on existing traffic

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

218 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

ACL - Reflecting the ACL changes on existing traffic

ACL patches: https://git.opendaylight.org/gerrit/#/q/topic:acl-reflection-on-existing-traffic

This spec describes the new implementation for applying ACL changes on existing traffic.

In current ACL implementation, once a connection had been committed to the connection tracker, the connection
would continue to be allowed, even if the policy defined in the ACL table has changed. This spec will explain the new
approach that ensures ACL policy changes will affect existing connections as well. This approach will improve the
pipeline behaviour in terms of reliable traffic between the VMs.

Problem description

When the traffic between two VMs starts, the first packet will match the actual SG flow, which commits the packets
in connection tracker. It changes the state of the packets to established. Further traffic will match the global conntrack
flow and go through the connection tracker straightly. This will continue until we terminate the established traffic.

When a rule is removed from the VM, the ACL flow getting removed from the respective tables. But, the already
established traffic is still working, because the connection still exists as ‘committed’ in the conntrack tracker.

For example, consider the below scenario which explains the problem in detail,

• Create a VM and associate the rule which allows ICMP

• Ping the DHCP server from the VM

• Remove the ICMP rule and check the ongoing traffic

When we remove the ICMP rule, the respective ICMP flow getting removed from the respective table (For egress,
table 213 and For Ingress, table 243). But, Since the conntrack flow having high priority than the SG flow, the packets
are matched by the conntrack flow and the live traffic is unaware of the flow removal.

The traffic between the VMs should be reliable and it should be succeeded accordance with SG flow. When a SG rule
is removed from the VM, the packets of ongoing traffic should be dropped.

Use Cases

The new ACL implementation will affect the below use cases,

1.2. Getting Started Guide 219

https://git.opendaylight.org/gerrit/#/q/topic:acl-reflection-on-existing-traffic

OpenDaylight Documentation Documentation, Release Carbon

• VM Creation/Deletion with SG

• SG Rule addition and removal to/from existing SG associated to ports

Proposed change

This spec proposes the fix that requires a new table (210/240) in the existing pipeline.

In this approach, we will use the “ct_mark” flag of connection tracker. The default value of ct_mark is zero.

• ct_mark=0 matches the packet in new state

• ct_mark=1 matches the packet in established state

For every new traffic, the ct_mark value will be zero. When the traffic begins, the first packet of every new traffic will
be matched by the respective SG flow which commits the packets into the connection tracker and changes the ct_mark
value to 1. So, every packets of established traffic will have the ct_mark value as 1.

In conntrack flow, we will have a ct_mark=1 match condition. After first packet committed to the connection tracker,
further packets of established traffic will be matched by the conntrack flow straightly.

In every SG flow, we will have below changes, “table=213/243, priority=3902, ct_state=+trk
,icmp,reg6=0x200/0xfffff00 actions=ct(commit,zone=6001, exec(set_field:0x1-
>ct_mark)),resubmit(,17/220)”

• The SG flow will match the packets which are in tracked state. It will commit the packet into the connection
tracker. It will change the ct_mark value to 1.

• When a VM having duplicate flows, the removal of one flow should not affect the existing traffic.

For example, consider a VM having ingress ICMP and Other protocol (ANY) rule. Ping the VM from the
DHCP server. Removal of ingress ICMP rule from the VM should not affect the existing traffic. Because
the Other protocol ANY flow will match the established packets of existing ICMP traffic and should make
the communication possible. To make the communication possible in above specific scenarios, we should
match the established packets in every SG flow. So, We will remove the “+new” check from the ct_state
condition of every ACL flow to recommit the established packets again into the conntrack.

In conntrack flow, “table=213/243, priority=62020,ct_state=-new+est-rel-inv+trk, ct_mark=0x1 ac-
tions=resubmit(,17/220)” “table=213/243, priority=62020,ct_state=-new-est+rel-inv+trk, ct_mark=0x1
actions=resubmit(,17/220)”

• The conntrack flow will match the packet which are in established state.

• For every new traffic, the first packet will be matched by the SG flow, which will change the ct_mark value
to 1. So, further packets will match the conntrack flow straightly.

In default drop flow of table 213/243, “table=213, n_packets=0, n_bytes=0, priority=50, ct_state=+trk ,meta-
data=0x20000000000/0xfffff0000000000 actions=drop” “table=243, n_packets=6, n_bytes=588, priority=50,
ct_state=+trk ,reg6=0x300/0xfffff00 actions=drop”

• For every VM, we are having a default drop flow to measure the drop statistics of particular VM. So, we
will remove the “+new” state check from the ct_state to measure the drop counts accurately.

Deletion of SG flow will add the below flow with configured hard time out in the table 212/242.

[1] “table=212/242, n_packets=73, n_bytes=7154, priority=40,icmp,reg6=0x200/0xfffff00,ct_mark=1 ac-
tions=ct(commit, zone=5500, exec(set_field:0x0->ct_mark)),goto_table:ACL4”

• It will match the ct_mark value with the one and change the ct_mark to zero.

The below tables describes the default hard time out of each protocol as configured in the conntrack.

220 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Protocol Time out (secs)
ICMP 30
TCP 18000
UDP 180

Please refer the Pipeline Changes for table information.

For Egress, Dispatcher table (table 17) will forward the packets to the new table 210 where we will check the source
match. It will forward the packet to 211 to match the destination of the packets. After the destination of the packet
verified, The packets will forward to the table 212. New flow in the table, will match the ct_mark value and forward
the packets to the 213 table.

Similarly, for Ingress, the packets will be forwarded through, Dispatcher table (220) >> New table (240) >> 241
>> 242 >> 243.

In dispatcher flows, we will have the below changes which will change the table 211/241 from the goto_table action
to the new table 210/240.

“table=17, priority=10,metadata=0x20000000000/0xffffff0000000000 ac-
tions=write_metadata:0x900002157f000000/0xfffffffffffffffe, goto_table:210“

“table=220, priority=6,reg6=0x200 actions=load:0x90000200->NXM_NX_REG6[],write_metadata:0x157f000000/0xfffffffffe,
goto_table:240“

Deletion of SG rule will add a new flow in the table 212/242 as mentioned above. The first packet after SG got deleted,
will match the above new flow and will change the ct_mark value to zero. So this packet will not match the conntrack
flow and will check the ACL4 table whether it having any other flows to match this packet. If the SG flow found, the
packet will be matched and change the ct_mark value 1.

If we restore the SG rule again, we will delete the added flow [1] from the 212/242 table, so the packets of existing
traffic will match the newly added SG flow in ACL4 table and proceed successfully.

Sample flows to be installed in each scenario,

SG rule addition

SG flow: [ADD] “table=213/243, n_packets=33, n_bytes=3234, priority=62021, ct_state=+trk,
icmp, reg6=0x200/0xfffff00 actions=ct(commit,zone=6001, exec(set_field:0x1-
>ct_mark)),resubmit(,17/220)”

Conntrack flow: [DEFAULT] “table=213/243, n_packets=105, n_bytes=10290,
priority=62020,ct_state=-new+est-rel-inv+trk, ct_mark=0x1 actions=resubmit(,17/220)”

SG Rule deletion

SG flow: [DELETE] “table=213/243, n_packets=33, n_bytes=3234, priority=62021,
ct_state=+trk,icmp,reg6=0x200/0xfffff00 actions=ct(commit,zone=6001,exec(set_field:0x1-
>ct_mark)),resubmit(,17/220)”

New flow: [ADD] “table=212/242, n_packets=73, n_bytes=7154, priority=62021,
ct_mark=0x1,icmp,reg6=0x200/0xfffff00 actions=ct(commit, exec(set_field:0x0-
>ct_mark)),goto_table:213/243”

Rule Restore

SG flow: [ADD] “table=213/243, n_packets=33, n_bytes=3234, priority=62021,
ct_state=+trk, icmp,reg6=0x200/0xfffff00 actions=ct(commit,zone=6001,exec(set_field:0x1-
>ct_mark)),resubmit(,17/220)”

New flow: [DELETE] “table=212/242, n_packets=73, n_bytes=7154, prior-
ity=62021,ct_mark=0x1,icmp,reg6=0x200/0xfffff00 actions=ct(commit,exec(set_field:0x0-
>ct_mark)),goto_table:213/243”

1.2. Getting Started Guide 221

OpenDaylight Documentation Documentation, Release Carbon

The new tables (210/240) will matches the source and the destination of the packets respectively. So, a default flow
will be added in the table 210/240 with least priority to drop the packets.

“table=210/240, n_packets=1, n_bytes=98, priority=0 actions=drop”

Flow Sample:

Egress flows before the changes,

cookie=0x6900000, duration=30.590s, table=17, n_packets=108,
n_bytes=10624, priority=10,metadata=0x20000000000/0xffffff0000000000
actions=write_metadata:0x9000021389000000/0xfffffffffffffffe,goto_table:211
cookie=0x6900000, duration=30.247s, table=211, n_packets=0, n_bytes=0, pri-
ority=61010,ipv6,dl_src=fa:16:3e:93:dc:92,ipv6_src=fe80::f816:3eff:fe93:dc92
actions=ct(table=212,zone=5001) cookie=0x6900000, dura-
tion=30.236s, table=211, n_packets=96, n_bytes=9312, pri-
ority=61010,ip,dl_src=fa:16:3e:93:dc:92,nw_src=10.100.5.3 ac-
tions=ct(table=212,zone=5001) cookie=0x6900000, duration=486.527s,
table=211, n_packets=2, n_bytes=180, priority=0 actions=drop
cookie=0x6900000, duration=30.157s, table=212, n_packets=0, n_bytes=0, prior-
ity=50,ipv6,metadata=0x1389000000/0xffff000000,ipv6_dst=fe80::f816:3eff:fe93:dc92
actions=write_metadata:0x2/0xfffffe,goto_table:212 cookie=0x6900000,
duration=30.152s, table=212, n_packets=0, n_bytes=0, prior-
ity=50,ip,metadata=0x1389000000/0xffff000000,nw_dst=10.100.5.3 ac-
tions=write_metadata:0x2/0xfffffe,goto_table:212 cookie=0x6900000,
duration=486.527s, table=212, n_packets=96, n_bytes=9312, prior-
ity=0 actions=goto_table:212 cookie=0x6900000, duration=486.056s,
table=213, n_packets=80, n_bytes=8128, priority=62020,ct_state=-
new+est-rel-inv+trk actions=resubmit(,17) cookie=0x6900000, dura-
tion=485.948s, table=213, n_packets=0, n_bytes=0, priority=62020,ct_state=-
new-est+rel-inv+trk actions=resubmit(,17) cookie=0x6900001, du-
ration=30.184s, table=213, n_packets=0, n_bytes=0, prior-
ity=62015,ct_state=+inv+trk,metadata=0x20000000000/0xfffff0000000000
actions=drop cookie=0x6900000, duration=30.177s, ta-
ble=213, n_packets=16, n_bytes=1184, prior-
ity=1000,ct_state=+new+trk,ip,metadata=0x20000000000/0xfffff0000000000
actions=ct(commit,zone=5001),resubmit(,17) cookie=0x6900000,
duration=30.168s, table=213, n_packets=0, n_bytes=0, prior-
ity=1001,ct_state=+new+trk,ipv6,metadata=0x20000000000/0xfffff0000000000
actions=ct(commit,zone=5001),resubmit(,17) cookie=0x6900001,
duration=30.207s, table=213, n_packets=0, n_bytes=0, prior-
ity=50,ct_state=+new+trk,metadata=0x20000000000/0xfffff0000000000 ac-
tions=dro

After the changes, flows will be,

cookie=0x6900000, duration=30.590s, table=17, n_packets=108,
n_bytes=10624, priority=10,metadata=0x20000000000/0xffffff0000000000 ac-
tions=write_metadata:0x9000021389000000/0xfffffffffffffffe,goto_table:210
cookie=0x6900000, duration=30.247s, table=210, n_packets=0, n_bytes=0, pri-
ority=61010,ipv6,dl_src=fa:16:3e:93:dc:92,ipv6_src=fe80::f816:3eff:fe93:dc92
actions=ct(table=211,zone=5001) cookie=0x6900000, dura-
tion=30.236s, table=210, n_packets=96, n_bytes=9312, pri-
ority=61010,ip,dl_src=fa:16:3e:93:dc:92,nw_src=10.100.5.3 ac-
tions=ct(table=211,zone=5001) cookie=0x6900000, duration=486.527s,
table=210, n_packets=2, n_bytes=180, priority=0 actions=drop
cookie=0x6900000, duration=30.157s, table=211, n_packets=0, n_bytes=0, prior-

222 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

ity=50,ipv6,metadata=0x1389000000/0xffff000000,ipv6_dst=fe80::f816:3eff:fe93:dc92
actions=write_metadata:0x2/0xfffffe,goto_table:212 cookie=0x6900000,
duration=30.152s, table=211, n_packets=0, n_bytes=0, prior-
ity=50,ip,metadata=0x1389000000/0xffff000000,nw_dst=10.100.5.3 ac-
tions=write_metadata:0x2/0xfffffe,goto_table:212 cookie=0x6900000, du-
ration=486.527s, table=211, n_packets=96, n_bytes=9312, prior-
ity=0 actions=goto_table:212 cookie=0x6900000, duration=486.527s, ta-
ble=212, n_packets=96, n_bytes=9312, priority=0 actions=goto_table:213
cookie=0x6900000, duration=486.056s, table=213, n_packets=80, n_bytes=8128,
priority=62020,ct_state=-new+est-rel-inv+trk,ct_mark=0x1 actions=resubmit(,17)
cookie=0x6900000, duration=485.948s, table=213, n_packets=0, n_bytes=0,
priority=62020,ct_state=-new-est+rel-inv+trk,ct_mark=0x1 actions=resubmit(,17)
cookie=0x6900001, duration=30.184s, table=213, n_packets=0, n_bytes=0, prior-
ity=62015,ct_state=+inv+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop
cookie=0x6900000, duration=30.177s, table=213, n_packets=16, n_bytes=1184,
priority=1000,ct_state=+trk,ip,metadata=0x20000000000/0xfffff0000000000
actions=ct(commit,zone=5001,exec(set_field:0x1->ct_mark)),resubmit(,17)
cookie=0x6900000, duration=30.168s, table=213, n_packets=0, n_bytes=0, pri-
ority=1001,ct_state=+new+trk,ipv6,metadata=0x20000000000/0xfffff0000000000
actions=ct(commit,zone=5001),resubmit(,17) cookie=0x6900001, du-
ration=30.207s, table=213, n_packets=0, n_bytes=0, prior-
ity=50,ct_state=+trk,metadata=0x20000000000/0xfffff0000000000 actions=drop

New flow will be installed in table 212 when we delete SG rule, “cookie=0x6900000,
duration=30.177s, table=212, n_packets=16, n_bytes=1184, prior-
ity=1000,ct_state=+trk,ip,metadata=0x20000000000/0xfffff0000000000,ct_mark=1,idle_timeout=1800
actions=ct(commit,zone=5001,exec(set_field:0x0->ct_mark)),goto_table:213”

Similarly, the ingress related flows will have the same changes as mentioned above.

Pipeline changes

The propose changes includes:

• New tables 210 and 240

• Re-purposed tables 211, 212, 241, 242

The propose will re-purpose the table 211 and 212 of egress, table 241 and 242 of ingress.

Currently, for egress, we are using the table 211 for source match and 212 for destination match. In new propose, we
will use the new table 210 for source match, table 211 for destination match and table 212 for new flow installation
when we delete the SG flow.

For Egress, the traffic will use the tables in following order, 17 >> 210 >> 211 >> 212 >> 213.

Similarly, for ingress, currently we are using the table 241 for destination match and 242 for source match. In new
propose, we will use the new table 240 for destination match, table 241 for source match and table 242 for new flow
installation when we delete the SG flow.

For Ingress, the traffic will use the tables in following order, 220 >> 240 >> 241 >> 242 >> 243

flow will be added in table 212/242, and the match condition of ACL4 flows will be modified as noted above in the
proposed change:

1.2. Getting Started Guide 223

OpenDaylight Documentation Documentation, Release Carbon

Table Match Action
Dispatcher metadata=service_id:ACL write_metadata:(elan_id=ELAN, service_id=NEXT),

goto_table:210/240 (ACL1)
ACL1
(210/240)

goto_table:ACL2

...
ACL2
(211/241)

goto_table:ACL3

ACL3
(212/242)

ip,ct_mark=0x1,reg6=0x200/0xfffff00 (set_field:0x0->ct_mark), goto_table:ACL4

ACL3
(212/242)

goto_table:ACL4

ACL4
(213/243)

ct_state=-new+est-rel-
inv+trk,ct_mark=0x1

resubmit(,DISPATCHER)

ACL4
(213/243)

ct_state=+trk,priority=3902,ip,reg6=0x200/0xfffff00set_field:0x1>ct_mark, resubmit(,DISPATCHER)

ACL4
(213/243)

ct_state=+trk, reg6=0x200/0xfffff00 drop

...

Yang changes

The nicira-action.yang and the openflowplugin-extension-nicira-action.yang needs to be updated with ct_mark action.
The action structure shall be

grouping ofj-nx-action-conntrack-grouping {
container nx-action-conntrack {

leaf flags {
type uint16;

}
leaf zone-src {

type uint32;
}
leaf conntrack-zone {

type uint16;
}
leaf recirc-table {

type uint128;
}
leaf experimenter-id {

type oft:experimenter-id;
}
list ct-actions{

uses ofpact-actions;
}

}
}

The nicira-match.yang and the openflowplugin-extension-nicira-match.yang needs to be updated with the ct_mark
match.

grouping ofj-nxm-nx-match-ct-mark-grouping{
container ct-mark-values {

leaf ct-mark {
type uint32;

224 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

}
leaf mask {
type uint32;

}
}

}

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

When we delete the SG rule from the VM, A new flow will be added in the flow table 212 to flip the value of ct_mark
of ongoing traffics. This flow will have a time out based on the protocol as mentioned in the proposed changes section.
The packets of ongoing traffic will be recommitted and will do the set filed of ct_mark until the flow reaches the time
out.

Targeted Release

Carbon

Alternatives

While deleting a SG flow from the flow table, we will add a DROP flow with the highest priority in the ACL4 table.
This DROP flow will drop the packets and it will stop the existing traffic. Similarly, when we restore the same rule
again, we will delete the DROP flow from the ACL4 table which will enable the existing traffic.

But this approach will be effective only if the VM do not have any duplicate flows. With the current ACL implementa-
tion, if we associate two SGs which having similar set of SG rule, netvirt will install the two set of flows with different
priority for the same VM.

As per above approach, if we dissociate any one of SG from the VM, It will add the DROP flow in ACL4 table which
will stops the existing traffic irrespective of there is still another flow available in ACL4, to make the traffic possible.

1.2. Getting Started Guide 225

OpenDaylight Documentation Documentation, Release Carbon

Usage

Traffic between VMs will work accordance with the SG flow existence in the flow table.

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

• odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference1 for the Neutron CLI command syntax for managing Security Rules.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assignee and other contributors.

Primary assignee:

• VinothB <vinothb@hcl.com>

• Balakrishnan Karuppasamy <balakrishnan.ka@hcl.com>

Other contributors:

• ?

Work Items

None

Dependencies

None.
1 Neutron Security Groups http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

226 Chapter 1. Content for OpenDaylight Users

mailto:vinothb@hcl.com
mailto:balakrishnan.ka@hcl.com
http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

OpenDaylight Documentation Documentation, Release Carbon

Testing

Unit Tests

Integration Tests

CSIT

We should add tests verifying ACL change reflection on existing traffic. There should be at least:

• One security rule allowing ICMP traffic between VMs in the same SG.

• One positive test, checking ICMP connectivity works between two VMs using the same SG. Delete all the rules
from the SG without disturbing the already established traffic. It should stop the traffic.

• One positive test, checking ICMP connectivity works between two VMs,one using the SG, configured with the
ICMP rule, Delete and restore the ICMP rule immediately. This should stop and resume the ICMP traffic after
restoring the ICMP rule.

• One positive test, checking ICMP connectivity between VMs, using the SG, configured with ICMP ALL and
Other protocol ANY rule. Delete the ICMP rule from the SG, It should not stop the ICMP traffic.

• One negative test, checking ICMP connectivity between two VMs, one using the SG, configured with the ICMP
and TCP rules above, and delete the TCP rule. This should not affect the ICMP traffic.

Documentation Impact

None.

References

Table of Contents

• Conntrack Based SNAT

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

1.2. Getting Started Guide 227

OpenDaylight Documentation Documentation, Release Carbon

* Alternatives

– Usage

* Create External Network

* Create Internal Network

* Create Router

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Conntrack Based SNAT

https://git.opendaylight.org/gerrit/#/q/topic:snat_conntrack

The ovs conntrack based SNAT implements Source Network Address Translation using openflow rules by leveraging
ovs-netfilter integration.

Problem description

Today SNAT is done in Opendaylight netvirt using controller punting and thus controller installing the rules for in-
bound and outbound NAPT. This causes significant delay as the first packet of all the new connections needs to go
through the controller.The number of flows grows linearly with the increase in the vms. Also the current implementa-
tion does not support ICMP.

The current algorithm for selecting the NAPT switch does not work well with conntrack based SNAT. For a NAPT
switch to remain as designated NAPT switch, it requires at least one port from any of the subnets present in the router.
When such a port cease to exist a new NAPT switch will be elected. With the controller based implementation the
failover is faster as the NAT flows are reinstalled to the new NAPT switch and should not lead to termination of existing
connection. With the conntrack based approach, the translation will be lost and the newly elected switch will have to
redo the translation. This will lead to connection timeout for TCP like connections. So the re-election needs to be
prevented unless switch is down. Also the current implementation tends to select the node running the DHCP agent as
the designated NAPT switch as the DHCP port is the first port created for a subnet.

228 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:snat_conntrack

OpenDaylight Documentation Documentation, Release Carbon

Use Cases

The following use case will be realized by the implementation

External Network Access The SNAT enables the VM in a tenant network access the external network without using a
floating ip. It uses NAPT for sharing the external ip address across multiple VMs that share the same router gateway.

Proposed change

The proposed implementation uses linux netfilter framework to do the NAPT (Network Address Port Translation) and
for tracking the connection. The first packet of a traffic will be committed to the netfilter for translation along with
the external ip. The subsequent packets will use the entry in the netfilter for inbound and outbound translation. The
router id will be used as the zone id in the netfilter. Each zone tracks the connection in its own table. The rest of
the implementation for selecting the designated NAPT switch and non designated switches will remain the same. The
pipeline changes will happen in the designated switch. With this implementation we will be able to do translation for
icmp as well.

The openflow plugin needs to support new set of actions for conntrack based NAPT. This shall be added in the nicira
plugin extension of OpenFlow plugin.

The new implementation will not re-install the existing NAT entries to the new NAPT switch during fail-over. Also
spec does not cover the use case of having multiple external subnets in the same router.

The HA framework will have a new algorithm to elect the designated NAPT switch. The new logic will be applicable
only if the conntrack mode is selected. The switch selection logic will also be modified to use round robin logic with
weights associated with each switch. It will not take into account whether a port belonging to a subnet in the router is
present in the switch. The initial weight of all the switches shall be 0 and will be incremented by 1 when the switch
is selected as the designated NAPT. The weights shall be decremented by 1 when the router is deleted. At any point
of time the switch with the lowest weight will be selected as the designated NAPT switch for a new router. If there
are multiple the first one with the lowest weight will be selected. A pseudo port will be added in the switch which
is selected as the designated NAPT switch. This port will be deleted only when the switch cease to be a designated
NAPT switch. This helps the switch to maintain the remote flows even when there are no ports in the router subnet in
the switch. Only if the switch hosting the designated NAPT switch is down a new NAPT switch will be elected.

Pipeline changes

The ovs based NAPT flows will replace the controller based NAPT flows. The changes are limited to the designated
switch for the router. Below is the illustration for flat external network.

Outbound NAPT

Table 26 (PSNAT Table) => submits the packet to netfilter to check whether it is an existing connection. Resubmits
the packet back to 46.

Table 46 (NAPT OUTBOUND TABLE) => if it is an established connection, it indicates the translation is done and
the packet is forwarded to table 47 after writing the external network metadata.

If it is a new connection the connection will be committed to netfilter and this entry will be used for NAPT. The
translated packet will be resubmitted to table 47. The external network metadata will be written before sending the
packet to netfilter.

Table 47 (NAPT FIB TABLE) => The translated packet will be sent to the egress group.

Sample Flows

1.2. Getting Started Guide 229

OpenDaylight Documentation Documentation, Release Carbon

table=26, priority=5,ip,metadata=0x222e2/0xfffffffe actions=ct(table=46,zone=5003,nat)
table=46, priority=6,ct_state=+snat,ip,metadata=0x222e2/0xfffffffe actions=set_
→˓field:0x222e0->metadata,resubmit(,47)
table=46, priority=5,ct_state=+new+trk,ip,metadata=0x222e2/0xfffffffe actions=set_
→˓field:0x222e0->metadata,ct(commit,table=47,zone=5003,nat(src=192.168.111.21))
table=47, n_packets=0, n_bytes=0, priority=6,ct_state=+snat,ip,nw_src=192.168.111.21
→˓actions=group:200000

Inbound NAPT

Table 44 (NAPT INBOUND Table)=> submits the packet to netfilter to check for an existing connection after changing
the metadata to that of the internal network. The packet will be submitted back to table 47.

Table 47 (NAPT FIB TABLE) => The translated packet will be submitted back to table 21.

Sample Flows

table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=192.168.111.21
→˓actions=resubmit(,44)
table=44, priority=10,ip,metadata=0x222e0/0xfffffffe,nw_dst=192.168.111.21
→˓actions=set_field:0x222e2->metadata,ct(table=47,zone=5003,nat)
table=47, priority=5,ct_state=+dnat,ip actions=resubmit(,21)

Yang changes

The nicira-action.yang and the openflowplugin-extension-nicira-action.yang needs to be updated with nat action. The
action structure shall be

typedef nx-action-nat-range-present {
type enumeration {

enum NX_NAT_RANGE_IPV4_MIN {
value 1;
description "IPV4 minimum value is present";

}
enum NX_NAT_RANGE_IPV4_MAX {

value 2;
description "IPV4 maximum value is present";

}
enum NX_NAT_RANGE_IPV6_MIN {

value 4;
description "IPV6 minimum value is present in range";

}
enum NX_NAT_RANGE_IPV6_MAX {

value 8;
description "IPV6 maximum value is present in range";

}
enum NX_NAT_RANGE_PROTO_MIN {

value 16;
description "Port minimum value is present in range";

}
enum NX_NAT_RANGE_PROTO_MAX {

value 32;
description "Port maximum value is present in range";

}
}

}

230 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

typedef nx-action-nat-flags {
type enumeration {

enum NX_NAT_F_SRC {
value 1;
description "Source nat is selected ,Mutually exclusive with NX_NAT_F_DST

→˓";
}
enum NX_NAT_F_DST {

value 2;
description "Destination nat is selected";

}
enum NX_NAT_F_PERSISTENT {

value 4;
description "Persistent flag is selected";

}
enum NX_NAT_F_PROTO_HASH {

value 8;
description "Hash mode is selected for port mapping, Mutually exclusive

→˓with
NX_NAT_F_PROTO_RANDOM ";

}
enum NX_NAT_F_PROTO_RANDOM {

value 16;
description "Port mapping will be randomized";

}
}

}

grouping ofj-nx-action-conntrack-grouping {
container nx-action-conntrack {

leaf flags {
type uint16;

}
leaf zone-src {

type uint32;
}
leaf conntrack-zone {

type uint16;
}
leaf recirc-table {

type uint8;
}
leaf experimenter-id {

type oft:experimenter-id;
}
list ct-actions{

uses ofpact-actions;
}

}
}

grouping ofpact-actions {
description

"Actions to be performed with conntrack.";
choice ofpact-actions {

case nx-action-nat-case {
container nx-action-nat {

leaf flags {

1.2. Getting Started Guide 231

OpenDaylight Documentation Documentation, Release Carbon

type uint16;
}
leaf range_present {

type uint16;
}
leaf ip-address-min {

type inet:ip-address;
}
leaf ip-address-max {

type inet:ip-address;
}
leaf port-min {

type uint16;
}
leaf port-max {

type uint16;
}

}
}

}
}

For the new configuration knob a new yang natservice-config shall be added in NAT service, with the container for
holding the NAT mode configured. It will have two options controller and conntrack, with controller being the default.

container natservice-config {
config true;
leaf nat-mode {

type enumeration {
enum "controller";
enum "conntrack";

}
default "controller";

}
}

Configuration impact

The proposed change requires the NAT service to provide a configuration knob to switch between the controller
based/conntrack based implementation. A new configuration file netvirt-natservice-config.xml shall be added with
default value controller.

<natservice-config xmlns="urn:opendaylight:netvirt:natservice-config">
<nat-mode>controller</nat-mode>

</natservice-config>

The dynamic update of nat-mode will not be supported. To change the nat-mode the controller cluster needs to be
restarted after changing the nat-mode. On restart the NAT translation lifecycle will be reset and after the controller
comes up in the updated nat-mode, a new set of switches will be elected as designated NAPT switches and it can be
different from the ones that were forwarding traffic earlier.

Clustering considerations

NA

232 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Other Infra considerations

The implementation requires ovs2.6 with the kernel module installed. OVS currently does not support SNAT connec-
tion tracking for dpdk datapath. It would be supported in some future release.

Security considerations

NA

Scale and Performance Impact

The new SNAT implementation is expected to improve the performance when compared to the existing one and will
reduce the flows in ovs pipeline.

Targeted Release

Carbon

Alternatives

An alternative implementation of X NAPT switches was discussed, which will not be a part of this document but will
be considered as a further enhancement.

Usage

Create External Network

Create an external flat network and subnet

neutron net-create ext1 --router:external --provider:physical_network public --
→˓provider:network_type flat
neutron subnet-create --allocation-pool start=<start-ip>,end=<end-ip> --gateway=<gw-
→˓ip> --disable-dhcp --name subext1 ext1 <subnet-cidr>

Create Internal Network

Create an internal n/w and subnet

neutron net-create vx-net1 --provider:network_type vxlan
neutron subnet-create vx-net1 <subnet-cidr> --name vx-subnet1

Create Router

Create a router and add an interface to internal n/w. Set the external n/w as the router gateway.

1.2. Getting Started Guide 233

OpenDaylight Documentation Documentation, Release Carbon

neutron router-create router1
neutron router-interface-add router1 vx-subnet1
neutron router-gateway-set router1 ext1
nova boot --poll --flavor m1.tiny --image $(nova image-list | grep 'uec\s' | awk '
→˓{print $2}' | tail -1) --nic net-id=$(neutron net-list | grep -w vx-net1 | awk '
→˓{print $2}') vmvx2

Features to Install

odl-netvirt-openstack

REST API

NA

CLI

A new command line, display-napt-switch, will be added to display the current designated NAPT switch selected for
each router. It shall show the below info.

router id | Host Name of designated NAPT switch | Management Ip of the designated
→˓NAPT switch

Implementation

Assignee(s)

Aswin Suryanarayanan <asuryana@redhat.com>

Work Items

https://trello.com/c/DMLsrLfq/9-snat-decentralized-ovs-nat-based

• Write a framework which can support multiple modes of NAT implementation.

• Add support in openflow plugin for conntrack nat actions.

• Add support in genius for conntrack nat actions.

• Add a config parameter to select between controller based and conntrack based.

• Add the flow programming for SNAT in netvirt.

• Add the new HA framework.

• Add the command to display the designated NAPT switch.

• Write Unit tests for conntrack based snat.

234 Chapter 1. Content for OpenDaylight Users

mailto:asuryana@redhat.com
https://trello.com/c/DMLsrLfq/9-snat-decentralized-ovs-nat-based

OpenDaylight Documentation Documentation, Release Carbon

Dependencies

NA

Testing

Unit Tests

Unit test needs to be added for the new snat mode. It shall use the component tests framework

Integration Tests

Integration tests needs to be added for the conntrack snat flows.

CSIT

Run the CSIT with conntrack based SNAT configured.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

Table of Contents

• Cross site connectivity with federation service

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

1.2. Getting Started Guide 235

OpenDaylight Documentation Documentation, Release Carbon

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Cross site connectivity with federation service

https://git.opendaylight.org/gerrit/#/q/topic:federation-plugin

Enabling neutron networks to expand beyond a single OpenStack instance to allow L2 switching and L3 routing
between sites. Sites may be geographically remote or partitioned in a single data center.

Each site is deployed with independent local ODL cluster. The clusters communicate using the federation infrastruc-
ture [2] in order to publish MDSAL events whenever routable entities e.g. VM instances are added/removed from
remote sites.

VxLAN tunnels are used to form the overlay for cross site communication between OpenStack compute nodes.

Problem description

Today, communication between VMs in remote sites is based on BGP control plane and requires DC-GW. Overlay
network between data centers is based on MPLSoverGRE or VxLAN if the DC-GW supports EVPN RT5 [4]. The
purpose of this feature is to allow inter-DC communication independent from BGP control plane and DC-GW.

Use Cases

This feature will cover the following use cases:

L2 switching use cases

• L2 Unicast frames exchanged between VMs sharing federated neutron network between OVS datapaths in
remote sites

• L2 Unicast frames exchanged between VM and PNF sharing federated neutron network between OVS and
HWVTEP datapath in remote sites

236 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:federation-plugin

OpenDaylight Documentation Documentation, Release Carbon

• L2 Broadcast frames exchanged between VMs sharing federated neutron network between OVS datapaths in
remote sites

• L2 Broadcast frames exchanged between VM and PNF sharing federated neutron network between OVS and
HWVTEP datapath in remote sites

L3 forwarding use cases

• L3 traffic exchanged between VMs sharing federated neutron router between OVS datapaths in remote sites

Proposed change

For Carbon release, cross-site connectivity will be based on the current HPE downstream federation plugin code-
base. This plugin implements the federation service API [3] to synchronize the following MDSAL subtrees between
connected sites:

• config/ietf-interfaces:interfaces

• config/elan:elan-interfaces

• config/l3vpn:vpn-interfaces

• config/network-topology:network-topology/topology/ovsdb:1

• operational/network-topology:network-topology/topology/ovsdb:1

• config/network-topology:network-topology/topology/hwvtep:1

• operational/network-topology:network-topology/topology/hwvtep:1

• config/opendaylight-inventory:nodes

• operational/opendaylight-inventory:nodes

• config/neutron:neutron/l2gateways

• config/neutron:neutron/l2gatewayConnections

The provisioning of connected networks between remote sites is out of the scope of this spec and described in [6].

Upon receiving a list of shared neutron networks and subnets, the federation plugin will propagate MDSAL entities
from all of the subtrees detailed above to remote sites based on the federation connection definitions. The federated
entities will be transformed to match the target network/subnet/router details in each remote site.

For example, ELAN interface will be federated with elan-instance-name set to the remote site elan-instance-name.
VPN interface will be federated with the remote site vpn-instance-name i.e. router-id and remote subnet-id contained
in the primary VPN interface adjacency.

This would allow remotely federated entities a.k.a shadow entities to be handled the same way local entities are
handled thus shadow entities will appear as if they were local entities in remote sites. As a result, the following
pipeline elements will be added for shadow entities on all compute nodes in each connected remote site:

• ELAN remote DMAC flow for L2 unicast packets to remote site

• ELAN remote broadcast group buckets for L2 multicast packets to remote site

• FIB remote nexthop flow for L3 packet to remote site

The following limitations exist for the current federation plugin implementation:

• Federated networks use VxLAN network type and the same VNI is used across sites.

• The IP addresses allocated to VM instances in federated subnets do not overlap across sites.

1.2. Getting Started Guide 237

OpenDaylight Documentation Documentation, Release Carbon

• The neutron-configured VNI will be passed on the wire for inter-DC L2/L3 communication between VxLAN
networks. The implementation is described in [5].

As part of Nitrogen, the federation plugin is planned to go through major redesign. The scope and internals have not
been finalized yet but this spec might be a good opportunity to agree on an alternate solution.

Some initial thoughts:

• For L3 cross site connectivity, it seems that federating the FIB vrf-entry associated with VMs in connected
networks should be sufficient to form remote nexthop connectivity across sites.

• In order to create VxLAN tunnels to remote sites, it may be possible to use the external tunnel concept instead
of creating internal tunnels that are dependent on federation of the OVS topology nodes from remote sites.

• L2 cross site connectivity is the most challenging part for federation of MAC addresses of both VM instances
and PNFs connected to HWVTEP. If the ELAN model could be enhanced to have remote-mac-entry model
containing MAC address, ELAN instance name and remote TEP ip, it would be possible to federate such entity
to remote sites in order to create remote DMAC flows for cases of remote VM instances and PNFs connected
HWVTEP in remote sites.

Pipeline changes

No new pipeline changes are introduced as part of this feature. The pipeline flow between VM instances in remote
sites is similar to the current implementation of cross compute intra-DC traffic since the realization of remote compute
nodes is similar to local ones.

Yang changes

The following new yang models will be introduced as part of the federation plugin API bundle:

Federation Plugin Yang

Marking for each federated entity using shadow-properties augmentation

module federation-plugin {
yang-version 1;
namespace "urn:opendaylight:netvirt:federation:plugin";
prefix "federation-plugin";

import yang-ext {
prefix ext;
revision-date "2013-07-09";

}

import ietf-yang-types {
prefix yang;

}

import network-topology {
prefix topo;

}

import opendaylight-inventory {
prefix inv;

}

238 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

import ietf-interfaces {
prefix if;

}

import elan {
prefix elan;

}

import l3vpn {
prefix l3vpn;

}

import neutronvpn {
prefix nvpn;

}

revision "2017-02-19" {
description "Federation plugin model";

}

grouping shadow-properties {
leaf shadow {

type boolean;
description "Represents whether this is a federated entity";

}
leaf generation-number {

type int32;
description "The current generation number of the federated entity";

}
leaf remote-ip {

type string;
description "The IP address of the original site of the federated entity";

}
}

augment "/topo:network-topology/topo:topology/topo:node" {
ext:augment-identifier "topology-node-shadow-properties";
uses shadow-properties;

}

augment "/inv:nodes/inv:node" {
ext:augment-identifier "inventory-node-shadow-properties";
uses shadow-properties;

}

augment "/if:interfaces/if:interface" {
ext:augment-identifier "if-shadow-properties";
uses shadow-properties;

}

augment "/elan:elan-interfaces/elan:elan-interface" {
ext:augment-identifier "elan-shadow-properties";
uses shadow-properties;

}

augment "/l3vpn:vpn-interfaces/l3vpn:vpn-interface" {
ext:augment-identifier "vpn-shadow-properties";

1.2. Getting Started Guide 239

OpenDaylight Documentation Documentation, Release Carbon

uses shadow-properties;
}

}

Federation Plugin Manager Yang

Management of federated networks and routed RPCs subscription

module federation-plugin-manager {
yang-version 1;
namespace "urn:opendaylight:netvirt:federation:plugin:manager";
prefix "federation-plugin-manager";

import yang-ext {
prefix ext;
revision-date "2013-07-09";

}

import ietf-yang-types {
prefix yang;

}

revision "2017-02-19" {
description "Federation plugin model";

}

identity mgr-context {
description "Identity for a routed RPC";

}

container routed-container {
list route-key-item {

key "id";
leaf id {

type string;
}

ext:context-instance "mgr-context";
}

}

container federated-networks {
list federated-network {

key self-net-id;
uses federated-nets;

}
}

container federation-generations {
description

"Federation generation information for a remote site.";
list remote-site-generation-info {

max-elements "unbounded";
min-elements "0";
key "remote-ip";
leaf remote-ip {

240 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

mandatory true;
type string;
description "Remote site IP address.";

}
leaf generation-number {

type int32;
description "The current generation number used for the remote site.";

}
}

}

grouping federated-nets {
leaf self-net-id {

type string;
description "UUID representing the self net";

}
leaf self-subnet-id {

type yang:uuid;
description "UUID representing the self subnet";

}
leaf self-tenant-id {

type yang:uuid;
description "UUID representing the self tenant";

}
leaf subnet-ip {

type string;
description "Specifies the subnet IP in CIDR format";

}

list site-network {
key id;
leaf id {

type string;
description "UUID representing the site ID (from xsite manager)";

}
leaf site-ip {

type string;
description "Specifies the site IP";

}
leaf site-net-id {

type string;
description "UUID of the network in the site";

}
leaf site-subnet-id {

type yang:uuid;
description "UUID of the subnet in the site";

}
leaf site-tenant-id {

type yang:uuid;
description "UUID of the tenant holding this network in the site";

}
}

}
}

1.2. Getting Started Guide 241

OpenDaylight Documentation Documentation, Release Carbon

Federation Plugin RPC Yang

FederationPluginRpcService yang definition for update-federated-networks RPC

module federation-plugin-rpc {
yang-version 1;
namespace "urn:opendaylight:netvirt:federation:plugin:rpc";
prefix "federation-plugin-rpc";

import yang-ext {
prefix ext;
revision-date "2013-07-09";

}

import ietf-yang-types {
prefix yang;

}

import federation-plugin-manager {
prefix federation-plugin-manager;

}

revision "2017-02-19" {
description "Federation plugin model";

}

rpc update-federated-networks {
input {

list federated-networks-in {
key self-net-id;
uses federation-plugin-manager:federated-nets;
description "Contain all federated networks in this site that are still

connected, a federated network that does not appear will
→˓be considered

disconnected";
}

}
}

}

Federation Plugin routed RPC Yang

Routed RPCs will be used only within the cluster to route connect/disconnect requests to the federation cluster single-
ton.

module federation-plugin-routed-rpc {
yang-version 1;
namespace "urn:opendaylight:netvirt:federation:plugin:routed:rpc";
prefix "federation-plugin-routed-rpc";

import yang-ext {
prefix ext;
revision-date "2013-07-09";

}

import ietf-yang-types {

242 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

prefix yang;
}

import federation-plugin-manager {
prefix federation-plugin-manager;

}

revision "2017-02-19" {
description "Federation plugin model";

}

rpc update-federated-networks {
input {

leaf route-key-item {
type instance-identifier;
ext:context-reference federation-plugin-manager:mgr-context;

}

list federated-networks-in {
key self-net-id;
uses federation-plugin-manager:federated-nets;

}
}

}
}

Configuration impact

None.

Clustering considerations

The federation plugin will be active only on one of the ODL instances in the cluster. The cluster singleton service
infrastructure will be used in order to register the federation plugin routed RPCs only on the selected ODL instance.

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

1.2. Getting Started Guide 243

OpenDaylight Documentation Documentation, Release Carbon

Targeted Release

Carbon

Alternatives

None

Usage

Features to Install

odl-netvirt-federation

This is a new feature that will load odl-netvirt-openstack and the federation service features. It will not be installed by
default and requires manual startup using karaf feature:install command.

REST API

Connecting neutron networks from remote sites

URL: restconf/operations/federation-plugin-manager:update-federated-networks

Sample JSON data

{
"input": {

"federated-networks-in": [
{

"self-net-id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7920",
"self-subnet-id": "93dee7cb-ba25-4318-b60c-19a15f2c079a",
"subnet-ip": "10.0.123.0/24",
"site-network": [

{
"id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7922",
"site-ip": "10.0.43.146",
"site-net-id": "c4976ee7-c5cd-4a5e-9cf9-261f28ba7921",
"site-subnet-id": "93dee7cb-ba25-4318-b60c-19a15f2c079b",

}
]

}
]

}
}

CLI

None.

244 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Implementation

Assignee(s)

Primary assignee: Tali Ben-Meir <tali@hpe.com>

Other contributors: Guy Sela <guy.sela@hpe.com>

Shlomi Alfasi <shlomi.alfasi@hpe.com>

Yair Zinger <yair.zinger@hpe.com>

Work Items

Trello card https://trello.com/c/mgdUO6xx/154-federation-plugin-for-netvirt

Since the code was already implemented in downstream no work items will be defined

Dependencies

This feature will be implemented in 2 new bundles - federation-plugin-api and
federation-plugin-impl the implementation will be dependent on federation-service-api [3]
bundle from OpenDaylight federation project.

The new karaf feature odl-netvirt-federation will encapsulate the federation-plugin api and impl bundles
and will be dependant on the followings features:

• federation-with-rabbit from federation project

• odl-netvirt-openstack from netvirt project

Testing

Unit Tests

End-to-end component service will test the federation plugin on top of the federation service.

Integration Tests

None

CSIT

The CSIT infrastructure will be enhanced to support connect/disconnect operations between sites using update-
federated-networks RPC call.

A new federation suite will test L2 and L3 connectivity between remote sites and will be based on the existing L2/L3
connectivity suites. CSIT will load sites A,B and C in 1-node/3-node deployment options to run the following tests:

1.2. Getting Started Guide 245

mailto:tali@hpe.com
mailto:guy.sela@hpe.com
mailto:shlomi.alfasi@hpe.com
mailto:yair.zinger@hpe.com
https://trello.com/c/mgdUO6xx/154-federation-plugin-for-netvirt

OpenDaylight Documentation Documentation, Release Carbon

1 Install odl-netvirt-federation feature

• Basic L2 connectivity test within the site

• Basic L3 connectivity test within the site

• L2 connectivity between sites - expected to fail since sites are not connected

• L3 connectivity between sites - expected to fail since sites are not connected

2 Connect sites A,B

• Basic L2 connectivity test within the site

• L2 connectivity test between VMs in sites A,B

• L2 connectivity test between VMs in sites A,C and B,C - expected to fail since sites are not connected

• Basic L3 connectivity test within the site

• L3 connectivity test between VMs in sites A,B

• L3 connectivity test between VMs in sites A,C and B,C - expected to fail since sites are not connected

3 Connect site C to A,B

• L2 connectivity test between VMs in sites A,B B,C and A,C

• L3 connectivity test between VMs in sites A,B B,C and A,C

• Connectivity test between VMs in non-federated networks in sites A,B,C - expected to fail

4 Disconnect site C from A,B

• Repeat the test steps from 2 after C disconnect. Identical results expected.

5 Disconnect sites A,B

• Repeat the test steps from 1 after A,B disconnect. Identical results expected.

6 Federation cluster test

• Repeat test steps 1-5 while rebooting the ODLs between the steps similarly to the existing cluster suite.

Documentation Impact

None.

246 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

References

[1] OpenDaylight Documentation Guide

[2] Federation project

[3] Federation service API

[4] Support of VxLAN based connectivity across Datacenters

[5] VNI based L2 switching, L3 forwarding and NATing

[6] Cross site manager presentation ODL Summit 2016

Table of Contents

• DHCP Server Dynamic Allocation Pool

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

1.2. Getting Started Guide 247

http://docs.opendaylight.org/en/latest/documentation.html
https://wiki.opendaylight.org/view/Federation:Main
https://github.com/opendaylight/federation/tree/master/federation-service/api
http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/l3vpn-over-vxlan-with-evpn-rt5.html
http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/vni-based-l2-switching-l3-forwarding-and-NATing.html
https://www.youtube.com/watch?v=wDdP6ONg8wU&list=PL8F5jrwEpGAiRCzJIyboA8Di3_TAjTT-2

OpenDaylight Documentation Documentation, Release Carbon

– References

DHCP Server Dynamic Allocation Pool

[gerrit filter: https://git.opendaylight.org/gerrit/#/q/topic:dhcp_server_pool]

Extension of the ODL based DHCP server, which add support for dynamic address allocation to end point users, that
are not controlled (known) by OpenStack Neutron. Each DHCP pool can be configured with additional information
such as DNS servers, lease time (not yet), static allocations based on MAC address, etc.

The feature supports IPv4 only.

Problem description

In a non-neutron northbounds environment e.g. SD-WAN solution (unimgr), there is currently no dynamic DHCP
service for end-points or networks that are connected to OVS. Every DHCP packet that is received by the controller,
the controller finds the neutron port based on the inport of the packet, extracts the ip which was allocated by neutron
for that vm, and replies using that info. If the dhcp packet is from a non-neutron port, the packet won’t even reach the
controller.

Use Cases

a DHCP packet that is received by the odl, from a port that is managed by Netvirt and was configured using the netvirt
API, rather then the neutron API, in a way that there is no pre-allocated IP for network interfaces behind that port -
will be handled by the DHCP dynamic allocation pool that is configured on the network associated with the receiving
OVS port.

Proposed change

We wish to forward to the controller, every dhcp packet coming from a non-neutron port as well (as long as it is
configured to use the controller dhcp). Once a DHCP packet is recieved by the controller, the controller will check if
there is already a pre-allocated address by checking if packet came from a neutron port. if so, the controller will reply
using the information from the neutron port. Otherwise, the controller will find the allocation pool for the network
which the packet came from and will allocate the next free ip. The operation of each allocation pool will be managed
through the Genius ID Manager service that will support the allocation and release of IP addresses (ids), persistent
mapping across controller restarts and more. Neutron IP allocations will be added to the relevant pools to avoid
allocation of the same addresses.

The allocation pool DHCP server will support:

• DHCP methods: Discover, Request, Release, Decline and Inform (future)

• Allocation of a dynamic or specific (future) available IP address from the pool

• (future) Static IP address allocations

• (future) IP Address Lease Time + Rebinding and Renewal Time

• Classless Static Routes for each pool

• Domain names (future) and DNS for each pool

• (future) Probe an address before allocation

248 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:dhcp_server_pool

OpenDaylight Documentation Documentation, Release Carbon

• (future) Relay agents

Pipeline changes

This new rule in table 60 will be responsible for forwarding dhcp packets to the controller:

cookie=0x6800000, duration=121472.576s, table=60, n_packets=1, n_bytes=342,
→˓priority=49,udp,tp_src=68,tp_dst=67 actions=CONTROLLER:65535

Yang changes

New YANG model to support the configuration of the DHCP allocation pools and allocations, per network and subnet.

• Allocation-Pool: configuration of allocation pool parameters like range, gateway and dns servers.

• Allocation-Instance: configuration of static IP address allocation and Neutron pre-allocated addresses, per MAC
address.

Listing 1.3: dhcp_allocation_pool.yang

container dhcp_allocation_pool {
config true;
description "contains DHCP Server dynamic allocations";

list network {
key "network-id";
leaf network-id {

description "network (elan-instance) id";
type string;

}
list allocation {

key "subnet";
leaf subnet {

description "subnet for the dhcp to allocate ip addresses";
type inet:ip-prefix;

}

list allocation-instance {
key "mac";
leaf mac {

description "requesting mac";
type yang:phys-address;

}
leaf allocated-ip {

description "allocated ip address";
type inet:ip-address;

}
}

}
list allocation-pool {

key "subnet";
leaf subnet {

description "subnet for the dhcp to allocate ip addresses";
type inet:ip-prefix;

}
leaf allocate-from {

1.2. Getting Started Guide 249

OpenDaylight Documentation Documentation, Release Carbon

description "low allocation limit";
type inet:ip-address;

}
leaf allocate-to {

description "high allocation limit";
type inet:ip-address;

}
leaf gateway {

description "default gateway for dhcp allocation";
type inet:ip-address;

}
leaf-list dns-servers {

description "dns server list";
type inet:ip-address;

}
list static-routes {

description "static routes list for dhcp allocation";
key "destination";
leaf destination {

description "destination in CIDR format";
type inet:ip-prefix;

}
leaf nexthop {

description "router ip address";
type inet:ip-address;

}
}

}
}

}

Configuration impact

The feature is activated in the configuration (disabled by default).

adding dhcp-dynamic-allocation-pool-enabled leaf to dhcpservice-config:

Listing 1.4: dhcpservice-config.yang

container dhcpservice-config {
leaf controller-dhcp-enabled {

description "Enable the dhcpservice on the controller";
type boolean;
default false;

}

leaf dhcp-dynamic-allocation-pool-enabled {
description "Enable dynamic allocation pool on controller dhcpservice";
type boolean;
default false;

}
}

and netvirt-dhcpservice-config.xml:

<dhcpservice-config xmlns="urn:opendaylight:params:xml:ns:yang:dhcpservice:config">
<controller-dhcp-enabled>false</controller-dhcp-enabled>

250 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<dhcp-dynamic-allocation-pool-enabled>false</dhcp-dynamic-allocation-pool-enabled>
</dhcpservice-config>

Clustering considerations

Support clustering.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None.

Targeted Release

Carbon.

Alternatives

Implement and maintain an external DHCP server.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack. This feature doesn’t add any new karaf feature.

REST API

Introducing a new REST API for the feature

Dynamic allocation pool

URL: /config/dhcp_allocation_pool:dhcp_allocation_pool/

Sample JSON data

1.2. Getting Started Guide 251

OpenDaylight Documentation Documentation, Release Carbon

{"dhcp_allocation_pool": {
"network": [
{

"network-id": "d211a14b-e5e9-33af-89f3-9e43a270e0c8",
"allocation-pool": [

{
"subnet": "10.1.1.0/24",
"dns-servers": [

"8.8.8.8"
],
"gateway": "10.1.1.1",
"allocate-from": "10.1.1.2",
"allocate-to": "10.1.1.200"
"static-routes": [

{
"destination": "5.8.19.24/16",
"nexthop": "10.1.1.254"

}
]

]}]}}

Static address allocation

URL: /config/dhcp_allocation_pool:dhcp_allocation_pool/

Sample JSON data

{"dhcp_allocation_pool": {
"network": [
{

"network-id": "d211a14b-e5e9-33af-89f3-9e43a270e0c8",
"allocation": [
{
"subnet": "10.1.1.0/24",
"allocation-instance": [
{
"mac": "fa:16:3e:9d:c6:f5",
"allocated-ip": "10.1.1.2"

}
]}]}]}}

CLI

None.

Implementation

Assignee(s)

Primary assignee: Shai Haim (shai.haim@hpe.com)

Other contributors: Alex Feigin (alex.feigin@hpe.com)

252 Chapter 1. Content for OpenDaylight Users

mailto:shai.haim@hpe.com
mailto:alex.feigin@hpe.com

OpenDaylight Documentation Documentation, Release Carbon

Work Items

Here is the link for the Trello Card: https://trello.com/c/0mgGyJuV/153-dhcp-server-dynamic-allocation-pool

Dependencies

None.

Testing

Unit Tests

N.A.

Integration Tests

N.A.

CSIT

N.A.

Documentation Impact

??

References

Table of Contents

• Discovery of directly connected PNFs in Flat/VLAN provider networks

– Problem description

* Subnet-Route

* Aliveness monitor

* Use Cases

– Proposed change

* Subnet-route

* Communication between VMs in tenant networks and PNFs in provider networks.

* Communication between VMs and PNFs in different tenant networks.

* ARP messages

* Pipeline changes

1.2. Getting Started Guide 253

https://trello.com/c/0mgGyJuV/153-dhcp-server-dynamic-allocation-pool

OpenDaylight Documentation Documentation, Release Carbon

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Create external network with a subnet

* Create internal networks with subnets

* Create a router instance and connect it to an internal subnet and an external subnet

* Create a router instance and connect to it to two internal subnets

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Discovery of directly connected PNFs in Flat/VLAN provider networks

https://git.opendaylight.org/gerrit/#/q/topic:directly_connected_pnf_discovery

This features enables discovering and directing traffic to Physical Network Functions (PNFs) in Flat/VLAN provider
and tenant networks, by leveraging Subnet-Route feature.

Problem description

PNF is a device which has not been created by Openstack but connected to the hypervisors L2 broadcast domain and
configured with ip from one of the neutron subnets.

254 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:directly_connected_pnf_discovery

OpenDaylight Documentation Documentation, Release Carbon

Ideally, L2/L3 communication between VM instances and PNFs on flat/VLAN networks would be routed similarly to
inter-VM communication. However, there are two main issues preventing direct communication to PNFs.

• L3 connectivity of tenant network and VLAN provider network, between VMs and PNFs. A VM is located in a
tenant network, A PNF is located in a provider network (external network). Both networks are connected via a
router. The only way for VMs to communicate with a PNF is via additional hop which is the external gateway,
instead of directly.

• L3 connectivity between VMs and PNFs in a two diffrent tenant networks, connected by a router, which is not
supported and have two problems. First, traffic initiated from a VMs towards a PNF is dropped because there
isn’t an appropriate rule in FIB table (table 21) to route that traffic. Second, in the other direction, PNFs are not
able to resolve their default gateway.

We want to leverage the Subnet-Route and Aliveness-Monitor features in order to address the above issues.

Subnet-Route

Today, Subnet-Route feature enables ODL to route traffic to a destination IP address, even for ip addresses that have
not been statically configured by OpenStack, in the FIB table. To achieve that, the FIB table contains a flow that match
all IP packets in a given subnet range. How that works?

• A flow is installed in the FIB table, matching on subnet prefix and vpn-id of the network, with a goto-instruction
directing packets to table 22. There, packets are punted to the controller.

• ODL hold the packets, and initiate an ARP request towards the destination IP.

• Upon receiving ARP reply, ODL installs exact IP match flow in FIB table to direct all further traffic towards the
newly learnt MAC of the destination IP

Current limitations of Subnet-Route feature:

• Works for BGPVPN only

• May cause traffic lost due to “swallowing” the packets punted from table 22.

• Uses the source MAC and source IP from the punted packet.

Aliveness monitor

After ODL learns a mac that is associated with an ip address, ODL schedule an arp monitor task, with the purpose of
verifying that the device is still alive and responding. This is done by periodically sending arp requests to the device.

Current limitation: Aliveness monitor was not designed for monitoring devices behind flat/VLAN provider network
ports.

Use Cases

• L3 connectivity of tenant network and VLAN provider network, between VMs and PNFs.

– VMs in a private network, PNFs in external network

• L3 connectivity between VMs and PNFs in a two diffrent tenant networks.

1.2. Getting Started Guide 255

OpenDaylight Documentation Documentation, Release Carbon

Proposed change

Subnet-route

• Upon OpenStack configuration of a Subnet in a provider network, a new vrf entry with subnet-route augmenta-
tion will be created.

• Upon associataion of neutron router with a subnet in a tenant network, a new vrf entry with subnet-route aug-
mentation will be created.

• Upon receiving ARP reply, install exact IP match flow in FIB table to direct all further traffic towards the newly
resolved PNF, on all relevant computes nodes, which will be discussed later

• Packets that had been punted to controller will be resubmitted to the openflow pipeline after installation of exact
match flow.

Communication between VMs in tenant networks and PNFs in provider networks.

In this scenario a VM in a private tenant network wants to communicate with a PNF in the (external) provider network

• The controller will hold the packets, and initiate an ARP request towards the PNF IP. an ARP request will have
source MAC and IP the router gateway and will be sent from the NAPT switch.

• ARP packets will be punted from the NAPT switch only.

• Upon receiving ARP reply, install exact IP match flow in FIB table to direct all further traffic towards the newly
resolved PNF, on all compute nodes that are associated with the external network.

• leveraging Aliveness monitor feature to monitor PNFs. The controller will send ARP requests from the NAPT
switch.

Communication between VMs and PNFs in different tenant networks.

In this scenario a VM and a PNF, in different private networks of the same tenant, wants to communicate. For each
subnet prefix, a designated switch will be chosen to communicate directly with the PNFs in that subnet prefix. That
means sending ARP requests to the PNFs and receiving their traffic.

Note: IP traffic from VM instances will retain the src MAC of the VM instance, instead of replacing it with the
router-interface-mac, in order to prevent MAC momvements in the underlay switches. This is a limitation until
NetVirt supports a MAC per hypervisor implementation.

• A subnet flow will be installed in the FIB table, matching the subnet prefix and vpn-id of the router.

• ARP request will have a source MAC and IP of the router interface, and will be sent via the provider port in the
designated switch.

• ARP packets will be punted from the designated switch only.

• Upon receiving an ARP reply, install exact IP match flow in FIB table to direct all further traffic towards the
newly resolved PNF, on all computes related to the router

• ARP responder flow: a new ARP responder flow will be installed in the designated switch This flow will
response for ARP requests from a PNF and the response MAC will be the router interface MAC. This flow will
use the LPort-tag of the provider port.

• Split Horizon protection disabling: traffic from PNFs, arrives to the primary switch(via a provider port) due to
the ARP responder rule described above, and will need to be directed to the proper compute of the designated

256 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

VM (via a provider port). This require disabling the split horizon protection. In order to protects against infinite
loops, the packet TTL will be decreased.

• leveraging Aliveness monitor, the controller will send ARP requests from the designated switch.

ARP messages

ARP messages in the Flat/Vlan provider and tenant networks will be punted from a designated switch, in order to avoid
a performance issue in the controller, of dealing with broadcast packets that may be received in multiple provider ports.
In external networks this switch is the NAPT switch.

Pipeline changes

First use-case depends on hairpinning spec [2], the flows presented here reflects that dependency.

Egress traffic from VM with floating IP to an unresolved PNF in external network

• Packets in FIB table after translation to FIP, will match on subnet flow and will be punted to controller from
Subnet Route table. Then, ARP request will be generated and be sent to the PNF. No flow changes are required
in this part.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip set
vpn-id=ext-subnet-id,src-ip=fip =>
SNAT table (28) match: vpn-id=ext-subnet-id,src-ip=fip set src-mac=fip-mac =>
FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=ext-subnet-ip =>
Subnet Route table (22): => Output to Controller

• After receiving ARP response from the PNF a new exact IP flow will be installed in table 21. No other flow
changes are required.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip set
vpn-id=ext-subnet-id,src-ip=fip =>
SNAT table (28) match: vpn-id=ext-subnet-id,src-ip=fip set src-mac=fip-mac =>
FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=pnf-ip, set
dst-mac=pnf-mac, reg6=provider-lport-tag =>
Egress table (220) output to provider port

1.2. Getting Started Guide 257

OpenDaylight Documentation Documentation, Release Carbon

Egress traffic from VM using NAPT to an unresolved PNF in external network

• Ingress-DPN is not the NAPT switch, no changes required. Traffic will be directed to NAPT switch and directed
to the outbound NAPT table straight from the internal tunnel table

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id =>
NAPT Group output to tunnel port of NAPT switch

• Ingress-DPN is the NAPT switch. Packets in FIB table after translation to NAPT, will match on subnet flow and
will be punted to controller from Subnet Route table. Then, ARP request will be generated and be sent to the
PNF. No flow changes are required.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id =>
Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set
src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>
NAPT PFIB tabl (47) match: vpn-id=router-gw-subnet-id =>
FIB table (21) match: vpn-id=ext-subnet-id, dst-ip=ext-subnet-ip =>
Subnet Route table (22) => Output to Controller

• After receiving ARP response from the PNF a new exact IP flow will be installed in table 21. No other changes
required.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id =>
Outbound NAPT table (46) match: vpn-id=router-id TBD set vpn-id=external-net-id
=>
NAPT PFIB table (47) match: vpn-id=external-net-id =>
FIB table (21) match: vpn-id=ext-network-id, dst-ip=pnf-ip set
dst-mac=pnf-mac, reg6=provider-lport-tag =>
Egress table (220) output to provider port

258 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Egress traffic from VM in private network to an unresolved PNF in another private network

• Packet from a VM is punted to the controller, no flow changes are required.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id dst-ip=subnet-ip =>
Subnet Route table (22): => Output to Controller

• After receiving ARP response from the PNF a new exact IP flow will be installed in table 21.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id dst-ip=pnf-ip set dst-mac=pnf-mac,
reg6=provider-lport-tag =>
Egress table (220) output to provider port

Ingress traffic to VM in private network from a PNF in another private network

• New flow in table 19, to distinguish our new use-case, in which we want to decrease the TTL of the packet

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: lport-tag=provider-port, vpn-id=router-id,
dst-mac=router-interface-mac, set split-horizon-bit = 0, decrease-ttl =>
FIB table (21) match: vpn-id=router-id dst-ip=vm-ip set dst-mac=vm-mac
reg6=provider-lport-tag =>
Egress table (220) output to provider port

Yang changes

In odl-l3vpn module, adjacency-list grouping will be enhanced with the following field

grouping adjacency-list {
list adjacency {
key "ip_address";
...
leaf phys-network-func {

type boolean;
default false;

1.2. Getting Started Guide 259

OpenDaylight Documentation Documentation, Release Carbon

description "Value of True indicates this is an adjacency of a device in a
→˓provider network";

}
}

}

An adjacency that is added as a result of a PNF discovery, is a primary adjacency with an empty next-hop-ip list. This
is not enough to distinguish PNF at all times. This new field will help us identify this use-case in a more robust way.

Configuration impact

A configuration mode will be available to turn this feature ON/OFF.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

All traffic of PNFs in each subnet-prefix sends their traffic to a designated switch.

Targeted Release

Carbon

Alternatives

None

Usage

Create external network with a subnet

neutron net-create public-net -- --router:external --is-default --provider:network_
→˓type=flat
--provider:physical_network=physnet1

260 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

neutron subnet-create --ip_version 4 --gateway 10.64.0.1 --name public-subnet1
→˓<public-net-uuid> 10.64.0.0/16
-- --enable_dhcp=False

Create internal networks with subnets

neutron net-create private-net1
neutron subnet-create --ip_version 4 --gateway 10.0.123.1 --name private-subnet1
→˓<private-net1-uuid>
10.0.123.0/24
neutron net-create private-net2
neutron subnet-create --ip_version 4 --gateway 10.0.124.1 --name private-subnet2
→˓<private-net2-uuid>
10.0.124.0/24

Create a router instance and connect it to an internal subnet and an external subnet

This will allow communication with PNFs in provider network

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> <router1-uuid>
→˓<public-net-uuid>

Create a router instance and connect to it to two internal subnets

This will allow East/West communication between VMs and PNFs

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-interface-add <router1-uuid> <private-subnet2-uuid>

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

Primary assignee: Tomer Pearl <tomer.pearl@hpe.com>

Other contributors: Yakir Dorani <yakir.dorani@hpe.com>

1.2. Getting Started Guide 261

mailto:tomer.pearl@hpe.com
mailto:yakir.dorani@hpe.com

OpenDaylight Documentation Documentation, Release Carbon

Work Items

• Configure subnet-route flows upon ext-net configuration / router association

• Solve traffic lost issues of punted packets from table 22

• Enable aliveness monitoring on external interfaces.

• Add ARP responder flow for L3-PNF

• Add ARP packet-in from primary switch only

• Disable split-horizon and enable TTL decrease for L3-PNF

Dependencies

This feature depends on hairpinning feature [2]

Testing

Unit Tests

Unit tests will be added for the new functionality

Integration Tests

CSIT

Will need to see if a PNF could be simulated in CSIT

Documentation Impact

References

[1] https://docs.google.com/presentation/d/1ByvEQXUtIyH-H7Bin6OBJNrHjOv-3hpHYzU6Sf6hDbA/edit#slide=
id.g11657174d1_0_31 [2] http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/hairpinning-flat-vlan.
html

Table of Contents

• ECMP Support for BGP based L3VPN

– Problem description

* Use Cases

– High-Level Components:

– Proposed change

* Pipeline changes

· Local FIB entry/Nexthop Group programming:

262 Chapter 1. Content for OpenDaylight Users

https://docs.google.com/presentation/d/1ByvEQXUtIyH-H7Bin6OBJNrHjOv-3hpHYzU6Sf6hDbA/edit#slide=id.g11657174d1_0_31
https://docs.google.com/presentation/d/1ByvEQXUtIyH-H7Bin6OBJNrHjOv-3hpHYzU6Sf6hDbA/edit#slide=id.g11657174d1_0_31
http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/hairpinning-flat-vlan.html
http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/hairpinning-flat-vlan.html

OpenDaylight Documentation Documentation, Release Carbon

· Remote FIB entry/Nexthop Group programming:

* YANG changes

· L3VPN YANG changes

· ODL-L3VPN YANG changes

· ODL-FIB YANG changes

* ECMP forwarding through multiple Compute Node and VMs

* ECMP forwarding for dispersed VMs

* ECMP forwarding for co-located VMs

* ECMP forwarding through two DC-Gateways

* ECMP for Intra-DC L3VPN communication

* ECMP Path decision based on Internal/External Tunnel Monitoring

* GRE tunnel state handling

* VxLAN tunnel state handling

* Assumptions

* Reboot Scenarios

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

1.2. Getting Started Guide 263

OpenDaylight Documentation Documentation, Release Carbon

ECMP Support for BGP based L3VPN

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn_ecmp

This Feature is needed for load balancing of traffic in a cloud and also redundancy of paths for resiliency in cloud.

Problem description

The current L3VPN implementation for BGP VPN doesn’t support load balancing behavior for external routes
through multiple DC-GWs and reaching starting route behind Nova VMs through multiple compute nodes.

This spec provides implementation details about providing traffic load balancing using ECMP for L3 routing and
forwarding. The load balancing of traffic can be across virtual machines with each connected to the different compute
nodes, DC-Gateways. ECMP also enables fast failover of traffic The ECMP forwarding is required for both inter-DC
and intra-DC data traffic types. For inter-DC traffic, spraying from DC-GW to compute nodes & VMs for the traffic
entering DC and spraying from compute node to DC-GWs for the traffic exiting DC is needed. For intra-DC traffic,
spraying of traffic within DC across multiple compute nodes & VMs is needed. There should be tunnel monitoring
(e.g. GRE-KA or BFD) logic implemented to monitor DC-GW /compute node GRE tunnels which helps to determine
available ECMP paths to forward the traffic.

Use Cases

• ECMP forwarding of traffic entering a DC (i.e. Spraying of DC-GW -> OVS traffic across multiple Compute
Nodes & VMs). In this case, DC-GW can load balance the traffic if a static route can be reachable through
multiple NOVA VMs (say VM1 and VM2 connected on different compute nodes) running some networking
application (example: vRouter).

• ECMP forwarding of traffic exiting a DC (i.e. Spraying of OVS -> DC-GW traffic across multiple DC Gate-
ways). In this case, a Compute Node can LB the traffic if external route can be reachable from multiple
DC-GWs.

• ECMP forwarding of intra-DC traffic (i.e. Spraying of traffic within DC across multiple Compute Nodes &
VMs) This is similar to UC1, but load balancing behavior is applied on remote Compute Node for intra-DC
communication.

• OVS -> DC-GW tunnel status based ECMP for inter and intra-DC traffic. Tunnel status based on monitoring
(BFD) is considered in ECMP path set determination.

High-Level Components:

The following components of the Openstack - ODL solution need to be enhanced to provide ECMP support:

• OpenStack Neutron BGPVPN Driver (for supporting multiple RDs)

• OpenDaylight Controller (NetVirt VpnService)

We will review enhancements that will be made to each of the above components in following sections.

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

• NeutronvpnManager

• VPN Engine (VPN Manager and VPN Interface Manager)

264 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn_ecmp

OpenDaylight Documentation Documentation, Release Carbon

• FIB Manager

Pipeline changes

Local FIB entry/Nexthop Group programming:

A static route (example: 100.0.0.0/24) reachable through two VMs connected with same compute node.

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>Local VM Group=>Table 220

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,ip,
→˓metadata=0x222e4/0xfffffffe, nw_dst=100.0.0.0/24 actions=write_actions(group:150002)
group_id=150002,type=select,bucket=weight:50,actions=group:150001,bucket=weight:50,
→˓actions=group:150000
group_id=150001,type=all,bucket=actions=set_field:fa:16:3e:34:ff:58->eth_dst,
→˓load:0x200->NXM_NX_REG6[],resubmit(,220)
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:eb:61:39->eth_dst,
→˓load:0x100->NXM_NX_REG6[],resubmit(,220)

Remote FIB entry/Nexthop Group programming:

• A static route (example: 10.0.0.1/32) reachable through two VMs connected with different compute node.

on remote compute node,

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>VxLAN port

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0, priority=34,
→˓ip,metadata=0x222e4/0xfffffffe, nw_dst=10.0.0.1 actions=set_field:0xEF->tun_id,
→˓group:150003
group_id=150003,type=select,bucket=weight:50,actions=output:1,bucket=weight:50,
→˓actions=output:2

on local compute node,

Here, From LB group, packets flow through local VM and VxLAN port

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>Local VM Group=>Table 220
..=> VxLAN port

cookie=0x8000003, duration=46.020s, table=21, n_packets=0, n_bytes=0,
→˓priority=34,ip,metadata=0x222e4/0xfffffffe, nw_dst=10.0.0.1
→˓actions=group:150003
group_id=150003,type=select,bucket=weight:50,group=150001,bucket=weight:50,
→˓actions=set_field:0xEF->tun_id, output:2
group_id=150001,type=all,bucket=actions=set_field:fa:16:3e:34:ff:58->eth_dst,
→˓load:0x200->NXM_NX_REG6[],resubmit(,220)

• An external route (example: 20.0.0.1/32) reachable through two DC-GWs.

Table 0=>Table 17=>Table 19=>Table 21=>LB Group=>GRE port

1.2. Getting Started Guide 265

OpenDaylight Documentation Documentation, Release Carbon

cookie=0x8000003, duration=13.044s, table=21, n_packets=0, n_bytes=0,priority=42,
→˓ip,metadata=0x222ec/0xfffffffe,nw_dst=20.0.0.1 actions=load:0x64->NXM_NX_REG0[0.
→˓.19],load:0xc8->NXM_NX_REG1[0..19],group:150111
group_id=150111,type=select,bucket=weight:50,actions=push_mpls:0x8847, move:NXM_
→˓NX_REG0[0..19]->OXM_OF_MPLS_LABEL[],output:3, bucket=weight:50,actions=push_
→˓mpls:0x8847,move:NXM_NX_REG1[0..19]->OXM_OF_MPLS_LABEL[],output:4

YANG changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang and odl-fib.yang to support ECMP functional-
ity.

L3VPN YANG changes

route-distinguisher type is changed from leaf to leaf-list in vpn-af-config grouping in l3vpn.yang.

Listing 1.5: l3vpn.yang

grouping vpn-af-config {
description "A set of configuration parameters that is applicable to both IPv4

→˓and
IPv6 address family for a VPN instance .";

leaf-list route-distinguisher {
description "The route-distinguisher command configures a route

→˓distinguisher (RD)
for the IPv4 or IPv6 address family of a VPN instance.
Format is ASN:nn or IP-address:nn.";
config "true";
type string{

length "3..21";
}

}
}

ODL-L3VPN YANG changes

• Add vrf-id (RD) in adjacency list in odl-l3vpn.yang.

Listing 1.6: odl-l3vpn.yang

grouping adjacency-list {
list adjacency{

key "ip_address";
leaf-list next-hop-ip-list { type string; }
leaf ip_address {type string;}
leaf primary-adjacency {

type boolean;
default false;
description "Value of True indicates this is a primary adjacency";

}

leaf label { type uint32; config "false"; } /*optional*/

266 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

leaf mac_address {type string;} /*optional*/
leaf vrf-id {type string;}
}

}

• vpn-to-extraroute have to be updated with multiple RDs (vrf-id)when extra route from VMs connected with
different compute node and when connected on same compute node, just use same RD and update nexthop-ip-
list with new VM IP address like below.

Listing 1.7: odl-l3vpn.yang

container vpn-to-extraroutes {
config false;
list vpn-extraroutes {

key "vpn-name";
leaf vpn-name {

type uint32;
}

list extra-routes {
key "vrf-id";
leaf vrf-id {

description "The vrf-id command configures a route
→˓distinguisher (RD) for the IPv4

or IPv6 address family of a VPN instance or vpn instance name
→˓for

internal vpn case.";
type string;

}

list route-paths {
key "prefix";
leaf prefix {type string;}
leaf-list nexthop-ip-list {

type string;
}

}
}

}
}

• To manage RDs for extra with multiple next hops, the following YANG model is required to advertise (or)
withdraw the extra routes with unique NLRI accordingly.

Listing 1.8: odl-l3vpn.yang

container extraroute-routedistinguishers-map {
config true;
list extraroute-routedistingueshers {

key "vpnid";
leaf vpnid {

type uint32;
}

list dest-prefixes {
key "dest-prefix";
leaf dest-prefix {

type string;

1.2. Getting Started Guide 267

OpenDaylight Documentation Documentation, Release Carbon

mandatory true;
}

leaf-list route-distinguishers {
type string;

}
}

}
}

ODL-FIB YANG changes

• When Quagga BGP announces route with multiple paths, then it is ODL responsibility to program Fib entries in
all compute nodes where VPN instance blueprint is present, so that traffic can be load balanced between these
two DC gateways. It requires changes in existing odl-fib.yang model (like below) to support multiple routes for
same destination IP prefix.

Listing 1.9: odl-fib.yang

grouping vrfEntries {
list vrfEntry {

key "destPrefix";
leaf destPrefix {

type string;
mandatory true;

}

leaf origin {
type string;
mandatory true;

}

list route-paths {
key "nexthop-address";
leaf nexthop-address {

type string;
mandatory true;

}

leaf label {
type uint32;

}
}

}
}

• New YANG model to update load balancing next hop group buckets according to VxLAN/GRE tunnel status
[Note that these changes are required only if watch_port in group bucket is not working based on tunnel port
liveness monitoring affected by the BFD status]. When one of the VxLAN/GRE tunnel is going down, then re-
trieve nexthop-key from dpid-l3vpn-lb-nexthops by providing tep-device-ids from src-info and dst-info
of StateTunnelList while handling its update DCN. After retrieving next hop key, fetch target-device-id list from
l3vpn-lb-nexthops and reprogram VxLAN/GRE load balancing group in each remote Compute Node based on
tunnel state between source and destination Compute Node. Similarly, when tunnel comes up, then logic have
to be rerun to add its bucket back into Load balancing group.

268 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Listing 1.10: odl-fib.yang

container l3vpn-lb-nexthops {
config false;
list nexthops {

key "nexthop-key";
leaf group-id { type string; }
leaf nexhop-key { type string; }
leaf-list target-device-id { type string;
//dpId or ip-address }

}
}

container dpid-l3vpn-lb-nexthops {
config false;
list dpn-lb-nexthops {

key "src-dp-id dst-device-id";
leaf src-dp-id { type uint64; }
leaf dst-device-id { type string;
//dpId or ip-address }
leaf-list nexthop-keys { type string; }

}
}

ECMP forwarding through multiple Compute Node and VMs

In some cases, extra route can be added which can have reachability through multiple Nova VMs. These VMs can be
either connected on same compute node (or) different Compute Nodes. When VMs are in different compute nodes,
DC-GW should learn all the route paths such that ECMP behavior can be applied for these multi path routes. When
VMs are co-located in same compute node, DC-GW will not perform ECMP and compute node performs traffic
splitting instead.

ECMP forwarding for dispersed VMs

When configured extra route are reached through nova VMs which are connected with different compute node, then it
is ODL responsibility to advertise these multiple route paths (but with same MPLS label) to Quagga BGP which in
turn sends these routes into DC-GW. But DC-GW replaces the existing route with a new route received from the peer
if the NLRI (prefix) is same in the two routes.

This is true even when multipath is enabled on the DC-GW and it is as per standard BGP RFC 4271, Section 9 UPDATE
Message Handling. Hence the route is lost in DC-GW even before path computation for multipath is applied.This
scenario is solved by adding multiple route distinguisher (RDs) for the vpn instance and let ODL uses the list of RDs
to advertise the same prefix with different BGP NHs. Multiple RDs will be supported only for BGP VPNs.

ECMP forwarding for co-located VMs

When extra routes on VM interfaces are connected with same compute node, LFIB/FIB and Terminating service
table flow entries should be programmed so that traffic can be load balanced between local VMs. This can be done by
creating load balancing next hop group for each vpn-to-extraroute (if nexthop-ip-list size is greater than 1) with buckets
pointing to the actual VMs next hop group on source Compute Node. Even for the co-located VMs, VPN interface
manager should assign separate RDs for each adjacency of same dest IP prefix and let route can be advertised again to
Quagga BGP with same next hop (TEP IP address). This will enable DC-Gateway to realize ECMP behavior when an

1.2. Getting Started Guide 269

OpenDaylight Documentation Documentation, Release Carbon

IP prefix can be reachable through multiple co located VMs on one Compute Node and an another VM connected on
different Compute Node.

To create load balancing next hop group, the dest IP prefix is used as the key to generate group id. When any of next
hop is removed, then adjust load balancing nexthop group so that traffic can be sent through active next hops.

ECMP forwarding through two DC-Gateways

The current ITM implementation provides support for creating multiple GRE tunnels for the provided list of DC-GW
IP addresses from compute node. This should help in creating corresponding load balancing group whenever Quagga
BGP is advertising two routes on same IP prefix pointing to multiple DC GWs. The group id of this load balancing
group can be derived from sorted order of DC GW TEP IP addresses with the following format dc_gw_tep_ip
_address_1: dc_gw_tep_ip_address_2. This will be useful when multiple external IP prefixes share the same next
hops. The load balancing next hop group buckets is programmed according to sorted remote end point DC-Gateway IP
address. The support of action move:NXM_NX_REG0(1) -> MPLS label is not supported in ODL openflowplugin.
It has to be implemented. Since there are two DC gateways present for the data center, it is possible that multiple equal
cost routes are supplied to ODL by Quagga BGP like Fig 2. The current Quagga BGP doesn’t have multipath support
and it will be done. When Quagga BGP announces route with multiple paths, then it is ODL responsibility to program
Fib entries in all compute nodes where VPN instance blueprint is present, so that traffic can be load balanced between
these two DC gateways. It requires changes in existing odl-fib.yang model (like below) to support multiple routes for
same destination IP prefix.

BGPManager should be able to create vrf entry for the advertised IP prefix with multiple route paths. VrfEntryListener
listens to DCN on these vrf entries and program Fib entries (21) based on number route paths available for given IP
prefix. For the given (external) destination IP prefix, if there is only one route path exists, use the existing approach
to program FIB table flow entry matches on (vpnid, ipv4_dst) and actions with push MPLS label and output to gre
tunnel port. For the given (external) destination IP prefix, if there are two route paths exist, then retrieve next hop
ip address from routes list in the same sorted order (i.e. using same logic which is used to create buckets for load
balancing next hop group for DC- Gateway IP addresses), then program FIB table flow entry with an instruction like
Fig 3. It should have two set field actions where first action sets MPLS label to NX_REG0 for first sorted DC-GW
IP address and second action sets MPLS label to NX_REG1 for the second sorted DC-GW IP address. When more
than two DC Gateways are used, then more number of NXM Registries have to be used to push appropriate MPLS
label before sending it to next hop group. It needs operational DS container to have mapping between DC Gateway
IP address and NXM_REG. When one of the route is withdrawn for the IP prefix, then modify the FIB table flow entry
with with push MPLS label and output to the available gre tunnel port.

ECMP for Intra-DC L3VPN communication

ECMP within data center is required to load balance the data traffic when extra route can be reached through multiple
next hops (i.e. Nova VMs) when these are connected with different compute nodes. It mainly deals with how Compute
Nodes can spray the traffic when dest IP prefix can be reached through two or more VMs (next hops) which are
connected with multiple compute nodes.

When there are multiple RDs (if VPN is of type BGP VPN) assigned to VPN instance so that VPN engine can be
advertise IP route with different RDs to achieve ECMP behavior in DC-GW as mentioned before. But for intra-DC,
this doesn’t make any more sense since it’s all about programming remote FIB entries on computes nodes to achieve
data traffic spray behavior.

Irrespective of RDs, when multiple next hops (which are from different Compute Nodes) are present for the extra-
route adjacency, then FIB Manager has to create load balancing next hop group in remote compute node with buckets
pointing with targeted Compute Node VxLAN tunnel ports.

To allocate group id for this load balancing next hop, the same destination IP prefix is used as the group key. The
remote FIB table flow should point to this next hop group after writing prefix label into tunnel_id. The bucket

270 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

weight of remote next hop is adjusted according to number of VMs associated to given extra route and on which
compute node the VMs are connected. For example, two compute node having one VM each, then bucket weight is
50 each. One compute node having two VMs and another compute node having one VM, then bucket weight is 66 and
34 each. The hop-count property in vrfEntry data store helps to decide what is the bucket weight for each bucket.

ECMP Path decision based on Internal/External Tunnel Monitoring

ODL will use GRE-KA or BFD protocol to implement monitoring of GRE external tunnels. This implementation
detail is out of scope in this document. Based on the tunnel state, GRE Load Balancing Group is adjusted accordingly
as mentioned like below.

GRE tunnel state handling

As soon as GRE tunnel interface is created in ODL, interface manager uses alivenessmonitor to monitor the GRE
tunnels for its liveness using GRE Keep-alive protocol. When tunnel state changes, it has to handled accordingly to
adjust above load balancing group so that data traffic is sent to only active DC-GW tunnel. This can be done with
listening to update StateTunnelList DCN.

When one GRE tunnel is operationally going down, then retrieve the corresponding bucket from the load balancing
group and delete it. When GRE tunnel comes up again, then add bucket back into load balancing group and reprogram
it.

When both GRE tunnels are going down, then just recreate load balancing group with empty. Withdraw the routes
from that particular DC-GW. With the above implementation, there is no need of modifying Fib entries for GRE tunnel
state changes.

But when BGP Quagga withdrawing one of the route for external IP prefix, then reprogram FIB flow entry (21) by
directly pointing to output=<gre_port> after pushing MPLS label.

VxLAN tunnel state handling

Similarly, when VxLAN tunnel state changes, the Load Balancing Groups in Compute Nodes have to be updated
accordingly so that traffic can flow through active VxLAN tunnels. It can be done by having config mapping between
target data-path-id to next hop group Ids and vice versa.

For both GRE and VxLAN tunnel monitoring, L3VPN has to implement the following YANG model to update load
balancing next hop group buckets according to tunnel status.

When one of the VxLAN/GRE tunnel is going down, then retrieve nexthop-key from dpid-l3vpn-lb-nexthops by
providing tep-device-ids from src-info and dst-info of StateTunnelList while handling its update DCN.

After retrieving next hop key, fetch target-device-id list from l3vpn-lb-nexthops and reprogram VxLAN/GRE load
balancing group in each remote Compute Node based on tunnel state between source and destination Compute Node.
Similarly, when tunnel comes up, then logic have to be rerun to add its bucket back into Load balancing group.

Assumptions

The support for action move:NXM_NX_REG0(1) -> MPLS label is already available in Compute Node.

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

1.2. Getting Started Guide 271

OpenDaylight Documentation Documentation, Release Carbon

• Entire Cluster Reboot

• Leader PL reboot

• Candidate PL reboot

• OVS Datapath reboots

• Multiple PL reboots

• Multiple Cluster reboots

• Multiple reboots of the same OVS Datapath.

• Openstack Controller reboots

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

272 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

REST API

Implementation

Assignee(s)

Primary assignee(s):

• Manu B <manu.b@ericsson.com>

• Kency Kurian <kency.kurian@ericsson.com>

• Gobinath <gobinath@ericsson.com>

• P Govinda Rajulu <p.govinda.rajulu@ericsson.com>

Other contributors:

• Periyasamy Palanisamy <periyasamy.palanisamy@ericsson.com>

Work Items

The Trello cards have already been raised for this feature under l3vpn_ecmp.

Link for the Trello Card: https://trello.com/c/8E3LWIkq/121-ecmp-support-for-bgp-based-l3vpn-l3vpn-ecmp

Dependencies

Quagga BGP multipath support and APIs. This is needed to support when two DC-GW advertises routes for same ex-
ternal prefix with different route labels GRE tunnel monitoring. This is need to implement ECMP forwarding based
on MPLSoGRE tunnel state. Support for action move:NXM_NX_REG0(1) -> MPLS label in ODL openflowplugin

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

1.2. Getting Started Guide 273

mailto:manu.b@ericsson.com
mailto:kency.kurian@ericsson.com
mailto:gobinath@ericsson.com
mailto:p.govinda.rajulu@ericsson.com
mailto:periyasamy.palanisamy@ericsson.com
https://trello.com/c/8E3LWIkq/121-ecmp-support-for-bgp-based-l3vpn-l3vpn-ecmp

OpenDaylight Documentation Documentation, Release Carbon

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

• https://docs.google.com/document/d/1KRxrIGCLCBuz2D8f8IhU2I84VrM5EMa1Y7Scjb6qEKw

Table of Contents

• Element Counters

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

274 Chapter 1. Content for OpenDaylight Users

https://docs.google.com/document/d/1KRxrIGCLCBuz2D8f8IhU2I84VrM5EMa1Y7Scjb6qEKw

OpenDaylight Documentation Documentation, Release Carbon

Element Counters

https://git.opendaylight.org/gerrit/#/q/element-counters

This feature depends on the Netvirt statistics feature.

This feature enables collecting statistics on filtered traffic passed from/to a network element. For example: traffic
outgoing/incoming from a specific IP, tcp traffic, udp traffic, incoming/outgoing traffic only.

Problem description

Collecting statistics on filtered traffic sent to/from a VM is currently not possible.

Use Cases

• Tracking East/West communication between local VMs.

• Tracking East/West communication between VMs that are located in different compute nodes.

• Tracking communication between a local VM and an IP located in an external network.

• Tracking TCP/UDP traffic sent from/to a VM.

• Tracking dropped packets between 2 VMs.

Proposed change

The Netvirt Statistics Plugin will receive requests regarding element filtered counters. A new service will be imple-
mented (“CounterService”), and will be associated with the relevant interfaces (either ingress side, egress sides or both
of them).

• Ingress traffic: The service will be the first one in the pipeline after the Ingress ACL service.

• Egress traffic: The service will be the last one after the Egress ACL service.

• The input for counters request regarding VM A, and incoming and outgoing traffic from VM B, will be VM A
interface uuid and VM B IP.

• The input can also include other filters like TCP only traffic, UDP only traffic, incoming/outgoing traffic.

• In order to track dropped traffic between VM A and VM B, the feature should be activated on both VMS (either
in the same compute node or in different compute nodes). service binding will be done on both VMs relevant
interfaces.

• If the counters request involves an external IP, service binding will be done only on the VM interface.

• Adding/Removing the “CounterService” should be dynamic and triggered by requesting element counters.

The Statistics Plugin will use OpenFlow flow statistic requests for these new rules, allowing it to gather statistics
regarding the traffic between the 2 elements. It will be responsible to validate and filter the counters results.

Pipeline changes

Two new tables will be used: table 219 for outgoing traffic from the VM, and table 249 for incoming traffic from
the VM. In both ingress and egress pipelines, the counter service will be just after the appropriate ACL service. The
default rule will resubmit traffic to the appropriate dispatcher table.

1.2. Getting Started Guide 275

https://git.opendaylight.org/gerrit/#/q/element-counters

OpenDaylight Documentation Documentation, Release Carbon

Assuming we want statistics on VM A traffic, received or sent from VM B.

VM A Outgoing Traffic (vm interface)

In table 219 traffic will be matched against dst-ip and lport tag.

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to
table 219 =>
Ingress counters table (219): match: dst-ip=vmB-ip, lport-tag=vmA-interface,
actions: resubmit to table 17 =>

VM A Incoming Traffic (vm interface)

In table 249 traffic will be matched against src-ip and lport tag.

Egress dispatcher table (220): match: lport-tag=vmA-interface, actions: go to
table 249 =>
Egress counters table (249): match: lport-tag=vmA-interface, src-ip=vmB-ip,
actions: resubmit to table 220 =>

Assuming we want statistics on VM A incoming TCP traffic.

VM A Outgoing Traffic (vm interface)

Egress dispatcher table (220): match: lport-tag=vmA-interface, actions: go to
table 249 =>
Egress counters table (249): match: lport-tag=vmA-interface, tcp, actions:
resubmit to table 220 =>

Assuming we want statistics on VM A outgoing UDP traffic.

VM A Incoming traffic (vm interface)

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to
table 219 =>
Ingress counters table (219): match: lport-tag=vmA-interface, udp, actions:
resubmit to table 17 =>

Assuming we want statistics on all traffic sent to VM A port.

VM A Incoming traffic (vm interface)

Ingress dispatcher table (17): match: lport-tag=vmA-interface, actions: go to
table 219 =>
Ingress counters table (219): match: lport-tag=vmA-interface, actions:
resubmit to table 17 =>

276 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Yang changes

Netvirt Statistics module will be enhanced with the following RPC:

grouping result {
list counterResult {

key id;
leaf id {

type string;
}
list groups {

key name;
leaf name {

type string;
}
list counters {

key name;
leaf name {

type string;
}
leaf value {

type uint64;
}

}
}

}
}

grouping filters {
leaf-list groupFilters {

type string;
}
leaf-list counterFilter {

type string;
}

}

grouping elementRequestData {
container filters {

container tcpFilter {
leaf on {

type boolean;
}
leaf srcPort {

type int32;
default -1;

}
leaf dstPort {

type int32;
default -1;

}
}

container udpFilter {
leaf on {

type boolean;
}
leaf dstPort {

1.2. Getting Started Guide 277

OpenDaylight Documentation Documentation, Release Carbon

type int32;
default -1;

}
leaf srcPort {

type int32;
default -1;

}
}

container ipFilter {
leaf ip {

type string;
default "";

}
}

}
}

container elementCountersRequestConfig {
list counterRequests {

key "requestId";
leaf requestId {

type string;
}
leaf lportTag {

type int32;
}
leaf dpn {

type uint64;
}
leaf portId {

type string;
}
leaf trafficDirection {

type string;
}
uses elementRequestData;

}
}

rpc acquireElementCountersRequestHandler {
input {

leaf portId {
type string;

}
container incomingTraffic {

uses elementRequestData;
}
container outgoingTraffic {

uses elementRequestData;
}
uses filters;

}
output {

leaf incomingTrafficHandler {
type string;

}
leaf outcoingTrafficHandler {

278 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

type string;
}

}
}

rpc releaseElementCountersRequestHandler {
input {

leaf handler {
type string;

}
}
output {
}

}

rpc getElementCountersByHandler {
input {

leaf handler {
type string;

}
}
output {

uses result;
}

}

Configuration impact

The described above YANG model will be saved in the data store.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Since adding the new service is done by a request (as well as removing it), not all packets will be sent to the new tables
described above.

1.2. Getting Started Guide 279

OpenDaylight Documentation Documentation, Release Carbon

Targeted Release

Carbon

Alternatives

None

Usage

• Create router, network, 2 VMS, VXLAN tunnel.

• Connect to each one of the VMs and send ping to the other VM.

• Use REST to get the statistics.

Run the following to get interface ids:

http://10.0.77.135:8181/restconf/operational/ietf-interfaces:interfaces-state/

Choose VM B interface and use the following REST in order to get the statistics: Assuming VM A IP = 1.1.1.1, VM
B IP = 2.2.2.2

Acquire counter request handler:

10.0.77.135:8181/restconf/operations/statistics-
→˓plugin:acquireElementCountersRequestHandler, {"input":{"portId":"4073b4fe-a3d5-47c0-
→˓b37d-4fb9db4be9b1", "incomingTraffic":{"filters":{"ipFilter":{"ip":"1.1.3.9"}}}}},
→˓headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-
→˓Type=application/json}]

Release handler:

10.0.77.135:8181/restconf/operations/statistics-
→˓plugin:releaseElementCountersRequestHandler, input={"input":{"handler":"1"}},
→˓headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-
→˓Type=application/json}]

Get counters:

10.0.77.135:8181/restconf/operations/statistics-plugin:getElementCountersByHandler,
→˓input={"input":{"handler":"1"}}, headers={Authorization=Basic YWRtaW46YWRtaW4=,
→˓Cache-Control=no-cache, Content-Type=application/json}]

Example counters output:

{
"output": {

"counterResult": [
{

"id": "SOME UNIQUE ID",
"groups": [

{
"name": "Duration",
"counters": [

{

280 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"name": "durationNanoSecondCount",
"value": 298000000

},
{
"name": "durationSecondCount",
"value": 10369

}
]

},
{

"name": "Bytes",
"counters": [

{
"name": "bytesTransmittedCount",
"value": 648

},
{
"name": "bytesReceivedCount",
"value": 0

}
]

},
{

"name": "Packets",
"counters": [

{
"name": "packetsTransmittedCount",
"value": 8

},
{
"name": "packetsReceivedCount",
"value": 0

}
]

}
]

}
]

}

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

Primary assignee: Guy Regev <guy.regev@hpe.com>

1.2. Getting Started Guide 281

mailto:guy.regev@hpe.com

OpenDaylight Documentation Documentation, Release Carbon

Other contributors: TBD

Work Items

https://trello.com/c/88MnwGwb/129-element-to-element-counters

• Add new service in Genius.

• Implement new rules installation.

• Update Netvirt Statistics module to support the new counters request.

Dependencies

None

Testing

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Netvirt statistics feature: https://git.opendaylight.org/gerrit/#/c/50164/8

Table of Contents

• Hairpinning of floating IPs in flat/VLAN provider networks

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

282 Chapter 1. Content for OpenDaylight Users

https://trello.com/c/88MnwGwb/129-element-to-element-counters
https://git.opendaylight.org/gerrit/#/c/50164/8

OpenDaylight Documentation Documentation, Release Carbon

* Alternatives

– Usage

* Create external network with two subnets

* Create internal networks with subnets

* Create two router instances and connect each router to one internal subnet and one external subnet

* Create router instance connected to both external subnets and the remaining internal subnets

* Create floating ips from both subnets

* Create 2 VM instance in each subnet and associate with floating ips

* Connectivity tests

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Hairpinning of floating IPs in flat/VLAN provider networks

https://git.opendaylight.org/gerrit/#/q/topic:hairpinning

This feature enables VM instances connected to the same router to communicate with each other using their floating
ip addresses directly without traversing via the external gateway.

Problem description

Local and East/West communication between VMs using floating ips for flat/VLAN provider types is not handled
internally by the pipeline currently. As a result, this type of traffic is mistakenly classified as North/South and routed
to the external network gateway.

Today, SNATted traffic to flat/VLAN network is routed directly to the external gateway after traversing the
SNAT/outbound NAPT pipeline using OF group per external network subnet. The group itself sets the destination
mac as the mac address of the external gw associated with the floating ip/ router gw and output to the provider network
port via the egress table. This workflow would be changed to align with the VxLAN provider type and direct SNATted
traffic back to the FIB where the destination can then resolved to be floating ip on local or remote compute node.

1.2. Getting Started Guide 283

https://git.opendaylight.org/gerrit/#/q/topic:hairpinning

OpenDaylight Documentation Documentation, Release Carbon

Use Cases

• Local and East/West communication between VMs co-located on the same compute node using associated
floating ip.

• Local and East/West communication between VMs located on different compute nodes using associated floating
ip.

Proposed change

• The vpn-id used for classification of floating ips and router gateway external addresses in flat/VLAN provider
networks is based on the external network id. It will be changed to reflect the subnet id associated with the
floating ip/router gateway. This will allow traffic from the SNAT/outbound NAPT table to be resubmitted back
to the FIB while preserving the subnet id.

• Each floating ip already has VRF entry in the fib table. The vpn-id of this entry will also be based on the subnet
id of the floating ip instead of the external network id. If the VM associated with the floating ip is located on
remote compute node, the traffic will be routed to the remote compute based on the provider network of the
subnet from which the floating ip was allocated e.g. if the private network is VxLAN and the external network
is VLAN provider, traffic to floating ip on remote compute node will be routed to the provider port associated
with the VLAN provider and not the tunnel associated with the VxLAN provider.

• In the FIB table of the egress node, the destination mac will be replaced with the mac address of the floating ip
in case of routing to remote compute node. This will allow traffic from flat/VLAN provider enter the L3 pipeline
for DNAT of the floating ip.

• Default flow will be added to the FIB table for each external subnet-id. If no floating ip match was found in the
FIB table for the subnet id, the traffic will be sent to the group of the external subnet. Each group entry will
perform the following: (a) replace the destination mac address to the external gateway mac address (b) send the
traffic to the provider network via the egress table.

• Ingress traffic from flat/VLAN provider network is bounded to L3VPN service using vpn-id of the external
network id. To allow traffic classification based on subnet id for floating ips and router gateway ips, the GW
MAC table will replace the vpn-id of the external network with the vpn-id of the subnet id of the floating ip. For
ingress traffic to router gateway mac, the vpn-id of the correct subnet will be deterined at the FIB table based on
the router gateway fixed ip.

• A new model will be introduced to contain the new vpn/subnet associations -
odl-nat:subnets-networks. This model will be filled only for external flat/VLAN provider net-
works and will take precedence over odl-nat:external-networks model for selection of vpn-id.
BGPVPN use cases won’t be affected by these changes as this model will not be applicable for these scenarios.

Pipeline changes

Egress traffic from VM with floating IP to the internet

• For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ip

• Packets from SNAT table resubmitted back to the FIB rather than straight to the external network subnet-id
group. In the FIB table it should be matched against a new flow with lower priority than any other flow containing
dst-ip match. Traffic will be redirected based on the vpn-id of the floating ip subnet to the external network
subnet-id group.

Classifier table (0) =>

284 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id,src-ip=vm-ip set
vpn-id=fip-subnet-id,src-ip=fip =>
SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=fip set src-mac=fip-mac =>
FIB table (21) match: vpn-id=fip-subnet-id =>
Subnet-id group: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>
Egress table (220) output to provider network

Ingress traffic from the internet to VM with floating IP

• For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>
GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=floating-ip-mac set
vpn-id=fip-subnet-id =>
FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=fip =>
Pre DNAT table (25) match: dst-ip=fip set vpn-id=router-id,dst-ip=vm-ip =>
DNAT table (27) match: vpn-id=router-id,dst-ip=vm-ip =>
FIB table (21) match: vpn-id=router-id,dst-ip=vm-ip =>
Local Next-Hop group: set dst-mac=vm-mac, reg6=vm-lport-tag =>
Egress table (220) output to VM port

Egress traffic from VM with no associated floating IP to the internet - NAPT switch

• For Outbound NAPT, NAPT PFIB and FIB tables the vpn-id will be based on the subnet-id of the router gateway

• Packets from NAPT PFIB table resubmitted back to the FIB rather than straight to the external network subnet-
id group. In the FIB table it should be matched against a new flow with lower priority than any other flow
containing dst-ip match. Traffic will be redirected based on the vpn-id of the router gateway subnet to the
external network subnet-id group.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id =>
Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set
src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>
NAPT PFIB table (47) match: vpn-id=router-gw-subnet-id =>
FIB table (21) match: vpn-id=router-gw-subnet-id =>
Subnet-id group: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>
Egress table (220) output to provider network

1.2. Getting Started Guide 285

OpenDaylight Documentation Documentation, Release Carbon

Ingress traffic from the internet to VM with no associated floating IP - NAPT switch

• For FIB table the vpn-id will be based on the subnet-id of the router gateway

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>
GW Mac table (19) match vpn-id=ext-net-id,dst-mac=router-gw mac =>
FIB table (21) match: vpn-id=ext-net-id,dst-ip=router-gw set
vpn-id=router-gw-subnet-id =>
Inbound NAPT table (44) match: dst-ip=router-gw,port=ext-port set
dst-ip=vm-ip,vpn-id=router-id,port=int-port =>
PFIB table (47) match: vpn-id=router-id =>
FIB table (21) match: vpn-id=router-id,dst-ip=vm-ip =>
Local Next-Hop group: set dst-mac=vm-mac,reg6=vm-lport-tag =>
Egress table (220) output to VM port

Hairpinning - VM traffic to floating ip on the same compute node

• For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ips

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id,src-ip=src-vm-ip set
vpn-id=fip-subnet-id,src-ip=src-fip =>
SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=src-fip set
src-mac=src-fip-mac =>
FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>
Pre DNAT table (25) match: dst-ip=dst-fip set
vpn-id=router-id,dst-ip=dst-vm-ip =>
DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>
FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>
Local Next-Hop group: set dst-mac=dst-vm-mac,reg6=dst-vm-lport-tag =>
Egress table (220) output to VM port

Hairpinning - VM traffic to floating ip on remote compute node

VM originating the traffic (Ingress DPN):

• For Pre SNAT, SNAT, FIB tables the vpn-id will be based on the subnet-id of the floating ip

• The destination mac is updated by the FIB table to be the floating ip mac. Traffic is sent to the egress DPN over
the port of the flat/VLAN provider network.

286 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id,src-ip=src-vm-ip set
vpn-id=fip-subnet-id,src-ip=src-fip =>
SNAT table (28) match: vpn-id=fip-subnet-id,src-ip=src-fip set
src-mac=src-fip-mac =>
FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip set
dst-mac=dst-fip-mac, reg6=provider-lport-tag =>
Egress table (220) output to provider network

VM receiving the traffic (Egress DPN):

• For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>
GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=dst-fip-mac set
vpn-id=fip-subnet-id =>
FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>
Pre DNAT table (25) match: dst-ip=dst-fip set
vpn-id=router-id,dst-ip=dst-vm-ip =>
DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>
FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>
Local Next-Hop group: set dst-mac=dst-vm-mac,lport-tag=dst-vm-lport-tag =>
Egress table (220) output to VM port

Hairpinning - traffic from VM with no associated floating IP to floating ip on remote compute node

VM originating the traffic (Ingress DPN) is non-NAPT switch:

• No flow changes required. Traffic will be directed to NAPT switch and directed to the outbound NAPT table
straight from the internal tunnel table

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id =>
NAPT Group output to tunnel port of NAPT switch =>

1.2. Getting Started Guide 287

OpenDaylight Documentation Documentation, Release Carbon

VM originating the traffic (Ingress DPN) is the NAPT switch:

• For Outbound NAPT, NAPT PFIB, Pre DNAT, DNAT and FIB tables the vpn-id will be based on the common
subnet-id of the router gateway and the floating-ip.

• Packets from NAPT PFIB table resubmitted back to the FIB where they will be matched against the destnation
floating ip.

• The destination mac is updated by the FIB table to be the floating ip mac. Traffic is sent to the egress DPN over
the port of the flat/VLAN provider network.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id =>
Outbound NAPT table (46) match: src-ip=vm-ip,port=int-port set
src-ip=router-gw-ip,vpn-id=router-gw-subnet-id,port=ext-port =>
NAPT PFIB table (47) match: vpn-id=router-gw-subnet-id =>
FIB table (21) match: vpn-id=router-gw-subnet-id dst-ip=dst-fip set
dst-mac=dst-fip-mac, reg6=provider-lport-tag =>
Egress table (220) output to provider network

VM receiving the traffic (Egress DPN):

• For GW MAC, FIB table the vpn-id will be based on the subnet-id of the floating ip

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=ext-net-id =>
GW Mac table (19) match: vpn-id=ext-net-id,dst-mac=dst-fip-mac set
vpn-id=fip-subnet-id =>
FIB table (21) match: vpn-id=fip-subnet-id,dst-ip=dst-fip =>
Pre DNAT table (25) match: dst-ip=dst-fip set
vpn-id=router-id,dst-ip=dst-vm-ip =>
DNAT table (27) match: vpn-id=router-id,dst-ip=dst-vm-ip =>
FIB table (21) match: vpn-id=router-id,dst-ip=dst-vm-ip =>
Local Next-Hop group: set dst-mac=dst-vm-mac,lport-tag=dst-vm-lport-tag =>
Egress table (220) output to VM port

Yang changes

odl-nat module will be enhanced with the following container

container external-subnets {
list subnets {
key id;
leaf id {

type yang:uuid;

288 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

}
leaf vpnid {

type yang:uuid;
}
leaf-list router-ids {

type yang:uuid;
}
leaf external-network-id {

type yang:uuid;
}

}
}

This model will be filled out only for flat/VLAN external network provider types. If this model is missing, vpn-id will
be taken from odl-nat:external-networks model to maintain compatibility with BGPVPN models.

odl-nat:ext-routers container will be enhanced with the list of the external subnet-ids associated with the
router.

container ext-routers {
list routers {
key router-name;
leaf router-name {

type string;
}
...

leaf-list external-subnet-id {
type yang:uuid; }

}
}

}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

1.2. Getting Started Guide 289

OpenDaylight Documentation Documentation, Release Carbon

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Create external network with two subnets

neutron net-create public-net -- --router:external --is-default --provider:network_
→˓type=flat
--provider:physical_network=physnet1
neutron subnet-create --ip_version 4 --gateway 10.64.0.1 --name public-subnet1
→˓<public-net-uuid> 10.64.0.0/16
-- --enable_dhcp=False
neutron subnet-create --ip_version 4 --gateway 10.65.0.1 --name public-subnet2
→˓<public-net-uuid> 10.65.0.0/16
-- --enable_dhcp=False

Create internal networks with subnets

neutron net-create private-net1
neutron subnet-create --ip_version 4 --gateway 10.0.123.1 --name private-subnet1
→˓<private-net1-uuid>
10.0.123.0/24
neutron net-create private-net2
neutron subnet-create --ip_version 4 --gateway 10.0.124.1 --name private-subnet2
→˓<private-net2-uuid>
10.0.124.0/24
neutron net-create private-net3
neutron subnet-create --ip_version 4 --gateway 10.0.125.1 --name private-subnet3
→˓<private-net3-uuid>
10.0.125.0/24
neutron net-create private-net4
neutron subnet-create --ip_version 4 --gateway 10.0.126.1 --name private-subnet4
→˓<private-net4-uuid>
10.0.126.0/24

Create two router instances and connect each router to one internal subnet and one external subnet

290 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

neutron router-create router1
neutron router-interface-add <router1-uuid> <private-subnet1-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> <router1-uuid>
→˓<public-net-uuid>
neutron router-create router2
neutron router-interface-add <router2-uuid> <private-subnet2-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet2-uuid> <router2-uuid>
→˓<public-net-uuid>

Create router instance connected to both external subnets and the remaining internal subnets

neutron router-create router3
neutron router-interface-add <router3-uuid> <private-subnet3-uuid>
neutron router-interface-add <router3-uuid> <private-subnet4-uuid>
neutron router-gateway-set --fixed-ip subnet_id=<public-subnet1-uuid> --fixed-ip
→˓subnet_id=<public-subnet2-uuid>
<router3-uuid> <public-net-uuid>

Create floating ips from both subnets

neutron floatingip-create --subnet <public-subnet1-uuid> public-net
neutron floatingip-create --subnet <public-subnet1-uuid> public-net
neutron floatingip-create --subnet <public-subnet2-uuid> public-net

Create 2 VM instance in each subnet and associate with floating ips

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net1-uuid> VM1
nova floating-ip-associate VM1 <fip1-public-subnet1>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net1-uuid> VM2
nova floating-ip-associate VM2 <fip2-public-subnet1>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net2-uuid> VM3
nova floating-ip-associate VM3 <fip1-public-subnet2>
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net2-uuid> VM4
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net3-uuid> VM5
nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net4-uuid> VM6

Connectivity tests

• Connect to the internet from all VMs. VM1 and VM2 will route traffic through external gateway 10.64.0.1 VM3
and VM4 route traffic through external gateway 10.65.0.1.

• Connect to the internet from VM5 and VM6. Each connection will be routed to different external gateway with
the corresponding subnet router-gateway ip.

• Hairpinning when source VM is associated with floating ip - ping between VM1 and VM2 using their floating
ips.

• Hairpinning when source VM is not associated with floating ip - ping from VM4 to VM3 using floating ip. Since
VM4 has no associated floating ip a NAPT entry will be allocated using the router-gateway ip.

1.2. Getting Started Guide 291

OpenDaylight Documentation Documentation, Release Carbon

Features to Install

odl-netvirt-openstack

REST API

N/A

CLI

N/A

Implementation

Assignee(s)

Primary assignee: Yair Zinger <yair.zinger@hpe.com>

Other contributors: Tali Ben-Meir <tali@hpe.com>

Work Items

https://trello.com/c/uDcQw95v/104-pipeline-changes-fip-w-multiple-subnets-in-ext-net-hairpinning

• Add external-subnets model

• Add vpn-instances for external flat/VLAN sunbets

• Change pipeline to prefer vpn-id from external-subnets over vpn-id from external-networks

• Add write metadata to GW MAC table for floating ip/router gw mac addresses

• Add default subnet-id match in FIB table to external subnet group entry

• Changes in remote next-hop flow for floating ip in FIB table

– Set destination mac to floating ip mac

– Set egress actions to provider port of the network attached to the floating ip subnet

• Resubmit SNAT + Outbound NAPT flows to FIB table

Dependencies

None

292 Chapter 1. Content for OpenDaylight Users

mailto:yair.zinger@hpe.com
mailto:tali@hpe.com
https://trello.com/c/uDcQw95v/104-pipeline-changes-fip-w-multiple-subnets-in-ext-net-hairpinning

OpenDaylight Documentation Documentation, Release Carbon

Testing

Unit Tests

Integration Tests

CSIT

• Hairpinning between VMs in the same subnet

• Hairpinning between VMs in different subnets connected to the same router

• Hairpinning with NAPT - source VM is not associated with floating ip

• Traffic to external network with multiple subnets

Documentation Impact

None

References

[1] OpenDaylight Documentation Guide

Table of Contents

• IPv6 DC-Internet L3 North-South connectivity using L3VPN provider network types.

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Fib Manager changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

1.2. Getting Started Guide 293

http://docs.opendaylight.org/en/latest/documentation.html

OpenDaylight Documentation Documentation, Release Carbon

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

IPv6 DC-Internet L3 North-South connectivity using L3VPN provider network types.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-l3vpn-internet

In this specification we will be discussing the high level design of IPv6 Datacenter to Internet North-South connectivity
support in OpenDaylight using L3VPN provider network type use-case.

Problem description

Provide IPv6 connectivity to virtual machines located in different subnets spread over multiple sites or Data center can
be achieved through use of Globally Unique Addresses and capacity to update enough routing tables to forge a path
between the two. Even if IPv6 is made to interconnect hosts without the help of any NAT mechanisms, routing with
the best efficienty (shortest path) or policy (route weight, commercial relationships) must be configured using only
few parameters, automatically updating routes for each VM spawned in new network.

Keep in mind that key aspects of L3VPN connectivity is Route Targets and VPN-IPv6 address family. Assuming an
operator can configure data center gateways with a Route Distinguisher dedicated to Internet connectivity and a set
of imported Route Targets, each time a virtual machine is spawned within a data center subnet associated with that
Route Distinguisher, it will trigger the send of a BGP UPDATE message containing MP-BGP attributes required for
reaching the VM outside the datacenter. In the same manner, adding extra-route or declaring subnetworks will trigger
the same. Such behavior can be achieved by configuring a neutron router an internet public VPN address. For the
following of the document, we focus to GUA/128 addresses that are advertised, when one VM start. Indeed, most of
the requirements are dealing with VM access to internet.

Only IPv6 Globally Unique Address (eg /128) are advertised, this is not a scaling architecture since it implies as much
routes to process as the number of spawned VMs, but with such BGP routing information base, DCGW can select the
Compute Node to which a packet coming from the WAN should be forwarded to.

The following covers the case where a VM connects to a host located in the internet, and the destination ip address of
packets is not part of the list of advertised prefixes (see spec [6]).

Following schema could help :

OVS A flow:
IP dst not in advertised list

VPN configuration explained in use case chapter
+-----------------+

294 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-l3vpn-internet

OpenDaylight Documentation Documentation, Release Carbon

| +-------------+ |
+---+ |VM1 | |

BGP table | | | Subnet A::2 | |
Prefix Subnet A::2 |OVS| +-------------+ |

+-------+ Label L2 | A | +-------------+ |
| | Next Hop OVS A | | |VM2 | |
| Host | +-+-+ | Subnet B::2 | |
+---+---+ +-------+ | | +-------------+ |

| | | | +-----------------+
| | +-----------------+
+--Internet-----+ DCGW |

| +-----------------+ +-----------------+
| | | | +-------------+ |
+-------+ +-+-+ |VM3 | |

		Subnet A::3	
OVS	+-------------+		
B	+-------------+		
		VM4	
+---+ | Subnet B::2 | |

| +-------------+ |
+-----------------+

Use Cases

Datacenter IPv6 external connectivity to/from Internet for VMs spawned on tenant networks.

There are several techniques for VPNs to access the Internet. Those methods are described in [8], on section 11. Also
a note describes in [8] the different techniques that could be applied to the DC-GW case. Note that not all solutions
are compliant with the RFC. Also, we make the hypothesis of using GUA.

The method that will be described more in detail below is the option 2. Option 2 is external network connectivity
option 2 from [8]). That method implies 2 VPNs. One VPN will be dedicated to Internet access, and will contain the
Internet Routes, but also the VPNs routes. The Internet VPN can also contain default route to a gateway. Having a
separated VPN brings some advantages: - the VPN that do not need to get Internet access get the private characteristic

of VPNs.

• using a VPN internet, instead of default forwarding table is enabling flexibility, since it coud permit creating
more than one internet VPN. As consequence, it could permit applying different rules (different gateway for
example).

Having 2 VPNs implies the following for one packet going from VPN to the internet. The FIB table will be used for
that. If the packet’s destination address does no match any route in the first VPN, then it may be matched against the
internet VPN forwarding table. Reversely, in order for traffic to flow natively in the opposite direction, some of the
routes from the VPN will be exported to the internet VPN.

Configuration steps in a datacenter:

• Configure ODL and Devstack networking-odl for BGP VPN.

• Create a tenant network with IPv6 subnet using GUA prefix or an

admin-created-shared-ipv6-subnet-pool. - This tenant network is connected to an external network where
the DCGW is

connected. Separation between both networks is done by DPN located on compute nodes. The
subnet on this external network is using the same tenant as an IPv4 subnet used for MPLS over
GRE tunnels endpoints between DCGW and DPN on Compute nodes. Configure one GRE
tunnel between DPN on compute node and DCGW.

1.2. Getting Started Guide 295

OpenDaylight Documentation Documentation, Release Carbon

• Create a Neutron Router and connect its ports to all internal subnets

• Create a transport zone to declare that a tunneling method is planned to reach an external IP:

the IPv6 interface of the DC-GW

• The neutron router subnetworks will be associated to two L3 BGPVPN instance.

The step create the L3VPN instances and associate the instances to the router. Especially, two
VPN instances will be created, one for the VPN, and one for the internetVPN.

operations:neutronvpn:createL3VPN (“route-distinguisher” = “vpn1” “import-RT” =
[”vpn1”,”internetvpn”] “export-RT” = [”vpn1”,”internetvpn”])

operations:neutronvpn:createL3VPN (“route-distinguisher” = “internetvpn” “import-
RT” = “internetvpn” “export-RT” = “internetvpn”)

• The DC-GW configuration will also include 2 BGP VPN instances. Below is a configuration from
QBGP using vty command interface.

vrf rd “internetvpn” vrf rt both “internetvpn” vrf rd “vpn1” vrf rt both “vpn1” “internetvpn”

• Spawn VM and bind its network interface to a subnet, L3 connectivty between

VM in datacenter and a host on WAN must be successful. More precisely, a route belonging to VPN1
will be associated to VM GUA. and will be sent to remote DC-GW. DC-GW will import the entry to
both “vpn1” and “internetvpn” so that the route will be known on both vpns. Reversely, because DC-GW
knows internet routes in “internetvpn”, those routes will be sent to QBGP. ODL will get those internet
routes, only in the “internetvpn” vpn. For example, when a VM will try to reach a remote, a first lookup
will be done in “vpn1” FIB table. If none is found, a second lookup will be found in the “internetvpn”
FIB table. The second lookup should be successfull, thus trigerring the encapsulation of packet to the
DC-GW.

When the data centers is set up, there are 2 use cases:

• Traffic from Local DPN to DC-Gateway

• Traffic from DC-Gateway to Local DPN

The use cases are slightly different from [6], on the Tx side.

Proposed change

Similar as with [6], plus a specific processing on Tx side. An additionnal processing in DPN is required. When a
packet is received by a neutron router associated with L3VPN, with destination mac address is the subnet gateway
mac address, and the destination ip is not in the FIB (default gateway) of local DPN, then the packet should do a
second lookup in the second VPN configured. So that the packet can enter the L3VPN netvirt pipeline. The MPLS
label pushed on the IPv6 packet is the one configured to provide access to Internet at DCGW level.

Pipeline changes

No pipeline changes, compared with [6]. However, FIB Manager will be modified so as to implement the fallback
mechanism. The FIB tables of the import-RTs VPNs from the default VPN created will be parsed. In our case, a match
will be found in the “internetVPN” FIB table. If not match is found, the drop rule will be applied.

Regarding the pipeline changes, we can use the same BGPVPNv4 pipeline (Tables Dispatcher (17), DMAC (19), LFIB
(20), L3FIB (21), and NextHop Group tables) and enhance those tables to support IPv6 North-South communication
through MPLS/GRE. For understanding, the pipeline is written below: l3vpn-id is the ID associated to the initial VPN,
while l3vpn-internet-id is the ID associated to the internet VPN.

296 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

When a packet is coming from DC-Gateway, the label will help finding out the associated VPN. The first one is
l3vpn-id.

Classifier Table (0) =>
LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set
output to nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

When a packet is going out from a dedicated VM, the l3vpn-id attached to that subnetwork will be used. Theorically,
in L3 FIB, there will be no match for dst IP with this l3vpn-id. However, because ODL know the relationship between
both VPNs, then the dst IP will be attached with the first l3vpn-id.

However, since the gateway IP for inter-DC and external access is the same, the same MPLS label will be used for
both VPNs.

Classifier Table (0) =>
Lport Dispatcher Table (17) ‘‘match: LportTag l3vpn service: set vpn-id=l3vpn-id‘ =>
DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service:
set vpn-id=internet-l3vpn-id =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=<alternate-ip> set
tun-id=mpls_label output to MPLSoGRE tunnel port =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set
tun-id=mpls_label output to MPLSoGRE tunnel port =>

Fib Manager changes

Ingress traffic from internet to VM

The FIB Manager is being configured with 2 entries for different RDs : l3vpn-id and internetvpn-id. The LFIB will be
matched first. In our case, label NH and prefix are the same, whereas we have 2 VPN instances. So, proposed change
is to prevent LFIB from adding entries if a label is already registered for that compute node.

Egress traffic from VM to internet

The FIB Manager is being configured with the internet routes on one RD only : internetvpn-id. As packets that are
emitted from the VM with vpn=l3vpn-id, the internet route will not be matched in l3vpn, if implementation remains
as it is. In FIB Manager, solution is the following: - The internetvpn is not attached to any local subnetwork. so, any
eligible VPNs are looked up in the list of VPN instances. for each VPN instance, for each RD, if an imported RT
matches the internetvpnID, then a new rule will be appended.

1.2. Getting Started Guide 297

OpenDaylight Documentation Documentation, Release Carbon

Yang changes

None

Configuration impact

The configuration will require to create 2 VPN instances.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

The number of entries will be duplicated, compared with [6]. This is the cost in order to keep some VPNs private, and
others kind of public. Another impact is the double lookup that may result, when emitting a packet. This is due to
the fact that the whole fib should be parsed to fallback to the next VPN, in order to make an other search, so that the
packet can enter in the L3VPN flow.

Targeted Release

Carbon

Alternatives

None

Usage

• Configure MPLS/GRE tunnel endpoint on DCGW connected to public-net network

• Configure neutron networking-odl plugin

• Configure BGP speaker in charge of retrieving prefixes for/from data center gateway in ODL through the set
of vpnservice.bgpspeaker.host.name in etc/custom.properties. No REST API can configure that parameter. Use
config/ebgp:bgp REST api to start BGP stack and configure VRF, address family and neighboring. In our case,
as example, following values will be used:

– rd=”100:2” # internet VPN - import-rts=”100:2” - export-rts=”100:2”

298 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

– rd=”100:1” # vpn1 - import-rts=”100:1 100:2” - export-rts=”100:1 100:2”

POST config/ebgp:bgp
{

"ebgp:as-id": {
"ebgp:stalepath-time": "360",
"ebgp:router-id": "<ip-bgp-stack>",
"ebgp:announce-fbit": "true",
"ebgp:local-as": "<as>"

},
"ebgp:neighbors": [

{
"ebgp:remote-as": "<as>",
"ebgp:address-families": [
{

"ebgp:afi": "2",
"ebgp:peer-ip": "<neighbor-ip-address>",
"ebgp:safi": "128"

}
],
"ebgp:address": "<neighbor-ip-address>"

}
],

}

* Configure BGP speaker on DCGW to exchange prefixes with ODL BGP stack. Since
DCGW should be a vendor solution, the configuration of such equipment is out of
the scope of this specification.

• Create an internal tenant network with an IPv6 (or dual-stack) subnet.

neutron net-create private-net
neutron subnet-create --name ipv6-int-subnet --ip-version 6
--ipv6-ra-mode slaac --ipv6-address-mode slaac private-net 2001:db8:0:2::/64

• Use neutronvpn:createL3VPN REST api to create L3VPN

POST /restconf/operations/neutronvpn:createL3VPN

{
"input": {

"l3vpn":[
{

"id":"vpnid_uuid_1",
"name":"internetvpn",
"route-distinguisher": [100:2],
"export-RT": [100:2],
"import-RT": [100:2],
"tenant-id":"tenant_uuid"

}
]

}
}

POST /restconf/operations/neutronvpn:createL3VPN

{
"input": {

1.2. Getting Started Guide 299

OpenDaylight Documentation Documentation, Release Carbon

"l3vpn":[
{

"id":"vpnid_uuid_2",
"name":"vpn1",
"route-distinguisher": [100:1],
"export-RT": [100:1, 100:2],
"import-RT": [100:1, 100:2],
"tenant-id":"tenant_uuid"

}
]

}
}

• Associate L3VPN To Network

POST /restconf/operations/neutronvpn:associateNetworks

{
"input":{

"vpn-id":"vpnid_uuid_1",
"network-id":"network_uuid"

}
}

• Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net> VM1

• Dump ODL BGP FIB

GET /restconf/config/odl-fib:fibEntries

{
"fibEntries": {
"vrfTables": [

{
"routeDistinguisher": <rd-uuid_1>

},
{

"routeDistinguisher": <rd_vpn1>,
"vrfEntry": [
{

"destPrefix": <IPv6_VM1/128>,
"label": <label>,
"nextHopAddressList": [
<DPN_IPv4>

],
"origin": "l"

},
]

}
{

"routeDistinguisher": <rd-uuid_2>
},
{

"routeDistinguisher": <rd_vpninternet>,
"vrfEntry": [
{

300 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"destPrefix": <IPv6_VM1/128>,
"label": <label>,
"nextHopAddressList": [
<DPN_IPv4>

],
"origin": "l"

},
]

}
]

}
}

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

Primary assignee: Julien Courtat <julien.courtat@6wind.com>

Other contributors: Noel de Prandieres <prandieres@6wind.com> Valentina Krasnobaeva
<valentina.krasnobaeva@6wind.com> Philippe Guibert <philippe.guibert@6wind.com>

Work Items

• Validate proposed setup so that each VM entry is duplicated in 2 VPN instances

• Implement FIB-Manager fallback mechanism for output packets

Dependencies

[6]

Testing

Unit Tests

Unit tests related to fallback mechanism when setting up 2 VPN instances configured as above.

1.2. Getting Started Guide 301

mailto:julien.courtat@6wind.com
mailto:prandieres@6wind.com
mailto:valentina.krasnobaeva@6wind.com
mailto:philippe.guibert@6wind.com

OpenDaylight Documentation Documentation, Release Carbon

Integration Tests

TBD

CSIT

CSIT provided for the BGPVPNv6 versions will be enhanced to also support connectivity to Internet.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] IPv6 Distributed Router for Flat/VLAN based Provider Networks.

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN

[6] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN.

[7] Spec to support IPv6 North-South support for Flat/VLAN Provider Network.

[8] External Network connectivity in IPv6 networks.

[9] BGP/MPLS IP Virtual Private Networks (VPNs)

Table of Contents

• IPv6 Inter-DC L3 North-South connectivity using L3VPN provider network types.

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

302 Chapter 1. Content for OpenDaylight Users

http://docs.opendaylight.org/en/latest/documentation.html
https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html
http://docs.openstack.org/developer/networking-bgpvpn/overview.html
https://git.opendaylight.org/gerrit/#/q/topic:ipv6-distributed-router
https://tools.ietf.org/html/rfc4659
https://git.opendaylight.org/gerrit/#/c/50359
https://git.opendaylight.org/gerrit/#/c/49909/
https://drive.google.com/file/d/0BxAspfn9mEi8OEtvVFpsZXo0ZlE/view
https://tools.ietf.org/html/rfc4364#section-11

OpenDaylight Documentation Documentation, Release Carbon

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

IPv6 Inter-DC L3 North-South connectivity using L3VPN provider network types.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-interdc-l3vpn

In this specification we will be discussing the high level design of IPv6 Inter-Datacenter North-South connectivity
support in OpenDaylight using L3VPN provider network type use-case.

Problem description

Provide IPv6 connectivity to virtual machines located in different subnets spread over multiple sites or Data center can
be achieved through use of Globally Unique Addresses and capacity to update enough routing tables to forge a path
between the two. Even if IPv6 is made to interconnect hosts without the help of any NAT mechanisms, routing with
the best efficienty (shortest path) or policy (route weight, commercial relationships) must be configured using only
few parameters, automatically updating routes for each VM spawned in new network.

Keep in mind that key aspects of L3VPN connectivity is Route Targets and VPN-IPv6 address family. Assuming an
operator can configure both data center gateways with same Route Distinguisher or set of imported Route Targets, each
time a virtual machine is spawned within a new subnet, it will trigger the send of a BGP UPDATE message containing
MP-BGP attributes required for reaching the VM. Such behavior can be achieved by configuring a neutron router a
default gateway.

Only IPv6 Globally Unique Address (eg /128) are advertised, this is not a scaling architecture since it implies as much
routes to process as the number of spawned VMs, but with such BGP routing information base, DCGW can select the
Compute Node to which a packet coming from the WAN should be forwarded to.

Following schema could help :

+-----------------+ +-----------------+
+-------------+		+-------------+						
	VM1	+---+ +---+	VM1					
	Subnet C::4			BGP table			Subnet A::2	
+-------------+	OVS	Prefix Subnet A::2	OVS	+-------------+				

1.2. Getting Started Guide 303

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-interdc-l3vpn

OpenDaylight Documentation Documentation, Release Carbon

+-------------+	A	Label L1	A	+-------------+				
	VM2			Next Hop OVS A			VM2	
	Subnet D::4	+-+-+ +-+-+	Subnet B::2					
+-------------+		+------+ +-------+		+-------------+				
+-----------------+ | | | | | | +-----------------+

+-----+ | | +--------+
| DCGW +--WAN--+ DCGW |

+-----------------+ +-----+ | | +--------+ +-----------------+
+-------------+								+-------------+
	VM3	+-+-+ +------+ +-------+ +-+-+	VM3					
	Subnet C::5						Subnet A::3	
+-------------+	OVS		OVS	+-------------+				
+-------------+	B		B	+-------------+				
	VM4						VM4	
	Subnet D::5	+---+ +---+	Subnet B::3					
+-------------+		+-------------+						
+-----------------+ +-----------------+

BGP protocol and its MP-BGP extension would do the job as long as all BGP speakers are capable of processing
UPDATE messages containing VPN-IPv6 address family, which AFI value is 2 and SAFI is 128. It is not required that
BGP speakers peers using IPv6 LLA or GUA, IPv4 will be used to peer speakers together.

Opendaylight is already able to support the VPN-IPv4 address family (AFI=1, SAFI=128), and this blueprint focuses
on specific requirements to VPN-IPv6.

One big question concerns the underlying transport IP version used with MPLS/GRE tunnels established between
Data center Gateway (DCGW), and compute nodes (CNs). There is one MPLS/GRE tunnel setup from DCGW to
each Compute Node involved in the L3VPN topology. Please note that this spec doesn’t covers the case of VxLAN
tunnels between DCGW and Compute Nodes.

According to RFC 4659 §3.2.1, the encoding of the nexthop attribute in MP-BGP UPDATE message differs if the
tunneling transport version required is IPv4 or IPv6. In this blueprint spec, the assumption of transport IP version of
IPv4 is prefered. This implies that any nexthop set for a prefix in FIB will be IPv4.

Within BGP RIB table, for each L3VPN entry, the nexthop and label are key elements for creating MPLS/GRE tunnel
endpoints, and the prefix is used for programming netvirt pipeline. When a VM is spawned, the prefix advertised by
BGP is 128 bits long and the nexthop carried along within UPDATE message is the ip address of the DPN interface
used for DCGW connection. Since DCGW can be proprietary device, it may not support MPLS/GRE tunnel endpoint
setup according to its internal BGP table. A static configuration of such tunnel endpoint may be required.

Use Cases

Inter Datacenter IPv6 external connectivity for VMs spawned on tenant networks, routes exchanged between BGP
speakers using same Route Distinguisher.

Steps in both data centers :

• Configure ODL and Devstack networking-odl for BGP VPN.

• Create a tenant network with IPv6 subnet using GUA prefix or an admin-created-shared-ipv6-subnet-pool.

• This tenant network is separated to an external network where the DCGW is connected. Separation between
both networks is done by DPN located on compute nodes. The subnet on this external network is using the same
tenant as an IPv4 subnet used for MPLS over GRE tunnels endpoints between DCGW and DPN on Compute
nodes. Configure one GRE tunnel between DPN on compute node and DCGW.

• Create a Neutron Router and connect its ports to all internal subnets that will belong to the same L3 BGPVPN
identified by a Route Distinguisher.

304 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• Start BGP stack managed by ODL, possibly on same host as ODL.

• Create L3VPN instance.

• Associate the Router with the L3VPN instance.

• Spawn VM on the tenant network, L3 connectivity between VMs located on different datacenter sharing same
Route Distinguisher must be successful.

When both data centers are set up, there are 2 use cases per data center:

• Traffic from DC-Gateway to Local DPN (VMS on compute node)

• Traffic from Local DPN to DC-Gateway

Proposed change

ODL Controller would program the necessary pipeline flows to support IPv6 North South communication through
MPLS/GRE tunnels out of compute node.

BGP manager would be updated to process BGP RIB when entries are IPv6 prefixes.

FIB manager would be updated to take into acount IPv6 prefixes.

Thrift interface between ODL and BGP implementation (Quagga BGP) must be enhanced to support new AFI=2.
Thrift interface will still carry IPv4 Nexthops, and it will be the Quagga duty to transform this IPv4 Nexthop address
into an IPv4-mapped IPv6 address in every NLRI fields. Here is the new api proposed :

enum af_afi {
AFI_IP = 1,
AFI_IPV6 = 2,

}
i32 pushRoute(1:string prefix, 2:string nexthop, 3:string rd, 4:i32 label,

5:af_afi afi)
i32 withdrawRoute(1:string prefix, 2:string rd, 3:af_afi afi)
oneway void onUpdatePushRoute(1:string rd, 2:string prefix,

3:i32 prefixlen, 4:string nexthop,
5:i32 label, 6:af_afi afi)

oneway void onUpdateWithdrawRoute(1:string rd, 2:string prefix,
3:i32 prefixlen, 4:string nexthop,
5:af_afi afi)

Routes getRoutes(1:i32 optype, 2:i32 winSize, 3:af_afi afi)

BGP implementation (Quagga BGP) announcing (AFI=2,SAFI=128) capability as well as processing UPDATE mes-
sages with such address family. Note that the required changes in Quagga is not part of the design task covered by this
blueprint.

Pipeline changes

Regarding the pipeline changes, we can use the same BGPVPNv4 pipeline (Tables Dispatcher (17), DMAC (19), LFIB
(20), L3FIB (21), and NextHop Group tables) and enhance those tables to support IPv6 North-South communication
through MPLS/GRE.

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

Classifier Table (0) =>

1.2. Getting Started Guide 305

OpenDaylight Documentation Documentation, Release Carbon

LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set
output to nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

Please note that vpn-subnet-gateway-mac-address stands for MAC address of the neutron port of the inter-
nal subnet gateway router.

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>
Lport Dispatcher Table (17) match: LportTag l3vpn service: set vpn-id=l3vpn-id =>
DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service:
set vpn-id=l3vpn-id =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set
tun-id=mpls_label output to MPLSoGRE tunnel port =>

Please note that router-internal-interface-mac stands for MAC address of the neutron port of the internal
subnet gateway router.

Yang changes

Changes will be needed in ebgp.yang to start supporting IPv6 networks advertisements.

A new leaf afi will be added to container networks

Listing 1.11: ebgp.yang

list networks {
key "rd prefix-len";

leaf rd {
type string;

}

leaf prefix-len {
type string;

}

leaf afi {
type uint32;
mandatory "false";

}

leaf nexthop {
type inet:ipv4-address;
mandatory "false";

}

leaf label {
type uint32;
mandatory "false";

306 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

}
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Impact on scaling inside datacenter essentially grow with the number of VM connected to subnets associated with the
L3VPN. Since Globally Unique Address are used and there is no NAT involved in the datapath, it implies prefixes
advertised are all /128. At the end, it means that every prefix advertised will have its entry in BGP RIB of all ODL
controllers and DCGW involved in L3VPN (ie all bgp aware equipment will handle all prefixes advertised wihtin a
Route Distinguisher).

This may imply BGP table with very high number of entries. This also implies a high number of entries in ODL
routing table and equivalent number of flows inserted in OVS, since prefix advertised add matching ip destination in
OVS tables.

This fact also impact the scaling of the BGP speaker implementation (Quagga BGP) with many thousands of BG-
PVPNv4 and BGPVPNv6 prefixes (as much as number of spawned VMs) with best path selection algorithm on route
updates, graceful restart procedure, and multipath.

Targeted Release

Carbon

Alternatives

None

1.2. Getting Started Guide 307

OpenDaylight Documentation Documentation, Release Carbon

Usage

• Configure MPLS/GRE tunnel endpoint on DCGW connected to public-net network

• Configure neutron networking-odl plugin

• Configure BGP speaker in charge of retrieving prefixes for/from data center gateway in ODL through the set
of vpnservice.bgpspeaker.host.name in etc/custom.properties. No REST API can configure that parameter. Use
config/ebgp:bgp REST api to start BGP stack and configure VRF, address family and neighboring

POST config/ebgp:bgp
{

"ebgp:as-id": {
"ebgp:stalepath-time": "360",
"ebgp:router-id": "<ip-bgp-stack>",
"ebgp:announce-fbit": "true",
"ebgp:local-as": "<as>"

},
"ebgp:vrfs": [
{

"ebgp:export-rts": [
"<export-rts>"

],
"ebgp:rd": "<RD>",
"ebgp:import-rts": [
"<import-rts>"

]
}

],
"ebgp:neighbors": [

{
"ebgp:remote-as": "<as>",
"ebgp:address-families": [
{
"ebgp:afi": "2",
"ebgp:peer-ip": "<neighbor-ip-address>",
"ebgp:safi": "128"

}
],
"ebgp:address": "<neighbor-ip-address>"

}
],

}

• Configure BGP speaker on DCGW to exchange prefixes with ODL BGP stack. Since DCGW should be a vendor
solution, the configuration of such equipment is out of the scope of this specification.

• Create an internal tenant network with an IPv6 (or dual-stack) subnet and connect ports.

neutron net-create private-net
neutron subnet-create private-net 2001:db8:0:2::/64 --name ipv6-int-subnet
--ip-version 6 --ipv6-ra-mode slaac --ipv6-address-mode slaac
neutron port-create private-net --name port1_private1

• Create a router and associate it to internal subnets.

neutron router-create router1
neutron router-interface-add router1 ipv6-int-subnet

308 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• Use neutronvpn:createL3VPN REST api to create L3VPN

POST /restconf/operations/neutronvpn:createL3VPN
{

"input": {
"l3vpn":[

{
"id":"vpnid_uuid",
"name":"vpn1",
"route-distinguisher": [100:1],
"export-RT": [100:1],
"import-RT": [100:1],
"tenant-id":"tenant_uuid"

}
]

}
}

• Associate L3VPN To Routers

POST /restconf/operations/neutronvpn:associateRouter
{

"input":{
"vpn-id":"vpnid_uuid",
"router-id":["router_uuid"]

}
}

• Create MPLSoGRE tunnel between DPN and DCGW

POST /restconf/operations/itm-rpc:add-external-tunnel-endpoint
{

"itm-rpc:input": {
"itm-rpc:destination-ip": "dcgw_ip",
"itm-rpc:tunnel-type": "odl-interface:tunnel-type-mpls-over-gre"

}
}

• Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> \
--nic net-id=port1_private1_uuid VM1

• Dump ODL BGP FIB

GET /restconf/config/odl-fib:fibEntries
{

"fibEntries": {
"vrfTables": [

{
"routeDistinguisher": <rd-uuid>

},
{

"routeDistinguisher": <rd>,
"vrfEntry": [
{

"destPrefix": <IPv6_VM1/128>,
"label": <label>,
"nextHopAddressList": [

1.2. Getting Started Guide 309

OpenDaylight Documentation Documentation, Release Carbon

<DPN_IPv4>
],
"origin": "l"

},
]

}
]

}
}

Features to Install

odl-netvirt-openstack

REST API

CLI

A new option --afi will be added to command odl:bgp-network:

opendaylight-user@root>
odl:bgp-network --prefix 2001:db8::1/128 --rd 100:1 --nexthop 192.168.0.2

--label 700 --afi 2 add/del

Implementation

Assignee(s)

Primary assignee: Julien Courtat <julien.courtat@6wind.com>

Other contributors: Noel de Prandieres <prandieres@6wind.com> Valentina Krasnobaeva
<valentina.krasnobaeva@6wind.com> Philippe Guibert <philippe.guibert@6wind.com>

Work Items

• Implement necessary APIs to allocate a transport over IPv6 requirement configuration for a given Route Target
as the primary key.

• Support of BGPVPNv6 prefixes within MD-SAL. Enhance RIB-manager to support routes learned from other
bgp speakers, [un]set static routes.

• BGP speaker implementation, Quagga BGP, to support BGPVPN6 prefixes exchanges with other BGP speakers
(interoperability), and thrift interface updates.

• Program necessary pipeline flows to support IPv6 to MPLS/GRE (IPv4) communication.

Dependencies

Quagga from 6WIND is publicly available at the following url

310 Chapter 1. Content for OpenDaylight Users

mailto:julien.courtat@6wind.com
mailto:prandieres@6wind.com
mailto:valentina.krasnobaeva@6wind.com
mailto:philippe.guibert@6wind.com

OpenDaylight Documentation Documentation, Release Carbon

• https://github.com/6WIND/quagga

• https://github.com/6WIND/zrpcd

Testing

Unit Tests

Unit tests provided for the BGPVPNv4 versions will be enhanced to also support BGPVPNv6. No additional unit tests
will be proposed.

Integration Tests

TBD

CSIT

CSIT provided for the BGPVPNv4 versions will be enhanced to also support BGPVPNv6. No additional CSIT will
be proposed.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] Spec to support IPv6 North-South support for Flat/VLAN Provider Network.

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN

Note: This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. http://creativecommons.org/
licenses/by/3.0/legalcode

Table of Contents

• IPv6 L3 North-South support for Flat/VLAN Provider Networks.

– Problem description

* Use Cases

– Proposed change

1.2. Getting Started Guide 311

https://github.com/6WIND/quagga
https://github.com/6WIND/zrpcd
http://docs.opendaylight.org/en/latest/documentation.html
https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html
http://docs.openstack.org/developer/networking-bgpvpn/overview.html
https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south
https://tools.ietf.org/html/rfc4659
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenDaylight Documentation Documentation, Release Carbon

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

IPv6 L3 North-South support for Flat/VLAN Provider Networks.

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south

In this specification we will be discussing the high level design of IPv6 North-South support in OpenDaylight for
VLAN/FLAT provider network use-case.

Problem description

OpenDaylight currently supports IPv6 IPAM (IP Address Management) and a fully distributed east-west router. IPv6
external connectivity is not yet supported. This SPEC captures the implementation details of IPv6 external connectivity
for VLAN/FLAT provider network use-cases.

We have a separate SPEC [3] that captures external connectivity for L3VPN use-case.

The expectation in OpenStack is that Tenant IPv6 subnets are created with Globally Unique Addresses (GUA) that are
routable by the external physical IPv6 gateway in the datacenter for external connectivity. So, there is no concept of

312 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south

OpenDaylight Documentation Documentation, Release Carbon

NAT or Floating-IPs for IPv6 addresses in Neutron. An IPv6 router is hence expected to do a plain forwarding.

Initially, we would like to pursue a Centralized IPv6 router (CVR) use-case and look into a fully distributed router via a
future spec. One of the main reasons for pursuing the CVR over DVR is that OpenStack Neutron creates only a single
router gateway port (i.e., port with device owner as network:router_gateway) when the router is associated with the
external network. When implementing a distributed router, we cannot use the same router gateway port MAC address
from multiple Compute nodes as it could create issues in the underlying physical switches. In order to implement a
fully distributed router, we would ideally require a router-gateway-port per compute node. We will be addressing the
distributed router in a future spec taking into consideration both IPv4 and IPv6 use-cases.

Use Cases

IPv6 external connectivity (north-south) for VMs spawned on tenant networks, when the external network is of type
FLAT/VLAN based.

Steps:

• Create a tenant network with IPv6 subnet using GUA/ULA prefix or an admin-created-shared-ipv6-subnet-pool.

• Create an external network of type FLAT/VLAN with an IPv6 subnet where the gateway_ip points to the Link
Local Address (LLA) of external/physical IPv6 gateway.

• Create a Neutron Router and associate it with the internal subnets and external network.

• Spawn VMs on the tenant network.

+------------------+
| |
| +------->Internet
| External IPv6 |
| Gateway |
| |
| |
+------------------+

|LLA of IPv6 GW
|
| Flat/VLAN External Network: 2001:db8:0:1::/64

+--+
| | |
| | |
| ---+
| | Internal Tenant N/W | | | |

router-gw-port| | | | | |
+------------------------+ +-------------------------+ +-------------------------

→˓+
| +--------------------+ | | | |

→˓|
| | Virtual IPv6 Router| | | | |

→˓|
| | using OVS Flows | | | | |

→˓|
| +--------------------+ | | | |

→˓|
| | | | |

→˓|
| | | | |

→˓|
| +--------------------+ | | +---------------------+ | | +---------------------+

→˓|

1.2. Getting Started Guide 313

OpenDaylight Documentation Documentation, Release Carbon

| | VM1 | | | | VM2 | | | | VM3 |
→˓|
| | Tenant IPv6 Subnet | | | | | | | | |

→˓|
| | 2001:db8:0:2::10/64| | | | 2001:db8:0:2::20/64 | | | | 2001:db8:0:2::30/64 |

→˓|
| +--------------------+ | | +---------------------+ | | +---------------------+

→˓|
+------------------------+ +-------------------------+ +-------------------------

→˓+
Compute Node-1 designated Compute Node-2 Compute Node-3
as NAPT Switch for router1

Proposed change

ODL Controller would implement the following.

• Program the necessary pipeline flows to support IPv6 forwarding

• Support Neighbor Discovery for Router Gateway port-ips on the external network. i.e., When
the upstream/external IPv6 Gateway does a Neighbor Solicitation for the router-gateway-ip, ODL-
Controller/ipv6service would respond with a Neighbor Advertisement providing the target link layer address.

• Enhance IPv6Service to learn the MAC-address of external-subnet-gateway-ip by framing the necessary Neigh-
bor Solicitation messages and parsing the corresponding response. The APIs in IPv6Service would be triggered
from Gateway MAC resolver code and the information obtained will be used while programming the Provider-
NetworkGroup entries.

The implementation would be aligned with the existing IPv4 SNAT support we have in Netvirt. ODL controller would
designate one of the compute nodes (also referred as NAPT Switch), one per router, to act as an IPv6/IPv4-SNAT
router, from where the tenant traffic is routed to the external network. External traffic from VMs hosted on the NAPT
switch is forwarded directly, whereas traffic from VMs hosted on other compute nodes would have to do an extra
hop to NAPT switch before hitting the external network. If a router has both IPv4 and IPv6 subnets, the same NAPT
Switch for the router will be used for IPv4-SNAT and IPV6 external-packet forwarding.

Pipeline changes

Flows on NAPT Switch for Egress traffic from VM to the internet

Classifier Table (0) =>
LPORT_DISPATCHER_TABLE (17) l3vpn service: set: vpn-id=router-id =>
L3_GW_MAC_TABLE (19) priority=20, match: vpn-id=router-id,
dst-mac=router-internal-interface-mac =>
L3_FIB_TABLE (21) priority=10, match: ipv6, vpn-id=router-id, default-route-flow
=>
PSNAT_TABLE (26) priority=5, match: ipv6, vpn-id=router-id, unknown-sip =>
OUTBOUND_NAPT_TABLE (46) priority=10, match: ipv6, vpn-id=router-id,
ip-src=vm-ip set: src-mac=external-router-gateway-mac-address,
vpn-id=external-net-id, =>
NAPT_PFIB_TABLE (47) priority=6, match: ipv6, vpn-id=external-net-id,
src-ip=vm-ip =>
ProviderNetworkGroup: set dst-mac=ext-subnet-gw-mac, reg6=provider-lport-tag =>

314 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

EGRESS_LPORT_DISPATCHER_TABLE (220) output to provider network

Flows on NAPT Switch for Ingress traffic from internet to VM

Classifier Table (0) =>
LPORT_DISPATCHER_TABLE (17) l3vpn service: set: vpn-id=ext-net-id =>
L3_GW_MAC_TABLE (19) priority=20, match: vpn-id=ext-net-id,
dst-mac=router-gateway-mac =>
L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=ext-net-id, dst-ip=vm-ip =>
INBOUND_NAPT_TABLE (44) priority=10, match: ipv6, vpn-id=ext-net-id,
dst-ip=vm-ip set: vpn-id=router-id =>
NAPT_PFIB_TABLE (47) priority=5, match: ipv6, vpn-id=router-id set: in_port=0
=>
L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=router-id, dst-ip=vm-ip =>
Local Next-Hop group: set: src-mac=router-intf-mac,
dst-mac=vm-mac,reg6=vm-lport-tag =>
Egress table (220) output to VM port

Flows for VMs hosted on Compute node that is not acting as an NAPT Switch

Same egress pipeline flows as above until L3_FIB_TABLE (21).
PSNAT_TABLE (26) priority=5, match: ipv6, vpn-id=router-id set:
tun_id=<tunnel-id> =>
TunnelOutputGroup: output to tunnel-port =>
OnNAPTSwitch (for Egress Traffic from VM)

INTERNAL_TUNNEL_TABLE (36): priority=10, match: ipv6,
tun_id=<tunnel-id-set-on-compute-node> set: vpn-id=router-id,
goto_table:46

Rest of the flows are common.
OnNAPTSwitch (for Ingress Traffic from Internet to VM)

Same flows in ingress pipeline shown above until NAPT_PFIB_TABLE (47) =>
L3_FIB_TABLE (21) priority=138, match: ipv6, vpn-id=router-id, dst-ip=vm-ip
set: tun_id=<tunnel-id>, dst-mac=vm-mac, output: <tunnel-port> =>

Yang changes

IPv6Service would implement the following YANG model.

module ipv6-ndutil {
yang-version 1;
namespace "urn:opendaylight:netvirt:ipv6service:ipv6util";
prefix "ipv6-ndutil";

import ietf-interfaces {
prefix if;

}

1.2. Getting Started Guide 315

OpenDaylight Documentation Documentation, Release Carbon

import ietf-inet-types {
prefix inet; revision-date 2013-07-15;

}

import ietf-yang-types {
prefix yang;

}

revision "2017-02-10" {
description "IPv6 Neighbor Discovery Util module";

}

grouping interfaces {
list interface-address {

key interface;
leaf interface {

type leafref {
path "/if:interfaces/if:interface/if:name";

}
}
leaf src-ip-address {

type inet:ipv6-address;
}
leaf src-mac-address {

type yang:phys-address;
}

}
}

rpc send-neighbor-solicitation {
input {

leaf target-ip-address {
type inet:ipv6-address;

}
uses interfaces;

}
}

}

neighbor-solicitation-packet container in neighbor-discovery.yang would be enhanced with Source Link Layer optional
header.

container neighbor-solicitation-packet {
uses ethernet-header;
uses ipv6-header;
uses icmp6-header;
leaf reserved {

type uint32;
}
leaf target-ip-address {

type inet:ipv6-address;
}
leaf option-type {

type uint8;
}
leaf source-addr-length {

type uint8;
}

316 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

leaf source-ll-address {
type yang:mac-address;

}
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

Scale and Performance Impact

• In the proposed implementation, we have to configure a static route on the external IPv6 Gateway with next-hop
as the router-gateway-ip. In a future patch, we would enhance the implementation to use BGP for advertising
the necessary routes.

• When the external IPv6 Gateway wants to contact the tenant VMs, it forwards all the traffic to the router-
gateway-port on the designated NAPT Switch. To know the target-link-layer address of the router-gw-port,
the external IPv6 Gateway would send out a Neighbor Solicitation for the router-gateway-port-ip. This request
would be punted to the Controller and ipv6service would respond with the corresponding Neighbor Advertise-
ment. In large deployments this can become a bottleneck. Note: Currently, OpenFlow does not have support
to auto-respond to Neighbor Solicitation packets like IPv4 ARP. When the corresponding support is added in
OpenFlow, we would program the necessary ovs flows to auto-respond to the Neighbor Soliciation requests for
router-gateway-ports.

Targeted Release

Carbon

Alternatives

An alternate solution is to implement a fully distributed IPv6 router and would be pursued in a future SPEC.

Usage

• Create an external FLAT/VLAN network with an IPv6 (or dual-stack) subnet.

1.2. Getting Started Guide 317

OpenDaylight Documentation Documentation, Release Carbon

neutron net-create public-net -- --router:external --is-default
--provider:network_type=flat --provider:physical_network=public

neutron subnet-create --ip_version 6 --name ipv6-public-subnet
--gateway <LLA-of-external-ipv6-gateway> <public-net-uuid> 2001:db8:0:1::/64

• Create an internal tenant network with an IPv6 (or dual-stack) subnet.

neutron net-create private-net
neutron subnet-create --name ipv6-int-subnet --ip-version 6
--ipv6-ra-mode slaac --ipv6-address-mode slaac private-net 2001:db8:0:2::/64

• Create a router and associate the external and internal subnets. Explicitly specify the fixed_ip of router-gateway-
port, as it would help us when manually configuring the downstream route on the external IPv6 Gateway.

neutron router-create router1
neutron router-gateway-set --fixed-ip subnet_id=<ipv6-public-subnet-id>,ip_
→˓address=2001:db8:0:10 router1 public-net
neutron router-interface-add router1 ipv6-int-subnet

• Manually configure a downstream route in the external IPv6 gateway for the IPv6 subnet “2001:db8:0:2::/64”
with next hop address as the router-gateway-ip.

Example (on Linux host acting as an external IPv6 gateway):
ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:10

• Spawn a VM in the tenant network

nova boot --image <image-id> --flavor <flavor-id> --nic net-id=<private-net> VM1

Features to Install

odl-netvirt-openstack

REST API

CLI

Implementation

Assignee(s)

Primary assignee: Sridhar Gaddam <sgaddam@redhat.com>

Other contributors: TBD

Work Items

https://trello.com/c/cqjOFmow/147-ipv6-centralized-router-l3-north-south-support-for-flat-vlan-provider-networks

• Program necessary pipeline flows to support IPv6 North-South communication.

318 Chapter 1. Content for OpenDaylight Users

mailto:sgaddam@redhat.com
https://trello.com/c/cqjOFmow/147-ipv6-centralized-router-l3-north-south-support-for-flat-vlan-provider-networks

OpenDaylight Documentation Documentation, Release Carbon

• Enhance ipv6service to send out Neighbor Solicitation requests for the external/physical IPv6 gateway-ip and
parse the response.

• Support controller based Neighbor Advertisement for router-gateway-ports on the external network.

• Implement Unit and Integration tests to validate the use-case.

Dependencies

None

Testing

Unit Tests

Necessary Unit tests would be added to validate the use-case.

Integration Tests

Necessary Integration tests would be added to validate the use-case.

CSIT

We shall explore the possibility to validate this use-case in CSIT.

Documentation Impact

Necessary documentation would be added on how to use this feature.

References

[1] OpenDaylight Documentation Guide

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN

Note: This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. http://creativecommons.org/
licenses/by/3.0/legalcode

Table of Contents

• Dual Stack VM support in OpenDaylight

– Problem description

1.2. Getting Started Guide 319

http://docs.opendaylight.org/en/latest/documentation.html
https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html
https://git.opendaylight.org/gerrit/#/c/50359/
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenDaylight Documentation Documentation, Release Carbon

– Setup Presentation

– Known Limitations

– Use Cases

* Inter DC Access

* External Internet Connectivity

– Proposed changes

– Pipeline changes

* Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

* Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

– Configuration impact

– ECMP impact

– Clustering considerations

– Other Infra considerations

– Security considerations

– Scale and Performance Impact

– Targeted Release

– Alternatives

– Usage

– Features to Install

– REST API

– CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Dual Stack VM support in OpenDaylight

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn-dual-stack-vms

In this specification we will introduce a support of basic L3 forwarding for dualstack VMs connectivity over L3 in

320 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:l3vpn-dual-stack-vms

OpenDaylight Documentation Documentation, Release Carbon

NetVirt. Dualstack VM is a virtual machine that has at least two IP addresses with different ethertypes: IPv4 address
and IPv6 address.

In addition to this, the specification ensures initial support of dualstack VMs inside L3 BGPVPN. L3 forwarding for
dualstack VMs connectivity inside L3 BGPVPN will be provided for the following variations of L3 BGPVPN:

1. L3 BGPVPN constructed purely using networks;

2. L3 BGPVPN constructed purely using a router;

3. L3 BGPVPN constructed using multiple networks and a router.

Problem description

As a dualstack VM, we assume a VM which has one Neutron Port, i.e. one VNIC, that inherits two IPs addresses with
different ethertypes: one IPv4 address and one IPv6 address. We also will use in this document a term singlestack VM
to describe a VM, which VNIC possesses either IPv4 or IPv6 address, but not both simultaneously.

So, dualstack VM has two IP addresses with different ethertypes. This could be achieved by two ways:

1. VM was initially created with one VNIC, i.e. one Neutron Port from network with IPv4 subnet. Second VNIC,
corresponded to a Neutron Port from another network with IPv6 subnet, was added to this machine after its creation.

2. VM has one Neutron Port from a network, which contains 2 subnets: IPv4 subnet and IPv6 subnet.

OpenDaylight has already provided a support for the first way, so this use-case is not in the scope of the specification.
For the second way the specification doesn’t intend to cover a use-case when, Neutron Port will possess several IPv4
and several IPv6 addresses. More specifically this specification covers only the use-case, when Neutron Port has only
one IPv4 and one IPv6 address.

Since there are more and more services that use IPv6 by default, support of dualstack VMs is important. Usage of
IPv6 GUA addresses has increased during the last couple years. Administrators want to deploy services, which will
be accessible from traditional IPv4 infrastructures and from new IPv6 networks as well.

Dualstack VM should be able to connect to other VMs, be they are of IPv4 (or) IPv6 ethertypes. So in this document
we can handle following use cases:

• Intra DC, Inter-Subnet basic L3 Forwarding support for dualstack VMs;

• Intra DC, Inter-Subnet L3 Forwarding support for dualstack VMs within L3 BGPVPN.

Current L3 BGPVPN allocation scheme picks up only the first IP address of dualstack VM Neutron Port. That means
that the L3 BGPVPN allocation scheme will not apply both IPv4 and IPv6 network configurations for a port. For
example, if the first allocated IP address is IPv4 address, then L3 BGPVPN allocation scheme will only apply to IPv4
network configuration. The second IPv6 address will be ignored.

Separate VPN connectivity for singlestack VMs within IPv4 subnetworks and within IPv6 subnetworks is already
achieved by using distinct L3 BGPVPN instances. What we want is to support a case, when the same L3 BGPVPN
instance will handle both IPV4 and IPv6 VM connectivity.

Regarding the problem description above, we would propose to implement in OpenDaylight two following solutions,
applying to two setups

1. two-router setup solution

One router belongs to IPv4 subnetwork, another one belongs to IPv6 subnetwork. This setup brings flexibility to
manage access to external networks. More specifically, by having two routers, where one is holding IPv4 subnet and
another is holding IPv6 subnet, customer can tear-down access to external network for IPv4 subnet ONLY or for IPv6
subnet ONLY by doing a router-gateway-clear on a respective router.

Now this kind of orchestration step entail us to put a Single VPN Interface (representing the VNIC of DualStack VM)
in two different Internal-VPNs, where each VPN represents one of the routers. To achive this we will use L3 BGPVPN

1.2. Getting Started Guide 321

OpenDaylight Documentation Documentation, Release Carbon

concept. We will extend existing L3 BGPVPN instance implementation to give it an ability to be associated with two
routers. As consequence, IPv4 and IPv6 subnetworks, added as ports in associated routers and, hence, IPv4 and IPv6
FIB entries, would be gathered in one L3 BGPVPN instance.

L3 BGPVPN concept is the easiest solution to federate two routers in a single L3 BGPVPN entity. From the orches-
tration point of view and from the networking point of view, there is no any reason to provide IPv4 L3VPN and IPv6
L3VPN access separately for dualstack VMs. It makes sense to have the same L3 BGPVPN entity that can handle
both IPv4 and IPv6 subnetworks.

The external network connectivity using L3 BGPVPN is not in scope of this specification. Please, find more details
about this in [6]. Right now, this configuration will be useful for inter-subnet and intra-dc routing.

2. dualstack-router setup solution

The router with 2 ports (one port for IPv4 subnet and another one for IPv6 subnet) is attached to a L3 BGPVPN
instance.

The external network connectivity using L3 BGPVPN is not in the scope of this specification.

Setup Presentation

Following drawing could help :

+---------------------+
| +-----------------+ |
| |VM1 | +---+
	Subnet C::4/64		
	Subnet a.b.c.1/i		
+-----------------+	OVS		
+-----------------+	A		
	VM2		
	Subnet C::5/64		
	Subnet a.b.c.2/i	+-+-+	
+-----------------+		+------+	
+---------------------+ | | |

| +-MPLSoGRE tunnel for IPv4/IPv6-+ |
| | |
Vxlan | |
Tunnel | |
| | DCGW +--WAN--

+---------------------+ +-MPLSoGRE tunnel for IPv4/IPV6-+ |
| +-----------------+ | | | |
| |VM3 | +-+-+ +------+
	Subnet C::6/64		
	Subnet a.b.c.3/i		
+-----------------+	OVS		
+-----------------+	B		
	VM4		
	Subnet C::7/64		
	Subnet a.b.c.4/i	+---+	
+-----------------+			
+---------------------+

We identify there 2 subnets:

• IPv4 subnet: a.b.c.x/i

• IPv6 subnet: C::x/64

322 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Each VM will receive IPs from these two defined subnets.

Following schemes stand for conceptual representation of used neutron configurations for each proposed solution.

setup 1: two singlestack routers, associated with one BGPVPN
("two-router" solution)

+---------------+
| Network N3 |
+---------------+

+-----+ +---------------+ | Subnet C IPv4 |
| VM1 |-----| Network N | +---------------+
+-----+ +--| | |

| +---------------+ +---------------+
| | Subnet A IPv4 |----| Router 1 |-----+
| +---------------+ +---------------+ |
| | Subnet B IPv6 | | | +--------+
+---------------+ +---------------+				
		Subnet E IPv4		---+ BGPVPN
	+---------------+			
		Network N2		+--------+
	+---------------+			
+---------------+				
	Router 2	--------------------------+		

+-----+ | +---------------+
| VM2 |--+ |
+-----+ +---------------+

| Subnet D IPv6 |
+---------------+
| Network N1 |
+---------------+

Network N gathers 2 subnetworks, subnet A IPv4 and subnet B IPv6. This makes possible to create Neutron Ports,
which will have 2 IP addresses and whose attributes will inherit information (extraroutes, etc) from these 2 subnets A
and B.

Router1 and Router2 are connected to Subnet A and Subnet B respectively and will be attached to a same L3 BGPVPN
instance. Routers 1 and 2 can also have other ports, but they always should stay singlestack routers, otherwise this
configuration will not be still supported. See the chapter “Configuration impact” for more details.

setup 2: one dualstack router associated with one BGPVPN
("dualstack-router" solution)

+-----+ +---------------+
| VM1 |-----| Network N |
+-----+ +--| |

| +---------------+ +----------+ +--------+
	Subnet A IPv4	---------			
+---------------+	Router 1	---+ BGPVPN			
	Subnet B IPv6	---------			
+---------------+ +----------+ +--------+					

+-----+ |
| VM2 |--+
+-----+

Network N gathers 2 subnetworks, subnet A IPv4 and subnet B IPv6. This makes possible to create Neutron Ports,
which will have 2 IP addresses and whose attributes will inherit information (extraroutes, etc) from these 2 subnets A
and B.

1.2. Getting Started Guide 323

OpenDaylight Documentation Documentation, Release Carbon

Router 1 is connected to Subnet A and Subnet B, and it will be attached to a L3 BGPVPN instance X. Other subnets
can be added to Router 1, but this configurations will not be still supported. See the chapter “Configuration impact”
for more details.

setup 3: networks associated with one BGPVPN

+-----+ +------------------+ +--------+
| VM1 |-----| Network N1 |------| BGPVPN |
+-----+ +--| | | |

| +------------------+ +--------+
| | Subnet A IPv4 (1)| |

+-----+ | +------------------+ |
| VM2 |--+ | Subnet B IPv6 (2)| |
+-----+ +------------------+ |

|
|

+-----+ +------------------+ |
| VM3 |-----+ Network N2 |----------+
+-----+ | |

+------------------+
| Subnet C IPv4 (3)|
+------------------+
| Subnet D IPv6 (4)|
+------------------+

Network N1 gathers 2 subnets, subnet A with IPv4 ethertype and subnet B with IPv6 ethertype. When Neutron Port
was created in the network N1, it has 1 IPv4 address and 1 IPv6 address. If user lately will add others subnets to the
Network N1 and will create the second Neutron Port, anyway the second VPN port, constructed for a new Neutron
Port will keep only IP addresses from subnets (1) and (2). So valid network configuration in this case is a network with
only 2 subnets: IPv4 and IPv6. See the chapter “Configuration impact” for more details. Second dualstack network
N2 can be added to the same L3 BGPVPN instance.

It is valid for all schemes: in dependency of chosen ODL configuration, either ODL, or Neutron Dhcp Agent will
provide IPv4 addresses for launched VMs. Please note, that currently DHCPv6 is supported only by Neutron Dhcp
Agent. ODL provides only SLAAC GUA IPv6 address allocation for VMs launched in IPv6 private subnets attached
to a Neutron router.

It is to be noted that today, setup 3 can not be executed for VPNv6 with the above allocation scheme previously
illustrated. Indeed, only a neutron router is able to send router advertisements, which is the corner stone for DHCPv6
allocation. Either IPv6 fixed IPs will have to be used for this setup, or an extra enhancement for providing router
advertisements for such a configuration will have to be done. The setup 3 will be revisited in future.

Known Limitations

Currently, from Openstack-based Opendaylight Bgpvpn driver point-of-view, there is a check, where it does not allow
more than one router to be associated to a single L3 BGPVPN. This was done in Openstack, because actually entire
ODL modeling and enforcement supported only one router per L3 BGPVPN by design.

From Netvirt point of view, there are some limitations as well:

• We can not associate VPN port with both IPv4 and IPv6 Neutron Port addresses at the same time. Currently,
any first Neutron Port IP address is using to create a VPN interface. If a Neutron Port possesses multiple IP
Addresses, regardless of ethertype, this port might not work properly with ODL.

• It is not possible to associate a single L3 BGPVPN instance with two different routers.

324 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Use Cases

There is no change in the use cases described in [6] and [7], except that the single L3 BGPVPN instance serves both
IPv4 and IPv6 subnets.

Inter DC Access

1. two-router solution

IPv4 subnet Subnet A is added as a port in Router 1, IPv6 subnet Subnet B is added as a port in Router 2. The same
L3 BGPVPN instance will be associated with both Router 1 and Router 2.

The L3 BGPVPN instance will distinguish ethertype of router ports and will create appropriate FIB entries associated
to its own VPN entry, so IPv4 and IPv6 enries will be gathered in the same L3 BGPVPN.

2. dualstack-router solution

IPv4 subnet Subnet A is added as a port in Router 1, IPv6 subnet Subnet B is added as a port in Router 1 as well. L3
BGPVPN instance will be associated with Router 1.

The L3 BGPVPN instance will distinguish ethertype of routers ports and will create appropriate FIB entries associated
to its own VPN entry as well. Appropriate BGP VRF context for IPv4 or IPv6 subnets will be also created.

External Internet Connectivity

External Internet Connectivity is not in the scope of this specification.

Proposed changes

All changes we can split in two main parts.

1. Distinguish IPv4 and IPv6 VRF tables with the same RD/iRT/eRT

1.1 Changes in neutronvpn

To support a pair of IPv4 and IPv6 prefixes for each launched dualstack VM we need to
obtain information about subnets, where dualstack VM was spawned and information about
extraroutes, enabled for these subnets. Obtained information will be stored in vmAdj and
erAdjList objects respectively. These objects are attributes of created for new dualstack
VM VPN interface. Created VPN port instance will be stored as part of already existed L3
BGPVPN node instance in MDSAL DataStore.

When we update L3 BGPVPN instance node (associate/dissociated router or network), we
need to provide information about ethertype of new attached/detached subnets, hence, Neu-
tron Ports. New argument flags ipv4On and ipv6On will be introduced for that in Neutron-
vpnManager function API, called to update current L3 BGPVPN instance (updateVpnIn-
stanceNode() method). UpdateVpnInstanceNode() method is also called, when we create
a new L3 BGPVPN instance. So, to provide appropriate values for ipv4On, ipv6On flags
we need to parse subnets list. Then in dependency of these flags values we will set either
Ipv4Family attribute for the new L3 BGPVPN instance or Ipv6Family attribute, or both at-
tributes. Ipv4Family, Ipv6Family attributes allow to create ipv4 or/and ipv6 VRF context
for underlayed vpnmanager and bgpmanager APIs.

1.2. Changes in vpnmanager

1.2. Getting Started Guide 325

OpenDaylight Documentation Documentation, Release Carbon

When L3 BGPVPN instance is created or updated, VRF tables must be created for
QBGP as well. What we want, is to introduce separate VRF tables, created according to
IPv4Family/IPv6Family VPN attributes, i.e. we want to distinguish IPv4 and IPv6 VRF
tables, because this will bring flexibility in QBGP. For example, if QBGP receives an entry
IPv6 MPLSVPN on a router, which is expecting to receive only IPv4 entries, this entry will
be ignored. The same for IPv4 MPLSVPN entries respectively.

So, for creating VrfEntry objects, we need to provide information about L3 BGPVPN in-
stance ethertype (Ipv4Family/Ipv6Family attribute), route distinguishers list, route imports
list and route exports lists (RD/iRT/eRT). RD/iRT/eRT lists will be simply obtained from
subnetworks, attached to the chosen L3 BGPVPN. Presence of IPv4Family, IPv6Family
in VPN will be translated in following VpnInstanceListener class attributes: afiIpv4, afi-
Ipv6, safiMplsVpn, safiEvpn, which will be passed to addVrf() and deleteVrf() bgpman-
ager methods for creating/deleting either IPv4 VrfEntry or IPv6 VrfEntry objects.

RD/iRT/eRT lists will be the same for both IPv4 VrfEntry and IPv6 VrfEntry in case,
when IPv4 and IPv6 subnetworks are attached to the same L3 BGPVPN instance.

1.3 Changes in bgpmanager

In bgpmanager we need to change signatures of addVrf() and deleteVrf() methods, which
will trigger signature changes of underlying API methods addVrf() and delVrf() from Bgp-
ConfigurationManager class.

This allows BgpConfigurationManager class to create needed IPv4 VrfEntry and IPv6 Vr-
fEntry objects with appropriate AFI and SAFI values and finally pass this appropriate AFI
and SAFI values to BgpRouter.

BgpRouter represents client interface for thrift API and will create needed IPv4 and IPv6
VRF tables in QBGP.

1.4 Changes in yang model

To support new attributes AFI and SAFI in bgpmanager classes, it should be added in
ebgp.yang model:

list address-families {
key "afi safi";
leaf afi {
type uint32;
mandatory "true";

}
leaf safi {
type uint32;
mandatory "true";

}
}

1.5 Changes in QBGP thrift interface

To support separate IPv4 and IPv6 VRF tables in QBGP we need to change signatures
of underlying methods addvrf() and delvrf() in thrift API as well. They must include the
address family and subsequent address families informations:

enum af_afi {
AFI_IP = 1,
AFI_IPV6 = 2,

}

i32 addVrf(1:layer_type l_type, 2:string rd, 3:list<string>
→˓irts, 4:list<string> erts,

326 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

5:af_afi afi, 6:af_safi afi),
i32 delVrf(1:string rd, 2:af_afi afi, 3:af_safi safi)

2. Support of two routers, attached to the same L3 BGPVPN

2.1 Changes in neutronvpn

two-router solution assumes, that all methods, which are using to create, update, delete
VPN interface or/and VPN instance must be adapted to a case, when we have a list of
subnetworks and/or list of router IDs to attach. Due to this, appropriate changes need to be
done in nvpnManager method APIs.

To support two-router solution properly, we also should check, that we do not try to asso-
ciate to L2 BGPVPN a router, that was already associated to that VPN instance. Attached
to L3 BGPVPN router list must contain maximum 2 router IDs. Routers, which IDs are in
the list must be only singlestack routers. More information about supported router configu-
rations is available below in chapter “Configuration Impact”.

For each created in dualstack network Neutron Port we take only the last received IPv4
address and the last received IPv6 address. So we also limit a length of subnets list, which
could be attached to a L3 BGPVPN instance, to two elements. (More detailed information
about supported network configurations is available below in chapter “Configuration Im-
pact”.) Two corresponding Subnetmap objects will be created in NeutronPortChangeLis-
tener class for attached subnets. A list with created subnetmaps will be passed as argument,
when createVpnInterface method will be called.

2.2 Changes in vpnmanager

VpnMap structure must be changed to support a list with router IDs. This change triggers
modifications in all methods, which retry router ID from VpnMap object.

VpnInterfaceManager structure must be also changed, to support a list of VPN instance
name. So all methods, which gives VPN router ID from VpnInterfaceManager should be
modified as well.

As consequence, in operDS, a VpnInterfaceOpDataEntry structure is created, inherited
from VpnInterface in configDS. While the latter structure has a list of VPN instance name,
the former will be instantiated in operDS as many times as there are VPN instances. The
services that were handling VPNInterface in operDS, will be changed to handle VPNIn-
terfaceOpDataEntry. That structure will be indexed by InterfaceName and by VPNName.
The services include natservice, fibmanager, vpnmanager, cloud service chain.

Also, an augment structure will be done for VPNInterfaceOpDataEntry to contain the list of
operational adjacencies. As for VpnInterfaceOpDataEntry, the new AdjacenciesOp struc-
ture will replace Adjacencies that are in operDS. Similarly, the services will be modified
for that.

Also, VPNInterfaceOpDataEntry will contain a VPNInterfaceState that stands for the state
of the VPN Interface. Code change will be done to reflect the state of the interface. For
instance, if VPNInstance is not ready, associated VPNInterfaceOpDataEntries will have the
state changed to INACTIVE. Reversely, the state will be changed to ACTIVE.

2.3 Changes in yang model

To provide change in VpnMap and in VpnInterfaceManager structures, described above, we
need to modify following yang files.

2.3.1 neutronvpn.yang

1.2. Getting Started Guide 327

OpenDaylight Documentation Documentation, Release Carbon

• Currently, container vpnMap holds one router-id for each L3 BGPVPN instance ID. A change
consists in replacing one router-id leaf by a leaf-list of router-ids. Obviously, no more than two
router-ids will be used.

• Container vpnMaps is used internally for describing a L3 BGPVPN. Change router-id leaf by
router-ids leaf-list in this container is also necessary.

--- a/vpnservice/neutronvpn/neutronvpn-api/src/main/yang/
→˓neutronvpn.yang
+++ b/vpnservice/neutronvpn/neutronvpn-api/src/main/yang/
→˓neutronvpn.yang
@@ -1,4 +1,3 @@
-
module neutronvpn {

namespace "urn:opendaylight:netvirt:neutronvpn";
@@ -120,7 +119,7 @@ module neutronvpn {
Format is ASN:nn or IP-address:nn.";
}

- leaf router-id {
+ leaf-list router-ids {

type yang:uuid;
description "UUID router list";

}
@@ -173,7 +172,7 @@ module neutronvpn {
description "The UUID of the tenant that will own the subnet.";
}

- leaf router-id {
+ leaf-list router_ids {

type yang:uuid;
description "UUID router list";

}

2.3.2 l3vpn.yang

• Currently, list vpn-interface holds a leaf vpn-instance-name, which is a container for
VPN router ID. A change consists in replacing leaf vpn-instance-name by a leaf-list
of VPN router IDs, because L3 BGPVPN instance can be associated with two routers.
Obviously, no more than two VPN router-IDs will be stored in leaf-list vpn-instance-
name.

--- a/vpnservice/vpnmanager/vpnmanager-api/src/main/yang/
→˓l3vpn.yang
+++ b/vpnservice/vpnmanager/vpnmanager-api/src/main/yang/
→˓l3vpn.yang

@@ -795,21 +795,21 @@

list vpn-interface {
key "name";
max-elements "unbounded";
min-elements "0";
leaf name {
type leafref {
path "/if:interfaces/if:interface/if:name";

}
}

- leaf vpn-instance-name {

328 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

+ leaf-list vpn-instance-name {
type string {

length "1..40";
}

}
leaf dpn-id {

type uint64;
}
leaf scheduled-for-remove {

type boolean;
}

2.3.3 odl-l3vpn.yang

augment "/odl-l3vpn:vpn-interface-op-data/odl-l3vpn:vpn-
→˓interface-op-data-entry" {

ext:augment-identifier "adjacencies-op";
uses adjacency-list;

}

container vpn-interface-op-data {
config false;
list vpn-interface-op-data-entry {

key "name vpn-instance-name";
leaf name {

type leafref {
path "/if:interfaces/if:interface/if:name";

}
}
leaf vpn-instance-name {
type string {
length "1..40";

}
}
max-elements "unbounded";
min-elements "0";
leaf dpn-id {
type uint64;

}
leaf scheduled-for-remove {
type boolean;

}
leaf router-interface {

type boolean;
}
leaf vpn-interface-state {
description
"This flag indicates the state of this interface

→˓in the VPN identified by vpn-name.
ACTIVE state indicates that this vpn-interface

→˓is currently associated to vpn-name
available as one of the keys.
INACTIVE state indicates that this vpn-

→˓interface has already been dis-associated
from vpn-name available as one of the keys.";

type enumeration {
enum active {

1.2. Getting Started Guide 329

OpenDaylight Documentation Documentation, Release Carbon

value "0";
description
"Active state";

}
enum inactive {

value "1";
description
"Inactive state";

}
}
default "active";

}
}

}

Pipeline changes

There is no change in the pipeline, regarding the changes already done in [6] and [7].

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

The DC-GW has the information, that permits to detect an underlay destination IP and MPLS label for a packet coming
from the Internet or from anotherr DC-GW.

Classifier Table (0) =>
LFIB Table (20) match: tun-id=mpls_label set vpn-id=l3vpn-id, pop_mpls label, set
output to nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>
Lport Dispatcher Table (17) match: LportTag l3vpn service: set vpn-id=l3vpn-id =>
DMAC Service Filter (19) match: dst-mac=router-internal-interface-mac l3vpn service:
set vpn-id=l3vpn-id =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ipv4-address set
tun-id=mpls_label output to MPLSoGRE tunnel port =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ipv6-address set
tun-id=mpls_label output to MPLSoGRE tunnel port =>

Please, note that router-internal-interface-mac stands for MAC address of the internal subnet gateway
router port.

Configuration impact

1. Limitations for router configurations

330 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

1.1 Maximum number of singlestack routers that can be associated to a L3BGPVPN is limited
to 2. Maximum number of dualstack routers that can be associated with a BGPVPN is limited
to 1.

1.2 If a L3 BGPVPN has already associated with a one singlestack router and we try to asso-
ciate this VPN instance again with a dualstack router, exception will not be raised. But this
configuration will not be valid.

1.3 If a singlestack router is already associated to a L3 BGPVPN instance, and it has more than
one port and we try to add a port to this router with another ethertype, i.e. we try to make
this router dualstack, exception will not be raised. But this configuration will not be valid and
supported.

1.4 When a different ethertype port is added to a singlestack router, which already has only
one port and which is already associated to a L3 BGPVPN instance, singlestack router in this
case becomes dualstack router with only two ports. This router configuration is allowed by
current specification.

2. Limitations for subnetworks configurations

2.1 Maximum numbers of different ethertype subnetworks associated to a one L3 BGPVPN
instance is limited to two. If a network contains more than two different ethertype subnetworks,
exception won’t be raised, but this configuration isn’t supported.

2.2 When we associate a network with a L3 BGPVPN instance, we do not care if subnetworks
from this network are ports in some routers and these routers were associated with other VPNs.
This configuration is not considered as supported as well.

3. Limitations for number of IP addresses for a Neutron Port

The specification only targets dual-stack networks, that is to say with 1 IPv4 address and one IPv6 address only. For
other cases, that is to say, adding subnetworks IPv4 or IPv6, will lead to undefined or untested use cases. The multiple
subnets test case would be handled in a future spec.

ECMP impact

ECMP - Equal Cost multiple path.

ECMP feature is currently provided for Neutron BGPVPN networks and described in the specification [10]. 3 cases
have been cornered to use ECMP feature for BGPVPN usability.

• ECMP of traffic from DC-GW to OVS (inter-DC case)

• ECMP of traffic from OVS to DC-GW (inter-DC case)

• ECMP of traffic from OVS to OVS (intra-DC case)

In each case, traffic begins either at DC-GW or OVS node. Then it is sprayed to end either at OVS node or DC-GW.

ECMP feature for Neutron BGPVPN networks was successfully (OK) tested with IPv4 L3 BGPVPN and IPv6 L3
BGPVPN (OK). the dual stack VM connectivity should embrace ECMP

We’ve included this chapter to remind, that code changes for supporting dualstack VMs should be tested against ECMP
scenario as well.

Clustering considerations

None

1.2. Getting Started Guide 331

OpenDaylight Documentation Documentation, Release Carbon

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

Usage

Assume, that in the same provider network we have OpenStack installed with 1 controller and 2 compute nodes,
DC-GW node and OpenDaylight node.

• create private tenant networks and subnetworks

– create Network N;

– declare Subnet A IPv4 for Network N;

– declare Subnet B IPv6 for Network N;

– create two ports in Network N;

– each port will inherit a dual IP configuration.

• create routers

– two-router solution + create two routers A and B, each router will be respectively connected to

IPv4 and IPv6 subnets;

* add subnet A as a port to router A;

* add subnet B as a port to router B.

– dualstack-router solution + create router A; + add subnet A as a port to router A; + add subnet B as a port
to router A.

• Create MPLSoGRE tunnel between DPN and DCGW

332 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

POST /restconf/operations/itm-rpc:add-external-tunnel-endpoint
{

"itm-rpc:input": {
"itm-rpc:destination-ip": "dcgw_ip",
"itm-rpc:tunnel-type": "odl-interface:tunnel-type-mpls-over-gre"

}
}

• create the DC-GW VPN settings

– Create a L3 BGPVPN context. This context will have the same settings as in [7].In dualstack case both
IPv4 and IPv6 prefixes will be injected in the same L3 BGPVPN.

• create the ODL L3 BGPVPN settings

– Create a BGP context. This step permits to start QBGP module depicted in [8] and [9]. ODL has an API,
that permits interfacing with that external software. The BGP creation context handles the following:

* start of BGP protocol;

* declaration of remote BGP neighbor with the AFI/SAFI affinities. In our case, VPNv4 and VPNv6
address families will be used.

– Create a L3 BGPVPN, this L3 BGPVPN will have a name and will contain VRF settings.

• associate created L3 BGPVPN to router

– two-router solution: associate routers A and B with a created L3 BGPVPN;

– dualstack-router solution: associate router A with a created L3 BGPVPN.

• Spawn a VM in a created tenant network:

The VM will possess IPv4 and IPv6 addresses from subnets A and B.

• Observation: dump ODL BGP FIB entries

At ODL node, we can dump ODL BGP FIB entries and we should see entries for both IPv4 and IPv6
subnets prefixes:

GET /restconf/config/odl-fib:fibEntries
{

"fibEntries": {
"vrfTables": [
{
"routeDistinguisher": <rd-uuid>

},
{
"routeDistinguisher": <rd>,
"vrfEntry": [
{
"destPrefix": <IPv6_VM1/128>,
"label": <label>,
"nextHopAddressList": [
<DPN_IPv4>

],
"origin": "l"

},
]

}
]

1.2. Getting Started Guide 333

OpenDaylight Documentation Documentation, Release Carbon

}
}

Features to Install

odl-netvirt-openstack

REST API

CLI

A new option --afi and --safi will be added to command odl:bgp-vrf:

odl:bgp-vrf --rd <> --import-rt <> --export-rt <> --afi <1|2> --safi <value> add|del

Implementation

Assignee(s)

Primary assignee: Philippe Guibert <philippe.guibert@6wind.com>

Other contributors:

• Valentina Krasnobaeva <valentina.krasnobaeva@6wind.com>

• Noel de Prandieres <prandieres@6wind.com>

Work Items

• QBGP Changes

• BGPManager changes

• VPNManager changes

• NeutronVpn changes

Dependencies

Quagga from 6WIND is available at the following urls:

• https://github.com/6WIND/quagga

• https://github.com/6WIND/zrpcd

Testing

Unit Tests

Some L3 BGPVPN testing may have be done. Complementary specification for other tests will be done.

334 Chapter 1. Content for OpenDaylight Users

mailto:philippe.guibert@6wind.com
mailto:valentina.krasnobaeva@6wind.com
mailto:prandieres@6wind.com
https://github.com/6WIND/quagga
https://github.com/6WIND/zrpcd

OpenDaylight Documentation Documentation, Release Carbon

Integration Tests

TBD

CSIT

Basically, IPv4 and IPv6 vpnservice functionality have to be validated by regression tests with a single BGPVRF.

CSIT specific testing will be done to check dualstack VMs connectivity with network configurations for two-router
and dualstack-router solutions.

Two-router solution test suite:

1. Create 2 Neutron Networks NET_1_2RT and NET_2_2RT.

1.1 Query ODL restconf API to check that both Neutron Network objects were successfully created in
ODL.

1.2 Update NET_1_2RT with a new description attribute.

2. In each Neutron Network create one Subnet IPv4 and one Subnet IPv6: SUBNET_V4_1_2RT, SUB-
NET_V6_1_2RT, SUBNET_V4_2_2RT, SUBNET_V6_2_2RT, respectively.

2.1 Query ODL restconf API to check that all Subnetwork objects were successfully created in ODL.

2.2 Update SUBNET_V4_2RT, SUBNET_V6_2RT with a new description attribute.

3. Create 2 Routers: ROUTER_1 and ROUTER_2.

3.1 Query ODL restconf API to check that all Router objects were successfully created in ODL.

4. Add SUBNET_V4_1_2RT, SUBNET_V4_2_2RT to ROUTER_1 and SUBNET_V6_1_2RT, SUB-
NET_V6_2_2RT to ROUTER_2.

5. Create 2 security-groups: SG6_2RT and SG4_2RT. Add appropriate rules to allow IPv6 and IPv4 traffic from/to
created subnets, respectively.

6. In network NET_1_2RT create Neutron Ports: PORT_11_2RT, PORT_12_2RT, attached with security groups
SG6_2RT and SG4_2RT; in network NET_2_2RT: PORT_21_2RT, PORT_22_2RT, attached with security
groups SG6_2RT and SG4_2RT.

6.1 Query ODL restconf API to check, that all Neutron Port objects were successfully created in ODL.

6.2 Update Name attribute of PORT_11_2RT.

7. Use each created Neutron Port to launch a VM with it, so we should have 4 VM instances: VM_11_2RT,
VM_12_2RT, VM_21_2RT, VM_22_2RT.

7.1 Connect to NET_1_2RT and NET_2_2RT dhcp-namespaces, check that subnet routes were success-
fully propagated.

7.2 Check that all VMs have: one IPv4 address and one IPv6 addresses.

8. Check IPv4 and IPv6 VMs connectivity within NET_1_2RT and NET_2_2RT.

9. Check IPv4 and IPv6 VMs connectivity across NET_1_2RT and NET_2_2RT with ROUTER_1 and
ROUTER_2.

9.1 Check that FIB entries were created for spawned Neutron Ports.

9.2 Check that all needed tables (19, 17, 81, 21) are presented in OVS pipelines and VMs IPs, gateways
MAC and IP addresses are taken in account.

10. Connect to VM_11_2RT and VM_21_2RT and add extraroutes to other IPv4 and IPv6 subnets.

1.2. Getting Started Guide 335

OpenDaylight Documentation Documentation, Release Carbon

10.1 Check other IPv4 and IPv6 subnets reachability from VM_11_2RT and VM_21_2RT.

11. Delete created extraroutes.

12. Delete and recreate extraroutes and check its reachability again.

13. Create L3VPN and check with ODL REST API, that it was successfully created.

14. Associate ROUTER_1 and ROUTER_2 with created L3VPN and check the presence of router IDs in VPN
instance with ODL REST API.

15. Check IPv4 and IPv6 connectivity accross NET_1_2RT and NET_2_2RT with associated to L3VPN routers.

15.1 Check with ODL REST API, that VMs IP addresses are presented in VPN interfaces entries.

15.2 Verify OVS pipelines at compute nodes.

15.3 Check the presence of VMs IP addresses in vrfTables objects with ODL REST API query.

16. Dissociate L3VPN from ROUTER_1 and ROUTER_2.

17. Delete ROUTER_1 and ROUTER_2 and its interfaces from L3VPN.

18. Try to delete router with NonExistentRouter name.

19. Associate L3VPN to NET_1_2RT.

20. Dissociate L3VPN from NET_1_2RT.

21. Delete L3VPN.

22. Create multiple L3VPN.

23. Delete multiple L3VPN.

Documentation Impact

Necessary documentation would be added if needed.

References

[1] OpenDaylight Documentation Guide

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

[3] http://docs.openstack.org/developer/networking-bgpvpn/overview.html

[4] Spec to support IPv6 North-South support for Flat/VLAN Provider Network.

[5] BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN

[6] Spec to support IPv6 DC to Internet L3VPN connectivity using BGPVPN

[7] Spec to support IPv6 Inter DC L3VPN connectivity using BGPVPN

[8] Zebra Remote Procedure Call

[9] Quagga BGP protocol

Listener Dependency Helper

https://git.opendaylight.org/gerrit/#/q/topic:ListenerDepedencyHelper

Listener Dependency Helper makes “Data Store Listeners” independent from dependency resolution.

336 Chapter 1. Content for OpenDaylight Users

http://docs.opendaylight.org/en/latest/documentation.html
https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html
http://docs.openstack.org/developer/networking-bgpvpn/overview.html
https://git.opendaylight.org/gerrit/#/q/topic:ipv6-cvr-north-south
https://tools.ietf.org/html/rfc4659
https://git.opendaylight.org/gerrit/#/c/54050/
https://git.opendaylight.org/gerrit/#/c/50359/
https://github.com/6WIND/zrpcd/
https://github.com/6WIND/zrpcd/
https://git.opendaylight.org/gerrit/#/q/topic:ListenerDepedencyHelper

OpenDaylight Documentation Documentation, Release Carbon

Problem description

When a DataStore-Listener is fired with config add/update/delete event, as part of listener processing it may try to
read the other data store objects, at times those datastore objects are not yet populated. In this scenario, listener event
processing has to be delayed (or) discarded, as the required information is NOT entirely available. Later when the
dependant data objects are available, this listener event will not be triggered again by DataStore.

This results in some events not getting processed resulting in possible data-path, bgp control and data plane failures.

Example: VpnInterface add() callback triggered by MD-SAL on vpnInterface add. While processing add() callback,
the corresponding vpnInstance is expected to be present in MD-SAL operational DS; which means that vpnInstance
creation is complete (updating the vpn-targets in Operational DS and BGP).

Information: vpnInstance Config-DS listener thread has to process vpnInstance creation and update vpnInstance in
operational DS. vpnInstance creation listener callback is handled by different listener thread.

Use Cases

Use Case 1: VPNInterfaces may get triggered before VPNInstance Creation.

Current implementation: Delay based waits for handling VPNInterfaces that may get triggered before VPNInstance
Creation(waitForVpnInstance()).

Use Case 2: VPNManager to handle successful deletion of VPN which has a large number of BGP Routes (inter-
nal/external):

Current implementation: Delay-based logic on VPNInstance delete in VPNManager (waitForOpRemoval()).

Use Case 3: VpnSubnetRouteHandler that may get triggered before VPNInstance Creation.

Current implementation: Delay based waits in VpnSubnetRouteHandler which may get triggered before VPNInstance
Creation(waitForVpnInstance()).

Use Case 4: VPN Swaps (Internal to External and vice-versa)

Current implementation: Currently we support max of 100 VM’s for swap (VpnInterfaceUpdateTimerTask, waitFor-
FibToRemoveVpnPrefix()).

Proposed change

During Listener event call-back (AsyncDataTreeChangeListenerBase) from DataStore, check for pending events in
“Listener-Dependent-Queue” with same InstanceIdentifier to avoid re-ordering.

Generic Queue Event Format:

key : Instance Identifier eventType : Type of event (ADD/UPDATE/DELETE) oldData : Data before modification
(for Update event); newData : Newly populated data queuedTime : at which the event is queued to LDH. lastPro-
cessedTime : latest time at which dependency list verified expiryTime : beyond which processing for event is useless
waitBetweenDependencyCheckTime : wait time between each dependency check dependentIIDs : list of dependent
InstanceIdentifiers retryCount : max retries allowed. databroker : data broker. deferTimerBased : flag to choose
between (timer/listener based).

For Use Case - 1: deferTimerBased shall be set to TRUE (as per the specification).

During processing of events (either directly from DataStore or from “Listener-Dependent-Queue”), if there any de-
pendent objects are yet to populated; queue them to “Listener-Dependent-Queue”.

1.2. Getting Started Guide 337

OpenDaylight Documentation Documentation, Release Carbon

Expectations from Listener: Listener will push the callable instance to “Listener-Dependent-Queue” if it cannot pro-
ceed with processing of the event due to dependent objects/InstanceIdentifier and list of dependent IID’s.

There are two approaches the Listener Dependency check can be verified.

approach-1 Get the list of dependent-IID’s, query DataStore/Cache for

depenedency resolution at regular intervals using “timer-task-pool”. Once all the dependent IID’s are resolved, call
respective listener for processing.

LDH-task-pool : pool of threads which query for dependency resolution READ ONLY operation in DataStore. These
threads are part of LDH common for all listeners.

hasDependencyResolved(<InstanceIdentifier iid, Boolean shouldDataExist, DataStoreType DSType> List), this shall
return either Null list (or) the list which has dependencies yet to be resolved. In case Listener has local-cache im-
plemented for set of dependencies, it can look at cache and identify. This api will be called from LDH-task-pool of
thread(s).

instanceIdentifier is the MD-SAL key value which need to be verified for existence/non-existence of data. Boolean
shouldDataExist: shall be TRUE, if the Listener expects to have the information exists in MD-SAL; False otherwise.

approach-2 Register Listener for wild-card path of IID’s.

When a Listener gets queued to “”Listener-Dependent-Queue”, LDH shall register itself as Listener for the dependent
IID’s (using wild-card-path/parent-node). Once the listener gets fired, identify the dependent listeners waiting for the
Data. Once the dependent Listener is identified, if the dependent-IID list is NULL. Trigger listener for processing the
event. LDH-task-pool shall unregister itself from wild-card-path/parent-node once there are no dependent listeners on
child-nodes.

Re-Ordering

The following scenario, when re-ordering can happen and avoidance of the same:

Example: Key1 and Value1 are present in MD-SAL Data Store under Tree1, SubTree1 (for say). Update-
Listener for Key1 is dependent on Dependency1.

Key1 received UPDATE event (UPDATE-1) with value=x, at the time of processing UPDATE-1, dependency is not
available. So Listener Queued ‘UPDATE-1’ event to “UnProcessed-EventQueue”. same key1 received UPDATE event
(UPDATE-2) with value=y, at the time of processing UPDATE-2, dependency is available (Dependency1 is resolved),
so it goes and processes the event and updates value of Key1 to y.

After WaitTime, event Key1, UPDATE-1 is de-queued from “UnProcessed-EventQueue” and put for processing
in Lister. Listener processes it and updates the Key1 value to x. (which is incorrect, happened due to re-ordering
of events).

To avoid reordering of events within listener, every listener call back shall peek into “UnProcessed-EventQueue” to
identify if there exists a pending event with same key value; if so, either suppress (or) queue the event. Below are
event ordering expected from MD-SAL and respective actions:

what to consider before processing the event to avoid re-ordering of events:

Current Event| Queued Event| Action
ADD | ADD | NOT EXPECTED
ADD | REMOVE | QUEUE THE EVENT
ADD | UPDATE | NOT EXPECTED
UPDATE | ADD | QUEUE EVENT
UPDATE | UPDATE | QUEUE EVENT
UPDATE | REMOVE | NOT EXPECTED
REMOVE | ADD | SUPPRESS BOTH
REMOVE | UPDATE | EXECUTE REMOVE SUPPRESS UPDATE
REMOVE | REMOVE | NOT EXPECTED

338 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Pipeline changes

none

Yang changes

none

Configuration impact

none

Clustering considerations

In the two approaches mentioned: 1 - Timer: polling MD-SAL for dependency resolution may incur in more number
of reads.

2 - RegisterListener: RegisterListener may some impact at the time of registering listener after which a notification
message to cluser nodes.

Predined List of Listeners

perational/odl-l3vpn:vpn-instance-op-data/vpn-instance-op-data-entry/* operational/odl-l3vpn:vpn-instance-op-
data/vpn-instance-op-data-entry/

vpn-id/vpn-to-dpn-list/*

config/l3vpn:vpn-instances/*

Other Infra considerations

Security considerations

none

Scale and Performance Impact

this infra, shall improve scaling of application without having to wait for dependent data store gets populated. Perfor-
mance shall remain intact.

Targeted Release

Alternatives

• use polling/wait mechanisms

1.2. Getting Started Guide 339

OpenDaylight Documentation Documentation, Release Carbon

Features to Install

REST API

CLI

CLI will be added for debugging purpose.

Implementation

Assignee(s)

Primary assignee: Siva Kumar Perumalla (sivakumar.perumalla@ericsson.com)

Other contributors: Suneelu Verma K.

Work Items

Dependencies

Testing

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Acronyms

IID: InstanceIdentifier

Table of Contents

• New SFC Classifier

– Terminology

– Problem description

* Use Cases

– Proposed change

* Integration with Genius

340 Chapter 1. Content for OpenDaylight Users

mailto:sivakumar.perumalla@ericsson.com

OpenDaylight Documentation Documentation, Release Carbon

* Classifier and SFC Genius Services

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

New SFC Classifier

https://git.opendaylight.org/gerrit/#/q/topic:new-sfc-classifier

The current SFC Netvirt classifier only exists in the old Netvirt. This blueprint explains how to migrate the old Netvirt
classifier to a new Netvirt classifier.

Terminology

• NSH - Network Service Headers, used as Service Chaining encapsulation. NSH RFC Draft [1]

• NSI - Network Service Index, a field in the NSH header used to indicate the next hop

• NSP - Network Service Path, a field in the NSH header used to indicate the service chain

• RSP - Rendered Service Path, a service chain.

1.2. Getting Started Guide 341

https://git.opendaylight.org/gerrit/#/q/topic:new-sfc-classifier

OpenDaylight Documentation Documentation, Release Carbon

• SFC - Service Function Chaining. SFC RFC [2] ODL SFC Wiki [3].

• SF - Service Function

• SFF - Service Function Forwarder

• VXGPE - VXLAN GPE (Generic Protocol Encapsulation) Used as transport for NSH. VXGPE uses the same
header format as traditional VXLAN, but adds a Next Protocol field to indicate NSH will be the next header.
Traditional VXLAN implicitly expects the next header to be ethernet. VXGPE RFC Draft [4].

Problem description

In the Boron release, an SFC classifier was implemented, but in the old Netvirt. This blueprint intends to explain how
to migrate the old Netvirt classifier to a new Netvirt classifier, which includes integrating the classifier and SFC with
Genius.

The classifier is an integral part of Service Function Chaining (SFC). The classifier maps client/tenant traffic to a
service chain by matching the packets using an ACL, and once matched, the classifier encapsulates the packets using
some sort of Service Chaining encapsulation. Currently, the only supported Service Chaining encapsulation is NSH
using VXGPE as the transport. Very soon (possibly in the Carbon release) Vxlan will be added as another encapsula-
tion/transport, in which case NSH is not used. The transport and encapsulation information to be used for the service
chain is obtained by querying the Rendered Service Path (RSP) specified in the ACL action.

The transport and encapsulation used between the classifier and the SFF, and also between SFFs will be VXGPE+NSH.
The transport and encapsulation used between the SFF and the SF will be Ethernet+NSH.

The following image details the packet headers used for Service Chaining encapsulation with VXGPE+NSH.

Diagram source [5].

The problem was originally discussed using the slides in this link [12] as a guideline. These slides are only intended
for reference, and are not to be used for implementation.

342 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Use Cases

The main use case addressed by adding an SFC classifier to Netvirt is to integrate SFC with Netvirt, thus allowing for
Service Chaining to be used in an OpenStack virtual deployment, such as the OPNFV SFC project [6].

SFC works with both OVS and VPP virtual switches, and its even possible to have a hybrid setup whereby Netvirt is
hosted on OVS and SFC is hosted on VPP switches. This blueprint only addresses the use of SFC with NetVirt and
OVS.

As mentioned previously, currently SFC works with VXGPE+NSH and Eth+NSH transport/encapsulation, and soon
SFC will work with VXLAN as the transport and encapsulation. The first version of this implementation will focus
on VXGPE+NSH and Eth+NSH. In the future, when VXLAN is implemented in SFC, VXLAN can be added to the
Netvirt SFC classifier. Changes in the transport and encapsulation used for service chains will have no affect on the
Netvirt ACL model, since the transport and encapsulation information is obtained via the RSP specified in the RSP.

Proposed change

The existing old Netvirt SFC code can be found here:

• netvirt/openstack/net-virt-sfc/{api,impl}

Once the new Netvirt SFC classifier is implemented and working, the old Netvirt SFC classifier code will be left in
place for at least one release cycle.

The new Netvirt SFC code base will be located here:

• netvirt/vpnservice/sfc/classifier/{api,impl}

The new Netvirt SFC classifier implementation will be new code. This implementation is not to be confused with the
existing Netvirt aclservice, which is implemented for Security Groups. More details about the Genius integration can
be found in the following section, but the Netvirt SFC classifier will be in a new Genius classifier service. The SFC
implementation is already integrated with Genius and is managed via the Genius SFC service.

Integration with Genius

Genius [7], [8] is an OpenDaylight project that provides generic infrastructure services to other OpenDaylight projects.
New Netvirt makes use of Genius and the new Netvirt classifier will also make use of Genius services. Among these
services, the interface manager, tunnel manager and service binding services are of special relevance for the new
Netvirt classifier.

Genius interface manager handles an overlay of logical interfaces on top of the data plane physical ports. Based on
these logical interfaces, different services/applications may be bound to them with certain priority ensuring that there is
no interference between them. Avoiding interference between services/applications is called Application Coexistence
in Genius terminology. Typically, the effect of an application binding to a logical interface is that downstream traffic
from that interface will be handed off to that application pipeline. Each application is then responsible to either perform
a termination action with the packet (i.e output or drop action) or to return the packet back to Genius so that another
application can handle the packet. There is a predefined set of types of services that can bind, and Classifier is one of
them.

For OpenStack environments, Netvirt registers Neutron ports as logical interfaces in the Genius interface manager.
Classifying traffic for a client/tenant ultimately relies on classifying traffic downstream from their corresponding Neu-
tron ports. As such, the Netvirt classifier will bind on these interfaces as a newly defined Genius Classifier service
through the Genius interface manager. It was considered integrating the Netvirt classifier with the existing Netvirt
security groups, but the idea was discarded due to the possible conflicts and other complications this could cause.

Netvirt also keeps track of the physical location of these Neutron ports in the data plane and updates the corresponding
Genius logical interface with this information. Services integrated with Genius may consume this information to be

1.2. Getting Started Guide 343

OpenDaylight Documentation Documentation, Release Carbon

aware of the physical location of a logical interface in the data plane and it’s changes when a VM migrates from one
location to another. New Netvirt classifier will install the classification rules based on the data plane location of the
client/tenant Neutron ports whose traffic is to be classified. On VM migration, the classifier has to remove or modify
the corresponding classification rules accounting for this location change, which can be a physical node change or a
physical port change.

The classifier is responsible for forwarding packets to the first service function forwarder (SFF) in the chain. This
SFF may or may not be on the same compute host as the classifier. If the classifier and SFF are located on the same
compute host, then the encapsulated packet is sent to the SFF via the Genius Dispatcher and OpenFlow pipelines. The
packets can be forwarded to the SFF locally via the ingress or egress classifier, and it will most likely be performed by
the egress classifier, but this decision will be determined at implementation time.

In scenarios where the first SFF is on a different compute host than the client node, the encapsulated packet needs to
be forwarded to that SFF through a tunnel port. Tunnels are handled by the Genius tunnel manager (ITM) with an
entity called transport zone: all nodes in a transport zone will be connected through a tunnel mesh. Thus the netvirt
classifier needs to ensure that the classifier and the SFF are included in a transport zone. The transport type is also
specified at the transport zone level and for NSH it needs to be VXGPE. The classifier needs to make sure that this
transport zone is handled for location changes of client VMs. Likewise, SFC needs to make sure the transport zone is
handled for SF location changes.

The afore-mentioned Genius ITM is different than the tunnels currently used by Netvirt. SFC uses VXGPE tunnels,
and requests they be created via the Genius ITM.

Classifier and SFC Genius Services

There will be 2 new Genius services created in Netvirt for the new Netvirt SFC classifier, namely an “Ingress SFC
Classifier” and an “Egress SFC Classifier”. There will also be a Genius service for the SFC SFF functionality that has
already been created in the SFC project.

The priorites of the services will be as follows:

Ingress Dispatcher:

• SFC - P1

• IngressACL - P2

• Ingress SFC Classifier - P3

• IPv6, IPv4, L2 - P4...

Egress Dispatcher:

• EgressACL - P1

• Egress SFC Classifier - P2

The Ingress SFC classifier will bind on all the Neutron VM ports of the Neutron Network configured in the ACL. All
packets received from these Neutron ports will be sent to the Ingress SFC classifier via the Genius Ingress Dispatcher,
and will be subjected to ACL matching. If there is no match, then the packets will be returned to the Genius dispatcher
so they can be sent down the rest of the Netvirt pipeline. If there is an ACL match, then the classifier will encapsulate
NSH, set the NSP and NSI accordingly, initialize C1 and C2 to 0, and send the packet down the rest of the pipeline.
Since the SFC service (SFF) will most likely not be bound to this same Neutron port, the packet wont be processed by
the SFF on the ingress pipeline. If the classifier and first SFF are in the same node, when the packet is processed by
the egress SFC classifier, it will be resubmitted back to the Ingress SFC service (SFC SFF) for SFC processing. If not,
the packet will be sent to the first SFF.

The Ingress SFC service (SFF) will bind on the Neutron ports for the Service Functions and on the VXGPE ports.
The Ingress SFC service will receive packets from these Neutron and VXGPE ports, and also those that have been
resubmitted from the Egress SFC Classifier. It may be possible that packets received from the SFs are not NSH

344 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

encapsulated, so any packets received by the Ingress SFC service that are not NSH encapsulated will not be processed
and will be sent back to the Ingress Dispatcher. For the NSH packets that are received, the Ingress SFC service will
calculate the Next-Hop and modify either the VXGPE header if the next hop is a different SFF, or modify the Ethernet
encapsulation header if the next hop is an SF on this same SFF. Once NSH packets are processed by the Ingress SFC
service, they will be sent to the Egress Dispatcher.

The Egress SFC classifier service is the final phase of what the Ingress SFC classifier service started when an ACL
match happens. The packet needed to go down the rest of the pipeline so the original packet destination can be
calculated. The Egress SFC classifier will take the information prepared by the rest of the Netvirt pipeline and store
the TunIPv4Dst and VNID of the destination compute host in C1 and C2 respectively. If the packet is not NSH
encapsulated, then it will be sent back to the Egress Dispatcher. If the packet does have NSH encapsulation, then if
C1/C2 is 0, then the fields will be populated as explained above. If the C1/C2 fields are already set, the packet will be
sent out to either the Next Hop SF or SFF.

At the last hop SFF, when the packet egresses the Service Chain, the SFF will pop the NSH encapsulation and use the
NSH C1 and C2 fields to tunnel the packet to its destination compute host. If the destination compute host is the same
as the last hop SFF, then the packet will be sent down the rest of the Netvirt pipeline so it can be sent to its destination
VM on this compute host. When the destination is local, then the inport will probably have to be adjusted.

An example of how the last hop SFF routing works, imagine the following diagram where packet from the Src VM
would go from br-int1 to br-int3 to reach the Dst VM when there is no service chaining employed. When the packets
from the Src VM are subjected to service chaining, the pipeline in br-int1 need to calculate the the final destination is
br-int3, and the appropriate information needs to be set in the NSH C1/C2 fields. Then the SFC SFF on br-int2, upon
chain egress will use C1/C2 to send the packets to br-int3 so they can ultimately reach the Dst VM.

+----+
| SF |
+--+-+

Route with SFC |
C1/C2 has tunnel +-------+-----+
info to br-int3 | |

+------------>| br-int2 |----+
+-----+ | | SFF | | +-----+
| Src | | +-------------+ | | Dst |
| VM | | | | VM |
+--+--+ | | +--+--+

| | v |
| +-----+-------+ +-------------+ |
+------>| | | |<-+

| br-int1 +----------------->| br-int3 |
| | Original route | |
+-------------+ with no SFC +-------------+

Pipeline changes

The existing Netvirt pipeline will not change as a result of adding the new classifier, other than the fact that the
Ingress SFC classifier and Egress SFC classifier Genius Services will be added, which will change the Genius Service
priorities as explained previously. The Genius pipelines can be found here [10].

Ingress Classifier Flows:

The following flows are an approximation of what the Ingress Classifier service pipeline will look like. Notice there
are 2 tables defined as follows:

• table 100: Ingress Classifier Filter table.

– Only allows Non-NSH packets to proceed in the classifier

1.2. Getting Started Guide 345

OpenDaylight Documentation Documentation, Release Carbon

• table 101: Ingress Classifier ACL table.

– Performs the ACL classification, and sends packets to Ingress Dispatcher

The final table numbers may change depending on how they are assigned by Genius.

// Pkt has NSH, send back to Ingress Dispatcher
cookie=0xf005ball00000101 table=100, n_packets=11, n_bytes=918,

priority=550,nsp=42 actions=resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

// Pkt does NOT have NSH, send to GENIUS_INGRESS_DISPATCHER_TABLE
cookie=0xf005ball00000102 table=100, n_packets=11, n_bytes=918,

priority=5 actions=goto_table:GENIUS_INGRESS_DISPATCHER_TABLE

// ACL match: if TCP port=80
// Action: encapsulate NSH and set NSH NSP, NSI, C1, C2, first SFF
// IP in Reg0, and send back to Ingress Dispatcher to be sent down
// the Netvirt pipeline. The in_port in the match is derived from
// the Neutron Network specified in the ACL match and identifies
// the tenant/Neutron Network the packet originates from

cookie=0xf005ball00000103, table=101, n_packets=11, n_bytes=918,
tcp,tp_dst=80, in_port=10
actions=push_nsh,

load:0x1->NXM_NX_NSH_MDTYPE[],
load:0x0->NXM_NX_NSH_C1[],
load:0x0->NXM_NX_NSH_C2[],
load:0x2a->NXM_NX_NSP[0..23],
load:0xff->NXM_NX_NSI[],
load:0x0a00010b->NXM_NX_REG0[],
resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

Egress Classifier Flows:

The following flows are an approximation of what the Egress Classifier service pipeline will look like. Notice there
are 3 tables defined as follows:

• table 221: Egress Classifier Filter table.

– Only allows NSH packets to proceed in the egress classifier

• table 222: Egress Classifier NextHop table.

– Set C1/C2 accordingly

• table 223: Egress Classifier TransportEgress table.

– Final egress processing and egress packets

– Determines if the packet should go to a local or remote SFF

The final table numbers may change depending on how they are assigned by Genius.

// If pkt has NSH, goto table 222 for more processing
cookie=0x14 table=221, n_packets=11, n_bytes=918,

priority=260,md_type=1
actions=goto_table:222

// Pkt does not have NSH, send back to Egress Dispatcher
cookie=0x14 table=110, n_packets=0, n_bytes=0,

priority=250
actions=resubmit(,GENIUS_EGRESS_DISPATCHER_TABLE)

346 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

// Pkt has NSH, if NSH C1/C2 = 0, Set C1/C2 and overwrite TunIpv4Dst
// with SFF IP (Reg0) and send to table 223 for egress

cookie=0x14 table=222, n_packets=11, n_bytes=918,
priority=260,nshc1=0,nshc2=0
actions=load:NXM_NX_TUN_IPV4_DST[]->NXM_NX_NSH_C1[],

load:NXM_NX_TUN_ID[]->NXM_NX_NSH_C2[],
load:NXM_NX_REG0[]->NXM_NX_TUN_IPV4_DST[]
goto_table:223

// Pkt has NSH, but NSH C1/C2 aleady set,
// send to table 223 for egress

cookie=0x14 table=222, n_packets=11, n_bytes=918,
priority=250
actions=goto_table:223

// Checks if the first SFF (IP stored in reg0) is on this node,
// if so resubmit to SFC SFF service

cookie=0x14 table=223, n_packets=0, n_bytes=0,
priority=260,nsp=42,reg0=0x0a00010b
actions=resubmit(, SFF_TRANSPORT_INGRESS_TABLE)

cookie=0x14 table=223, n_packets=0, n_bytes=0,
priority=250,nsp=42
actions=outport:6

Ingress SFC Service (SFF) Flows:

The following flows are an approximation of what the Ingress SFC service (SFF) pipeline will look like. Notice there
are 3 tables defined as follows:

• table 83: SFF TransportIngress table.

– Only allows NSH packets to proceed into the SFF

• tables 84 and 85 are not used for NSH

• table 86: SFF NextHop table.

– Set the destination of the next SF

• table 87: SFF TransportEgress table.

– Prepare the packet for egress

The final table numbers may change depending on how they are assigned by Genius.

// Pkt has NSH, send to table 86 for further processing
cookie=0x14 table=83, n_packets=11, n_bytes=918,

priority=250,nsp=42
actions=goto_table:86

// Pkt does NOT have NSH, send back to Ingress Dispatcher
cookie=0x14 table=83, n_packets=0, n_bytes=0,

priority=5
actions=resubmit(,GENIUS_INGRESS_DISPATCHER_TABLE)

// Table not used for NSH, shown for completeness
cookie=0x14 table=84, n_packets=0, n_bytes=0,

priority=250
actions=goto_table:86

1.2. Getting Started Guide 347

OpenDaylight Documentation Documentation, Release Carbon

// Table not used for NSH, shown for completeness
cookie=0x14 table=85, n_packets=0, n_bytes=0,

priority=250
actions=goto_table:86

// Match on specific NSH NSI/NSP, Encapsulate outer Ethernet
// transport. Send to table 87 for further processing.

cookie=0x14 table=86, n_packets=11, n_bytes=918,
priority=550,nsi=255,nsp=42
actions=load:0xb00000c->NXM_NX_TUN_IPV4_DST[],
goto_table:87

// The rest of the packets are sent to
// table 87 for further processing

cookie=0x14 table=86, n_packets=8, n_bytes=836,
priority=5
actions=goto_table:87

// Match on specific NSH NSI/NSP, C1/C2 set
// prepare pkt for egress, send to Egress Dispatcher

cookie=0xba5eba1100000101 table=87, n_packets=11, n_bytes=918,
priority=650,nsi=255,nsp=42
actions=move:NXM_NX_NSH_MDTYPE[]->NXM_NX_NSH_MDTYPE[],

move:NXM_NX_NSH_NP[]->NXM_NX_NSH_NP[],
move:NXM_NX_TUN_ID[0..31]->NXM_NX_TUN_ID[0..31],
load:0x4->NXM_NX_TUN_GPE_NP[],
resubmit(,GENIUS_EGRESS_DISPATCHER_TABLE)

Yang changes

The api YANGs used for the classifier build on the ietf acl models from the mdsal models.

Multiple options can be taken, depending on the desired functionality. Depending on the option chosen, YANG
changes might be required.

Assuming no YANG changes, SFC classification will be performed on all VMs in the same neutron-network - this
attribute is already present in the YANG model. This is the proposed route, since it hits a sweet-spot in the trade-off
between functionality and risk.

If classifying the traffic from specific interfaces is desired, then the YANG model would need to be updated, possibly
by adding a list of interfaces on which to classify.

Configuration impact

None

Clustering considerations

None

348 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Other Infra considerations

Since SFC uses NSH, and the new Netvirt Classifier will need to add NSH encapsulation, a version of OVS that
supports NSH must be used. NSH has not been officially accepted into the OVS project, so a branched version of OVS
is used. Details about the branched version of OVS can be found here [9].

Security considerations

None

Scale and Performance Impact

None

Targeted Release

This change is targeted for the ODL Carbon release.

Alternatives

None

Usage

The new Netvirt Classifier will be configured via the REST JSON configuration mentioned in the REST API section
below.

Features to Install

The existing old Netvirt SFC classifier is implemented in the following Karaf feature:

odl-ovsdb-sfc

When the new Netvirt SFC classifier is implemented, the previous Karaf feature will no longer be needed, and the
following will be used:

odl-netvirt-sfc

REST API

The classifier REST API wont change from the old to the new Netvirt. The following example is how the old Netvirt
classifier is configured.

Defined in netvirt/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang

An ACL is created which specifies the matching criteria and the action, which is to send the packets to an SFC RSP.
Notice the “network-uuid” is set. This is for binding the Netvirt classifier service to a logical port. The procedure will
be to query Genius for all the logical ports in that network uuid, and bind the Netvirt classifier service to each of them.

1.2. Getting Started Guide 349

OpenDaylight Documentation Documentation, Release Carbon

If the RSP has not been created yet, then the classification can not be created, since there wont be any information
available about the RSP. In this case, the ACL information will be buffered, and there will be a separate listener for
RSPs. When the referenced RSP is created, then the classifier processing will continue.

URL: /restconf/config/ietf-access-control-list:access-lists/

{
"access-lists": {
"acl": [

{
"acl-name": "ACL1",
"acl-type": "ietf-access-control-list:ipv4-acl",
"access-list-entries": {
"ace": [

{
"rule-name": "ACE1",
"actions": {
"netvirt-sfc-acl:rsp-name": "RSP1"

},
"matches": {
"network-uuid" : "eccb57ae-5a2e-467f-823e-45d7bb2a6a9a",
"source-ipv4-network": "192.168.2.0/24",
"protocol": "6",
"source-port-range": {

"lower-port": 0
},
"destination-port-range": {

"lower-port": 80
}

}
}

]
}

}]}}

CLI

None.

Implementation

Assignee(s)

Primary assignee:

• <brady.allen.johnson@ericsson.com>

Other contributors:

• <brady.allen.johnson@ericsson.com>

• <david.suarez.fuentes@ericsson.com

• <jaime.camaano.ruiz@ericsson.com>

• <miguel.duarte.de.mora.barroso@ericsson.com>

350 Chapter 1. Content for OpenDaylight Users

mailto:brady.allen.johnson@ericsson.com
mailto:brady.allen.johnson@ericsson.com
mailto:david.suarez.fuentes@ericsson.com
mailto:jaime.camaano.ruiz@ericsson.com
mailto:miguel.duarte.de.mora.barroso@ericsson.com

OpenDaylight Documentation Documentation, Release Carbon

Work Items

Simple scenario:

• Augment the provisioned ACL with the ‘neutron-network’ augmentation - [11]

• From the neutron-network, get a list of neutron-ports - the interfaces connecting the VMs to that particular
neutron-network. For each interface, do as follows:

– Extract the DPN-ID of the node hosting the VM having that neutron-port

– Extract the DPN-ID of the node hosting the first SF of the RSP

– The forwarding logic to implement depends on the co-location of the client’s VM with the first SF in the
chain.

* When the VMs are co-located (i.e. located in the same host), the output actions are to forward the
packet to the first table of the SFC pipeline.

* When the VMs are not co-located (i.e. hosted on different nodes) it is necessary to:

· Use genius RPCs to get the interface connecting 2 DPN-IDs. This will return the tunnel endpoint
connecting the compute nodes.

· Use genius RPCs to get the list of actions to reach the tunnel endpoint.

Enabling VM mobility:

1. Handle first SF mobility

Listen to RSP updates, where the only relevant migration is when the first SF moves to another node (different
DPN-IDs). In this scenario, we delete the flows from the old node, and install the newly calculated flows in
the new one. This happens for each node having an interface to classify attached to the provisioned neutron-
network.

2. Handle client VM mobility

Listen to client’s InterfaceState changes, re-evaluating the Forwarding logic, since the tunnel interface used to
reach the target DPN-ID is different. This means the action list to implement it, will also be different. The
interfaces to listen to will be ones attached to the provisioned neutron-network.

3. Must keep all the nodes having interfaces to classify (i.e. nodes having neutron-ports attached to the neutron-
network) and the first SF host node within the same transport zone. By listening to InterfaceState changes of
clients within the neutron-network & the first SF neutron ports, the transport zone rendering can be redone.

TODO: is there a better way to identify when the transport zone needs to be updated?

Dependencies

No dependency changes will be introduced by this change.

Testing

Unit Tests

Unit tests for the new Netvirt classifier will be modeled on the existing old Netvirt classifier unit tests, and tests will
be removed and/or added appropriately.

1.2. Getting Started Guide 351

OpenDaylight Documentation Documentation, Release Carbon

Integration Tests

The existing old Netvirt Classifier Integration tests will need to be migrated to use the new Netvirt classifier.

CSIT

The existing Netvirt CSIT tests for the old classifier will need to be migrated to use the new Netvirt classifier.

Documentation Impact

User Guide documentation will be added by one of the following contributors:

• <brady.allen.johnson@ericsson.com>

• <david.suarez.fuentes@ericsson.com

• <jaime.camaano.ruiz@ericsson.com>

• <miguel.duarte.de.mora.barroso@ericsson.com>

References

[1] https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/

[2] https://datatracker.ietf.org/doc/rfc7665/

[3] https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

[4] https://datatracker.ietf.org/doc/draft-ietf-nvo3-vxlan-gpe/

[5] https://docs.google.com/presentation/d/1kBY5PKPETEtRA4KRQ-GvVUSLbJoojPsmJlvpKyfZ5dU/edit?usp=
sharing

[6] https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home

[7] http://docs.opendaylight.org/en/stable-boron/user-guide/genius-user-guide.html

[8] https://wiki.opendaylight.org/view/Genius:Design_doc

[9] https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#Building_Open_vSwitch_with_
VxLAN-GPE_and_NSH_support

[10] http://docs.opendaylight.org/en/latest/submodules/genius/docs/pipeline.html

[11] https://github.com/opendaylight/netvirt/blob/master/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang

[12] https://docs.google.com/presentation/d/1gN8GnpVGwku4mp1on7EBZiE41RI7lZ-FFmFS2QlUTKk/edit?usp=
sharing

Table of Contents

• Netvirt Statistics

– Problem description

* Use Cases

– Proposed change

352 Chapter 1. Content for OpenDaylight Users

mailto:brady.allen.johnson@ericsson.com
mailto:david.suarez.fuentes@ericsson.com
mailto:jaime.camaano.ruiz@ericsson.com
mailto:miguel.duarte.de.mora.barroso@ericsson.com
https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/
https://datatracker.ietf.org/doc/rfc7665/
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main
https://datatracker.ietf.org/doc/draft-ietf-nvo3-vxlan-gpe/
https://docs.google.com/presentation/d/1kBY5PKPETEtRA4KRQ-GvVUSLbJoojPsmJlvpKyfZ5dU/edit?usp=sharing
https://docs.google.com/presentation/d/1kBY5PKPETEtRA4KRQ-GvVUSLbJoojPsmJlvpKyfZ5dU/edit?usp=sharing
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
http://docs.opendaylight.org/en/stable-boron/user-guide/genius-user-guide.html
https://wiki.opendaylight.org/view/Genius:Design_doc
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#Building_Open_vSwitch_with_VxLAN-GPE_and_NSH_support
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#Building_Open_vSwitch_with_VxLAN-GPE_and_NSH_support
http://docs.opendaylight.org/en/latest/submodules/genius/docs/pipeline.html
https://github.com/opendaylight/netvirt/blob/master/openstack/net-virt-sfc/api/src/main/yang/netvirt-acl.yang
https://docs.google.com/presentation/d/1gN8GnpVGwku4mp1on7EBZiE41RI7lZ-FFmFS2QlUTKk/edit?usp=sharing
https://docs.google.com/presentation/d/1gN8GnpVGwku4mp1on7EBZiE41RI7lZ-FFmFS2QlUTKk/edit?usp=sharing

OpenDaylight Documentation Documentation, Release Carbon

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Netvirt Statistics

https://git.opendaylight.org/gerrit/#/q/topic:netvirt-counters

The feature enables getting statistics on ports and switches.

Problem description

Being able to ask for statistics, given as input Netvirt identifiers. It will enable filtering the results and having aggre-
gated result. In a later stage, it will be also used to get element to element counters. Examples for possible filters: RX
only, TX only, port + VLAN counters...

Use Cases

• Getting port counters, given its interface id (ietf interface name).

1.2. Getting Started Guide 353

https://git.opendaylight.org/gerrit/#/q/topic:netvirt-counters

OpenDaylight Documentation Documentation, Release Carbon

• Getting node counters, given its node id.

Port counters can be useful also to get statistics on traffic going into tunnels when requesting it from the tunnel endpoint
port. In addition, there will also be support in aggregated results. For example: Getting the total number of transmitted
packets from a given switch.

Proposed change

Adding a new bundle named “statistics-plugin” to Netvirt. This bundle will be responsible for converting the Netvirt
unique identifiers into OpenFlow ones, and will get the relevant statistics by using OpenFlowPlugin capabilities. It
will also be responsible of validating and filtering the results. It will be able to provide a wide range of aggregated
results in the future.

Work flow description: Once a port statistics request is received, it is translated to a port statistics request from
openflow plugin. Once the transaction is received, the data is validated and translated to a user friendly data. The
user will be notified if a timeout occurs. In case of a request for aggregated counters, the user will receive a single
counter result divided to groups (such as “bits”, “packets”...). The counters in each group will be the sum of all of the
matching counters for all ports. Neither one of the counter request nor the counter response will not be stored in the
configuration database. Moreover, requests are not periodic and they are on demand only.

Pipeline changes

None

Yang changes

The new plugin introduced will have the following models:

grouping result {
list counterResult {

key id;
leaf id {

type string;
}
list groups {

key name;
leaf name {

type string;
}
list counters {

key name;
leaf name {

type string;
}
leaf value {

type uint64;
}

}
}

}
}

grouping filters {
leaf-list groupFilters {

354 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

type string;
}
leaf-list counterFilter {

type string;
}

}

rpc getNodeConnectorCounters {
input {

leaf portId {
type string;

}
uses filters;

}
output {

uses result;
}

}

rpc getNodeCounters {
input {

leaf nodeId {
type uint64;

}
}
output {

uses result;
}

}

rpc getNodeAggregatedCounters {
input {

leaf nodeId {
type uint64;

}
uses filters;

}
output {

uses result;
}

}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

1.2. Getting Started Guide 355

OpenDaylight Documentation Documentation, Release Carbon

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

Getting the statistics from OpenFlow flows: it would be possible to target the appropriate rules in ingress/egress tables,
and count the hits on these flows. The reason we decided to work with ports instead is because we don’t want to be
dependent on flow structure changes.

Usage

• Create router, network, VMS, VXLAN tunnel.

• Connect to one of the VMs, send ping ping to the other VM.

• Use REST to get the statistics.

Port statistics:

http://10.0.77.135:8181/restconf/operational/ietf-interfaces:interfaces-state/

Choose a port id and use the following REST in order to get the statistics:

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeConnectorCounters,
→˓input={"input":{"portId":"b99a7352-1847-4185-ba24-9ecb4c1793d9"}}, headers=
→˓{Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-
→˓Type=application/json}]

Node statistics:

http://10.0.77.135:8181/restconf/config/odl-interface-meta:bridge-interface-info/

Choose a node dpId and use the following REST in order to get the statistics:

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeCounters, input=
{"input": { "portId": "b99a7352-1847-4185-ba24-9ecb4c1793d9","groups": [{ "name

→˓": "byte*",
"counters": [{

"name": "rec*",
}, {

"name": "transmitted*",
}]

}]

356 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

}},
headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-
→˓Type=application/json}]

10.0.77.135:8181/restconf/operations/statistics-plugin:getNodeAggregatedCounters,
→˓input=

{"input": { "portId": "b99a7352-1847-4185-ba24-9ecb4c1793d9","groups": [{ "name
→˓": "byte*",

"counters": [{
"name": "rec*",

}, {
"name": "transmitted*",

}]
}]

}},
headers={Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-
→˓Type=application/json}]

Example for a filtered request:

10.0.77.135:8181/restconf/operations/statistics-plugin:getPortCounters, input={"input
→˓": {"portId":"b99a7352-1847-4185-ba24-9ecb4c1793d9"} }, headers=
→˓{Authorization=Basic YWRtaW46YWRtaW4=, Cache-Control=no-cache, Content-
→˓Type=application/json}]

An example for node connector counters result:

{
"output": {
"counterResult": [

{
"id": "openflow:194097926788804:5",
"groups": [
{

"name": "Duration",
"counters": [
{
"name": "durationNanoSecondCount",
"value": 471000000

},
{
"name": "durationSecondCount",
"value": 693554

}
]

},
{

"name": "Bytes",
"counters": [
{
"name": "bytesReceivedCount",
"value": 1455

},
{
"name": "bytesTransmittedCount",
"value": 14151299

}
]

1.2. Getting Started Guide 357

OpenDaylight Documentation Documentation, Release Carbon

},
{
"name": "Packets",
"counters": [
{
"name": "packetsReceivedCount",
"value": 9

},
{
"name": "packetsTransmittedCount",
"value": 9

}
]

}
]

}
]

}
}

An example for node counters result:

{
"output": {
"counterResult": [

{
"id": "openflow:194097926788804:3",
"groups": [
{

"name": "Duration",
"counters": [
{
"name": "durationNanoSecondCount",
"value": 43000000

},
{
"name": "durationSecondCount",
"value": 694674

}
]

},
{

"name": "Bytes",
"counters": [
{
"name": "bytesReceivedCount",
"value": 0

},
{
"name": "bytesTransmittedCount",
"value": 648

}
]

},
{

"name": "Packets",
"counters": [
{

358 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"name": "packetsReceivedCount",
"value": 0

},
{
"name": "packetsTransmittedCount",
"value": 0

}
]

}
]

},
{

"id": "openflow:194097926788804:2",
"groups": [
{

"name": "Duration",
"counters": [
{
"name": "durationNanoSecondCount",
"value": 882000000

},
{
"name": "durationSecondCount",
"value": 698578

}
]

},
{

"name": "Bytes",
"counters": [
{
"name": "bytesReceivedCount",
"value": 0

},
{
"name": "bytesTransmittedCount",
"value": 648

}
]

},
{

"name": "Packets",
"counters": [
{
"name": "packetsReceivedCount",
"value": 0

},
{
"name": "packetsTransmittedCount",
"value": 0

}
]

}
]

},
{

"id": "openflow:194097926788804:1",
"groups": [

1.2. Getting Started Guide 359

OpenDaylight Documentation Documentation, Release Carbon

{
"name": "Duration",
"counters": [
{
"name": "durationNanoSecondCount",
"value": 978000000

},
{
"name": "durationSecondCount",
"value": 698627

}
]

},
{

"name": "Bytes",
"counters": [
{
"name": "bytesReceivedCount",
"value": 6896336558

},
{
"name": "bytesTransmittedCount",
"value": 161078765

}
]

},
{

"name": "Packets",
"counters": [
{
"name": "packetsReceivedCount",
"value": 35644913

},
{
"name": "packetsTransmittedCount",
"value": 35644913

}
]

}
]

},
{

"id": "openflow:194097926788804:LOCAL",
"groups": [
{

"name": "Duration",
"counters": [
{
"name": "durationNanoSecondCount",
"value": 339000000

},
{
"name": "durationSecondCount",
"value": 698628

}
]

},
{

360 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"name": "Bytes",
"counters": [
{
"name": "bytesReceivedCount",
"value": 0

},
{
"name": "bytesTransmittedCount",
"value": 0

}
]

},
{

"name": "Packets",
"counters": [
{
"name": "packetsReceivedCount",
"value": 0

},
{
"name": "packetsTransmittedCount",
"value": 0

}
]

}
]

},
{

"id": "openflow:194097926788804:5",
"groups": [
{

"name": "Duration",
"counters": [
{
"name": "durationNanoSecondCount",
"value": 787000000

},
{
"name": "durationSecondCount",
"value": 693545

}
]

},
{

"name": "Bytes",
"counters": [
{
"name": "bytesReceivedCount",
"value": 1455

},
{
"name": "bytesTransmittedCount",
"value": 14151073

}
]

},
{

"name": "Packets",

1.2. Getting Started Guide 361

OpenDaylight Documentation Documentation, Release Carbon

"counters": [
{
"name": "packetsReceivedCount",
"value": 9

},
{
"name": "packetsTransmittedCount",
"value": 9

}
]

}
]

}
]

}
}

Features to Install

odl-netvirt-openflowplugin-genius-openstack

REST API

CLI

Implementation

Assignee(s)

Primary assignee: Guy Regev <guy.regev@hpe.com>

Other contributors: TBD

Work Items

https://trello.com/c/ZdoLQWoV/126-netvirt-statistics

• Support port counters.

• Support node counters.

• Support aggregated results.

• Support filters on results.

Dependencies

• Genius

• OpenFlow Plugin

• Infrautils

362 Chapter 1. Content for OpenDaylight Users

mailto:guy.regev@hpe.com
https://trello.com/c/ZdoLQWoV/126-netvirt-statistics

OpenDaylight Documentation Documentation, Release Carbon

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

References

Note: This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. http://creativecommons.org/
licenses/by/3.0/legalcode

Table of Contents

• Policy based path selection for multiple VxLAN tunnels

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

1.2. Getting Started Guide 363

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenDaylight Documentation Documentation, Release Carbon

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Policy based path selection for multiple VxLAN tunnels

https://git.opendaylight.org/gerrit/#/q/topic:policy-based-path-selection

The purpose of this feature is to allow selection of primary and backup VxLAN tunnels for different types of VxLAN
encapsulated traffic between a pair of OVS nodes based on some predefined policy.

Egress traffic can be classified using different characteristics e.g. 5-tuple, ingress port+VLAN, service-name to deter-
mine the best available path when multiple VxLAN endpoints are configured for the same destination.

Problem description

Today, netvirt is not able to classify traffic and route it over different tunnel endpoints based on a set of predefined
characteristics. This is an essential infrastructure for applications on top of netvirt offering premium and personalized
services.

Use Cases

• Forwarding of VxLAN traffic between hypervisors with multiple physical/logical ports.

Proposed change

The current implementation of transport-zone creation generates vtep elements based on the local_ip definition
in the other-config column of the Open_vSwitch schema where the local_ip value represents the tunnel
interface ip. This feature will introduce a new other-config property local_ips. local_ips will express
the association between multiple tunnel ip addresses and multiple underlay networks using the following format:

local_ips=<tun1-ip>:<underlay1-net>,<tun2-ip>:<underlay2-net>,..,<tunN-ip>:<underlayN-
→˓net>

Upon transport-zone creation, if the local_ips configuration is present, full tunnel mesh will be created between
all TEP ips in the same underlay network considering the existing transport-zone optimizations i.e. tunnels will be
created only between compute nodes with at least one spawned VM in the same VxLAN network or between networks
connected to the same router if at least one of the networks is VxLAN-based.

Note that configuration of multiple tunnel IPs for the same DPN in the same underlay network is not a supported as
part of this feature and requires further enhancements in both ITM and the transport-zone model.

364 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:policy-based-path-selection

OpenDaylight Documentation Documentation, Release Carbon

The underlay networks are logical entities that will be used to distigush between multiple uplinks for routing of egress
VxLAN traffic. They have no relation to Openstack and neutron networks definition. A new yang module is introduced
to model the association between different types of OVS egress VxLAN traffic and the selected underlay network paths
to output the traffic.

Policy-based path selection will be defined as a new egress tunnel service and depends on tunnel service binding
functionality detailed in [3].

The policy service will be bounded only for tunnels of type logical tunnel group defined in [2].

The service will classify different types of traffic based on a predefined set of policy rules to find the best available
path to route each type of traffic. The policy model will be agnostic to the specific topology details including DPN ids,
tunnel interface and logical interface names. The only reference from the policy model to the list of preferred paths is
made using underlay network-ids described earlier in this document.

Each policy references an ordered set of policy-routes. Each policy-route can be a basic-route ref-
erencing single underlay-network or route-group composed of multiple underlay networks. This set will get
translated in each DPN to OF fast-failover group. The content of the buckets in each DPN depends on the existing
underlay networks configured as part of the local_ips in the specific DPN.

The order of the buckets in the fast-failover group depends on the order of the underlay networks in the
policy-routes model. policy-routes with similar set of routes in different order will be translated to differ-
ent groups.

Each bucket in the fast-failover group can either reference a single tunnel or an additional OF select group depending
on the type of policy route as detailed in the following table:

Policy route type Bucket actions OF Watch type
Basic route load reg6(tun-lport) resubmit(220) watch_port(tun-port)
Route group goto_group(select-grp) watch_group(select-grp)

This OF select group does not have the same content as the select groups defined in [2] and the content of its’ buckets
is based on the defined route-group elements and weights.

Logical tunnel will be bounded to the policy service if and only if there is at least one policy-route referencing
one or more of the underlay networks in the logical group.

This service will take precedence over the default weighted LB service defined in [2] for logical tunnel group inter-
faces.

Policy-based path selection and weighted LB service pipeline example:

cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,
→˓reg6=0x500
actions=load:0xe000500->NXM_NX_REG6[],write_metadata:0xe000500000000000/
→˓0xffffffff00000000,goto_table:230
cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,
→˓reg6=0xe000500
actions=load:0xf000500->NXM_NX_REG6[],write_metadata:0xf000500000000000/
→˓0xffffffff00000000,group:800002
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,
→˓reg6=0x600 actions=output:3
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,
→˓reg6=0x700 actions=output:4
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,
→˓reg6=0x800 actions=output:5
cookie=0x9000007, duration=0.546s, table=230, n_packets=0, n_bytes=0,priority=7,ip,
metadata=0x222e0/0xfffffffe,nw_dst=10.0.123.2,tp_dst=8080 actions=write_
→˓metadata:0x200/0xfffffffe,goto_table:231
cookie=0x9000008, duration=0.546s, table=230, n_packets=0, n_bytes=0,priority=0,
→˓resubmit(,220)

1.2. Getting Started Guide 365

OpenDaylight Documentation Documentation, Release Carbon

cookie=0x7000007, duration=0.546s, table=231, n_packets=0, n_bytes=0,priority=7,
→˓metadata=0x500000000200/0xfffff00fffffffe,
actions=group:800000
cookie=0x9000008, duration=0.546s, table=231, n_packets=0, n_bytes=0,priority=0,
→˓resubmit(,220)
group_id=800000,type=ff,
bucket=weight:0,watch_group=800001,actions=group=800001,
bucket=weight:0,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
group_id=800001,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:50,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
group_id=800002,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)

Each bucket in the fast-failover group will set the watch_port or watch_group property to monitor the liveness
of the OF port in case of basic-route and underlay group in case of route-group. This will allow the OVS to
route egress traffic only to the first live bucket in each fast-failover group.

The policy model rules will be based on IETF ACL data model [4]. The following enhancements are proposed for this
model to support policy-based path selection:

Name Attributes Description OF implementation

ACE matches
ingress-interface name Policy match based on the

ingress port and optionally
the VLAN id

Match lport-tag metadata bitsvlan-id

service service-type Policy match based on the
service-name of L2VPN/L3VPN
e.g. ELAN name/VPN instance
name

Match service/vrf-id
metadata bits depending
on the service-type

service-name

ACE actions set policy-classifier policy-
classifier

Set ingress/egress classifier
that can be later used for
policy routing etc.
Only the egress classifier
will be used in this feature

Set policy classifier
in the metadata service
bitsdirection

To enable matching on previous services in the pipeline e.g. L2/L3VPN, the egress service binding for tunnel inter-
faces will be changed to preserve the metadata of preceding services rather than override it as done in the current
implementation.

Each policy-classifier will be associated with policy-route. The same route can be shared by multiple
classifiers.

The policy service will also maintain counters on number of policy rules assigned to underlay network per dpn in the
operational DS.

Pipeline changes

• The following new tables will be added to support the policy-based path selection service:

Table Name Matches Actions
Policy classifier table (230) ACE matches ACE policy actions: set policy-classifier
Policy routing table (231) match policy-classifier set FF group-id

• Each Access List Entry (ACE) composed of standard and/or policy matches and policy actions will be translated
to a flow in the policy classifier table.

Each policy-classifier name will be allocated with id from a new pool - POLICY_SERVICE_POOL. Once a
policy classifier has been determined for a given ACE match, the classifier-id will be set in the service bits
of the metadata.

366 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• Classified traffic will be sent from the policy classifier table to the policy routing table where the classifier-id
will be matched to select the preferred tunnel using OF fast-failover group. Multiple classifiers can point to a
single group.

• The default flow in the policy tables will resubmit traffic with no predefined policy/set of routes back to the
egress dispatcher table in order to continue processing in the next bounded egress service.

• For all the examples below it is assumed that a logical tunnel group was configured for both ingress and egress
DPNs. The logical tunnel group is composed of { tun1, tun2, tun3 } and bound to a policy service.

Traffic between VMs on the same DPN

No pipeline changes required

L3 traffic between VMs on different DPNs

VM originating the traffic (Ingress DPN):

• Remote next hop group in the FIB table references the logical tunnel group.

• Policy service on the logical group selects the egress interface by classifying the traffic e.g. based on destination
ip and port.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id,dst-ip=vm2-ip set dst-mac=vm2-mac
tun-id=vm2-label reg6=logical-tun-lport-tag =>
Egress table (220) match: reg6=logical-tun-lport-tag =>
Policy classifier table (230) match:
vpn-id=router-id,dst-ip=vm2-ip,dst-tcp-port=8080 set
egress-classifier=clf1 =>
Egress policy indirection table (231) match:
reg6=logical-tun-lport-tag,egress-classifier=clf1 =>
Logical tunnel tun1 FF group set reg6=tun1-lport-tag =>
Egress table (220) match: reg6=tun1-lport-tag output to tun1

VM receiving the traffic (Ingress DPN):

• No pipeline changes required

Classifier table (0) =>
Internal tunnel Table (36) match:tun-id=vm2-label =>
Local Next-Hop group: set dst-mac=vm2-mac,reg6=vm2-lport-tag =>
Egress table (220) match: reg6=vm2-lport-tag output to VM 2

1.2. Getting Started Guide 367

OpenDaylight Documentation Documentation, Release Carbon

SNAT traffic from non-NAPT switch

VM originating the traffic is non-NAPT switch:

• NAPT group references the logical tunnel group.

• Policy service on the logical group selects the egress interface by classifying the traffic based on the L3VPN
service id.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id =>
NAPT Group set tun-id=router-id reg6=logical-tun-lport-tag =>
Egress table (220) match: reg6=logical-tun-lport-tag =>
Policy classifier table (230) match: vpn-id=router-id set egress-classifier=clf2 =>
Policy routing table (231) match:
reg6=logical-tun-lport-tag,egress-classifier=clf2 =>
Logical tunnel tun2 FF group set reg6=tun2-lport-tag =>
Egress table (220) match: reg6=tun2-lport-tag output to tun2

Traffic from NAPT switch punted to controller:

• No explicit pipeline changes required

Classifier table (0) =>
Internal tunnel Table (36) match:tun-id=router-id =>
Outbound NAPT table (46) set vpn-id=router-id, punt-to-controller

L2 unicast traffic between VMs in different DPNs

VM originating the traffic (Ingress DPN):

• ELAN DMAC table references the logical tunnel group

• Policy service on the logical group selects the egress interface by classifying the traffic based on the ingress
port.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) =>
Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>
ELAN base table (48) =>
ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>

368 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set
tun-id=vm2-lport-tag reg6=logical-tun-lport-tag =>
Egress table (220) match: reg6=logical-tun-lport-tag =>
Policy classifier table (230) match: lport-tag=vm1-lport-tag set
egress-classifier=clf3 =>
Policy routing table (231) match:
reg6=logical-tun-lport-tag,egress-classifier=clf3 =>
Logical tunnel tun1 FF group set reg6=tun1-lport-tag =>
Egress table (220) match: reg6=tun1-lport-tag output to tun1

VM receiving the traffic (Ingress DPN):

• No explicit pipeline changes required

Classifier table (0) =>
Internal tunnel Table (36) match:tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>
Egress table (220) match: reg6=vm2-lport-tag output to VM 2

L2 multicast traffic between VMs in different DPNs with undefined policy

VM originating the traffic (Ingress DPN):

• ELAN broadcast group references the logical tunnel group.

• Policy service on the logical group has no classification for this type of traffic. Fallback to the default logical
tunnel service - weighted LB [2].

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) =>
Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>
ELAN base table (48) =>
ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>
ELAN DMAC table (51) =>
ELAN DMAC table (52) match: elan-tag=vxlan-net-tag =>
ELAN BC group goto_group=elan-local-group, set tun-id=vxlan-net-tag
reg6=logical-tun-lport-tag =>
Egress table (220) match: reg6=logical-tun-lport-tag set
reg6=default-egress-service&logical-tun-lport-tag =>
Policy classifier table (230) =>
Egress table (220) match: reg6=default-egress-service&logical-tun-lport-tag =>
Logical tunnel LB select group set reg6=tun2-lport-tag =>
Egress table (220) match: reg6=tun2-lport-tag output to tun2

1.2. Getting Started Guide 369

OpenDaylight Documentation Documentation, Release Carbon

VM receiving the traffic (Ingress DPN):

• No explicit pipeline changes required

Classifier table (0) =>
Internal tunnel Table (36) match:tun-id=vxlan-net-tag =>
ELAN local BC group set tun-id=vm2-lport-tag =>
ELAN filter equal table (55) match: tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>
Egress table (220) match: reg6=vm2-lport-tag output to VM 2

Yang changes

The following yang modules will be added to support policy-based routing:

Policy Service Yang

policy-service.yang define policy profiles and add augmentations on top of
ietf-access-control-list:access-lists to apply policy classifications on access control entries.

module policy-service {
yang-version 1;
namespace "urn:opendaylight:netvirt:policy";
prefix "policy";

import ietf-interfaces { prefix if; }

import ietf-access-control-list { prefix ietf-acl; }

import aclservice { prefix acl; }

import yang-ext { prefix ext; }

import opendaylight-l2-types { prefix ethertype; revision-date "2013-08-27"; }

description
"Policy Service module";

revision "2017-02-07" {
description

"Initial revision";
}

identity policy-acl {
base ietf-acl:acl-base;

}

augment "/ietf-acl:access-lists/ietf-acl:acl/"
+ "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches" {

ext:augment-identifier "ingress-interface";
leaf name {

type if:interface-ref;
}

370 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

leaf vlan-id {
type ethertype:vlan-id;

}
}

augment "/ietf-acl:access-lists/ietf-acl:acl/"
+ "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:matches" {

ext:augment-identifier "service";
leaf service-type {

type identityref {
base service-type-base;

}
}

leaf service-name {
type string;

}
}

augment "/ietf-acl:access-lists/ietf-acl:acl/"
+ "ietf-acl:access-list-entries/ietf-acl:ace/ietf-acl:actions" {

ext:augment-identifier "set-policy-classifier";
leaf policy-classifier {

type leafref {
path "/policy-profiles/policy-profile/policy-classifier";

}
}

leaf direction {
type identityref {

base acl:direction-base;
}

}
}

container underlay-networks {
list underlay-network {

key "network-name";
leaf network-name {

type string;
}

leaf network-access-type {
type identityref {

base access-network-base;
}

}

leaf bandwidth {
type uint64;
description "Maximum bandwidth. Units in byte per second";

}

list dpn-to-interface {
config false;
key "dp-id";
leaf dp-id {

1.2. Getting Started Guide 371

OpenDaylight Documentation Documentation, Release Carbon

type uint64;
}

list tunnel-interface {
key "interface-name";
leaf interface-name {

type string;
}

}
}

list policy-profile {
config false;
key "policy-classifier";
leaf policy-classifier {

type string;
}

}
}

}

container underlay-network-groups {
list underlay-network-group {

key "group-name";
leaf group-name {

type string;
}

list underlay-network {
key "network-name";
leaf network-name {

type leafref {
path "/underlay-networks/underlay-network/network-name";

}
}

leaf weight {
type uint16;
default 1;

}
}

leaf bandwidth {
type uint64;
description "Maximum bandwidth of the group. Units in byte per second";

}
}

}

container policy-profiles {
list policy-profile {

key "policy-classifier";
leaf policy-classifier {

type string;
}

list policy-route {
key "route-name";

372 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

leaf route-name {
type string;

}

choice route {
case basic-route {

leaf network-name {
type leafref {

path "/underlay-networks/underlay-network/network-name
→˓";

}
}

}

case route-group {
leaf group-name {

type leafref {
path "/underlay-network-groups/underlay-network-group/

→˓group-name";
}

}
}

}
}

list policy-acl-rule {
config false;
key "acl-name";
leaf acl-name {

type leafref {
path "/ietf-acl:access-lists/ietf-acl:acl/ietf-acl:acl-name";

}
}

list ace-rule {
key "rule-name";
leaf rule-name {

type leafref {
path "/ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-

→˓list-entries/ietf-acl:ace/ietf-acl:rule-name";
}

}
}

}
}

}

container policy-route-counters {
config false;

list underlay-network-counters {
key "network-name";
leaf network-name {

type leafref {
path "/underlay-networks/underlay-network/network-name";

}
}

1.2. Getting Started Guide 373

OpenDaylight Documentation Documentation, Release Carbon

list dpn-counters {
key "dp-id";
leaf dp-id {

type uint64;
}

leaf counter {
type uint32;

}
}

list path-counters {
key "source-dp-id destination-dp-id";
leaf source-dp-id {

type uint64;
}

leaf destination-dp-id {
type uint64;

}

leaf counter {
type uint32;

}
}

}
}

identity service-type-base {
description "Base identity for service type";

}

identity l3vpn-service-type {
base service-type-base;

}

identity l2vpn-service-type {
base service-type-base;

}

identity access-network-base {
description "Base identity for access network type";

}

identity mpls-access-network {
base access-network-base;

}

identity docsis-access-network {
base access-network-base;

}

identity pon-access-network {
base access-network-base;

}

identity dsl-access-network {
base access-network-base;

374 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

}

identity umts-access-network {
base access-network-base;

}

identity lte-access-network {
base access-network-base;

}
}

Policy service tree view

module: policy-service
+--rw underlay-networks
| +--rw underlay-network* [network-name]
| +--rw network-name string
| +--rw network-access-type? identityref
| +--rw bandwidth? uint64
| +--ro dpn-to-interface* [dp-id]
| | +--ro dp-id uint64
| | +--ro tunnel-interface*
| | +--ro interface-name? string
| +--ro policy-profile* [policy-classifier]
| +--ro policy-classifier string
+--rw underlay-network-groups
| +--rw underlay-network-group* [group-name]
| +--rw group-name string
| +--rw underlay-network* [network-name]
| | +--rw network-name -> /underlay-networks/underlay-network/network-name
| | +--rw weight? uint16
| +--rw bandwidth? uint64
+--rw policy-profiles
| +--rw policy-profile* [policy-classifier]
| +--rw policy-classifier string
| +--rw policy-route* [route-name]
| | +--rw route-name string
| | +--rw (route)?
| | +--:(basic-route)
| | | +--rw network-name? -> /underlay-networks/underlay-network/

→˓network-name
| | +--:(route-group)
| | +--rw group-name? -> /underlay-network-groups/underlay-network-

→˓group/group-name
| +--ro policy-acl-rule* [acl-name]
| +--ro acl-name -> /ietf-acl:access-lists/acl/acl-name
| +--ro ace-rule* [rule-name]
| +--ro rule-name -> /ietf-acl:access-lists/acl/access-list-entries/

→˓ace/rule-name
+--ro policy-route-counters

+--ro underlay-network-counters* [network-name]
+--ro network-name -> /underlay-networks/underlay-network/network-name
+--ro dpn-counters* [dp-id]
| +--ro dp-id uint64
| +--ro counter? uint32
+--ro path-counters* [source-dp-id destination-dp-id]

1.2. Getting Started Guide 375

OpenDaylight Documentation Documentation, Release Carbon

+--ro source-dp-id uint64
+--ro destination-dp-id uint64
+--ro counter? uint32

augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-
→˓acl:ace/ietf-acl:matches:

+--rw name? if:interface-ref
+--rw vlan-id? ethertype:vlan-id

augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-
→˓acl:ace/ietf-acl:matches:

+--rw service-type? identityref
+--rw service-name? string

augment /ietf-acl:access-lists/ietf-acl:acl/ietf-acl:access-list-entries/ietf-
→˓acl:ace/ietf-acl:actions:

+--rw policy-classifier? -> /policy-profiles/policy-profile/policy-classifier
+--rw direction? identityref

Configuration impact

This feature introduces a new other_config parameter local_ips to support multiple ip:network associations
as detailed above. Compatibility with the current local_ip parameter will be maintained but if both are present,
local_ips would take presedence over local_ip.

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

None

Targeted Release

Carbon

Alternatives

None

376 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Usage

Features to Install

odl-netvirt-openstack

REST API

Sample JSON data

Create policy rule

URL: restconf/config/ietf-access-control-list:access-lists

The following REST will create rule to classify all http traffic to ports 8080-8181 from specific vpn-id

{
"access-lists": {

"acl": [
{
"acl-type": "policy-service:policy-acl",
"acl-name": "http-policy",
"access-list-entries": {
"ace": [
{
"rule-name": "http-ports",
"matches": {
"protocol": 6,
"destination-port-range": {
"lower-port": 8080,
"upper-port": 8181

},
"policy-service:service-type": "l3vpn",
"policy-service:service-name": "71f7eb47-59bc-4760-8150-

→˓e5e408d2ba10"
},
"actions": {
"policy-service:policy-classifier" : "classifier1",
"policy-service:direction" : "egress"

}
}

]
}

}
]

}
}

}

Create underlay networks

URL: restconf/config/policy-service:underlay-networks

The following REST will create multiple underlay networks with different access types

1.2. Getting Started Guide 377

OpenDaylight Documentation Documentation, Release Carbon

{
"underlay-networks": {
"underlay-network": [

{
"network-name": "MPLS",
"network-access-type": "policy-service:mpls-access-network"

},
{

"network-name": "DLS1",
"network-access-type": "policy-service:dsl-access-network"

},
{

"network-name": "DSL2",
"network-access-type": "policy-service:dsl-access-network"

}
]

}
}

Create underlay group

URL: restconf/config/policy-service:underlay-network-groups

The following REST will create group for the DSL underlay networks

{
"underlay-network-groups": {
"underlay-network-group": [

{
"group-name": "DSL",
"underlay-network": [
{

"network-name": "DSL1",
"weight": 75

},
{

"network-name": "DSL2",
"weight": 25

}
]

}
]

}
}

Create policy profile

URL: restconf/config/policy-service:policy-profiles

The following REST will create profile for classifier1 with multiple policy-routes

{
"policy-profiles": {
"policy-profile": [

{

378 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"policy-classifier": "classifier1",
"policy-route": [
{
"route-name": "primary",
"network-name": "MPLS"

},
{

"route-name": "backup",
"group-name": "DSL"

}
]

}
]

}
}

CLI

None

Implementation

Assignee(s)

Primary assignee: Tali Ben-Meir <tali@hpe.com>

Other contributors: Yair Zinger <yair.zinger@hpe.com>

Work Items

Trello card: https://trello.com/c/Uk3yrjUG/25-multiple-vxlan-endpoints-for-compute

• Transport-zone creation for multiple tunnels based on underlay network definitions

• Extract ACL flow programming to common location so it can be used by the policy service

• Create policy OF groups based on underlay network/group definitions

• Create policy classifier table based on ACL rules

• Create policy routing table

• Bind policy service to logical tunnels

• Maintain policy-route-counters per dpn/dpn-path

Dependencies

None

1.2. Getting Started Guide 379

mailto:tali@hpe.com
mailto:yair.zinger@hpe.com
https://trello.com/c/Uk3yrjUG/25-multiple-vxlan-endpoints-for-compute

OpenDaylight Documentation Documentation, Release Carbon

Testing

Unit Tests

Integration Tests

The test plan defined for CSIT below could be reused for integration tests.

CSIT

Adding multiple ports to the CSIT setups is challenging due to rackspace limitations. As a result, the test plan defined
for this feature uses white-box methodology and not verifying actual traffic was sent over the tunnels.

Policy routing with single tunnel per access network type

• Set local_ips to contain tep ips for networks underlay1 and underlay2

• Each underlay network will be defined with different access-network-type

• Create the following policy profiles

– Profile1: policy-classifier=clf1, policy-routes=underlay1, underlay2

– Profile2: policy-classifier=clf2, policy-routes=underlay2, underlay1

• Create the following policy rules

– Policy rule 1: dst_ip=vm2_ip,dst_port=8080 set_policy_classifier=clf1

– Policy rule 2: src_ip=vm1_ip set_policy_classifier=clf2

– Policy rule 3: service-type=l2vpn service-name=elan-name
set_policy_classifier=clf1

– Policy rule 4: service-type=l3vpn service-name=router-name
set_policy_classifier=clf2

– Policy rule 5: ingress-port=vm3_port set_policy_classifier=clf1

– Policy rule 6: ingress-port=vm4_port vlan=vlan-id set_policy_classifier=clf2

• Verify policy service flows/groups for all policy rules

• Verify flows/groups removal after the profiles were deleted

Policy routing with multiple tunnels per access network type

• Set local_ips to contain tep ips for networks underlay1..‘‘underlay4‘‘

• underlay1, underlay2 and underlay3, underlay4 are from the same access-network-type

• Create the following policy profiles where each route can be either group or basic route

– Profile1: policy-classifier=clf1, policy-routes={underlay1, underlay2},
{underlay3,underlay4}

– Profile2: policy-classifier=clf2, policy-routes={underlay3,underlay4},
{underlay1, underlay2}

380 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

– Profile3: policy-classifier=clf3, policy-routes=underlay1, {underlay3,
underlay4}

– Profile4: policy-classifier=clf4, policy-routes={underlay1, underlay2},
underlay3

– Profile5: policy-classifier=clf5, policy-routes={underlay1, underlay2}

– Profile6: policy-classifier=clf6, policy-routes=underlay4

• Create the following policy rules

– Policy rule 1: dst_ip=vm2_ip,dst_port=8080 set_policy_classifier=clf1

– Policy rule 2: src_ip=vm1_ip set_policy_classifier=clf2

– Policy rule 3: service-type=l2vpn service-name=elan-name
set_policy_classifier=clf3

– Policy rule 4: service-type=l3vpn service-name=router-name
set_policy_classifier=clf4

– Policy rule 5: ingress-port=vm3_port set_policy_classifier=clf5

– Policy rule 6: ingress-port=vm4_port vlan=vlan-id set_policy_classifier=clf6

• Verify policy service flows/groups for all policy rules

• Verify flows/groups removal after the profiles were deleted

Documentation Impact

Netvirt documentation needs to be updated with description and examples of policy service configuration

References

[1] OpenDaylight Documentation Guide

[2] Load balancing and high availability of multiple VxLAN tunnels

[3] Service Binding On Tunnels

[4] Network Access Control List (ACL) YANG Data Model

Table of Contents

• Support for QoS Alert

– Problem description

* Use Cases

– Proposed change

* Log file format

* Pipeline changes

* Yang changes

* Configuration impact

1.2. Getting Started Guide 381

http://docs.opendaylight.org/en/latest/documentation.html
https://git.opendaylight.org/gerrit/#/c/50779
https://git.opendaylight.org/gerrit/#/c/51270
https://tools.ietf.org/html/draft-ietf-netmod-acl-model-09

OpenDaylight Documentation Documentation, Release Carbon

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Support for QoS Alert

https://git.opendaylight.org/gerrit/#/q/topic:qos-alert

This feature adds support to monitor the per port packet drop counts when QoS rate limit rule is applied.

Problem description

If QoS bandwidth policy is applied on a neutron port, all packets exceeding the rate limit are dropped by the switch.
This spec proposes a new service to monitor the packet drop ratio and log the alert message if packet drop ratio is
greater than the configured threshold value.

Use Cases

Periodically monitor the port statistics of neutron ports having bandwidth limit rule and log an alert message in a log
file if packet drop ratio cross the threshold value. Log file can be analyzed offline later to check the health/diagnostics
of the network.

382 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:qos-alert

OpenDaylight Documentation Documentation, Release Carbon

Proposed change

Proposed new service will use the RPC /operations/opendaylight-direct-statistics:get-node-connector-statistics
provided by openflowplugin to retrieve port statistics directly from switch by polling at regular interval. Polling
interval is configurable with default value of 2 minutes.

Port packet drop ratio is calculated using delta of two port statistics counters rx_dropped and rx_received
between the sample interval.

packet drop ratio = 100 * (rx_dropped / (rx_received + rx_dropped))

An message is logged if packet drop ratio is greater than the configured threshold value.

Existing logging framework log4j shall be used to log the alert messages in the log file. A new appender
qosalertmsg shall be added in org.ops4j.pax.logging.cfg to define the logging properties.

Log file format

2017-01-17 01:17:49,550 Packet drop threshold hit for qos policy qospolicy1 with qos-
→˓id qos-2dbf02f6-dcd1-4c13-90ee-6f727e21fe8d for port port-3afde68d-1103-4b8a-a38d-
→˓9cae631f7d67 on network network-563f9610-dd91-4524-ae23-8ec3c32f328e rx_received
→˓4831 rx_dropped 4969
2017-01-17 01:17:49,550 Packet drop threshold hit for qos policy qospolicy2 with qos-
→˓id qos-cb7e5f67-2552-4d49-b534-0ce90ebc8d97 for port port-09d3a437-f4a4-43eb-8655-
→˓85df8bbe4793 on network network-389532a1-2b48-4ba9-9bcd-c1705d9e28f9 rx_received
→˓3021 rx_dropped 4768
2017-01-17 01:19:49,339 Packet drop threshold hit for qos policy qospolicy1 with qos-
→˓id qos-2dbf02f6-dcd1-4c13-90ee-6f727e21fe8d for port port-3afde68d-1103-4b8a-a38d-
→˓9cae631f7d67 on network network-563f9610-dd91-4524-ae23-8ec3c32f328e rx_received
→˓3837 rx_dropped 3961
2017-01-17 01:19:49,339 Packet drop threshold hit for qos policy qospolicy2 with qos-
→˓id qos-cb7e5f67-2552-4d49-b534-0ce90ebc8d97 for port port-09d3a437-f4a4-43eb-8655-
→˓85df8bbe4793 on network network-389532a1-2b48-4ba9-9bcd-c1705d9e28f9 rx_received
→˓2424 rx_dropped 2766

Pipeline changes

None.

Yang changes

A new yang file shall be created for qos-alert configuration as specified below:

Listing 1.12: qos-alert-config.yang

module qosalert-config {

yang-version 1;
namespace "urn:opendaylight:params:xml:ns:yang:netvirt:qosalert:config";
prefix "qosalert";

revision "2017-01-03" {
description "Initial revision of qosalert model";

}

1.2. Getting Started Guide 383

OpenDaylight Documentation Documentation, Release Carbon

description "This YANG module defines QoS alert configuration.";

container qosalert-config {

config true;

leaf qos-alert-enabled {
description "QoS alert enable-disable config knob";
type boolean;
default false;

}

leaf qos-drop-packet-threshold {
description "QoS Packet drop threshold config. Specified as % of rx packets";
type uint8 {

range "1..100";
}
default 5;

}

leaf qos-alert-poll-interval {
description "Polling interval in minutes";
type uint16 {

range "1..3600";
}
default 2;

}

}
}

Configuration impact

Following new parameters shall be made available as configuration. Initial or default configuration is specified in
netvirt-qosservice-config.xml

Sl No. configuration Description

1.
qos-alert-enabled configuration parameter to en-

able/disable the alerts

2.
qos-drop-packet-threshold Drop percentage threshold configu-

ration.

3.
qos-alert-poll-interval Polling interval in minutes

Logging properties like log file name, location, size and maximum number of backup files are configured in file
org.ops4j.pax.logging.cfg

Clustering considerations

In cluster setup, only one instance of qosalert service shall poll for port statistics. Entity owner service (EOS) shall be
used to determine the owner of service.

384 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

QoS Alert Service minimizes scale and performance impact by following:

• Proposed service uses the direct-statistics RPC instead of OpenflowPlugin statistics-manager. This is lightweight
because only node-connector statistics are queried instead of all statistics.

• Polling frequency is quite slow. Default polling interval is two minutes and minimum allowed value is 1 minute.

Targeted Release

Carbon.

Alternatives

N.A.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack. This feature doesn’t add any new karaf feature.

REST API

Put Qos Alert Config

Following API puts Qos Alert Config.

Method: POST

URI: /config/qosalert-config:qosalert-config

Parameters:

Parameter Type Value range Comments
qos-alert-enabled Boolean true/false Optional (default false)
qos-drop-packet-threshold Uint16 1..100 Optional (default 5)
qos-alert-poll-interval Uint16 1..65535 Optional time interval in minute(s) (default 2)

Example: .. code-block:: json

{

1.2. Getting Started Guide 385

OpenDaylight Documentation Documentation, Release Carbon

“input”: {

“qos-alert-enabled”: true,

“qos-drop-packet-threshold”: 35,

“qos-alert-poll-interval”: 5

}

}

CLI

Following new karaf CLIs are added

qos:enable-qos-alert <true|false>

qos:drop-packet-threshold <threshold value in %>

qos:alert-poll-interval <polling interval in minutes>

Implementation

Assignee(s)

Primary assignee:

• Arun Sharma (arun.e.sharma@ericsson.com)

Other contributors:

• Ravi Sundareswaran (ravi.sundareswaran@ericsson.com)

• Mukta Rani (mukta.rani@tcs.com)

Work Items

Trello Link <https://trello.com/c/780v28Yw/148-netvirt-qos-alert>

1. Adding new yang file and listener.

2. Adding new log4j appender in odlparent org.ops4j.pax.logging.cfg file.

3. Retrieval of port statistics data using the openflowplugin RPC.

4. Logging alert message into the log file.

5. UT and CSIT

Dependencies

This doesn’t add any new dependencies.

386 Chapter 1. Content for OpenDaylight Users

mailto:arun.e.sharma@ericsson.com
mailto:ravi.sundareswaran@ericsson.com
mailto:mukta.rani@tcs.com
https://trello.com/c/780v28Yw/148-netvirt-qos-alert

OpenDaylight Documentation Documentation, Release Carbon

Testing

Capture details of testing that will need to be added.

Unit Tests

Standard UTs will be added.

Integration Tests

N.A.

CSIT

Following new CSIT tests shall be added

1. Verify that alerts are generated if drop packets percentage is more than the configured threshold value.

2. Verify that alerts are not generated if drop packets percentage is less than threshold value.

3. Verify that alerts are not generated when qos-alert-enabled if false irrespective of drop packet percent-
age.

Documentation Impact

This will require changes to User Guide.

User Guide will need to add information on how qosalert service can be used.

References

[1] Neutron QoS

[2] Spec for NetVirt QoS

[3] Openflowplugin port statistics

Table of Contents

• Neutron Quality of Service API Enhancements for NetVirt

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

1.2. Getting Started Guide 387

http://docs.openstack.org/developer/neutron/devref/quality_of_service.html
http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/qos.html
https://github.com/opendaylight/openflowplugin/blob/master/model/model-flow-statistics/src/main/yang/opendaylight-direct-statistics.yang

OpenDaylight Documentation Documentation, Release Carbon

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Neutron Quality of Service API Enhancements for NetVirt

QoS patches: https://git.opendaylight.org/gerrit/#/q/topic:qos

The Carbon release will enhance the initial implementation of Neutron QoS API1 support for NetVirt which was
released in Boron. The Boron released added support for Neutron QoS policies and the Egress bandwidth rate limiting
rule. The Carbon release will update the QoS feature set of NetVirt by providing support for the DSCP Marking rule
and QoS Rule capability reporting.

Problem description

It is important to be able to configure QoS attributes of workloads on virtual networks. The Neutron QoS API provides
a method for defining QoS policies and associated rules which can be applied to Neutron Ports and Networks. These
rules include:

• Egress Bandwidth Rate Limiting

• DSCP Marking

(Note that for the Neutron API, the direction of traffic flow (ingress, egress) is from the perspective of the OpenStack
instance.)

1 Neutron QoS http://docs.openstack.org/developer/neutron/devref/quality_of_service.html

388 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:qos
http://docs.openstack.org/developer/neutron/devref/quality_of_service.html

OpenDaylight Documentation Documentation, Release Carbon

As a Neutron provider for ODL, NetVirt will provide the ability to report back to Neutron its QoS rule capabilties and
provide the ability to configure and manage the supported QoS rules on supported backends (e.g. OVS, ...). The key
changes in the Carbon release will be the addition of support for the DSCP Marking rule.

Use Cases

Neutron QoS API support, including:

• Egress rate limiting - Drop traffic that exceeeds the specified rate parameters for a Neutron Port or Network.

• DSCP Marking - Set the DSCP field for IP packets arriving from Neutron Ports or Networks.

• Reporting of QoS capabilities - Report to Neutron which QoS Rules are supported.

Proposed change

To handle DSCP marking, listener support will be added to the neutronvpn service to respond to changes in DSCP
Marking Rules in QoS Policies in the Neutron Northbound QoS models23 .

To implement DSCP marking support, a new ingress (from vswitch perspective) QoS Service is defined in Genius.
When DSCP Marking rule changes are detected, a rule in a new OpenFlow table for QoS DSCP marking rules will be
updated.

The QoS service will be bound to an interface when a DSCP Marking rule is added and removed when the DSCP
Marking rule is deleted. The QoS service follows the DHCP service and precedes the IPV6 service in the sequence of
Genius ingress services.

Some use cases for DSCP marking require that the DSCP mark set on the inner packet be replicated to the DSCP
marking in the outer packet. Therefore, for packets egressing out of OVS through vxlan/gre tunnels the option to copy
the DSCP bits from the inner IP header to the outer IP header is needed. Marking of the inner header is done via
OpenFlow rules configured on the corresponding Neutron port as described above. For cases where the outer tunnel
header should have a copy of the inner header DSCP marking, the tos option on the tunnel interface in OVSDB must
be configured to the value inherit. The setting of the tos option is done with a configurable parameter defined in
the ITM module. By default the tos option is set to 0 as specified in the OVSDB specification4 .

On the creation of new tunnels, the tos field will be set to either the user provided value or to the default value, which
may be controlled via configuration. This will result in the tunnel-options field in the IFM (Interface Manager) to be
set which will in turn cause the options field for the tunnel interface on the OVSDB node to be configured.

To implement QoS rule capability reporting back towards Neutron, code will be added to the neutronvpn service to
populate the operational qos-rule-types list in the Neutron Northbound Qos model3 with a list of the supported QoS
rules - which will be the bandwidth limit rule and DSCP marking rule for the Carbon release.

Pipeline changes

A new QoS DSCP table is added to support the new QoS Service:

Table Match Action
QoS DSCP [90] Ethtype == IPv4 or IPv6 AND LPort tag Mark packet with DSCP value

2 Neutron Northbound QoS Model Extensions https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos-ext.yang
3 Neutron Northbound QoS Model https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos.yang
4 OVSDB Schema http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

1.2. Getting Started Guide 389

https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos-ext.yang
https://github.com/opendaylight/neutron/blob/master/model/src/main/yang/neutron-qos.yang
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

OpenDaylight Documentation Documentation, Release Carbon

Yang changes

A new leaf option-tunnel-tos is added to tunnel-end-points in itm-state.yang and to vteps in itm.yang.

Listing 1.13: itm-state.yang

list tunnel-end-points {
ordered-by user;
key "portname VLAN-ID ip-address tunnel-type";

leaf portname {
type string;

}
leaf VLAN-ID {

type uint16;
}
leaf ip-address {

type inet:ip-address;
}
leaf subnet-mask {

type inet:ip-prefix;
}
leaf gw-ip-address {

type inet:ip-address;
}
list tz-membership {

key "zone-name";
leaf zone-name {

type string;
}

}
leaf interface-name {

type string;
}
leaf tunnel-type {

type identityref {
base odlif:tunnel-type-base;

}
}
leaf option-of-tunnel {

description "Use flow based tunnels for remote-ip";
type boolean;
default false;

}
leaf option-tunnel-tos {

description "Value of ToS bits to be set on the encapsulating
packet. The value of 'inherit' will copy the DSCP value
from inner IPv4 or IPv6 packets. When ToS is given as
and numberic value, the least significant two bits will
be ignored. ";

type string;
}

}

390 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Listing 1.14: itm.yang

list vteps {
key "dpn-id portname";
leaf dpn-id {

type uint64;
}
leaf portname {

type string;
}
leaf ip-address {

type inet:ip-address;
}
leaf option-of-tunnel {

description "Use flow based tunnels for remote-ip";
type boolean;
default false;

}
leaf option-tunnel-tos {

description "Value of ToS bits to be set on the encapsulating
packet. The value of 'inherit' will copy the DSCP value
from inner IPv4 or IPv6 packets. When ToS is given as
and numberic value, the least significant two bits will
be ignored. ";

type string;
}

}

A configurable parameter default-tunnel-tos is added to itm-config.yang which defines the default ToS value
to be applied to tunnel ports.

Listing 1.15: itm-config.yang

container itm-config {
config true;

leaf default-tunnel-tos {
description "Default value of ToS bits to be set on the encapsulating

packet. The value of 'inherit' will copy the DSCP value
from inner IPv4 or IPv6 packets. When ToS is given as
and numberic value, the least significant two bits will
be ignored. ";

type string;
default 0;

}
}

Configuration impact

A configurable parameter default-tunnel-tos is added to genius-itm-config.xml which specifies the default ToS
to use on a tunnel if it is not specified by the user when a tunnel is created. This value may be set to inherit for
some DSCP Marking use cases.

1.2. Getting Started Guide 391

OpenDaylight Documentation Documentation, Release Carbon

Listing 1.16: genius-itm-config.xml

<itm-config xmlns="urn:opendaylight:genius:itm:config">
<default-tunnel-tos>0</default-tunnel-tos>

</itm-config>

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

Additional OpenFlow packets will be generated to configure DSCP marking rules in response to QoS Policy changes
coming from Neutron.

Targeted Release

Carbon

Alternatives

Use of OpenFlow meters was desired, but the OpenvSwitch datapath implementation does not support meters (although
the OpenvSwitch OpenFlow protocol implementation does support meters).

Usage

The user will use the QoS support by enabling and configuring the QoS extension driver for networking-odl. This will
allow QoS Policies and Rules to be configured for Neuetron Ports and Networks using Neutron.

Perform the following configuration steps:

• In neutron.conf enable the QoS service by appending qos to the service_plugins configuration:

Listing 1.17: /etc/neutron/neutron.conf

service_plugins = odl-router, qos

• Add the QoS notification driver to the neutron.conf file as follows:

392 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Listing 1.18: /etc/neutron/neutron.conf

[qos]
notification_drivers = odl-qos

• Enable the QoS extension driver for the core ML2 plugin. In file ml2.conf.ini append qos to
extension_drivers

Listing 1.19: /etc/neutron/plugins/ml2/ml2.conf.ini

[ml2]
extensions_drivers = port_security,qos

Features to Install

Install the ODL Karaf feature for NetVirt (no change):

• odl-netvirt-openstack

REST API

None.

CLI

Refer to the Neutron CLI Reference5 for the Neutron CLI command syntax for managing QoS policies and rules for
Neutron networks and ports.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other contributors.

Primary assignee:

• Poovizhi Pugazh <poovizhi.p@ericsson.com>

Other contributors:

• Ravindra Nath Thakur <ravindra.nath.thakur@ericsson.com>

• Eric Multanen <eric.w.multanen@intel.com>

• Praveen Mala <praveen.mala@intel.com> (including CSIT)

Work Items

Task list in Carbon Trello: https://trello.com/c/bLE2n2B1/14-qos

5 Neutron CLI Reference http://docs.openstack.org/cli-reference/neutron.html#neutron-qos-available-rule-types

1.2. Getting Started Guide 393

mailto:poovizhi.p@ericsson.com
mailto:ravindra.nath.thakur@ericsson.com
mailto:eric.w.multanen@intel.com
mailto:praveen.mala@intel.com
https://trello.com/c/bLE2n2B1/14-qos
http://docs.openstack.org/cli-reference/neutron.html#neutron-qos-available-rule-types

OpenDaylight Documentation Documentation, Release Carbon

Dependencies

Genius project - Code6 to support QoS Service needs to be added.

Neutron Northbound - provides the Neutron QoS models for policies and rules (already done).

Following projects currently depend on NetVirt: Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

Documentation to describe use of Neutron QoS support with NetVirt will be added.

OpenFlow pipeline documentation updated to show QoS service table.

References

http://specs.openstack.org/openstack/neutron-specs/specs/newton/ml2-qos-with-dscp.html

ODL gerrit adding QoS models to Neutron Northbound: https://git.opendaylight.org/gerrit/#/c/37165/

Table of Contents

• Setup Source-MAC-Address for routed packets destined to virtual endpoints

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

6 Genius code supporting QoS service https://git.opendaylight.org/gerrit/#/c/49084/

394 Chapter 1. Content for OpenDaylight Users

http://specs.openstack.org/openstack/neutron-specs/specs/newton/ml2-qos-with-dscp.html
https://git.opendaylight.org/gerrit/#/c/37165/
https://git.opendaylight.org/gerrit/#/c/49084/

OpenDaylight Documentation Documentation, Release Carbon

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Setup Source-MAC-Address for routed packets destined to virtual endpoints

https://git.opendaylight.org/gerrit/#/q/topic:SMAC_virt_endpoints

All L3 Routed packets destined to virtual endpoints in the datacenter managed by ODL do not carry a proper source-
mac address in such frames put out to virtual endpoints.

This spec makes sure a proper source-mac is updated in the packet at the point where the packet is delivered to the VM,
regardless of the tenant network type. On the actual datapath, there will be no change in the source mac-addresses and
packets continue to use the same mechanism that is used today.

Addressing the datapath requires unique MAC allocation per OVS Datapath, so that it can be used as the source MAC
for all distributively routed packets of an ODL enabled cloud. It would be handled in some future spec.

Problem description

Today all L3 Routed packets destined to virtual endpoints in the datacenter either

• Incorrectly carry the source mac-address of the originator (regardless of which network the originator is in)

• Incorrectly carry sometimes the reserved source mac address of 00:00:00:00:00:00

This spec is intended to setup a source-mac-address in the frame of L3 Routed packets just before such frames are
directed into the virtual endpoints themselves. This enables use-cases where certain virtual endpoints which are VNFs
in the datacenter that are source-mac conscious (or mandate that src-mac in frames be valid) can become functional
on their instantiation in an OpenDaylight enabled cloud.

1.2. Getting Started Guide 395

https://git.opendaylight.org/gerrit/#/q/topic:SMAC_virt_endpoints

OpenDaylight Documentation Documentation, Release Carbon

Use Cases

• Intra-Datacenter L3 forwarded packets within a hypervisor.

• Intra-Datacenter L3 forwarded packets over Internal VXLAN Tunnels between two hypervisors in the datacen-
ter.

• Inter-Datacenter L3 forwarded packets :

– Destined to VMs associated floating IP over External VLAN Provider Networks.

– Destined to VMs associated floating IP over External MPLSOverGRE Tunnels.

– SNAT traffic from VMs over External MPLSOverGRE Tunnels.

– SNAT traffic from VMS over External VLAN Provider Networks.

Proposed change

All the L3 Forwarded traffic today reaches the VM via a LocalNextHopGroup managed by the VPN Engine (including
FIBManager).

Currently the LocalNextHopGroup sets-up the destination MAC Address of the VM and forwards the traffic to
EGRESS_LPORT_DISPATCHER_TABLE (Table 220). In that LocalNextHopGroup we will additionally setup
source-mac-address for the frame. There are two cases to decide what source-mac-address should go into the frame:

• If the VM is on a subnet (on a network) for which a subnet gatewayip port exists, then the source-mac address of
that subnet gateway port will be setup as the frame’s source-mac inside the LocalNextHop group.This is typical
of the case when a subnet is added to a router, as the router interface port created by neutron will be representing
the subnet’s gateway-ip address.

• If the VM is on a subnet (on a network), for which there is no subnet gatewayip port but that network is part
of a BGPVPN , then the source-mac address would be that of the connected mac-address of the VM itself. The
connected mac-address is nothing but the mac-address on the ovs-datapath for the VMs tapxxx/vhuxxx port on
that hypervisor itself.

The implementation also applies to Extra-Routes (on a router) and Discovered Routes as they both use the LocalNex-
tHopGroup in their last mile to send packets into their Nexthop VM.

We need to note that when a network is already part of a BGPVPN, adding a subnet on such a network to a router is
disallowed currently by NeutronVPN. And so the need to swap the mac-addresses inside the LocalNextHopGroup to
reflect the subnet gatewayip port here does not arise.

For all the use-cases listed in the USE-CASES section above, proper source mac address will be filled-up in the frame
before it enters the virtual endpoint.

Pipeline changes

There are no pipeline changes.

The only change is in the NextHopGroup created by VPN Engine (i.e., VRFEntryListener). In the NextHopGroup we
will additionally fill up the ethernet source mac address field with proper mac-address as outlined in the ‘Proposed
change’ section.

Currently the LocalNextHopGroup is used in the following tables of VPN Pipeline:

• L3_LFIB_TABLE (Table 20) - Lands all routed packets from MPLSOverGRE tunnel into the virtual endpoint.

• INTERNAL_TUNNEL_TABLE (Table 36) - Lands all routed packets on Internal VXLAN Tunnel within the
DC into the virtual end point.

396 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• L3_FIB_TABLE (Table 21) - Lands all routed packets within a specific hypervisor into the virtual endpoint.

cookie=0x8000002, duration=50.676s, table=20, n_packets=0, n_bytes=0, priority=10,
→˓mpls,mpls_label=70006 actions=write_actions(pop_mpls:0x0800,group:150000)
cookie=0x8000003, duration=50.676s, table=21, n_packets=0, n_bytes=0, priority=42,ip,
→˓metadata=0x222f2/0xfffffffe,nw_dst=10.1.1.3 actions=write_actions(group:150000)
cookie=0x9011176, duration=50.676s, table=36, n_packets=0, n_bytes=0, priority=5,tun_
→˓id=0x11176 actions=write_actions(group:150000)

NEXTHOP GROUP:
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:01:1a:40->eth_src,set_
→˓field:fa:16:3e:8b:c5:51->eth_dst,load:0x300->NXM_NX_REG6[],resubmit(,220)

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None

Targeted Release

Carbon/Boron

Alternatives

None.

1.2. Getting Started Guide 397

OpenDaylight Documentation Documentation, Release Carbon

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Primary assignee:

• Achuth Maniyedath (achuth.m@altencalsoftlabs.com)

Other contributors:

• Karthik Prasad (karthik.p@altencalsoftlabs.com)

• Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

https://trello.com/c/IfAmnFFr/110-add-source-macs-in-frames-for-l3-routed-packets-before-such-frames-get-to-the-virtual-endpoint

• Determine the smac address to be used for L3 packets forwarded to VMs.

• Update the LocalNextHopGroup table with proper ethernet source-mac parameter.

Dependencies

No new dependencies.

Testing

Verify the Source-MAC-Address setting on frames forwarded to Virtual endpoints in following cases.

Intra-Datacenter traffic to VMs (Intra/Inter subnet).

• VM to VM traffic within a hypervisor.

• VM to VM traffic across hypervisor over Internal VXLAN tunnel.

398 Chapter 1. Content for OpenDaylight Users

mailto:achuth.m@altencalsoftlabs.com
mailto:karthik.p@altencalsoftlabs.com
mailto:n.vivekanandan@ericsson.com
https://trello.com/c/IfAmnFFr/110-add-source-macs-in-frames-for-l3-routed-packets-before-such-frames-get-to-the-virtual-endpoint

OpenDaylight Documentation Documentation, Release Carbon

Inter-Datacenter traffic to/from VMs.

• External access to VMs using Floating IPs on MPLSOverGRE tunnels.

• External access to VMs using Floating IPs over VLAN provider networks.

• External access from VMs using SNAT over VLAN provider networks.

• External access from VMs using SNAT on MPLSOverGRE tunnels.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

• Validate that router-interface src-mac is available on received frames within the VM when that VM is on a
router-arm.

• Validate that connected-mac as src-mac available on received frames within the VM when that VM is on a
network-driven L3 BGPVPN.

Documentation Impact

N/A

References

N/A

Table of Contents

• Support for TCP MD5 Signature Option configuration of Quagga BGP

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* API changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

1.2. Getting Started Guide 399

OpenDaylight Documentation Documentation, Release Carbon

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

* Internal

* External

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Support for TCP MD5 Signature Option configuration of Quagga BGP

https://git.opendaylight.org/gerrit/#/q/topic:qbgp-tcp-md5-signature-option

This functionality adds support to odl-netvirt-impl feature to configure the TCP MD5 Signature Option [RFC2385]
password in Quagga BGPs [QBGP].

Problem description

Quagga [QBGP] supports TCP MD5 Signature Option [RFC2385] in BGP traffic but current odl-netvirt-impl feature
implementation lacks support to configure the required passwords.

Use Cases

UC1: Protect (Quagga [QBGP]) BGP and DC gateway BGP interface using TCP MD5 Signature Option [RFC2385].

Proposed change

The following components need to be enhanced:

• BGP Manager

400 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:qbgp-tcp-md5-signature-option

OpenDaylight Documentation Documentation, Release Carbon

Pipeline changes

No pipeline changes.

API changes

Changes will be needed in ebgp.yang, and qbgp.thrift.

YANG changes

A new optional leaf with the TCP MD5 Signature Option [RFC2385] password is added (by means of a choice) to list
neighbors.

Listing 1.20: ebgp.yang additions

typedef tcp-md5-signature-password-type {
type string {
length 1..80;

} // subtype string
description
"The shared secret used by TCP MD5 Signature Option. The length is
limited to 80 chars because A) it is identified by the RFC as current
practice and B) it is the maximum length accepted by Quagga
implementation.";

reference "RFC 2385";
} // typedef tcp-md5-signature-password-type

grouping tcp-security-option-grouping {
description "TCP security options.";
choice tcp-security-option {
description "The tcp security option in use, if any.";

case tcp-md5-signature-option {
description "The connection uses TCP MD5 Signature Option.";
reference "RFC 2385";
leaf tcp-md5-signature-password {

type tcp-md5-signature-password-type;
description "The shared secret used to sign the packets.";

} // leaf tcp-md5-signature-password
} // case tcp-md5-signature-option

} // choice tcp-security-option
} // grouping tcp-security-option-grouping

Listing 1.21: ebgp.yang modifications

list neighbors {
key "address";
leaf address {

type inet:ipv4-address;
mandatory "true";

}
leaf remote-as {

type uint32;

1.2. Getting Started Guide 401

OpenDaylight Documentation Documentation, Release Carbon

mandatory "true";
}

+ use tcp-security-option-grouping;

Thrift changes

A new function setPeerSecret is added to the service BgpConfigurator.

Listing 1.22: qbgp.thrift modifications

--- a/vpnservice/bgpmanager/bgpmanager-impl/src/main/java/org/opendaylight/netvirt/
→˓bgpmanager/thrift/idl/qbgp.thrift
+++ b/vpnservice/bgpmanager/bgpmanager-impl/src/main/java/org/opendaylight/netvirt/
→˓bgpmanager/thrift/idl/qbgp.thrift
@@ -31,6 +31,8 @@ const i32 GET_RTS_NEXT = 1

* ERR_NOT_ITER when GET_RTS_NEXT is called without

* initializing with GET_RTS_INIT

* ERR_PARAM when there is an issue with params
+ * ERR_NOT_SUPPORTED when the server does not support
+ * the operation.

*/

const i32 BGP_ERR_FAILED = 1
@@ -38,6 +40,7 @@ const i32 BGP_ERR_ACTIVE = 10
const i32 BGP_ERR_INACTIVE = 11
const i32 BGP_ERR_NOT_ITER = 15
const i32 BGP_ERR_PARAM = 100

+const i32 BGP_ERR_NOT_SUPPORTED = 200

// these are the supported afi-safi combinations
enum af_afi {

@@ -122,6 +125,33 @@ service BgpConfigurator {
6:i32 stalepathTime, 7:bool announceFlush),

i32 stopBgp(1:i64 asNumber),
i32 createPeer(1:string ipAddress, 2:i64 asNumber),

+
+ /* 'setPeerSecret' sets the shared secret needed to protect the peer
+ * connection using TCP MD5 Signature Option (see rfc 2385).
+ *
+ * Params:
+ *
+ * 'ipAddress' is the peer (neighbour) address. Mandatory.
+ *
+ * 'rfc2385_sharedSecret' is the secret. Mandatory. Length must be
+ * greater than zero.
+ *
+ * Return codes:
+ *
+ * 0 on success.
+ *
+ * BGP_ERR_FAILED if 'ipAddress' is missing or unknown.
+ *
+ * BGP_ERR_PARAM if 'rfc2385_sharedSecret' is missing or invalid (e.g.
+ * it is too short or too long).
+ *
+ * BGP_ERR_INACTIVE when there is no session.

402 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

+ *
+ * BGP_ERR_NOT_SUPPORTED when TCP MD5 Signature Option is not supported
+ * (e.g. the underlying TCP stack does not support it)
+ *
+ */
+ i32 setPeerSecret(1:string ipAddress, 2:string rfc2385_sharedSecret),

i32 deletePeer(1:string ipAddress)
i32 addVrf(1:layer_type l_type, 2:string rd, 3:list<string> irts, 4:list<string>

→˓erts),
i32 delVrf(1:string rd),

An old server (i.e. using a previous version of qbgp.thrift) will return a TApplicationException with
type UNKNOWN_METHOD. See [TBaseProcessor].

Configuration impact

No configuration parameters deprecated.

New optional leaf tcp-md5-signature-password does not impact existing deployments.

The recommended AAA configuration (See Security considerations) may impact existing deployments.

Clustering considerations

NA

Other Infra considerations

Signature mismatch

On signature mismatch TCP MD5 Signature Option [RFC2385] (page 2) specifies the following behaviour:

Listing 1.23: RFC 2385 page 2

Upon receiving a signed segment, the receiver must validate it by
calculating its own digest from the same data (using its own key) and
comparing the two digest. A failing comparison must result in the
segment being dropped and must not produce any response back to the
sender. Logging the failure is probably advisable.

A BGP will be unable to connect with a neighbor with a wrong password because the TCP SYN,ACK will be dropped.
The neighbor state will bounce between “Active” and “Connect” while it retries.

Security considerations

tcp-md5-signature-password is stored in clear in the datastore. This is a limitation of the proposed change.

Because tcp-md5-signature-password is stored in clear the REST access to neighbors list should be
restricted. See the following AAA configuration examples:

1.2. Getting Started Guide 403

OpenDaylight Documentation Documentation, Release Carbon

Listing 1.24: etc/shiro.ini example

#
DISCOURAGED since Carbon
#
/config/ebgp:bgp/neighbors/** = authBasic, roles[admin]

Listing 1.25: AAA MDSALDynamicAuthorizationFilter example

{ "aaa:policies":
{ "aaa:policies": [

{ "aaa:resource": "/restconf/config/ebgp:bgp/neighbors/**",
"aaa:permissions": [
{ "aaa:role": "admin",

"aaa:actions": ["get","post","put","patch","delete"]
}]

}]
}

}

If BgpConfigurator thrift service is not secured then tcp-md5-signature-password goes clear on the
wire.

Quagga [QBGP] (up to version 1.0) keeps the password in memory in clear. The password can be retrieved through
Quagga’s configuration interface.

Scale and Performance Impact

Negligible scale or performance impacts.

• datastore: A bounded (<=80) string per configured neighbor.

• Traffic (thrift BgpConfigurator service): A bounded (<=80) string field per neighbor addition operation.

Targeted Release

Carbon

Alternatives

Three alternatives have been considered in order to avoid storing the plain password in datastore: RPC, post-update,
and transparent encryption. They are briefly described below.

The best alternative is transparent encryption, but in Carbon time-frame is not feasible.

The post-update alternative does not actually solve the limitation.

The RPC alternative is feasible in Carbon time-frame but, given that currently BgpConfigurator thrift service is
not secured, to add an RPC does not pull its weight.

RPC encryption

A new RPC add-neighbor(address, as-number[, tcp-md5-signature-password]) is in charge
of create neighbors elements. The password is salted and encrypted with aaa-encryption-service. Both

404 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

the salt and the encrypted password are stored in the neighbors element.

Post-update encryption

The neighbors element contains both a plain-password leaf and a encrypted-password-with-salt
leaf. The listener BgpConfigurationManager.NeighborsReactor is in charge of encrypt and remove the
plain-password leaf when it is present (and the encrypted one is not).

This alternative does not really solve the limitation because during a brief period the password is stored in plain.

Transparent encryption

A plain value is provided in REST write operations but it is automagically encrypted before it reaches MD-SAL. Read
operations never decrypts the encrypted values.

This alternative impacts at least aaa, yangtools, and netconf projects. It can not possibly be done in Carbon.

Usage

Features to Install

odl-netvirt-openstack

REST API

The RESTful API for neighbors creation (/restconf/config/ebgp:bgp/neighbors/{address}) will be
enhanced to accept an additional tcp-md5-signature-password attribute:

{ "neighbors": {
"address": "192.168.50.2",
"remote-as": "2791",
"tcp-md5-signature-password": "password"

}}

CLI

A new option --tcp-md5-password will be added to commands odl:configure-bgp and odl:bgp-nbr.

opendaylight-user@root> odl:configure-bgp -op add-neighbor --ip 192.168.50.2 --as-num
→˓2791 --tcp-md5-password password
opendaylight-user@root> odl:bgp-nbr --ip-address 192.168.50.2 --as-number 2791 --tcp-
→˓md5-password password add

Implementation

Assignee(s)

Primary assignee: Jose-Santos Pulido, JoseSantos, jose.santos.pulido.garcia@ericsson.com

1.2. Getting Started Guide 405

mailto:jose.santos.pulido.garcia@ericsson.com

OpenDaylight Documentation Documentation, Release Carbon

Other contributors: TBD

Work Items

• https://trello.com/c/87MAFjRf

1. Spec

2. ebgp.yang

3. BgpConfigurator thrift service (both idl and client)

4. BgpConfigurationManager.NeighborsReactor

5. ConfigureBgpCli

Dependencies

Internal

No internal dependencies are added or removed.

External

To enable TCP MD5 Signature Option [RFC2385] in a BGP the following conditions need to be met:

• BgpConfigurator thrift service provider (e.g. Zebra Remote Procedure Call [ZRPC]) must sup-
port the new function setPeerSecret.

• BGP’s TCP stack must support TCP MD5 Signature Option (e.g. in linux the kernel option CON-
FIG_TCP_MD5SIG must be set).

Testing

Unit Tests

Currently bgpmanager has no unit tests related to configuration.

Integration Tests

Currently bgpmanager has no integration tests.

CSIT

Currently there is no CSIT test exercising bgpmanager.

Documentation Impact

Currently there is no documentation related to bgpmanager.

406 Chapter 1. Content for OpenDaylight Users

https://trello.com/c/87MAFjRf

OpenDaylight Documentation Documentation, Release Carbon

References

Table of Contents

• Support of VXLAN based L2 connectivity across Datacenters

– Problem description

* In scope

* Out of scope

* Use Cases

· Datacenter access from another Datacenter over WAN via respective DC-Gateways (L2 DCI)

– Proposed change

* Pipeline changes

· INTRA DC

· Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

· Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and
same VPN

· Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

· Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

· INTER DC

· Intra subnet Traffic from DC-Gateway to Local DPN

· Intra subnet Traffic from Local DPN to DC-Gateway

· Inter subnet Traffic from Local DPN to DC-Gateway (Symmetric IRB)

· Inter subnet Traffic from DC-Gateway to Local DPN (Symmetric IRB)

· Inter subnet Traffic from Local DPN to DC-Gateway (ASymmetric IRB)

· Intra subnet Traffic from DC-Gateway to Local DPN (ASymmetric IRB)

· ARP Pipeline changes

· Local DPN: VMs on the same subnet, same DPN

· Intra Subnet, Local DPN: VMs on the same subnet, on remote DC

* Yang changes

· ODL-L3VPN YANG changes

· ODL-FIB YANG changes

· NEUTRONVPN YANG changes

· ELAN YANG changes

* Solution considerations

· Proposed change in Openstack Neutron BGPVPN Driver

· Proposed change in BGP Quagga Stack

1.2. Getting Started Guide 407

OpenDaylight Documentation Documentation, Release Carbon

· Proposed change in OpenDaylight-specific features

· Reboot Scenarios

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Support of VXLAN based L2 connectivity across Datacenters

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT2

Enable realization of L2 connectivity over VXLAN tunnels using L2 BGPVPNs, internally taking advantage of EVPN
as the BGP Control Plane mechanism.

Problem description

OpenDaylight NetVirt service today supports L3VPN connectivity over VXLAN tunnels. L2DCI communication is
not possible so far.

This spec attempts to enhance the BGPVPN service in NetVirt to embrace inter-DC L2 connectivity over external
VXLAN tunnels.

408 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT2

OpenDaylight Documentation Documentation, Release Carbon

In scope

The scope primarily includes providing ability to support intra-subnet connectivity across DataCenters over VXLAN
tunnels using BGP EVPN with type L2.

When we mention that we are using EVPN BGP Control plane, this spec proposes using the RouteType 2 as the
primary means to provision the control plane to enable inter-DC connectivity over external VXLAN tunnels.

With this inplace we will be able to support the following.

• Intra-subnet connectivity across dataCenters over VXLAN tunnels.

The following are already supported as part of the other spec(RT5) and will continue to function.

• Intra-subnet connectivity within a DataCenter over VXLAN tunnels.

• Inter-subnet connectivity within a DataCenter over VXLAN tunnels.

• Inter-subnet connectivity across dataCenters over VXLAN tunnels.

Out of scope

Use Cases

The following high level use-cases will be realized by the implementation of this Spec.

Datacenter access from another Datacenter over WAN via respective DC-Gateways (L2 DCI)

This use-case involves providing intra-subnet connectivity between two DataCenters. Tenant VMs in one datacenter
will be able to communicate with tenant VMs on the other datacenter provided they are part of the same BGP EVPN
and they are on same subnets.

The dataplane between the tenant VMs themselves and between the tenant VMs towards the DC-Gateway will be over
VXLAN Tunnels.

The dataplane between the DC-Gateway to its other WAN-based BGP Peers is transparent to this spec. It is usually
MPLS-based EPVPN.

The BGP Control plane between the ODL Controller and the DC-Gateway will be via EVPN RouteType 2 as defined
in EVPN_RT2.

The control plane between the DC-Gateway and it other BGP Peers in the WAN is transparent to this spec, but can be
EVPN IP-MPLS.

In this use-case:

1. We will have only a single DCGW for WAN connectivity

2. MAC IP prefix exchange between ODL controller and DC-GW (iBGP) using EVPN RT2

3. WAN control plane may use EVPN IP-MPLS for route exchange.

4. On the DC-Gateway, the VRF instance will be configured with two sets of import/export targets. One set of
import/export route targets belong to EVPN inside DataCenter (realized using EVPN RT2) and the second set
of import/export route target belongs to WAN control plane.

5. EVPN single homing to be used in all RT2 exchanges inside the DataCenter i.e., ESI=0 for all prefixes sent from
DataCenter to the DC-Gateway.

1.2. Getting Started Guide 409

OpenDaylight Documentation Documentation, Release Carbon

Proposed change

The following components of an Openstack-ODL-based solution need to be enhanced to provide intra-subnet and inter-
subnet connectivity across DCs using EVPN MAC IP Advertisement (Route Type 2) mechanism (refer EVPN_RT2):

• Openstack Neutron BGPVPN Driver

• OpenDaylight Controller (NetVirt)

• BGP Quagga Stack to support EVPN with RouteType 2 NLRI

• DC-Gateway BGP Neighbour that supports EVPN with RouteType 2 NLRI

The changes required in Openstack Neutron BGPVPN Driver and BGP Quagga Stack are captured in the Solution
considerations section down below.

Pipeline changes

INTRA DC

Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same
VPN

There are no explicit pipeline changes for this use-case.

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case.

INTER DC

Intra subnet Traffic from DC-Gateway to Local DPN

Classifier table (0) =>
Dispatcher table (17) match: tunnel-type=vxlan =>
L2VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (24) => match tunnel-id=l2vni, set
elan-tag

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set
reg6=vm-lport-tag =>
Egress table (220) match: reg6=vm-lport-tag output to vm port

410 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Intra subnet Traffic from Local DPN to DC-Gateway

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) =>
Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>
ELAN base table (48) =>
ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>
ELAN DMAC table (51) match:
elan-tag=vxlan-net-tag,dst-mac=external-vm-mac set
tun-id=vxlan-net-tag group=next-hop-group

Next Hop Group bucket0 :set reg6=tunnel-lport-tag bucket1 :set
reg6=tunnel2-lport-tag

Egress table (220) match: reg6=tunnel2-lport-tag output to tunnel2

Inter subnet Traffic from Local DPN to DC-Gateway (Symmetric IRB)

Classifier Table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set
tun-id=l3vni output to nexthopgroup =>
NextHopGroup: set-eth-dst router-gw-vm, reg6=tunnel-lport-tag =>
Lport Egress Table (220) Output to tunnel port

Inter subnet Traffic from DC-Gateway to Local DPN (Symmetric IRB)

Classifier table (0) =>
Dispatcher table (17) match: tunnel-type=vxlan =>
L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (23) => match tunnel-id=l3vni, set
l3vpn-id =>
L3 Gateway MAC Table (19) => match dst-mac=vpn-subnet-gateway-mac-address =>
FIB table (21) match: l3vpn-tag=l3vpn-id,dst-ip=vm2-ip set
reg6=vm-lport-tag goto=local-nexthop-group =>
local nexthop group set dst-mac=vm2-mac table=220 =>
Egress table (220) match: reg6=vm-lport-tag output to vm port

Inter subnet Traffic from Local DPN to DC-Gateway (ASymmetric IRB)

Classifier Table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set
tun-id=l2vni output to nexthopgroup =>
NextHopGroup: set-eth-dst dst-vm-mac, reg6=tunnel-lport-tag =>

1.2. Getting Started Guide 411

OpenDaylight Documentation Documentation, Release Carbon

Lport Egress Table (220) Output to tunnel port

Intra subnet Traffic from DC-Gateway to Local DPN (ASymmetric IRB)

Classifier table (0) =>
Dispatcher table (17) match: tunnel-type=vxlan =>
L2VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (24) => match tunnel-id=l2vni, set
elan-tag

ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set
reg6=vm-lport-tag =>
Egress table (220) match: reg6=vm-lport-tag output to vm port

ARP Pipeline changes

Local DPN: VMs on the same subnet, same DPN

a. Introducing a new Table aka ELAN_ARP_SERVICE_TABLE (Table 81). This table will be the first table in elan
pipeline.

Classifier table (0) =>
Dispatcher table (17) elan service: set elan-id=vxlan-net-tag =>
Arp Service table (81) => match: arp-op=req, dst-ip=vm-ip,
ela-id=vxlan-net-tag inline arp reply

Intra Subnet, Local DPN: VMs on the same subnet, on remote DC

Classifier table (0) =>
Dispatcher table (17) elan service: set elan-id=vxlan-net-tag =>
Arp Service table (81) => match: arp-op=req, dst-ip=vm-ip,
ela-id=vxlan-net-tag inline arp reply

Yang changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang , odl-fib.yang and neutronvpn.yang to
start supporting EVPN functionality.

ODL-L3VPN YANG changes

A new container evpn-rd-to-networks is added This holds the rd to networks mapping This will be useful to extract in
which elan the received RT2 route can be injected into.

Listing 1.26: odl-l3vpn.yang

container evpn-rd-to-networks {
config false;
description "Holds the networks to which given evpn is attached to";
list evpn-rd-to-network {

key rd;
leaf rd {

412 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

type string;
}
list evpn-networks {
key network-id;
leaf network-id {

type string;
}
}

}
}

ODL-FIB YANG changes

A new field macVrfEntries is added to the container fibEntries This holds the RT2 routes received for the given
rd

Listing 1.27: odl-fib.yang

grouping vrfEntryBase {
list vrfEntry{

key "destPrefix";
leaf destPrefix {

type string;
mandatory true;

}
leaf origin {

type string;
mandatory true;

}
leaf encap-type {

type enumeration {
enum mplsgre {

value "0";
description "MPLSOverGRE";

}
enum vxlan {

value "1";
description “VNI";

}
}
default "mplsgre";

}
leaf l3vni {

type uint32;
}
list route-paths {

key "nexthop-address";
leaf nexthop-address {

type string;
}
leaf label {

type uint32;
}
leaf gateway_mac_address {

type string;
}

1.2. Getting Started Guide 413

OpenDaylight Documentation Documentation, Release Carbon

}
}

}

grouping vrfEntries{
list vrfEntry{

key "destPrefix";
uses vrfEntryBase;

}
}

grouping macVrfEntries{
list MacVrfEntry {

key "mac_address";
uses vrfEntryBase;
leaf l2vni {

type uint32;
}

}
}

container fibEntries {
config true;
list vrfTables {

key "routeDistinguisher";
leaf routeDistinguisher {type string;}
uses vrfEntries;
uses macVrfEntries;//new field

}
container ipv4Table{

uses ipv4Entries;
}

}

NEUTRONVPN YANG changes

A new rpc createEVPN is added Existing rpc associateNetworks is reused to attach a network to EVPN assuming
uuid of L3VPN and EVPN does not collide with each other.

Listing 1.28: neutronvpn.yang

rpc createEVPN {
description "Create one or more EVPN(s)";
input {

list evpn {
uses evpn-instance;

}
}
output {

leaf-list response {
type string;
description "Status response for createVPN RPC";

}
}

}

414 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

rpc deleteEVPN{
description "delete EVPNs for specified Id list";
input {

leaf-list id {
type yang:uuid;
description "evpn-id";

}
}
output {

leaf-list response {
type string;
description "Status response for deleteEVPN RPC";

}
}

}

grouping evpn-instance {

leaf id {
mandatory "true";
type yang:uuid;
description "evpn-id";

}

leaf name {
type string;
description "EVPN name";

}

leaf tenant-id {
type yang:uuid;
description "The UUID of the tenant that will own the subnet.";

}

leaf-list route-distinguisher {
type string;
description
"configures a route distinguisher (RD) for the EVPN instance.
Format is ASN:nn or IP-address:nn.";

}

leaf-list import-RT {
type string;
description
"configures a list of import route target.
Format is ASN:nn or IP-address:nn.";

}

leaf-list export-RT{
type string;
description
"configures a list of export route targets.
Format is ASN:nn or IP-address:nn.";

}

leaf l2vni {
type uint32;

}

1.2. Getting Started Guide 415

OpenDaylight Documentation Documentation, Release Carbon

}

ELAN YANG changes

Existing container elan-instances is augmented with evpn information.

A new list external-teps is added to elan container. This captures the broadcast domain of the given net-
work/elan. When the first RT2 route is received from the dc gw, it’s tep ip is added to the elan to which this RT2
route belongs to.

Listing 1.29: elan.yang

augment "/elan:elan-instances/elan:elan-instance" {
ext:augment-identifier "evpn";
leaf evpn-name {

type string;
}
leaf l3vpn-name {

type string;
}

}

container elan-instances {
list elan-instance {

key "elan-instance-name";
leaf elan-instance-name {

type string;
}
//omitted other existing fields
list external-teps {

key tep-ip;
leaf tep-ip {

type inet:ip-address;
}

}
}

}

container elan-interfaces {
list elan-interface {

key "name";
leaf name {

type leafref {
path "/if:interfaces/if:interface/if:name";

}
}
leaf elan-instance-name {

mandatory true;
type string;

}
list static-mac-entries {

key "mac";
leaf mac {

type yang:phys-address;
}
leaf prefix {//new field

416 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

mandatory false;
type inet:ip-address;

}
}

}
}

grouping forwarding-entries {
list mac-entry {

key "mac-address";
leaf mac-address {

type yang:phys-address;
}
leaf interface {

type leafref {
path "/if:interfaces/if:interface/if:name";

}
}
leaf controllerLearnedForwardingEntryTimestamp {
type uint64;

}
leaf isStaticAddress {
type boolean;

}
leaf prefix {//new field
mandatory false;
type inet:ip-address;

}
}

}

Solution considerations

Proposed change in Openstack Neutron BGPVPN Driver

The Openstack Neutron BGPVPN’s ODL driver in Newton release is changed (mitaka release), so that it is able to
relay the configured L2 BGPVPNs, to the OpenDaylight Controller.

The Newton changes for the BGPVPN Driver has merged and is here: https://review.openstack.org/#/c/370547/

Proposed change in BGP Quagga Stack

The BGP Quagga Stack is a component that interfaces with ODL Controller to enable ODL Controller itself to become
a BGP Peer. This BGP Quagga Stack need to be enhanced so that it is able to embrace EVPN with Route Type 5 on
the following two interfaces:

• Thrift Interface where ODL pushes routes to BGP Quagga Stack

• Route exchanges from BGP Quagga Stack to other BGP Neighbors (including DC-GW).

Proposed change in OpenDaylight-specific features

The following components within OpenDaylight Controller needs to be enhanced:

1.2. Getting Started Guide 417

https://review.openstack.org/#/c/370547/

OpenDaylight Documentation Documentation, Release Carbon

• NeutronvpnManager

• VPN Engine (VPN Manager)

• ELAN Manager

• FIB Manager

• BGP Manager

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

• Entire Cluster Reboot

• Leader PL reboot

• Candidate PL reboot

• OVS Datapath reboots

• Multiple PL reboots

• Multiple Cluster reboots

• Multiple reboots of the same OVS Datapath.

• Openstack Controller reboots

Configuration impact

The following parameters have been initially made available as configurable for EVPN. These configurations can be
made via the RESTful interface:

1.Multi-homing-mode – For multi-homing use cases where redundant DCGWs are used ODL can be configured with
‘none’, ‘all-active’ or ‘single-active’ multi-homing mode. Default will be ‘none’.

2.IRB-mode – Depending upon the support on DCGW, ODL can be configured with either ‘Symmetric’ or ‘Asym-
metric’ IRB mode. Default is ‘Symmetric’.

There is another important parameter though it won’t be configurable:

MAC Address Prefix for EVPN – This MAC Address prefix represents the MAC Address prefix that will be hard-
coded and that MACAddress will be used as the gateway mac address if it is not supplied from Openstack. This will
usually be the case when networks are associated to an L3VPN with no gateway port yet configured in Openstack for
such networks.

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

418 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack. This feature doesn’t add any new karaf feature.

REST API

A new rpc is added to create and delete evpn:

{'input': {
'evpn': [

{'name': 'EVPN1',
'export-RT': ['50:2'],
'route-distinguisher': ['50:2'],
'import-RT': ['50:2'],
'id': '4ae8cd92-48ca-49b5-94e1-b2921a260007',
‘l2vni’: ‘200’,
'tenant-id': 'a565b3ed854247f795c0840b0481c699'

}]}}

There is no change in the REST API for associating networks to the EVPN.

On the Openstack-side configuration, the vni_ranges configured in Openstack Neutron ml2_conf.ini should not overlap
with the L3VNI provided in the ODL RESTful API. In an inter-DC case, where both the DCs are managed by two
different Openstack Controller Instances, the workflow will be to do the following:

1. Configure the DC-GW2 facing OSC2 (Openstack) and DC-GW1 facing OSC1 with the same BGP configuration
parameters.

2. On first Openstack Controller (OSC1) create an L3VPN1 with RD1 and L3VNI1

3. On first Openstack Controller (OSC1) create an EVPN1 with RD2 and L2VNI1

4. Create a network Net1 and Associate that Network Net1 to L3VPN1

1.2. Getting Started Guide 419

OpenDaylight Documentation Documentation, Release Carbon

5. Create a network Net1 and Associate that Network Net1 to EVPN1

6. On second Openstack Controller (OSC2) create an L3VPN2 with RD1 with L3VNI1

7. On second Openstack Controller (OSC2) create an EVPN2 with RD2 with L2VNI1

8. Create a network Net2 on OSC2 with same cidr as the first one with a different allocation pool and associate
that Network Net2 to L3VPN2.

9. Associate that Network Net2 to EVPN2.

10. Spin-off VM1 on Net1 in OSC1.

11. Spin-off VM2 on Net2 in OSC2.

12. Now VM1 and VM2 should be able to communicate.

Implementation

Assignee(s)

Primary assignee: Vyshakh Krishnan C H <vyshakh.krishnan.c.h@ericsson.com>

Yugandhar Reddy Kaku <yugandhar.reddy.kaku@ericsson.com>

Riyazahmed D Talikoti <riyazahmed.d.talikoti@ericsson.com>

Other contributors: K.V Suneelu Verma <k.v.suneelu.verma@ericsson.com>

Work Items

Trello card details https://trello.com/c/PysPZscm/150-evpn-evpn-rt2.

Dependencies

Requires a DC-GW that is supporting EVPN RT2 on BGP Control plane.

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

420 Chapter 1. Content for OpenDaylight Users

mailto:vyshakh.krishnan.c.h@ericsson.com
mailto:yugandhar.reddy.kaku@ericsson.com
mailto:riyazahmed.d.talikoti@ericsson.com
mailto:k.v.suneelu.verma@ericsson.com
https://trello.com/c/PysPZscm/150-evpn-evpn-rt2

OpenDaylight Documentation Documentation, Release Carbon

Documentation Impact

This will require changes to User Guide and Developer Guide.

References

[1] EVPN_RT5

[2] Network Virtualization using EVPN

[3] Integrated Routing and Bridging in EVPN

[4] VXLAN DCI using EVPN

[5] BGP MPLS-Based Ethernet VPN

[6] Trello card details

Table of Contents

• Support of VXLAN based connectivity across Datacenters

– Problem description

* In scope

* Out of scope

* Use Cases

· DataCenter access from a WAN-client via DC-Gateway (Single Homing)

· Datacenter access from another Datacenter over WAN via respective DC-Gateways (L3 DCI)

– Proposed change

* Pipeline changes

· INTRA DC

· Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

· Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and
same VPN

· Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

· Inter Subnet, Remote DPN: VMs on two different DPNs, both VMs on different subnet, but
same VPN

· INTER DC

· Intra Subnet

· Inter Subnet

· SNAT pipeline (Access to External Network Access over VXLAN)

· DNAT pipeline (Access from External Network over VXLAN)

* Yang changes

· L3VPN YANG changes

1.2. Getting Started Guide 421

https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03
https://www.ietf.org/id/draft-ietf-bess-evpn-overlay-07.txt
https://tools.ietf.org/html/draft-ietf-bess-evpn-inter-subnet-forwarding-04
https://tools.ietf.org/html/draft-boutros-bess-vxlan-evpn-02
https://tools.ietf.org/html/rfc7432
https://trello.com/c/PysPZscm/150-evpn-evpn-rt2

OpenDaylight Documentation Documentation, Release Carbon

· ODL-L3VPN YANG changes

· ODL-FIB YANG changes

· NEUTRONVPN YANG changes

* Solution considerations

· Proposed change in Openstack Neutron BGPVPN Driver

· Proposed change in BGP Quagga Stack

· Proposed change in OpenDaylight-specific features

· Import Export RT support for EVPN

· SubnetRoute support on EVPN

· NAT Service support for EVPN

· ARP request/response and MIP handling Support for EVPN

· Tunnel state handling Support

· InterVPNLink support for EVPN

· Supporting VLAN Aware VMs (Trunk and SubPorts)

· VM Mobility with RT5

· Reboot Scenarios

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

422 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

– References

Support of VXLAN based connectivity across Datacenters

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT5

Enable realization of L3 connectivity over VXLAN tunnels using L3 BGPVPNs, internally taking advantage of EVPN
as the BGP Control Plane mechanism.

Problem description

OpenDaylight NetVirt service today supports VLAN-based, VXLAN-based connectivity and MPLSOverGRE-based
overlays.

In this VXLAN-based underlay is supported only for traffic within the DataCenter. For all the traffic that need to go
via the DC-Gateway the only supported underlay is MPLSOverGRE.

Though there is a way to provision an external VXLAN tunnel via the ITM service in Genius, the BGPVPN service
in NetVirt does not have the ability to take advantage of such a tunnel to provide inter-DC connectivity.

This spec attempts to enhance the BGPVPN service (runs on top of the current L3 Forwarding service) in NetVirt to
embrace inter-DC L3 connectivity over external VXLAN tunnels.

In scope

The scope primarily includes providing ability to support Inter-subnet connectivity across DataCenters over VXLAN
tunnels by modeling a new type of L3VPN which will realize this connectivity using EVPN BGP Control plane
semantics.

When we mention that we are using EVPN BGP Control plane, this spec proposes using the RouteType 5 explained
in EVPN_RT5 as the primary means to provision the control plane en enable inter-DC connectivity over external
VXLAN tunnels.

This new type of L3VPN will also inclusively support:

• Intra-subnet connectivity within a DataCenter over VXLAN tunnels.

• Inter-subnet connectivity within a DataCenter over VXLAN tunnels.

Out of scope

• Does not cover providing VXLAN connectivity between hypervisors (with OVS Datapath) and Top-Of-Rack
switches that might be positioned within such DataCenters.

• Does not cover providing intra-subnet connectivity across DCs.

Both the points above will be covered by another spec that will be Phase 2 of realizing intra-subnet inter-DC connec-
tivity.

Use Cases

The following high level use-cases will be realized by the implementation of this Spec.

1.2. Getting Started Guide 423

https://git.opendaylight.org/gerrit/#/q/topic:EVPN_RT5
https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03

OpenDaylight Documentation Documentation, Release Carbon

DataCenter access from a WAN-client via DC-Gateway (Single Homing)

This use case involves communication within the DataCenter by tenant VMs and also communication between the
tenant VMs to a remote WAN-based client via DC-Gateway. The dataplane between the tenant VMs themselves and
between the tenant VMs towards the DC-Gateway will be over VXLAN Tunnels.

The dataplane between the DC-Gateway to its other WAN-based BGP Peers is transparent to this spec. It is usually
MPLS-based IPVPN.

The BGP Control plane between the ODL Controller and the DC-Gateway will be via EVPN RouteType 5 as defined
in EVPN_RT5.

The control plane between the DC-Gateway and it other BGP Peers in the WAN is transparent to this spec, but can be
IP-MPLS.

In this use-case:

1. We will have only a single DCGW for WAN connectivity

2. IP prefix exchange between ODL controller and DC-GW (iBGP) using EVPN RT5

3. WAN control plane will use L3VPN IP-MPLS route exchange.

4. On the DC-Gateway, the VRF instance will be configured with two sets of import/export targets. One set of
import/export route targets belong to L3VPN inside DataCenter (realized using EVPN RT5) and the second set
of import/export route target belongs to WAN control plane.

5. EVPN single homing to be used in all RT5 exchanges inside the DataCenter i.e., ESI=0 for all prefixes sent from
DataCenter to the DC-Gateway.

6. Inter AS option B is used at DCGW, route regeneration at DCGW

Datacenter access from another Datacenter over WAN via respective DC-Gateways (L3 DCI)

This use-case involves providing inter-subnet connectivity between two DataCenters. Tenant VMs in one datacenter
will be able to communicate with tenant VMs on the other datacenter provided they are part of the same L3VPN and
they are on different subnets.

Both the Datacenters can be managed by different ODL Controllers, but the L3VPN configured on both ODL Con-
trollers will use identical RDs and RTs.

Proposed change

The following components of an Openstack-ODL-based solution need to be enhanced to provide intra-subnet and inter-
subnet connectivity across DCs using EVPN IP Prefix Advertisement (Route Type 5) mechanism (refer EVPN_RT5):

• Openstack Neutron BGPVPN Driver

• OpenDaylight Controller (NetVirt)

• BGP Quagga Stack to support EVPN with RouteType 5 NLRI

• DC-Gateway BGP Neighbour that supports EVPN with RouteType 5 NLRI

The changes required in Openstack Neutron BGPVPN Driver and BGP Quagga Stack are captured in the Solution
considerations section down below.

424 Chapter 1. Content for OpenDaylight Users

https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03
https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03

OpenDaylight Documentation Documentation, Release Carbon

Pipeline changes

For both the use-cases above, we have put together the required pipeline changes here. For ease of understanding, we
have made subsections that talk about Intra-DC traffic and Inter-DC traffic.

INTRA DC

Intra Subnet, Local DPN: VMs on the same subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case. However the tables that a packet will traverse through is
shown below for understanding purposes.

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) tablemiss: goto_table=17 =>
Lport Dispatcher Table (17) elan service: set elan-id=elan-tag =>
ELAN Source MAC Table (50) match: elan-id=elan-tag, src-mac=source-vm-mac =>
ELAN Destination MAC Table (51) match: elan-id=elan-tag, dst-mac=dst-vm-mac set
output to port-of-dst-vm

Intra Subnet, Remote DPN: VMs on two different DPNs, both VMs on the same subnet and same
VPN

There are no explicit pipeline changes for this use-case. However the tables that a packet will traverse through is
shown below for understanding purposes.

VM sourcing the traffic (Ingress DPN)

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) l3vpn service: tablemiss: goto_table=17 =>
Lport Dispatcher Table (17) elan service: set elan-id=elan-tag =>
ELAN Source MAC Table (50) match: elan-id=elan-tag, src-mac=source-vm-mac =>
ELAN Destination MAC Table (51) match: elan-id=elan-tag, dst-mac=dst-vm-mac set
tun-id=dst-vm-lport-tag, output to vxlan-tun-port

VM receiving the traffic (Egress DPN)

Classifier Table (0) =>
Internal Tunnel Table (36) match: tun-id=lport-tag set reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

1.2. Getting Started Guide 425

OpenDaylight Documentation Documentation, Release Carbon

Inter Subnet, Local DPN: VMs on different subnet, same VPN, same DPN

There are no explicit pipeline changes for this use-case. However the tables that a packet will traverse through is
shown below for understanding purposes.

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to
nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

cookie=0x8000000, table=0, priority=4,in_port=1 actions=write_metadata:0x10000000000/
→˓0xffffff0000000001,goto_table:17
cookie=0x8000001, table=17, priority=5,metadata=0x5000010000000000/0xffffff0000000000
→˓actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, table=19, priority=20,metadata=0x222e0/0xfffffffe,dl_
→˓dst=de:ad:be:ef:00:01 actions=goto_table:21
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.
→˓2 actions=apply_actions(group:150001)

Inter Subnet, Remote DPN: VMs on two different DPNs, both VMs on different subnet, but same VPN

For this use-case there is a change in the remote flow rule to L3 Forward the traffic to the remote VM. The flow-rule
will use the LPortTag as the vxlan-tunnel-id, in addition to setting the destination mac address of the remote destination
vm.

VM sourcing the traffic (Ingress DPN)

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set
eth-dst-mac=dst-vm-mac, tun-id=dst-vm-lport-tag, output to vxlan-tun-port

cookie=0x8000000, table=0, priority=4,in_port=1 actions=write_metadata:0x10000000000/
→˓0xffffff0000000001,goto_table:17
cookie=0x8000001, table=17, priority=5,metadata=0x5000010000000000/0xffffff0000000000
→˓actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, table=19, priority=20,metadata=0x222e0/0xfffffffe,dl_
→˓dst=de:ad:be:ef:00:01 actions=goto_table:21
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.
→˓2 actions=apply_actions(group:150001)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.
→˓3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,
→˓output:2)

426 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

As you can notice 0x2 set in the above flow-rule as tunnel-id is the LPortTag assigned to VM holding IP Address
10.0.0.3.

VM receiving the traffic (Egress DPN)

Classifier Table (0) =>
Internal Tunnel Table (36) match: tun-id=lport-tag set reg6=lport-tag-dst-vm =>
Lport Egress Table (220) Output to dst vm port

cookie=0x8000001, table=0, priority=5,in_port=2 actions=write_metadata:0x40000000001/
→˓0xfffff0000000001,goto_table:36
cookie=0x9000001, table=36, priority=5,tun_id=0x2 actions=load:0x400->NXM_NX_REG6[],
→˓resubmit(,220)

As you notice, 0x2 tunnel-id match in the above flow-rule in INTERNAL_TUNNEL_TABLE (Table 36), is the LPort-
Tag assigned to VM holding IP Address 10.0.0.3.

INTER DC

Intra Subnet

Not supported in this Phase

Inter Subnet

For this use-case we are doing a couple of pipeline changes:

a. Introducing a new Table aka L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (Table 23).
L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE (Table 23) - This table is a new table in the L3VPN
pipeline and will be responsible only to process VXLAN packets coming from External VXLAN tunnels.

The packets coming from External VXLAN Tunnels (note: not Internal VXLAN Tunnels), would be directly punted
to this new table from the CLASSIFIER TABLE (Table 0) itself. Today when multiple services bind to a tunnel port
on GENIUS, the service with highest priority binds directly to Table 0 entry for the tunnel port. So such a service
should make sure to provide a fallback to Dispatcher Table so that subsequent service interested in that tunnel traffic
would be given the chance.

The new table L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE will have flows to match on VXLAN VNIs that
are L3VNIs. On a match, their action is to fill the metadata with the VPNID, so that further tables in the L3VPN
pipeline would be able to continue and operate with the VPNID metadata seamlessly. After filling the meta-
data, the packets are resubmitted from this new table to the L3_GW_MAC_TABLE (Table 19). The TableMiss in
L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE will resubmit the packet to LPORT_DISPATCHER_TABLE to
enable next service if any to process the packet ingressing from the external VXLAN tunnel.

b. For all packets going from VMs within the DC, towards the external gateway device via the External VXLAN
Tunnel, we are setting the VXLAN Tunnel ID to the L3VNI value of VPNInstance to which the VM belongs to.

1.2. Getting Started Guide 427

OpenDaylight Documentation Documentation, Release Carbon

Traffic from DC-Gateway to Local DPN (SYMMETRIC IRB)

Classifier Table (0) =>
L3VNI External Tunnel Demux Table (23) match: tun-id=l3vni set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to
nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

cookie=0x8000001, table=0, priority=5,in_port=9 actions=write_metadata:0x70000000001/
→˓0x1fffff0000000001,goto_table:23
cookie=0x8000001, table=19, priority=20,metadata=0x222e0/0xffffffff,dl_
→˓dst=de:ad:be:ef:00:06 actions=goto_table:21
cookie=0x8000001, table=23, priority=5,tun_id=0x16 actions= write_metadata:0x222e0/
→˓0xfffffffe,resubmit(19)
cookie=0x8000001, table=23, priority=0,resubmit(17)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.
→˓2 actions=apply_actions(group:150001)
cookie=0x8000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.
→˓3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,
→˓output:2)

In the above flow rules, Table 23 is the new L3VNI_EXTERNAL_TUNNEL_DEMUX_TABLE. The in_port=9
reprsents an external VXLAN Tunnel port.

Traffic from Local DPN to DC-Gateway (SYMMETRIC IRB)

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=ext-ip-address set
eth-dst-mac=dst-mac-address, tun-id=l3vni, output to ext-vxlan-tun-port

cookie=0x7000001, table=0, priority=5,in_port=8, actions=write_metadata:0x60000000001/
→˓0x1fffff0000000001,goto_table:17
cookie=0x7000001, table=17, priority=5,metadata=0x60000000001/0x1fffff0000000001
→˓actions=goto_table:19
cookie=0x7000001, table=19, priority=20,metadata=0x222e0/0xffffffff,dl_
→˓dst=de:ad:be:ef:00:06 actions=goto_table:21
cookie=0x7000001, table=23, priority=5,tun_id=0x16 actions= write_metadata:0x222e0/
→˓0xfffffffe,resubmit(19)
cookie=0x7000001, table=23, priority=0,resubmit(17)
cookie=0x7000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.
→˓2 actions=apply_actions(group:150001)
cookie=0x7000003, table=21, priority=42,ip,metadata=0x222e0/0xfffffffe,nw_dst=10.0.0.
→˓3 actions=apply_actions(set_field:fa:16:3e:f8:59:af->eth_dst,set_field:0x2->tun_id,
→˓output:2)

428 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

SNAT pipeline (Access to External Network Access over VXLAN)

SNAT Traffic from Local DPN to External IP (assuming this DPN is NAPT Switch)

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id =>
PSNAT Table (26) match: vpn-id=l3vpn-id =>
Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set
src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,
vpn-id=external-vpn-id,port=ext-port
=>
NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>
L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-entity-ip set
eth-dst=external-entity-mac tun-id=external-l3vni, output to
ext-vxlan-tun-port

SNAT Reverse Traffic from External IP to Local DPN (assuming this DPN is NAPT Switch)

Classifier Table (0) =>
L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set
vpn-id=external-vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id,
dst-mac=external-router-gateway-mac-address =>
Inbound NAPT Table (44) match: vpn-id=external-vpn-id nw-dst=router-gateway-ip
port=ext-port set vpn-id=l3vpn-id, dst-ip=vm-ip

NAPT PFIB Table (47) match: vpn-id=l3vpn-id =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set output to
nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

DNAT pipeline (Access from External Network over VXLAN)

DNAT Traffic from External IP to Local DPN

Classifier Table (0) =>
L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set
vpn-id=external-vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id,
eth-dst=floating-ip-dst-vm-mac-address =>
PDNAT Table (25) match: nw-dst=floating-ip,eth-dst=floating-ip-dst-vm-mac-address
set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>
DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

1.2. Getting Started Guide 429

OpenDaylight Documentation Documentation, Release Carbon

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to
nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

DNAT Reverse Traffic from Local DPN to External IP

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id =>
PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set
ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>
SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set
eth-src=floating-ip-src-vm-mac-address =>
L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-floating-ip set
eth-dst=external-mac-address tun-id=external-l3vni, output to
ext-vxlan-tun-port

DNAT to DNAT Traffic (Intra DC)

1. FIP VM to FIP VM on Different Hypervisor

DPN1:

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id =>
PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set
ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>
SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set
eth-src=floating-ip-src-vm-mac-address =>
L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set
eth-dst=floating-ip-dst-vm-mac-address tun-id=external-l3vni, output to
vxlan-tun-port

DPN2:

Classifier Table (0) =>
Internal Tunnel Table (36) match: tun-id= external-l3vni =>
PDNAT Table (25) match: nw-dst=floating-ip eth-dst=floating-ip-dst-vm-mac-address
set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>
DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>

430 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to
nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

In the above flow rules INTERNAL_TUNNEL_TABLE (table=36) will take the packet to the PDNAT_TABLE (ta-
ble 25) for an exact match with floating-ip and floating-ip-dst-vm-mac-address in PDNAT_TABLE.

In case of a successful floating-ip and floating-ip-dst-vm-mac-address match, PDNAT_TABLE will set IP destination
as VM IP and VPN ID as internal l3 VPN ID then it will pointing to DNAT_TABLE (table=27)

In case of no match, the packet will be redirected to the SNAT pipeline towards the INBOUND_NAPT_TABLE (ta-
ble=44). This is the use-case where DPN2 also acts as the NAPT DPN.

In summary, on an given NAPT switch, if both DNAT and SNAT are configured, the incoming traffic will first
be sent to the PDNAT_TABLE and if there is no FIP and FIP Mac match found, then it will be forwarded
to INBOUND_NAPT_TABLE for SNAT translation. As part of the response, the external-l3vni will be
used as tun_id to reach floating IP VM on DPN1.

2. FIP VM to FIP VM on same Hypervisor

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 FIB Table (21) match: vpn-id=l3vpn-id =>
PSNAT Table (26) match: vpn-id=l3vpn-id nw-src=src-vm-ip set
ip-src=floating-ip-src-vm, vpn-id=external-vpn-id =>
SNAT Table (28) match: vpn-id=external-vpn-id nw-src=floating-ip-src-vm set
eth-src=floating-ip-src-vm-mac-address =>
L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set
eth-dst= floating-ip-dst-vm-mac-address =>
PDNAT Table (25) match: nw-dst=floating-ip eth-dst=floating-ip-dst-vm-mac-address
set ip-dst=dst-vm-ip, vpn-id=l3vpn-id =>
DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to
nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

SNAT to DNAT Traffic (Intra DC)

SNAT Hypervisor:

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id =>
PSNAT Table (26) match: vpn-id=l3vpn-id =>
Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set
src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,

1.2. Getting Started Guide 431

OpenDaylight Documentation Documentation, Release Carbon

vpn-id=external-vpn-id,port=ext-port
=>
NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>
L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=destination-floating-ip set
eth-dst=floating-ip-dst-vm-mac-address tun-id=external-l3vni, output to
vxlan-tun-port

DNAT Hypervisor:

Classifier Table (0) =>
Internal Tunnel Table (36) match: tun-id= external-l3vni =>
PDNAT Table (25) ‘‘match: nw-dst=floating-ip eth-dst= floating-ip-dst-vm-mac-address set ip-dst=dst-vm-ip,
vpn-id=l3vpn-id‘‘=>
DNAT Table (27) match: vpn-id=l3vpn-id,nw-dst=dst-vm-ip =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to
nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

Non-NAPT to NAPT Forward Traffic (Intra DC)

Non-NAPT Hypervisor:

Classifier Table (0) =>
Lport Dispatcher Table (17) l3vpn service: set vpn-id=l3vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=l3vpn-id,
dst-mac=vpn-subnet-gateway-mac-address =>
L3 FIB Table (21) match: vpn-id=l3vpn-id =>
PSNAT Table (26) match: vpn-id=l3vpn-id set tun-id=router-lport-tag,group =>
group: output to NAPT vxlan-tun-port

NAPT Hypervisor:

Classifier Table (0) =>
Internal Tunnel Table (36) match: tun-id=router-lport-tag =>
Outbound NAPT Table (46) match: nw-src=vm-ip,port=int-port set
src-ip=router-gateway-ip,src-mac=external-router-gateway-mac-address,
vpn-id=external-vpn-id,port=ext-port
=>
NAPT PFIB Table (47) match: vpn-id=external-vpn-id =>
L3 FIB Table (21) match: vpn-id=external-vpn-id nw-dst=external-entity-ip set
eth-dst=external-entity-mac tun-id=external-l3vni, output to
ext-vxlan-tun-port

For forwarding the traffic from Non-NAPT to NAPT DPN the tun-id will be setting with “router-lport-tag” which will
be carved out per router.

432 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

NAPT to Non-NAPT Reverse Traffic (Intra DC)

NAPT Hypervisor:

Classifier Table (0) =>
L3VNI External Tunnel Demux Table (23) match: tun-id=external-l3vni set
vpn-id=external-vpn-id =>
L3 Gateway MAC Table (19) match: vpn-id=external-vpn-id,
dst-mac=external-router-gateway-mac-address =>
Inbound NAPT Table (44) match: vpn-id=external-vpn-id nw-dst=router-gateway-ip
port=ext-port set vpn-id=l3vpn-id, dst-ip=vm-ip =>
NAPT PFIB Table (47) match: vpn-id=l3vpn-id =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip-address set
eth-dst-mac=dst-vm-mac, tun-id=dst-vm-lport-tag, output to vxlan-tun-port

Non-NAPT Hypervisor:

Classifier Table (0) =>
Internal Tunnel Table (36) match: tun-id=dst-vm-lport-tag =>
L3 FIB Table (21) match: vpn-id=l3vpn-id, nw-dst=dst-vm-ip set output to
nexthopgroup-dst-vm =>
NextHopGroup-dst-vm: set-eth-dst dst-mac-vm, reg6=dst-vm-lport-tag =>
Lport Egress Table (220) Output to dst vm port

More details of the NAT pipeline changes are in the NAT Service section of this spec.

Yang changes

Changes will be needed in l3vpn.yang , odl-l3vpn.yang , odl-fib.yang and neutronvpn.yang to
start supporting EVPN functionality.

L3VPN YANG changes

A new leaf l3vni and a new leaf type will be added to container vpn-instances

Listing 1.30: l3vpn.yang

leaf type {
description
"The type of the VPN Instance.
ipvpn indicates it is an L3VPN.
evpn indicates it is EVPN”;

type enumeration {
enum ipvpn {
value "0";
description “L3VPN";
}
enum evpn {

1.2. Getting Started Guide 433

OpenDaylight Documentation Documentation, Release Carbon

value "1";
description "EVPN";
}

}
default "ipvpn";

}

leaf l3vni {
description
"The L3 VNI to use for this L3VPN Instance.
If this attribute is non-zero, it indicates
this L3VPN will do L3Forwarding over VXLAN.
If this value is non-zero, and the type field is ‘l2’,
it is an error.
If this value is zero, and the type field is ‘l3’, it is
the legacy L3VPN that will do L3Forwarding
with MPLSoverGRE.
If this value is zero, and the type field is ‘l2’, it
is an EVPN that will provide L2 Connectivity with
Openstack supplied VNI”.

type uint24;
mandatory false;

}

The **type** value comes from Openstack BGPVPN ODL Driver based on what type of
→˓BGPVPN is
orchestrated by the tenant. That same **type** value must be retrieved and stored
→˓into
VPNInstance model above maintained by NeutronvpnManager.

ODL-L3VPN YANG changes

A new leaf l3vni and a new leaf type will be added to container vpn-instance-op-data

Listing 1.31: odl-l3vpn.yang

leaf type {
description
"The type of the VPN Instance.
ipvpn indicates it is an L3VPN.
evpn indicates it is EVPN”;

type enumeration {
enum ipvpn {
value "0";
description “L3VPN";
}
enum evpn {
value "1";
description "EVPN";
}

}
default "ipvpn";

}

434 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

leaf l3vni {
description
"The L3 VNI to use for this L3VPN Instance.
If this attribute is non-zero, it indicates
this L3VPN will do L3Forwarding over VXLAN.
If this value is non-zero, and the type field is ‘l2’,
it is an error.
If this value is zero, and the type field is ‘l3’, it is
the legacy L3VPN that will do L3Forwarding
with MPLSoverGRE.
If this value is zero, and the type field is ‘l2’, it
is an EVPN that will provide L2 Connectivity with
Openstack supplied VNI”.

type uint24;
mandatory false;

}

For every interface in the cloud that is part of an L3VPN which has an L3VNI setup,
→˓we should
extract that L3VNI from the config VPNInstance and use that to both program the flows
→˓as well
as advertise to BGP Neighbour using RouteType 5 BGP Route exchange.
Fundamentally, what we are accomplishing is L3 Connectivity over VXLAN tunnels by
→˓using the
EVPN RT5 mechanism.

ODL-FIB YANG changes

Few new leafs like mac_address , gateway_mac_address , l2vni, l3vni and a leaf encap-type will be added to container
fibEntries

Listing 1.32: odl-fib.yang

leaf encap-type {
description
"This flag indicates how to interpret the existing label field.
A value of mpls indicates that the label will continue to
be considered as an MPLS Label.
A value of vxlan indicates that vni should be used to
advertise to bgp.
type enumeration {

enum mplsgre {
value "0";
description "MPLSOverGRE";

}
enum vxlan {

value "1";
description “VNI";

}
}
default "mplsgre";

}

leaf mac_address {
type string;

1.2. Getting Started Guide 435

OpenDaylight Documentation Documentation, Release Carbon

mandatory false;
}

leaf l3vni {
type uint24;
mandatory false;

}

leaf l2vni {
type uint24;
mandatory false;

}

leaf gateway_mac_address {
type string;
mandatory false;

}
Augment:parent_rd {

type string;
mandatory false;

}

The encaptype indicates whether an MPLSOverGre or VXLAN encapsulation should be used for this route. If the
encapType is MPLSOverGre then the usual label field will carry the MPLS Label to be used in datapath for traffic
to/from this VRFEntry IP prefix.

If the encaptype is VXLAN, the VRFEntry implicitly refers that this route is reachable via a VXLAN tunnel. The
L3VNI will carry the VRF VNI and there will also be an L2VNI which represents the VNI of the network to which
the VRFEntry belongs to.

Based on whether Symmetric IRB (or) Asymmetric IRB is configured to be used by the CSC (see section on Config-
uration Impact below). If Symmetric IRB is configured, then the L3VNI should be used to program the flows rules. If
Asymmetric IRB is configured, then L2VNI should be used in the flow rules.

The mac_address field must be filled for every route in an EVPN. This mac_address field will be used for support
intra-DC communication for both inter-subnet and intra-subnet routing.

The gateway_mac_address must always be filled for every route in an EVPN.[AKMA7] [NV8] This gate-
way_mac_address will be used for all packet exchanges between DC-GW and the DPN in the DC to support L3
based forwarding with Symmetric IRB.

NEUTRONVPN YANG changes

One new leaf l3vni will be added to container grouping vpn-instance

436 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Listing 1.33: odl-fib.yang

leaf l3vni {
type uint32;
mandatory false;

}

Solution considerations

Proposed change in Openstack Neutron BGPVPN Driver

The Openstack Neutron BGPVPN’s ODL driver in Newton release needs to be changed, so that it is able to relay the
configured L2 BGPVPNs, to the OpenDaylight Controller. As of Mitaka release, only L3 BGPVPNs configured in
Openstack are being relayed to the OpenDaylight Controller. So in addition to addressing the ODL BGPVPN Driver
changes in Newton, we will provide a Mitaka based patch that will integrate into Openstack.

The Newton changes for the BGPVPN Driver has merged and is here: https://review.openstack.org/#/c/370547/

Proposed change in BGP Quagga Stack

The BGP Quagga Stack is a component that interfaces with ODL Controller to enable ODL Controller itself to become
a BGP Peer. This BGP Quagga Stack need to be enhanced so that it is able to embrace EVPN with Route Type 5 on
the following two interfaces:

• Thrift Interface where ODL pushes routes to BGP Quagga Stack

• Route exchanges from BGP Quagga Stack to other BGP Neighbors (including DC-GW).

Proposed change in OpenDaylight-specific features

The following components within OpenDaylight Controller needs to be enhanced:

• NeutronvpnManager

• VPN Engine (VPN Manager and VPN Interface Manager)

• FIB Manager

• BGP Manager

• VPN SubnetRoute Handler

• NAT Service

Import Export RT support for EVPN

Currently Import/Export logic for L3VPN uses a LabelRouteInfo structure to build information about imported pre-
fixes using MPLS Label as the key. However, this structure cannot be used for EVPN as the L3VNI will be applicable
for an entire EVPN Instance instead of the MPLS Label. In lieu of LabelRouteInfo, we will maintain an IPPrefixInfo
keyed structure that can be used for facilitating Import/Export of VRFEntries across both EVPNs and L3VPNs.

1.2. Getting Started Guide 437

https://review.openstack.org/#/c/370547/

OpenDaylight Documentation Documentation, Release Carbon

Listing 1.34: odl-fib.yang

list ipprefix-info {

key "prefix, parent-rd"
leaf prefix {

type string;
}

leaf parent-rd {
type string;

}

leaf label {
type uint32;

}

leaf dpn-id {
type uint64;

}

leaf-list next-hop-ip-list {
type string;

}

leaf-list vpn-instance-list {
type string;

}

leaf parent-vpnid {
type uint32;

}

leaf vpn-interface-name {
type string;

}

leaf elan-tag {
type uint32;

}

leaf is-subnet-route {
type boolean;

}

leaf encap-type {
description
"This flag indicates how to interpret the existing label field.
A value of mpls indicates that the l3label should be considered as an MPLS
Label.
A value of vxlan indicates that l3label should be considered as an VNI.
type enumeration {

enum mplsgre {
value "0";
description "MPLSOverGRE";

}
enum vxlan {

value "1";

438 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

description “VNI";
}
default "mplsgre";

}
}

leaf l3vni {
type uint24;
mandatory false;

}

leaf l2vni {
type uint24;
mandatory false;

}

leaf gateway_mac_address {
type string;
mandatory false;

}
}

SubnetRoute support on EVPN

The subnetRoute feature will continue to be supported on EVPN and we will use RT5 to publish subnetRoute entries
with either the router-interface-mac-address if available (or) if not available use the pre-defined hardcoded MAC
Address described in section Configuration Impact. For both ExtraRoutes and MIPs (invisible IPs) discovered via
subnetroute, we will continue to use RT5 to publish those prefixes.[AKMA9] [NV10] On the dataplane, VXLAN
packets from the DC-GW will carry the MAC Address of the gateway-ip for the subnet in the inner DMAC.

NAT Service support for EVPN

However, since external network NAT should continue to be supported on VXLAN, making NAT service work on
L3VPNs that use VXLAN as the tunnel type becomes imperative.

Existing SNAT/DNAT design assumed internetVpn to be using mplsogre as the connectivity from external network
towards DCGW. This needs to be changed such that it can handle even EVPN case with VXLAN connectivity as well.

As of the implementation required for this specification, the workflow will be to create InternetVPN with and associate
a single external network to that is of VXLAN Provider Type. The Internet VPN itself will be an L3VPN that will be
created via the ODL RESTful API and during creation an L3VNI parameter will be supplied to enable this L3VPN
to operate on a VXLAN dataplane. The L3VNI provided to the Internet VPN can be different from the VXLAN
segmentation ID associated to the external network.

However, it will be a more viable use-case in the community if we mandate in our workflow that both the L3VNI
configured for Internet VPN and the VXLAN segmentation id of the associated external network to the Internet VPN
be the same. NAT service can use vpninstance-op-data model to classify the DCGW connectivity for internetVpn.

For the Pipeline changes for NAT Service, please refer to ‘Pipeline changes’ section.

SNAT to start using Router Gateway MAC, in translated entry in table 46 (Outbound SNAT table) and in table 19
(L3_GW_MAC_Table). Presently Router gateway mac is already stored in odl-nat model in External Routers.

DNAT to start using Floating MAC, in table 28 (SNAT table) and in table 19 (L3_GW_MAC Table). Change in
pipeline mainly reverse traffic for SNAT and DNAT so that when packet arrives from DCGW, it goes to 0->38->17-
>19 and based on Vni and MAC matching, take it back to SNAT or DNAT pipelines.

1.2. Getting Started Guide 439

OpenDaylight Documentation Documentation, Release Carbon

Also final Fib Entry pointing to DCGW in forward direction also needs modification where we should start using
VXLAN’s vni, FloatingIPMAC (incase of DNAT) and ExternalGwMacAddress(incase of SNAT) and finally encapsu-
lation type as VXLAN.

For SNAT advertise to BGP happens during external network association to Vpn and during High availability scenarios
where you need to re-advertise the NAPT switch. For DNAT we need to advertise when floating IP is associated to the
VM. For both SNAT and DNAT this IS mandates that we do only RT5 based advertisement. That RT5 advertisement
must carry the external gateway mac address assigned for the respective Router for SNAT case while for DNAT case
the RT5 will carry the floating-ip-mac address.

ARP request/response and MIP handling Support for EVPN

Will not support ARP across DCs, as we donot support intra-subnet inter-DC scenarios.

• For intra-subnet intra-DC scenarios, the ARPs will be serviced by existing ELAN pipeline.

• For inter-subnet intra-DC scenarios, the ARPs will be processed by ARP Responder implementation that is
already pursued in Carbon.

• For inter-subnet inter-DC scenarios, ARP requests won’t be generated by DC-GW. Instead the DC-GW will use
‘gateway mac’ extended attribute MAC Address information and put that directly into DSTMAC field of Inner
MAC Header by the DC-GW for all packets sent to VMs within the DC.

• As quoted, intra-subnet inter-DC scenario is not a supported use-case as per this Implementation Spec.

Tunnel state handling Support

We have to handle both the internal and external tunnel events for L3VPN (with L3VNI) the same way it is handled
for current L3VPN.

InterVPNLink support for EVPN

Not supported as this is not a requirement for this Spec.

Supporting VLAN Aware VMs (Trunk and SubPorts)

Not supported as this is not a requirement for this Spec.

VM Mobility with RT5

We will continue to support cold migration of VMs across hypervisors across L3VPNs as supported already in current
ODL Carbon Release.

Reboot Scenarios

This feature support all the following Reboot Scenarios for EVPN:

• Entire Cluster Reboot

• Leader PL reboot

• Candidate PL reboot

440 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• OVS Datapath reboots

• Multiple PL reboots

• Multiple Cluster reboots

• Multiple reboots of the same OVS Datapath.

• Openstack Controller reboots

Configuration impact

The following parameters have been initially made available as configurable for EVPN. These configurations can be
made via the RESTful interface:

1.Multi-homing-mode – For multi-homing use cases where redundant DCGWs are used ODL can be configured with
‘none’, ‘all-active’ or ‘single-active’ multi-homing mode. Default will be ‘none’.

2.IRB-mode – Depending upon the support on DCGW, ODL can be configured with either ‘Symmetric’ or ‘Asym-
metric’ IRB mode. Default is ‘Symmetric’.

There is another important parameter though it won’t be configurable:

MAC Address Prefix for EVPN – This MAC Address prefix represents the MAC Address prefix that will be hard-
coded and that MACAddress will be used as the gateway mac address if it is not supplied from Openstack. This will
usually be the case when networks are associated to an L3VPN with no gateway port yet configured in Openstack for
such networks.

Clustering considerations

The feature should operate in ODL Clustered environment reliably.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

Not covered by this Design Document.

Targeted Release

Carbon.

Alternatives

Alternatives considered and why they were not selected.

1.2. Getting Started Guide 441

OpenDaylight Documentation Documentation, Release Carbon

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack. This feature doesn’t add any new karaf feature.

REST API

The creational RESTful API for the L3VPN will be enhanced to accept the L3VNI as an additional attribute as in the
below request format:

{'input': {
'l3vpn': [

{'name': 'L3VPN2',
'export-RT': ['50:2'],
'route-distinguisher': ['50:2'],
'import-RT': ['50:2'],
'id': '4ae8cd92-48ca-49b5-94e1-b2921a260007',
‘l3vni’: ‘200’,
'tenant-id': 'a565b3ed854247f795c0840b0481c699'

}]}}

There is no change in the REST API for associating networks, associating routers (or) deleting the L3VPN.

On the Openstack-side configuration, the vni_ranges configured in Openstack Neutron ml2_conf.ini should not overlap
with the L3VNI provided in the ODL RESTful API. In an inter-DC case, where both the DCs are managed by two
different Openstack Controller Instances, the workflow will be to do the following:

1. Configure the DC-GW2 facing OSC2 and DC-GW1 facing OSC1 with the same BGP configuration parameters.

2. On first Openstack Controller (OSC1) create an L3VPN1 with RD1 and L3VNI1

3. Create a network Net1 and Associate that Network Net1 to L3VPN1

4. On second Openstack Controller (OSC2) create an L3VPN2 with RD1 with L3VNI2

5. Create a network Net2 on OSC2 and associate that Network Net2 to L3VPN2.

6. Spin-off VM1 on Net1 in OSC1.

7. Spin-off VM2 on Net2 in OSC2.

8. Now VM1 and VM2 should be able to communicate.

Implementation

Assignee(s)

Primary assignee: Kiran N Upadhyaya (kiran.n.upadhyaya@ericsson.com)

Sumanth MS (sumanth.ms@ericsson.com)

Basavaraju Chickmath (basavaraju.chickmath@ericsson.com)

Other contributors: Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

442 Chapter 1. Content for OpenDaylight Users

mailto:kiran.n.upadhyaya@ericsson.com
mailto:sumanth.ms@ericsson.com
mailto:basavaraju.chickmath@ericsson.com
mailto:n.vivekanandan@ericsson.com

OpenDaylight Documentation Documentation, Release Carbon

Work Items

The Trello cards have already been raised for this feature under the EVPN_RT5.

Here is the link for the Trello Card: https://trello.com/c/Tfpr3ezF/33-evpn-evpn-rt5

New tasks into this will be added to cover Java UT and CSIT.

Dependencies

Requires a DC-GW that is supporting EVPN RT5 on BGP Control plane.

Testing

Capture details of testing that will need to be added.

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

CSIT will be enhanced to cover this feature by providing new CSIT tests.

Documentation Impact

This will require changes to User Guide and Developer Guide.

User Guide will need to add information on how OpenDaylight can be used to deploy L3 BGPVPNs and enable
communication across datacenters between virtual endpoints in such L3 BGPVPN.

Developer Guide will capture the ODL L3VPN API changes to enable management of an L3VPN that can use VXLAN
overlay to enable communication across datacenters.

References

[1] EVPN_RT5

[2] Network Virtualization using EVPN

[3] Integrated Routing and Bridging in EVPN

[4] VXLAN DCI using EVPN

[5] BGP MPLS-Based Ethernet VPN

• http://docs.opendaylight.org/en/latest/documentation.html

1.2. Getting Started Guide 443

https://trello.com/c/Tfpr3ezF/33-evpn-evpn-rt5
https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03
https://www.ietf.org/id/draft-ietf-bess-evpn-overlay-07.txt
https://tools.ietf.org/html/draft-ietf-bess-evpn-inter-subnet-forwarding-04
https://tools.ietf.org/html/draft-boutros-bess-vxlan-evpn-02
https://tools.ietf.org/html/rfc7432
http://docs.opendaylight.org/en/latest/documentation.html

OpenDaylight Documentation Documentation, Release Carbon

• https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

Temporary Source MAC Learning

https://git.opendaylight.org/gerrit/#/q/topic:temp-smac-learning

Temporary source MAC learning introduces two new tables to the ELAN service, for OVS-based source MAC learning
using a learn action, to reduce a large scale of packets punted to the controller for an unlearned source MAC.

Problem description

Currently any packet originating from an unknown source MAC address is punted to the controller from the ELAN
service (L2 SMAC table 50).

This behavior continues for each packet from this source MAC until ODL properly processes this packet and adds an
explicit source MAC rule to this table.

During the time that is required to punt a packet, process it by the ODL and create an appropriate flow, it is not
necessary to punt any other packet from this source MAC, as it causes an unnecessary load.

Use Cases

Any L2 traffic from unknown source MACs passing through the ELAN service.

Proposed change

A preliminary logic will be added prior to the SMAC learning table, that will use OpenFlow learn action to add a
temporary rule for each source MAC after the first packet is punted.

Pipeline changes

Two new tables will be introduced to the ELAN service:

Table 48 for resubmitting to tables 49 and 50 (trick required to use the learned flows, similar to the ACL
implementation).
Table 49 for setting a register value to mark that this SMAC was already punted to the ODL for learning. The flows
in this table will be generated automatically by OVS.
Table 50 will be modified, with a new flow, which has a lower priority than the existing known SMAC flows but a
higher priority than the default flow. This flow passes packets marked with the register directly to the DMAC table 51
without punting to the controller, as it is already being processed. In addition, the default flow that punts packets to
the controller, will also have a new learn action, temporarily adding a flow matching this source MAC to table 49.

Example of flows after change:

cookie=0x8040000, duration=1575.755s, table=17, n_packets=7865, n_
→˓bytes=1451576, priority=6,metadata=0x6000020000000000/0xffffff0000000000
→˓actions=write_metadata:0x7000021389000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=1129.530s, table=48, n_packets=4149, n_
→˓bytes=729778, priority=0 actions=resubmit(,49),resubmit(,50)

444 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/#/q/topic:temp-smac-learning

OpenDaylight Documentation Documentation, Release Carbon

cookie=0x8600000, duration=6.875s, table=49, n_packets=0, n_bytes=0, hard_
→˓timeout=60, priority=0,dl_src=fa:16:3e:2f:73:61 actions=load:0x1->NXM_NX_
→˓REG4[0..7]
cookie=0x8051389, duration=7.078s, table=50, n_packets=0, n_bytes=0,
→˓priority=20,metadata=0x21389000000/0xfffffffff000000,dl_
→˓src=fa:16:3e:2f:73:61 actions=goto_table:51
cookie=0x8050000, duration=440.925s, table=50, n_packets=49, n_bytes=8030,
→˓priority=10,reg4=0x1 actions=goto_table:51
cookie=0x8050000, duration=124.209s, table=50, n_packets=68, n_bytes=15193,
→˓priority=0 actions=CONTROLLER:65535,learn(table=49,hard_timeout=60,
→˓priority=0,cookie=0x8600000,NXM_OF_ETH_SRC[],load:0x1->NXM_NX_REG4[0..7]),
→˓goto_table:51

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

This change should substantially reduce the packet in load from SMAC learning, resulting in a reduced load of the
ODL in high performance traffic scenarios.

Targeted Release

Due to scale and performance criticality, and the low risk of this feature, suggest to target this functionality for Boron.

Alternatives

None.

1.2. Getting Started Guide 445

OpenDaylight Documentation Documentation, Release Carbon

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other contributors.

Primary assignee: Olga Schukin (olga.schukin@hpe.com)

Other contributors: Alon Kochba (alonko@hpe.com)

Work Items

N/A.

Dependencies

No new dependencies. Learn action is already in use in netvirt pipeline and has been available in OVS since early
versions. However this is a non-standard OpenFlow feature.

Testing

Existing source MAC learning functionality should be verified.

Unit Tests

N/A.

Integration Tests

N/A.

446 Chapter 1. Content for OpenDaylight Users

mailto:olga.schukin@hpe.com
mailto:alonko@hpe.com

OpenDaylight Documentation Documentation, Release Carbon

CSIT

N/A.

Documentation Impact

Pipeline documentation should be updated accordingly to reflect the changes to the ELAN service.

Table of Contents

• Enhancement to VLAN Provider Network Support

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

1.2. Getting Started Guide 447

OpenDaylight Documentation Documentation, Release Carbon

Enhancement to VLAN Provider Network Support

https://git.opendaylight.org/gerrit/#/q/topic:vlan-provider-network

This feature aims to enhance the support for VLAN provider networks that are not of type external.As part of this
enhancement, ELAN pipeline processing for the network will be done on the switch only if there is at least one VM
port in the network on the switch. The behavior of VLAN provider networks of type external and flat networks will
remain unchanged as of now. The optimization for external network is out of scope of this spec and will be handled as
part of future releases.

Problem description

Current ODL implementation supports all configured VLAN segments corresponding to VLAN provider networks on a
particular patch port on all Open vSwitch which are part of the network. This could have adverse performance impacts
because every provider patch port will receive and processes broadcast traffic for all configured VLAN segments even
in cases when the switch doesn’t have a VM port in the network. Furthermore, for unknown SMACs it leads to
unnecessary punts from ELAN pipeline to controller for source MAC learning from all the switches.

Use Cases

L2 forwarding between OVS switches using provider type VLAN over L2 segment of the underlay fabric

Proposed change

Instead of creating the VLAN member interface on the patch port at the time of network creation, VLAN member
interface creation will be deferred until a VM port comes up in the switch in the VLAN provider network. Switch
pipeline will not process broadcast traffic on this switch in a VLAN provider network until VM port is added to the
network. This will be applicable to VLAN provider network without external router attribute set.

Elan service binding will also be done at the time of VLAN member interface creation. Since many neutron ports on
same switch can belong to a single VLAN provider network, the flow rule should be created only once when first VM
comes up and should be deleted when there are no more neutron ports in the switch for the VLAN provider network.

Pipeline changes

None.

Yang changes

elan:elan-instances container will be enhanced with information whether an external router is attached to
VLAN provider network.

Listing 1.35: elan.yang

container elan-instances {
description

"elan instances configuration parameters. Elan instances support both the
→˓VLAN and VNI based elans.";

list elan-instance {

448 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:vlan-provider-network

OpenDaylight Documentation Documentation, Release Carbon

max-elements "unbounded";
min-elements "0";
key "elan-instance-name";
description

"Specifies the name of the elan instance. It is a string of 1 to 31
case-sensitive characters.";

leaf elan-instance-name {
type string;
description "The name of the elan-instance.";

}
...

leaf external {
description "indicates whether the network has external router attached

→˓to it";
type boolean;
default "false";

}
}

}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

N.A.

Security considerations

None.

Scale and Performance Impact

Performance will improve because of the following:

1. Switch will drop packets if it doesn’t have a VM port in the VLAN on which packet is received.

2. Unnecessary punts to the controller from ELAN pipeline for source mac learning will be prevented.

Targeted Release

Carbon.

1.2. Getting Started Guide 449

OpenDaylight Documentation Documentation, Release Carbon

Alternatives

N.A.

Usage

Features to Install

This feature can be used by installing odl-netvirt-openstack. This feature doesn’t add any new karaf feature.

REST API

CLI

Implementation

Assignee(s)

Primary assignee:

• Ravindra Nath Thakur (ravindra.nath.thakur@ericsson.com)

• Naveen Kumar Verma (naveen.kumar.verma@ericsson.com)

Other contributors:

• Ravi Sundareswaran (ravi.sundareswaran@ericsson.com)

Work Items

N.A.

Dependencies

This doesn’t add any new dependencies.

Testing

Capture details of testing that will need to be added.

450 Chapter 1. Content for OpenDaylight Users

mailto:ravindra.nath.thakur@ericsson.com
mailto:naveen.kumar.verma@ericsson.com
mailto:ravi.sundareswaran@ericsson.com

OpenDaylight Documentation Documentation, Release Carbon

Unit Tests

Integration Tests

CSIT

Documentation Impact

This feature will not require any change in User Guide.

References

[1] https://trello.com/c/A6Km6J3D/110-flat-and-vlan-network-type

Table of Contents

• VNI based L2 switching, L3 forwarding and NATing

– Problem description

* In Scope

* Out of Scope

* Use Cases

· L2 switching use cases

· L3 forwarding use cases

· NAT use cases

– Proposed change

* Pipeline changes

· L2 Switching

· Unicast

· Within hypervisor

· Across hypervisors

· Broadcast

· Across hypervisors

· L3 Forwarding

· Between VMs on a single OVS

· Between VMs on two different OVS

· VM sourcing the traffic (Ingress OVS)

· VM receiving the traffic (Egress OVS)

· NAT Service

· Inter DC

1.2. Getting Started Guide 451

https://trello.com/c/A6Km6J3D/110-flat-and-vlan-network-type

OpenDaylight Documentation Documentation, Release Carbon

· SNAT

· DNAT

· Intra DC

· DNAT to DNAT

· SNAT to DNAT

* YANG changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release(s)

* Known Limitations

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

VNI based L2 switching, L3 forwarding and NATing

https://git.opendaylight.org/gerrit/#/q/topic:vni-based-l2-l3-nat

Important: All gerrit links raised for this feature will have topic name as vni-based-l2-l3-nat

This feature attempts to realize the use of VxLAN VNI (Virtual Network Identifier) for VxLAN tenant traffic flowing
on the cloud data-network. This is applicable to L2 switching, L3 forwarding and NATing for all VxLAN based
provider networks. In doing so, it eliminates the presence of LPort tags, ELAN tags and MPLS labels on
the wire and instead, replaces them with VNIs supplied by the tenant’s OpenStack.

452 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/#/q/topic:vni-based-l2-l3-nat

OpenDaylight Documentation Documentation, Release Carbon

This will be selectively done for the use-cases covered by this spec and hence, its implementation won’t completely
remove the usage of the above entities. The usage of LPort tags and ELAN tags within an OVS datapath (not
on the wire) of the hypervisor will be retained, as eliminating it completely is a large redesign and can be pursued
incrementally later.

This spec is the first step in the direction of enforcing datapath semantics that uses tenant supplied VNI values on
VxLAN Type networks created by tenants in OpenStack Neutron.

Note: The existing L3 BGPVPN control-path and data-path semantics will continue to use L3 labels on the wire as
well as inside the OVS datapaths of the hypervisor to realize both intra-dc and inter-dc connectivity.

Problem description

OpenDaylight NetVirt service today supports the following types of networks:

• Flat

• VLAN

• VxLAN

• GRE

Amongst these, VxLAN-based overlay is supported only for traffic within the DataCenter. External network accesses
over the DC-Gateway are supported via VLAN or GRE type external networks. For rest of the traffic over the DC-
Gateway, the only supported overlay is GRE.

Today, for VxLAN enabled networks by the tenant, the labels are generated by L3 forwarding service and used. Such
labels are re-used for inter-DC use-cases with BGPVPN as well. This does not honor and is not in accordance with
the datapath semantics from an orchestration point of view.

This spec attempts to change the datapath semantics by enforcing the VNIs (unique for every VxLAN enabled
network in the cloud) as dictated by the tenant’s OpenStack configuration for L2 switching, L3 forwarding and
NATing.

This implementation will remove the reliance on using the following (on the wire) within the DataCenter:

• Labels for L3 forwarding

• LPort tags for L2 switching

More specifically, the traffic from source VM will be routed in source OVS by the L3VPN / ELAN pipeline. After
that, the packet will travel as a switched packet in the VxLAN underlay within the DC, containing the VNI in the
VxLAN header instead of MPLS label / LPort tag. In the destination OVS, the packet will be collected and sent to the
destination VM through the existing ELAN pipeline.

In the nodes themselves, the LPort tag will continue to be used when pushing the packet from ELAN / L3VPN pipeline
towards the VM as ACLService continues to use LPort tags.

Simiarly ELAN tags will continue to be used for handling L2 broadcast packets:

• locally generated in the OVS datapath

• remotely received from another OVS datapath via internal VxLAN tunnels

LPort tag uses 8 bits and ELAN tag uses 21 bits in the metadata. The existing use of both in the metadata will remain
unaffected.

1.2. Getting Started Guide 453

OpenDaylight Documentation Documentation, Release Carbon

In Scope

Since VNIs are provisioned only for VxLAN based underlays, this feature has in its scope the use-cases pertaining to
intra-DC connectivity over internal VxLAN tunnels only.

On the cloud data network wire, all the VxLAN traffic for basic L2 switching within a VxLAN network and L3 for-
warding across VxLAN-type networks using routers will use tenant supplied VNI values for such VXLAN networks.

Inter-DC connectivity over external VxLAN tunnels is covered by the EVPN_RT5 spec.

Out of Scope

• Complete removal of use of LPort tags everywhere in ODL: Use of LPort tagswithin the OVS Datapath
of a hypervisor, for streaming traffic to the right virtual endpoint on that hypervisor (note: not on the wire) will
be retained

• Complete removal of use of ELAN tags everywhere in ODL: Use of ELAN tags within the OVS Datapath
to handle local/remote L2 broadcasts (note: not on the wire) will be retained

• Complete removal of use of MPLS labels everywhere in ODL: Use of MPLS labels for realizing an L3
BGPVPN (regardless of type of networks put into such BGPVPN that may include networks of type VxLAN)
both on the wire and within the OVS Datapaths will be retained.

• Addressing or testing IPv6 use-cases

• Intra DC NAT usecase where no explicit Internet VPN is created for VxLAN based external provider networks:
Detailed further in Intra DC subsection in NAT section below.

Complete removal of use of LPort tags, ELAN tags and MPLS labels for VxLAN-type networks has large
scale design/pipeline implications and thus need to be attempted as future initiatives via respective specs.

Use Cases

This feature involves amendments/testing pertaining to the following:

L2 switching use cases

1. L2 Unicast frames exchanged within an OVS datapath

2. L2 Unicast frames exchanged over OVS datapaths that are on different hypervisors

3. L2 Broadcast frames transmitted within an OVS datapath

4. L2 Broadcast frames received from remote OVS datapaths

L3 forwarding use cases

1. Router realized using VNIs for networks attached to a new router (with network having pre-created VMs)

2. Router realized using VNIs for networks attached to a new router (with new VMs booted later on the network)

3. Router updated with one or more extra route(s) to an existing VM.

4. Router updated to remove previously added one/more extra routes.

454 Chapter 1. Content for OpenDaylight Users

https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03

OpenDaylight Documentation Documentation, Release Carbon

NAT use cases

The provider network types for external networks supported today are:

• External VLAN Provider Networks (transparent Internet VPN)

• External Flat Networks (transparent Internet VPN)

• Tenant-orchestrated Internet VPN of type GRE (actually MPLSOverGRE)

Following are the SNAT/DNAT use-cases applicable to the network types listed above:

1. SNAT functionality.

2. DNAT functionality.

3. DNAT to DNAT functionality (Intra DC)

• FIP VM to FIP VM on same hypervisor

• FIP VM to FIP VM on different hypervisors

4. SNAT to DNAT functionality (Intra DC)

• Non-FIP VM to FIP VM on the same NAPT hypervisor

• Non-FIP VM to FIP VM on the same hypervisor, but NAPT on different hypervisor

• Non-FIP VM to FIP VM on different hypervisors (with NAPT on FIP VM hypervisor)

• Non-FIP VM to FIP VM on different hypervisors (with NAPT on Non-FIP VM hypervisor)

Proposed change

The following components within OpenDaylight Controller needs to be enhanced:

• NeutronVPN Manager

• ELAN Manager

• VPN Engine (VPN Manager, VPN Interface Manager and VPN Subnet Route Handler)

• FIB Manager

• NAT Service

Pipeline changes

L2 Switching

Unicast

Within hypervisor

There are no explicit pipeline changes for this use-case.

1.2. Getting Started Guide 455

OpenDaylight Documentation Documentation, Release Carbon

Across hypervisors

• Ingress OVS

Instead of setting the destination LPort tag, destination network VNI will be set in the tun_id field in
L2_DMAC_FILTER_TABLE (table 51) while egressing the packet on the tunnel port.

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=65.484s, table=0, n_packets=23, n_bytes=2016,
→˓priority=4,in_port=6actions=write_metadata:0x30000000000/0xffffff0000000001,
→˓goto_table:17
cookie=0x6900000, duration=63.106s, table=17, n_packets=23, n_bytes=2016,
→˓priority=1,metadata=0x30000000000/0xffffff0000000000 actions=write_
→˓metadata:0x2000030000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=64.135s, table=40, n_packets=4, n_bytes=392,
→˓priority=61010,ip,dl_src=fa:16:3e:86:59:fd,nw_src=12.1.0.4 actions=ct(table=41,
→˓zone=5002)
cookie=0x6900000, duration=5112.542s, table=41, n_packets=21, n_bytes=2058,
→˓priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x8040000, duration=62.125s, table=17, n_packets=15, n_bytes=854,
→˓priority=6,metadata=0x6000030000000000/0xffffff0000000000 actions=write_
→˓metadata:0x700003138a000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=5113.124s, table=48, n_packets=24, n_bytes=3044,
→˓priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x805138a, duration=62.163s, table=50, n_packets=15, n_bytes=854,
→˓priority=20,metadata=0x3138a000000/0xfffffffff000000,dl_src=fa:16:3e:86:59:fd
→˓actions=goto_table:51
cookie=0x803138a, duration=62.163s, table=51, n_packets=6, n_bytes=476,
→˓priority=20,metadata=0x138a000000/0xffff000000,dl_dst=fa:16:3e:31:fb:91
→˓actions=set_field:**0x710**->tun_id,output:1

• Egress OVS

On the egress OVS, for the packets coming in via the internal VxLAN tunnel (OVS - OVS),
INTERNAL_TUNNEL_TABLE currently matches on destination LPort tag for unicast packets. Since the incom-
ing packets will now contain the network VNI in the VxLAN header, the INTERNAL_TUNNEL_TABLE will
match on this VNI, set the ELAN tag in the metadata and forward the packet to L2_DMAC_FILTER_TABLE
so as to reach the destination VM via the ELAN pipeline.

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=5136.996s, table=0, n_packets=12601, n_bytes=899766,
→˓priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,
→˓goto_table:36
cookie=0x9000004, duration=1145.594s, table=36, n_packets=15, n_bytes=476,
→˓priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,
→˓goto_table:51**
cookie=0x803138a, duration=62.163s, table=51, n_packets=9, n_bytes=576,
→˓priority=20,metadata=0x138a000001/0xffff000000,dl_dst=fa:16:3e:86:59:fd
→˓actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160,
→˓priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_
→˓metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392,
→˓priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,
→˓zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862,
→˓priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)

456 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160,
→˓priority=7,reg6=0x70000300actions=output:6

Broadcast

Across hypervisors

The ARP broadcast by the VM will be a (local + remote) broadcast.

For the local broadcast on the VM’s OVS itself, the packet will continue to get flooded to all the VM ports by setting
the destination LPort tag in the local broadcast group. Hence, there are no explicit pipeline changes for when a packet
is transmitted within the source OVS via a local broadcast.

The changes in pipeline for the remote broadcast are illustrated below:

• Ingress OVS

Instead of setting the ELAN tag, network VNI will be set in the tun_id field as part of bucket actions in remote
broadcast group while egressing the packet on the tunnel port.

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=65.484s, table=0, n_packets=23, n_bytes=2016,
→˓priority=4,in_port=6actions=write_metadata:0x30000000000/0xffffff0000000001,
→˓goto_table:17
cookie=0x6900000, duration=63.106s, table=17, n_packets=23, n_bytes=2016,
→˓priority=1,metadata=0x30000000000/0xffffff0000000000 actions=write_
→˓metadata:0x2000030000000000/0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=64.135s, table=40, n_packets=4, n_bytes=392,
→˓priority=61010,ip,dl_src=fa:16:3e:86:59:fd,nw_src=12.1.0.4 actions=ct(table=41,
→˓zone=5002)
cookie=0x6900000, duration=5112.542s, table=41, n_packets=21, n_bytes=2058,
→˓priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x8040000, duration=62.125s, table=17, n_packets=15, n_bytes=854,
→˓priority=6,metadata=0x6000030000000000/0xffffff0000000000 actions=write_
→˓metadata:0x700003138a000000/0xfffffffffffffffe,goto_table:48
cookie=0x8500000, duration=5113.124s, table=48, n_packets=24, n_bytes=3044,
→˓priority=0 actions=resubmit(,49),resubmit(,50)
cookie=0x805138a, duration=62.163s, table=50, n_packets=15, n_bytes=854,
→˓priority=20,metadata=0x3138a000000/0xfffffffff000000,dl_src=fa:16:3e:86:59:fd
→˓actions=goto_table:51
cookie=0x8030000, duration=5112.911s, table=51, n_packets=18, n_bytes=2568,
→˓priority=0 actions=goto_table:52
cookie=0x870138a, duration=62.163s, table=52, n_packets=9, n_bytes=378,
→˓priority=5,metadata=0x138a000000/0xffff000001 actions=write_
→˓actions(group:210004)

group_id=210004,type=all,bucket=actions=group:210003,bucket=actions=set_
→˓field:**0x710**->tun_id,output:1

• Egress OVS

On the egress OVS, for the packets coming in via the internal VxLAN tunnel (OVS - OVS),
INTERNAL_TUNNEL_TABLE currently matches on ELAN tag for broadcast packets. Since the incoming
packets will now contain the network VNI in the VxLAN header, the INTERNAL_TUNNEL_TABLE will match
on this VNI, set the ELAN tag in the metadata and forward the packet to L2_DMAC_FILTER_TABLE to be
broadcasted via the local broadcast groups traversing the ELAN pipeline.

1.2. Getting Started Guide 457

OpenDaylight Documentation Documentation, Release Carbon

The TUNNEL_INGRESS_BIT being set in the CLASSIFIER_TABLE (table 0) ensures that the packet is
always sent to the local broadcast group only and hence, remains within the OVS. This is necessary to avoid
switching loop back to the source OVS.

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=5136.996s, table=0, n_packets=12601, n_bytes=899766,
→˓priority=5,in_port=1,actions=write_metadata:0x10000000001/0xfffff0000000001,
→˓goto_table:36
cookie=0x9000004, duration=1145.594s, table=36, n_packets=15, n_bytes=476,
→˓priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,
→˓goto_table:51**
cookie=0x8030000, duration=5137.609s, table=51, n_packets=9, n_bytes=1293,
→˓priority=0 actions=goto_table:52
cookie=0x870138a, duration=1145.592s, table=52, n_packets=0, n_bytes=0,
→˓priority=5,metadata=0x138a000001/0xffff000001 actions=apply_
→˓actions(group:210003)

group_id=210003,type=all,bucket=actions=set_field:0x4->tun_id,resubmit(,55)

cookie=0x8800004, duration=1145.594s, table=55, n_packets=9, n_bytes=378,
→˓priority=9,tun_id=0x4,actions=load:0x400->NXM_NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160,
→˓priority=6,reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_
→˓metadata:0x7000030000000000/0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392,
→˓priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,
→˓zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862,
→˓priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160,
→˓priority=7,reg6=0x70000300actions=output:6

The ARP response will be a unicast packet, and as indicated above, for unicast packets, there are no explicit pipeline
changes.

L3 Forwarding

Between VMs on a single OVS

There are no explicit pipeline changes for this use-case. The destination LPort tag will continue to be set in the nexthop
group since when The EGRESS_DISPATCHER_TABLE sends the packet to EGRESS_ACL_TABLE, it is used by
the ACL service.

Between VMs on two different OVS

L3 forwarding between VMs on two different hypervisors is asymmetric forwarding since the traffic is routed in the
source OVS datapath while it is switched over the wire and then all the way to the destination VM on the destination
OVS datapath.

VM sourcing the traffic (Ingress OVS)

L3_FIB_TABLE will set the destination network VNI in the tun_id field instead of the MPLS label.

458 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

CLASSIFIER_TABLE => DISPATCHER_TABLE => INGRESS_ACL_TABLE =>
DISPATCHER_TABLE => L3_GW_MAC_TABLE =>
L3_FIB_TABLE (set destination MAC, **set tunnel-ID as destination network VNI**)
=> Output to tunnel port

The modifications in flows and groups on the ingress OVS are illustrated below:

cookie=0x8000000, duration=128.140s, table=0, n_packets=25, n_bytes=2716, priority=4,
→˓in_port=5 actions=write_metadata:0x50000000000/0xffffff0000000001,goto_table:17
cookie=0x8000000, duration=4876.599s, table=17, n_packets=0, n_bytes=0, priority=0,
→˓metadata=0x5000000000000000/0xf000000000000000 actions=write_
→˓metadata:0x6000000000000000/0xf000000000000000,goto_table:80
cookie=0x1030000, duration=4876.563s, table=80, n_packets=0, n_bytes=0, priority=0
→˓actions=resubmit(,17)
cookie=0x6900000, duration=123.870s, table=17, n_packets=25, n_bytes=2716, priority=1,
→˓metadata=0x50000000000/0xffffff0000000000 actions=write_metadata:0x2000050000000000/
→˓0xfffffffffffffffe,goto_table:40
cookie=0x6900000, duration=126.056s, table=40, n_packets=15, n_bytes=1470,
→˓priority=61010,ip,dl_src=fa:16:3e:63:ea:0c,nw_src=10.1.0.4 actions=ct(table=41,
→˓zone=5001)
cookie=0x6900000, duration=4877.057s, table=41, n_packets=17, n_bytes=1666,
→˓priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,17)
cookie=0x6800001, duration=123.485s, table=17, n_packets=28, n_bytes=3584, priority=2,
→˓metadata=0x2000050000000000/0xffffff0000000000 actions=write_
→˓metadata:0x5000050000000000/0xfffffffffffffffe,goto_table:60
cookie=0x6800000, duration=3566.900s, table=60, n_packets=24, n_bytes=2184,
→˓priority=0 actions=resubmit(,17)
cookie=0x8000001, duration=123.456s, table=17, n_packets=17, n_bytes=1554, priority=5,
→˓metadata=0x5000050000000000/0xffffff0000000000 actions=write_
→˓metadata:0x60000500000222e0/0xfffffffffffffffe,goto_table:19
cookie=0x8000009, duration=124.815s, table=19, n_packets=15, n_bytes=1470,
→˓priority=20,metadata=0x222e0/0xfffffffe,dl_dst=fa:16:3e:51:da:ee actions=goto_
→˓table:21
cookie=0x8000003, duration=125.568s, table=21, n_packets=9, n_bytes=882, priority=42,
→˓ip,metadata=0x222e0/0xfffffffe,nw_dst=12.1.0.3 actions=**set_field:0x710->tun_id**,
→˓set_field:fa:16:3e:31:fb:91->eth_dst,output:1

VM receiving the traffic (Egress OVS)

On the egress OVS, for the packets coming in via the VxLAN tunnel, INTERNAL_TUNNEL_TABLE cur-
rently matches on MPLS label and sends it to the nexthop group to be taken to the destination VM via
EGRESS_ACL_TABLE. Since the incoming packets will now contain network VNI in the VxLAN header, the
INTERNAL_TUNNEL_TABLE will match on the VNI, set the ELAN tag in the metadata and forward the packet
to L2_DMAC_FILTER_TABLE, from where it will be taken to the destination VM via the ELAN pipeline.

CLASSIFIER_TABLE => INTERNAL_TUNNEL_TABLE (Match on network VNI, set ELAN tag in the
→˓metadata)
=> L2_DMAC_FILTER_TABLE (Match on destination MAC) => EGRESS_DISPATCHER_TABLE
=> EGRESS_ACL_TABLE => Output to destination VM port

The modifications in flows and groups on the egress OVS are illustrated below:

cookie=0x8000001, duration=4918.647s, table=0, n_packets=12292, n_bytes=877616,
→˓priority=5,in_port=1actions=write_metadata:0x10000000001/0xfffff0000000001,goto_
→˓table:36
cookie=0x9000004, duration=927.245s, table=36, n_packets=8234, n_bytes=52679,
→˓priority=5,**tun_id=0x710,actions=write_metadata:0x138a000001/0xfffffffff000000,
→˓goto_table:51**

1.2. Getting Started Guide 459

OpenDaylight Documentation Documentation, Release Carbon

cookie=0x803138a, duration=62.163s, table=51, n_packets=9, n_bytes=576, priority=20,
→˓metadata=0x138a000001/0xffff000000,dl_dst=fa:16:3e:86:59:fd actions=load:0x300->NXM_
→˓NX_REG6[],resubmit(,220)
cookie=0x6900000, duration=63.122s, table=220, n_packets=9, n_bytes=1160, priority=6,
→˓reg6=0x300actions=load:0x70000300->NXM_NX_REG6[],write_metadata:0x7000030000000000/
→˓0xfffffffffffffffe,goto_table:251
cookie=0x6900000, duration=65.479s, table=251, n_packets=8, n_bytes=392,
→˓priority=61010,ip,dl_dst=fa:16:3e:86:59:fd,nw_dst=12.1.0.4 actions=ct(table=252,
→˓zone=5002)
cookie=0x6900000, duration=5112.299s, table=252, n_packets=19, n_bytes=1862,
→˓priority=62020,ct_state=-new+est-rel-inv+trk actions=resubmit(,220)
cookie=0x8000007, duration=63.123s, table=220, n_packets=8, n_bytes=1160, priority=7,
→˓reg6=0x70000300actions=output:6

NAT Service

For NAT, we need VNIs to be used in two scenarios:

• When packet is forwarded from non-NAPT to NAPT hypervisor (VNI per router)

• Between hypervisors (intra DC) over Internet VPN (VNI per Internet VPN)

Hence, a pool titled opendaylight-vni-ranges, non-overlapping with the OpenStack Neutron vni_ranges con-
figuration, needs to be configured by the OpenDaylight Controller Administrator.

This opendaylight-vni-ranges pool will be used to carve out a unique VNI per router to be then used in the
datapath for traffic forwarding from non-NAPT to NAPT switch for this router.

Similarly, for MPLSOverGRE based external networks, the opendaylight-vni-ranges pool will be used to
carve out a unique VNI per Internet VPN (GRE-provider-type) to be then used in the datapath for traffic forwarding
for SNAT-to-DNAT and DNAT-to-DNAT cases within the DataCenter. Only one external network can be associated
to Internet VPN today and this spec doesn’t attempt to address that limitation.

A NeutronVPN configuration API will be exposed to the administrator to configure the lower and higher limit for this
pool. If the administrator doesn’t configure this explicitly, then the pool will be created with default values of lower
limit set to 70000 and upper limit set to 100000, during the first NAT session configuration.

FIB Manager changes: For external network of type GRE, it is required to use Internet VPN VNI for intra-
DC communication, but we still require MPLS labels to reach SNAT/DNAT VMs from external entities via
MPLSOverGRE. Hence, we will make use of the l3vni attribute added to fibEntries container as part of EVPN_RT5
spec. NAT will populate both label and l3vni values for fibEntries created for floating-ips and external-fixed-ips
with external network of type GRE. This l3vni value will be used while programming remote FIB flow entries (on
all the switches which are part of the same VRF). But still, MPLS label will be used to advertise prefixes and in
L3_LFIB_TABLE taking the packet to INBOUND_NAPT_TABLE and PDNAT_TABLE.

For SNAT/DNAT use-cases, we have following provider network types for External Networks:

1. VLAN - not VNI based

2. Flat - not VNI based

3. VxLAN - VNI based (covered by the EVPN_RT5 spec)

4. GRE - not VNI based (will continue to use MPLS labels)

460 Chapter 1. Content for OpenDaylight Users

https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03
https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03

OpenDaylight Documentation Documentation, Release Carbon

Inter DC

SNAT

• From a VM on a NAPT switch to reach Internet, and reverse traffic reaching back to the VM

There are no explicit pipeline changes.

• From a VM on a non-NAPT switch to reach Internet, and reverse traffic reaching back to the VM

On the non-NAPT switch, PSNAT_TABLE (table 26) will be set with tun_id field as Router Based VNI
allocated from the pool and send to group to reach NAPT switch.

On the NAPT switch, INTERNAL_TUNNEL_TABLE (table 36) will match on the tun_id field which will
be Router Based VNI and send the packet to OUTBOUND_NAPT_TABLE (table 46) for SNAT Translation
and to be taken to Internet.

– Non-NAPT switch

cookie=0x8000006, duration=2797.179s, table=26, n_packets=47, n_bytes=3196,
→˓priority=5,ip,metadata=0x23a50/0xfffffffe actions=**set_field:0x710->tun_
→˓id**,group:202501

group_id=202501,type=all,bucket=actions=output:1

– NAPT switch

cookie=0x8000001, duration=4918.647s, table=0, n_packets=12292, n_
→˓bytes=877616, priority=5,in_port=1,actions=write_metadata:0x10000000001/
→˓0xfffff0000000001,goto_table:36
cookie=0x9000004, duration=927.245s, table=36, n_packets=8234, n_bytes=52679,
→˓priority=10,ip,**tun_id=0x710**,actions=write_metadata:0x23a50/0xfffffffe,
→˓goto_table:46

As part of the response from NAPT switch, the packet will be taken to the Non-NAPT switch after SNAT
reverse translation using destination VMs Network VNI.

DNAT

There is no NAT specific explicit pipeline change for DNAT traffic to DC-gateway.

Intra DC

• VLAN Provider External Networks: VNI is not applicable on the external VLAN Provider network. However,
the Router VNI will be used for datapath traffic from non-NAPT switch to NAPT-switch over the internal
VxLAN tunnel.

• VxLAN Provider External Networks:

– Explicit creation of Internet VPN: An L3VNI, mandatorily falling within the
opendaylight-vni-ranges, will be provided by the Cloud admin (or tenant). This VNI will
be used uniformly for all packet transfer over the VxLAN wire for this Internet VPN (uniformly meaning
all the traffic on Internal or External VXLAN Tunnel, except the non-NAPT to NAPT communication).
This usecase is covered by EVPN_RT5 spec

1.2. Getting Started Guide 461

https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03

OpenDaylight Documentation Documentation, Release Carbon

– No explicit creation of Internet VPN: A transparent Internet VPN having UUID same as that of the cor-
responding external network UUID is created implicitly and the VNI configured for this external network
should be used on the VxLAN wire. This usecase is out of scope from the perspective of this spec, and
the same is indicated in Out of Scope section.

• GRE Provider External Networks: Internet VPN VNI will be carved per Internet VPN using
opendaylight-vni-ranges to be used on the wire.

DNAT to DNAT

• FIP VM to FIP VM on different hypervisors

After DNAT translation on the first hypervisor DNAT-OVS-1, the traffic will be sent to the L3_FIB_TABLE
(table=21) in order to reach the floating IP VM on the second hypervisor DNAT-OVS-2. Here, the tun_id
action field will be set as the INTERNET VPN VNI value.

– DNAT-OVS-1

cookie=0x8000003, duration=518.567s, table=21, n_packets=0, n_bytes=0,
→˓priority=42,ip,metadata=0x222e8/0xfffffffe,nw_dst=172.160.0.200
→˓actions=**set_field:0x11178->tun_id**,output:9

– DNAT-OVS-2

cookie=0x9011177, duration=411685.075s, table=36, n_packets=2, n_bytes=196,
→˓priority=**6**,**tun_id=0x11178**actions=resubmit(,25)
cookie=0x9011179, duration=478573.171s, table=36, n_packets=2, n_bytes=140,
→˓priority=5,**tun_id=0x11178**,actions=goto_table:44

cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_
→˓bytes=58064, priority=10,ip,nw_dst=172.160.0.100,**eth_
→˓dst=fa:16:3e:e6:e3:c6** actions=set_field:10.0.0.5->ip_dst,write_
→˓metadata:0x222e0/0xfffffffe,goto_table:27
cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_
→˓bytes=58064, priority=10,ipactions=goto_table:44

First, the INTERNAL_TUNNEL_TABLE (table=36) will take the packet to the PDNAT_TABLE (table 25) for
an exact FIP match in PDNAT_TABLE.

– In case of a successful FIP match, PDNAT_TABLE will further match on floating IP MAC. This is done
as a security prerogative since in DNAT usecases, the packet can land to the hypervisor directly from the
external world. Hence, better to have a second match criteria.

– In case of no match, the packet will be redirected to the SNAT pipeline towards the
INBOUND_NAPT_TABLE (table=44). This is the use-case where DNAT-OVS-2 also acts as the NAPT
switch.

In summary, on an given NAPT switch, if both DNAT and SNAT are configured, the incoming traffic
will first be sent to the PDNAT_TABLE and if there is no FIP match found, then it will be forwarded to
INBOUND_NAPT_TABLE for SNAT translation.

As part of the response, the Internet VPN VNI will be used as tun_id to reach floating IP VM on
DNAT-OVS-1.

• FIP VM to FIP VM on same hypervisor

The pipeline changes will be similar as are for different hypervisors, the only difference being that
INTERNAL_TUNNEL_TABLE will never be hit in this case.

462 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

SNAT to DNAT

• Non-FIP VM to FIP VM on different hypervisors (with NAPT elected as the FIP VM hypervisor)

The packet will be sent to the NAPT hypervisor from non-FIP VM (for SNAT translation) using Router VNI
(similar to as described in SNAT section). As part of the response from the NAPT switch after SNAT reverse
translation, the packet is forwarded to non-FIP VM using destination VM’s Network VNI.

• Non-FIP VM to FIP VM on the same NAPT hypervisor

There are no explicit pipeline changes for this use-case.

• Non-FIP VM to FIP VM on the same hypervisor, but a different hypervisor elected as NAPT switch

– NAPT hypervisor

The packet will be sent to the NAPT hypervisor from non-FIP VM (for SNAT translation) using Router
VNI (similar to as described in SNAT section). On the NAPT switch, the INTERNAL_TUNNEL_TABLE
will match on the Router VNI in the tun_id field and send the packet to OUTBOUND_NAPT_TABLE
for SNAT translation (similar to as described in SNAT section).

cookie=0x8000005, duration=5073.829s, table=36, n_packets=61, n_bytes=4610,
→˓priority=10,ip,**tun_id=0x11170**,actions=write_metadata:0x222e0/0xfffffffe,
→˓goto_table:46

The packet will later be sent back to the FIP VM hypervisor from L3_FIB_TABLE with tun_id field set
as the Internet VPN VNI.

cookie=0x8000003, duration=518.567s, table=21, n_packets=0, n_bytes=0,
→˓priority=42,ip,metadata=0x222e8/0xfffffffe,nw_dst=172.160.0.200
→˓actions=**set_field:0x11178->tun_id**,output:9

– FIP VM hypervisor

On reaching the FIP VM Hypervisor, the packet will be sent for DNAT translation. The
INTERNAL_TUNNEL_TABLE will match on the Internet VPN VNI in the tun_id field and send
the packet to PDNAT_TABLE.

cookie=0x9011177, duration=411685.075s, table=36, n_packets=2, n_bytes=196,
→˓priority=**6**,**tun_id=0x11178**,actions=resubmit(,25)
cookie=0x8000004, duration=408145.805s, table=25, n_packets=600, n_
→˓bytes=58064, priority=10,ip,nw_dst=172.160.0.100,**eth_
→˓dst=fa:16:3e:e6:e3:c6** actions=set_field:10.0.0.5->ip_dst,write_
→˓metadata:0x222e0/0xfffffffe,goto_table:27

Upon FIP VM response, DNAT reverse translation happens and traffic is sent back to the NAPT switch for
SNAT translation. The L3_FIB_TABLE will be set with Internet VPN VNI in the tun_id field.

cookie=0x8000003, duration=95.300s, table=21, n_packets=2, n_bytes=140,
→˓priority=42,ip,metadata=0x222ea/0xfffffffe,nw_dst=172.160.0.3 actions=**set_
→˓field:0x11178->tun_id**,output:5

– NAPT hypervisor

On NAPT hypervisor, the INTERNAL_TUNNEL_TABLE will match on the Internet VPN VNI in
the tun_id field and send the packet to ‘‘ INBOUND_NAPT_TABLE‘‘ for SNAT reverse translation
(external fixed IP to VM IP). The packet will then be sent back to the non-FIP VM using destination VM’s
Network VNI.

1.2. Getting Started Guide 463

OpenDaylight Documentation Documentation, Release Carbon

• Non-FIP VM to FIP VM on different hypervisors (with NAPT elected as the non-FIP VM hypervisor)

After SNAT Translation, Internet VPN VNI will be used to reach FIP VM. On FIP VM hypervisor, the
INTERNAL_TUNNEL_TABLE will take the packet to the PDNAT_TABLE to match on Internet VPN VNI
in the tun_id field for DNAT translation.

Upon response from FIP, DNAT reverse translation happens and uses Internet VPN VNI to reach back to
the non-FIP VM.

YANG changes

• opendaylight-vni-ranges and enforce-openstack-semantics leaf elements will be added to
neutronvpn-config container in neutronvpn-config.yang:

– opendaylight-vni-ranges will be introduced to accept inputs for the VNI range pool from the
configurator via the corresponding exposed REST API. In case this is not defined, the default value defined
in netvirt-neutronvpn-config.xml will be used to create this pool.

– enforce-openstack-semantics will be introduced to have the flexibility to enable or disable
OpenStack semantics in the dataplane for this feature. It will be defaulted to true, meaning these se-
mantics will be enforced by default. In case it is set to false, the dataplane will continue to be programmed
with LPort tags / ELAN tags for switching and with labels for routing use-cases. Once this feature gets
stabilized and the semantics are in place to use VNIs on the wire for BGPVPN based forwarding too, this
config can be permanently removed if deemed fit.

Listing 1.36: neutronvpn-config.yang

container neutronvpn-config {
config true;
...
...
leaf opendaylight-vni-ranges {

type string;
default "70000:99999";

}
leaf enforce-openstack-semantics {

type boolean;
default true;

}
}

• Provider network-type and provider segmentation-ID need to be propagated to FIB Manager to manipulate flows
based on the same. Hence:

– A new grouping network-attributes will be introduced in neutronvpn.yang to hold network
type and segmentation ID. This grouping will replace the leaf-node network-id in subnetmaps MD-
SAL configuration datastore:

Listing 1.37: neutronvpn.yang

grouping network-attributes {
leaf network-id {

type yang:uuid;
description "UUID representing the network";

}
leaf network-type {

type enumeration {
enum "FLAT";

464 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

enum "VLAN";
enum "VXLAN";
enum "GRE";

}
}
leaf segmentation-id {

type uint32;
description "Optional. Isolated segment on the physical network.

If segment-type is vlan, this ID is a vlan identifier.
If segment-type is vxlan, this ID is a vni.
If segment-type is flat/gre, this ID is set to 0";

}
}

container subnetmaps {
...
...
uses network-attributes;

}

– These attributes will be propagated upon addition of a router-interface or addition of a subnet to a BGPVPN
to VPN Manager module via the subnet-added-to-vpn notification modelled in neutronvpn.
yang. Hence, the following node will be added:

Listing 1.38: neutronvpn.yang

notification subnet-added-to-vpn {
description "new subnet added to vpn";
...
...
uses network-attributes;

}

– VpnSubnetRouteHandler will act on these notifications and store these attributes in subnet-op-data
MD-SAL operational datastore as described below. FIB Manager will get to retrieve the subnetID from
the primary adjacency of the concerned VPN interface. This subnetID will be used as the key to retrieve
network-attributes from subnet-op-data datastore.

Listing 1.39: odl-l3vpn.yang

import neutronvpn {
prefix nvpn;
revision-date "2015-06-02";

}

container subnet-op-data {
...
...
uses nvpn:network-attributes;

}

• subnetID and nat-prefix leaf elements will be added to prefix-to-interface container in
odl-l3vpn.yang:

– For NAT use-cases where the VRF entry is not always associated with a VPN interface (eg. for NAT entries
such as floating IP and router-gateway-IPs for external VLAN / flat networks), subnetID leaf element
will be added to make it possible to retrieve the network-attributes.

1.2. Getting Started Guide 465

OpenDaylight Documentation Documentation, Release Carbon

– To distinguish a non-NAT prefix from a NAT prefix, nat-prefix leaf element will be added. This is
a boolean attribute indicating whether the prefix is a NAT prefix (meaning a floating IP, or an external-
fixed-ip of a router-gateway). The VRFEntry corresponding to the NAT prefix entries here may carry both
the MPLS label and the Internet VPN VNI. For SNAT-to-DNAT within the datacenter, where the
Internet VPN contains an MPLSOverGRE based external network, this VRF entry will publish the MPLS
label to BGP while the Internet VPN VNI (also known as L3VNI) will be used to carry intra-DC
traffic on the external segment within the datacenter.

Listing 1.40: odl-l3vpn.yang

container prefix-to-interface {
config false;
list vpn-ids {

key vpn-id;
leaf vpn-id {type uint32;}
list prefixes {

key ip_address;
...
...
leaf subnet-id {

type yang:uuid;
}
leaf nat-prefix {

type boolean;
default false;

}
}

}
}

Configuration impact

• We have to make sure that we do not accept configuration of VxLAN type provider networks without the
segmentation-ID available in them since we are using it to represent the VNI on the wire and in the
flows/groups.

Clustering considerations

No specific additional clustering considerations to be adhered to.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None.

466 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Targeted Release(s)

Carbon.

Known Limitations

None.

Alternatives

N.A.

Usage

Features to Install

odl-netvirt-openstack

REST API

No new changes to the existing REST APIs.

CLI

No new CLI is being added.

Implementation

Assignee(s)

Primary assignee: Abhinav Gupta <abhinav.gupta@ericsson.com> Vivekanandan Narasimhan
<n.vivekanandan@ericsson.com>

Other contributors: Chetan Arakere Gowdru <chetan.arakere@altencalsoftlabs.com> Karthikeyan Krishnan
<karthikeyan.k@altencalsoftlabs.com> Yugandhar Sarraju <yugandhar.s@altencalsoftlabs.com>

Work Items

Trello card: https://trello.com/c/PfARbEmU/84-enforce-vni-on-the-wire-for-l2-switching-l3-forwarding-and-nating-on-vxlan-overlay-networks

1. Code changes to alter the pipeline and e2e testing of the use-cases mentioned.

2. Add Documentation

Dependencies

This doesn’t add any new dependencies.

1.2. Getting Started Guide 467

mailto:abhinav.gupta@ericsson.com
mailto:n.vivekanandan@ericsson.com
mailto:chetan.arakere@altencalsoftlabs.com
mailto:karthikeyan.k@altencalsoftlabs.com
mailto:yugandhar.s@altencalsoftlabs.com
https://trello.com/c/PfARbEmU/84-enforce-vni-on-the-wire-for-l2-switching-l3-forwarding-and-nating-on-vxlan-overlay-networks

OpenDaylight Documentation Documentation, Release Carbon

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

There won’t be any Integration tests provided for this feature.

CSIT

No new testcases to be added, existing ones should continue to succeed.

Documentation Impact

This will require changes to the Developer Guide.

Developer Guide needs to capture how this feature modifies the existing Netvirt L3 forwarding service implementation.

References

• http://docs.opendaylight.org/en/latest/documentation.html

• https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

• EVPN_RT5

OpFlex agent-ovs Install Guide

Required Packages

You’ll need to install the following packages and their dependencies:

• libuv

• openvswitch

• libopflex

• libmodelgbp

• agent-ovs

Packages are available for Red Hat Enterprise Linux 7 and Ubuntu 14.04 LTS. Some of the examples below are specific
to RHEL7 but you can run the equivalent commands for upstart instead of systemd.

Note that many of these steps may be performed automatically if you’re deploying this along with a larger orchestration
system.

468 Chapter 1. Content for OpenDaylight Users

http://docs.opendaylight.org/en/latest/documentation.html
https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan
https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-03

OpenDaylight Documentation Documentation, Release Carbon

Host Networking Configuration

You’ll need to set up your VM host uplink interface. You should ensure that the MTU of the underlying network is
sufficient to handle tunneled traffic. We will use an example of setting up eth0 as your uplink interface with a vlan of
4093 used for the networking control infrastructure and tunnel data plane.

We just need to set the MTU and disable IPv4 and IPv6 autoconfiguration. The MTU needs to be large enough to allow
both the VXLAN header and VLAN tags to pass through without fragmenting for best performance. We’ll use 1600
bytes which should be sufficient assuming you are using a default 1500 byte MTU on your virtual machine traffic.
If you already have any NetworkManager connections configured for your uplink interface find the connection name
and proceed to the next step. Otherwise, create a connection with (be sure to update the variable UPLINK_IFACE as
needed):

UPLINK_IFACE=eth0
nmcli c add type ethernet ifname $UPLINK_IFACE

Now, configure your interface as follows:

CONNECTION_NAME="ethernet-$UPLINK_IFACE"
nmcli connection mod "$CONNECTION_NAME" connection.autoconnect yes \

ipv4.method link-local \
ipv6.method ignore \
802-3-ethernet.mtu 9000 \
ipv4.routes '224.0.0.0/4 0.0.0.0 2000'

Then bring up the interface with:

nmcli connection up "$CONNECTION_NAME"

Next, create the infrastructure interface using the infrastructure VLAN (4093 by default). We’ll need to create a vlan
subinterface of your uplink interface, the configure DHCP on that interface. Run the following commands. Be sure to
replace the variable values if needed. If you’re not using NIC teaming, replace the variable team0 below:

UPLINK_IFACE=team0
INFRA_VLAN=4093
nmcli connection add type vlan ifname $UPLINK_IFACE.$INFRA_VLAN dev $UPLINK_IFACE id
→˓$INFRA_VLAN
nmcli connection mod vlan-$UPLINK_IFACE.$INFRA_VLAN \

ethernet.mtu 1600 ipv4.routes '224.0.0.0/4 0.0.0.0 1000'
sed "s/CLIENT_ID/01:$(ip link show $UPLINK_IFACE | awk '/ether/ {print $2}')/" \

> /etc/dhcp/dhclient-$UPLINK_IFACE.$INFRA_VLAN.conf <<EOF
send dhcp-client-identifier CLIENT_ID;
request subnet-mask, domain-name, domain-name-servers, host-name;
EOF

Now bring up the new interface with:

nmcli connection up vlan-$UPLINK_IFACE.$INFRA_VLAN

If you were successful, you should be able to see an IP address when you run:

ip addr show dev $UPLINK_IFACE.$INFRA_VLAN

1.2. Getting Started Guide 469

OpenDaylight Documentation Documentation, Release Carbon

OVS Bridge Configuration

We’ll need to configure an OVS bridge which will handle the traffic for any virtual machines or containers that are
hosted on the VM host. First, enable the openvswitch service and start it:

systemctl enable openvswitch
ln -s '/usr/lib/systemd/system/openvswitch.service' '/etc/systemd/system/multi-user.
→˓target.wants/openvswitch.service'
systemctl start openvswitch
systemctl status openvswitch
openvswitch.service - Open vSwitch

Loaded: loaded (/usr/lib/systemd/system/openvswitch.service; enabled)
Active: active (exited) since Fri 2014-12-12 17:20:13 PST; 3s ago
Process: 3053 ExecStart=/bin/true (code=exited, status=0/SUCCESS)

Main PID: 3053 (code=exited, status=0/SUCCESS)
Dec 12 17:20:13 ovs-server.cisco.com systemd[1]: Started Open vSwitch.

Next, we can create an OVS bridge (you may wish to use a different bridge name):

ovs-vsctl add-br br0
ovs-vsctl show
34aa83d7-b918-4e49-bcec-1b521acd1962

Bridge "br0"
Port "br0"

Interface "br0"
type: internal

ovs_version: "2.3.90"

Next, we configure a tunnel interface on our new bridge as follows:

ovs-vsctl add-port br0 br0_vxlan0 -- \
set Interface br0_vxlan0 type=vxlan \
options:remote_ip=flow options:key=flow options:dst_port=8472

ovs-vsctl show
34aa83d7-b918-4e49-bcec-1b521acd1962

Bridge "br0"
Port "br0_vxlan0"

Interface "br0_vxlan0"
type: vxlan
options: {dst_port="8472", key=flow, remote_ip=flow}

Port "br0"
Interface "br0"

type: internal
ovs_version: "2.3.90"

Open vSwitch is now configured and ready.

Agent Configuration

Before enabling the agent, we’ll need to edit its configuration file, which is located at “/etc/opflex-agent-ovs/opflex-
agent-ovs.conf”.

First, we’ll configure the Opflex protocol parameters. If you’re using an ACI fabric, you’ll need the OpFlex domain
from the ACI configuration, which is the name of the VMM domain you mapped to the interface for this hypervisor.
Set the “domain” field to this value. Next, set the “name” field to a hostname or other unique identifier for the VM
host. Finally, set the “peers” list to contain the fixed static anycast peer address of 10.0.0.30 and port 8009. Here is an
example of a completed section (bold text shows areas you’ll need to modify):

470 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"opflex": {
// The globally unique policy domain for this agent.
"domain": "[CHANGE ME]",

// The unique name in the policy domain for this agent.
"name": "[CHANGE ME]",

// a list of peers to connect to, by hostname and port. One
// peer, or an anycast pseudo-peer, is sufficient to bootstrap
// the connection without needing an exhaustive list of all
// peers.
"peers": [

{"hostname": "10.0.0.30", "port": 8009}
],

"ssl": {
// SSL mode. Possible values:
// disabled: communicate without encryption
// encrypted: encrypt but do not verify peers
// secure: encrypt and verify peer certificates
"mode": "encrypted",

// The path to a directory containing trusted certificate
// authority public certificates, or a file containing a
// specific CA certificate.
"ca-store": "/etc/ssl/certs/"

}
},

Next, configure the appropriate policy renderer for the ACI fabric. You’ll want to use a stitched-mode renderer. You’ll
need to configure the bridge name and the uplink interface name. The remote anycast IP address will need to be
obtained from the ACI configuration console, but unless the configuration is unusual, it will be 10.0.0.32:

// Renderers enforce policy obtained via OpFlex.
"renderers": {

// Stitched-mode renderer for interoperating with a
// hardware fabric such as ACI
"stitched-mode": {

"ovs-bridge-name": "br0",

// Set encapsulation type. Must set either vxlan or vlan.
"encap": {

// Encapsulate traffic with VXLAN.
"vxlan" : {

// The name of the tunnel interface in OVS
"encap-iface": "br0_vxlan0",

// The name of the interface whose IP should be used
// as the source IP in encapsulated traffic.
"uplink-iface": "eth0.4093",

// The vlan tag, if any, used on the uplink interface.
// Set to zero or omit if the uplink is untagged.
"uplink-vlan": 4093,

// The IP address used for the destination IP in
// the encapsulated traffic. This should be an
// anycast IP address understood by the upstream

1.2. Getting Started Guide 471

OpenDaylight Documentation Documentation, Release Carbon

// stitched-mode fabric.
"remote-ip": "10.0.0.32"

}
},
// Configure forwarding policy
"forwarding": {

// Configure the virtual distributed router
"virtual-router": {

// Enable virtual distributed router. Set to true
// to enable or false to disable. Default true.
"enabled": true,

// Override MAC address for virtual router.
// Default is "00:22:bd:f8:19:ff"
"mac": "00:22:bd:f8:19:ff",

// Configure IPv6-related settings for the virtual
// router
"ipv6" : {

// Send router advertisement messages in
// response to router solicitation requests as
// well as unsolicited advertisements.
"router-advertisement": true

}
},

// Configure virtual distributed DHCP server
"virtual-dhcp": {

// Enable virtual distributed DHCP server. Set to
// true to enable or false to disable. Default
// true.
"enabled": true,

// Override MAC address for virtual dhcp server.
// Default is "00:22:bd:f8:19:ff"
"mac": "00:22:bd:f8:19:ff"

}
},

// Location to store cached IDs for managing flow state
"flowid-cache-dir": "DEFAULT_FLOWID_CACHE_DIR"

}
}

Finally, enable the agent service:

systemctl enable agent-ovs
ln -s '/usr/lib/systemd/system/agent-ovs.service' '/etc/systemd/system/multi-user.
→˓target.wants/agent-ovs.service'
systemctl start agent-ovs
systemctl status agent-ovs
agent-ovs.service - Opflex OVS Agent

Loaded: loaded (/usr/lib/systemd/system/agent-ovs.service; enabled)
Active: active (running) since Mon 2014-12-15 10:03:42 PST; 5min ago

Main PID: 6062 (agent_ovs)
CGroup: /system.slice/agent-ovs.service

-6062 /usr/bin/agent_ovs

472 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

The agent is now running and ready to enforce policy. You can add endpoints to the local VM hosts using the OpFlex
Group-based policy plugin from OpenStack, or manually.

TSDR Installation Guide

This document is for the user to install the artifacts that are needed for using Time Series Data Repository (TSDR)
functionality in the ODL Controller by enabling either an HSQLDB, HBase, or Cassandra Data Store.

Overview

The Time Series Data Repository (TSDR) project in OpenDaylight (ODL) creates a framework for collecting, storing,
querying, and maintaining time series data in the OpenDaylight SDN controller. Please refer to the User Guide for the
detailed description of the functionality of the project and how to use the corresponding features provided in TSDR.

Pre Requisites for Installing TSDR

The software requirements for TSDR HBase Data Store are as follows:

• In the case when the user chooses HBase or Cassandra data store, besides the software that ODL requires, we
also require HBase and Cassandra database running in single node deployment scenario.

No additional software is required for the HSQLDB Data Stores.

Preparing for Installation

• When using HBase data store, download HBase from the following website:

http://archive.apache.org/dist/hbase/hbase-0.94.15/

• When using Cassandra data store, download Cassandra from the following website:

http://www.eu.apache.org/dist/cassandra/2.1.10/

• No additional steps are required to install the TSDR HSQL Data Store.

Installing TSDR Data Stores

Installing HSQLDB Data Store

Once OpenDaylight distribution is up, from karaf console install the HSQLDB data store using the following com-
mand:

feature:install odl-tsdr-hsqldb-all

This will install hsqldb related dependency features (and can take sometime) as well as OpenFlow statistics collector
before returning control to the console.

1.2. Getting Started Guide 473

http://archive.apache.org/dist/hbase/hbase-0.94.15/
http://www.eu.apache.org/dist/cassandra/2.1.10/

OpenDaylight Documentation Documentation, Release Carbon

Installing HBase Data Store

Installing TSDR HBase Data Store contains two steps:

1. Installing HBase server, and

2. Installing TSDR HBase Data Store features from ODL Karaf console.

In this release, we only support HBase single node running together on the same machine as OpenDaylight. Therefore,
follow the steps to download and install HBase server onto the same machine as where OpenDaylight is running:

1. Create a folder in Linux operating system for the HBase server. For example, create an hbase directory under
/usr/lib:

mkdir /usr/lib/hbase

2. Unzip the downloaded HBase server tar file.

Run the following command to unzip the installation package:

tar xvf <hbase-installer-name> /usr/lib/hbase

3. Make proper changes in hbase-site.xml

(a) Under <hbase-install-directory>/conf/, there is a hbase-site.xml. Although it is not recommended, an
experienced user with HBase can modify the data directory for hbase server to store the data.

(b) Modify the value of the property with name “hbase.rootdir” in the file to reflect the desired file directory
for storing hbase data.

The following is an example of the file:

<configuration>
<property>
<name>hbase.rootdir</name>
<value>file:///usr/lib/hbase/data</value>

</property>
<property>
<name>hbase.zookeeper.property.dataDir</name>
<value>/usr/lib/hbase/zookeeper</value>

</property>
</configuration>

4. start hbase server:

cd <hbase-installation-directory>
./start-hbase.sh

5. start hbase shell:

cd <hbase-insatllation-directory>
./hbase shell

6. start Karaf console

7. install hbase data store feature from Karaf console:

feature:install odl-tsdr-hbase

474 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Installing Cassandra Data Store

Installing TSDR Cassandra Data Store contains two steps:

1. Installing Cassandra server, and

2. Installing TSDR Cassandra Data Store features from ODL Karaf console.

In this release, we only support Cassadra single node running together on the same machine as OpenDaylight. There-
fore, follow these steps to download and install Cassandra server onto the same machine as where OpenDaylight is
running:

1. Install Cassandra (latest stable version) by downloading the zip file and untar the tar ball to cassandra/ directory
on the testing machine:

mkdir cassandra
wget http://www.eu.apache.org/dist/cassandra/2.1.10/apache-cassandra-2.1.10-bin.
→˓tar.gz[2.1.10 is current stable version, it can vary]
mv apache-cassandra-2.1.10-bin.tar.gz cassandra/
cd cassandra
tar -xvzf apache-cassandra-2.1.10-bin.tar.gz

2. Start Cassandra from cassandra directory by running:

./apache-cassandra-2.1.10/bin/cassandra

3. Start cassandra shell by running:

./apache-cassandra-2.1.10/bin/cqlsh

4. Start Karaf according to the instructions above.

5. Install Cassandra data store feature from Karaf console:

feature:install odl-tsdr-cassandra

Verifying your Installation

After the TSDR data store is installed, no matter whether it is HBase data store, Cassandra data store, or HSQLDB
data store, the user can verify the installation with the following steps.

1. Verify if the following two TSDR commands are available from Karaf console:

tsdr:list
tsdr:purgeAll

2. Verify if OpenFlow statistics data can be received successfully:

(a) Run “feature:install odl-tsdr-openflow-statistics-collector” from Karaf.

(b) Run mininet to connect to ODL controller. For example, use the following command to start a three node
topology:

mn --topo single,3 --controller 'remote,ip=172.17.252.210,port=6653' --
→˓switch ovsk,protocols=OpenFlow13

(c) From Karaf console, the user should be able to retrieve the statistics data of OpenFlow statistics data from
the console:

1.2. Getting Started Guide 475

OpenDaylight Documentation Documentation, Release Carbon

tsdr:list FLOWSTATS

Troubleshooting

Check the ../data/log/karaf.log for any exception related to TSDR features.

Post Installation Configuration

Post Installation Configuration for HSQLDB Data Store

The feature installation takes care of automated configuration of the datasource by installing a file in <install
folder>/etc named org.ops4j.datasource-metric.cfg. This contains the default location of <install folder>/tsdr where
the HSQLDB datastore files are stored. If you want to change the default location of the datastore files to some other
location update the last portion of the url property in the org.ops4j.datasource-metric.cfg and then restart the Karaf
container.

Post Installation Configuration for HBase Data Store

Please refer to HBase Data Store User Guide.

Post Installation Configuration for Cassandra Data Store

There is no post configuration for TSDR Cassandra data store.

Upgrading From a Previous Release

The HBase data store was supported in the previous release as well as in this release. However, we do not support
data store upgrade for HBase data store. The user needs to reinstall TSDR and start to collect data in TSDR HBase
datastore after the installation.

HSQLDB and Cassandra are new data stores introduced in this release. Therefore, upgrading from previous release
does not apply in these two data store scenarios.

Uninstalling TSDR Data Stores

To uninstall TSDR HSQLDB data store

To uninstall the TSDR functionality with the default store, you need to do the following from karaf console:

feature:uninstall odl-tsdr-hsqldb-all
feature:uninstall odl-tsdr-core
feature:uninstall odl-tsdr-hsqldb
feature:uninstall odl-tsdr-openflow-statistics-collector

It is recommended to restart the Karaf container after the uninstallation of the TSDR functionality with the default
store.

476 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

To uninstall TSDR HBase Data Store

To uninstall the TSDR functionality with the HBase data store,

• Uninstall HBase data store related features from karaf console:

feature:uninstall odl-tsdr-hbase
feature:uninstall odl-tsdr-core

• stop hbase server:

cd <hbase-installation-directory>
./stop-hbase.sh

• remove the file directory that contains the HBase server installation:

rm -r <hbase-installation-directory>

It is recommended to restart the Karaf container after the uninstallation of the TSDR data store.

To uninstall TSDR Cassandra Data Store

To uninstall the TSDR functionality with the Cassandra store,

• uninstall cassandra data store related features following from karaf console:

feature:uninstall odl-tsdr-cassandra
feature:uninstall odl-tsdr-core

• stop cassandra database:

ps auwx | grep cassandra
sudo kill pid

• remove the cassandra installation files:

rm <cassandra-installation-directory>

It is recommended to restart the Karaf container after uninstallation of the TSDR data store.

ElasticSearch

Setting Up the environment

To setup and run the TSDR data store ElasticSearch feature, you need to have an ElasticSearch node (or a cluster of
such nodes) running. You can use a customized ElasticSearch docker image for this purpose.

Your ElasticSearch (ES) setup must have the “Delete By Query Plugin” installed. Without this, some of the ES
functionality won’t work properly.

Creating a custom ElasticSearch docker image

(You can skip this section if you already have an instance of ElasticSearch running)

1.2. Getting Started Guide 477

OpenDaylight Documentation Documentation, Release Carbon

Run the following set of commands:

cat << EOF > Dockerfile
FROM elasticsearch:2
RUN /usr/share/elasticsearch/bin/plugin install --batch delete-by-query
EOF

To build the image, run the following command in the directory where the Dockerfile was created:

docker build . -t elasticsearch-dd

You can check whether the image was properly created by running:

docker images

This should print all your container images including the elasticsearch-dd.

Now we can create and run a container from our image by typing:

docker run -d -p 9200:9200 -p 9300:9300 --name elasticsearch-dd elasticsearch-dd

To see whether the container is running, run the following command:

docker ps

The output should include a row with elasticsearch-dd in the NAMES column. To check the std out of this container
use

docker logs elasticsearch-dd

Running the ElasticSearch feature

Once the features have been installed, you can change some of its properties. For example, to setup
the URL where your ElasticSearch installation runs, change the serverUrl parameter in tsdr/persistence-
elasticsearch/src/main/resources/configuration/initial/:

tsdr-persistence-elasticsearch.properties

All the data are stored into the TSDR index under a type. The metric data are stored under the met-
ric type and the log data are store under the log type. You can modify the files in tsdr/persistence-
elasticsearch/src/main/resources/configuration/initial/:

tsdr-persistence-elasticsearch_metric_mapping.json
tsdr-persistence-elasticsearch_log_mapping.json

to change or tune the mapping for those types. The changes in those files will be promoted after the feature is reloaded
or the distribution is restarted.

Testing the setup

We can now test whether the setup is correct by downloading and installing mininet, which we use to send some data
to the running ElasticSearch instance.

Installing the necessary features:

478 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

start OpenDaylight
feature:install odl-restconf odl-l2switch-switch odl-tsdr-core odl-tsdr-openflow-
→˓statistics-collector
feature:install odl-tsdr-elasticsearch

We can check whether the distribution is now listening on port 6653:

netstat -an | grep 6653

Run mininet

sudo mn --topo single,3 --controller 'remote,ip=distro_ip,port=6653' --switch ovsk,
→˓protocols=OpenFlow13

where the distro_ip is the IP address of the machine where the OpenDaylight distribution is running. This command
will create three hosts connected to one OpenFlow capable switch.

We can check if data was stored by ElasticSearch in TSDR by running the following command:

tsdr:list FLOWTABLESTATS

The output should look similar to the following:

[NID=openflow:1][DC=FLOWTABLESTATS][MN=ActiveFlows][RK=Node:openflow:1,
→˓Table:50][TS=1473427383598][3]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,
→˓Table:50][TS=1473427383598][12]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketLookup][RK=Node:openflow:1,
→˓Table:50][TS=1473427383598][12]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=ActiveFlows][RK=Node:openflow:1,
→˓Table:80][TS=1473427383598][3]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,
→˓Table:80][TS=1473427383598][17]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,
→˓Table:246][TS=1473427383598][19]
...

Or you can query your ElasticSearch instance:

curl -XPOST "http://elasticseach_ip:9200/_search?pretty" -d'{ "from": 0, "size":
→˓10000, "query": { "match_all": {} } }'

The elasticseach_ip is the IP address of the server where the ElasticSearch is running.

Web Activity Collector

The Web Activity Collector records the meaningful REST requests made through the OpenDaylight RESTCONF
interface.

How to test the RESTCONF Collector

• Install some other feature that has a RESTCONF interface, for example. “odl-tsdr-syslog-collector”

• Issue a RESTCONF command that uses either POST,PUT or DELETE. For example, you could call the register-
filter RPC of tsdr-syslog-collector.

1.2. Getting Started Guide 479

OpenDaylight Documentation Documentation, Release Carbon

• Look up data in TSDR database from Karaf.

tsdr:list RESTCONF

• You should see the request that you have sent, along with its information (URL, HTTP method, requesting IP
address and request body)

• Try to send a GET request, then check again, your request should not be registered, because the collector does
not register GET requests by default.

• Open the file: “etc/tsdr.restconf.collector.cfg”, and add GET to the list of METHODS_TO_LOG, so that it
becomes:

METHODS_TO_LOG=POST,PUT,DELETE,GET

– Try again to issue your GET request, and check if it was recorded this time, it should be recorder.

– Try manipulating the other properties (PATHS_TO_LOG (which URLs do we want to log from), RE-
MOTE_ADDRESSES_TO_LOG (which requesting IP addresses do we want to log from) and CON-
TENT_TO_LOG (what should be in the request’s body in order to log it)), and see if the requests are
getting logged.

– Try providing invalid properties (unknown methods for the METHODS_TO_LOG parameter, or the same
method repeated multiple times, and invalid regular expressions for the other parameters), then check
karaf’s log using “log:display”. It should tell you that the value is invalid, and that it will use the default
value instead.

VTN Installation Guide

Overview

OpenDaylight Virtual Tenant Network (VTN) is an application that provides multi-tenant virtual network on an SDN
controller.

Conventionally, huge investment in the network systems and operating expenses are needed because the network is
configured as a silo for each department and system. Therefore various network appliances must be installed for each
tenant and those boxes cannot be shared with others. It is a heavy work to design, implement and operate the entire
complex network.

The uniqueness of VTN is a logical abstraction plane. This enables the complete separation of logical plane from
physical plane. Users can design and deploy any desired network without knowing the physical network topology or
bandwidth restrictions.

VTN allows the users to define the network with a look and feel of conventional L2/L3 network. Once the network
is designed on VTN, it will automatically be mapped into underlying physical network, and then configured on the
individual switch leverage SDN control protocol. The definition of logical plane makes it possible not only to hide the
complexity of the underlying network but also to better manage network resources. It achieves reducing reconfigu-
ration time of network services and minimizing network configuration errors. OpenDaylight Virtual Tenant Network
(VTN) is an application that provides multi-tenant virtual network on an SDN controller. It provides API for creating
a common virtual network irrespective of the physical network.

It is implemented as two major components

• VTN Manager

• VTN Coordinator

480 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

VTN Manager

An OpenDaylight Plugin that interacts with other modules to implement the components of the VTN model. It also
provides a REST interface to configure VTN components in OpenDaylight. VTN Manager is implemented as one
plugin to the OpenDaylight. This provides a REST interface to create/update/delete VTN components. The user
command in VTN Coordinator is translated as REST API to VTN Manager by the OpenDaylight Driver component.
In addition to the above mentioned role, it also provides an implementation to the OpenStack L2 Network Functions
API.

VTN Coordinator

The VTN Coordinator is an external application that provides a REST interface for an user to use OpenDaylight
VTN Virtualization. It interacts with VTN Manager plugin to implement the user configuration. It is also capable of
multiple OpenDaylight orchestration. It realizes VTN provisioning in OpenDaylight instances. In the OpenDaylight
architecture VTN Coordinator is part of the network application, orchestration and services layer. VTN Coordinator
will use the REST interface exposed by the VTN Manger to realize the virtual network using OpenDaylight. It uses
OpenDaylight APIs (REST) to construct the virtual network in OpenDaylight instances. It provides REST APIs for
northbound VTN applications and supports virtual networks spanning across multiple OpenDaylight by coordinating
across OpenDaylight.

Preparing for Installation

VTN Manager

Follow the instructions in Installing OpenDaylight.

VTN Coordinator

1. Arrange a physical/virtual server with any one of the supported 64-bit OS environment.

• RHEL 7

• CentOS 7

• Fedora 20 / 21 / 22

2. Install these packages:

yum install perl-Digest-SHA uuid libxslt libcurl unixODBC json-c bzip2
rpm -ivh http://yum.postgresql.org/9.3/redhat/rhel-6-x86_64/pgdg-redhat93-9.3-3.
→˓noarch.rpm
yum install postgresql93-libs postgresql93 postgresql93-server postgresql93-
→˓contrib postgresql93-odbc

Installing VTN

VTN Manager

Install Feature:

1.2. Getting Started Guide 481

OpenDaylight Documentation Documentation, Release Carbon

feature:install odl-vtn-manager-neutron odl-vtn-manager-rest

Note: The above command will install all features of VTN Manager. You can install only REST or Neutron also.

VTN Coordinator

• To get the Carbon distribution for VTN coordinator download the latest “tar.bz2” file from the below link:

https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/vtn/
→˓distribution.vtn-coordinator/6.4.0-Carbon/

• Run the below command to extract VTN Coordinator from the tar.bz2 file:

tar -C/ -jxvf distribution.vtn-coordinator-6.4.0-Carbon-bin.tar.bz2

This will install VTN Coordinator to /usr/local/vtn directory. The name of the tar.bz2 file name varies depending on
the version. Please give the same tar.bz2 file name which is there in your directory.

• Configuring database for VTN Coordinator:

/usr/local/vtn/sbin/db_setup

• To start the Coordinator:

/usr/local/vtn/bin/vtn_start

Using VTN REST API:

Get the version of VTN REST API using the below command, and make sure the setup is working:

curl --user admin:adminpass -H 'content-type: application/json' -X GET http://<VTN_
→˓COORDINATOR_IP_ADDRESS>:8083/vtn-webapi/api_version.json

The response should be like this, but version might differ:

{"api_version":{"version":"V1.2"}}

Verifying your Installation

VTN Manager

• In the karaf prompt, type the below command to ensure that vtn packages are installed:

feature:list | grep vtn

• Run any VTN Manager REST API:

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns

482 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

VTN Coordinator

ps -ef | grep unc will list all the vtn apps
Run any REST API for VTN Coordinator version

Uninstalling VTN

VTN Manager

feature:uninstall odl-vtnmanager-all

VTN Coordinator

1. Stop VTN:

/usr/local/vtn/bin/vtn_stop

2. Remove the usr/local/vtn folder

1.2.11 Common OpenDaylight Features

OpenDaylight User Interface (DLUX)

This section introduces you to the OpenDaylight User Experience (DLUX) application.

Getting Started with DLUX

DLUX provides a number of different Karaf features, which you can enable and disable separately. They are:

1. odl-dlux-core

2. odl-dluxapps-nodes

3. odl-dluxapps-topology

4. odl-dluxapps-yangui

5. odl-dluxapps-yangvisualizer

6. odl-dluxapps-yangman

Logging In

To log in to DLUX, after installing the application:

1. Open a browser and enter the login URL http://<your-karaf-ip>:8181/index.html in your browser (Chrome is
recommended).

2. Login to the application with your username and password credentials.

1.2. Getting Started Guide 483

http:/

OpenDaylight Documentation Documentation, Release Carbon

Note: OpenDaylight’s default credentials are admin for both the username and password.

Working with DLUX

After you login to DLUX, if you enable only odl-dlux-core feature, you will see only topology application available
in the left pane.

Note: To make sure topology displays all the details, enable the odl-l2switch-switch feature in Karaf.

DLUX has other applications such as node, yang UI and those apps won’t show up, until you enable their features
odl-dluxapps-nodes and odl-dluxapps-yangui respectively in the Karaf distribution.

Fig. 1.1: DLUX Modules

Note: If you install your application in dlux, they will also show up on the left hand navigation after browser page
refresh.

Viewing Network Statistics

The Nodes module on the left pane enables you to view the network statistics and port information for the switches in
the network.

To use the Nodes module:

1. Select Nodes on the left pane. The right pane displays atable that lists all the nodes, node connectors and the
statistics.

2. Enter a node ID in the Search Nodes tab to search by node connectors.

3. Click on the Node Connector number to view details such as port ID, port name, number of ports per switch,
MAC Address, and so on.

484 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

4. Click Flows in the Statistics column to view Flow Table Statistics for the particular node like table ID, packet
match, active flows and so on.

5. Click Node Connectors to view Node Connector Statistics for the particular node ID.

Viewing Network Topology

The Topology tab displays a graphical representation of network topology created.

Note: DLUX does not allow for editing or adding topology information. The topology is generated and edited in
other modules, e.g., the OpenFlow plugin. OpenDaylight stores this information in the MD-SAL datastore where
DLUX can read and display it.

To view network topology:

1. Select Topology on the left pane. You will view the graphical representation on the right pane. In the diagram
blue boxes represent the switches, the black represents the hosts available, and lines represents how the switches
and hosts are connected.

2. Hover your mouse on hosts, links, or switches to view source and destination ports.

3. Zoom in and zoom out using mouse scroll to verify topology for larger topologies.

Fig. 1.2: Topology Module

Interacting with the YANG-based MD-SAL datastore

The Yang UI module enables you to interact with the YANG-based MD-SAL datastore. For more information about
YANG and how it interacts with the MD-SAL datastore, see the Controller and YANG Tools section of the OpenDay-
light Developer Guide.

To use Yang UI:

1. Select Yang UI on the left pane. The right pane is divided in two parts.

2. The top part displays a tree of APIs, subAPIs, and buttons to call possible functions (GET, POST, PUT, and
DELETE).

1.2. Getting Started Guide 485

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.3: Yang UI

Note: Not every subAPI can call every function. For example, subAPIs in the operational store have GET
functionality only.

Inputs can be filled from OpenDaylight when existing data from OpenDaylight is displayed or can be filled by
user on the page and sent to OpenDaylight.

Buttons under the API tree are variable. It depends on subAPI specifications. Common buttons are:

• GET to get data from OpenDaylight,

• PUT and POST for sending data to OpenDaylight for saving

• DELETE for sending data to OpenDaylight for deleting.

You must specify the xpath for all these operations. This path is displayed in the same row before buttons and it
may include text inputs for specific path element identifiers.

3. The bottom part of the right pane displays inputs according to the chosen subAPI.

• Lists are handled as a special case. For example, a device can store multiple flows. In this case “flow” is
name of the list and every list element is identified by a unique key value. Elements of a list can, in turn,
contain other lists.

• In Yang UI, each list element is rendered with the name of the list it belongs to, its key, its value, and a
button for removing it from the list.

4. After filling in the relevant inputs, click the Show Preview button under the API tree to display request that will
be sent to OpenDaylight. A pane is displayed on the right side with text of request when some input is filled.

Displaying Topology on the Yang UI

To display topology:

486 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.4: Yang API Specification

Fig. 1.5: Yang UI API Specification

1.2. Getting Started Guide 487

OpenDaylight Documentation Documentation, Release Carbon

1. Select subAPI network-topology <topology revision number> == > operational == > network-topology.

2. Get data from OpenDaylight by clicking on the “GET” button.

3. Click Display Topology.

Fig. 1.6: DLUX Yang Topology

Configuring List Elements on the Yang UI

Lists in Yang UI are displayed as trees. To expand or collapse a list, click the arrow before name of the list. To
configure list elements in Yang UI:

1. To add a new list element with empty inputs use the plus icon-button + that is provided after list name.

2. To remove several list elements, use the X button that is provided after every list element.

3. In the YANG-based data store all elements of a list must have a unique key. If you try to assign two or more
elements the same key, a warning icon ! is displayed near their name buttons.

4. When the list contains at least one list element, after the + icon, there are buttons to select each individual list
element. You can choose one of them by clicking on it. In addition, to the right of the list name, there is a button
which will display a vertically scrollable pane with all the list elements.

Setting Up Clustering

Clustering Overview

Clustering is a mechanism that enables multiple processes and programs to work together as one entity. For example,
when you search for something on google.com, it may seem like your search request is processed by only one web
server. In reality, your search request is processed by may web servers connected in a cluster. Similarly, you can have
multiple instances of OpenDaylight working together as one entity.

Advantages of clustering are:

488 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.7: DLUX List Elements

Fig. 1.8: DLUX List Warnings

1.2. Getting Started Guide 489

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.9: DLUX List Button

• Scaling: If you have multiple instances of OpenDaylight running, you can potentially do more work and store
more data than you could with only one instance. You can also break up your data into smaller chunks (shards)
and either distribute that data across the cluster or perform certain operations on certain members of the cluster.

• High Availability: If you have multiple instances of OpenDaylight running and one of them crashes, you will
still have the other instances working and available.

• Data Persistence: You will not lose any data stored in OpenDaylight after a manual restart or a crash.

The following sections describe how to set up clustering on both individual and multiple OpenDaylight instances.

Multiple Node Clustering

The following sections describe how to set up multiple node clusters in OpenDaylight.

Deployment Considerations

To implement clustering, the deployment considerations are as follows:

• To set up a cluster with multiple nodes, we recommend that you use a minimum of three machines. You can set
up a cluster with just two nodes. However, if one of the two nodes fail, the cluster will not be operational.

Note: This is because clustering in OpenDaylight requires a majority of the nodes to be up and one node cannot
be a majority of two nodes.

• Every device that belongs to a cluster needs to have an identifier. OpenDaylight uses the node’s role for
this purpose. After you define the first node’s role as member-1 in the akka.conf file, OpenDaylight uses
member-1 to identify that node.

490 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• Data shards are used to contain all or a certain segment of a OpenDaylight’s MD-SAL datastore. For example,
one shard can contain all the inventory data while another shard contains all of the topology data.

If you do not specify a module in the modules.conf file and do not specify a shard in module-shards.
conf, then (by default) all the data is placed in the default shard (which must also be defined in
module-shards.conf file). Each shard has replicas configured. You can specify the details of where
the replicas reside in module-shards.conf file.

• If you have a three node cluster and would like to be able to tolerate any single node crashing, a replica of every
defined data shard must be running on all three cluster nodes.

Note: This is because OpenDaylight’s clustering implementation requires a majority of the defined shard
replicas to be running in order to function. If you define data shard replicas on two of the cluster nodes and one
of those nodes goes down, the corresponding data shards will not function.

• If you have a three node cluster and have defined replicas for a data shard on each of those nodes, that shard will
still function even if only two of the cluster nodes are running. Note that if one of those remaining two nodes
goes down, the shard will not be operational.

• It is recommended that you have multiple seed nodes configured. After a cluster member is started, it sends
a message to all of its seed nodes. The cluster member then sends a join command to the first seed node that
responds. If none of its seed nodes reply, the cluster member repeats this process until it successfully establishes
a connection or it is shut down.

• After a node is unreachable, it remains down for configurable period of time (10 seconds, by default). Once a
node goes down, you need to restart it so that it can rejoin the cluster. Once a restarted node joins a cluster, it
will synchronize with the lead node automatically.

Clustering Scripts

OpenDaylight includes some scripts to help with the clustering configuration.

Note: Scripts are stored in the OpenDaylight distribution/bin folder, and maintained in the distribution project repos-
itory in the folder distribution-karaf/src/main/assembly/bin/.

Configure Cluster Script

This script is used to configure the cluster parameters (e.g. akka.conf, module-shards.conf) on a member of the
controller cluster. The user should restart the node to apply the changes.

Note: The script can be used at any time, even before the controller is started for the first time.

Usage:

bin/configure_cluster.sh <index> <seed_nodes_list>

• index: Integer within 1..N, where N is the number of seed nodes. This indicates which controller node (1..N) is
configured by the script.

• seed_nodes_list: List of seed nodes (IP address), separated by comma or space.

1.2. Getting Started Guide 491

https://git.opendaylight.org/gerrit/p/integration/distribution
https://git.opendaylight.org/gerrit/p/integration/distribution

OpenDaylight Documentation Documentation, Release Carbon

The IP address at the provided index should belong to the member executing the script. When running this script on
multiple seed nodes, keep the seed_node_list the same, and vary the index from 1 through N.

Optionally, shards can be configured in a more granular way by modifying the file “custom_shard_configs.txt” in the
same folder as this tool. Please see that file for more details.

Example:

bin/configure_cluster.sh 2 192.168.0.1 192.168.0.2 192.168.0.3

The above command will configure the member 2 (IP address 192.168.0.2) of a cluster made of 192.168.0.1
192.168.0.2 192.168.0.3.

Setting Up a Multiple Node Cluster

To run OpenDaylight in a three node cluster, perform the following:

First, determine the three machines that will make up the cluster. After that, do the following on each machine:

1. Copy the OpenDaylight distribution zip file to the machine.

2. Unzip the distribution.

3. Open the following .conf files:

• configuration/initial/akka.conf

• configuration/initial/module-shards.conf

4. In each configuration file, make the following changes:

Find every instance of the following lines and replace _127.0.0.1_ with the hostname or IP address of the
machine on which this file resides and OpenDaylight will run:

netty.tcp {
hostname = "127.0.0.1"

Note: The value you need to specify will be different for each node in the cluster.

5. Find the following lines and replace _127.0.0.1_ with the hostname or IP address of any of the machines that
will be part of the cluster:

cluster {
seed-nodes = ["akka.tcp://opendaylight-cluster-data@${IP_OF_MEMBER1}:2550",

<url-to-cluster-member-2>,
<url-to-cluster-member-3>]

6. Find the following section and specify the role for each member node. Here we assign the first node with the
member-1 role, the second node with the member-2 role, and the third node with the member-3 role:

roles = [
"member-1"

]

Note: This step should use a different role on each node.

492 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

7. Open the configuration/initial/module-shards.conf file and update the replicas so that each shard is replicated to
all three nodes:

replicas = [
"member-1",
"member-2",
"member-3"

]

For reference, view a sample config files <<_sample_config_files,below>>.

8. Move into the +<karaf-distribution-directory>/bin+ directory.

9. Run the following command:

JAVA_MAX_MEM=4G JAVA_MAX_PERM_MEM=512m ./karaf

10. Enable clustering by running the following command at the Karaf command line:

feature:install odl-mdsal-clustering

OpenDaylight should now be running in a three node cluster. You can use any of the three member nodes to access
the data residing in the datastore.

Sample Config Files

Sample akka.conf file:

odl-cluster-data {
bounded-mailbox {
mailbox-type = "org.opendaylight.controller.cluster.common.actor.

→˓MeteredBoundedMailbox"
mailbox-capacity = 1000
mailbox-push-timeout-time = 100ms

}

metric-capture-enabled = true

akka {
loglevel = "DEBUG"
loggers = ["akka.event.slf4j.Slf4jLogger"]

actor {

provider = "akka.cluster.ClusterActorRefProvider"
serializers {

java = "akka.serialization.JavaSerializer"
proto = "akka.remote.serialization.ProtobufSerializer"

}

serialization-bindings {
"com.google.protobuf.Message" = proto

}
}
remote {

log-remote-lifecycle-events = off
netty.tcp {

1.2. Getting Started Guide 493

OpenDaylight Documentation Documentation, Release Carbon

hostname = "10.194.189.96"
port = 2550
maximum-frame-size = 419430400
send-buffer-size = 52428800
receive-buffer-size = 52428800

}
}

cluster {
seed-nodes = ["akka.tcp://opendaylight-cluster-data@10.194.189.96:2550",

"akka.tcp://opendaylight-cluster-data@10.194.189.98:2550",
"akka.tcp://opendaylight-cluster-data@10.194.189.101:2550"]

auto-down-unreachable-after = 10s

roles = [
"member-2"

]

}
}

}

odl-cluster-rpc {
bounded-mailbox {
mailbox-type = "org.opendaylight.controller.cluster.common.actor.

→˓MeteredBoundedMailbox"
mailbox-capacity = 1000
mailbox-push-timeout-time = 100ms

}

metric-capture-enabled = true

akka {
loglevel = "INFO"
loggers = ["akka.event.slf4j.Slf4jLogger"]

actor {
provider = "akka.cluster.ClusterActorRefProvider"

}
remote {

log-remote-lifecycle-events = off
netty.tcp {

hostname = "10.194.189.96"
port = 2551

}
}

cluster {
seed-nodes = ["akka.tcp://opendaylight-cluster-rpc@10.194.189.96:2551"]

auto-down-unreachable-after = 10s
}

}
}

Sample module-shards.conf file:

494 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

module-shards = [
{

name = "default"
shards = [

{
name="default"
replicas = [

"member-1",
"member-2",
"member-3"

]
}

]
},
{

name = "topology"
shards = [

{
name="topology"
replicas = [

"member-1",
"member-2",
"member-3"

]
}

]
},
{

name = "inventory"
shards = [

{
name="inventory"
replicas = [

"member-1",
"member-2",
"member-3"

]
}

]
},
{

name = "toaster"
shards = [

{
name="toaster"
replicas = [

"member-1",
"member-2",
"member-3"

]
}

]
}

]

1.2. Getting Started Guide 495

OpenDaylight Documentation Documentation, Release Carbon

Cluster Monitoring

OpenDaylight exposes shard information via MBeans, which can be explored with JConsole, VisualVM, or other JMX
clients, or exposed via a REST API using Jolokia, provided by the odl-jolokia Karaf feature. This is convenient,
due to a significant focus on REST in OpenDaylight.

The basic URI that lists a schema of all available MBeans, but not their content itself is:

GET /jolokia/list

To read the information about the shards local to the queried OpenDaylight instance use the following REST calls. For
the config datastore:

GET /jolokia/read/org.opendaylight.controller:type=DistributedConfigDatastore,
→˓Category=ShardManager,name=shard-manager-config

For the operational datastore:

GET /jolokia/read/org.opendaylight.controller:type=DistributedOperationalDatastore,
→˓Category=ShardManager,name=shard-manager-operational

The output contains information on shards present on the node:

{
"request": {
"mbean": "org.opendaylight.controller:Category=ShardManager,name=shard-manager-

→˓operational,type=DistributedOperationalDatastore",
"type": "read"

},
"value": {
"LocalShards": [

"member-1-shard-default-operational",
"member-1-shard-entity-ownership-operational",
"member-1-shard-topology-operational",
"member-1-shard-inventory-operational",
"member-1-shard-toaster-operational"

],
"SyncStatus": true,
"MemberName": "member-1"

},
"timestamp": 1483738005,
"status": 200

}

The exact names from the “LocalShards” lists are needed for further exploration, as they will be used
as part of the URI to look up detailed info on a particular shard. An example output for the
member-1-shard-default-operational looks like this:

{
"request": {
"mbean": "org.opendaylight.controller:Category=Shards,name=member-1-shard-default-

→˓operational,type=DistributedOperationalDatastore",
"type": "read"

},
"value": {
"ReadWriteTransactionCount": 0,
"SnapshotIndex": 4,
"InMemoryJournalLogSize": 1,

496 Chapter 1. Content for OpenDaylight Users

https://jolokia.org/features-nb.html

OpenDaylight Documentation Documentation, Release Carbon

"ReplicatedToAllIndex": 4,
"Leader": "member-1-shard-default-operational",
"LastIndex": 5,
"RaftState": "Leader",
"LastCommittedTransactionTime": "2017-01-06 13:19:00.135",
"LastApplied": 5,
"LastLeadershipChangeTime": "2017-01-06 13:18:37.605",
"LastLogIndex": 5,
"PeerAddresses": "member-3-shard-default-operational: akka.tcp://opendaylight-

→˓cluster-data@192.168.16.3:2550/user/shardmanager-operational/member-3-shard-default-
→˓operational, member-2-shard-default-operational: akka.tcp://opendaylight-cluster-
→˓data@192.168.16.2:2550/user/shardmanager-operational/member-2-shard-default-
→˓operational",

"WriteOnlyTransactionCount": 0,
"FollowerInitialSyncStatus": false,
"FollowerInfo": [

{
"timeSinceLastActivity": "00:00:00.320",
"active": true,
"matchIndex": 5,
"voting": true,
"id": "member-3-shard-default-operational",
"nextIndex": 6

},
{

"timeSinceLastActivity": "00:00:00.320",
"active": true,
"matchIndex": 5,
"voting": true,
"id": "member-2-shard-default-operational",
"nextIndex": 6

}
],
"FailedReadTransactionsCount": 0,
"StatRetrievalTime": "810.5 𝜇s",
"Voting": true,
"CurrentTerm": 1,
"LastTerm": 1,
"FailedTransactionsCount": 0,
"PendingTxCommitQueueSize": 0,
"VotedFor": "member-1-shard-default-operational",
"SnapshotCaptureInitiated": false,
"CommittedTransactionsCount": 6,
"TxCohortCacheSize": 0,
"PeerVotingStates": "member-3-shard-default-operational: true, member-2-shard-

→˓default-operational: true",
"LastLogTerm": 1,
"StatRetrievalError": null,
"CommitIndex": 5,
"SnapshotTerm": 1,
"AbortTransactionsCount": 0,
"ReadOnlyTransactionCount": 0,
"ShardName": "member-1-shard-default-operational",
"LeadershipChangeCount": 1,
"InMemoryJournalDataSize": 450

},
"timestamp": 1483740350,
"status": 200

1.2. Getting Started Guide 497

OpenDaylight Documentation Documentation, Release Carbon

}

The output helps identifying shard state (leader/follower, voting/non-voting), peers, follower details if the shard is a
leader, and other statistics/counters.

The Integration team is maintaining a Python based tool, that takes advantage of the above MBeans exposed via
Jolokia, and the systemmetrics project offers a DLUX based UI to display the same information.

Geo-distributed Active/Backup Setup

An OpenDaylight cluster works best when the latency between the nodes is very small, which practically means they
should be in the same datacenter. It is however desirable to have the possibility to fail over to a different datacenter, in
case all nodes become unreachable. To achieve that, the cluster can be expanded with nodes in a different datacenter,
but in a way that doesn’t affect latency of the primary nodes. To do that, shards in the backup nodes must be in
“non-voting” state.

The API to manipulate voting states on shards is defined as RPCs in the cluster-admin.yang file in the controller
project, which is well documented. A summary is provided below.

Note: Unless otherwise indicated, the below POST requests are to be sent to any single cluster node.

To create an active/backup setup with a 6 node cluster (3 active and 3 backup nodes in two locations) there is an RPC
to set voting states of all shards on a list of nodes to a given state:

POST /restconf/operations/cluster-admin:change-member-voting-states-for-all-shards

This RPC needs the list of nodes and the desired voting state as input. For creating the backup nodes, this example
input can be used:

{
"input": {
"member-voting-state": [

{
"member-name": "member-4",
"voting": false

},
{

"member-name": "member-5",
"voting": false

},
{

"member-name": "member-6",
"voting": false

}
]

}
}

When an active/backup deployment already exists, with shards on the backup nodes in non-voting state, all that is
needed for a fail-over from the active “sub-cluster” to backup “sub-cluster” is to flip the voting state of each shard (on
each node, active AND backup). That can be easily achieved with the following RPC call (no parameters needed):

POST /restconf/operations/cluster-admin:flip-member-voting-states-for-all-shards

498 Chapter 1. Content for OpenDaylight Users

https://github.com/opendaylight/integration-test/tree/master/tools/clustering/cluster-monitor
https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/md-sal/sal-cluster-admin-api/src/main/yang/cluster-admin.yang

OpenDaylight Documentation Documentation, Release Carbon

If it’s an unplanned outage where the primary voting nodes are down, the “flip” RPC must be sent to a backup non-
voting node. In this case there are no shard leaders to carry out the voting changes. However there is a special case
whereby if the node that receives the RPC is non-voting and is to be changed to voting and there’s no leader, it will
apply the voting changes locally and attempt to become the leader. If successful, it persists the voting changes and
replicates them to the remaining nodes.

When the primary site is fixed and you want to fail back to it, care must be taken when bringing the site back up.
Because it was down when the voting states were flipped on the secondary, its persisted database won’t contain those
changes. If brought back up in that state, the nodes will think they’re still voting. If the nodes have connectivity to the
secondary site, they should follow the leader in the secondary site and sync with it. However if this does not happen
then the primary site may elect its own leader thereby partitioning the 2 clusters, which can lead to undesirable results.
Therefore it is recommended to either clean the databases (i.e., journal and snapshots directory) on the primary
nodes before bringing them back up or restore them from a recent backup of the secondary site (see section Backing
Up and Restoring the Datastore).

If is also possible to gracefully remove a node from a cluster, with the following RPC:

POST /restconf/operations/cluster-admin:remove-all-shard-replicas

and example input:

{
"input": {
"member-name": "member-1"

}
}

or just one particular shard:

POST /restconf/operations/cluster-admin:remove-shard-replica

with example input:

{
"input": {
"shard-name": "default",
"member-name": "member-2",
"data-store-type": "config"

}
}

Now that a (potentially dead/unrecoverable) node was removed, another one can be added at runtime, without changing
the configuration files of the healthy nodes (requiring reboot):

POST /restconf/operations/cluster-admin:add-replicas-for-all-shards

No input required, but this RPC needs to be sent to the new node, to instruct it to replicate all shards from the cluster.

Note: While the cluster admin API allows adding and removing shards dynamically, the module-shard.conf
and modules.conf files are still used on startup to define the initial configuration of shards. Modifications from the
use of the API are not stored to those static files, but to the journal.

1.2. Getting Started Guide 499

OpenDaylight Documentation Documentation, Release Carbon

Extra Configuration Options

Name Type De-
fault

Description

max-shard-data-
change-executor-
queue-size

uint32
(1..max)

1000 The maximum queue size for each shard’s data store data change
notification executor.

max-shard-data-
change-executor-
pool-size

uint32
(1..max)

20 The maximum thread pool size for each shard’s data store data change
notification executor.

max-shard-data-
change-listener-
queue-size

uint32
(1..max)

1000 The maximum queue size for each shard’s data store data change listener.

max-shard-data-
store-executor-
queue-size

uint32
(1..max)

5000 The maximum queue size for each shard’s data store executor.

shard-transaction-
idle-timeout-in-
minutes

uint32
(1..max)

10 The maximum amount of time a shard transaction can be idle without
receiving any messages before it self-destructs.

shard-snapshot-
batch-count

uint32
(1..max)

20000The minimum number of entries to be present in the in-memory journal
log before a snapshot is to be taken.

shard-snapshot-
data-threshold-
percentage

uint8
(1..100)

12 The percentage of Runtime.totalMemory() used by the in-memory
journal log before a snapshot is to be taken

shard-hearbeat-
interval-in-millis

uint16
(100..max)

500 The interval at which a shard will send a heart beat message to its remote
shard.

operation-timeout-
in-seconds

uint16
(5..max)

5 The maximum amount of time for akka operations (remote or local) to
complete before failing.

shard-journal-
recovery-log-batch-
size

uint32
(1..max)

5000 The maximum number of journal log entries to batch on recovery for a
shard before committing to the data store.

shard-transaction-
commit-timeout-in-
seconds

uint32
(1..max)

30 The maximum amount of time a shard transaction three-phase commit
can be idle without receiving the next messages before it aborts the
transaction

shard-transaction-
commit-queue-
capacity

uint32
(1..max)

20000The maximum allowed capacity for each shard’s transaction commit
queue.

shard-initialization-
timeout-in-seconds

uint32
(1..max)

300 The maximum amount of time to wait for a shard to initialize from
persistence on startup before failing an operation (eg transaction create
and change listener registration).

shard-leader-
election-timeout-
in-seconds

uint32
(1..max)

30 The maximum amount of time to wait for a shard to elect a leader before
failing an operation (eg transaction create).

enable-metric-
capture

boolean false Enable or disable metric capture.

bounded-mailbox-
capacity

uint32
(1..max)

1000 Max queue size that an actor’s mailbox can reach

persistent boolean true Enable or disable data persistence
shard-isolated-
leader-check-
interval-in-millis

uint32
(1..max)

5000 the interval at which the leader of the shard will check if its majority
followers are active and term itself as isolated

These configuration options are included in the etc/org.opendaylight.controller.cluster.datastore.cfg configuration file.

500 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Persistence and Backup

Set Persistence Script

This script is used to enable or disable the config datastore persistence. The default state is enabled but there are cases
where persistence may not be required or even desired. The user should restart the node to apply the changes.

Note: The script can be used at any time, even before the controller is started for the first time.

Usage:

bin/set_persistence.sh <on/off>

Example:

bin/set_persistence.sh off

The above command will disable the config datastore persistence.

Backing Up and Restoring the Datastore

The same cluster-admin API described in the cluster guide for managing shard voting states has an RPC allowing
backup of the datastore in a single node, taking only the file name as a parameter:

POST /restconf/operations/cluster-admin:backup-datastore

RPC input JSON:

{
"input": {
"file-path": "/tmp/datastore_backup"

}
}

Note: This backup can only be restored if the YANG models of the backed-up data are identical in the backup
OpenDaylight instance and restore target instance.

To restore the backup on the target node the file needs to be placed into the $KARAF_HOME/
clustered-datastore-restore directory, and then the node restarted. If the directory does not exist
(which is quite likely if this is a first-time restore) it needs to be created. On startup, ODL checks if the
journal and snapshots directories in $KARAF_HOME are empty, and only then tries to read the contents of
the clustered-datastore-restore directory, if it exists. So for a successful restore, those two directories
should be empty. The backup file name itself does not matter, and the startup process will delete it after a successful
restore.

The backup is node independent, so when restoring a 3 node cluster, it is best to restore it on each node for consistency.
For example, if restoring on one node only, it can happen that the other two empty nodes form a majority and the cluster
comes up with no data.

1.2. Getting Started Guide 501

OpenDaylight Documentation Documentation, Release Carbon

Running XSQL Console Commands and Queries

XSQL Overview

XSQL is an XML-based query language that describes simple stored procedures which parse XML data, query or
update database tables, and compose XML output. XSQL allows you to query tree models like a sequential database.
For example, you could run a query that lists all of the ports configured on a particular module and their attributes.

The following sections cover the XSQL installation process, supported XSQL commands, and the way to structure
queries.

Installing XSQL

To run commands from the XSQL console, you must first install XSQL on your system:

1. Navigate to the directory in which you unzipped OpenDaylight

2. Start Karaf:

./bin/karaf

3. Install XSQL:

feature:install odl-mdsal-xsql

XSQL Console Commands

To enter a command in the XSQL console, structure the command as follows:

odl:xsql _<XSQL command>_

The following table describes the commands supported in this OpenDaylight release.

Supported XSQL Console Commands

Command Description
r Repeats the last command you executed.
list vtables Lists the schema node containers that are currently installed. Whenever an OpenDaylight

module is installed, its YANG model is placed in the schema context. At that point, the XSQL
receives a notification, confirms that the module’s YANG model resides in the schema context
and then maps the model to XSQL by setting up the necessary vtables and vfields. This
command is useful when you need to determine vtable information for a query.

list vfields
<vtable
name>

Lists the vfields present in a specific vtable. This command is useful when you need to
determine vfields information for a query.

jdbc <ip
address>

When the ODL server is behind a firewall, and the JDBC client cannot connect to the JDBC
server, run this command to start the client as a server and establish a connection.

exit Closes the console.
tocsv Enables or disables the forwarding of query output as a .csv file.
filename
<filename>

Specifies the .tocsv file to which the query data is exported. If you do not specify a value for this
option when the toccsv option is enabled, the filename for the query data file is generated
automatically.

502 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

XSQL Queries

You can run a query to extract information that meets the criteria you specify using the information provided by the
list vtables and list vfields _<vtable name>_ commands. Any query you run should be structured as follows:

select _<vfields you want to search for, separated by a comma and a space>_ from _<vtables you want to search in,
separated by a comma and a space>_ where _<criteria>_ ‘*_<criteria operator>_‘;*

For example, if you want to search the nodes/node ID field in the nodes/node-connector table and find every instance
of the Hardware-Address object that contains _BA_ in its text string, enter the following query:

select nodes/node.ID from nodes/node-connector where Hardware-Address like '%BA%';

The following criteria operators are supported:

Supported XSQL Query Criteria Operators

Criteria
Operators

Description

= Lists results that equal the value you specify.
!= Lists results that do not equal the value you specify.
like Lists results that contain the substring you specify. For example, if you specify like %BC%, every

string that contains that particular substring is displayed.
< Lists results that are less than the value you specify.
> Lists results that are more than the value you specify.
and Lists results that match both values you specify.
or Lists results that match either of the two values you specify.
>= Lists results that are more than or equal to the value you specify.
<= Lists results that are less than or equal to the value you specify.
is null Lists results for which no value is assigned.
not null Lists results for which any value is assigned.
skip Use this operator to list matching results from a child node, even if its parent node does not meet

the specified criteria. See the following example for more information.

Example: Skip Criteria Operator

If you are looking at the following structure and want to determine all of the ports that belong to a YY type module:

• Network Element 1

– Module 1, Type XX

* Module 1.1, Type YY

· Port 1

· Port 2

– Module 2, Type YY

* Port 1

* Port 2

If you specify Module.Type=’YY’ in your query criteria, the ports associated with module 1.1 will not be returned since
its parent module is type XX. Instead, enter Module.Type=’YY’ or skip Module!=’YY’. This tells XSQL to disregard
any parent module data that does not meet the type YY criteria and collect results for any matching child modules. In
this example, you are instructing the query to skip module 1 and collect the relevant data from module 1.1.

1.2. Getting Started Guide 503

OpenDaylight Documentation Documentation, Release Carbon

OpenDaylight Version

Overview

This feature allows NETCONF/RESTCONF users to determine the version of OpenDaylight they are communicating
with.

Install the Version Feature

Follow these steps to install the version feature:

1. Navigate to the directory in which you installed OpenDaylight

2. Start Karaf:

./bin/karaf

3. Install Version feature:

feature:install odl-distribution-version

Note: For RESTCONF access, it is recommended to install odl-restconf and odl-netconf-connector-ssh.

Version Feature Usage

Example of RESTCONF request using curl from bash:

$ curl -u 'admin:admin' localhost:8181/restconf/config/network-topology:network-
→˓topology/topology/topology-netconf/node/controller-config/yang-ext:mount/
→˓config:modules/module/odl-distribution-version:odl-version/odl-distribution-version

Example response (formatted):

{
"module": [
{
"type": "odl-distribution-version:odl-version",
"name": "odl-distribution-version",
"odl-distribution-version:version": "0.5.0-SNAPSHOT"
}

]
}

1.2.12 Security Considerations

This document discusses the various security issues that might affect OpenDaylight. The document also lists specific
recommendations to mitigate security risks.

This document also contains information about the corrective steps you can take if you discover a security issue with
OpenDaylight, and if necessary, contact the Security Response Team, which is tasked with identifying and resolving
security threats.

504 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Overview of OpenDaylight Security

There are many different kinds of security vulnerabilities that could affect an OpenDaylight deployment, but this guide
focuses on those where (a) the servers, virtual machines or other devices running OpenDaylight have been properly
physically (or virtually in the case of VMs) secured against untrusted individuals and (b) individuals who have access,
either via remote logins or physically, will not attempt to attack or subvert the deployment intentionally or otherwise.

While those attack vectors are real, they are out of the scope of this document.

What remains in scope is attacks launched from a server, virtual machine, or device other than the one running Open-
Daylight where the attack does not have valid credentials to access the OpenDaylight deployment.

The rest of this document gives specific recommendations for deploying OpenDaylight in a secure manner, but first
we highlight some high-level security advantages of OpenDaylight.

• Separating the control and management planes from the data plane (both logically and, in many cases, physi-
cally) allows possible security threats to be forced into a smaller attack surface.

• Having centralized information and network control gives network administrators more visibility and control
over the entire network, enabling them to make better decisions faster. At the same time, centralization of
network control can be an advantage only if access to that control is secure.

Note: While both previous advantages improve security, they also make an OpenDaylight deployment an
attractive target for attack making understanding these security considerations even more important.

• The ability to more rapidly evolve southbound protocols and how they are used provides more and faster mech-
anisms to enact appropriate security mitigations and remediations.

• OpenDaylight is built from OSGi bundles and the Karaf Java container. Both Karaf and OSGi provide some
level of isolation with explicit code boundaries, package imports, package exports, and other security-related
features.

• OpenDaylight has a history of rapidly addressing known vulnerabilities and a well-defined process for reporting
and dealing with them.

OpenDaylight Security Resources

• If you have any security issues, you can send a mail to security@lists.opendaylight.org.

• For the list of current OpenDaylight security issues that are either being fixed or resolved, refer to https://wiki.
opendaylight.org/view/Security:Advisories.

• To learn more about the OpenDaylight security issues policies and procedure, refer to https://wiki.opendaylight.
org/view/Security:Main

Deployment Recommendations

We recommend that you follow the deployment guidelines in setting up OpenDaylight to minimize security threats.

• The default credentials should be changed before deploying OpenDaylight.

• OpenDaylight should be deployed in a private network that cannot be accessed from the internet.

• Separate the data network (that connects devices using the network) from the management network (that con-
nects the network devices to OpenDaylight).

1.2. Getting Started Guide 505

https://wiki.opendaylight.org/view/Security:Advisories
https://wiki.opendaylight.org/view/Security:Advisories
https://wiki.opendaylight.org/view/Security:Main
https://wiki.opendaylight.org/view/Security:Main

OpenDaylight Documentation Documentation, Release Carbon

Note: Deploying OpenDaylight on a separate, private management network does not eliminate threats, but only
mitigates them. By construction, some messages must flow from the data network to the management network,
e.g., OpenFlow packet_in messages, and these create an attack surface even if it is a small one.

• Implement an authentication policy for devices that connect to both the data and management network. These
are the devices which bridge, likely untrusted, traffic from the data network to the management network.

Securing OSGi bundles

OSGi is a Java-specific framework that improves the way that Java classes interact within a single JVM. It provides an
enhanced version of the java.lang.SecurityManager (ConditionalPermissionAdmin) in terms of security.

Java provides a security framework that allows a security policy to grant permissions, such as reading a file or opening
a network connection, to specific code. The code maybe classes from the jarfile loaded from a specific URL, or a class
signed by a specific key. OSGi builds on the standard Java security model to add the following features:

• A set of OSGi-specific permission types, such as one that grants the right to register an OSGi service or get an
OSGi service from the service registry.

• The ability to dynamically modify permissions at runtime. This includes the ability to specify permissions by
using code rather than a text configuration file.

• A flexible predicate-based approach to determining which rules are applicable to which ProtectionDomain. This
approach is much more powerful than the standard Java security policy which can only grant rights based on
a jarfile URL or class signature. A few standard predicates are provided, including selecting rules based upon
bundle symbolic-name.

• Support for bundle local permissions policies with optional further constraints such as DENY operations. Most
of this functionality is accessed by using the OSGi ConditionalPermissionAdmin service which is part of the
OSGi core and can be obtained from the OSGi service registry. The ConditionalPermissionAdmin API replaces
the earlier PermissionAdmin API.

For more information, refer to http://www.osgi.org/Main/HomePage.

Securing the Karaf container

Apache Karaf is a OSGi-based runtime platform which provides a lightweight container for OpenDaylight and ap-
plications. Apache Karaf uses either Apache Felix Framework or Eclipse Equinox OSGi frameworks, and provide
additional features on top of the framework.

Apache Karaf provides a security framework based on Java Authentication and Authorization Service (JAAS) in
compliance with OSGi recommendations, while providing RBAC (Role-Based Access Control) mechanism for the
console and Java Management Extensions (JMX).

The Apache Karaf security framework is used internally to control the access to the following components:

• OSGi services

• console commands

• JMX layer

• WebConsole

The remote management capabilities are present in Apache Karaf by default, however they can be disabled by using
various configuration alterations. These configuration options may be applied to the OpenDaylight Karaf distribution.

506 Chapter 1. Content for OpenDaylight Users

http://www.osgi.org/Main/HomePage

OpenDaylight Documentation Documentation, Release Carbon

Note: Refer to the following list of publications for more information on implementing security for the Karaf con-
tainer.

• For role-based JMX administration, refer to http://karaf.apache.org/manual/latest/users-guide/monitoring.html.

• For remote SSH access configuration, refer to http://karaf.apache.org/manual/latest/users-guide/remote.html.

• For WebConsole access, refer to http://karaf.apache.org/manual/latest/users-guide/webconsole.html.

• For Karaf security features, refer to http://karaf.apache.org/manual/latest/developers-guide/security-framework.
html.

Disabling the remote shutdown port

You can lock down your deployment post installation. Set karaf.shutdown.port=-1 in etc/custom.
properties or etc/config.properties to disable the remote shutdown port.

Securing Southbound Plugins

Many individual southbound plugins provide mechanisms to secure their communication with network devices. For
example, the OpenFlow plugin supports TLS connections with bi-directional authentication and the NETCONF plugin
supports connecting over SSH. Meanwhile, the Unified Secure Channel plugin provides a way to form secure, remote
connections for supported devices.

When deploying OpenDaylight, you should carefully investigate the secure mechanisms to connect to devices using
the relevant plugins.

Securing OpenDaylight using AAA

AAA stands for Authentication, Authorization, and Accounting. All three of can help improve the security posture
of and OpenDaylight deployment. In this release, only authentication is fully supported, while authorization is an
experimental feature and accounting remains a work in progress.

The vast majority of OpenDaylight’s northbound APIs (and all RESTCONF APIs) are protected by AAA by default
when installing the +odl-restconf+ feature. In the cases that APIs are not protected by AAA, this will be noted in the
per-project release notes.

By default, OpenDaylight has only one user account with the username and password admin. This should be changed
before deploying OpenDaylight.

Security Considerations for Clustering

While OpenDaylight clustering provides many benefits including high availability, scale-out performance, and data
durability, it also opens a new attack surface in the form of the messages exchanged between the various instances of
OpenDaylight in the cluster. In the current OpenDaylight release, these messages are neither encrypted nor authenti-
cated meaning that anyone with access to the management network where OpenDaylight exchanges these clustering
messages can forge and/or read the messages. This means that if clustering is enabled, it is even more important that
the management network be kept secure from any untrusted entities.

1.2. Getting Started Guide 507

http://karaf.apache.org/manual/latest/users-guide/monitoring.html
http://karaf.apache.org/manual/latest/users-guide/remote.html
http://karaf.apache.org/manual/latest/users-guide/webconsole.html
http://karaf.apache.org/manual/latest/developers-guide/security-framework.html
http://karaf.apache.org/manual/latest/developers-guide/security-framework.html

OpenDaylight Documentation Documentation, Release Carbon

1.2.13 How to Get Help

Users and developers can get support from the OpendayLight community through the mailing lists, IRC and forums.

1. Create your question on ServerFault or Stackoverflow with the tag #opendaylight.

Note: It is important to tag questions correctly to ensure that the questions reach individuals subscribed to the
tag.

2. Mail discuss@lists.opendaylight.org or dev@lists.opendaylight.org.

3. Directly mail the PTL as indicated on the specific projects page.

4. IRC: Connect to #opendaylight or #opendaylight-meeting channel on freenode.

5. For infrastructure and release engineering queries, mail helpdesk@opendaylight.org. IRC: Connect to #lf-releng
channel on freenode.

1.3 OpenDaylight User Guide

1.3.1 Overview

This first part of the user guide covers the basic user operations of the OpenDaylight Release using the generic base
functionality.

OpenDaylight Controller Overview

The OpenDaylight controller is JVM software and can be run from any operating system and hardware as long as it
supports Java. The controller is an implementation of the Software Defined Network (SDN) concept and makes use of
the following tools:

• Maven: OpenDaylight uses Maven for easier build automation. Maven uses pom.xml (Project Object Model)
to script the dependencies between bundle and also to describe what bundles to load and start.

• OSGi: This framework is the back-end of OpenDaylight as it allows dynamically loading bundles and packages
JAR files, and binding bundles together for exchanging information.

• JAVA interfaces: Java interfaces are used for event listening, specifications, and forming patterns. This is the
main way in which specific bundles implement call-back functions for events and also to indicate awareness of
specific state.

• REST APIs: These are northbound APIs such as topology manager, host tracker, flow programmer, static
routing, and so on.

The controller exposes open northbound APIs which are used by applications. The OSGi framework and bidirectional
REST are supported for the northbound APIs. The OSGi framework is used for applications that run in the same
address space as the controller while the REST (web-based) API is used for applications that do not run in the same
address space (or even the same system) as the controller. The business logic and algorithms reside in the applica-
tions. These applications use the controller to gather network intelligence, run its algorithm to do analytics, and then
orchestrate the new rules throughout the network. On the southbound, multiple protocols are supported as plugins,
e.g. OpenFlow 1.0, OpenFlow 1.3, BGP-LS, and so on. The OpenDaylight controller starts with an OpenFlow 1.0
southbound plugin. Other OpenDaylight contributors begin adding to the controller code. These modules are linked
dynamically into a Service Abstraction Layer (SAL).

508 Chapter 1. Content for OpenDaylight Users

https://serverfault.com
https://stackoverflow.com/
https://stackoverflow.com/help/tagging
mailto:discuss@lists.opendaylight.org
mailto:dev@lists.opendaylight.org
https://wiki.opendaylight.org/view/Project_list
mailto:helpdesk@opendaylight.org

OpenDaylight Documentation Documentation, Release Carbon

The SAL exposes services to which the modules north of it are written. The SAL figures out how to fulfill the
requested service irrespective of the underlying protocol used between the controller and the network devices. This
provides investment protection to the applications as OpenFlow and other protocols evolve over time. For the controller
to control devices in its domain, it needs to know about the devices, their capabilities, reachability, and so on. This
information is stored and managed by the Topology Manager. The other components like ARP handler, Host Tracker,
Device Manager, and Switch Manager help in generating the topology database for the Topology Manager.

For a more detailed overview of the OpenDaylight controller, see the OpenDaylight Developer Guide.

Using the OpenDaylight User Interface (DLUX)

This section introduces you to the OpenDaylight User Experience (DLUX) application.

Getting Started with DLUX

DLUX provides a number of different Karaf features, which you can enable and disable separately. They are:

• odl-dlux-core

• odl-dluxapps-nodes

• odl-dluxapps-topology

• odl-dluxapps-yangui

• odl-dluxapps-yangvisualizer

• odl-dluxapps-yangman

Logging In

To log in to DLUX, after installing the application:

1. Open a browser and enter the login URL http://<your-karaf-ip>:8181/index.html in your browser (Chrome is
recommended).

2. Login to the application with your username and password credentials.

Note: OpenDaylight’s default credentials are admin for both the username and password.

Working with DLUX

After you login to DLUX, if you enable only odl-dlux-core feature, you will see only topology application available
in the left pane.

Note: To make sure topology displays all the details, enable the odl-l2switch-switch feature in Karaf.

DLUX has other applications such as node, yang UI and those apps won’t show up, until you enable their features
odl-dluxapps-nodes and odl-dluxapps-yangui respectively in the Karaf distribution.

1.3. OpenDaylight User Guide 509

http:/

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.10: DLUX Modules

Note: If you install your application in dlux, they will also show up on the left hand navigation after browser page
refresh.

Viewing Network Statistics

The Nodes module on the left pane enables you to view the network statistics and port information for the switches in
the network.

To use the Nodes module:

1. Select Nodes on the left pane. The right pane displays atable that lists all the nodes, node connectors and the
statistics.

2. Enter a node ID in the Search Nodes tab to search by node connectors.

3. Click on the Node Connector number to view details such as port ID, port name, number of ports per switch,
MAC Address, and so on.

4. Click Flows in the Statistics column to view Flow Table Statistics for the particular node like table ID, packet
match, active flows and so on.

5. Click Node Connectors to view Node Connector Statistics for the particular node ID.

Viewing Network Topology

The Topology tab displays a graphical representation of network topology created.

Note: DLUX does not allow for editing or adding topology information. The topology is generated and edited in

510 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

other modules, e.g., the OpenFlow plugin. OpenDaylight stores this information in the MD-SAL datastore where
DLUX can read and display it.

To view network topology:

1. Select Topology on the left pane. You will view the graphical representation on the right pane. In the diagram
blue boxes represent the switches, the black represents the hosts available, and lines represents how the switches
and hosts are connected.

2. Hover your mouse on hosts, links, or switches to view source and destination ports.

3. Zoom in and zoom out using mouse scroll to verify topology for larger topologies.

Fig. 1.11: Topology Module

Interacting with the YANG-based MD-SAL datastore

The Yang UI module enables you to interact with the YANG-based MD-SAL datastore. For more information about
YANG and how it interacts with the MD-SAL datastore, see the Controller and YANG Tools section of the OpenDay-
light Developer Guide.

To use Yang UI:

1. Select Yang UI on the left pane. The right pane is divided in two parts.

2. The top part displays a tree of APIs, subAPIs, and buttons to call possible functions (GET, POST, PUT, and
DELETE).

Note: every subAPI can call every function. For example, subAPIs in the operational store have GET func-
tionality only.

Inputs can be filled from OpenDaylight when existing data from OpenDaylight is displayed or can be filled by
user on the page and sent to OpenDaylight.

1.3. OpenDaylight User Guide 511

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.12: Yang UI

Buttons under the API tree are variable. It depends on subAPI specifications. Common buttons are:

• GET to get data from OpenDaylight,

• PUT and POST for sending data to OpenDaylight for saving

• DELETE for sending data to OpenDaylight for deleting.

You must specify the xpath for all these operations. This path is displayed in the same row before buttons
and it may include text inputs for specific path element identifiers.

3. The bottom part of the right pane displays inputs according to the chosen subAPI.

• Lists are handled as a special case. For example, a device can store multiple flows. In this case “flow” is
name of the list and every list element is identified by a unique key value. Elements of a list can, in turn,
contain other lists.

• In Yang UI, each list element is rendered with the name of the list it belongs to, its key, its value, and a
button for removing it from the list.

4. After filling in the relevant inputs, click the Show Preview button under the API tree to display request that will
be sent to OpenDaylight. A pane is displayed on the right side with text of request when some input is filled.

Displaying Topology on the Yang UI

To display topology:

1. Select subAPI network-topology <topology revision number> == > operational == > network-topology.

2. Get data from OpenDaylight by clicking on the “GET” button.

512 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.13: Yang API Specification

Fig. 1.14: Yang UI API Specification

1.3. OpenDaylight User Guide 513

OpenDaylight Documentation Documentation, Release Carbon

3. Click Display Topology.

Fig. 1.15: DLUX Yang Topology

Configuring List Elements on the Yang UI

Lists in Yang UI are displayed as trees. To expand or collapse a list, click the arrow before name of the list. To
configure list elements in Yang UI:

1. To add a new list element with empty inputs use the plus icon-button + that is provided after list name.

2. To remove several list elements, use the X button that is provided after every list element.

3. In the YANG-based data store all elements of a list must have a unique key. If you try to assign two or more
elements the same key, a warning icon ! is displayed near their name buttons.

4. When the list contains at least one list element, after the + icon, there are buttons to select each individual list
element. You can choose one of them by clicking on it. In addition, to the right of the list name, there is a button
which will display a vertically scrollable pane with all the list elements.

Running XSQL Console Commands and Queries

Note: The XSQL component packaged in odl-mdsal-xsql has been deprecated and will be removed in the next release.

514 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.16: DLUX List Elements

Fig. 1.17: DLUX List Warnings

1.3. OpenDaylight User Guide 515

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.18: DLUX List Button1

XSQL Overview

XSQL is an XML-based query language that describes simple stored procedures which parse XML data, query or
update database tables, and compose XML output. XSQL allows you to query tree models like a sequential database.
For example, you could run a query that lists all of the ports configured on a particular module and their attributes.

The following sections cover the XSQL installation process, supported XSQL commands, and the way to structure
queries.

Installing XSQL

To run commands from the XSQL console, you must first install XSQL on your system:

1. Navigate to the directory in which you unzipped OpenDaylight

2. Start Karaf:

./bin/karaf

3. Install XSQL:

feature:install odl-mdsal-xsql

XSQL Console Commands

To enter a command in the XSQL console, structure the command as follows: odl:xsql <XSQL command>

516 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

The following table describes the commands supported in this OpenDaylight release.

Command Description
r Repeats the last command you executed.
list vtables Lists the schema node containers that are currently installed. Whenever an OpenDaylight

module is installed, its YANG model is placed in the schema context. At that point, the XSQL
receives a notification, confirms that the module’s YANG model resides in the schema context
and then maps the model to XSQL by setting up the necessary vtables and vfields. This
command is useful when you need to determine vtable information for a query.

list vfields
<vtable
name>

Lists the vfields present in a specific vtable. This command is useful when you need to
determine vfields information for a query.

jdbc <ip
address>

When the ODL server is behind a firewall, and the JDBC client cannot connect to the JDBC
server, run this command to start the client as a server and establish a connection.

exit Closes the console.
tocsv Enables or disables the forwarding of query output as a .csv file.
filename
<filename>

Specifies the .tocsv file to which the query data is exported. If you do not specify a value for
this option when the toccsv option is enabled, the filename for the query data file is generated
automatically.

Table: Supported XSQL Console Commands

XSQL Queries

You can run a query to extract information that meets the criteria you specify using the information provided by the
list vtables and list vfields <vtable name> commands. Any query you run should be structured as follows:

select <vfields you want to search for, separated by a comma and a space> from <vtables you want to search in,
separated by a comma and a space> where <criteria> ***<criteria operator>**;*

For example, if you want to search the nodes/node ID field in the nodes/node-connector table and find every instance
of the Hardware-Address object that contains BA in its text string, enter the following query:

select nodes/node.ID from nodes/node-connector where Hardware-Address like '%BA%';

The following criteria operators are supported:

Criteria
Operators

Description

= Lists results that equal the value you specify.
!= Lists results that do not equal the value you specify.
like Lists results that contain the substring you specify. For example, if you specify like %BC%, every

string that contains that particular substring is displayed.
< Lists results that are less than the value you specify.
> Lists results that are more than the value you specify.
and Lists results that match both values you specify.
or Lists results that match either of the two values you specify.
>= Lists results that are more than or equal to the value you specify.

Lists results that are less than or equal to the value you specify.
is null Lists results for which no value is assigned.
not null Lists results for which any value is assigned.
skip Use this operator to list matching results from a child node, even if its parent node does not meet

the specified criteria. See the following example for more information.

Table: Supported XSQL Query Criteria Operators

1.3. OpenDaylight User Guide 517

OpenDaylight Documentation Documentation, Release Carbon

Example: Skip Criteria Operator

If you are looking at the following structure and want to determine all of the ports that belong to a YY type module:

• Network Element 1

– Module 1, Type XX

* Module 1.1, Type YY

· Port 1

· Port 2

– Module 2, Type YY

* Port 1

* Port 2

If you specify Module.Type=*YY* in your query criteria, the ports associated with module 1.1 will not be returned
since its parent module is type XX. Instead, enter Module.Type=*YY* or skip Module!=*YY*. This tells XSQL to
disregard any parent module data that does not meet the type YY criteria and collect results for any matching child
modules. In this example, you are instructing the query to skip module 1 and collect the relevant data from module
1.1.

1.3.2 Project-specific User Guides

ALTO User Guide

Overview

The ALTO project is aimed to provide support for Application Layer Traffic Optimization services defined in RFC
7285 in OpenDaylight.

This user guide will introduce the three basic services (namely simple-ird, manual-maps and
host-tracker) which are implemented since the Beryllium release, and give instructions on how to configure
them to provide corresponding ALTO services.

A new feature named simple-pce (Simple Path Computation Engine) is added into Boron release as an ALTO
extension service.

How to Identify ALTO Resources

Each ALTO resource can be uniquely identified by a tuple . For each resource, a version-tag is used to support
historical look-ups.

The formats of resource-id and version-tag are defined in section 10.2 and section 10.3 respectively. The context-id
is not part of the protocol and we choose the same format as a universal unique identifier (UUID) which is defined in
RFC 4122.

A context is like a namespace for ALTO resources, which eliminates resource-id collisions. For simplicity, we also
provide a default context with the id 000000000000-0000-0000-0000-00000000.

How to Use Simple IRD

The simple IRD feature provides a simple information resource directory (IRD) service defined in RFC 7285.

518 Chapter 1. Content for OpenDaylight Users

https://tools.ietf.org/html/rfc7285
https://tools.ietf.org/html/rfc7285
https://tools.ietf.org/html/rfc7285#section-10.2
https://tools.ietf.org/html/rfc7285#section-10.3
http://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc7285#section-9

OpenDaylight Documentation Documentation, Release Carbon

Install the Feature

To enable simple IRD, run the following command in the karaf CLI:

karaf > feature:install odl-alto-simpleird

After the feature is successfully installed, a special context will be created for all simple IRD resources. The id for this
context can be seen by executing the following command in a terminal:

curl -X GET -u admin:admin http://localhost:8181/restconf/operational/alto-simple-
→˓ird:information/

Create a new IRD

To create a new IRD resource, two fields MUST be provided:

• Field instance-id: the resource-id of the IRD resource;

• Field entry-context: the context-id for non-IRD entries managed by this IRD resource.

Using the following script, one can create an empty IRD resource:

#!/bin/bash
filename: ird-create
INSTANCE_ID=$1
if [$2]; then

CONTEXT_ID=$2
else

CONTEXT_ID="00000000-0000-0000-0000-000000000000"
fi
URL="`http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-
→˓configuration/"$INSTANCE_ID"/[`http://localhost:8181/restconf/config/alto-simple-
→˓ird:ird-instance-configuration/"$INSTANCE_ID"/`]`"
DATA=$(cat template \

| sed 's/\$1/'$CONTEXT_ID'/g' \
| sed 's/\$2/'$INSTANCE_ID'/g')

curl -4 -D - -X PUT -u admin:admin \
-H "Content-Type: application/json" -d "$(echo $DATA)"\
$URL

For example, the following command will create a new IRD named ird which can accept entries with the default
context-id:

$./ird-create ird 000000000000-0000-0000-0000-00000000

And below is the what the template file looks like:

{
"ird-instance-configuration": {

"entry-context": "/alto-resourcepool:context[alto-resourcepool:context-id='$1
→˓']",

"instance-id": "$2"
}

}

1.3. OpenDaylight User Guide 519

OpenDaylight Documentation Documentation, Release Carbon

Remove an IRD

To remove an existing IRD (and all the entries in it), one can use the following command in a terminal:

curl -X DELETE -u admin:admin http://localhost:8181/restconf/config/alto-simple-
→˓ird:ird-instance-configuration/$INSTANCE_ID

Add a new entry

There are several ways to add entries to an IRD and in this section we introduce only the simplest method. Using the
following script, one can add a new entry to the target IRD.

For each new entry, four parameters MUST be provided:

• Parameter ird-id: the resource-id of the target IRD;

• Parameter entry-id: the resource-id of the ALTO service to be added;

• Parameter context-id: the context-id of the ALTO service to be added, which MUST be identical to the target
IRD’s entry-context;

• Parameter location: either a URI or a relative path to the ALTO service.

The following script can be used to add one entry to the target IRD, where the relative path is used:

#!/bin/bash
filename: ird-add-entry
IRD_ID=$1
ENTRY_ID=$2
CONTEXT_ID=$3
BASE_URL=$4
URL="`http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-
→˓configuration/"$IRD_ID"/ird-configuration-entry/"$ENTRY_ID"/"
DATA=$(cat template \

| sed 's/\$1/'$ENTRY_ID'/g' \
| sed 's/\$2/'$CONTEXT_ID'/g' \
| sed 's/\$3/'$BASE_URL'/g')

curl -4 -D - -X PUT -u admin:admin \
-H "Content-Type: application/json" -d "$(echo $DATA)" \
$URL

For example, the following command will add a new resource named networkmap, whose context-id is the default
context-id and the base URL is /alto/networkmap, to the IRD named ird:

$./ird-add-entry ird networkmap 000000000000-0000-0000-0000-00000000 /alto/networkmap

And below is the template file:

{
"ird-configuration-entry": {

"entry-id": "$1",
"instance": "/alto-resourcepool:context[alto-resourcepool:context-id='$2']/

→˓alto-resourcepool:resource[alto-resourcepool:resource-id='$1']",
"path": "$3/$1"

}
}

520 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Remove an entry

To remove an entry from an IRD, one can use the following one-line command:

curl -X DELETE -u admin:admin http://localhost:8181/restconf/config/alto-simple-
→˓ird:ird-instance-configuration/$IRD_ID/ird-configuration-entry/$ENTRY_ID/

How to Use Host-tracker-based ECS

As a real instance of ALTO services, *alto-hosttracker* reads data from *l2switch* and generates a network map
with resource id *hosttracker-network-map* and a cost map with resource id *hostracker-cost-map*. It can only
work with OpenFlow-enabled networks.

After installing the *odl-alto-hosttracker* feature, the corresponding network map and cost map will be inserted into
the data store.

Managing Resource with alto-resourcepool

After installing odl-alto-release feature in Karaf, alto-resourcepool feature will be installed automati-
cally. And you can manage all resources in ALTO via RESTCONF APIs provided by alto-resourcepool.

With the example bash script below you can get any resource infomation in a given context.

#!/bin/bash
RESOURCE_ID=$1
if [$2] ; then

CONTEXT_ID=$2
else

CONTEXT_ID="00000000-0000-0000-0000-000000000000"
fi
URL="http://localhost:8181/restconf/operational/alto-resourcepool:context/"$CONTEXT_ID
→˓"/alto-resourcepool:resource/"$RESOURCE_ID
curl -X GET -u admin:admin $URL | python -m json.tool | sed -n '/default-tag/p' | sed
→˓'s/.*:.*\"\(.*\)\".*/\1/g'

Manual Configuration

Using RESTCONF API

After installing odl-alto-release feature in Karaf, it is possible to manage network-maps and cost-maps using
RESTCONF. Take a look at all the operations provided by resource-config at the API service page which can
be found at http://localhost:8181/apidoc/explorer/index.html.

The easiest method to operate network-maps and cost-maps is to modify data broker via RESTCONF API directly.

Using RPC

The resource-config package also provides a query RPC to config the resources. You can CREATE, UPDATE
and DELETE network-maps and cost-maps via query RPC.

1.3. OpenDaylight User Guide 521

OpenDaylight Documentation Documentation, Release Carbon

Simple Path Computation Engine

The simple-pce module provides a simple path computation engine for ALTO and other projects. It supports basic
CRUD (create, read, update, delete) operations to manage L2 and L3 routing with/without rate limitation. This module
is an independent feature, so you can follow the instruction below to install it independently.

karaf > feature:install odl-alto-extenstion

Note: The rate limitation meter requires OpenFlow 1.3 support.

Basic Usage with RESTCONF API

You can use the simple path computation engine with RESTCONF API, which is defined in the YANG model here.

Use Case

Server Selection

One of the key use case for ALTO is server selection. For example, a client (with IP address 10.0.0.1) sends a data
transferring request to Data Transferring Service (DTS). And there are three data replica servers (with IP address
10.60.0.1, 10.60.0.2 and 10.60.0.3) which can response the request. In this case, DTS can send a query request to
ALTO server to make server selection decision.

Following is an example ALTO query:

POST /alto/endpointcost HTTP/1.1
Host: localhost:8080
Content-Type: application/alto-endpointcostparams+json
Accept: application/alto-endpointcost+json,application/alto-error+json
{

"cost-type": {
"cost-mode": "ordinal",
"cost-metric": "hopcount"

},
"endpoints": {
"srcs": ["ipv4:10.0.0.1"],
"dsts": [

"ipv4:10.60.0.1",
"ipv4:10.60.0.2",
"ipv4:10.60.0.3"

]
}

}

Authentication, Authorization and Accounting (AAA) Services

Overview

Authentication, Authorization and Accounting (AAA) is a term for a framework controlling access to resources,
enforcing policies to use those resources and auditing their usage. These processes are the fundamental building

522 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=alto.git;a=blob;f=alto-extensions/simple-pce/api/src/main/yang/alto-spce.yang;h=f5bbe6744f7dfba493edd275aa18114e363727ab;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

blocks for effective network management and security.

Authentication provides a way of identifying a user, typically by having the user enter a valid user name and valid
password before access is granted. The process of authentication is based on each user having a unique set of criteria
for gaining access. The AAA framework compares a user’s authentication credentials with other user credentials
stored in a database. If the credentials match, the user is granted access to the network. If the credentials don’t match,
authentication fails and access is denied.

Authorization is the process of finding out what an authenticated user is allowed to do within the system, which tasks
can do, which API can call, etc. The authorization process determines whether the user has the authority to perform
such actions.

Accounting is the process of logging the activity of an authenticated user, for example, the amount of data a user has
sent and/or received during a session, which APIs called, etc.

Terms And Definitions

AAA Authentication, Authorization and Accounting.

Token A claim of access to a group of resources on the controller.

Domain A group of resources, direct or indirect, physical, logical, or virtual, for the purpose of access control.

User A person who either owns or has access to a resource or group of resources on the controller.

Role Opaque representation of a set of permissions, which is merely a unique string as admin or guest.

Credential Proof of identity such as user name and password, OTP, biometrics, or others.

Client A service or application that requires access to the controller.

Claim A data set of validated assertions regarding a user, e.g. the role, domain, name, etc.

Grant It is the entity associating a user with his role and domain.

IdP Identity Provider.

TLS Transport Layer Security

CLI Command Line Interface

Security Framework for AAA services

Since Boron release, the OpenDaylight’s AAA services are based on the Apache Shiro Java Security Framework. The
main configuration file for AAA is located at “etc/shiro.ini” relative to the OpenDaylight Karaf home directory.

How to enable AAA

AAA is enabled through installing the odl-aaa-shiro feature. The vast majority of OpenDaylight’s northbound APIs
(and all RESTCONF APIs) are protected by AAA by default when installing the +odl-restconf+ feature, since the
odl-aaa-shiro is automatically installed as part of them. In the cases that APIs are not protected by AAA, this will be
noted in the per-project release notes.

How to disable AAA

Edit the “etc/shiro.ini” file and replace the following:

1.3. OpenDaylight User Guide 523

https://shiro.apache.org/

OpenDaylight Documentation Documentation, Release Carbon

/** = authcBasic

with

/** = anon

Then restart the Karaf process.

AAA Realms

AAA plugin utilizes the Shiro Realms to support pluggable authentication & authorization schemes. There are two
parent types of realms:

• AuthenticatingRealm

– Provides no Authorization capability.

– Users authenticated through this type of realm are treated equally.

• AuthorizingRealm

– AuthorizingRealm is a more sophisticated AuthenticatingRealm, which provides the additional mecha-
nisms to distinguish users based on roles.

– Useful for applications in which roles determine allowed capabilities.

OpenDaylight contains five implementations:

• TokenAuthRealm

– An AuthorizingRealm built to bridge the Shiro-based AAA service with the h2-based AAA implementa-
tion.

– Exposes a RESTful web service to manipulate IdM policy on a per-node basis. If identical AAA policy is
desired across a cluster, the backing data store must be synchronized using an out of band method.

– A python script located at “etc/idmtool” is included to help manipulate data contained in the TokenAu-
thRealm.

– Enabled out of the box. This is the realm configured by default.

• ODLJndiLdapRealm

– An AuthorizingRealm built to extract identity information from IdM data contained on an LDAP server.

– Extracts group information from LDAP, which is translated into OpenDaylight roles.

– Useful when federating against an existing LDAP server, in which only certain types of users should have
certain access privileges.

– Disabled out of the box.

• ODLJndiLdapRealmAuthNOnly

– The same as ODLJndiLdapRealm, except without role extraction. Thus, all LDAP users have equal au-
thentication and authorization rights.

– Disabled out of the box.

• ODLActiveDirectoryRealm

– Wraps the generic ActiveDirectoryRealm provided by Shiro. This allows for enhanced logging as well as
isolation of all realms in a single package, which enables easier import by consuming servlets.

524 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• KeystoneAuthRealm

– This realm authenticates OpenDaylight users against the OpenStack’s Keystone server.

– Disabled out of the box.

Note: More than one Realm implementation can be specified. Realms are attempted in order until authentication
succeeds or all realm sources are exhausted. Edit the securityManager.realms = $tokenAuthRealm property in
shiro.ini and add all the realms needed separated by commas.

TokenAuthRealm

How it works

The TokenAuthRealm is the default Authorization Realm deployed in OpenDaylight. TokenAuthRealm uses a direct
authentication mechanism as shown in the following picture:

Fig. 1.19: TokenAuthRealm direct authentication mechanism

A user presents some credentials (e.g., username/password) directly to the OpenDaylight controller token endpoint
/oauth2/token and receives an access token, which then can be used to access protected resources on the controller.

Configuring TokenAuthRealm

The TokenAuthRealm stores IdM data in an h2 database on each node. Thus, configuration of a cluster currently
requires configuring the desired IdM policy on each node. There are two supported methods to manipulate the Toke-
nAuthRealm IdM configuration:

• idmtool configuration tool

• RESTful Web Service configuration

Idmtool

A utility script located at “etc/idmtool” is used to manipulate the TokenAuthRealm IdM policy. idmtool assumes a
single domain, the default one (sdn), since multiple domains are not supported in the Boron release. General usage
information for idmtool is derived through issuing the following command:

1.3. OpenDaylight User Guide 525

OpenDaylight Documentation Documentation, Release Carbon

$ python etc/idmtool -h
usage: idmtool [-h] [--target-host TARGET_HOST]

user
{list-users,add-user,change-password,delete-user,list-domains,list-

→˓roles,add-role,delete-role,add-grant,get-grants,delete-grant}
...

positional arguments:
user username for BSC node
{list-users,add-user,change-password,delete-user,list-domains,list-roles,add-role,

→˓delete-role,add-grant,get-grants,delete-grant}
sub-command help

list-users list all users
add-user add a user
change-password change a password
delete-user delete a user
list-domains list all domains
list-roles list all roles
add-role add a role
delete-role delete a role
add-grant add a grant
get-grants get grants for userid on sdn
delete-grant delete a grant

optional arguments:
-h, --help show this help message and exit
--target-host TARGET_HOST

target host node

Add a user

python etc/idmtool admin add-user newUser
Password:
Enter new password:
Re-enter password:
add_user(admin)

command succeeded!

json:
{

"description": "",
"domainid": "sdn",
"email": "",
"enabled": true,
"name": "newUser",
"password": "**********",
"salt": "**********",
"userid": "newUser@sdn"

}

Note: AAA redacts the password and salt fields for security purposes.

526 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Delete a user

$ python etc/idmtool admin delete-user newUser@sdn
Password:
delete_user(newUser@sdn)

command succeeded!

List all users

$ python etc/idmtool admin list-users
Password:
list_users

command succeeded!

json:
{

"users": [
{

"description": "user user",
"domainid": "sdn",
"email": "",
"enabled": true,
"name": "user",
"password": "**********",
"salt": "**********",
"userid": "user@sdn"

},
{

"description": "admin user",
"domainid": "sdn",
"email": "",
"enabled": true,
"name": "admin",
"password": "**********",
"salt": "**********",
"userid": "admin@sdn"

}
]

}

Change a user’s password

$ python etc/idmtool admin change-password admin@sdn
Password:
Enter new password:
Re-enter password:
change_password(admin)

command succeeded!

json:

1.3. OpenDaylight User Guide 527

OpenDaylight Documentation Documentation, Release Carbon

{
"description": "admin user",
"domainid": "sdn",
"email": "",
"enabled": true,
"name": "admin",
"password": "**********",
"salt": "**********",
"userid": "admin@sdn"

}

Add a role

$ python etc/idmtool admin add-role network-admin
Password:
add_role(network-admin)

command succeeded!

json:
{

"description": "",
"domainid": "sdn",
"name": "network-admin",
"roleid": "network-admin@sdn"

}

Delete a role

$ python etc/idmtool admin delete-role network-admin@sdn
Password:
delete_role(network-admin@sdn)

command succeeded!

List all roles

$ python etc/idmtool admin list-roles
Password:
list_roles

command succeeded!

json:
{

"roles": [
{

"description": "a role for admins",
"domainid": "sdn",
"name": "admin",
"roleid": "admin@sdn"

528 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

},
{

"description": "a role for users",
"domainid": "sdn",
"name": "user",
"roleid": "user@sdn"

}
]

}

List all domains

$ python etc/idmtool admin list-domains
Password:
list_domains

command succeeded!

json:
{

"domains": [
{

"description": "default odl sdn domain",
"domainid": "sdn",
"enabled": true,
"name": "sdn"

}
]

}

Add a grant

$ python etc/idmtool admin add-grant user@sdn admin@sdn
Password:
add_grant(userid=user@sdn,roleid=admin@sdn)

command succeeded!

json:
{

"domainid": "sdn",
"grantid": "user@sdn@admin@sdn@sdn",
"roleid": "admin@sdn",
"userid": "user@sdn"

}

Delete a grant

$ python etc/idmtool admin delete-grant user@sdn admin@sdn
Password:
http://localhost:8181/auth/v1/domains/sdn/users/user@sdn/roles/admin@sdn

1.3. OpenDaylight User Guide 529

OpenDaylight Documentation Documentation, Release Carbon

delete_grant(userid=user@sdn,roleid=admin@sdn)

command succeeded!

Get grants for a user

python etc/idmtool admin get-grants admin@sdn
Password:
get_grants(admin@sdn)

command succeeded!

json:
{

"roles": [
{

"description": "a role for users",
"domainid": "sdn",
"name": "user",
"roleid": "user@sdn"

},
{

"description": "a role for admins",
"domainid": "sdn",
"name": "admin",
"roleid": "admin@sdn"

}
]

}

Configuration using the RESTful Web Service

The TokenAuthRealm IdM policy is fully configurable through a RESTful web service. Full documentation for ma-
nipulating AAA IdM data is located online (https://wiki.opendaylight.org/images/0/00/AAA_Test_Plan.docx), and a
few examples are included in this guide:

Get All Users

curl -u admin:admin http://localhost:8181/auth/v1/users
OUTPUT:
{

"users": [
{

"description": "user user",
"domainid": "sdn",
"email": "",
"enabled": true,
"name": "user",
"password": "**********",
"salt": "**********",
"userid": "user@sdn"

},

530 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/images/0/00/AAA_Test_Plan.docx

OpenDaylight Documentation Documentation, Release Carbon

{
"description": "admin user",
"domainid": "sdn",
"email": "",
"enabled": true,
"name": "admin",
"password": "**********",
"salt": "**********",
"userid": "admin@sdn"

}
]

}

Create a User

curl -u admin:admin -X POST -H "Content-Type: application/json" --data-binary @./user.
→˓json http://localhost:8181/auth/v1/users
PAYLOAD:
{

"name": "ryan",
"userid": "ryan@sdn",
"password": "ryan",
"domainid": "sdn",
"description": "Ryan's User Account",
"email": "ryandgoulding@gmail.com"

}

OUTPUT:
{

"userid":"ryan@sdn",
"name":"ryan",
"description":"Ryan's User Account",
"enabled":true,
"email":"ryandgoulding@gmail.com",
"password":"**********",
"salt":"**********",
"domainid":"sdn"

}

Create an OAuth2 Token For Admin Scoped to SDN

curl -d 'grant_type=password&username=admin&password=a&scope=sdn' http://
→˓localhost:8181/oauth2/token

OUTPUT:
{

"expires_in":3600,
"token_type":"Bearer",
"access_token":"5a615fbc-bcad-3759-95f4-ad97e831c730"

}

1.3. OpenDaylight User Guide 531

OpenDaylight Documentation Documentation, Release Carbon

Use an OAuth2 Token

curl -H "Authorization: Bearer 5a615fbc-bcad-3759-95f4-ad97e831c730" http://
→˓localhost:8181/auth/v1/domains
{

"domains":
[

{
"domainid":"sdn",
"name":"sdn”,
"description":"default odl sdn domain",
"enabled":true

}
]

}

Token Store Configuration Parameters

Edit the file “etc/opendaylight/karaf/08-authn-config.xml” and edit the following: .timeToLive: Configure the maxi-
mum time, in milliseconds, that tokens are to be cached. Default is 360000. Save the file.

ODLJndiLdapRealm

How it works

LDAP integration is provided in order to externalize identity management. This configuration allows federation with
an external LDAP server. The user’s OpenDaylight role parameters are mapped to corresponding LDAP attributes
as specified by the groupRolesMap. Thus, an LDAP operator can provision attributes for LDAP users that support
different OpenDaylight role structures.

Configuring ODLJndiLdapRealm

To configure LDAP parameters, modify “etc/shiro.ini” parameters to include the ODLJndiLdapRealm:

OpenDaylight provides a few LDAP implementations, which are disabled out of the box.
ODLJndiLdapRealm includes authorization functionality based on LDAP elements
extracted through and LDAP search. This requires a bit of knowledge about
how your LDAP system is setup. An example is provided below:
ldapRealm = org.opendaylight.aaa.shiro.realm.ODLJndiLdapRealm
ldapRealm.userDnTemplate = uid={0},ou=People,dc=DOMAIN,dc=TLD
ldapRealm.contextFactory.url = ldap://<URL>:389
ldapRealm.searchBase = dc=DOMAIN,dc=TLD
ldapRealm.ldapAttributeForComparison = objectClass
ldapRealm.groupRolesMap = "Person":"admin"
...
further down in the file...
Stacked realm configuration; realms are round-robbined until authentication
→˓succeeds or realm sources are exhausted.
securityManager.realms = $tokenAuthRealm, $ldapRealm

532 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

ODLJndiLdapRealmAuthNOnly

How it works

This is useful for setups where all LDAP users are allowed equal access.

Configuring ODLJndiLdapRealmAuthNOnly

Edit the “etc/shiro.ini” file and modify the following:

ldapRealm = org.opendaylight.aaa.shiro.realm.ODLJndiLdapRealm
ldapRealm.userDnTemplate = uid={0},ou=People,dc=DOMAIN,dc=TLD
ldapRealm.contextFactory.url = ldap://<URL>:389
...
further down in the file...
Stacked realm configuration; realms are round-robbined until authentication
→˓succeeds or realm sources are exhausted.
securityManager.realms = $tokenAuthRealm, $ldapRealm

KeystoneAuthRealm

How it works

This realm authenticates OpenDaylight users against the OpenStack’s Keystone server. This realm uses the Keystone’s
Identity API v3 or later.

Fig. 1.20: KeystoneAuthRealm authentication/authorization mechanism

As can shown on the above diagram, once configured, all the RESTCONF APIs calls will require sending user,
password and optionally domain (1). Those credentials are used to authenticate the call against the Keystone server
(2) and, if the authentication succeeds, the call will proceed to the MDSAL (3). The credentials must be provisioned
in advance within the Keystone Server. The user and password are mandatory, while the domain is optional, in case
it is not provided within the REST call, the realm will default to (Default), which is hard-coded. The default domain
can be also configured through the shiro.ini file (see the AAA User Guide).

The protocol between the Controller and the Keystone Server (2) can be either HTTPS or HTTP. In order to use HTTPS
the Keystone Server’s certificate must be exported and imported on the Controller (see the Certificate Management
section).

1.3. OpenDaylight User Guide 533

https://developer.openstack.org/api-ref/identity/v3/
https://developer.openstack.org/api-ref/identity/v3/

OpenDaylight Documentation Documentation, Release Carbon

Configuring KeystoneAuthRealm

Edit the “etc/shiro.ini” file and modify the following:

The KeystoneAuthRealm allows for authentication/authorization against an
OpenStack's Keystone server. It uses the Identity's API v3 or later.
keystoneAuthRealm = org.opendaylight.aaa.shiro.realm.KeystoneAuthRealm
The URL where the Keystone server exposes the Identity's API v3 the URL
can be either HTTP or HTTPS and it is mandatory for this realm.
keystoneAuthRealm.url = https://<host>:<port>
Optional parameter to make the realm verify the certificates in case of HTTPS
#keystoneAuthRealm.sslVerification = true
Optional parameter to set up a default domain for requests using credentials
without domain, uncomment in case you want a different value from the hard-coded
one "Default"
#keystoneAuthRealm.defaultDomain = Default

Once configured the realm, the mandatory fields are the fully quallified name of the class implementing the realm
keystoneAuthRealm and the endpoint where the Keystone Server is listening keystoneAuthRealm.url.

The optional parameter keystoneAuthRealm.sslVerification specifies whether the realm has to verify the SSL certificate
or not. The optional parameter keystoneAuthRealm.defaultDomain allows to use a different default domain from the
hard-coded one “Default”.

Authorization Configuration

OpenDaylight supports two authorization engines at present, both of which are roughly similar in behavior:

• Shiro-Based Authorization

• MDSAL-Based Dynamic Authorization

Note: The preferred mechanism for configuring AAA Authentication is the MDSAL-Based Dynamic Authorization.
Read the following section.

Shiro-Based Static Authorization

OpenDaylight AAA has support for Role Based Access Control (RBAC) based on the Apache Shiro permissions
system. Configuration of the authorization system is done off-line; authorization currently cannot be configured after
the controller is started. The Authorization provided by this mechanism is aimed towards supporting coarse-grained
security policies, the MDSAL-Based mechanism allows for a more robust configuration capabilities. Shiro-based
Authorization describes how to configure the Authentication feature in detail.

Enable “admin” Role Based Access to the IdMLight RESTful web service

Edit the “etc/shiro.ini” configuration file and add “/auth/v1/**= authcBasic, roles[admin]” above the line “/** = au-
thcBasic” within the “urls” section.

/auth/v1/** = authcBasic, roles[admin]
/** = authcBasic

534 Chapter 1. Content for OpenDaylight Users

http://shiro.apache.org/web.html#Web-%7B%7B%5Curls%5C%7D%7D
http://shiro.apache.org/web.html#Web-%7B%7B%5Curls%5C%7D%7D

OpenDaylight Documentation Documentation, Release Carbon

This will restrict the idmlight rest endpoints so that a grant for admin role must be present for the requesting user.

Note: The ordering of the authorization rules above is important!

MDSAL-Based Dynamic Authorization

The MDSAL-Based Dynamic authorization uses the MDSALDynamicAuthorizationFilter engine to restrict access to
particular URL endpoint patterns. Users may define a list of policies that are insertion-ordered. Order matters for that
list of policies, since the first matching policy is applied. This choice was made to emulate behavior of the Shiro-Based
Authorization mechanism.

A policy is a key/value pair, where the key is a resource (i.e., a “URL pattern”) and the value is a list of permissions
for the resource. The following describes the various elements of a policy:

• Resource: the resource is a string URL pattern as outlined by Apache Shiro. For more information, see http:
//shiro.apache.org/web.html.

• Description: an optional description of the URL endpoint and why it is being secured.

• Permissions list: a list of permissions for a particular policy. If more than one permission exists in the per-
missions list they are evaluated using logical “OR”. A permission describes the prerequisites to perform HTTP
operations on a particular endpoint. The following describes the various elements of a permission:

– Role: the role required to access the target URL endpoint.

– Actions list: a leaf-list of HTTP permissions that are allowed for a Subject possessing the required role.

This an example on how to limit access to the modules endpoint:

HTTP Operation:
put URL: /restconf/config/aaa:http-authorization/policies

headers: Content-Type: application/json Accept: application/json

body:
{ "aaa:policies":
{ "aaa:policies":

[{ "aaa:resource": "/restconf/modules/**",
"aaa:permissions": [{ "aaa:role": "admin",

"aaa:actions": ["get",
"post",
"put",
"patch",
"delete"

]
}

]
}

]
}

}

The above example locks down access to the modules endpoint (and any URLS available past modules) to the “admin”
role. Thus, an attempt from the OOB admin user will succeed with 2XX HTTP status code, while an attempt from the
OOB user user will fail with HTTP status code 401, as the user user is not granted the “admin” role.

1.3. OpenDaylight User Guide 535

http://shiro.apache.org/web.html
http://shiro.apache.org/web.html

OpenDaylight Documentation Documentation, Release Carbon

Accounting Configuration

Accounting is handled through the standard slf4j logging mechanisms used by the rest of OpenDaylight. Thus, one can
control logging verbosity through manipulating the log levels for individual packages and classes directly through the
Karaf console, JMX, or etc/org.ops4j.pax.logging.cfg. In normal operations, the default levels exposed do not provide
much information about AAA services; this is due to the fact that logging can severely degrade performance.

All AAA logging is output to the standard karaf.log file. For debugging purposes (i.e., to enable maximum verbosity),
issue the following command:

log:set TRACE org.opendaylight.aaa

Enable Successful/Unsuccessful Authentication Attempts Logging

By default, successful/unsuccessful authentication attempts are NOT logged. This is due to the fact that logging
can severely decrease REST performance. To enable logging of successful/unsuccessful REST attempts, issue the
following command in Karaf’s console:

log:set DEBUG org.opendaylight.aaa.shiro.filters.AuthenticationListener

It is possible to add custom AuthenticationListener(s) to the Shiro-based configuration, allowing different ways to
listen for successful/unsuccessful authentication attempts. Custom AuthenticationListener(s) must implement the
org.apache.shiro.authc.AuthenticationListener interface.

Certificate Management

The Certificate Management Service is used to manage the keystores and certificates at the OpenDaylight distribution
to easily provides the TLS communication.

The Certificate Management Service managing two keystores:

1. OpenDaylight Keystore which holds the OpenDaylight distribution certificate self sign certificate or signed
certificate from a root CA based on generated certificate request.

2. Trust Keystore which holds all the network nodes certificates that shall to communicate with the OpenDaylight
distribution through TLS communication.

The Certificate Management Service stores the keystores (OpenDaylight & Trust) as .jks files under configuration/ssl/
directory. Also the keystores could be stored at the MD-SAL datastore in case OpenDaylight distribution running
at cluster environment. When the keystores are stored at MD-SAL, the Certificate Management Service rely on the
Encryption-Service to encrypt the keystore data before storing it to MD-SAL and decrypted at runtime.

How to use the Certificate Management Service to manage the TLS communication

The following are the steps to configure the TLS communication:

1. After starting the distribution, the odl-aaa-cert feature has to get installed. Use the following command at Karaf
CLI to check.

opendaylight-user@root>feature:list -i | grep aaa-cert
odl-aaa-cert | 0.5.0-SNAPSHOT | x | odl-aaa-0.5.0-SNAPSHOT | OpenDaylight :: AAA ::
→˓aaa certificate Service

536 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

2. The initial configuration of the Certificate Manager Service exists under the distribution directory
etc/opendaylight/datastore/initial/config/aaa-cert-config.xml.

<aaa-cert-service-config xmlns="urn:opendaylight:yang:aaa:cert">
<use-config>false</use-config>
<use-mdsal>false</use-mdsal>
<bundle-name>opendaylight</bundle-name>
<ctlKeystore>
<name>ctl.jks</name>
<alias>controller</alias>
<store-password/>
<dname>CN=ODL, OU=Dev, O=LinuxFoundation, L=QC Montreal, C=CA</dname>
<validity>365</validity>
<key-alg>RSA</key-alg>
<sign-alg>SHA1WithRSAEncryption</sign-alg>
<keysize>1024</keysize>
<cipher-suites>

<suite-name />
</cipher-suites>

</ctlKeystore>
<trustKeystore>
<name>truststore.jks</name>
<store-password/>

</trustKeystore>
</aaa-cert-service-config>

Now as it is explained above, the Certificate Manager Service support two mode of operations; cluster mode and
single mode. To use the single mode change the use-config to true and it is recommended as long as there is no need
for cluster environment. To use the cluster mode change the use-config and use-mdsal configurations to true and the
keystores will be stored and shard across the cluster nodes within the MD-SAL datastore.

The initial password become randomly generated when the aaa-cert feature is installed.

The cipher suites can be restricted by changing the <cipher-suites> configuration, however, the JDK has to be up-
graded by installing the Java Cryptography Extension policy.

<cipher-suites>
<suite-name>TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384</suite-name>

</cipher-suites>
<cipher-suites>

<suite-name>TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384</suite-name>
</cipher-suites>

<cipher-suites>
<suite-name>TLS_DHE_RSA_WITH_AES_256_GCM_SHA384</suite-name>

</cipher-suites>

3. The new configurations will take affect after restarting the distribution.

4. Now to add or get certificate to the OpenDaylight and Trust keystores, the Certificate Manager Service provides the
following RPCs.

a) Set the node certificate that will communicate with OpeDaylight through TLS
connection.
POST /operations/aaa-cert-rpc:setNodeCertifcate
{

"input": {
"node-cert": "string",
"node-alias": "string"

}

1.3. OpenDaylight User Guide 537

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

OpenDaylight Documentation Documentation, Release Carbon

}

b) Get the node certificate based on node alias.
POST /operations/aaa-cert-rpc:getNodeCertifcate
{

"input": {
"node-alias": "string"

}
}

c) Get the OpeDaylight keystore certificate.
POST /operations/aaa-cert-rpc:getODLCertificate
{

output {
odl-cert "string"

}
}

d) Generate a certificate request from the OpeDaylight keystore to be signed
by a CA.
POST /operations/aaa-cert-rpc:getODLCertificateReq
{

output {
odl-cert-req "string"

}
}

e) Set the OpeDaylight certificate, the certificate should be generated
based on a certificate request generated from the ODL keystore otherwise the
certificated will not be added.
POST /operations/aaa-cert-rpc:setODLCertificate
{

"input": {
"odl-cert-alias": "string",
"odl-cert": "string"

}
}

Note: The Certificate Manager Service RPCs are allowed only to the Role Admin Users and it could be completely
disabled through the shiro.ini config file. Check the URL section at the shiro.ini.

Encryption Service

The AAA Encryption Service is used to encrypt the OpenDaylight’s users’ passwords and TLS communication
certificates. This section shows how to use the AAA Encryption Service with an OpenDaylight distribution project to
encrypt data.

The following are the steps to configure the Encryption Service:

1. After starting the distribution, the aaa-encryption-service feature has to get installed. Use the following com-
mand at Karaf CLI to check.

538 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

opendaylight-user@root>feature:list -i | grep aaa-encryption-service
odl-aaa-encryption-service | 0.5.0-SNAPSHOT | x | odl-aaa-0.5.0-SNAPSHOT |
→˓OpenDaylight :: AAA :: Encryption Service

2. The initial configuration of the Encryption Service exists under the distribution directory
etc/opendaylight/datastore/initial/config/aaa-encrypt-service-config.xml

<aaa-encrypt-service-config xmlns="config:aaa:authn:encrypt:service:config">
<encrypt-key/>
<encrypt-salt/>
<encrypt-method>PBKDF2WithHmacSHA1</encrypt-method>
<encrypt-type>AES</encrypt-type>
<encrypt-iteration-count>32768</encrypt-iteration-count>
<encrypt-key-length>128</encrypt-key-length>
<cipher-transforms>AES/CBC/PKCS5Padding</cipher-transforms>

</aaa-encrypt-service-config>

Note: Both the initial encryption key and encryption salt become randomly generated when the aaa-encryption-
service feature is installed.

3. Finally the new configurations will take affect after restarting the distribution.

Using the AAA Command Line Interface (CLI)

The AAA offers a CLI through the Karaf’s console. This CLI allows the user to configure and use some of the
functionalities provided by AAA.

The AAA CLI exists under the odl-aaa-cli feature. This feature can be installed by executing the following command.

feature:install odl-aaa-cli

To check that the installation of the feature succeeded type “aaa” and press tab to see the list of available commands
under the aaa scope.

opendaylight-user@root>aaa:
aaa:add-domain aaa:add-grant aaa:add-role aaa:add-
→˓user
aaa:change-user-pwd aaa:export-keystores aaa:gen-cert-req aaa:get-
→˓cipher-suites
aaa:get-domains aaa:get-node-cert aaa:get-odl-cert aaa:get-
→˓roles
aaa:get-tls-protocols aaa:get-users aaa:import-keystores aaa:remove-
→˓domain
aaa:remove-grant aaa:remove-role aaa:remove-user

Add a User

The add-user command allows for adding an OpenDaylight user. The following user parameters can be specified.

aaa:add-user --name <user name>
--roleName <role>
--userDescription <user description>

1.3. OpenDaylight User Guide 539

OpenDaylight Documentation Documentation, Release Carbon

--email <user email>
--domainName <domain name>

List available Users

The get-users command list all the available users within the Controller.

aaa:get-users

user
admin

Remove a User

The remove-user command allows for removing an OpenDaylight user. The command needs the user name as param-
eter.

aaa:remove-user --name <user name>

Change the OpenDaylight user password

The change-user-pwd command allows for changing the OpenDaylight user’s password. It takes the user name as
argument then will ask for the given user current password.

aaa:change-user-pwd -user admin
Enter current password:
Enter new password:
admin's password has been changed

Add a Role

The add-role command allows for adding a role to the Controller.

aaa:add-role --name <role name>
--desc <role description>
--domainName <domain name>

List available Roles

The get-roles command list all the available roles within the controller.

aaa:get-roles

user
admin

540 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Remove a Role

The remove-role command allows for removing an OpenDaylight role. The command needs the role name as param-
eter. The role will be removed from those users who have it.

aaa:remove-role --name <role name>

Add a Domain

The add-domain command allows for adding a domain to the Controller.

aaa:add-domain --name <domain name>
--desc <domain description>

List available Domains

The get-domains command list all the available domains within the controller. The system asks for the administrator
credentials to execute this command.

aaa:get-domains

sdn

Remove a Domain

The remove-domain command allows for removing an OpenDaylight role. The command needs the domain name as
parameter.

aaa:remove-domain --name <domain name>

Add a Grant

The add-grant command allows for creating a grant for an existing user. The command returns a grant id for that user.

aaa:add-grant --userName <user name>
--domainName <domain name>
--roleName <role name>

Remove a Grant

The remove-grant command allows for removing an OpenDaylight grant. This command needs the user name, domain
and and role as parameters.

aaa:remove-grant --userName <user name>
--domainName <domain name>
--roleName <role name>

1.3. OpenDaylight User Guide 541

OpenDaylight Documentation Documentation, Release Carbon

Generate Certificate Request

Generate certificate request command will generate a certificate request based on the generated OpenDaylight keystore
and print it on the Karaf CLI. The system asks for the keystore password.

aaa:gen-cert-req

-----BEGIN CERTIFICATE REQUEST-----
MIIBlzCCAQACAQAwWTELMAkGA1UEBhMCQ0ExFDASBgNVBAcMC1FDIE1vbnRyZWFsMRgwFgYDVQQKDA
9MaW51eEZvdW5kYXRpb24xDDAKBgNVBAsMA0RldjEMMAoGA1UEAwwDT0RMMIGfMA0GCSqGSIb3DQEB
AQUAA4GNADCBiQKBgQCCmLW6j+JLYJM5yAMwscw/CHqPnp5elPa1YtQsHKEAvp1I+mLVtHKZeXeteA
kyp6ORxw6KQ515fcDyQVrRJiSM15jUd27UaFq5ku0+qJeG+Qh2btx+cvNSE7/+cgUWWosKz4Aff5F5
FqR62jLUTNzqCvoaTbZaOnLYVq+O2dYyZwIDAQABMA0GCSqGSIb3DQEBBQUAA4GBADhDr4Jm7gVm/o
p861/FShyw1ZZscxOEl2TprJZiTO6sn3sLptQZv8v52Z+Jm5dAgr7L46c97Xfa+0j6Y4LXNb0f88lL
RG8PxGbk6Tqbjqc0WS+U1Ibc/rcPK4HEN/bcYCn+Na1gLBaFXUPg08ozG6MwqFNeS5Z0jz1W0D9/oiao
-----END CERTIFICATE REQUEST-----

Get OpenDaylight Certificate

The get-odl-certificate command will print the OpenDaylight certificate at the Karaf CLI. The system asks for the
keystore password.

aaa:get-odl-cert -storepass <store_password>

-----BEGIN CERTIFICATE-----
MIICKTCCAZKgAwIBAgIEI75RWDANBgkqhkiG9w0BAQUFADBZMQwwCgYDVQQDDANPREwxDDAKBgNVBA
sMA0RldjEYMBYGA1UECgwPTGludXhGb3VuZGF0aW9uMRQwEgYDVQQHDAtRQyBNb250cmVhbDELMAkG
A1UEBhMCQ0EwHhcNMTYxMTMwMTYyNDE3WhcNMTcxMTMwMTYyNDE3WjBZMQwwCgYDVQQDDANPREwxDD
AKBgNVBAsMA0RldjEYMBYGA1UECgwPTGludXhGb3VuZGF0aW9uMRQwEgYDVQQHDAtRQyBNb250cmVh
bDELMAkGA1UEBhMCQ0EwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAIKYtbqP4ktgkznIAzCxzD
8Ieo+enl6U9rVi1CwcoQC+nUj6YtW0cpl5d614CTKno5HHDopDnXl9wPJBWtEmJIzXmNR3btRoWrmS
7T6ol4b5CHZu3H5y81ITv/5yBRZaiwrPgB9/kXkWpHraMtRM3OoK+hpNtlo6cthWr47Z1jJnAgMBAA
EwDQYJKoZIhvcNAQEFBQADgYEAL9DK/P/yEBre3Mg3bICAUAvSvZic+ydDmigWLsY4J3UzKdV2f1jI
s+rQTEgtlHShBf/ed546D49cp3XEzYrcxgILhGXDziCrUK0K1TiYqPTp6FLijjdydGlPpwuMyyV5Y0
iDiRclWuPz2fHbs8WQOWNs6VQ+WaREXtEsEC4qgSo=
-----END CERTIFICATE-----

Get Cipher Suites

The get-cipher-suites command shows the cipher suites supported by the JVM used by the OpenDaylight controller in
TLS communication. For example, here are the Default Ciphers Suites in JDK 8.

aaa:get-cipher-suites

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

Get TLS Protocols

The get-tls-protocols command shows the TLS protocols supported by the JVM used by the OpenDaylight controller.
For example, the JDK 8 supports the following TLS protocols: TLSv1.2 (default), TLSv1.1, TLSv1 and SSLv3.

542 Chapter 1. Content for OpenDaylight Users

http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#ciphersuites

OpenDaylight Documentation Documentation, Release Carbon

aaa:get-tls-protocols

TLS_KRB5_WITH_RC4_128_SHA
TLS_KRB5_WITH_RC4_128_MD5
TLS_KRB5_WITH_3DES_EDE_CBC_SHA
TLS_KRB5_WITH_3DES_EDE_CBC_MD5
TLS_KRB5_WITH_DES_CBC_SHA

Get Node Certificate

The get-node-cert command prints a certificate for a given network node alias. This command is useful to check if the
network node certificate has been added properly to the truest keystore. It takes the certificate alias as arguments.

aaa:get-node-cert -alias ovs1
-----BEGIN CERTIFICATE-----
MIICKTCCAZKgAwIBAgIEI75RWDANBgkqhkiG9w0BAQUFADBZMQwwCgYDVQQDDANPREwxDDAKBgNVBA
sMA0RldjEYMBYGA1UECgwPTGludXhGb3VuZGF0aW9uMRQwEgYDVQQHDAtRQyBNb250cmVhbDELMAkG
A1UEBhMCQ0EwHhcNMTYxMTMwMTYyNDE3WhcNMTcxMTMwMTYyNDE3WjBZMQwwCgYDVQQDDANPREwxDD
AKBgNVBAsMA0RldjEYMBYGA1UECgwPTGludXhGb3VuZGF0aW9uMRQwEgYDVQQHDAtRQyBNb250cmVh
bDELMAkGA1UEBhMCQ0EwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAIKYtbqP4ktgkznIAzCxzD
8Ieo+enl6U9rVi1CwcoQC+nUj6YtW0cpl5d614CTKno5HHDopDnXl9wPJBWtEmJIzXmNR3btRoWrmS
7T6ol4b5CHZu3H5y81ITv/5yBRZaiwrPgB9/kXkWpHraMtRM3OoK+hpNtlo6cthWr47Z1jJnAgMBAA
EwDQYJKoZIhvcNAQEFBQADgYEAL9DK/P/yEBre3Mg3bICAUAvSvZic+ydDmigWLsY4J3UzKdV2f1jI
s+rQTEgtlHShBf/ed546D49cp3XEzYrcxgILhGXDziCrUK0K1TiYqPTp6FLijjdydGlPpwuMyyV5Y0
iDiRclWuPz2fHbs8WQOWNs6VQ+WaREXtEsEC4qgSo=
-----END CERTIFICATE-----

Export Keystores

The export-keystores command exports the default MD-SAL Keystores to .jks files in the default directory for keystores
(configuration/ssl/).

aaa:export-keystores

Default directory for keystores is configuration/ssl/

Import Keystores

The import-keystores command imports the default MD-SAL Keystores. The keystores (odl and trust) should exist
under default SSL directory (configuration/ssl/).

aaa:import-keystores --trustKeystoreName <name of the trust keystore>
--trustKeystorePwd <password for the trust keystore>
--odlKeystoreName <name of the ODL keystore>
--odlKeystorePwd <password for the ODL keystore>
--odlKeystoreAlias <alias of the ODL keystore>
--tlsProtocols <list of TLS protocols separated by ','>
--cipherSuites <list of Cipher suites separated by ','>

1.3. OpenDaylight User Guide 543

OpenDaylight Documentation Documentation, Release Carbon

Warning: It is strongly recommended to run the history clear command after you execute all the AAA CLI
commands so Karaf logs stay clean from any adversary.

history -c

BGP User Guide

This guide contains information on how to use OpenDaylight Border Gateway Protocol (BGP) plugin. The user should
learn about BGP basic concepts, supported capabilities, configuration and usage.

Contents

• Overview

• Running BGP

• Basic Configuration & Concepts

• IP Unicast Family

• IP Labeled Unicast Family

• IP L3VPN Family

• Link-State Family

• Flow Specification Family

• EVPN Family

• Additional Path

• Route Refresh

• Operational State

• High Availability

• Topology Provider

• Test Tools

• Troubleshooting

Overview

This section provides high-level overview of the Border Gateway Protocol, OpenDaylight implementation and BGP
usage in SDN era.

Contents

• Border Gateway Protocol

• BGP in SDN

• OpenDaylight BGP plugin

544 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• List of supported capabilities

Border Gateway Protocol

The Border Gateway Protocol (BGP) is an inter-Autonomous System (AS) routing protocol. The primary role of the
BGP is an exchange of routes among other BGP systems. The route is an unit of information which pairs destination
(IP address prefix) with attributes to the path with the destination. One of the most interesting attributes is a list of
ASes that the route traversed - essential when avoiding loop routing. Advertised routes are stored in the Routing
Information Bases (RIBs). Routes are later used to forward packets, stored in Routing Table for this purpose. The
main advantage of the BGP over other routing protocols is its scalability, thus it has become the standardized Internet
routing protocol (Internet is a set of ASes).

BGP in SDN

However BGP evolved long time before SDN was born, it plays a significant role in many SDN use-cases. Also,
continuous evolution of the protocol brings extensions that are very well suited for SDN. Nowadays, BGP can carry
various types of routing information - L3VPN, L2VPN, IP multicast, linkstate, etc. Here is a brief list of software-
based/legacy-network technologies where BGP-based SDN solution get into an action:

• SDN WAN - WAN orchestration and optimization

• SDN router - Turns switch into an Internet router

• Virtual Route Reflector - High-performance server-based BGP Route Reflector

• SDX - A Software Defined Internet Exchange controller

• Large-Scale Data Centers - BGP Data Center Routing, MPLS/SR in DCs, DC interconnection

• DDoS mitigation - Traffic Filtering distribution with BGP

OpenDaylight BGP plugin

The OpenDaylight controller provides an implementation of BGP (RFC 4271) as a south-bound protocol plugin. The
implementation renders all basic BGP speaker capabilities:

• inter/intra-AS peering

• routes advertising

• routes originating

• routes storage

The plugin’s north-bound API (REST/Java) provides to user:

• fully dynamic runtime standardized BGP configuration

• read-only access to all RIBs

• read-write programmable RIBs

• read-only reachability/linkstate topology view

Note: The BGP plugin is NOT a virtual router - does not construct Routing Tables, nor forward traffic.

1.3. OpenDaylight User Guide 545

OpenDaylight Documentation Documentation, Release Carbon

List of supported capabilities

In addition to the base protocol implementation, the plugin provides many extensions to BGP, all based on IETF
standards.

• RFC4271 - A Border Gateway Protocol 4 (BGP-4)

• RFC4456 - BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP)

• RFC1997 - BGP Communities Attribute

• RFC4360 - BGP Extended Communities Attribute

• RFC4486 - Subcodes for BGP Cease Notification Message

• RFC5492 - Capabilities Advertisement with BGP-4

• RFC5004 - Avoid BGP Best Path Transitions from One External to Another

• RFC6286 - Autonomous-System-Wide Unique BGP Identifier for BGP-4

• RFC6793 - BGP Support for Four-Octet Autonomous System (AS) Number Space

• RFC7311 - The Accumulated IGP Metric Attribute for BGP

• RFC5668 - 4-Octet AS Specific BGP Extended Community

• draft-ietf-idr-link-bandwidth - BGP Link Bandwidth Extended Community

• draft-ietf-idr-bgp-extended-messages - Extended Message support for BGP

• RFC4760 - Multiprotocol Extensions for BGP-4

– RFC7752 - North-Bound Distribution of Link-State and TE Information using BGP

* draft-gredler-idr-bgp-ls-segment-routing-ext - BGP Link-State extensions for Segment Routing

* draft-ietf-idr-bgpls-segment-routing-epe - Segment Routing Egress Peer Engineering BGP-LS
Extensions

– RFC5575 - Dissemination of Flow Specification Rules

* RFC7674 - Clarification of the Flowspec Redirect Extended Community

* draft-ietf-idr-flow-spec-v6 - Dissemination of Flow Specification Rules for IPv6

* draft-ietf-idr-flowspec-redirect-ip - BGP Flow-Spec Redirect to IP Action

– RFC3107 - Carrying Label Information in BGP-4

* draft-ietf-idr-bgp-prefix-sid - Segment Routing Prefix SID extensions for BGP

– RFC4364 - BGP/MPLS IP Virtual Private Networks (VPNs)

* RFC4659 - BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN

– RFC7432 - BGP MPLS-Based Ethernet VPN

* draft-ietf-bess-evpn-overlay - A Network Virtualization Overlay Solution using EVPN

* draft-ietf-bess-evpn-vpws - VPWS support in EVPN

• RFC7911 - Advertisement of Multiple Paths in BGP

• RFC2918 - Route Refresh Capability for BGP-4

546 Chapter 1. Content for OpenDaylight Users

https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc4456
https://tools.ietf.org/html/rfc1997
https://tools.ietf.org/html/rfc4360
https://tools.ietf.org/html/rfc4486
https://tools.ietf.org/html/rfc5492
https://tools.ietf.org/html/rfc5004
https://tools.ietf.org/html/rfc6286
https://tools.ietf.org/html/rfc6793
https://tools.ietf.org/html/rfc7311
https://tools.ietf.org/html/rfc5668
https://tools.ietf.org/html/draft-ietf-idr-link-bandwidth-06
https://tools.ietf.org/html/draft-ietf-idr-bgp-extended-messages-13
https://tools.ietf.org/html/rfc4760
https://tools.ietf.org/html/rfc7752
https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-03
https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-05
https://tools.ietf.org/html/rfc5575
http://tools.ietf.org/html/rfc7674
https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-07
https://tools.ietf.org/html/draft-ietf-idr-flowspec-redirect-ip-00
https://tools.ietf.org/html/rfc3107
https://tools.ietf.org/html/draft-ietf-idr-bgp-prefix-sid-03
https://tools.ietf.org/html/rfc4364
https://tools.ietf.org/html/rfc4659
https://tools.ietf.org/html/rfc7432
https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-04
https://tools.ietf.org/html/draft-ietf-bess-evpn-vpws-07
https://tools.ietf.org/html/rfc7911
https://tools.ietf.org/html/rfc2918

OpenDaylight Documentation Documentation, Release Carbon

Running BGP

This section explains how to install BGP plugin.

1. Install BGP feature - odl-bgpcep-bgp. Also, for sake of this sample, it is required to install RESTCONF.
In the Karaf console, type command:

feature:install odl-restconf odl-bgpcep-bgp

2. The BGP plugin contains a default configuration, which is applied after the feature starts up. One instance of
BGP plugin is created (named example-bgp-rib), and its presence can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib

Method: GET

Response Body:

<bgp-rib xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
<rib>

<id>example-bgp-rib</id>
<loc-rib>
....
</loc-rib>

</rib>
</bgp-rib>

Basic Configuration & Concepts

The following section shows how to configure BGP basics, how to verify functionality and presents essential com-
ponents of the plugin. Next samples demonstrate the plugin’s runtime configuration capability. It shows the way to
configure the plugin via REST, using standardized OpenConfig BGP APIs.

Contents

• BGP RIB API

• Protocol Configuration

• BGP Server

• BGP Peering

– External peering configuration

– Route reflector configuration

– MD5 authentication configuration

– Simple Routing Policy configuration

• BGP Application Peer and programmable RIB

– Application Peer configuration

– Programmable RIB

• BGP Protocol Configuration Loader

• BGP pipeline

1.3. OpenDaylight User Guide 547

OpenDaylight Documentation Documentation, Release Carbon

• References

BGP RIB API

This tree illustrates the BGP RIBs organization in datastore.

bgp-rib
+--ro rib* [id]

+--ro id rib-id
+--ro peer* [peer-id]
| +--ro peer-id peer-id
| +--ro peer-role peer-role
| +--ro simple-routing-policy? simple-routing-policy
| +--ro supported-tables* [afi safi]
| | +--ro afi identityref
| | +--ro safi identityref
| | +--ro send-receive? send-receive
| +--ro adj-rib-in
| | +--ro tables* [afi safi]
| | +--ro afi identityref
| | +--ro safi identityref
| | +--ro attributes
| | | +--ro uptodate? boolean
| | +--ro (routes)?
| +--ro effective-rib-in
| | +--ro tables* [afi safi]
| | +--ro afi identityref
| | +--ro safi identityref
| | +--ro attributes
| | | +--ro uptodate? boolean
| | +--ro (routes)?
| +--ro adj-rib-out
| +--ro tables* [afi safi]
| +--ro afi identityref
| +--ro safi identityref
| +--ro attributes
| | +--ro uptodate? boolean
| +--ro (routes)?
+--ro loc-rib

+--ro tables* [afi safi]
+--ro afi identityref
+--ro safi identityref
+--ro attributes
| +--ro uptodate? boolean
+--ro (routes)?

Protocol Configuration

As a first step, a new protocol instance needs to be configured. It is a very basic configuration conforming with
RFC4271.

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

548 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Content-Type: application/xml

Request Body:

1 <protocol xmlns="http://openconfig.net/yang/network-instance">
2 <name>bgp-example</name>
3 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
4 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
5 <global>
6 <config>
7 <router-id>192.0.2.2</router-id>
8 <as>65000</as>
9 </config>

10 </global>
11 </bgp>
12 </protocol>

@line 2: The unique protocol instance identifier.

@line 7: BGP Identifier of the speaker.

@line 8: Local autonomous system number of the speaker. Note that, OpenDaylight BGP implementation supports
four-octet AS numbers only.

The new instance presence can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example

Method: GET

Response Body:

1 <rib xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
2 <id>bgp-example</id>
3 <loc-rib>
4 <tables>
5 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-

→˓address-family</afi>
6 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-

→˓subsequent-address-family</safi>
7 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-

→˓routes>
8 <attributes>
9 <uptodate>true</uptodate>

10 </attributes>
11 </tables>
12 </loc-rib>
13 </rib>

@line 3: Loc-RIB - Per-protocol instance RIB, which contains the routes that have been selected by local BGP
speaker’s decision process.

@line 4: The BGP-4 supports carrying IPv4 prefixes, such routes are stored in ipv4-address-family/unicast-
subsequent-address-family table.

BGP Server

BGP uses TCP as its transport protocol, by default listens on port 179. OpenDaylight BGP plugin is configured to
listen on port 1790, due to privileged ports restriction for non-root users. One of the workarounds is to use port

1.3. OpenDaylight User Guide 549

OpenDaylight Documentation Documentation, Release Carbon

redirection. In case other port is desired to be used instead, we can reconfigure it.

Here is a sample of bgp port listening re-configuration:

URL: /restconf/config/odl-bgp-peer-acceptor-config:bgp-peer-acceptor-config/
default

Method: PUT

Content-Type: application/xml

Request Body:

1 <bgp-peer-acceptor-config xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-peer-
→˓acceptor-config">

2 <config-name>default</config-name>
3 <binding-address>0.0.0.0</binding-address>
4 <binding-port>1791</binding-port>
5 </bgp-peer-acceptor-config>

@line 3: Binding address: By default is 0.0.0.0, so it is not a mandatory field.

@line 4: Binding Port: Port were BGP Server will listen.

BGP Peering

To exchange routing information between two BGP systems (peers), it is required to configure a peering on both BGP
speakers first. This mean that each BGP speaker has a white list of neighbors, representing remote peers, with which
the peering is allowed. The TCP connection is established between two peers and they exchange messages to open
and confirm the connection parameters followed by routes exchange.

Here is a sample basic neighbor configuration:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

1 <neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <neighbor-address>192.0.2.1</neighbor-address>
3 <timers>
4 <config>
5 <hold-time>90</hold-time>
6 <connect-retry>10</connect-retry>
7 </config>
8 </timers>
9 <transport>

10 <config>
11 <remote-port>179</remote-port>
12 <passive-mode>false</passive-mode>
13 </config>
14 </transport>
15 <config>
16 <peer-type>INTERNAL</peer-type>
17 </config>
18 <afi-safis>

550 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

19 ...
20 </afi-safis>
21 </neighbor>

@line 2: IP address of the remote BGP peer. Also serves as an unique identifier of a neighbor in a list of neighbors.

@line 5: Proposed number of seconds for value of the Hold Timer. Default value is 90.

@line 6: Time interval in seconds between attempts to establish session with the peer. Effective in active mode only.
Default value is 30.

@line 11: Remote port number to which the local BGP is connecting. Effective in active mode only. Default value
179.

@line 12: Wait for peers to issue requests to open a BGP session, rather than initiating sessions from the local router.
Default value is false.

@line 16: Explicitly designate the peer as internal or external. Default value is INTERNAL.

@line 18: Enable families.

Once the remote peer is connected and it advertised routes to local BGP system, routes are stored in peer’s RIBs. The
RIBs can be checked via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F192.
0.2.1

Method: GET

Response Body:

1 <peer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
2 <peer-id>bgp://192.0.2.1</peer-id>
3 <supported-tables>
4 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-

→˓family</afi>
5 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-

→˓subsequent-address-family</safi>
6 </supported-tables>
7 <peer-role>ibgp</peer-role>
8 <adj-rib-in>
9 <tables>

10 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-
→˓address-family</afi>

11 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-
→˓subsequent-address-family</safi>

12 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
13 <ipv4-route>
14 <path-id>0</path-id>
15 <prefix>10.0.0.10/32</prefix>
16 <attributes>
17 <as-path></as-path>
18 <origin>
19 <value>igp</value>
20 </origin>
21 <local-pref>
22 <pref>100</pref>
23 </local-pref>
24 <ipv4-next-hop>

1.3. OpenDaylight User Guide 551

OpenDaylight Documentation Documentation, Release Carbon

25 <global>10.10.1.1</global>
26 </ipv4-next-hop>
27 </attributes>
28 </ipv4-route>
29 </ipv4-routes>
30 <attributes>
31 <uptodate>true</uptodate>
32 </attributes>
33 </tables>
34 </adj-rib-in>
35 <effective-rib-in>
36 <tables>
37 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-

→˓address-family</afi>
38 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-

→˓subsequent-address-family</safi>
39 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
40 <ipv4-route>
41 <path-id>0</path-id>
42 <prefix>10.0.0.10/32</prefix>
43 <attributes>
44 <as-path></as-path>
45 <origin>
46 <value>igp</value>
47 </origin>
48 <local-pref>
49 <pref>100</pref>
50 </local-pref>
51 <ipv4-next-hop>
52 <global>10.10.1.1</global>
53 </ipv4-next-hop>
54 </attributes>
55 </ipv4-route>
56 </ipv4-routes>
57 <attributes>
58 <uptodate>true</uptodate>
59 </attributes>
60 </tables>
61 </effective-rib-in>
62 <adj-rib-out>
63 <tables>
64 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-

→˓address-family</afi>
65 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-

→˓subsequent-address-family</safi>
66 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-

→˓routes>
67 <attributes></attributes>
68 </tables>
69 </adj-rib-out>
70 </peer>

@line 8: Adj-RIB-In - Per-peer RIB, which contains unprocessed routes that has been advertised to local BGP speaker
by the remote peer.

@line 13: Here is the reported route with destination 10.0.0.10/32 in Adj-RIB-In.

@line 35: Effective-RIB-In - Per-peer RIB, which contains processed routes as a result of applying inbound policy
to Adj-RIB-In routes.

552 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

@line 40: Here is the reported route with destination 10.0.0.10/32, same as in Adj-RIB-In, as it was not touched by
import policy.

@line 62: Adj-RIB-Out - Per-peer RIB, which contains routes for advertisement to the peer by means of the local
speaker’s UPDATE message.

@line 66: The peer’s Adj-RIB-Out is empty as there are no routes to be advertise from local BGP speaker.

Also the same route should appeared in Loc-RIB now:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
ipv4-routes

Method: GET

Response Body:

1 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
2 <ipv4-route>
3 <path-id>0</path-id>
4 <prefix>10.0.0.10/32</prefix>
5 <attributes>
6 <as-path></as-path>
7 <origin>
8 <value>igp</value>
9 </origin>

10 <local-pref>
11 <pref>100</pref>
12 </local-pref>
13 <ipv4-next-hop>
14 <global>10.10.1.1</global>
15 </ipv4-next-hop>
16 </attributes>
17 </ipv4-route>
18 </ipv4-routes>

@line 4: Destination - IPv4 Prefix Address.

@line 6: AS_PATH - mandatory attribute, contains a list of the autonomous system numbers through that routing
information has traversed.

@line 8: ORIGIN - mandatory attribute, indicates an origin of the route - ibgp, egp, incomplete.

@line 11: LOCAL_PREF - indicates a degree of preference for external routes, higher value is preferred.

@line 14: NEXT_HOP - mandatory attribute, defines IP address of the router that should be used as the next hop to
the destination.

There are much more attributes that may be carried along with the destination:

BGP-4 Path Attributes

• MULTI_EXIT_DISC (MED) Optional attribute, to be used to discriminate among multiple exit/entry points
on external links, lower number is preferred.

<multi-exit-disc>
<med>0</med>

</multi-exit-disc>

1.3. OpenDaylight User Guide 553

OpenDaylight Documentation Documentation, Release Carbon

• ATOMIC_AGGREGATE Indicates whether AS_SET was excluded from AS_PATH due to routes aggrega-
tion.

<atomic-aggregate/>

• AGGREGATOR Optional attribute, contains AS number and IP address of a BGP speaker which performed
routes aggregation.

<aggregator>
<as-number>65000</as-number>
<network-address>192.0.2.2</network-address>

</aggregator>

• Unrecognised Optional attribute, used to store optional attributes, unrecognized by a local BGP speaker.

<unrecognized-attributes>
<partial>true</partial>
<transitive>true</transitive>
<type>101</type>
<value>0101010101010101</value>

</unrecognized-attributes>

Route Reflector Attributes

• ORIGINATOR_ID Optional attribute, carries BGP Identifier of the originator of the route.

<originator-id>
<originator>41.41.41.41</originator>

</originator-id>

• CLUSTER_LIST Optional attribute, contains a list of CLUSTER_ID values representing the path that the
route has traversed.

<cluster-id>
<cluster>40.40.40.40</cluster>

</cluster-id>

• Communities Optional attribute, may be used for policy routing.

<communities>
<as-number>65000</as-number>
<semantics>30740</semantics>

</communities>

Extended Communities

• Route Target Identifies one or more routers that may receive a route.

<extended-communities>
<transitive>true</transitive>
<route-target-ipv4>

<global-administrator>192.0.2.2</global-administrator>
<local-administrator>123</local-administrator>

</route-target-ipv4>
</extended-communities>
<extended-communities>

<transitive>true</transitive>
<as-4-route-target-extended-community>

<as-4-specific-common>

554 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<as-number>65000</as-number>
<local-administrator>123</local-administrator>

</as-4-specific-common>
</as-4-route-target-extended-community>

</extended-communities>

• Route Origin Identifies one or more routers that injected a route.

<extended-communities>
<transitive>true</transitive>
<route-origin-ipv4>

<global-administrator>192.0.2.2</global-administrator>
<local-administrator>123</local-administrator>

</route-origin-ipv4>
</extended-communities>
<extended-communities>

<transitive>true</transitive>
<as-4-route-origin-extended-community>

<as-4-specific-common>
<as-number>65000</as-number>
<local-administrator>123</local-administrator>

</as-4-origin-common>
</as-4-route-target-extended-community>

</extended-communities>

• Link Bandwidth Carries the cost to reach external neighbor.

<extended-communities>
<transitive>true</transitive>
<link-bandwidth-extended-community>

<bandwidth>BH9CQAA=</bandwidth>
</link-bandwidth-extended-community>

</extended-communities>

• AIGP Optional attribute, carries accumulated IGP metric.

<aigp>
<aigp-tlv>

<metric>120</metric>
</aigp-tlv>

</aigp>

Note: When the remote peer disconnects, it disappear from operational state of local speaker instance and advertised
routes are removed too.

External peering configuration

An example above provided configuration for internal peering only. Following configuration sample is intended for
external peering:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

1.3. OpenDaylight User Guide 555

OpenDaylight Documentation Documentation, Release Carbon

Content-Type: application/xml

Request Body:

1 <neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <neighbor-address>192.0.2.3</neighbor-address>
3 <config>
4 <peer-type>EXTERNAL</peer-type>
5 <peer-as>64999</peer-as>
6 </config>
7 </neighbor>

@line 5: AS number of the remote peer.

Route reflector configuration

The local BGP speaker can be configured with a specific cluster ID. Following example adds the cluster ID to the
existing speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/global/config

Method: PUT

Content-Type: application/xml

Request Body:

1 <config>
2 <router-id>192.0.2.2</router-id>
3 <as>65000</as>
4 <route-reflector-cluster-id>192.0.2.1</route-reflector-cluster-id>
5 </config>

@line 4: Route-reflector cluster id to use when local router is configured as a route reflector. The router-id is
used as a default value.

Following configuration sample is intended for route reflector client peering:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

1 <neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <neighbor-address>192.0.2.4</neighbor-address>
3 <config>
4 <peer-type>INTERNAL</peer-type>
5 </config>
6 <route-reflector>
7 <config>
8 <route-reflector-client>true</route-reflector-client>
9 </config>

556 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

10 </route-reflector>
11 </neighbor>

@line 8: Configure the neighbor as a route reflector client. Default value is false.

MD5 authentication configuration

The OpenDaylight BGP implementation is supporting TCP MD5 for authentication. Sample configuration below
shows how to set authentication password for a peer:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

1 <neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <neighbor-address>192.0.2.5</neighbor-address>
3 <config>
4 <auth-password>topsecret</auth-password>
5 </config>
6 </neighbor>

@line 4: Configures an MD5 authentication password for use with neighboring devices.

Simple Routing Policy configuration

The OpenDaylight BGP implementation is supporting Simple Routing Policy. Sample configuration below shows how
to set Simple Routing Policy for a peer:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

1 <neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <neighbor-address>192.0.2.7</neighbor-address>
3 <config>
4 <simple-routing-policy>learn-none</simple-routing-policy>
5 </config>
6 </neighbor>

@line 4: Simple Routing Policy:

• learn-none - routes advertised by the peer are not propagated to Effective-RIB-In and Loc-RIB

• announce-none - routes from local Loc-RIB are not advertised to the peer

1.3. OpenDaylight User Guide 557

OpenDaylight Documentation Documentation, Release Carbon

Note: Existing neighbor configuration can be reconfigured (change configuration parameters) anytime. As a result,
established connection is dropped, peer instance is recreated with a new configuration settings and connection re-
established.

Note: The BGP configuration is persisted on OpendDaylight shutdown and restored after the re-start.

BGP Application Peer and programmable RIB

The OpenDaylight BGP implementation also supports routes injection via Application Peer. Such peer has its own
programmable RIB, which can be modified by user. This concept allows user to originate new routes and advertise
them to all connected peers.

Application Peer configuration

Following configuration sample show a way to configure the Application Peer:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

1 <neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <neighbor-address>10.25.1.9</neighbor-address>
3 <config>
4 <peer-group>application-peers</peer-group>
5 </config>
6 </neighbor>

@line 2: IP address is uniquely identifying Application Peer and its programmable RIB. Address is also used in local
BGP speaker decision process.

@line 4: Indicates that peer is associated with application-peers group. It serves to distinguish Application Peer’s
from regular neighbors.

The Application Peer presence can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F10.
25.1.9

Method: GET

Response Body:

1 <peer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
2 <peer-id>bgp://10.25.1.9</peer-id>
3 <peer-role>internal</peer-role>
4 <adj-rib-in>

558 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

5 <tables>
6 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-

→˓address-family</afi>
7 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-

→˓subsequent-address-family</safi>
8 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-

→˓routes>
9 <attributes>

10 <uptodate>false</uptodate>
11 </attributes>
12 </tables>
13 </adj-rib-in>
14 <effective-rib-in>
15 <tables>
16 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-

→˓address-family</afi>
17 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-

→˓subsequent-address-family</safi>
18 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-

→˓routes>
19 <attributes></attributes>
20 </tables>
21 </effective-rib-in>
22 </peer>

@line 3: Peer role for Application Peer is internal.

@line 8: Adj-RIB-In is empty, as no routes were originated yet.

Note: There is no Adj-RIB-Out for Application Peer.

Programmable RIB

Next example shows how to inject a route into the programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
bgp-inet:ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
<path-id>0</path-id>
<prefix>10.0.0.11/32</prefix>
<attributes>

<as-path></as-path>
<origin>

<value>igp</value>
</origin>
<local-pref>

<pref>100</pref>
</local-pref>

1.3. OpenDaylight User Guide 559

OpenDaylight Documentation Documentation, Release Carbon

<ipv4-next-hop>
<global>10.11.1.1</global>

</ipv4-next-hop>
</attributes>

</ipv4-route>

Now the injected route appears in Application Peer’s RIBs and in local speaker’s Loc-RIB:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F10.
25.1.9

Method: GET

Response Body:

1 <peer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
2 <peer-id>bgp://10.25.1.9</peer-id>
3 <peer-role>internal</peer-role>
4 <adj-rib-in>
5 <tables>
6 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-

→˓address-family</afi>
7 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-

→˓subsequent-address-family</safi>
8 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
9 <ipv4-route>

10 <path-id>0</path-id>
11 <prefix>10.0.0.11/32</prefix>
12 <attributes>
13 <as-path></as-path>
14 <origin>
15 <value>igp</value>
16 </origin>
17 <local-pref>
18 <pref>100</pref>
19 </local-pref>
20 <ipv4-next-hop>
21 <global>10.11.1.1</global>
22 </ipv4-next-hop>
23 </attributes>
24 </ipv4-route>
25 </ipv4-routes>
26 <attributes>
27 <uptodate>false</uptodate>
28 </attributes>
29 </tables>
30 </adj-rib-in>
31 <effective-rib-in>
32 <tables>
33 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-

→˓address-family</afi>
34 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-

→˓subsequent-address-family</safi>
35 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
36 <ipv4-route>
37 <path-id>0</path-id>
38 <prefix>10.0.0.11/32</prefix>

560 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

39 <attributes>
40 <as-path></as-path>
41 <origin>
42 <value>igp</value>
43 </origin>
44 <local-pref>
45 <pref>100</pref>
46 </local-pref>
47 <ipv4-next-hop>
48 <global>10.11.1.1</global>
49 </ipv4-next-hop>
50 </attributes>
51 </ipv4-route>
52 </ipv4-routes>
53 <attributes></attributes>
54 </tables>
55 </effective-rib-in>
56 </peer>

@line 9: Injected route is present in Application Peer’s Adj-RIB-In and Effective-RIB-In.

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
ipv4-routes

Method: GET

Response Body:

1 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
2 <ipv4-route>
3 <path-id>0</path-id>
4 <prefix>10.0.0.10/32</prefix>
5 <attributes>
6 <as-path></as-path>
7 <origin>
8 <value>igp</value>
9 </origin>

10 <local-pref>
11 <pref>100</pref>
12 </local-pref>
13 <ipv4-next-hop>
14 <global>10.11.1.1</global>
15 </ipv4-next-hop>
16 </attributes>
17 </ipv4-route>
18 <ipv4-route>
19 <path-id>0</path-id>
20 <prefix>10.0.0.10/32</prefix>
21 <attributes>
22 <as-path></as-path>
23 <origin>
24 <value>igp</value>
25 </origin>
26 <local-pref>
27 <pref>100</pref>
28 </local-pref>

1.3. OpenDaylight User Guide 561

OpenDaylight Documentation Documentation, Release Carbon

29 <ipv4-next-hop>
30 <global>10.10.1.1</global>
31 </ipv4-next-hop>
32 </attributes>
33 </ipv4-route>
34 </ipv4-routes>

@line 2: The injected route is now present in Loc-RIB along with a route (destination 10.0.0.10/32) advertised by
remote peer.

This route is also advertised to the remote peer (192.0.2.1), hence route appears in its Adj-RIB-Out:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/
bgp:%2F%2F192.0.2.1/adj-rib-out/tables/bgp-types:ipv4-address-family/
bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes

Method: GET

Response Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
<path-id>0</path-id>
<prefix>10.0.0.11/32</prefix>
<attributes>

<as-path></as-path>
<origin>

<value>igp</value>
</origin>
<local-pref>

<pref>100</pref>
</local-pref>
<ipv4-next-hop>

<global>10.11.1.1</global>
</ipv4-next-hop>

</attributes>
</ipv4-route>

The injected route can be modified (i.e. different path attribute):

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
bgp-inet:ipv4-routes/ipv4-route/10.0.0.11%2F32/0

Method: PUT

Content-Type: application/xml

Request Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
<path-id>0</path-id>
<prefix>10.0.0.11/32</prefix>
<attributes>

<as-path></as-path>
<origin>

<value>igp</value>
</origin>

562 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<local-pref>
<pref>50</pref>

</local-pref>
<ipv4-next-hop>

<global>10.11.1.2</global>
</ipv4-next-hop>

</attributes>
</ipv4-route>

The route can be removed from programmable RIB in a following way:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
bgp-inet:ipv4-routes/ipv4-route/10.0.0.11%2F32/0

Method: DELETE

Also it is possible to remove all routes from a particular table at once:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
bgp-inet:ipv4-routes/

Method: DELETE

Consequently, route disappears from programmable RIB, Application Peer’s RIBs, Loc-RIB and peer’s Adj-RIB-Out
(UPDATE message with prefix withdrawal is send).

Note: Routes stored in programmable RIB are persisted on OpendDaylight shutdown and restored after the re-start.

BGP Protocol Configuration Loader

BGP Protocol Configuration Loader allows user to define static initial configuration for a BGP protocol instance.
This service will detect the creation of new configuration files following the pattern “protocols-*.xml” under the path
“etc/opendaylight/bgp”. Once the file is processed, the defined configuration will be available from the configuration
Data Store.

Note: If the BGP instance is already present, no update or configuration will be applied.

When installing BGP an example will be provided and a default configuration loaded.

PATH: etc/opendaylight/bgp/protocols-config.xml

<protocols xmlns="http://openconfig.net/yang/network-instance">
<protocol>

<name>example-bgp-rib</name>
<identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</

→˓identifier>
<bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">

<global>

1.3. OpenDaylight User Guide 563

OpenDaylight Documentation Documentation, Release Carbon

<config>
<router-id>192.0.2.2</router-id>
<as>64496</as>
<!-- if cluster-id is not present, it's value is the same as bgp-

→˓id -->
<!-- <route-reflector-cluster-id>192.0.2.3</route-reflector-

→˓cluster-id> -->
<!-- <read-only-limit>120</read-only-limit>-->

</config>
<afi-safis>

<afi-safi>
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">

→˓x:IPV4-UNICAST</afi-safi-name>
<!--Advertise N Paths
<receive>true</receive>
<send-max>2</send-max>-->

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">
→˓x:IPV6-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">
→˓x:IPV4-LABELLED-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">
→˓x:IPV6-LABELLED-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">
→˓x:L3VPN-IPV4-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">
→˓x:L3VPN-IPV6-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">
→˓x:L2VPN-EVPN</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name>LINKSTATE</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name>IPV4-FLOW</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name>IPV6-FLOW</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name>IPV4-L3VPN-FLOW</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name>IPV6-L3VPN-FLOW</afi-safi-name>
</afi-safi>

</afi-safis>
</global>

564 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<neighbors xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-
→˓extensions">

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-
→˓extensions">

<neighbor-address>192.0.2.1</neighbor-address>
<config>

<peer-type>INTERNAL</peer-type>
<peer-as>64496</peer-as>

</config>
<transport>

<config>
<remote-port>179</remote-port>
<passive-mode>true</passive-mode>

</config>
</transport>
<timers>

<config>
<hold-time>180</hold-time>
<connect-retry>10</connect-retry>

</config>
</timers>
<route-reflector>

<config>
<route-reflector-client>false</route-reflector-client>

</config>
</route-reflector>
<afi-safis>

<afi-safi>
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-

→˓types">x:IPV4-UNICAST</afi-safi-name>
<!--Advertise N Paths
<receive>true</receive>
<send-max>0</send-max>-->

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-
→˓types">x:IPV6-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-
→˓types">x:IPV4-LABELLED-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-
→˓types">x:IPV6-LABELLED-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-
→˓types">x:L3VPN-IPV4-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-
→˓types">x:L3VPN-IPV6-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-
→˓types">x:L2VPN-EVPN</afi-safi-name>

</afi-safi>

1.3. OpenDaylight User Guide 565

OpenDaylight Documentation Documentation, Release Carbon

<afi-safi>
<afi-safi-name>LINKSTATE</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name>IPV4-FLOW</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name>IPV6-FLOW</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name>IPV4-L3VPN-FLOW</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name>IPV6-L3VPN-FLOW</afi-safi-name>
</afi-safi>

</afi-safis>
</neighbor>
<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-

→˓extensions">
<neighbor-address>192.0.2.6</neighbor-address>
<config>

<peer-group>application-peers</peer-group>
</config>

</neighbor>
</neighbors>

</bgp>
</protocol>

</protocols>

BGP pipeline

Fig. 1.21: BGP pipeline - routes re-advertisement.

References

• A Border Gateway Protocol 4 (BGP-4)

• BGP Route Reflection

• BGP Communities Attribute

566 Chapter 1. Content for OpenDaylight Users

https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc4456
https://tools.ietf.org/html/rfc1997

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.22: BGP applcaition peer pipeline - routes injection.

• BGP Support for Four-Octet Autonomous System (AS) Number Space

• The Accumulated IGP Metric Attribute for BGP

• 4-Octet AS Specific BGP Extended Community

• BGP Link Bandwidth Extended Community

• Use of BGP for Routing in Large-Scale Data Centers

IP Unicast Family

The BGP-4 allows to carry IPv4 specific information only. The basic BGP Multiprotocol extension brings Unicast
Subsequent Address Family (SAFI) - intended to be used for IP unicast forwarding. The combination of IPv4 and IPv6
Address Family (AF) and Unicast SAFI is essential for Internet routing. The IPv4 Unicast routes are interchangeable
with BGP-4 routes, as they can carry the same type of routing information.

Contents

• Configuration

– BGP Speaker

– BGP Peer

• IP Unicast API

– IPv4 Unicast Route

– IPv6 Unicast Route

• Usage

– IPv4 Unicast

– IPv6 Unicast

• Programming

– IPv4 Unicast

– IPv6 Unicast

• References

1.3. OpenDaylight User Guide 567

https://tools.ietf.org/html/rfc6793
https://tools.ietf.org/html/rfc7311
https://tools.ietf.org/html/rfc5668
https://tools.ietf.org/html/draft-ietf-idr-link-bandwidth-06
https://tools.ietf.org/html/rfc7938

OpenDaylight Documentation Documentation, Release Carbon

Configuration

This section shows a way to enable IPv4 and IPv6 Unicast family in BGP speaker and peer configuration.

BGP Speaker

To enable IPv4 and IPv6 Unicast support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
<name>bgp-example</name>
<identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
<bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">

<global>
<config>

<router-id>192.0.2.2</router-id>
<as>65000</as>

</config>
<afi-safis>

<afi-safi>
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">

→˓x:IPV4-UNICAST</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">
→˓x:IPV6-UNICAST</afi-safi-name>

</afi-safi>
</afi-safis>

</global>
</bgp>

</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled IPv4 and IPv6 Unicast family.

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
<neighbor-address>192.0.2.1</neighbor-address>
<afi-safis>

568 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<afi-safi>
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-

→˓UNICAST</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-
→˓UNICAST</afi-safi-name>

</afi-safi>
</afi-safis>

</neighbor>

IP Unicast API

Following trees illustrate the BGP IP Unicast routes structures.

IPv4 Unicast Route

:(ipv4-routes-case)
+--ro ipv4-routes

+--ro ipv4-route* [prefix path-id]
+--ro prefix inet:ipv4-prefix
+--ro path-id path-id
+--ro attributes

+--ro origin
| +--ro value bgp-t:bgp-origin
+--ro as-path
| +--ro segments*
| +--ro as-sequence* inet:as-number
| +--ro as-set* inet:as-number
+--ro (c-next-hop)?
| +--:(ipv4-next-hop-case)
| | +--ro ipv4-next-hop
| | +--ro global? inet:ipv4-address
| +--:(ipv6-next-hop-case)
| | +--ro ipv6-next-hop
| | +--ro global? inet:ipv6-address
| | +--ro link-local? inet:ipv6-address
| +--:(empty-next-hop-case)
| +--ro empty-next-hop? empty
+--ro multi-exit-disc
| +--ro med? uint32
+--ro local-pref
| +--ro pref? uint32
+--ro atomic-aggregate!
+--ro aggregator
| +--ro as-number? inet:as-number
| +--ro network-address? inet:ipv4-address
+--ro communities*
| +--ro as-number? inet:as-number
| +--ro semantics? uint16
+--ro extended-communities*
| +--ro transitive? boolean
| +--ro (extended-community)?
| +--:(as-specific-extended-community-case)

1.3. OpenDaylight User Guide 569

OpenDaylight Documentation Documentation, Release Carbon

| | +--ro as-specific-extended-community
| | +--ro global-administrator? short-as-number
| | +--ro local-administrator? binary
| +--:(inet4-specific-extended-community-case)
| | +--ro inet4-specific-extended-community
| | +--ro global-administrator? inet:ipv4-address
| | +--ro local-administrator? binary
| +--:(opaque-extended-community-case)
| | +--ro opaque-extended-community
| | +--ro value? binary
| +--:(route-target-extended-community-case)
| | +--ro route-target-extended-community
| | +--ro global-administrator? short-as-number
| | +--ro local-administrator? binary
| +--:(route-origin-extended-community-case)
| | +--ro route-origin-extended-community
| | +--ro global-administrator? short-as-number
| | +--ro local-administrator? binary
| +--:(route-target-ipv4-case)
| | +--ro route-target-ipv4
| | +--ro global-administrator? inet:ipv4-address
| | +--ro local-administrator? uint16
| +--:(route-origin-ipv4-case)
| | +--ro route-origin-ipv4
| | +--ro global-administrator? inet:ipv4-address
| | +--ro local-administrator? uint16
| +--:(link-bandwidth-case)
| | +--ro link-bandwidth-extended-community
| | +--ro bandwidth netc:bandwidth
| +--:(as-4-generic-spec-extended-community-case)
| | +--ro as-4-generic-spec-extended-community
| | +--ro as-4-specific-common
| | +--ro as-number inet:as-number
| | +--ro local-administrator uint16
| +--:(as-4-route-target-extended-community-case)
| | +--ro as-4-route-target-extended-community
| | +--ro as-4-specific-common
| | +--ro as-number inet:as-number
| | +--ro local-administrator uint16
| +--:(as-4-route-origin-extended-community-case)
| | +--ro as-4-route-origin-extended-community
| | +--ro as-4-specific-common
| | +--ro as-number inet:as-number
| | +--ro local-administrator uint16
| +--:(encapsulation-case)
| +--ro encapsulation-extended-community
| +--ro tunnel-type encapsulation-tunnel-type
+--ro originator-id
| +--ro originator? inet:ipv4-address
+--ro cluster-id
| +--ro cluster* bgp-t:cluster-identifier
+--ro aigp
| +--ro aigp-tlv
| +--ro metric? netc:accumulated-igp-metric
+--ro unrecognized-attributes* [type]

+--ro partial boolean
+--ro transitive boolean
+--ro type uint8

570 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

+--ro value binary

IPv6 Unicast Route

:(ipv6-routes-case)
+--ro ipv6-routes

+--ro ipv6-route* [prefix path-id]
+--ro prefix inet:ipv6-prefix
+--ro path-id path-id
+--ro attributes
...

Usage

IPv4 Unicast

The IPv4 Unicast table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
ipv4-routes

Method: GET

Response Body:

<ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
<ipv4-route>

<path-id>0</path-id>
<prefix>193.0.2.1/32</prefix>
<attributes>

<as-path></as-path>
<origin>

<value>igp</value>
</origin>
<local-pref>

<pref>100</pref>
</local-pref>
<ipv4-next-hop>

<global>10.0.0.1</global>
</ipv4-next-hop>

</attributes>
</ipv4-route>

</ipv4-routes>

IPv6 Unicast

The IPv6 Unicast table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
ipv6-routes

1.3. OpenDaylight User Guide 571

OpenDaylight Documentation Documentation, Release Carbon

Method: GET

Response Body:

<ipv6-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
<ipv6-route>

<path-id>0</path-id>
<prefix>2a02:b80:0:1::/64</prefix>
<attributes>

<as-path></as-path>
<origin>

<value>igp</value>
</origin>
<local-pref>

<pref>200</pref>
</local-pref>
<ipv6-next-hop>

<global>2a02:b80:0:2::1</global>
</ipv6-next-hop>

</attributes>
</ipv6-route>

</ipv6-routes>

Note: IPv4/6 routes mapping to topology nodes is supported by BGP Topology Provider.

Programming

IPv4 Unicast

This examples show how to originate and remove IPv4 route via programmable RIB. Make sure the Application Peer
is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
bgp-inet:ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
<path-id>0</path-id>
<prefix>10.0.0.11/32</prefix>
<attributes>

<as-path></as-path>
<origin>

<value>igp</value>
</origin>
<local-pref>

<pref>100</pref>
</local-pref>
<ipv4-next-hop>

<global>10.11.1.1</global>
</ipv4-next-hop>

572 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</attributes>
</ipv4-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
bgp-inet:ipv4-routes/ipv4-route/10.0.0.11%2F32/0

Method: DELETE

IPv6 Unicast

This examples show how to originate and remove IPv6 route via programmable RIB:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv6-address-family/bgp-types:unicast-subsequent-address-family/
bgp-inet:ipv6-routes

Method: POST

Content-Type: application/xml

Request Body:

<ipv6-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
<prefix>2001:db8:30::3/128</prefix>
<path-id>0</path-id>
<attributes>

<ipv6-next-hop>
<global>2001:db8:1::6</global>

</ipv6-next-hop>
<as-path/>
<origin>

<value>igp</value>
</origin>
<local-pref>

<pref>100</pref>
</local-pref>

</attributes>
</ipv6-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv6-address-family/bgp-types:unicast-subsequent-address-family/
bgp-inet:ipv6-routes/ipv6-route/2001:db8:30::3%2F128/0

Method: DELETE

References

• Multiprotocol Extensions for BGP-4

1.3. OpenDaylight User Guide 573

https://tools.ietf.org/html/rfc4760

OpenDaylight Documentation Documentation, Release Carbon

IP Labeled Unicast Family

The BGP Labeled Unicast (BGP-LU) Multiprotocol extension is used to distribute a MPLS label that is mapped to a
particular route. It can be used to advertise a MPLS transport path between IGP regions and Autonomous Systems.
Also, BGP-LU can help to solve the Inter-domain traffic-engineering problem and can be deployed in large-scale data
centers along with MPLS and Spring. In addition, IPv6 Labeled Unicast can be used to interconnect IPv6 islands over
IPv4/MPLS networks using 6PE.

Contents

• Configuration

– BGP Speaker

– BGP Peer

• IP Labeled Unicast API

– IPv4 Labeled Unicast Route

– IPv6 Labeled Unicast Route

• Usage

• Programming

– IPv4 Labeled

– IPv6 Labeled

• References

Configuration

This section shows a way to enable IPv4 and IPv6 Labeled Unicast family in BGP speaker and peer configuration.

BGP Speaker

To enable IPv4 and IPv6 Labeled Unicast support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
<name>bgp-example</name>
<identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
<bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">

<global>
<config>

<router-id>192.0.2.2</router-id>
<as>65000</as>

</config>

574 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<afi-safis>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">
→˓x:IPV4-LABELLED-UNICAST</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">
→˓x:IPV6-LABELLED-UNICAST</afi-safi-name>

</afi-safi>
</afi-safis>

</global>
</bgp>

</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled IPv4 and IPv6 Labeled Unicast family.

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
<neighbor-address>192.0.2.1</neighbor-address>
<afi-safis>

<afi-safi>
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-

→˓LABELLED-UNICAST</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-
→˓LABELLED-UNICAST</afi-safi-name>

</afi-safi>
</afi-safis>

</neighbor>

IP Labeled Unicast API

Following trees illustrate the BGP IP Labeled Unicast routes structures.

IPv4 Labeled Unicast Route

:(labeled-unicast-routes-case)
+--ro labeled-unicast-routes

+--ro labeled-unicast-route* [route-key path-id]
+--ro route-key string
+--ro label-stack*
| +--ro label-value? netc:mpls-label

1.3. OpenDaylight User Guide 575

OpenDaylight Documentation Documentation, Release Carbon

+--ro prefix? inet:ip-prefix
+--ro path-id path-id
+--ro attributes
...

IPv6 Labeled Unicast Route

:(labeled-unicast-ipv6-routes-case)
+--ro labeled-unicast-ipv6-routes

+--ro labeled-unicast-route* [route-key path-id]
+--ro route-key string
+--ro label-stack*
| +--ro label-value? netc:mpls-label
+--ro prefix? inet:ip-prefix
+--ro path-id path-id
+--ro attributes
...

Usage

The IPv4 Labeled Unicast table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/
bgp-labeled-unicast:labeled-unicast-routes

Method: GET

Response Body:

<labeled-unicast-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast
→˓">

<labeled-unicast-route>
<path-id>0</path-id>
<route-key>MAA+gRQAAA==</route-key>
<attributes>

<local-pref>
<pref>100</pref>

</local-pref>
<ipv4-next-hop>

<global>200.10.0.101</global>
</ipv4-next-hop>
<as-path></as-path>
<origin>

<value>igp</value>
</origin>

</attributes>
<label-stack>

<label-value>1000</label-value>
</label-stack>
<prefix>20.0.0.0/24</prefix>

</labeled-unicast-route>
</labeled-unicast-routes>

576 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Programming

IPv4 Labeled

This examples show how to originate and remove IPv4 labeled route via programmable RIB. Make sure the Application
Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/
bgp-labeled-unicast:labeled-unicast-routes

Method: POST

Content-Type: application/xml

Request Body:

<labeled-unicast-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast
→˓">

<route-key>label1</route-key>
<prefix>1.1.1.1/32</prefix>
<path-id>0</path-id>
<label-stack>

<label-value>800322</label-value>
</label-stack>
<attributes>

<ipv4-next-hop>
<global>199.20.160.41</global>

</ipv4-next-hop>
<origin>

<value>igp</value>
</origin>
<as-path/>
<local-pref>

<pref>100</pref>
</local-pref>

</attributes>
</labeled-unicast-route>

In addition, BGP-LU Spring extension allows to attach BGP Prefix SID attribute to the route, in order to signal the
BGP-Prefix-SID, where the SR is applied to MPLS dataplane.

<bgp-prefix-sid>
<bgp-prefix-sid-tlvs>

<label-index-tlv xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-
→˓unicast">322</label-index-tlv>

</bgp-prefix-sid-tlvs>
<bgp-prefix-sid-tlvs>

<srgb-value xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">
<base>800000</base>
<range>4095</range>

</srgb-value>
</bgp-prefix-sid-tlvs>

</bgp-prefix-sid>

To remove the route added above, following request can be used:

1.3. OpenDaylight User Guide 577

OpenDaylight Documentation Documentation, Release Carbon

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/
bgp-labeled-unicast:labeled-unicast-routes/bgp-labeled-unicast:labeled-unicast-route/
label1/0

Method: DELETE

IPv6 Labeled

This examples show how to originate and remove IPv6 labeled route via programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/
bgp-labeled-unicast:labeled-unicast-ipv6-routes

Method: POST

Content-Type: application/xml

Request Body:

<labeled-unicast-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast
→˓">

<route-key>label1</route-key>
<prefix>2001:db8:30::3/128</prefix>
<path-id>0</path-id>
<label-stack>

<label-value>123</label-value>
</label-stack>
<attributes>

<ipv6-next-hop>
<global>2003:4:5:6::7</global>

</ipv6-next-hop>
<origin>

<value>igp</value>
</origin>
<as-path/>
<local-pref>

<pref>100</pref>
</local-pref>

</attributes>
</labeled-unicast-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/
bgp-labeled-unicast:labeled-unicast-ipv6-routes/bgp-labeled-unicast:labeled-unicast-route/
label1/0

Method: DELETE

References

• Carrying Label Information in BGP-4

• Segment Routing Prefix SID extensions for BGP

578 Chapter 1. Content for OpenDaylight Users

https://tools.ietf.org/html/rfc3107
https://tools.ietf.org/html/draft-ietf-idr-bgp-prefix-sid-03

OpenDaylight Documentation Documentation, Release Carbon

• Connecting IPv6 Islands over IPv4 MPLS Using IPv6 Provider Edge Routers (6PE)

• BGP-Prefix Segment in large-scale data centers

• Egress Peer Engineering using BGP-LU

IP L3VPN Family

The BGP/MPLS IP Virtual Private Networks (BGP L3VPN) Multiprotocol extension can be used to exchange partic-
ular VPN (customer) routes among the provider’s routers attached to that VPN. Also, routes are distributed to specific
VPN remote sites.

Contents

• Configuration

– BGP Speaker

– BGP Peer

• IP L3VPN API

– IPv4 L3VPN Route

– IPv6 L3VPN Route

• Usage

– IPv4 L3VPN

– IPv6 L3VPN

• Programming

• References

Configuration

This section shows a way to enable IPv4 and IPv6 L3VPN family in BGP speaker and peer configuration.

BGP Speaker

To enable IPv4 and IPv6 L3VPN support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
<name>bgp-example</name>
<identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
<bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">

<global>

1.3. OpenDaylight User Guide 579

https://tools.ietf.org/html/rfc4798
https://tools.ietf.org/html/draft-ietf-spring-segment-routing-msdc-01
https://tools.ietf.org/html/draft-gredler-idr-bgplu-epe-06

OpenDaylight Documentation Documentation, Release Carbon

<config>
<router-id>192.0.2.2</router-id>
<as>65000</as>

</config>
<afi-safis>

<afi-safi>
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">

→˓x:L3VPN-IPV4-UNICAST</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">
→˓x:L3VPN-IPV6-UNICAST</afi-safi-name>

</afi-safi>
</afi-safis>

</global>
</bgp>

</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled IPv4 and IPv6 L3VPN family.

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
<neighbor-address>192.0.2.1</neighbor-address>
<afi-safis>

<afi-safi>
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-

→˓IPV4-UNICAST</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-
→˓IPV6-UNICAST</afi-safi-name>

</afi-safi>
</afi-safis>

</neighbor>

IP L3VPN API

Following trees illustrate the BGP IP L3VPN routes structures.

IPv4 L3VPN Route

580 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

:(vpn-ipv4-routes-case)
+--ro vpn-ipv4-routes

+--ro vpn-route* [route-key]
+--ro route-key string
+--ro label-stack*
| +--ro label-value? netc:mpls-label
+--ro prefix? inet:ip-prefix
+--ro path-id? path-id
+--ro route-distinguisher? bgp-t:route-distinguisher
+--ro attributes
...

IPv6 L3VPN Route

:(vpn-ipv6-routes-case)
+--ro vpn-ipv6-routes

+--ro vpn-route* [route-key]
+--ro route-key string
+--ro label-stack*
| +--ro label-value? netc:mpls-label
+--ro prefix? inet:ip-prefix
+--ro path-id? path-id
+--ro route-distinguisher? bgp-t:route-distinguisher
+--ro attributes
...

Usage

IPv4 L3VPN

The IPv4 L3VPN table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv4-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/
bgp-vpn-ipv4:vpn-ipv4-routes

Method: GET

Response Body:

<vpn-ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-vpn-ipv4">
<vpn-route>

<route-key>cAXdYQABrBAALABlCgIi</route-key>
<label-stack>

<label-value>24022</label-value>
</label-stack>
<attributes>

<extended-communities>
<transitive>true</transitive>
<route-target-extended-community>

<global-administrator>65000</global-administrator>
<local-administrator>AAAAZQ==</local-administrator>

</route-target-extended-community>
</extended-communities>

1.3. OpenDaylight User Guide 581

OpenDaylight Documentation Documentation, Release Carbon

<origin>
<value>igp</value>

</origin>
<as-path></as-path>
<local-pref>

<pref>100</pref>
</local-pref>
<ipv4-next-hop>

<global>127.16.0.44</global>
</ipv4-next-hop>

</attributes>
<route-distinguisher>172.16.0.44:101</route-distinguisher>
<prefix>10.2.34.0/24</prefix>

</vpn-route>
</vpn-ipv4-routes>

IPv6 L3VPN

The IPv6 L3VPN table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv6-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/
bgp-vpn-ipv6:vpn-ipv6-routes

Method: GET

Response Body:

<vpn-ipv6-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-vpn-ipv6">
<vpn-route>

<route-key>mAXdcQABrBAALABlKgILgAAAAAE=</route-key>
<label-stack>

<label-value>24023</label-value>
</label-stack>
<attributes>

<local-pref>
<pref>100</pref>

</local-pref>
<extended-communities>

<route-target-extended-community>
<global-administrator>65000</global-administrator>
<local-administrator>AAAAZQ==</local-administrator>

</route-target-extended-community>
<transitive>true</transitive>

</extended-communities>
<ipv6-next-hop>

<global>2a02:b80:0:2::1</global>
</ipv6-next-hop>
<origin>

<value>igp</value>
</origin>
<as-path></as-path>

</attributes>
<route-distinguisher>172.16.0.44:101</route-distinguisher>
<prefix>2a02:b80:0:1::/64</prefix>

</vpn-route>
</vpn-ipv6-routes>

582 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Programming

This examples show how to originate and remove IPv4 L3VPN route via programmable RIB. Make sure the Applica-
tion Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/
bgp-vpn-ipv4:vpn-ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<vpn-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-vpn-ipv4">
<route-key>vpn1</route-key>
<label-stack>

<label-value>123</label-value>
</label-stack>
<route-distinguisher>429496729:1</route-distinguisher>
<prefix>2.2.2.2/32</prefix>
<attributes>

<ipv4-next-hop>
<global>199.20.166.41</global>

</ipv4-next-hop>
<as-path/>
<origin>

<value>igp</value>
</origin>
<extended-communities>

<route-target-extended-community>
<global-administrator>65000</global-administrator>
<local-administrator>AAAAZQ==</local-administrator>

</route-target-extended-community>
<transitive>true</transitive>

</extended-communities>
</attributes>

</vpn-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/
bgp-vpn-ipv4:vpn-ipv4-routes/vpn-route/vpn1

Method: DELETE

References

• BGP/MPLS IP Virtual Private Networks (VPNs)

• BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN

• BGP/MPLS VPN Virtual PE

1.3. OpenDaylight User Guide 583

https://tools.ietf.org/html/rfc4364
https://tools.ietf.org/html/rfc4659
https://tools.ietf.org/html/draft-ietf-bess-virtual-pe-00

OpenDaylight Documentation Documentation, Release Carbon

Link-State Family

The BGP Link-State (BGP-LS) Multiprotocol extension allows to distribute Link-State and Traffic Engineering (TE)
information. This information is typically distributed by IGP routing protocols with in the network, limiting LSDB or
TED visibility to the IGP area. The BGP-LS-enabled routers are capable to collect such information from networks
(multiple IGP areas, inter-AS) and share with external components (i.e. OpenDaylight BGP). The information is
applicable in ALTO servers and PCEs, as both need to gather information about topologies. In addition, link-state
information is extended to carry segment information (Spring).

Contents

• Configuration

– BGP Speaker

– Linkstate path attribute

– BGP Peer

• Link-State Route API

• Usage

• References

Configuration

This section shows a way to enable IPv4 and IPv6 Labeled Unicast family in BGP speaker and peer configuration.

BGP Speaker

To enable BGP-LS support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
<name>bgp-example</name>
<identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
<bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">

<global>
<config>

<router-id>192.0.2.2</router-id>
<as>65000</as>

</config>
<afi-safis>

<afi-safi>
<afi-safi-name>LINKSTATE</afi-safi-name>

</afi-safi>
</afi-safis>

584 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</global>
</bgp>

</protocol>

Linkstate path attribute

IANA allocation for BGP-LS path attribute is TYPE 29. Some older BGP-LS implementations might still require
earliest asigned allocation TYPE 99. To use TYPE = 99, you need to set value bellow to false.

URL: /restconf/config/bgp-linkstate-app-config:bgp-linkstate-app-config

Method: PUT

Content-Type: application/xml

Request Body:

<bgp-linkstate-app-config xmlns=
→˓"urn:opendaylight:params:xml:ns:yang:controller:bgp:linkstate-app-config">

<iana-linkstate-attribute-type>false</iana-linkstate-attribute-type>
</bgp-linkstate-app-config>

BGP Peer

Here is an example for BGP peer configuration with enabled BGP-LS family.

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
<neighbor-address>192.0.2.1</neighbor-address>
<afi-safis>

<afi-safi>
<afi-safi-name>LINKSTATE</afi-safi-name>

</afi-safi>
</afi-safis>

</neighbor>

Link-State Route API

Following tree illustrate the BGP Link-State route structure.

:(linkstate-routes-case)
+--ro linkstate-routes

+--ro linkstate-route* [route-key]
+--ro route-key binary
+--ro protocol-id protocol-id
+--ro identifier identifier

1.3. OpenDaylight User Guide 585

OpenDaylight Documentation Documentation, Release Carbon

+--ro (object-type)?
| +--:(node-case)
| | +--ro node-descriptors
| | +--ro as-number? inet:as-number
| | +--ro area-id? area-identifier
| | +--ro domain-id? domain-identifier
| | +--ro (c-router-identifier)?
| | +--:(isis-node-case)
| | | +--ro isis-node
| | | +--ro iso-system-id netc:iso-system-identifier
| | +--:(isis-pseudonode-case)
| | | +--ro isis-pseudonode
| | | +--ro is-is-router-identifier
| | | | +--ro iso-system-id netc:iso-system-identifier
| | | +--ro psn uint8
| | +--:(ospf-node-case)
| | | +--ro ospf-node
| | | +--ro ospf-router-id uint32
| | +--:(ospf-pseudonode-case)
| | +--ro ospf-pseudonode
| | +--ro ospf-router-id uint32
| | +--ro lan-interface ospf-interface-identifier
| +--:(link-case)
| | +--ro local-node-descriptors
| | | +--ro as-number? inet:as-number
| | | +--ro area-id? area-identifier
| | | +--ro domain-id? domain-identifier
| | | +--ro (c-router-identifier)?
| | | | +--:(isis-node-case)
| | | | | +--ro isis-node
| | | | | +--ro iso-system-id netc:iso-system-identifier
| | | | +--:(isis-pseudonode-case)
| | | | | +--ro isis-pseudonode
| | | | | +--ro is-is-router-identifier
| | | | | | +--ro iso-system-id netc:iso-system-identifier
| | | | | +--ro psn uint8
| | | | +--:(ospf-node-case)
| | | | | +--ro ospf-node
| | | | | +--ro ospf-router-id uint32
| | | | +--:(ospf-pseudonode-case)
| | | | +--ro ospf-pseudonode
| | | | +--ro ospf-router-id uint32
| | | | +--ro lan-interface ospf-interface-identifier
| | | +--ro bgp-router-id? inet:ipv4-address
| | | +--ro member-asn? inet:as-number
| | +--ro remote-node-descriptors
| | | +--ro as-number? inet:as-number
| | | +--ro area-id? area-identifier
| | | +--ro domain-id? domain-identifier
| | | +--ro (c-router-identifier)?
| | | | +--:(isis-node-case)
| | | | | +--ro isis-node
| | | | | +--ro iso-system-id netc:iso-system-identifier
| | | | +--:(isis-pseudonode-case)
| | | | | +--ro isis-pseudonode
| | | | | +--ro is-is-router-identifier
| | | | | | +--ro iso-system-id netc:iso-system-identifier
| | | | | +--ro psn uint8

586 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

| | | | +--:(ospf-node-case)
| | | | | +--ro ospf-node
| | | | | +--ro ospf-router-id uint32
| | | | +--:(ospf-pseudonode-case)
| | | | +--ro ospf-pseudonode
| | | | +--ro ospf-router-id uint32
| | | | +--ro lan-interface ospf-interface-identifier
| | | +--ro bgp-router-id? inet:ipv4-address
| | | +--ro member-asn? inet:as-number
| | +--ro link-descriptors
| | +--ro link-local-identifier? uint32
| | +--ro link-remote-identifier? uint32
| | +--ro ipv4-interface-address? ipv4-interface-identifier
| | +--ro ipv6-interface-address? ipv6-interface-identifier
| | +--ro ipv4-neighbor-address? ipv4-interface-identifier
| | +--ro ipv6-neighbor-address? ipv6-interface-identifier
| | +--ro multi-topology-id? topology-identifier
| +--:(prefix-case)
| | +--ro advertising-node-descriptors
| | | +--ro as-number? inet:as-number
| | | +--ro area-id? area-identifier
| | | +--ro domain-id? domain-identifier
| | | +--ro (c-router-identifier)?
| | | +--:(isis-node-case)
| | | | +--ro isis-node
| | | | +--ro iso-system-id netc:iso-system-identifier
| | | +--:(isis-pseudonode-case)
| | | | +--ro isis-pseudonode
| | | | +--ro is-is-router-identifier
| | | | | +--ro iso-system-id netc:iso-system-identifier
| | | | +--ro psn uint8
| | | +--:(ospf-node-case)
| | | | +--ro ospf-node
| | | | +--ro ospf-router-id uint32
| | | +--:(ospf-pseudonode-case)
| | | +--ro ospf-pseudonode
| | | +--ro ospf-router-id uint32
| | | +--ro lan-interface ospf-interface-identifier
| | +--ro prefix-descriptors
| | +--ro multi-topology-id? topology-identifier
| | +--ro ospf-route-type? ospf-route-type
| | +--ro ip-reachability-information? inet:ip-prefix
| +--:(te-lsp-case)
| +--ro (address-family)?
| | +--:(ipv4-case)
| | | +--ro ipv4-tunnel-sender-address inet:ipv4-address
| | | +--ro ipv4-tunnel-endpoint-address inet:ipv4-address
| | +--:(ipv6-case)
| | +--ro ipv6-tunnel-sender-address inet:ipv6-address
| | +--ro ipv6-tunnel-endpoint-address inet:ipv6-address
| +--ro tunnel-id? rsvp:tunnel-id
| +--ro lsp-id? rsvp:lsp-id
+--ro attributes

+--ro (link-state-attribute)?
+--:(node-attributes-case)
| +--ro node-attributes
| +--ro topology-identifier* topology-identifier
| +--ro node-flags? node-flag-bits

1.3. OpenDaylight User Guide 587

OpenDaylight Documentation Documentation, Release Carbon

| +--ro isis-area-id* isis-area-identifier
| +--ro dynamic-hostname? string
| +--ro ipv4-router-id? ipv4-router-identifier
| +--ro ipv6-router-id? ipv6-router-identifier
| +--ro sr-capabilities
| | +--ro mpls-ipv4? boolean
| | +--ro mpls-ipv6? boolean
| | +--ro sr-ipv6? boolean
| | +--ro range-size? uint32
| | +--ro (sid-label-index)?
| | +--:(local-label-case)
| | | +--ro local-label? netc:mpls-label
| | +--:(ipv6-address-case)
| | | +--ro ipv6-address? inet:ipv6-address
| | +--:(sid-case)
| | +--ro sid? uint32
| +--ro sr-algorithm
| +--ro algorithms* algorithm
+--:(link-attributes-case)
| +--ro link-attributes
| +--ro local-ipv4-router-id? ipv4-router-identifier
| +--ro local-ipv6-router-id? ipv6-router-identifier
| +--ro remote-ipv4-router-id? ipv4-router-identifier
| +--ro remote-ipv6-router-id? ipv6-router-identifier
| +--ro mpls-protocol? mpls-protocol-mask
| +--ro te-metric? netc:te-metric
| +--ro metric? netc:metric
| +--ro shared-risk-link-groups* rsvp:srlg-id
| +--ro link-name? string
| +--ro max-link-bandwidth? netc:bandwidth
| +--ro max-reservable-bandwidth? netc:bandwidth
| +--ro unreserved-bandwidth* [priority]
| | +--ro priority uint8
| | +--ro bandwidth? netc:bandwidth
| +--ro link-protection? link-protection-type
| +--ro admin-group? administrative-group
| +--ro sr-adj-ids*
| | +--ro (flags)?
| | | +--:(ospf-adj-flags-case)
| | | | +--ro backup? boolean
| | | | +--ro set? boolean
| | | +--:(isis-adj-flags-case)
| | | +--ro backup? boolean
| | | +--ro set? boolean
| | | +--ro address-family? boolean
| | +--ro weight? weight
| | +--ro (sid-label-index)?
| | +--:(local-label-case)
| | | +--ro local-label? netc:mpls-label
| | +--:(ipv6-address-case)
| | | +--ro ipv6-address? inet:ipv6-address
| | +--:(sid-case)
| | +--ro sid? uint32
| +--ro sr-lan-adj-ids*
| | +--ro (flags)?
| | | +--:(ospf-adj-flags-case)
| | | | +--ro backup? boolean
| | | | +--ro set? boolean

588 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

| | | +--:(isis-adj-flags-case)
| | | +--ro backup? boolean
| | | +--ro set? boolean
| | | +--ro address-family? boolean
| | +--ro weight? weight
| | +--ro iso-system-id? netc:iso-system-identifier
| | +--ro neighbor-id? inet:ipv4-address
| | +--ro (sid-label-index)?
| | +--:(local-label-case)
| | | +--ro local-label? netc:mpls-label
| | +--:(ipv6-address-case)
| | | +--ro ipv6-address? inet:ipv6-address
| | +--:(sid-case)
| | +--ro sid? uint32
| +--ro peer-node-sid
| | +--ro weight? weight
| | +--ro (sid-label-index)?
| | +--:(local-label-case)
| | | +--ro local-label? netc:mpls-label
| | +--:(ipv6-address-case)
| | | +--ro ipv6-address? inet:ipv6-address
| | +--:(sid-case)
| | +--ro sid? uint32
| +--ro peer-adj-sid
| | +--ro weight? weight
| | +--ro (sid-label-index)?
| | +--:(local-label-case)
| | | +--ro local-label? netc:mpls-label
| | +--:(ipv6-address-case)
| | | +--ro ipv6-address? inet:ipv6-address
| | +--:(sid-case)
| | +--ro sid? uint32
| +--ro peer-set-sids*
| +--ro weight? weight
| +--ro (sid-label-index)?
| +--:(local-label-case)
| | +--ro local-label? netc:mpls-label
| +--:(ipv6-address-case)
| | +--ro ipv6-address? inet:ipv6-address
| +--:(sid-case)
| +--ro sid? uint32
+--:(prefix-attributes-case)
| +--ro prefix-attributes
| +--ro igp-bits
| | x--ro up-down? bits
| | +--ro is-is-up-down? boolean
| | +--ro ospf-no-unicast? boolean
| | +--ro ospf-local-address? boolean
| | +--ro ospf-propagate-nssa? boolean
| +--ro route-tags* route-tag
| +--ro extended-tags* extended-route-tag
| +--ro prefix-metric? netc:igp-metric
| +--ro ospf-forwarding-address? inet:ip-address
| +--ro sr-prefix
| | +--ro (flags)?
| | | +--:(isis-prefix-flags-case)
| | | | +--ro no-php? boolean
| | | | +--ro explicit-null? boolean

1.3. OpenDaylight User Guide 589

OpenDaylight Documentation Documentation, Release Carbon

| | | | +--ro readvertisement? boolean
| | | | +--ro node-sid? boolean
| | | +--:(ospf-prefix-flags-case)
| | | +--ro no-php? boolean
| | | +--ro explicit-null? boolean
| | | +--ro mapping-server? boolean
| | +--ro algorithm? algorithm
| | +--ro (sid-label-index)?
| | +--:(local-label-case)
| | | +--ro local-label? netc:mpls-label
| | +--:(ipv6-address-case)
| | | +--ro ipv6-address? inet:ipv6-address
| | +--:(sid-case)
| | +--ro sid? uint32
| +--ro ipv6-sr-prefix
| | +--ro algorithm? algorithm
| +--ro sr-range
| | +--ro inter-area? boolean
| | +--ro range-size? uint16
| | +--ro sub-tlvs*
| | +--ro (range-sub-tlv)?
| | +--:(binding-sid-tlv-case)
| | | +--ro weight? weight
| | | +--ro (flags)?
| | | | +--:(isis-binding-flags-case)
| | | | | +--ro address-family? boolean
| | | | | +--ro mirror-context? boolean
| | | | | +--ro spread-tlv? boolean
| | | | | +--ro leaked-from-level-2? boolean
| | | | | +--ro attached-flag? boolean
| | | | +--:(ospf-binding-flags-case)
| | | | +--ro mirroring? boolean
| | | +--ro binding-sub-tlvs*
| | | +--ro (binding-sub-tlv)?
| | | +--:(prefix-sid-case)
| | | | +--ro (flags)?
| | | | | +--:(isis-prefix-flags-case)
| | | | | | +--ro no-php? boolean
| | | | | | +--ro explicit-null? boolean
| | | | | | +--ro readvertisement? boolean
| | | | | | +--ro node-sid? boolean
| | | | | +--:(ospf-prefix-flags-case)
| | | | | +--ro no-php? boolean
| | | | | +--ro explicit-null? boolean
| | | | | +--ro mapping-server? boolean
| | | | +--ro algorithm? algorithm
| | | | +--ro (sid-label-index)?
| | | | +--:(local-label-case)
| | | | | +--ro local-label? netc:mpls-

→˓label
| | | | +--:(ipv6-address-case)
| | | | | +--ro ipv6-address? inet:ipv6-

→˓address
| | | | +--:(sid-case)
| | | | +--ro sid? uint32
| | | +--:(ipv6-prefix-sid-case)
| | | | +--ro algorithm? algorithm
| | | +--:(sid-label-case)

590 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

| | | | +--ro (sid-label-index)?
| | | | +--:(local-label-case)
| | | | | +--ro local-label? netc:mpls-

→˓label
| | | | +--:(ipv6-address-case)
| | | | | +--ro ipv6-address? inet:ipv6-

→˓address
| | | | +--:(sid-case)
| | | | +--ro sid? uint32
| | | +--:(ero-metric-case)
| | | | +--ro ero-metric? netc:te-metric
| | | +--:(ipv4-ero-case)
| | | | +--ro loose? boolean
| | | | +--ro address inet:ipv4-address
| | | +--:(ipv6-ero-case)
| | | | +--ro loose? boolean
| | | | +--ro address inet:ipv6-address
| | | +--:(unnumbered-interface-id-ero-case)
| | | | +--ro loose? boolean
| | | | +--ro router-id? uint32
| | | | +--ro interface-id? uint32
| | | +--:(ipv4-ero-backup-case)
| | | | +--ro loose? boolean
| | | | +--ro address inet:ipv4-address
| | | +--:(ipv6-ero-backup-case)
| | | | +--ro loose? boolean
| | | | +--ro address inet:ipv6-address
| | | +--:(unnumbered-interface-id-backup-ero-case)
| | | +--ro loose? boolean
| | | +--ro router-id? uint32
| | | +--ro interface-id? uint32
| | +--:(prefix-sid-tlv-case)
| | | +--ro (flags)?
| | | | +--:(isis-prefix-flags-case)
| | | | | +--ro no-php? boolean
| | | | | +--ro explicit-null? boolean
| | | | | +--ro readvertisement? boolean
| | | | | +--ro node-sid? boolean
| | | | +--:(ospf-prefix-flags-case)
| | | | +--ro no-php? boolean
| | | | +--ro explicit-null? boolean
| | | | +--ro mapping-server? boolean
| | | +--ro algorithm? algorithm
| | | +--ro (sid-label-index)?
| | | +--:(local-label-case)
| | | | +--ro local-label? netc:mpls-label
| | | +--:(ipv6-address-case)
| | | | +--ro ipv6-address? inet:ipv6-address
| | | +--:(sid-case)
| | | +--ro sid? uint32
| | +--:(ipv6-prefix-sid-tlv-case)
| | | +--ro algorithm? algorithm
| | +--:(sid-label-tlv-case)
| | +--ro (sid-label-index)?
| | +--:(local-label-case)
| | | +--ro local-label? netc:mpls-label
| | +--:(ipv6-address-case)
| | | +--ro ipv6-address? inet:ipv6-address

1.3. OpenDaylight User Guide 591

OpenDaylight Documentation Documentation, Release Carbon

| | +--:(sid-case)
| | +--ro sid? uint32
| +--ro sr-binding-sid-labels*
| +--ro weight? weight
| +--ro (flags)?
| | +--:(isis-binding-flags-case)
| | | +--ro address-family? boolean
| | | +--ro mirror-context? boolean
| | | +--ro spread-tlv? boolean
| | | +--ro leaked-from-level-2? boolean
| | | +--ro attached-flag? boolean
| | +--:(ospf-binding-flags-case)
| | +--ro mirroring? boolean
| +--ro binding-sub-tlvs*
| +--ro (binding-sub-tlv)?
| +--:(prefix-sid-case)
| | +--ro (flags)?
| | | +--:(isis-prefix-flags-case)
| | | | +--ro no-php? boolean
| | | | +--ro explicit-null? boolean
| | | | +--ro readvertisement? boolean
| | | | +--ro node-sid? boolean
| | | +--:(ospf-prefix-flags-case)
| | | +--ro no-php? boolean
| | | +--ro explicit-null? boolean
| | | +--ro mapping-server? boolean
| | +--ro algorithm? algorithm
| | +--ro (sid-label-index)?
| | +--:(local-label-case)
| | | +--ro local-label? netc:mpls-label
| | +--:(ipv6-address-case)
| | | +--ro ipv6-address? inet:ipv6-address
| | +--:(sid-case)
| | +--ro sid? uint32
| +--:(ipv6-prefix-sid-case)
| | +--ro algorithm? algorithm
| +--:(sid-label-case)
| | +--ro (sid-label-index)?
| | +--:(local-label-case)
| | | +--ro local-label? netc:mpls-label
| | +--:(ipv6-address-case)
| | | +--ro ipv6-address? inet:ipv6-address
| | +--:(sid-case)
| | +--ro sid? uint32
| +--:(ero-metric-case)
| | +--ro ero-metric? netc:te-metric
| +--:(ipv4-ero-case)
| | +--ro loose? boolean
| | +--ro address inet:ipv4-address
| +--:(ipv6-ero-case)
| | +--ro loose? boolean
| | +--ro address inet:ipv6-address
| +--:(unnumbered-interface-id-ero-case)
| | +--ro loose? boolean
| | +--ro router-id? uint32
| | +--ro interface-id? uint32
| +--:(ipv4-ero-backup-case)
| | +--ro loose? boolean

592 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

| | +--ro address inet:ipv4-address
| +--:(ipv6-ero-backup-case)
| | +--ro loose? boolean
| | +--ro address inet:ipv6-address
| +--:(unnumbered-interface-id-backup-ero-case)
| +--ro loose? boolean
| +--ro router-id? uint32
| +--ro interface-id? uint32
x--:(te-lsp-attributes-case)

+--ro te-lsp-attributes

Usage

The Link-State table in a instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-linkstate:linkstate-address-family/bgp-linkstate:linkstate-subsequent-address-family/
linkstate-routes

Method: GET

Response Body:

<linkstate-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-linkstate">
...

</linkstate-routes>

Note: Link-State routes mapping to topology links/nodes/prefixes is supported by BGP Topology Provider.

References

• North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP

• BGP Link-State extensions for Segment Routing

• Segment Routing BGP Egress Peer Engineering BGP-LS Extensions

• BGP Link-State Information Distribution Implementation Report

Flow Specification Family

The BGP Flow Specification (BGP-FS) Multiprotocol extension can be used to distribute traffic flow specifications.
For example, the BGP-FS can be used in a case of (distributed) denial-of-service (DDoS) attack mitigation procedures
and traffic filtering (BGP/MPLS VPN service, DC).

Contents

• Configuration

– BGP Speaker

– BGP Peer

1.3. OpenDaylight User Guide 593

https://tools.ietf.org/html/rfc7752
https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-03
https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-05
https://tools.ietf.org/html/draft-ietf-idr-ls-distribution-impl-04

OpenDaylight Documentation Documentation, Release Carbon

• Flow Specification API

– IPv4 Flow Specification Route

– IPv6 Flow Specification Route

• Usage

– IPv4 Flow Specification

– IPv6 Flows Specification

– IPv4 L3VPN Flows Specification

• Programming

– IPv4 Flow Specification

– IPv4 L3VPN Flow Specification

– IPv6 Flow Specification

• References

Configuration

This section shows a way to enable BGP-FS family in BGP speaker and peer configuration.

BGP Speaker

To enable BGP-FS support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
<name>bgp-example</name>
<identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
<bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">

<global>
<config>

<router-id>192.0.2.2</router-id>
<as>65000</as>

</config>
<afi-safis>

<afi-safi>
<afi-safi-name>IPV4-FLOW</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name>IPV6-FLOW</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name>IPV4-L3VPN-FLOW</afi-safi-name>
</afi-safi>

594 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<afi-safi>
<afi-safi-name>IPV6-L3VPN-FLOW</afi-safi-name>

</afi-safi>
</afi-safis>

</global>
</bgp>

</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled BGP-FS family.

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
<neighbor-address>192.0.2.1</neighbor-address>
<afi-safis>

<afi-safi>
<afi-safi-name>IPV4-FLOW</afi-safi-name>

</afi-safi>
<afi-safi>

<afi-safi-name>IPV6-FLOW</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name>IPV4-L3VPN-FLOW</afi-safi-name>
</afi-safi>
<afi-safi>

<afi-safi-name>IPV6-L3VPN-FLOW</afi-safi-name>
</afi-safi>

</afi-safis>
</neighbor>

Flow Specification API

Following trees illustrate the BGP Flow Specification routes structure.

IPv4 Flow Specification Route

:(flowspec-routes-case)
+--ro flowspec-routes

+--ro flowspec-route* [route-key path-id]
+--ro route-key string
+--ro flowspec*
| +--ro (flowspec-type)?
| +--:(port-case)
| | +--ro ports*

1.3. OpenDaylight User Guide 595

OpenDaylight Documentation Documentation, Release Carbon

| | +--ro op? numeric-operand
| | +--ro value? uint16
| +--:(destination-port-case)
| | +--ro destination-ports*
| | +--ro op? numeric-operand
| | +--ro value? uint16
| +--:(source-port-case)
| | +--ro source-ports*
| | +--ro op? numeric-operand
| | +--ro value? uint16
| +--:(icmp-type-case)
| | +--ro types*
| | +--ro op? numeric-operand
| | +--ro value? uint8
| +--:(icmp-code-case)
| | +--ro codes*
| | +--ro op? numeric-operand
| | +--ro value? uint8
| +--:(tcp-flags-case)
| | +--ro tcp-flags*
| | +--ro op? bitmask-operand
| | +--ro value? uint16
| +--:(packet-length-case)
| | +--ro packet-lengths*
| | +--ro op? numeric-operand
| | +--ro value? uint16
| +--:(dscp-case)
| | +--ro dscps*
| | +--ro op? numeric-operand
| | +--ro value? dscp
| +--:(fragment-case)
| | +--ro fragments*
| | +--ro op? bitmask-operand
| | +--ro value? fragment
| +--:(destination-prefix-case)
| | +--ro destination-prefix? inet:ipv4-prefix
| +--:(source-prefix-case)
| | +--ro source-prefix? inet:ipv4-prefix
| +--:(protocol-ip-case)
| +--ro protocol-ips*
| +--ro op? numeric-operand
| +--ro value? uint8
+--ro path-id path-id
+--ro attributes

+--ro extended-communities*
+--ro transitive? boolean
+--ro (extended-community)?

+--:(traffic-rate-extended-community-case)
| +--ro traffic-rate-extended-community
| +--ro informative-as? bgp-t:short-as-number
| +--ro local-administrator? netc:bandwidth
+--:(traffic-action-extended-community-case)
| +--ro traffic-action-extended-community
| +--ro sample? boolean
| +--ro terminal-action? boolean
+--:(redirect-extended-community-case)
| +--ro redirect-extended-community
| +--ro global-administrator? bgp-t:short-as-number

596 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

| +--ro local-administrator? binary
+--:(traffic-marking-extended-community-case)
| +--ro traffic-marking-extended-community
| +--ro global-administrator? dscp
+--:(redirect-ipv4-extended-community-case)
| +--ro redirect-ipv4
| +--ro global-administrator? inet:ipv4-address
| +--ro local-administrator? uint16
+--:(redirect-as4-extended-community-case)
| +--ro redirect-as4
| +--ro global-administrator? inet:as-number
| +--ro local-administrator? uint16
+--:(redirect-ip-nh-extended-community-case)
+--ro redirect-ip-nh-extended-community

+--ro next-hop-address? inet:ip-address
+--ro copy? boolean

IPv6 Flow Specification Route

:(flowspec-ipv6-routes-case)
+--ro flowspec-ipv6-routes

+--ro flowspec-route* [route-key path-id]
+--ro flowspec*
| +--ro (flowspec-type)?
| +--:(port-case)
| | +--ro ports*
| | +--ro op? numeric-operand
| | +--ro value? uint16
| +--:(destination-port-case)
| | +--ro destination-ports*
| | +--ro op? numeric-operand
| | +--ro value? uint16
| +--:(source-port-case)
| | +--ro source-ports*
| | +--ro op? numeric-operand
| | +--ro value? uint16
| +--:(icmp-type-case)
| | +--ro types*
| | +--ro op? numeric-operand
| | +--ro value? uint8
| +--:(icmp-code-case)
| | +--ro codes*
| | +--ro op? numeric-operand
| | +--ro value? uint8
| +--:(tcp-flags-case)
| | +--ro tcp-flags*
| | +--ro op? bitmask-operand
| | +--ro value? uint16
| +--:(packet-length-case)
| | +--ro packet-lengths*
| | +--ro op? numeric-operand
| | +--ro value? uint16
| +--:(dscp-case)
| | +--ro dscps*
| | +--ro op? numeric-operand
| | +--ro value? dscp

1.3. OpenDaylight User Guide 597

OpenDaylight Documentation Documentation, Release Carbon

| +--:(fragment-case)
| | +--ro fragments*
| | +--ro op? bitmask-operand
| | +--ro value? fragment
| +--:(destination-ipv6-prefix-case)
| | +--ro destination-prefix? inet:ipv6-prefix
| +--:(source-ipv6-prefix-case)
| | +--ro source-prefix? inet:ipv6-prefix
| +--:(next-header-case)
| | +--ro next-headers*
| | +--ro op? numeric-operand
| | +--ro value? uint8
| +--:(flow-label-case)
| +--ro flow-label*
| +--ro op? numeric-operand
| +--ro value? uint32
+--ro path-id path-id
+--ro attributes

+--ro extended-communities*
+--ro transitive? boolean
+--ro (extended-community)?

+--:(traffic-rate-extended-community-case)
| +--ro traffic-rate-extended-community
| +--ro informative-as? bgp-t:short-as-number
| +--ro local-administrator? netc:bandwidth
+--:(traffic-action-extended-community-case)
| +--ro traffic-action-extended-community
| +--ro sample? boolean
| +--ro terminal-action? boolean
+--:(redirect-extended-community-case)
| +--ro redirect-extended-community
| +--ro global-administrator? bgp-t:short-as-number
| +--ro local-administrator? binary
+--:(traffic-marking-extended-community-case)
| +--ro traffic-marking-extended-community
| +--ro global-administrator? dscp
+--:(redirect-ipv6-extended-community-case)
| +--ro redirect-ipv6
| +--ro global-administrator? inet:ipv6-address
| +--ro local-administrator? uint16
+--:(redirect-as4-extended-community-case)
| +--ro redirect-as4
| +--ro global-administrator? inet:as-number
| +--ro local-administrator? uint16
+--:(redirect-ip-nh-extended-community-case)

+--ro redirect-ip-nh-extended-community
+--ro next-hop-address? inet:ip-address
+--ro copy? boolean

Usage

The flowspec route represents rules and an action, defined as an extended community.

598 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

IPv4 Flow Specification

The IPv4 Flowspec table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv4-address-family/bgp-flowspec:flowspec-subsequent-address-family/
bgp-flowspec:flowspec-routes

Method: GET

Response Body:

<flowspec-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
<flowspec-route>

<path-id>0</path-id>
<route-key>all packets to 192.168.0.1/32 AND from 10.0.0.2/32 AND where IP

→˓protocol equals to 17 or equals to 6 AND where port equals to 80 or equals to 8080
→˓AND where destination port is greater than 8080 and is less than 8088 or equals to
→˓3128 AND where source port is greater than 1024 </route-key>

<attributes>
<local-pref>

<pref>100</pref>
</local-pref>
<origin>

<value>igp</value>
</origin>
<as-path></as-path>
<extended-communities>

<transitive>true</transitive>
<redirect-extended-community>

<local-administrator>AgMWLg==</local-administrator>
<global-administrator>258</global-administrator>

</redirect-extended-community>
</extended-communities>

</attributes>
<flowspec>

<destination-prefix>192.168.0.1/32</destination-prefix>
</flowspec>
<flowspec>

<source-prefix>10.0.0.2/32</source-prefix>
</flowspec>
<flowspec>

<protocol-ips>
<op>equals</op>
<value>17</value>

</protocol-ips>
<protocol-ips>

<op>equals end-of-list</op>
<value>6</value>

</protocol-ips>
</flowspec>
<flowspec>

<ports>
<op>equals</op>
<value>80</value>

</ports>
<ports>

<op>equals end-of-list</op>
<value>8080</value>

1.3. OpenDaylight User Guide 599

OpenDaylight Documentation Documentation, Release Carbon

</ports>
</flowspec>
<flowspec>

<destination-ports>
<op>greater-than</op>
<value>8080</value>

</destination-ports>
<destination-ports>

<op>less-than and-bit</op>
<value>8088</value>

</destination-ports>
<destination-ports>

<op>equals end-of-list</op>
<value>3128</value>

</destination-ports>
</flowspec>
<flowspec>

<source-ports>
<op>end-of-list greater-than</op>
<value>1024</value>

</source-ports>
</flowspec>

</flowspec-route>
</flowspec-routes>

IPv6 Flows Specification

The IPv6 Flowspec table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv6-address-family/bgp-flowspec:flowspec-subsequent-address-family/
bgp-flowspec:flowspec-ipv6-routes

Method: GET

Response Body:

<flowspec-ipv6-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
<flowspec-route>

<path-id>0</path-id>
<route-key>all packets to 2001:db8:31::/64 AND from 2001:db8:30::/64 AND

→˓where next header equals to 17 AND where DSCP equals to 50 AND where flow label
→˓equals to 2013 </route-key>

<attributes>
<local-pref>

<pref>100</pref>
</local-pref>
<origin>

<value>igp</value>
</origin>
<as-path></as-path>
<extended-communities>

<transitive>true</transitive>
<traffic-rate-extended-community>

<informative-as>0</informative-as>
<local-administrator>AAAAAA==</local-administrator>

</traffic-rate-extended-community>

600 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</extended-communities>
</attributes>
<flowspec>

<destination-prefix>2001:db8:31::/64</destination-prefix>
</flowspec>
<flowspec>

<source-prefix>2001:db8:30::/64</source-prefix>
</flowspec>
<flowspec>

<next-headers>
<op>equals end-of-list</op>
<value>17</value>

</next-headers>
</flowspec>
<flowspec>

<dscps>
<op>equals end-of-list</op>
<value>50</value>

</dscps>
</flowspec>
<flowspec>

<flow-label>
<op>equals end-of-list</op>
<value>2013</value>

</flow-label>
</flowspec>

</flowspec-route>
</flowspec-ipv6-routes>

IPv4 L3VPN Flows Specification

The IPv4 L3VPN Flowspec table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv4-address-family/bgp-flowspec:flowspec-l3vpn-subsequent-address-family/
bgp-flowspec:flowspec-l3vpn-ipv4-routes

Method: GET

Response Body:

<flowspec-l3vpn-ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
<flowspec-l3vpn-route>

<path-id>0</path-id>
<route-key>[l3vpn with route-distinguisher 172.16.0.44:101] all packets from

→˓10.0.0.3/32</route-key>
<attributes>

<local-pref>
<pref>100</pref>

</local-pref>
<ipv4-next-hop>

<global>5.6.7.8</global>
</ipv4-next-hop>
<origin>

<value>igp</value>
</origin>
<as-path></as-path>

1.3. OpenDaylight User Guide 601

OpenDaylight Documentation Documentation, Release Carbon

<extended-communities>
<transitive>true</transitive>
<redirect-ip-nh-extended-community>

<copy>false</copy>
<next-hop-address>0.0.0.0</next-hop-address>

</redirect-ip-nh-extended-community>
</extended-communities>

</attributes>
<route-distinguisher>172.16.0.44:101</route-distinguisher>
<flowspec>

<source-prefix>10.0.0.3/32</source-prefix>
</flowspec>

</flowspec-l3vpn-route>
</flowspec-l3vpn-ipv4-routes>

Programming

IPv4 Flow Specification

This examples show how to originate and remove IPv4 fowspec route via programmable RIB. Make sure the Applica-
tion Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-flowspec:flowspec-subsequent-address-family/
bgp-flowspec:flowspec-routes

Method: POST

Content-Type: application/xml

Request Body:

<flowspec-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
<route-key>flow1</route-key>
<path-id>0</path-id>
<flowspec>

<destination-prefix>192.168.0.1/32</destination-prefix>
</flowspec>
<flowspec>

<source-prefix>10.0.0.1/32</source-prefix>
</flowspec>
<flowspec>

<protocol-ips>
<op>equals end-of-list</op>
<value>6</value>

</protocol-ips>
</flowspec>
<flowspec>

<ports>
<op>equals end-of-list</op>
<value>80</value>

</ports>
</flowspec>
<flowspec>

<destination-ports>
<op>greater-than</op>
<value>8080</value>

602 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</destination-ports>
<destination-ports>

<op>and-bit less-than end-of-list</op>
<value>8088</value>

</destination-ports>
</flowspec>
<flowspec>

<source-ports>
<op>greater-than end-of-list</op>
<value>1024</value>

</source-ports>
</flowspec>
<flowspec>

<types>
<op>equals end-of-list</op>
<value>0</value>

</types>
</flowspec>
<flowspec>

<codes>
<op>equals end-of-list</op>
<value>0</value>

</codes>
</flowspec>
<flowspec>

<tcp-flags>
<op>match end-of-list</op>
<value>32</value>

</tcp-flags>
</flowspec>
<flowspec>

<packet-lengths>
<op>greater-than</op>
<value>400</value>

</packet-lengths>
<packet-lengths>

<op>and-bit less-than end-of-list</op>
<value>500</value>

</packet-lengths>
</flowspec>
<flowspec>

<dscps>
<op>equals end-of-list</op>
<value>20</value>

</dscps>
</flowspec>
<flowspec>

<fragments>
<op>match end-of-list</op>
<value>first</value>

</fragments>
</flowspec>
<attributes>

<origin>
<value>igp</value>

</origin>
<as-path/>
<local-pref>

1.3. OpenDaylight User Guide 603

OpenDaylight Documentation Documentation, Release Carbon

<pref>100</pref>
</local-pref>
<extended-communities>

....
</extended-communities>

</attributes>
</flowspec-route>

Extended Communities

• Traffic Rate

1 <extended-communities>
2 <transitive>true</transitive>
3 <traffic-rate-extended-community>
4 <informative-as>123</informative-as>
5 <local-administrator>AAAAAA==</local-administrator>
6 </traffic-rate-extended-community>
7 </extended-communities>

@line 5: A rate in bytes per second, AAAAAA== (0) means traffic discard.

• Traffic Action

<extended-communities>
<transitive>true</transitive>
<traffic-action-extended-community>

<sample>true</sample>
<terminal-action>false</terminal-action>

</traffic-action-extended-community>
</extended-communities>

• Redirect to VRF AS 2byte format

<extended-communities>
<transitive>true</transitive>
<redirect-extended-community>

<global-administrator>123</global-administrator>
<local-administrator>AAAAew==</local-administrator>

</redirect-extended-community>
</extended-communities>

• Redirect to VRF IPv4 format

<extended-communities>
<transitive>true</transitive>
<redirect-ipv4>

<global-administrator>192.168.0.1</global-administrator>
<local-administrator>12345</local-administrator>

</redirect-ipv4>
</extended-communities>

• Redirect to VRF AS 4byte format

<extended-communities>
<transitive>true</transitive>
<redirect-as4>

604 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<global-administrator>64495</global-administrator>
<local-administrator>12345</local-administrator>

</redirect-as4>
</extended-communities>

• Redirect to IP

<extended-communities>
<transitive>true</transitive>
<redirect-ip-nh-extended-community>

<copy>false</false>
</redirect-ip-nh-extended-community>

</extended-communities>

• Traffic Marking

<extended-communities>
<transitive>true</transitive>
<traffic-marking-extended-community>

<global-administrator>20</global-administrator>
</traffic-marking-extended-community>

</extended-communities>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-flowspec:flowspec-subsequent-address-family/
bgp-flowspec:flowspec-routes/bgp-flowspec:flowspec-route/flow1/0

Method: DELETE

IPv4 L3VPN Flow Specification

This examples show how to originate and remove IPv4 L3VPN fowspec route via programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-flowspec:flowspec-l3vpn-subsequent-address-family/
bgp-flowspec:flowspec-l3vpn-ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<flowspec-l3vpn-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
<path-id>0</path-id>
<route-key>flow-l3vpn</route-key>
<route-distinguisher>172.16.0.44:101</route-distinguisher>
<flowspec>

<source-prefix>10.0.0.3/32</source-prefix>
</flowspec>
<attributes>

<local-pref>
<pref>100</pref>

</local-pref>
<origin>

1.3. OpenDaylight User Guide 605

OpenDaylight Documentation Documentation, Release Carbon

<value>igp</value>
</origin>
<as-path></as-path>

<extended-communities>
<transitive>true</transitive>
<redirect-ipv4>

<global-administrator>172.16.0.44</global-administrator>
<local-administrator>102</local-administrator>

</redirect-ipv4>
</extended-communities>

</attributes>
</flowspec-l3vpn-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/bgp-flowspec:flowspec-l3vpn-subsequent-address-family/
bgp-flowspec:flowspec-l3vpn-ipv4-routes/flowspec-l3vpn-route/flow-l3vpn/0

Method: DELETE

IPv6 Flow Specification

This examples show how to originate and remove IPv6 fowspec route via programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv6-address-family/bgp-flowspec:flowspec-subsequent-address-family/
bgp-flowspec:flowspec-ipv6-routes

Method: POST

Content-Type: application/xml

Request Body:

<flowspec-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
<route-key>flow-v6</route-key>
<path-id>0</path-id>
<flowspec>

<destination-prefix>2001:db8:30::3/128</destination-prefix>
</flowspec>
<flowspec>

<source-prefix>2001:db8:31::3/128</source-prefix>
</flowspec>

<flowspec>
<flow-label>

<op>equals end-of-list</op>
<value>1</value>

</flow-label>
</flowspec>
<attributes>

<extended-communities>
<transitive>true</transitive>
<redirect-ipv6>

<global-administrator>2001:db8:1::6</global-administrator>
<local-administrator>12345</local-administrator>

</redirect-ipv6>

606 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</extended-communities>
<origin>

<value>igp</value>
</origin>
<as-path/>
<local-pref>

<pref>100</pref>
</local-pref>

</attributes>
</flowspec-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv6-address-family/bgp-flowspec:flowspec-subsequent-address-family/
bgp-flowspec:flowspec-ipv6-routes/bgp-flowspec:flowspec-route/flow-v6/0

Method: DELETE

References

• Dissemination of Flow Specification Rules

• Dissemination of Flow Specification Rules for IPv6

• BGP Flow-Spec Extended Community for Traffic Redirect to IP Next Hop

• Clarification of the Flowspec Redirect Extended Community

• Revised Validation Procedure for BGP Flow Specifications

EVPN Family

The BGP MPLS-Based Ethernet VPN (BGP EVPN) Multiprotocol extension can be used to distribute Ethernet L2VPN
service related routes in order to support a concept of MAC routing. A major use-case for BGP EVPN is data-
center interconnection (DCI), where advantage of BGP EVPN are MAC/IP address advertising across MPLS network,
Multihoming functionality including Fast Convergence, Split Horizon and Aliasing support, VM (MAC) Mobility,
support Multicast and Broadcast traffic. In addition to MPLS, IP tunnelling encapsulation techniques like VXLAN,
NVGRE, MPLSoGRE and others can be used for packet transportation. Also, Provider Backbone Bridging (PBB) can
be combined with EVPN in order to reduce a number of MAC Advertisement routes.

Contents

• Configuration

– BGP Speaker

– BGP Peer

• EVPN Route API

• Usage

• Programming

• References

1.3. OpenDaylight User Guide 607

https://tools.ietf.org/html/rfc5575
https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-07
https://tools.ietf.org/html/draft-ietf-idr-flowspec-redirect-ip-00
https://tools.ietf.org/html/rfc7674
https://tools.ietf.org/html/draft-ietf-idr-bgp-flowspec-oid-03

OpenDaylight Documentation Documentation, Release Carbon

Configuration

This section shows a way to enable EVPN family in BGP speaker and peer configuration.

BGP Speaker

To enable EVPN support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
<name>bgp-example</name>
<identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
<bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">

<global>
<config>

<router-id>192.0.2.2</router-id>
<as>65000</as>

</config>
<afi-safis>

<afi-safi>
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">

→˓x:L2VPN-EVPN</afi-safi-name>
</afi-safi>

</afi-safis>
</global>

</bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled EVPN family.

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
<neighbor-address>192.0.2.1</neighbor-address>
<afi-safis>

<afi-safi>
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L2VPN-EVPN

→˓</afi-safi-name>
</afi-safi>

608 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</afi-safis>
</neighbor>

EVPN Route API

Following tree illustrate the BGP EVPN route structure.

:(evpn-routes-case)
+--ro evpn-routes

+--ro evpn-route* [route-key]
+--ro route-key string
+--ro (evpn-choice)
| +--:(ethernet-a-d-route-case)
| | +--ro ethernet-a-d-route
| | +--ro (esi)
| | | +--:(arbitrary-case)
| | | | +--ro arbitrary
| | | | +--ro arbitrary binary
| | | +--:(lacp-auto-generated-case)
| | | | +--ro lacp-auto-generated
| | | | +--ro ce-lacp-mac-address yang:mac-address
| | | | +--ro ce-lacp-port-key uint16
| | | +--:(lan-auto-generated-case)
| | | | +--ro lan-auto-generated
| | | | +--ro root-bridge-mac-address yang:mac-address
| | | | +--ro root-bridge-priority uint16
| | | +--:(mac-auto-generated-case)
| | | | +--ro mac-auto-generated
| | | | +--ro system-mac-address yang:mac-address
| | | | +--ro local-discriminator uint24
| | | +--:(router-id-generated-case)
| | | | +--ro router-id-generated
| | | | +--ro router-id inet:ipv4-address
| | | | +--ro local-discriminator uint32
| | | +--:(as-generated-case)
| | | +--ro as-generated
| | | +--ro as inet:as-number
| | | +--ro local-discriminator uint32
| | +--ro ethernet-tag-id
| | | +--ro vlan-id uint32
| | +--ro mpls-label netc:mpls-label
| +--:(mac-ip-adv-route-case)
| | +--ro mac-ip-adv-route
| | +--ro (esi)
| | | +--:(arbitrary-case)
| | | | +--ro arbitrary
| | | | +--ro arbitrary binary
| | | +--:(lacp-auto-generated-case)
| | | | +--ro lacp-auto-generated
| | | | +--ro ce-lacp-mac-address yang:mac-address
| | | | +--ro ce-lacp-port-key uint16
| | | +--:(lan-auto-generated-case)
| | | | +--ro lan-auto-generated
| | | | +--ro root-bridge-mac-address yang:mac-address
| | | | +--ro root-bridge-priority uint16
| | | +--:(mac-auto-generated-case)

1.3. OpenDaylight User Guide 609

OpenDaylight Documentation Documentation, Release Carbon

| | | | +--ro mac-auto-generated
| | | | +--ro system-mac-address yang:mac-address
| | | | +--ro local-discriminator uint24
| | | +--:(router-id-generated-case)
| | | | +--ro router-id-generated
| | | | +--ro router-id inet:ipv4-address
| | | | +--ro local-discriminator uint32
| | | +--:(as-generated-case)
| | | +--ro as-generated
| | | +--ro as inet:as-number
| | | +--ro local-discriminator uint32
| | +--ro ethernet-tag-id
| | | +--ro vlan-id uint32
| | +--ro mac-address yang:mac-address
| | +--ro ip-address? inet:ip-address
| | +--ro mpls-label1 netc:mpls-label
| | +--ro mpls-label2? netc:mpls-label
| +--:(inc-multi-ethernet-tag-res-case)
| | +--ro inc-multi-ethernet-tag-res
| | +--ro ethernet-tag-id
| | | +--ro vlan-id uint32
| | +--ro orig-route-ip? inet:ip-address
| +--:(es-route-case)
| +--ro es-route
| +--ro (esi)
| | +--:(arbitrary-case)
| | | +--ro arbitrary
| | | +--ro arbitrary binary
| | +--:(lacp-auto-generated-case)
| | | +--ro lacp-auto-generated
| | | +--ro ce-lacp-mac-address yang:mac-address
| | | +--ro ce-lacp-port-key uint16
| | +--:(lan-auto-generated-case)
| | | +--ro lan-auto-generated
| | | +--ro root-bridge-mac-address yang:mac-address
| | | +--ro root-bridge-priority uint16
| | +--:(mac-auto-generated-case)
| | | +--ro mac-auto-generated
| | | +--ro system-mac-address yang:mac-address
| | | +--ro local-discriminator uint24
| | +--:(router-id-generated-case)
| | | +--ro router-id-generated
| | | +--ro router-id inet:ipv4-address
| | | +--ro local-discriminator uint32
| | +--:(as-generated-case)
| | +--ro as-generated
| | +--ro as inet:as-number
| | +--ro local-discriminator uint32
| +--ro orig-route-ip inet:ip-address
+--ro route-distinguisher bgp-t:route-distinguisher
+--ro attributes

+--ro extended-communities*
| +--ro transitive? boolean
| +--ro (extended-community)?
| +--:(encapsulation-case)
| | +--ro encapsulation-extended-community
| | +--ro tunnel-type encapsulation-tunnel-type
| +--:(esi-label-extended-community-case)

610 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

| | +--ro esi-label-extended-community
| | +--ro single-active-mode? boolean
| | +--ro esi-label netc:mpls-label
| +--:(es-import-route-extended-community-case)
| | +--ro es-import-route-extended-community
| | +--ro es-import yang:mac-address
| +--:(mac-mobility-extended-community-case)
| | +--ro mac-mobility-extended-community
| | +--ro static? boolean
| | +--ro seq-number uint32
| +--:(default-gateway-extended-community-case)
| | +--ro default-gateway-extended-community!
| +--:(layer-2-attributes-extended-community-case)
| +--ro layer-2-attributes-extended-community
| +--ro primary-pe? boolean
| +--ro backup-pe? boolean
| +--ro control-word? boolean
| +--ro l2-mtu uint16
+--ro pmsi-tunnel!

+--ro leaf-information-required boolean
+--ro mpls-label? netc:mpls-label
+--ro (tunnel-identifier)?

+--:(rsvp-te-p2mp-lsp)
| +--ro rsvp-te-p2mp-lps
| +--ro p2mp-id uint32
| +--ro tunnel-id uint16
| +--ro extended-tunnel-id inet:ip-address
+--:(mldp-p2mp-lsp)
| +--ro mldp-p2mp-lsp
| +--ro address-family identityref
| +--ro root-node-address inet:ip-address
| +--ro opaque-value*
| +--ro opaque-type uint8
| +--ro opaque-extended-type? uint16
| +--ro opaque yang:hex-string
+--:(pim-ssm-tree)
| +--ro pim-ssm-tree
| +--ro p-address inet:ip-address
| +--ro p-multicast-group inet:ip-address
+--:(pim-sm-tree)
| +--ro pim-sm-tree
| +--ro p-address inet:ip-address
| +--ro p-multicast-group inet:ip-address
+--:(bidir-pim-tree)
| +--ro bidir-pim-tree
| +--ro p-address inet:ip-address
| +--ro p-multicast-group inet:ip-address
+--:(ingress-replication)
| +--ro ingress-replication
| +--ro receiving-endpoint-address? inet:ip-address
+--:(mldp-mp2mp-lsp)

+--ro mldp-mp2mp-lsp
+--ro opaque-type uint8
+--ro opaque-extended-type? uint16
+--ro opaque

...

1.3. OpenDaylight User Guide 611

OpenDaylight Documentation Documentation, Release Carbon

Usage

The L2VPN EVPN table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
odl-bgp-evpn:l2vpn-address-family/odl-bgp-evpn:evpn-subsequent-address-family/
evpn-routes

Method: GET

Response Body:

<evpn-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-evpn">
<evpn-route>

<route-key>AxEAAcCoZAED6AAAAQAgwKhkAQ==</route-key>
<route-distinguisher>192.168.100.1:1000</route-distinguisher>
<inc-multi-ethernet-tag-res>

<ethernet-tag-id>
<vlan-id>256</vlan-id>

</ethernet-tag-id>
<orig-route-ip>192.168.100.1</orig-route-ip>

</inc-multi-ethernet-tag-res>
<attributes>

<ipv4-next-hop>
<global>172.23.29.104</global>

</ipv4-next-hop>
<as-path/>
<origin>

<value>igp</value>
</origin>
<extended-communities>

<extended-communities>
<transitive>true</transitive>
<route-target-extended-community>

<global-administrator>65504</global-administrator>
<local-administrator>AAAD6A==</local-administrator>

</route-target-extended-community>
</extended-communities>

</extended-communities>
<pmsi-tunnel>

<leaf-information-required>true</leaf-information-required>
<mpls-label>20024</mpls-label>
<ingress-replication>

<receiving-endpoint-address>192.168.100.1</receiving-endpoint-
→˓address>

</ingress-replication>
</pmsi-tunnel>

</attributes>
</evpn-route>

</evpn-routes>

Programming

This examples show how to originate and remove EVPN routes via programmable RIB. There are four different
types of EVPN routes, and several extended communities. Routes can be used for variety of use-cases supported by
BGP/MPLS EVPN, PBB EVPN and NVO EVPN. Make sure the Application Peer is configured first.

612 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
odl-bgp-evpn:l2vpn-address-family/odl-bgp-evpn:evpn-subsequent-address-family/
odl-bgp-evpn:evpn-routes

Method: POST

Content-Type: application/xml

Request Body:

1 <evpn-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-evpn">
2 <route-key>evpn</route-key>
3 <route-distinguisher>172.12.123.3:200</route-distinguisher>
4
5 <attributes>
6 <ipv4-next-hop>
7 <global>199.20.166.41</global>
8 </ipv4-next-hop>
9 <as-path/>

10 <origin>
11 <value>igp</value>
12 </origin>
13 <extended-communities>
14
15 </extended-communities>
16 </attributes>
17 </evpn-route>

@line 3: Route Distinguisher (RD) - set to RD of the MAC-VRF advertising the NLRI, recommended format
<IP>:<VLAN_ID>

@line 4: One of the EVPN route must be set here.

@line 14: In some cases, specific extended community presence is required. The route may carry one or more Route
Target attributes.

EVPN Routes:

• Ethernet AD per ESI

<ethernet-a-d-route>
<mpls-label>0</mpls-label>
<ethernet-tag-id>

<vlan-id>4294967295</vlan-id>
</ethernet-tag-id>
<arbitrary>

<arbitrary>AAAAAAAAAAAA</arbitrary>
</arbitrary>

</ethernet-a-d-route>

• Ethernet AD per EVI

<ethernet-a-d-route>
<mpls-label>24001</mpls-label>
<ethernet-tag-id>

<vlan-id>2200</vlan-id>
</ethernet-tag-id>
<arbitrary>

<arbitrary>AAAAAAAAAAAA</arbitrary>

1.3. OpenDaylight User Guide 613

OpenDaylight Documentation Documentation, Release Carbon

</arbitrary>
</ethernet-a-d-route>

• MAC/IP Advertisement

<mac-ip-adv-route>
<arbitrary>

<arbitrary>AAAAAAAAAAAA</arbitrary>
</arbitrary>
<ethernet-tag-id>

<vlan-id>2100</vlan-id>
</ethernet-tag-id>
<mac-address>f2:0c:dd:80:9f:f7</mac-address>
<ip-address>10.0.1.12</ip-address>
<mpls-label1>299776</mpls-label1>

</mac-ip-adv-route>

• Inclusive Multicast Ethernet Tag

<inc-multi-ethernet-tag-res>
<ethernet-tag-id>

<vlan-id>2100</vlan-id>
</ethernet-tag-id>
<orig-route-ip>43.43.43.43</orig-route-ip>

</inc-multi-ethernet-tag-res>

• Ethernet Segment

<es-route>
<orig-route-ip>43.43.43.43</orig-route-ip>
<arbitrary>

<arbitrary>AAAAAAAAAAAA</arbitrary>
</arbitrary>

</es-route>

EVPN Ethernet Segment Identifier (ESI):

• Type 0 Indicates an arbitrary 9-octet ESI.

<arbitrary>
<arbitrary>AAAAAAAAAAAA</arbitrary>

</arbitrary>

• Type 1 IEEE 802.1AX LACP is used.

<lacp-auto-generated>
<ce-lacp-mac-address>f2:0c:dd:80:9f:f7</ce-lacp-mac-address>
<ce-lacp-port-key>22</ce-lacp-port-key>

</lacp-auto-generated>

• Type 2 Indirectly connected hosts via a bridged LAN.

<lan-auto-generated>
<root-bridge-mac-address>f2:0c:dd:80:9f:f7</root-bridge-mac-address>
<root-bridge-priority>20</root-bridge-priority>

</lan-auto-generated>

• Type 3 MAC-based ESI.

614 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<mac-auto-generated>
<system-mac-address>f2:0c:dd:80:9f:f7</system-mac-address>
<local-discriminator>2000</local-discriminator>

</mac-auto-generated>

• Type 4 Router-ID ESI

<router-id-generated>
<router-id>43.43.43.43</router-id>
<local-discriminator>2000</local-discriminator>

</router-id-generated>

• Type 5 AS-based ESI

<as-generated>
<as>16843009</as>
<local-discriminator>2000</local-discriminator>

</as-generated>

Extended Communities:

• ESI Label Extended Community

<extended-communities>
<transitive>true</transitive>
<esi-label-extended-community>

<single-active-mode>false</single-active-mode>
<esi-label>24001</esi-label>

</esi-label-extended-community >
</extended-communities>

• ES-Import Route Target

<extended-communities>
<transitive>true</transitive>
<es-import-route-extended-community>

<es-import>f2:0c:dd:80:9f:f7</es-import>
</es-import-route-extended-community>

</extended-communities>

• MAC Mobility Extended Community

<extended-communities>
<transitive>true</transitive>
<mac-mobility-extended-community>

<static>true</static>
<seq-number>200</seq-number>

</mac-mobility-extended-community>
</extended-communities>

• Default Gateway Extended Community

<extended-communities>
<transitive>true</transitive>
<default-gateway-extended-community>
</default-gateway-extended-community>

</extended-communities>

1.3. OpenDaylight User Guide 615

OpenDaylight Documentation Documentation, Release Carbon

• EVPN Layer 2 attributes extended community

<extended-communities>
<transitive>false</transitive>
<layer-2-attributes-extended-community>

<primary-pe>true</primary-pe>
<backup-pe>true</backup-pe>
<control-word >true</control-word>
<l2-mtu>200</l2-mtu>

</layer-2-attributes-extended-community>
</extended-communities>

• BGP Encapsulation extended community

1 <extended-communities>
2 <transitive>false</transitive>
3 <encapsulation-extended-community>
4 <tunnel-type>vxlan</tunnel-type>
5 </encapsulation-extended-community>
6 </extended-communities>

@line 4: full list of tunnel types

• P-Multicast Service Interface Tunnel (PMSI) attribute

<pmsi-tunnel>
<leaf-information-required>true</leaf-information-required>
<mpls-label>20024</mpls-label>
<ingress-replication>

<receiving-endpoint-address>172.12.123.3</receiving-endpoint-address>
</ingress-replication>

</pmsi-tunnel>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/
bgp-types:ipv4-address-family/odl-bgp-evpn:l2vpn-address-family/
odl-bgp-evpn:evpn-subsequent-address-family/odl-bgp-evpn:evpn-routes/
evpn-route/evpn

Method: DELETE

Table 1.4: EVPN Routes Usage.

EVN Route Type Extended Communities Usage
Ethernet Auto-discovery ESI Label, BGP EncapsulationEVPN Layer

2 attributes
Fast Convergence, Split Horizon,
Aliasing

MAC/IP Advertisement BGP Encapsulation, MAC Mobility, Default
Gateway

MAC address reachability

Inclusive Multicast
Ethernet Tag

PMSI Tunnel, BGP Encapsulation Handling of Multi-destination
traffic

Ethernet Segment BGP Encapsulation, ES-Import Route Target Designated Forwarder Election

616 Chapter 1. Content for OpenDaylight Users

http://www.iana.org/assignments/bgp-parameters/bgp-parameters.xhtml#tunnel-types

OpenDaylight Documentation Documentation, Release Carbon

References

• BGP MPLS-Based Ethernet VPN

• Provider Backbone Bridging Combined with Ethernet VPN

• VPWS support in EVPN

• A Network Virtualization Overlay Solution using EVPN

• Interconnect Solution for EVPN Overlay networks

• Usage and applicability of BGP MPLS based Ethernet VPN

Additional Path

The ADD-PATH capability allows to advertise multiple paths for the same address prefix. It can help with optimal
routing and routing convergence in a network by providing potential alternate or backup paths.

Contents

• Configuration

– BGP Speaker

– BGP Peer

• Usage

• References

Configuration

This section shows a way to enable ADD-PATH capability in BGP speaker and peer configuration.

Note: The capability is applicable for IP Unicast, IP Labeled Unicast and Flow Specification address families.

BGP Speaker

To enable ADD-PATH capability in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

1 <protocol xmlns="http://openconfig.net/yang/network-instance">
2 <name>bgp-example</name>
3 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
4 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">

1.3. OpenDaylight User Guide 617

https://tools.ietf.org/html/rfc7432
https://tools.ietf.org/html/rfc7623
https://tools.ietf.org/html/draft-ietf-bess-evpn-vpws-07
https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-04
https://tools.ietf.org/html/draft-ietf-bess-dci-evpn-overlay-04
https://tools.ietf.org/html/draft-ietf-bess-evpn-usage-03

OpenDaylight Documentation Documentation, Release Carbon

5 <global>
6 <config>
7 <router-id>192.0.2.2</router-id>
8 <as>65000</as>
9 </config>

10 <afi-safis>
11 <afi-safi>
12 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">

→˓x:IPV4-UNICAST</afi-safi-name>
13 <receive>true</receive>
14 <send-max>2</send-max>
15 </afi-safi>
16 </afi-safis>
17 </global>
18 </bgp>
19 </protocol>

@line 14: Defines path selection strategy: send-max > 1 -> Advertise N Paths or send-max = 0 -> Advertise All Paths

Here is an example for update a specific family with enable ADD-PATH capability

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/global/afi-safis/afi-safi/
openconfig-bgp-types:IPV4%2DUNICAST

Method: PUT

Content-Type: application/xml

Request Body:

<afi-safi xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-

→˓safi-name>
<receive>true</receive>
<send-max>0</send-max>

</afi-safi>

BGP Peer

Here is an example for BGP peer configuration with enabled ADD-PATH capability.

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
<neighbor-address>192.0.2.1</neighbor-address>
<afi-safis>

<afi-safi>
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-

→˓LABELLED-UNICAST</afi-safi-name>

618 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</afi-safi>
<afi-safi>

<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-
→˓UNICAST</afi-safi-name>

<receive>true</receive>
<send-max>0</send-max>

</afi-safi>
</afi-safis>

</neighbor>

Note: The path selection strategy is not configurable on per peer basis. The send-max presence indicates a willingness
to send ADD-PATH NLRIs to the neighbor.

Here is an example for update specific family BGP peer configuration with enabled ADD-PATH capability.

URL: /restconf/config/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/
afi-safis/afi-safi/openconfig-bgp-types:IPV4%2DUNICAST

Method: PUT

Content-Type: application/xml

Request Body:

<afi-safi xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
<afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-

→˓safi-name>
<receive>true</receive>
<send-max>0</send-max>

</afi-safi>

Usage

The IPv4 Unicast table with enabled ADD-PATH capability in an instance of the speaker’s Loc-RIB can be verified
via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/
bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/
ipv4-routes

Method: GET

Response Body:

1 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
2 <ipv4-route>
3 <path-id>1</path-id>
4 <prefix>193.0.2.1/32</prefix>
5 <attributes>
6 <as-path></as-path>
7 <origin>
8 <value>igp</value>
9 </origin>

10 <local-pref>

1.3. OpenDaylight User Guide 619

OpenDaylight Documentation Documentation, Release Carbon

11 <pref>100</pref>
12 </local-pref>
13 <ipv4-next-hop>
14 <global>10.0.0.1</global>
15 </ipv4-next-hop>
16 </attributes>
17 </ipv4-route>
18 <ipv4-route>
19 <path-id>2</path-id>
20 <prefix>193.0.2.1/32</prefix>
21 <attributes>
22 <as-path></as-path>
23 <origin>
24 <value>igp</value>
25 </origin>
26 <local-pref>
27 <pref>100</pref>
28 </local-pref>
29 <ipv4-next-hop>
30 <global>10.0.0.2</global>
31 </ipv4-next-hop>
32 </attributes>
33 </ipv4-route>
34 </ipv4-routes>

@line 3: The routes with the same destination are distinguished by path-id attribute.

References

• Advertisement of Multiple Paths in BGP

• Best Practices for Advertisement of Multiple Paths in IBGP

Route Refresh

The Route Refresh Capability allows to dynamically request a re-advertisement of the Adj-RIB-Out from a BGP peer.
This is useful when the inbound routing policy for a peer changes and all prefixes from a peer must be reexamined
against a new policy.

Contents

• Configuration

• Usage

• References

Configuration

The capability is enabled by default, no additional configuration is required.

620 Chapter 1. Content for OpenDaylight Users

https://tools.ietf.org/html/rfc7911
https://tools.ietf.org/html/draft-ietf-idr-add-paths-guidelines-08

OpenDaylight Documentation Documentation, Release Carbon

Usage

To send a Route Refresh request from OpenDaylight BGP speaker instance to its neighbor, invoke RPC:

URL: /restconf/operations/bgp-peer-rpc:route-refresh-request

Method: POST

Content-Type: application/xml

Request Body:

<input xmlns="urn:opendaylight:params:xml:ns:yang:bgp-peer-rpc">
<afi xmlns:types="urn:opendaylight:params:xml:ns:yang:bgp-types">types:ipv4-

→˓address-family</afi>
<safi xmlns:types="urn:opendaylight:params:xml:ns:yang:bgp-types">types:unicast-

→˓subsequent-address-family</safi>
<peer-ref xmlns:rib="urn:opendaylight:params:xml:ns:yang:bgp-rib">/rib:bgp-rib/

→˓rib:rib[rib:id="bgp-example"]/rib:peer[rib:peer-id="bgp://10.25.1.9"]</peer-ref>
</input>

References

• Route Refresh Capability for BGP-4

Operational State

The OpenDaylight BGP implementation provides a set of APIs (described below), that give its operational state re-
freshed periodically, by default every 5 seconds. The following APIs describe what is available starting with how to
change the default refresh rate.

Contents

• Operational State Configuration

• BGP RIB Operational State

• BGP RIB Families Operational State

• BGP Neighbors Operational State

• BGP Neighbor Operational State

• BGP Neighbor Families Operational State

• BGP Neighbor Family Operational State

• BGP Neighbor Timers Operational State

• BGP Neighbor Transport Operational State

• BGP Neighbor Error Handling Operational State

• BGP Neighbor Graceful Restart Operational State

• BGP Peer Groups Operational State

1.3. OpenDaylight User Guide 621

https://tools.ietf.org/html/rfc2918

OpenDaylight Documentation Documentation, Release Carbon

Operational State Configuration

URL: /restconf/config/bgp-state-config:bgp-state-config

Method: PUT

Content-Type: application/xml

Request Body:

1 <bgp-state-config xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
2 <config-name xmlns="urn:opendaylight:params:xml:ns:yang:bgp-state-config">

→˓operationalState</config-name>
3 <timer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-state-config">1</timer>
4 </bgp-state-config>

@line 3: Time in seconds between operational state update.

BGP RIB Operational State

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/global/state

Method: GET

Content-Type: application/xml

Response Body:

1 <state xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <as>65000</as>
3 <router-id>192.0.2.2</router-id>
4 <total-paths>0</total-paths>
5 <total-prefixes>0</total-prefixes>
6 </state>

@line 2: AS number of the remote peer.

@line 3: The unique protocol instance identifier.

@line 4: Total number of Paths installed on RIB (Loc-RIB)

@line 5: Total number of Prefixes installed on RIB (Loc-RIB)

BGP RIB Families Operational State

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/global/afi-safis

Method: GET

Content-Type: application/xml

Response Body:

622 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

1 <afi-safis xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <afi-safi>
3 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</

→˓afi-safi-name>
4 <state>
5 <total-paths>0</total-paths>
6 <total-prefixes>0</total-prefixes>
7 </state>
8 </afi-safi>
9 <afi-safi>

10 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-UNICAST</
→˓afi-safi-name>

11 <state>
12 <total-paths>0</total-paths>
13 <total-prefixes>0</total-prefixes>
14 </state>
15 </afi-safi>
16
17 </afi-safis>

@line 3: Family Identifier.

@line 5: Total number of Paths installed on RIB (Loc-RIB) per specific family.

@line 6: Total number of Prefixes installed on RIB (Loc-RIB) per specific family.

BGP Neighbors Operational State

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: GET

Content-Type: application/xml

Response Body:

1 <neighbors xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <neighbor>
3 <neighbor-address>192.0.2.1</neighbor-address>
4
5 </neighbor>
6 <neighbor>
7 <neighbor-address>192.0.2.2</neighbor-address>
8
9 </neighbor>

10 </neighbors>

@line 3: IP address of the remote BGP peer. Also serves as an unique identifier of a neighbor in a list of neighbors.

BGP Neighbor Operational State

Note: Supported Capabilities only provided when session has been established.

1.3. OpenDaylight User Guide 623

OpenDaylight Documentation Documentation, Release Carbon

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbor/127.0.0.2/state

Method: GET

Content-Type: application/xml

Response Body:

1 <state xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <session-state>ESTABLISHED</session-state>
3 <supported-capabilities xmlns:x="http://openconfig.net/yang/bgp-types">x:ASN32</

→˓supported-capabilities>
4 <supported-capabilities xmlns:x="http://openconfig.net/yang/bgp-types">x:MPBGP</

→˓supported-capabilities>
5 <messages>
6 <sent>
7 <UPDATE>0</UPDATE>
8 <NOTIFICATION>0</NOTIFICATION>
9 </sent>

10 <received>
11 <UPDATE>4</UPDATE>
12 <NOTIFICATION>0</NOTIFICATION>
13 </received>
14 </messages>
15 </state>

@line 2: Session status

@line 3-4: BGP capabilities supported (ASN32 / MPBGP / ROUTE_REFRESH / GRACEFUL_RESTART /
ADD_PATHS)

@line 7: Total count of Update Messages sent

@line 8: Total count of Notification Messages sent

@line 11: Total count of Update Messages received

@line 12: Total count of Notification Messages received

BGP Neighbor Families Operational State

Note: Graceful Restart not supported yet. Planned for Carbon.

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/
afi-safis

Method: GET

Content-Type: application/xml

Response Body:

1 <afi-safis xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <afi-safi>
3 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST

→˓</afi-safi-name>

624 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

4 <state>
5 <active>false</active>
6 </state>
7 <graceful-restart>
8 <state>
9 <received>false</received>

10 <advertised>false</advertised>
11 </state>
12 </graceful-restart>
13 </afi-safi>
14 <afi-safi>
15 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-UNICAST

→˓</afi-safi-name>
16 <state>
17 <active>false</active>
18 </state>
19 <graceful-restart>
20 <state>
21 <received>false</received>
22 <advertised>false</advertised>
23 </state>
24 </graceful-restart>
25 </afi-safi>
26 </afi-safis>

@line 3: Family Identifier.

@line 5: True if family is advertized by peer.

@line 7: Graceful Restart Operational State per specific family.

@line 9: True if the peer supports graceful restart.

@line 10: True if we support graceful restart.

BGP Neighbor Family Operational State

Note: Prefixes state is only provided once session is established.

Note: Graceful Restart not supported yet. Planned to be implemented in Carbon.

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/
afi-safis/afi-safi/openconfig-bgp-types:IPV4%2DUNICAST

Method: GET

Content-Type: application/xml

Response Body:

1 <afi-safi xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-

→˓safi-name>

1.3. OpenDaylight User Guide 625

OpenDaylight Documentation Documentation, Release Carbon

3 <state>
4 <active>true</active>
5 <prefixes>
6 <installed>3</installed>
7 <sent>0</sent>
8 <received>3</received>
9 </prefixes>

10 </state>
11 <graceful-restart>
12 <state>
13 <received>false</received>
14 <advertised>false</advertised>
15 </state>
16 </graceful-restart>
17 </afi-safi>

@line 2: Family Identifier.

@line 4: True if family is advertized to and by peer.

@line 6: Total count of prefixes advertized by peer and installed (effective-rib-in).

@line 7: Total count of prefixes advertized to peer (adj-rib-out).

@line 8: Total count of prefixes advertized by peer (adj-rib-in).

BGP Neighbor Timers Operational State

Note: State is only provided once session is established.

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/
timers

Method: GET

Content-Type: application/xml

Response Body:

1 <timers xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <state>
3 <negotiated-hold-time>180</negotiated-hold-time>
4 <uptime>1580676</uptime>
5 </state>
6 </timers>

@line 3: The negotiated hold-time for the BGP session in seconds.

@line 4: Session duration since establishment in milliseconds.

BGP Neighbor Transport Operational State

626 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Note: State is only provided once session is established.

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/
transport

Method: GET

Content-Type: application/xml

Response Body:

1 <transport xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <state>
3 <remote-address>127.0.0.2</remote-address>
4 <remote-port>44718</remote-port>
5 <local-port>1790</local-port>
6 </state>
7 </transport>

@line 3: IP address of the remote BGP peer.

@line 4: Port of the remote BGP peer.

@line 5: Local port.

BGP Neighbor Error Handling Operational State

Note: State is only provided once session is established.

Note: Error handling not supported yet. Planned for Carbon.

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/
error-handling

Method: GET

Content-Type: application/xml

Response Body:

1 <error-handling xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
2 <state>
3 <erroneous-update-messages>0</erroneous-update-messages>
4 </state>
5 </error-handling>

@line 3: The number of BGP UPDATE messages for which the treat-as-withdraw mechanism has been applied based
on erroneous message contents

1.3. OpenDaylight User Guide 627

OpenDaylight Documentation Documentation, Release Carbon

BGP Neighbor Graceful Restart Operational State

Note: Graceful Restart not supported yet. Planned for Carbon.

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/
graceful-restart

Method: GET

Content-Type: application/xml

Response Body:

1 <graceful-restart xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions
→˓">

2 <state>
3 <peer-restart-time>0</peer-restart-time>
4 <peer-restarting>false</peer-restarting>
5 <local-restarting>false</local-restarting>
6 </state>
7 </graceful-restart>

@line 3: The period of time (advertised by the peer) that the peer expects a restart of a BGP session to take.

@line 4: This flag indicates whether the remote neighbor is currently in the process of restarting, and hence received
routes are currently stale.

@line 5: This flag indicates whether the local neighbor is currently restarting. The flag is unset after all NLRI have
been advertised to the peer, and the End-of-RIB (EOR) marker has been unset.

BGP Peer Groups Operational State

URL: /restconf/operational/openconfig-network-instance:network-instances/
network-instance/global-bgp/openconfig-network-instance:protocols/protocol/
openconfig-policy-types:BGP/bgp-example/peer-groups

Method: GET

Content-Type: application/xml

Response Body:

1 <peer-groups>
2 <peer-group>
3 <peer-group-name>application-peers</peer-group-name>
4 <state>
5 <total-paths>0</total-paths>
6 <total-prefixes>0</total-prefixes>
7 </state>
8 </peer-group>
9 </peer-groups>

@line 3: Peer Group Identifier.

@line 5: At this moment the cost for count path under effect-rib-in is to high. Therefore the value is the same as total
prefixes.

628 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

@line 6: Total Prefixes installed under by peers pertaining to this peer group (effective-rib-in). This count doesn’t
differentiate repeated prefixes.

High Availability

Running OpenDaylight BGP in clustered environment brings an advantage of the plugin’s high availability (HA). This
section illustrates a basic scenario for HA, also presents a configuration for clustered OpenDaylight BGP.

Contents

• Configuration

• Failover scenario

Configuration

Following example shows a configuration for running BGP in clustered environment.

1. As the first step, configure (replicated deafult shard and topology shard if needed) and run OpenDaylight in
clustered environment, install BGP and RESTCONF.

2. On one node (OpenDaylight instance), configure BGP speaker instance and neighbor. In addition, configure
BGP topology exporter if required. The configuration is shared across all interconnected cluster nodes, however
BGP become active only on one node. Other nodes with configured BGP serves as stand-by backups.

3. Remote peer should be configured to accept/initiate connection from/to all OpenDaylight cluster nodes with
configured BGP plugin.

4. Connect remote peer, let it advertise some routes. Verify routes presence in Loc-RIB and/or BGP topology
exporter instance on all nodes of the OpenDaylight cluster.

Warning: Replicating RIBs across the cluster nodes is causing severe scalability issue and overall performance
degradation. To avoid this problems, configure BGP RIB module as a separate shard without enabled replication.
Change configuration on all nodes as following (configuration/initial):

• In modules.conf add a new module:
{

name = "bgp_rib"
namespace = "urn:opendaylight:params:xml:ns:yang:bgp-rib"
shard-strategy = "module"

}

• In module-shards.conf define a new module shard:
{

name = "bgp_rib"
shards = [

{
name="bgp_rib"
replicas = [

"member-1"
]

}
]

}

1.3. OpenDaylight User Guide 629

OpenDaylight Documentation Documentation, Release Carbon

Note: Use correct member name in module shard configuration.

Failover scenario

Following section presents a basic BGP speaker failover scenario on 3-node OpenDaylight cluster setup.

Fig. 1.23: Once the OpenDaylight BGP is configured, the speaker become active on one of the cluster nodes. Remote
peer can establish connection with this BGP instance. Routes advertised by remote peer are replicated, hence RIBs
state on all nodes is the same.

Topology Provider

This section provides an overview of the BGP topology provider service. It shows how to configure and use all
available BGP topology providers. Providers are building topology view of BGP routes stored in local BGP speaker’s
Loc-RIB. Output topologies are rendered in a form of standardised IETF network topology model.

Contents

• Inet Reachability Topology

630 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.24: In a case a cluster node, where BGP instance is running, goes down (unexpected failure, restart), active BGP
session is dropped.

1.3. OpenDaylight User Guide 631

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.25: Now, one of the stand-by BGP speaker instances become active. Remote peer establishes new connection
and advertises routes again.

632 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

– Configuration

– Usage

• BGP Linkstate Topology

– Configuration

– Usage

• BGP Network Topology Configuration Loader

Inet Reachability Topology

Inet reachability topology exporter offers a mapping service from IPv4/6 routes to network topology nodes.

Configuration

Following example shows how to create a new instance of IPv4 BGP topology exporter:

URL: /restconf/config/network-topology:network-topology

Method: POST

Content-Type: application/xml

Request Body:

1 <topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
2 <topology-id>bgp-example-ipv4-topology</topology-id>
3 <topology-types>
4 <bgp-ipv4-reachability-topology xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-ipv4-
→˓reachability-topology>

5 </topology-types>
6 <rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">bgp-

→˓example</rib-id>
7 </topology>

@line 2: An identifier for a topology.

@line 4: Used to identify type of the topology. In this case BGP IPv4 reachability topology.

@line 6: A name of the local BGP speaker instance.

The topology exporter instance can be removed in a following way:

URL: /restconf/config/network-topology:network-topology/topology/
bgp-example-ipv4-topology

Method: DELETE

Following example shows how to create a new instance of IPv6 BGP topology exporter:

URL: /restconf/config/network-topology:network-topology

Method: POST

1.3. OpenDaylight User Guide 633

OpenDaylight Documentation Documentation, Release Carbon

Content-Type: application/xml

Request Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<topology-id>bgp-example-ipv6-topology</topology-id>
<topology-types>

<bgp-ipv6-reachability-topology xmlns=
→˓"urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-ipv6-
→˓reachability-topology>

</topology-types>
<rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">bgp-

→˓example</rib-id>
</topology>

Usage

Operational state of the topology can be verified via REST:

URL: /restconf/operational/network-topology:network-topology/topology/
bgp-example-ipv4-topology

Method: GET

Response Body:

1 <topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
2 <topology-id>bgp-example-ipv4-topology</topology-id>
3 <server-provided>true</server-provided>
4 <topology-types>
5 <bgp-ipv4-reachability-topology xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-ipv4-
→˓reachability-topology>

6 </topology-types>
7 <node>
8 <node-id>10.10.1.1</node-id>
9 <igp-node-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-

→˓topology">
10 <prefix>
11 <prefix>10.0.0.10/32</prefix>
12 </prefix>
13 </igp-node-attributes>
14 </node>
15 </topology>

@line 8: The identifier of a node in a topology. Its value is mapped from route’s NEXT_HOP attribute.

@line 11: The IP prefix attribute of the node. Its value is mapped from routes’s destination IP prefix.

BGP Linkstate Topology

BGP linkstate topology exporter offers a mapping service from BGP-LS routes to network topology nodes and links.

Configuration

Following example shows how to create a new instance of linkstate BGP topology exporter:

634 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

URL: /restconf/config/network-topology:network-topology

Method: POST

Content-Type: application/xml

Request Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<topology-id>bgp-example-linkstate-topology</topology-id>
<topology-types>

<bgp-linkstate-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-
→˓topology-types"></bgp-linkstate-topology>

</topology-types>
<rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">bgp-

→˓example</rib-id>
</topology>

Usage

Operational state of the topology can be verified via REST. A sample output below represents a two node topology
with two unidirectional links interconnecting those nodes.

URL: /restconf/operational/network-topology:network-topology/topology/
bgp-example-linkstate-topology

Method: GET

Response Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<topology-id>bgp-example-linkstate-topology</topology-id>
<server-provided>true</server-provided>
<topology-types>

<bgp-linkstate-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-
→˓topology-types"></bgp-linkstate-topology>

</topology-types>
<node>

<node-id>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&
→˓router=0000.0000.0040</node-id>

<termination-point>
<tp-id>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.40</tp-id>
<igp-termination-point-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-

→˓unicast-igp-topology"/>
</termination-point>
<igp-node-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-

→˓topology">
<prefix>

<prefix>40.40.40.40/32</prefix>
<metric>10</metric>

</prefix>
<prefix>

<prefix>203.20.160.0/24</prefix>
<metric>10</metric>

</prefix>
<name>node1</name>
<router-id>40.40.40.40</router-id>
<isis-node-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-

→˓topology">

1.3. OpenDaylight User Guide 635

OpenDaylight Documentation Documentation, Release Carbon

<ted>
<te-router-id-ipv4>40.40.40.40</te-router-id-ipv4>

</ted>
<iso>

<iso-system-id>MDAwMDAwMDAwMDY0</iso-system-id>
</iso>

</isis-node-attributes>
</igp-node-attributes>

</node>
<node>

<node-id>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&
→˓router=0000.0000.0039</node-id>

<termination-point>
<tp-id>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.39</tp-id>
<igp-termination-point-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-

→˓unicast-igp-topology"/>
</termination-point>
<igp-node-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-

→˓topology">
<prefix>

<prefix>39.39.39.39/32</prefix>
<metric>10</metric>

</prefix>
<prefix>

<prefix>203.20.160.0/24</prefix>
<metric>10</metric>

</prefix>
<name>node2</name>
<router-id>39.39.39.39</router-id>
<isis-node-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-

→˓topology">
<ted>

<te-router-id-ipv4>39.39.39.39</te-router-id-ipv4>
</ted>
<iso>

<iso-system-id>MDAwMDAwMDAwMDg3</iso-system-id>
</iso>

</isis-node-attributes>
</igp-node-attributes>

</node>
<link>

<destination>
<dest-node>bgpls://IsisLevel2:1/type=node&as=65000&

→˓domain=673720360&router=0000.0000.0039</dest-node>
<dest-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.39</dest-tp>

</destination>
<link-id>bgpls://IsisLevel2:1/type=link&local-as=65000&local-

→˓domain=673720360&local-router=0000.0000.0040&remote-as=65000&remote-
→˓domain=673720360&remote-router=0000.0000.0039&ipv4-iface=203.20.160.40&
→˓ipv4-neigh=203.20.160.39</link-id>

<source>
<source-node>bgpls://IsisLevel2:1/type=node&as=65000&

→˓domain=673720360&router=0000.0000.0040</source-node>
<source-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.40</source-tp>

</source>
<igp-link-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-

→˓topology">
<metric>10</metric>

636 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<isis-link-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-
→˓topology">

<ted>
<color>0</color>
<max-link-bandwidth>1250000.0</max-link-bandwidth>
<max-resv-link-bandwidth>12500.0</max-resv-link-bandwidth>
<te-default-metric>0</te-default-metric>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>0</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>1</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>2</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>3</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>4</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>5</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>6</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>7</priority>

</unreserved-bandwidth>
</ted>

</isis-link-attributes>
</igp-link-attributes>

</link>
<link>

<destination>
<dest-node>bgpls://IsisLevel2:1/type=node&as=65000&

→˓domain=673720360&router=0000.0000.0040</dest-node>
<dest-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.40</dest-tp>

</destination>
<link-id>bgpls://IsisLevel2:1/type=link&local-as=65000&local-

→˓domain=673720360&local-router=0000.0000.0039&remote-as=65000&remote-
→˓domain=673720360&remote-router=0000.0000.0040&ipv4-iface=203.20.160.39&
→˓ipv4-neigh=203.20.160.40</link-id>

<source>
<source-node>bgpls://IsisLevel2:1/type=node&as=65000&

→˓domain=673720360&router=0000.0000.0039</source-node>
<source-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.39</source-tp>

</source>

1.3. OpenDaylight User Guide 637

OpenDaylight Documentation Documentation, Release Carbon

<igp-link-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-
→˓topology">

<metric>10</metric>
<isis-link-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-

→˓topology">
<ted>

<color>0</color>
<max-link-bandwidth>1250000.0</max-link-bandwidth>
<max-resv-link-bandwidth>12500.0</max-resv-link-bandwidth>
<te-default-metric>0</te-default-metric>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>0</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>1</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>2</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>3</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>4</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>5</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>6</priority>

</unreserved-bandwidth>
<unreserved-bandwidth>

<bandwidth>12500.0</bandwidth>
<priority>7</priority>

</unreserved-bandwidth>
</ted>

</isis-link-attributes>
</igp-link-attributes>

</link>
</topology>

BGP Network Topology Configuration Loader

BGP Network Topology Configuration Loader allows user to define static initial configuration for a BGP protocol
instance. This service will detect the creation of new configuration files following the pattern “network-topology-
*.xml” under the path “etc/opendaylight/bgp”. Once the file is processed, the defined configuration will be available
from the configuration Data Store.

638 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Note: If the BGP topology instance is already present, no update or configuration will be applied.

When installing BGP an example will be provided and a default configuration loaded.

PATH: etc/opendaylight/bgp/network-topology-config.xml

<network-topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<topology>

<topology-id>example-ipv4-topology</topology-id>
<topology-types>

<bgp-ipv4-reachability-topology xmlns=
→˓"urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"/>

</topology-types>
<rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">

→˓example-bgp-rib</rib-id>
</topology>
<topology>

<topology-id>example-ipv6-topology</topology-id>
<topology-types>

<bgp-ipv6-reachability-topology xmlns=
→˓"urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"/>

</topology-types>
<rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">

→˓example-bgp-rib</rib-id>
</topology>
<topology>

<topology-id>example-linkstate-topology</topology-id>
<topology-types>

<bgp-linkstate-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-
→˓bgp-topology-types"/>

</topology-types>
<rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">

→˓example-bgp-rib</rib-id>
</topology>

</network-topology>

Test Tools

BGP test tools serves to test basic BGP functionality, scalability and performance.

Contents

• BGP Test Tool

– Usage

• BGP Application Peer Benchmark

– Configuration

– Inject routes

– Remove routes

1.3. OpenDaylight User Guide 639

OpenDaylight Documentation Documentation, Release Carbon

BGP Test Tool

The BGP Test Tool is a stand-alone Java application purposed to simulate remote BGP peers, that are capable to adver-
tise sample routes. This application is not part of the OpenDaylight Karaf distribution, however it can be downloaded
from OpenDaylight’s Nexus (use latest release version):

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/
opendaylight/bgpcep/bgp-testtool

Usage

The application can be run from command line:

java -jar bgp-testtool-*-executable.jar

with optional input parameters:

-i <BOOLEAN>, --active <BOOLEAN>
Active initialisation of the connection, by default false.

-ho <N>, --holdtimer <N>
In seconds, value of the desired holdtimer, by default 90.

-sc <N>, --speakersCount <N>
Number of simulated BGP speakers, when creating each speaker, uses incremented

→˓local-address for binding, by default 0.

-ra <IP_ADDRESS:PORT,...>, --remoteAddress <IP_ADDRESS:PORT,...>
A list of IP addresses of remote BGP peers, that the tool can accept or initiate

→˓connect to that address (based on the mode), by default 192.0.2.2:1790.

-la <IP_ADDRESS:PORT>, --localAddress <IP_ADDRESS:PORT>
IP address of BGP speakers which the tools simulates, by default 192.0.2.2:0.

-pr <N>, --prefixes <N>
Number of prefixes to be advertised by each simulated speaker

-mp <BOOLEAN>, --multiPathSupport <BOOLEAN>
Active ADD-PATH support, by default false.

-as <N>, --as <N>
Local AS Number, by default 64496.

-ec <EXTENDED_COMMUNITIES>, --extended_communities <EXTENDED_COMMUNITIES>
Extended communities to be send. Format: x,x,x where x is each extended

→˓community from bgp-types.yang, by default empty.

-ll <LOG_LEVEL>, --log_level <LOG_LEVEL>
Log level for console output, by default INFO.

BGP Application Peer Benchmark

It is a simple OpenDaylight application which is capable to inject and remove specific amount of IPv4 routes. This
application is part of the OpenDaylight Karaf distribution.

640 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Configuration

As a first step install BGP and RESTCONF, then configure Application Peer. Install
odl-bgpcep-bgp-benchmark feature and reconfigure BGP Application Peer Benchmark application as
per following:

URL: /restconf/config/odl-bgp-app-peer-benchmark-config:config

Method: PUT

Content-Type: application/xml

Request Body:

1 <odl-bgp-app-peer-benchmark-config xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-
→˓app-peer-benchmark-config">

2 <app-peer-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark-
→˓config">10.25.1.9</app-peer-id>

3 </odl-bgp-app-peer-benchmark-config>

@line 2: The Application Peer identifier.

Inject routes

Routes injection can be invoked via RPC:

URL: /restconf/operations/odl-bgp-app-peer-benchmark:add-prefix

Method: POST

Content-Type: application/xml

Request Body:

1 <input xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
2 <prefix>1.1.1.1/32</prefix>
3 <count>100000</count>
4 <batchsize>2000</batchsize>
5 <nexthop>192.0.2.2</nexthop>
6 </input>

@line 2: A initial IPv4 prefix carried in route. Value is incremented for following routes.

@line 3: An amount of routes to be added to Application Peer’s programmable RIB.

@line 4: A size of the transaction batch.

@line 5: A NEXT_HOP attribute value used in all injected routes.

Response Body:

1 <output xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
2 <result>
3 <duration>4301</duration>
4 <rate>25000</rate>
5 <count>100000</count>
6 </result>
7 </output>

1.3. OpenDaylight User Guide 641

OpenDaylight Documentation Documentation, Release Carbon

@line 3: Request duration in milliseconds.

@line 4: Writes per second rate.

@line 5: An amount of routes added to Application Peer’s programmable RIB.

Remove routes

Routes deletion can be invoked via RPC:

URL: /restconf/operations/odl-bgp-app-peer-benchmark:delete-prefix

Method: POST

Content-Type: application/xml

Request Body:

1 <input xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
2 <prefix>1.1.1.1/32</prefix>
3 <count>100000</count>
4 <batchsize>2000</batchsize>
5 </input>

@line 2: A initial IPv4 prefix carried in route to be removed. Value is incremented for following routes.

@line 3: An amount of routes to be removed from Application Peer’s programmable RIB.

@line 4: A size of the transaction batch.

Response Body:

<output xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
<result>

<duration>1837</duration>
<rate>54500</rate>
<count>100000</count>

</result>
</output>

Troubleshooting

This section offers advices in a case OpenDaylight BGP plugin is not working as expected.

Contents

• BGP is not working...

• Bug reporting

BGP is not working...

• First of all, ensure that all required features are installed, local and remote BGP configuration is correct.

• Check OpenDaylight Karaf logs:

642 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

From Karaf console:

log:tail

or open log file: data/log/karaf.log

Possibly, a reason/hint for a cause of the problem can be found there.

• Try to minimise effect of other OpenDaylight features, when searching for a reason of the problem.

• Try to set DEBUG severity level for BGP logger via Karaf console commands, in order to collect more infor-
mation:

log:set DEBUG org.opendaylight.protocol.bgp

log:set DEBUG org.opendaylight.bgpcep.bgp

Bug reporting

Before you report a bug, check BGPCEP Jira to ensure same/similar bug is not already filed there.

Write an e-mail to bgpcep-users@lists.opendaylight.org and provide following information:

1. State OpenDaylight version

2. Describe your use-case and provide as much details related to BGP as possible

3. Steps to reproduce

4. Attach Karaf log files, optionally packet captures, REST input/output

BGP Monitoring Protocol User Guide

This guide contains information on how to use the OpenDaylight BGP Monitoring Protocol (BMP) plugin. It covers
BMP basic concepts, supported capabilities, configuration and operations.

Contents

• Overview

• Running BMP

• BMP Monitoring Station

• Test tools

• Troubleshooting

Overview

This section provides high-level overview of the BMP plugin, OpenDaylight implementation and BMP usage for SDN.

Contents

1.3. OpenDaylight User Guide 643

https://jira.opendaylight.org/browse/BGPCEP-756?jql=project%20%3D%20BGPCEP%20AND%20component%20%3D%20BGP
mailto:bgpcep-users@lists.opendaylight.org

OpenDaylight Documentation Documentation, Release Carbon

• BGP Monitoring Protocol

• BMP in SDN

• OpenDaylight BMP plugin

• List of supported capabilities

BGP Monitoring Protocol

The BGP Monitoring Protocol (BMP) serves to monitor BGP sessions. The BMP can be used to obtain route view
instead of screen scraping. The BMP provides access to unprocessed routing information (Adj-RIB-In) and processed
routes (applied inbound policy) of monitored router’s peer. In addition, monitored router can provide periodic dump
of statistics.

The BMP runs over TCP. Both monitored router and monitoring station can be configured as active or passive party
of the connection. The passive party listens at particular port. The router can be monitored by multiple monitoring
stations. BMP messages are sent by monitored router only, monitoring station supposed to collect and process data
received over BMP.

BMP in SDN

The main concept of BMP is to monitor BGP sessions - monitoring station is aware of monitored peer’s status, collects
statistics and analyzes them in order to provide valuable information for network operators.

Moreover, BMP provides provides peer RIBs visibility, without need to establish BGP sessions. Unprocessed routes
may serve as a source of information for software-driven routing optimization. In this case, SDN controller, a BMP
monitoring station, collects routing information from monitored routers. The routes are used in subsequent optimiza-
tion procedures.

OpenDaylight BMP plugin

The OpenDaylight BMP plugin provides monitoring station implementation. The plugin can establish BMP session
with one or more monitored routers in order to collect routing and statistical information.

• Runtime configurable monitoring station

• Read-only routes and statistics view

• Supports various routing information types

Important: The BMP plugin is not storing historical data, it provides current snapshot only.

List of supported capabilities

The BMP plugin implementation is based on Internet standards:

• RFC7854 - BGP Monitoring Protocol (BMP)

Note: The BMP plugin is capable to process various types of routing information (IP Unicast, EVPN, L3VPN,
Link-State,...). Please, see complete list in BGP user guide.

644 Chapter 1. Content for OpenDaylight Users

https://tools.ietf.org/html/rfc7854

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.26: The BMP overview - Monitoring Station, Monitored Router and Monitored Peers.

1.3. OpenDaylight User Guide 645

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.27: OpenDaylight BMP plugin overview.

646 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Running BMP

This section explains how to install BMP plugin.

1. Install BMP feature - odl-bgpcep-bmp. Also, for sake of this sample, it is required to install RESTCONF.
In the Karaf console, type command:

feature:install odl-restconf odl-bgpcep-bmp

2. The BMP plugin contains a default configuration, which is applied after the feature starts up. One instance of
BMP monitoring station is created (named example-bmp-monitor), and its presence can be verified via REST:

URL: /restconf/operational/bmp-monitor:bmp-monitor/monitor/
example-bmp-monitor

Method: GET

Response Body:

<monitor xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor">
<monitor-id>example-bmp-monitor</monitor-id>

</monitor>

BMP Monitoring Station

The following section shows how to configure BMP basics, how to verify functionality and presents essential compo-
nents of the plugin. Next samples demonstrate the plugin’s runtime configuration capability.

The monitoring station is responsible for received BMP PDUs processing and storage. The default BMP server is
listening at port 12345.

Contents

• Configuration

– Monitoring station configuration

– Active mode configuration

– MD5 authentication configuration

• Collector DB Tree

• Operations

Configuration

This section shows the way to configure the BMP monitoring station via REST API.

Warning: The BMP monitoring station configuration is going to be changed in Carbon. This user-guide will be
updated accordingly.

1.3. OpenDaylight User Guide 647

OpenDaylight Documentation Documentation, Release Carbon

Monitoring station configuration

In order to change default’s BMP monitoring station configuration, use following request. It is required to install
odl-netconf-connector-ssh feature first.

URL: /restconf/config/network-topology:network-topology/topology/
topology-netconf/node/controller-config/yang-ext:mount/config:modules/
config:module/odl-bmp-impl-cfg:bmp-monitor-impl/example-bmp-monitor

Method: PUT

Content-Type: application/xml

Request Body:

1 <module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
2 <name>example-bmp-monitor</name>
3 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">x:bmp-

→˓monitor-impl</type>
4 <binding-port xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">12355

→˓</binding-port>
5 <binding-address xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">0.

→˓0.0.0</binding-address>
6 <bmp-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
7 <type>bmp-dispatcher</type>
8 <name>global-bmp-dispatcher</name>
9 </bmp-dispatcher>

10 <codec-tree-factory xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl
→˓">

11 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">
→˓x:binding-codec-tree-factory</type>

12 <name>runtime-mapping-singleton</name>
13 </codec-tree-factory>
14 <extensions xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
15 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:spi">

→˓x:extensions</type>
16 <name>global-rib-extensions</name>
17 </extensions>
18 <dom-data-provider xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
19 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">x:dom-

→˓async-data-broker</type>
20 <name>pingpong-broker</name>
21 </dom-data-provider>
22 </module>

@line 4: binding-port - The BMP server listening port.

@line 5: binding-address - The BMP server biding address.

Note: User may create multiple BMP monitoring station instances at runtime.

Active mode configuration

In order to enable active connection, use following request. It is required to install
odl-netconf-connector-ssh feature first.

648 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

URL: /restconf/config/network-topology:network-topology/topology/
topology-netconf/node/controller-config/yang-ext:mount/config:modules/
config:module/odl-bmp-impl-cfg:bmp-monitor-impl/example-bmp-monitor

Method: PUT

Content-Type: application/xml

Request Body:

1 <module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
2 <name>example-bmp-monitor</name>
3 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">x:bmp-

→˓monitor-impl</type>
4 <bmp-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
5 <type>bmp-dispatcher</type>
6 <name>global-bmp-dispatcher</name>
7 </bmp-dispatcher>
8 <codec-tree-factory xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl

→˓">
9 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">

→˓x:binding-codec-tree-factory</type>
10 <name>runtime-mapping-singleton</name>
11 </codec-tree-factory>
12 <extensions xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
13 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:spi">

→˓x:extensions</type>
14 <name>global-rib-extensions</name>
15 </extensions>
16 <binding-address xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">0.

→˓0.0.0</binding-address>
17 <dom-data-provider xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
18 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">x:dom-

→˓async-data-broker</type>
19 <name>pingpong-broker</name>
20 </dom-data-provider>
21 <binding-port xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">12345

→˓</binding-port>
22 <monitored-router xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
23 <address xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">10.10.

→˓10.10</address>
24 <port xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">1234</port>
25 <active xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">true</

→˓active>
26 </monitored-router>
27 </module>

@line 23: address - The monitored router’s IP address.

@line 24: port - The monitored router’s port.

@line 25: active - Active mode set.

Note: User may configure active session establishment for multiple monitored routers.

1.3. OpenDaylight User Guide 649

OpenDaylight Documentation Documentation, Release Carbon

MD5 authentication configuration

In order to enable active connection, use following request. It is required to install
odl-netconf-connector-ssh feature first.

URL: /restconf/config/network-topology:network-topology/topology/
topology-netconf/node/controller-config/yang-ext:mount/config:modules/
config:module/odl-bmp-impl-cfg:bmp-monitor-impl/example-bmp-monitor

Method: PUT

Content-Type: application/xml

Request Body:

1 <module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
2 <name>example-bmp-monitor</name>
3 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">x:bmp-

→˓monitor-impl</type>
4 <bmp-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
5 <type>bmp-dispatcher</type>
6 <name>global-bmp-dispatcher</name>
7 </bmp-dispatcher>
8 <codec-tree-factory xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl

→˓">
9 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">

→˓x:binding-codec-tree-factory</type>
10 <name>runtime-mapping-singleton</name>
11 </codec-tree-factory>
12 <extensions xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
13 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:spi">

→˓x:extensions</type>
14 <name>global-rib-extensions</name>
15 </extensions>
16 <binding-address xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">0.

→˓0.0.0</binding-address>
17 <dom-data-provider xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
18 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">x:dom-

→˓async-data-broker</type>
19 <name>pingpong-broker</name>
20 </dom-data-provider>
21 <binding-port xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">12345

→˓</binding-port>
22 <monitored-router xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
23 <address xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">11.11.

→˓11.11</address>
24 <password xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">

→˓topsecret</password>
25 </monitored-router>
26 </module>

@line 23: address - The monitored router’s IP address.

@line 24: password - The TCP MD5 signature.

650 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Collector DB Tree

module: bmp-monitor
+--rw bmp-monitor

+--ro monitor* [monitor-id]
+--ro monitor-id monitor-id
+--ro router* [router-id]

+--ro name? string
+--ro description? string
+--ro info? string
+--ro router-id router-id
+--ro status? status
+--ro peer* [peer-id]

+--ro peer-id rib:peer-id
+--ro type peer-type
x--ro distinguisher
| +--ro distinguisher-type? distinguisher-type
| +--ro distinguisher? string
+--ro peer-distinguisher? union
+--ro address inet:ip-address
+--ro as inet:as-number
+--ro bgp-id inet:ipv4-address
+--ro router-distinguisher? string
+--ro peer-session
| +--ro local-address inet:ip-address
| +--ro local-port inet:port-number
| +--ro remote-port inet:port-number
| +--ro sent-open
| | +--ro version? protocol-version
| | +--ro my-as-number? uint16
| | +--ro hold-timer uint16
| | +--ro bgp-identifier inet:ipv4-address
| | +--ro bgp-parameters*
| | +--ro optional-capabilities*
| | +--ro c-parameters
| | +--ro as4-bytes-capability
| | | +--ro as-number? inet:as-number
| | +--ro bgp-extended-message-capability!
| | +--ro multiprotocol-capability
| | | +--ro afi? identityref
| | | +--ro safi? identityref
| | +--ro graceful-restart-capability
| | | +--ro restart-flags bits
| | | +--ro restart-time uint16
| | | +--ro tables* [afi safi]
| | | +--ro afi identityref
| | | +--ro safi identityref
| | | +--ro afi-flags bits
| | +--ro add-path-capability
| | | +--ro address-families*
| | | +--ro afi? identityref
| | | +--ro safi? identityref
| | | +--ro send-receive? send-receive
| | +--ro route-refresh-capability!
| +--ro received-open
| | +--ro version? protocol-version
| | +--ro my-as-number? uint16
| | +--ro hold-timer uint16

1.3. OpenDaylight User Guide 651

OpenDaylight Documentation Documentation, Release Carbon

| | +--ro bgp-identifier inet:ipv4-address
| | +--ro bgp-parameters*
| | +--ro optional-capabilities*
| | +--ro c-parameters
| | +--ro as4-bytes-capability
| | | +--ro as-number? inet:as-number
| | +--ro bgp-extended-message-capability!
| | +--ro multiprotocol-capability
| | | +--ro afi? identityref
| | | +--ro safi? identityref
| | +--ro graceful-restart-capability
| | | +--ro restart-flags bits
| | | +--ro restart-time uint16
| | | +--ro tables* [afi safi]
| | | +--ro afi identityref
| | | +--ro safi identityref
| | | +--ro afi-flags bits
| | +--ro add-path-capability
| | | +--ro address-families*
| | | +--ro afi? identityref
| | | +--ro safi? identityref
| | | +--ro send-receive? send-receive
| | +--ro route-refresh-capability!
| +--ro information
| | +--ro string-information*
| | +--ro string-tlv
| | +--ro string-info? string
| +--ro status? status
| +--ro timestamp-sec? yang:timestamp
| +--ro timestamp-micro? yang:timestamp
+--ro stats
| +--ro rejected-prefixes? yang:counter32
| +--ro duplicate-prefix-advertisements? yang:counter32
| +--ro duplicate-withdraws? yang:counter32
| +--ro invalidated-cluster-list-loop? yang:counter32
| +--ro invalidated-as-path-loop? yang:counter32
| +--ro invalidated-originator-id? yang:counter32
| +--ro invalidated-as-confed-loop? yang:counter32
| +--ro adj-ribs-in-routes? yang:gauge64
| +--ro loc-rib-routes? yang:gauge64
| +--ro per-afi-safi-adj-rib-in-routes
| | +--ro afi-safi* [afi safi]
| | +--ro afi identityref
| | +--ro safi identityref
| | +--ro count? yang:gauge64
| +--ro per-afi-safi-loc-rib-routes
| | +--ro afi-safi* [afi safi]
| | +--ro afi identityref
| | +--ro safi identityref
| | +--ro count? yang:gauge64
| +--ro updates-treated-as-withdraw? yang:counter32
| +--ro prefixes-treated-as-withdraw? yang:counter32
| +--ro duplicate-updates? yang:counter32
| +--ro timestamp-sec? yang:timestamp
| +--ro timestamp-micro? yang:timestamp
+--ro pre-policy-rib
| +--ro tables* [afi safi]
| +--ro afi identityref

652 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

| +--ro safi identityref
| +--ro attributes
| | +--ro uptodate? boolean
| +--ro (routes)?
+--ro post-policy-rib
| +--ro tables* [afi safi]
| +--ro afi identityref
| +--ro safi identityref
| +--ro attributes
| | +--ro uptodate? boolean
| +--ro (routes)?
+--ro mirrors

+--ro information? bmp-msg:mirror-information-code
+--ro timestamp-sec? yang:timestamp
+--ro timestamp-micro? yang:timestamp

Operations

The BMP plugin offers view of collected routes and statistical information from monitored peers. To get top-level
view of monitoring station:

URL: /restconf/operational/bmp-monitor:bmp-monitor/monitor/example-bmp-monitor

Method: GET

Response Body:

1 <bmp-monitor xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor">
2 <monitor>
3 <monitor-id>example-bmp-monitor</monitor-id>
4 <router>
5 <router-id>10.10.10.10</router-id>
6 <name>name</name>
7 <description>monitored-router</description>
8 <info>monitored router;</info>
9 <status>up</status>

10 <peer>
11 <peer-id>20.20.20.20</peer-id>
12 <address>20.20.20.20</address>
13 <bgp-id>20.20.20.20</bgp-id>
14 <as>65000</as>
15 <type>global</type>
16 <peer-session>
17 <remote-port>1790</remote-port>
18 <timestamp-sec>0</timestamp-sec>
19 <status>up</status>
20 <local-address>10.10.10.10</local-address>
21 <local-port>2200</local-port>
22 <received-open>
23 <hold-timer>180</hold-timer>
24 <my-as-number>65000</my-as-number>
25 <bgp-identifier>20.20.20.20</bgp-identifier>
26 </received-open>
27 <sent-open>
28 <hold-timer>180</hold-timer>
29 <my-as-number>65000</my-as-number>
30 <bgp-identifier>65000</bgp-identifier>

1.3. OpenDaylight User Guide 653

OpenDaylight Documentation Documentation, Release Carbon

31 </sent-open>
32 </peer-session>
33 <pre-policy-rib>
34 <tables>
35 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">

→˓x:ipv4-address-family</afi>
36 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">

→˓x:unicast-subsequent-address-family</safi>
37 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet

→˓">
38 <ipv4-route>
39 <prefix>10.10.10.0/24</prefix>
40 <attributes>
41 ...
42 </attributes>
43 </ipv4-route>
44 </ipv4-routes>
45 <attributes>
46 <uptodate>true</uptodate>
47 </attributes>
48 </tables>
49 </pre-policy-rib>
50 <post-policy-rib>
51 ...
52 </post-policy-rib>
53 <stats>
54 <timestamp-sec>0</timestamp-sec>
55 <invalidated-cluster-list-loop>0</invalidated-cluster-list-loop>
56 <duplicate-prefix-advertisements>0</duplicate-prefix-advertisements>
57 <loc-rib-routes>100</loc-rib-routes>
58 <duplicate-withdraws>0</duplicate-withdraws>
59 <invalidated-as-confed-loop>0</invalidated-as-confed-loop>
60 <adj-ribs-in-routes>10</adj-ribs-in-routes>
61 <invalidated-as-path-loop>0</invalidated-as-path-loop>
62 <invalidated-originator-id>0</invalidated-originator-id>
63 <rejected-prefixes>8</rejected-prefixes>
64 </stats>
65 </peer>
66 </router>
67 </monitor>
68 </bmp-monitor>

@line 3: monitor-id - The BMP monitoring station instance identifier.

@line 5: router-id - The monitored router IP address, serves as an identifier.

@line 11: peer-id - The monitored peer’s BGP identifier, serves a an identifier.

@line 12: address - The IP address of the peer, associated with the TCP session.

@line 13: bgp-id - The BGP Identifier of the peer.

@line 14: as - The Autonomous System number of the peer.

@line 15: type - Identifies type of the peer - Global Instance, RD Instance or Local Instance

@line 17: remote-port - The peer’s port number associated with TCP session.

@line 20: local-address - The IP address of the monitored router associated with the peering TCP session.

@line 21: local-port - The port number of the monitored router associated with the peering TCP session.

654 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

@line 22: received-open - The full OPEN message received by monitored router from the peer.

@line 27: sent-open - The full OPEN message send by monitored router to the peer.

@line 33: pre-policy-rib - The Adj-RIB-In that contains unprocessed routing information.

@line 50: post-policy-rib - The Post-Policy Ad-RIB-In that contains routes filtered by inbound policy.

@line 53: stats - Contains various statistics, periodically updated by the router.

• To view collected information from particular monitored router: URL: /restconf/operational/
bmp-monitor:bmp-monitor/monitor/example-bmp-monitor/router/10.10.10.10

• To view collected information from particular monitored peer: URL: /restconf/operational/
bmp-monitor:bmp-monitor/monitor/example-bmp-monitor/router/10.10.10.
10/peer/20.20.20.20

Test tools

BMP test tool serves to test basic BMP functionality, scalability and performance.

BMP mock

The BMP mock is a stand-alone Java application purposed to simulate a BMP-enabled router(s) and peers. The
simulator is capable to report dummy routes and statistics. This application is not part of the OpenDaylight Karaf
distribution, however it can be downloaded from OpenDaylight’s Nexus (use latest release version):

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/
opendaylight/bgpcep/bgp-bmp-mock

Usage

The application can be run from command line:

java -jar bgp-bmp-mock-*-executable.jar

with optional input parameters:

--local_address <address> (optional, default 127.0.0.1)
The IPv4 address where BMP mock is bind to.

--remote_address <IP_ADDRESS:PORT,...>, -ra <IP_ADDRESS:PORT,...>
A list of IP addresses of BMP monitoring station, by default 127.0.0.1:12345

--passive (optional, not present by default)
This flags enables passive mode for simulated routers.

--routers_count <0..N> (optional, default 1)
An amount of BMP routers to be connected to the BMP monitoring station.

--peers_count <0..N> (optional, default 0)
An amount of peers reported by each BMP router.

--pre_policy_routes <0..N> (optional, default 0)

1.3. OpenDaylight User Guide 655

OpenDaylight Documentation Documentation, Release Carbon

An amount of "pre-policy" simple IPv4 routes reported by each peer.

--post_policy_routes <0..N> (optional, default 0)
An amount of "post-policy" simple IPv4 routes reported by each peer.

--log_level <FATAL|ERROR|INFO|DEBUG|TRACE> (optional, default INFO)
Set logging level for BMP mock.

Troubleshooting

This section offers advices in a case OpenDaylight BMP plugin is not working as expected.

Contents

• BMP is not working...

• Bug reporting

BMP is not working...

• First of all, ensure that all required features are installed, local monitoring station and monitored router/peers
configuration is correct.

To list all installed features in OpenDaylight use the following command at the Karaf console:

feature:list -i

• Check OpenDaylight Karaf logs:

From Karaf console:

log:tail

or open log file: data/log/karaf.log

Possibly, a reason/hint for a cause of the problem can be found there.

• Try to minimize effect of other OpenDaylight features, when searching for a reason of the problem.

• Try to set DEBUG severity level for BMP logger via Karaf console commands, in order to collect more infor-
mation:

log:set DEBUG org.opendaylight.protocol.bmp

Bug reporting

Before you report a bug, check BGPCEP Jira to ensure same/similar bug is not already filed there.

Write an e-mail to bgpcep-users@lists.opendaylight.org and provide following information:

1. State OpenDaylight version

2. Describe your use-case and provide as much details related to BMP as possible

656 Chapter 1. Content for OpenDaylight Users

https://jira.opendaylight.org/projects/BGPCEP/issues/BGPCEP-589?filter=allopenissues
mailto:bgpcep-users@lists.opendaylight.org

OpenDaylight Documentation Documentation, Release Carbon

3. Steps to reproduce

4. Attach Karaf log files, optionally packet captures, REST input/output

BIER User Guide

Overview

The technology of Bit Index Explicit Replication (BIER) specifies a new architecture for the forwarding of multicast
data packets. It provides optimal forwarding of multicast data packets through a “multicast domain”. However, it does
not require the use of a protocol for explicitly building multicast distribution trees, and it does not require intermediate
nodes to maintain any per-flow state. See specific in draft-ietf-bier-architecture-05 and related documents.

The BIER project provides functionality about BIER topo-mamagement and BIER channel-mamagement, and invok-
ing south-bound-interface for device driver.

BIER User-Facing Features

• odl-bier-all

– This feature contains all other features/bundles of BIER project. If you install it, it provides all functions
that the BIER project can support.

• odl-bier-models

– This feature contains all models of BIER project, such as ietf-bier, ietf-multicast-information and so on.

• odl-bier-topomanager-ui

– This feature can display bier-topo-manager’s APIs on UIs (odl-mdsal-apidocs and odl-dluxapps-yangui).

• odl-bier-channel-ui

– This feature can display bier-channel’s APIs on UIs (odl-mdsal-apidocs and odl-dluxapps-yangui).

• odl-bier-service

– This feature provides function which processing the result of BIER topo-mamager and BIER channel-
manager, and invoking south-bound-interface for driver.

• odl-bier-adapter

– This feature provides adapter for different BIER south-bound NETCONF interface, so all BFRs in BIER
domain with different NETCONF configuration interface, they can operate normally together.

• odl-bier-driver

– This feature is south-bound NETCONF interface for BIER, it has implemented standard interface (ietf-
bier). If your BFR’s NETCONF interface is Non-standard, you should add your own interface for driver.

How To Start

Preparing for Installation

1. Forwarding devices must support the OpenFlow protocol, and already be configured so that OpenDaylight can
discover those devices via the OpenFlow Plugin.

2. Forwarding devices must support BIER configuration via NETCONF, which has a standard IETF YANG model.

1.3. OpenDaylight User Guide 657

https://datatracker.ietf.org/doc/draft-ietf-bier-architecture/

OpenDaylight Documentation Documentation, Release Carbon

Installation Feature

Run OpenDaylight and install BIER Service odl-bier-all as below:

feature:install odl-bier-all

For a more detailed overview of the BIER, see the BIER Developer Guide.

CAPWAP User Guide

This document describes how to use the Control And Provisioning of Wireless Access Points (CAPWAP) feature in
OpenDaylight. This document contains configuration, administration, and management sections for the feature.

Overview

CAPWAP feature fills the gap OpenDaylight Controller has with respect to managing CAPWAP compliant wireless
termination point (WTP) network devices present in enterprise networks. Intelligent applications (e.g. centralized
firmware management, radio planning) can be developed by tapping into the WTP network device’s operational states
via REST APIs.

CAPWAP Architecture

The CAPWAP feature is implemented as an MD-SAL based provider module, which helps discover WTP devices and
update their states in MD-SAL operational datastore.

Scope of CAPWAP Project

In this release, CAPWAP project aims to only detect the WTPs and store their basic attributes in the operational data
store, which is accessible via REST and JAVA APIs.

Installing CAPWAP

To install CAPWAP, download OpenDaylight and use the Karaf console to install the following feature:

odl-capwap-ac-rest

Configuring CAPWAP

As of this release, there are no configuration requirements.

Administering or Managing CAPWAP

After installing the odl-capwap-ac-rest feature from the Karaf console, users can administer and manage CAPWAP
from the APIDOCS explorer.

Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/explorer/
index.html, sign in, and expand the capwap-impl panel. From there, users can execute various API calls.

658 Chapter 1. Content for OpenDaylight Users

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

Tutorials

Viewing Discovered WTPs

Overview

This tutorial can be used as a walk through to understand the steps for starting the CAPWAP feature, detecting CAP-
WAP WTPs, accessing the operational states of WTPs.

Prerequisites

It is assumed that user has access to at least one hardware/software based CAPWAP compliant WTP. These devices
should be configured with OpenDaylight controller IP address as a CAPWAP Access Controller (AC) address. It is
also assumed that WTPs and OpenDaylight controller share the same ethernet broadcast domain.

Instructions

1. Run the OpenDaylight distribution and install odl-capwap-ac-rest from the Karaf console.

2. Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/
explorer/index.html

3. Expand capwap-impl

4. Click /operational/capwap-impl:capwap-ac-root/

5. Click “Try it out”

6. The above step should display list of WTPs discovered using ODL CAPWAP feature.

Cardinal: OpenDaylight Monitoring as a Service

This section describes how to use the Cardinal feature in OpenDaylight and contains configuration, administration,
and management sections for the feature.

Overview

Cardinal (OpenDaylight Monitoring as a Service) enables OpenDaylight and the underlying software defined network
to be remotely monitored by deployed Network Management Systems (NMS) or Analytics suite. In the Boron release,
Cardinal will add:

1. OpenDaylight MIB.

2. Enable ODL diagnostics/monitoring to be exposed across SNMP (v2c, v3) and REST north-bound.

3. Extend ODL System health, Karaf parameter and feature info, ODL plugin scalability and network parameters.

4. Support autonomous notifications (SNMP Traps).

Cardinal Architecture

The Cardinal architecture can be found at the below link:

https://wiki.opendaylight.org/images/8/89/Cardinal-ODL_Monitoring_as_a_Service_V2.pdf

1.3. OpenDaylight User Guide 659

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
https://wiki.opendaylight.org/images/8/89/Cardinal-ODL_Monitoring_as_a_Service_V2.pdf

OpenDaylight Documentation Documentation, Release Carbon

Configuring Cardinal feature

To start Cardinal feature, start karaf and type the following command:

feature:install odl-cardinal

After this Cardinal should be up and working with SNMP daemon running on port 161.

Tutorials

Below are tutorials for Cardinal.

Using Cardinal

These tutorials are intended for any user who wants to monitor three basic component in OpenDaylight

1. System Info in which controller is running.

2. Karaf Info

3. Project Specific Information.

Prerequisites

There is no as such specific prerequisite. Cardinal can work without installing any third party software. However If
one wants to see the output of a snmpget/snmpwalk on the CLI prompt, than one can install the SNMP using the below
link:

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-an-snmp-daemon-and-client-on-ubuntu-14-04

Using the above command line utility one can get the same result as the cardinal APIs will give for the sn-
mpget/snmpwalk request.

Target Environment

This tutorial is developed considering the following environment:

controller-Linux(Ubuntu 14.02).

Instructions

Install Cardinal feature

Open karaf and install the cardinal feature using the following command:

feature:install odl-cardinal

Please verify that SNMP daemon is up on port 161 using the following command on the terminal window of Linux
machine:

660 Chapter 1. Content for OpenDaylight Users

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-an-snmp-daemon-and-client-on-ubuntu-14-04

OpenDaylight Documentation Documentation, Release Carbon

netstat -anp | grep "161"
netstat -anp | grep "2001"
netstat -anp | grep "2003"

If the grep on the ‘‘snmpd‘‘ port is successful than SNMP daemon is up and working.

APIs Reference

Please see Developer guide for usage of Cardinal APIs.

CLI commands to do snmpget/walk

One can do snmpget/walk on the ODL-CARDINAL-MIB. Open the linux terminal and type the below command:

snmpget -v2c -c public localhost Oid_Of_the_mib_variable

Or

snmpget -v2c -c public localhost ODL-CARDINAL-MIB::mib_variable_name

For snmpwalk use the below command:

snmpwalk -v2c -c public localhost SNMPv2-SMI::experimental

For tabular data (netconf devices), snmpwalk use the below command:

snmpwalk -v2c -c public localhost:2001 SNMPv2-SMI::experimental

For tabular data (openflow devices), snmpwalk use the below command:

snmpwalk -v2c -c public localhost:2003 SNMPv2-SMI::experimental

Centinel User Guide

The Centinel project aims at providing a distributed, reliable framework for efficiently collecting, aggregating and
sinking streaming data across Persistence DB and stream analyzers (example: Graylog, Elastic search, Spark, Hive
etc.). This document contains configuration, administration, management, using sections for the feature.

Overview

In this release of Centinel, this framework enables SDN applications/services to receive events from multiple streaming
sources (e.g., Syslog, Thrift, Avro, AMQP, Log4j, HTTP/REST) and execute actions like network configuration/batch
processing/real-time analytics. It also provides a Log Service to assist operators running SDN ecosystem by installing
the feature odl-centinel-all.

With the configurations development of “Log Service” and plug-in for log analyzer (e.g., Graylog) will take place.
Log service will do processing of real time events coming from log analyzer. Additionally, stream collector (Flume
and Sqoop based) that will collect logs from OpenDaylight and sink it to persistence service (integrated with TSDR).
Also includes RESTCONF interface to inject events to north bound applications for real-time analytic/network con-
figuration. Centinel User Interface (web interface) will be available to operators to enable rules/alerts/dashboard.

1.3. OpenDaylight User Guide 661

OpenDaylight Documentation Documentation, Release Carbon

Centinel core features

The core features of the Centinel framework are:

Stream collector Collecting, aggregating and sinking streaming data

Log Service Listen log stream events coming from log analyzer

Log Service Enables user to configure rules (e.g., alerts, diagnostic, health, dashboard)

Log Service Performs event processing/analytics

User Interface Enable set-rule, search, visualize, alert, diagnostic, dashboard etc.

Adaptor Log analyzer plug-in to Graylog and a generic data-model to extend to other stream analyzers (e.g.,
Logstash)

REST Service Northbound APIs for Log Service and Steam collector framework

Leverages TSDR persistence service, data query, purging and elastic search

Centinel Architecture

The following wiki pages capture the Centinel Model/Architecture

1. https://wiki.opendaylight.org/view/Centinel:Main

2. https://wiki.opendaylight.org/view/Project_Proposals:Centinel

3. https://wiki.opendaylight.org/images/0/09/Centinel-08132015.pdf

Administering or Managing Centinel with default configuration

Prerequisites

1. Check whether Graylog is up and running and plugins deployed as mentioned in installation guide.

2. Check whether HBase is up and respective tables and column families as mentioned in installation guide are
created.

3. Check if apache flume is up and running.

4. Check if apache drill is up and running.

Running Centinel

The following steps should be followed to bring up the controller:

1. Download the Centinel OpenDaylight distribution release from below link: http://www.opendaylight.org/
software/downloads

2. Run Karaf of the distribution from bin folder

./karaf

3. Install the centinel features using below command:

feature:install odl-centinel-all

662 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Centinel:Main
https://wiki.opendaylight.org/view/Project_Proposals:Centinel
https://wiki.opendaylight.org/images/0/09/Centinel-08132015.pdf
https://opendaylight.readthedocs.io/en/stable-boron/getting-started-guide/project-specific-guides/centinel.html
https://opendaylight.readthedocs.io/en/stable-boron/getting-started-guide/project-specific-guides/centinel.html
http://www.opendaylight.org/software/downloads
http://www.opendaylight.org/software/downloads

OpenDaylight Documentation Documentation, Release Carbon

4. Give some time for the centinel to come up.

User Actions

1. Log In: User logs into the Centinel with required credentials using following URL: http://localhost:8181/index.
html

2. Create Rule:

(a) Select Centinel sub-tree present in left side and go to Rule tab.

(b) Create Rule with title and description.

(c) Configure flow rule on the stream to filter the logs accordingly for, e.g., bundle_name=org.
opendaylight.openflow-plugin

3. Set Alarm Condition: Configure alarm condition, e.g., message-count-rule such that if 10 messages comes on
a stream (e.g., The OpenFlow Plugin) in last 1 minute with an alert is generated.

4. Subscription: User can subscribe to the rule and alarm condition by entering the http details or email-id in
subscription textfield by clicking on the subscribe button.

5. Create Dashboard: Configure dashboard for stream and alert widgets. Alarm and Stream count will be updated
in corresponding widget in Dashboard.

6. Event Tab: Intercepted Logs, Alarms and Raw Logs in Event Tab will be displayed by selecting the appropriate
radio button. User can also filter the searched data using SQL query in the search box.

DIDM User Guide

Overview

The Device Identification and Driver Management (DIDM) project addresses the need to provide device-specific
functionality. Device-specific functionality is code that performs a feature, and the code is knowledgeable of the
capability and limitations of the device. For example, configuring VLANs and adjusting FlowMods are features, and
there may be different implementations for different device types. Device-specific functionality is implemented as
Device Drivers. Device Drivers need to be associated with the devices they can be used with. To determine this
association requires the ability to identify the device type.

DIDM Architecture

The DIDM project creates the infrastructure to support the following functions:

• Discovery - Determination that a device exists in the controller management domain and connectivity to the
device can be established. For devices that support the OpenFlow protocol, the existing discovery mechanism in
OpenDaylight suffices. Devices that do not support OpenFlow will be discovered through manual means such
as the operator entering device information via GUI or REST API.

• Identification – Determination of the device type.

• Driver Registration – Registration of Device Drivers as routed RPCs.

• Synchronization – Collection of device information, device configuration, and link (connection) information.

• Data Models for Common Features – Data models will be defined to perform common features such as VLAN
configuration. For example, applications can configure a VLAN by writing the VLAN data to the data store as
specified by the common data model.

1.3. OpenDaylight User Guide 663

http://localhost:8181/index.html
http://localhost:8181/index.html

OpenDaylight Documentation Documentation, Release Carbon

• RPCs for Common Features – Configuring VLANs and adjusting FlowMods are example of features. RPCs
will be defined that specify the APIs for these features. Drivers implement features for specific devices and
support the APIs defined by the RPCs. There may be different Driver implementations for different device
types.

Atrium Support

The Atrium implements an open source router that speaks BGP to other routers, and forwards packets received on
one port/vlan to another, based on the next-hop learnt via BGP peering. A BGP peering application for the Open
Daylight Controller and a new model for flow objective drivers for switches integrated with the Open Daylight Atrium
distribution was developed for this project. The implementation has the same level of feature partly that was introduced
by the Atrium 2015/A distribution on the ONOS controller. An overview of the architecture is available at here
(https://github.com/onfsdn/atrium-docs/wiki/ODL-Based-Atrium-Router-16A).

Atrium stack is implemented in OpenDaylight using Atrium and DIDM project. Atrium project provides the applica-
tion implementation for BGP peering and the DIDM project provides implementation for FlowObjectives. FlowOb-
jective provides an abstraction layer and present the pipeline agnostic api to application to consume.

FlowObjective

Flow Objectives describe an SDN application’s objective (or intention) behind a flow it is sending to a device.

Application communicates the flow installation requirement using Flow Objectives. DIDM drivers translates the Flow
Objectives to device specific flows as per the device pipeline.

There are three FlowObjectives (already implemented in ONOS controller) :

• Filtering Objective

• Next Objective

• Forwarding Objective

Installing DIDM

To install DIDM, download OpenDaylight and use the Karaf console to install the following features:

• odl-openflowplugin-all

• odl-didm-all

odl-didm-all installs the following required features:

• odl-didm-ovs-all

• odl-didm-ovs-impl

• odl-didm-util

• odl-didm-identification

• odl-didm-drivers

• odl-didm-hp-all

Configuring DIDM

This section shows an example configuration steps for installing a driver (HP 3800 OpenFlow switch driver).

664 Chapter 1. Content for OpenDaylight Users

https://github.com/onfsdn/atrium-docs/wiki/ODL-Based-Atrium-Router-16A

OpenDaylight Documentation Documentation, Release Carbon

Install DIDM features:

feature:install odl-didm-identification-api
feature:install odl-didm-drivers

In order to identify the device, device driver needs to be installed first. Identification Manager will be notified when a
new device connects to the controller.

Install HP driver

feature:install odl-didm-hp-all installs the following features

• odl-didm-util

• odl-didm-identification

• odl-didm-drivers

• odl-didm-hp-all

• odl-didm-hp-impl

Now at this point, the driver has written all of the identification information in to the MD-SAL datastore. The identi-
fication manager should have that information so that it can try to identify the HP 3800 device when it connects to the
controller.

Configure the switch and connect it to the controller from the switch CLI.

Run REST GET command to verify the device details:

http://<CONTROLLER-IP:8181>/restconf/operational/opendaylight-inventory:nodes

Run REST adjust-flow command to adjust flows and push to the device

Flow mod driver for HP 3800 device

This driver adjusts the flows and push the same to the device. This API takes the flow to be adjusted as input and
displays the adjusted flow as output in the REST output container. Here is the REST API to adjust and push flows to
HP 3800 device:

http://<CONTROLLER-IP:8181>/restconf/operations/openflow-feature:adjust-flow

FlowObjectives API

FlowObjective presents the OpenFlow pipeline agnostic API to Application to consume. Application communicate
their intent behind installation of flow to Drivers using the FlowObjective. Driver translates the FlowObjective in
device specific flows and uses the OpenFlowPlugin to install the flows to the device.

Filter Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:filter

1.3. OpenDaylight User Guide 665

http:/
http:/
http:/

OpenDaylight Documentation Documentation, Release Carbon

Next Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:next

Forward Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:forward

eman User Guide

Overview

The OpenDaylight Energy Management (eman) plugin implements an abstract Information Model that describes en-
ergy measurement and control features that may be supported by a variety of device types. The eman plugin may
support a number of southbound interfaces to accommodate a set of protocols, including but not limited to SNMP,
NETCONF, IPDR. The plugin presents a northbound REST API. This framework enables any number of applications
to interoperate with any number of devices in order to measure and optimize energy usage. The Information Model
will be inherited from the SCTE 216 standard – Adaptive Power Systems Interface Specification (APSIS), which in
turn inherits definitions within the IETF eman document set.

This documentation is directed to those operating the features such as network administrator, cloud administrator,
network engineer, or system administrators.

eman is composed of 3 Karaf features:

• eman incudes the YANG model and its implementation

• eman-api adds support for REST

• eman-ui adds support for DLUX.

Developers will typically interface with eman-api.

eman Architecture

eman defines a YANG model that represents the IETF energy management Information Model, and includes RPCs.
The implementation of the model currently supports an SNMP ‘binding’ via interfacing with the OpenDaylight SNMP
module. In the future, other Southbound protocols may be supported.

Developers my use the eman-api feature to read and write energy related data and commands to devices that support
the IETF eman MIBS.

Besides a set of common controller features eman depends upon the OpenDaylight SNMP features to be installed.

Configuring eman

eman relies upon the presence of SNMP agents.

The following describes a way to install and configure an SNMP simulator on localhost.

on macOS, open terminal

1. Install snmpsim.:

666 Chapter 1. Content for OpenDaylight Users

http:/
http:/
http://www.scte.org/SCTEDocs/Standards/ANSI_SCTE%20216%202015.pdf
https://datatracker.ietf.org/wg/eman/documents/

OpenDaylight Documentation Documentation, Release Carbon

$ sudo easy_install -n snmpsim

2. configure filesystem:

mkdir ~/.snmpsim, then mkdir ~/.snmpsim/data/

3. Install moak data. This file is used by pysnmp to provide mock data for an APSIS agent:

copy eman/sample_code/data/energy-object.snmprec to ~/.snmpsim/data/.

4. launch snmp simulator:

$ sudo snmpsimd.py --agent-udpv4-endpoint=127.0.0.1:161
--process-group=<your group> --process-user=<your user>

5. VerifyOpen another terminal window and execute:

$ snmpget -v2c -c energy-object localhost:161 1.3.6.1.2.1.229.0.1.0.

The result should be ‘1’, as defined in your snmprec file

Note: group and user are settings within our local OS. For Mac users, look at settings/users and groups. If port 161
is not available, use another unprivileged port such as 1161.

Note: snmpget queries snmpsimd to return a value for the OID 1.3.6.1.2.1.229.0.1.0. According to the energy-
object.snmprec file, the value for that OID is ‘1’. Try other OIDs, or edit the snmprec file to see your results

Future release may include more flexible and robust means to simulate a network of energy aware SNMP agents.

Typically, a process may periodically poll a device to acquire power measurements and repose them into MD-SAL.
Subsequently, process may read a history of power measurements from MD-SAL via the eman operational API.

Fabric As A Service

This document describes, from a user’s or application’s perspective, how to use the Fabric As A Service (FaaS)
feature in OpenDaylight. This document contains configuration, administration, and management sections for the
FaaS feature.

Overview

Currently network applications and network administrators mostly rely on lower level interfaces such as CLI, SNMP,
OVSDB, NETCONF or OpenFlow to directly configure individual device for network service provisioning. In general,
those interfaces are:

• Technology oriented, not application oriented.

• Vendor specific

• Individual device oriented, not network oriented.

• Not declarative, complicated and procedure oriented.

1.3. OpenDaylight User Guide 667

OpenDaylight Documentation Documentation, Release Carbon

To address the gap between application needs and network interface, there are a few application centric language
proposed in OpenDaylight including Group Based Policy (GBP), Network Intent Composition (NIC), and NEtwork
MOdeling (NEMO) trying to replace traditional southbound interface to application. Those languages are top-down
abstractions and model application requirements in a more application-oriented way.

After being involved with GBP development for a while, we feel the top down model still has a quite gap between the
model and the underneath network since the existing interfaces to network devices lack of abstraction makes it very
hard to map high level abstractions to the physical network. Often the applications built with these low level interfaces
are coupled tightly with underneath technology and make the application’s architecture monolithic, error prone and
hard to maintain.

We think a bottom-up abstraction of network can simplify, reduce the gap, and make it easy to implement the appli-
cation centric model. Moreover in some uses cases, an interface with network service oriented are still desired for
example from network monitoring/troubleshooting perspective. That’s where the Fabric as a Service comes in.

FaaS Architecture

Fabric and its controller (Fabric Controller) The Fabric object provides an abstraction of a homogeneous network
or portion of the network and also has a built in Fabric controller which provides management plane and control
plane for the fabric. The fabric controller implements the services required in Fabric Service and monitor and
control the fabric operation.

Fabric Manager Fabric Manager manages all the fabric objects. also Fabric manager acts as a Unified Fabric Con-
troller which provides inter-connect fabric control and configuration Also Fabric Manager is FaaS API service
via Which FaaS user level logical network API (the top level API as mentioned previously) exposed and imple-
mented.

FaaS render for GBP (Group Based Policy) FaaS render for GBP is an application of FaaS and provides the ren-
dering service between GBP model and logical network model provided by Fabric Manager.

FaaS RESTCONF API

FaaS Provides two layers API:

• The top layer is a user level logical network API which defines CRUD services operating on the following
abstracted constructs:

– vcontainer - virtual container

– logical Port - a input/out/access point of a logical device

– logical link - connects ports

– logical switch - a layer 2 forwarding device

– logical router - a layer 3 forwarding device

– Subnet

– Rule/ACL

– End Points Registration

– End Points Attachment

Through these constructs, a logical network can be described without users knowing too much details about the phys-
ical network device and technology, i.e. users’ network services is decoupled from underneath physical infrastructure.
This decoupling brought the benefit that the users defined service is not locked in with any specific technology or

668 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

physical devices. FaaS maps the logical network to the physical network configuration automatically which in maxi-
mum eliminates the manual provisioning work. As a result, human error is avoided and OPEX for network operators
is massively reduced. Moreover migration from one technology to another is much easier to do and transparent to
users’ services.

• The second layer defines an abstraction layer called Fabric API. The idea is to abstract network into a topology
formed by a collections of fabric objects other than varies of physical devices.Each Fabric object provides a
collection of unified services. The top level API enables application developers or users to write applications
to map high level model such as GBP, Intent etc. . . into a logical network model, while the lower level gives
the application more control to individual fabric object level. More importantly the Fabric API is more like SPI
(Service Provider API) a fabric provider or vendor can implement the SPI based on its own Fabric technique
such as TRILL, SPB etc . . .

This document is focused on the top layer API. For how to use second level API operation, please refer to FaaS
developer guide for more details.

Note: that for any JSON data or link not described here, please go to http://\protect\T1\textdollar\protect\T1\
textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/explorer/index.htm for details or clarification.

Resource Management API

The FaaS Resource Management API provides services to allocate and reclaim the network resources provided by
Fabric object. Those APIs can be accessed via RESTCONF rendered from YANG in MD-SAL.

• Name: Create virtual container

– virtual container is an collections of resources allocated to a tenant, for example, a list of physical ports,
bandwidth or L2 network or logical routers quantity. etc. . .

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/vcontainer-topology:create-vcontainer

– Description: create a given virtual container.

• Name: assign or remove fabric resource to a virtual container

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/vc-ld-node:add-vfabric-to-ld-node

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/vc-ld-node:rm-vfabric-to-ld-node

• Name: assign or remove appliance to a virtual container

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/vc-ld-node:add-appliance-to-ld-node

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/vc-ld-node:rm-appliance-to-ld-node

• Name: create or remove a child container

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/vc-ld-node:create-child-ld-node

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/vc-ld-node:rm-child-ld-node

• RESTCONF path for Virtual Container Datastore query (note: vcontainer-id equals tenantID for now):

1.3. OpenDaylight User Guide 669

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.htm
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.htm
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vcontainer-topology:create-vcontainer
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vcontainer-topology:create-vcontainer
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:add-vfabric-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:add-vfabric-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:rm-vfabric-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:rm-vfabric-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:add-appliance-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:add-appliance-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:rm-appliance-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:rm-appliance-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:create-child-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:create-child-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:rm-child-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:rm-child-ld-node

OpenDaylight Documentation Documentation, Release Carbon

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
config/network-topology/topology/\protect\T1\textbraceleftvcontainer-id\protect\T1\textbraceright/
vc-topology-attributes/

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
config/network-topology/topology/\protect\T1\textbraceleftvcontainer-id\protect\T1\textbraceright/node/
\protect\T1\textbraceleftnet-node-id\protect\T1\textbraceright/vc-net-node-attributes

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
config/network-topology/topology/\protect\T1\textbraceleftvcontainer-id\protect\T1\textbraceright/node/
\protect\T1\textbraceleftld-node-id\protect\T1\textbraceright/vc-ld-node-attributes

Installing Fabric As A Service

To install FaaS, download OpenDaylight and use the Karaf console to install the following feature: odl-restconf
odl-faas-all odl-groupbasedpolicy-faas (if needs to use FaaS to render GBP)

Configuring FaaS

This section gives details about the configuration settings for various components in FaaS.

The FaaS configuration files for the Karaf distribution are located in distribution/karaf/target/assembly/etc/faas

• akka.conf

– This file contains configuration related to clustering. Potential configuration properties can be found on
the akka website at http://doc.akka.io

• fabric-factory.xml

• vxlan-fabric.xml

• vxlan-fabric-ovs-adapter.xml

– Those 3 files are used to initialize fabric module and located under distribu-
tion/karaf/target/assembly/etc/opendaylight/karaf

Managing FaaS

Start opendaylight karaf distribution

• >bin/karaf Then From karaf console,Install features in the following order:

• >feature:Install odl-restconf

• >feature:install odl-faas-all

• >feature install odl-groupbasedpolicy-faas

After installing features above, users can manage Fabric resource and FaaS logical network channels from the API-
DOCS explorer via RESTCONF

Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/explorer/
index.html, sign in, and expand the FaaS panel. From there, users can execute various API calls to test their FaaS
deployment such as create virtual container, create fabric, delete fabric, create/edit logical network elements.

670 Chapter 1. Content for OpenDaylight Users

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/config/network-topology/topology/\protect \T1\textbraceleft vcontainer-id\protect \T1\textbraceright /vc-topology-attributes/
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/config/network-topology/topology/\protect \T1\textbraceleft vcontainer-id\protect \T1\textbraceright /vc-topology-attributes/
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/config/network-topology/topology/\protect \T1\textbraceleft vcontainer-id\protect \T1\textbraceright /vc-topology-attributes/
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/config/network-topology/topology/\protect \T1\textbraceleft vcontainer-id\protect \T1\textbraceright /node/\protect \T1\textbraceleft net-node-id\protect \T1\textbraceright /vc-net-node-attributes
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/config/network-topology/topology/\protect \T1\textbraceleft vcontainer-id\protect \T1\textbraceright /node/\protect \T1\textbraceleft net-node-id\protect \T1\textbraceright /vc-net-node-attributes
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/config/network-topology/topology/\protect \T1\textbraceleft vcontainer-id\protect \T1\textbraceright /node/\protect \T1\textbraceleft net-node-id\protect \T1\textbraceright /vc-net-node-attributes
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/config/network-topology/topology/\protect \T1\textbraceleft vcontainer-id\protect \T1\textbraceright /node/\protect \T1\textbraceleft ld-node-id\protect \T1\textbraceright /vc-ld-node-attributes
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/config/network-topology/topology/\protect \T1\textbraceleft vcontainer-id\protect \T1\textbraceright /node/\protect \T1\textbraceleft ld-node-id\protect \T1\textbraceright /vc-ld-node-attributes
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/config/network-topology/topology/\protect \T1\textbraceleft vcontainer-id\protect \T1\textbraceright /node/\protect \T1\textbraceleft ld-node-id\protect \T1\textbraceright /vc-ld-node-attributes
http://doc.akka.io
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

Tutorials

Below are tutorials for 4 major use cases.

1. to create and provision a fabric

2. to allocate resource from the fabric to a tenant

3. to define a logical network for a tenant. Currently there are two ways to create a logical network

(a) Create a GBP (Group Based Policy) profile for a tenant and then convert it to a logical network via GBP
FaaS render Or

(b) Manually create a logical network via RESTCONF APIs.

4. to attach or detach an Endpoint to a logical switch or logical router

Create a fabric

Overview

This tutorial walks users through the process of create a Fabric object

Prerequisites

A set of virtual switches (OVS) have to be registered or discovered by ODL. Mininet is recommended to create a OVS
network. After an OVS network is created, set up the controller IP pointing to ODL IP address in each of the OVS.
From ODL, a physical topology can be viewed via ODL DLUX UI or retrieved via RESTCONF API.

Instructions

• Run the OpenDaylight distribution and install odl-faas-all from the Karaf console.

• Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/
explorer/index.html

• Get the network topology after OVS switches are registered in the controller

• Determine the nodes and links to be included in the to-be-defined Fabric object.

• Execute create-fabric RESTCONF API with the corresponding JSON data as required.

Create virtual container for a tenant

The purpose of this tutorial is to allocate network resources to a tenant

Overview

This tutorial walks users through the process of create a Fabric

Prerequisites

1 or more fabric objects have been created.

1.3. OpenDaylight User Guide 671

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

Instructions

• Run the OpenDaylight karaf distribution and install odl-faas-all feature from the Karaf console. >feature:install
odl-rest-conf odl-faas-all odl-mdsal-apidoc

• Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/
explorer/index.html

• Execute create-vcontainer with the following restconf API with corresponding JSON data >
http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/vcontainer-topology:create-vcontainer

After a virtual container is created, fabric resource and appliance resource can be assigned to the container object via
the following RESTConf API.

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/vc-ld-node:add-vfabric-to-ld-node

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/vc-ld-node:add-appliance-to-ld-node

Create a logical network

Overview

This tutorial walks users through the process of create a logical network for a tenant

Prerequisites

a virtual container has been created and assigned to the tenant

Instructions

Currently there are two ways to create a logical network.

• Option 1 is to use logical network RESTConf REST API and directly create individual network elements and
connect them into a network

• Option 2 is to define a GBP model and FaaS can map GBP model automatically into a logical network. Notes
that for option 2, if the generated network requires some modification, we recommend modify the GBP model
rather than change the network directly due to there is no synchronization from network back to GBP model in
current release.

Manual Provisioning

To create a logical switch

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
configuration/faas-logical-networks:tenant-logical-networks:logical-switches:logical-switches To create a
logical router

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
configuration/faas-logical-networks:tenant-logical-networks:logical-routers:logical-routers To attach a
logical switch to a router

672 Chapter 1. Content for OpenDaylight Users

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vcontainer-topology:create-vcontainer
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vcontainer-topology:create-vcontainer
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:add-vfabric-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:add-vfabric-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:add-appliance-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/vc-ld-node:add-appliance-to-ld-node
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-switches:logical-switches
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-switches:logical-switches
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-routers:logical-routers
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-routers:logical-routers

OpenDaylight Documentation Documentation, Release Carbon

– Step 1: updating/adding a port A on the logical switch http://\protect\T1\textdollar\protect\T1\
textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/configuration/faas-logical-networks:
tenant-logical-networks:logical-switches:logical-switches

– Step 2: updating/adding a port B on the logical router http://\protect\T1\textdollar\protect\T1\
textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/configuration/faas-logical-networks:
tenant-logical-networks:logical-routers:logical-routers

– Step 3; create a link between the port A and B http://\protect\T1\textdollar\protect\T1\
textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/configuration/faas-logical-networks:
tenant-logical-networks:logical-edges:logical-edges

• To add security policies (ACL or SFC) on a port http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\
protect\T1\textbraceright:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:
faas-security-rules

• To query the logical network just created http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\
T1\textbraceright:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks

Provision via GBP FaaS Render

• Run the OpenDaylight distribution and install odl-faas-all and GBP faas render feature from the Karaf console.

• Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/
explorer/index.html

• Execute “create GBP model” via GBP REST API. The GBP model then can be automatically mapped into a
logical network.

Attach/detach an end point to a logical device

Overview

This tutorial walks users through the process of registering an End Point to a logical device either logical switch or
router. The purpose of this API is to inform the FaaS where an endpoint physically attach. The location information
consists of the binding information between physical port identifier and logical port information. The logical port is
indicated by the endpoint either Layer 2 attribute(MAC address) or Layer 3 attribute (IP address) and logical network
ID (VLAN ID). The logical network ID is indirectly indicated the tenant ID since it is mutual exclusive resource
allocated to a tenant.

Prerequisites

The logical switch to which those end points are attached has to be created beforehand. and the identifier of the logical
switch is required for the following RESTCONF calls.

Instructions

• Run the OpenDaylight distribution and install odl-faas-all from the Karaf console.

• Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/
explorer/index.html

1.3. OpenDaylight User Guide 673

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-switches:logical-switches
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-switches:logical-switches
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-switches:logical-switches
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-routers:logical-routers
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-routers:logical-routers
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-routers:logical-routers
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-edges:logical-edges
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-edges:logical-edges
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-edges:logical-edges
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:faas-security-rules
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:faas-security-rules
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:faas-security-rules
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

• Execute “attach end point ” with the following RESTCONF API and corresponding JSON data:
http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
configuration/faas-logical-networks:tenant-logical-networks:faas-endpoints-locations

Genius User Guide

Overview

The Genius project provides generic network interfaces, utilities and services. Any OpenDaylight application can use
these to achieve interference-free co-existence with other applications using Genius.

Modules and Interfaces

In the first phase delivered in OpenDaylight Boron release, Genius provides following modules—

• Modules providing a common view of network interfaces for different services

– Interface (logical port) Manager

* Allows bindings/registration of multiple services to logical ports/interfaces

* Ability to plug in different types of southbound protocol renderers

– Overlay Tunnel Manager

* Creates and maintains overlay tunnels between configured Tunnel Endpoints (TEPs)

• Modules providing commonly used functions as shared services to avoid duplication of code and waste of
resources

– Liveness Monitor

* Provides tunnel/nexthop liveness monitoring services

– ID Manager

* Generates persistent unique integer IDs

– MD-SAL Utils

* Provides common generic APIs for interaction with MD-SAL

Interface Manager Operations

Creating interfaces

The YANG file Data Model odl-interface.yang contains the interface configuration data-model.

You can create interfaces at the MD-SAL Data Node Path /config/if:interfaces/interface, with the following at-
tributes—

Common attributes

• name—unique interface name, can be any unique string (e.g., UUID string)

• type—interface type, currently supported iana-if-type:l2vlan and iana-if-type:tunnel

• enabled—admin status, possible values true or false

• parent-refs : used to specify references to parent interface/port feeding to this interface

674 Chapter 1. Content for OpenDaylight Users

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:faas-endpoints-locations
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:faas-endpoints-locations
https://github.com/opendaylight/genius/blob/master/interfacemanager/interfacemanager-api/src/main/yang/odl-interface.yang

OpenDaylight Documentation Documentation, Release Carbon

• datapath-node-identifier—identifier for a fixed/physical dataplane node, can be physical switch identifier

• parent-interface—can be a physical switch port (in conjunction of above), virtual switch port (e.g., neutron port)
or another interface

• list node-identifier—identifier of the dependant underlying configuration protocol

– topology-id—can be ovsdb configuration protocol

– node-id—can be hwvtep node-id

Type specific attributes

• when type = l2vlan

– vlan-id—VLAN id for trunk-member l2vlan interfaces

– l2vlan-mode—currently supported ones are transparent, trunk or trunk-member

• when type = stacked_vlan (Not supported yet)

– stacked-vlan-id—VLAN-Id for additional/second VLAN tag

• when type = tunnel

– tunnel-interface-type—tunnel type, currently supported ones are:

* tunnel-type-vxlan

* tunnel-type-gre

* tunnel-type-mpls-over-gre

– tunnel-source—tunnel source IP address

– tunnel-destination—tunnel destination IP address

– tunnel-gateway—gateway IP address

– monitor-enabled—tunnel monitoring enable control

– monitor-interval—tunnel monitoring interval in millisiconds

• when type = mpls (Not supported yet)

– list labelStack—list of lables

– num-labels—number of lables configured

Supported REST calls are GET, PUT, DELETE, POST

Creating L2 port interfaces

Interfaces on normal L2 ports (e.g. Neutron tap ports) are created with type l2vlan and l2vlan-mode as transparent.
This type of interface classifies packets passing through a particular L2 (OpenFlow) port. In dataplane, packets be-
longing to this interface are classified by matching in-port against the of-port-id assigned to the base port as specified
in parent-interface.

URL: /restconf/config/ietf-interfaces:interfaces

Sample JSON data

"interfaces": {
"interface": [

{
"name": "4158408c-942b-487c-9a03-0b603c39d3dd",

1.3. OpenDaylight User Guide 675

OpenDaylight Documentation Documentation, Release Carbon

"type": "iana-if-type:l2vlan", <--- interface type
→˓'l2vlan' for normal L2 port

"odl-interface:l2vlan-mode": "transparent", <--- 'transparent'
→˓VLAN port mode allows any (tagged, untagged) ethernet packet

"odl-interface:parent-interface": "tap4158408c-94", <--- port-name as it
→˓appears on southbound interface

"enabled": true
}

]
}

Creating VLAN interfaces

A VLAN interface is created as a l2vlan interface in trunk-member mode, by configuring a VLAN-Id and a particular
L2 (vlan trunk) interface. Parent VLAN trunk interface is created in the same way as the transparent interface as
specified above. A trunk-member interface defines a flow on a particular L2 port and having a particular VLAN tag.
On ingress, after classification the VLAN tag is popped out and corresponding unique dataplane-id is associated with
the packet, before delivering the packet to service processing. When a service module delivers the packet to this
interface for egress, it pushes corresponding VLAN tag and sends the packet out of the parent L2 port.

URL: /restconf/config/ietf-interfaces:interfaces

Sample JSON data

"interfaces": {
"interface": [

{
"name": "4158408c-942b-487c-9a03-0b603c39d3dd:100",
"type": "iana-if-type:l2vlan",
"odl-interface:l2vlan-mode": "trunk-member", <--- for 'trunk-member

→˓', flow is classified with particular vlan-id on an l2 port
"odl-interface:parent-interface": "4158408c-942b-487c-9a03-0b603c39d3dd",

→˓ <--- Parent 'trunk' iterface name
"odl-interface:vlan-id": "100",
"enabled": true

}
]

}

Creating Overlay Tunnel Interfaces

An overlay tunnel interface is created with type tunnel and particular tunnel-interface-type. Tunnel interfaces are cre-
ated on a particular data plane node (virtual switches) with a pair of (local, remote) IP addresses. Currently supported
tunnel interface types are VxLAN, GRE and MPLSoverGRE.

URL: /restconf/config/ietf-interfaces:interfaces

Sample JSON data

"interfaces": {
"interface": [

{
"name": "MGRE_TUNNEL:1",
"type": "iana-if-type:tunnel",
"odl-interface:tunnel-interface-type": "odl-interface:tunnel-type-mpls-

→˓over-gre",

676 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"odl-interface:datapath-node-identifier": 156613701272907,
"odl-interface:tunnel-source": "11.0.0.43",
"odl-interface:tunnel-destination": "11.0.0.66",
"odl-interface:monitor-enabled": false,
"odl-interface:monitor-interval": 10000,
"enabled": true

}
]

}

Binding services on interface

The YANG file odl-interface-service-bindings.yang contains the service binding configuration data model.

An application can bind services to a particular interface by configuring MD-SAL data node at path /config/interface-
service-binding. Binding services on interface allows particular service to pull traffic arriving on that interface de-
pending upon the service priority. Service modules can specify openflow-rules to be applied on the packet belonging
to the interface. Usually these rules include sending the packet to specific service table/pipeline. Service modules are
responsible for sending the packet back (if not consumed) to service dispatcher table, for next service to process the
packet.

URL:/restconf/config/interface-service-bindings:service-bindings/

Sample JSON data

"service-bindings": {
"services-info": [
{

"interface-name": "4152de47-29eb-4e95-8727-2939ac03ef84",
"bound-services": [

{
"service-name": "ELAN",
"service-type": "interface-service-bindings:service-type-flow-based"
"service-priority": 3,
"flow-priority": 5,
"flow-cookie": 134479872,
"instruction": [

{
"order": 2,
"go-to-table": {
"table_id": 50

}
},
{
"order": 1,
"write-metadata": {
"metadata": 83953188864,
"metadata-mask": 1099494850560

}
}

],
},
{
"service-name": "L3VPN",
"service-type": "interface-service-bindings:service-type-flow-based"
"service-priority": 2,
"flow-priority": 10,

1.3. OpenDaylight User Guide 677

https://github.com/opendaylight/genius/blob/stable/boron/interfacemanager/interfacemanager-api/src/main/yang/odl-interface-service-bindings.yang

OpenDaylight Documentation Documentation, Release Carbon

"flow-cookie": 134217729,
"instruction": [

{
"order": 2,
"go-to-table": {
"table_id": 21

}
},
{
"order": 1,
"write-metadata": {
"metadata": 100,
"metadata-mask": 4294967295

}
}

],
}

]
}

]
}

Interface Manager RPCs

In addition to the above defined configuration interfaces, Interface Manager also provides several RPCs to access
interface operational data and other helpful information. Interface Manger RPCs are defined in odl-interface-rpc.yang

The following RPCs are available—

get-dpid-from-interface

This RPC is used to retrieve dpid/switch hosting the root port from given interface name.

rpc get-dpid-from-interface {
description "used to retrieve dpid from interface name";
input {

leaf intf-name {
type string;

}
}
output {

leaf dpid {
type uint64;

}
}

}

get-port-from-interface

This RPC is used to retrieve south bound port attributes from the interface name.

rpc get-port-from-interface {
description "used to retrieve south bound port attributes from the interface name

→˓";

678 Chapter 1. Content for OpenDaylight Users

https://github.com/opendaylight/genius/blob/stable/boron/interfacemanager/interfacemanager-api/src/main/yang/odl-interface-rpc.yang

OpenDaylight Documentation Documentation, Release Carbon

input {
leaf intf-name {

type string;
}

}
output {

leaf dpid {
type uint64;

}
leaf portno {

type uint32;
}
leaf portname {

type string;
}

}
}

get-egress-actions-for-interface

This RPC is used to retrieve group actions to use from interface name.

rpc get-egress-actions-for-interface {
description "used to retrieve group actions to use from interface name";
input {

leaf intf-name {
type string;
mandatory true;

}
leaf tunnel-key {

description "It can be VNI for VxLAN tunnel ifaces, Gre Key for GRE
→˓tunnels, etc.";

type uint32;
mandatory false;

}
}
output {

uses action:action-list;
}

}

get-egress-instructions-for-interface

This RPC is used to retrieve flow instructions to use from interface name.

rpc get-egress-instructions-for-interface {
description "used to retrieve flow instructions to use from interface name";
input {

leaf intf-name {
type string;
mandatory true;

}
leaf tunnel-key {

description "It can be VNI for VxLAN tunnel ifaces, Gre Key for GRE
→˓tunnels, etc.";

1.3. OpenDaylight User Guide 679

OpenDaylight Documentation Documentation, Release Carbon

type uint32;
mandatory false;

}
}
output {

uses offlow:instruction-list;
}

}

get-endpoint-ip-for-dpn

This RPC is used to get the local ip of the tunnel/trunk interface on a particular DPN (Data Plane Node).

rpc get-endpoint-ip-for-dpn {
description "to get the local ip of the tunnel/trunk interface";
input {

leaf dpid {
type uint64;

}
}
output {

leaf-list local-ips {
type inet:ip-address;

}
}

}

get-interface-type

This RPC is used to get the type of the interface (vlan/vxlan or gre).

rpc get-interface-type {
description "to get the type of the interface (vlan/vxlan or gre)";

input {
leaf intf-name {

type string;
}

}
output {

leaf interface-type {
type identityref {

base if:interface-type;
}

}
}

}

get-tunnel-type

This RPC is used to get the type of the tunnel interface(vxlan or gre).

680 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

rpc get-tunnel-type {
description "to get the type of the tunnel interface (vxlan or gre)";

input {
leaf intf-name {

type string;
}

}
output {

leaf tunnel-type {
type identityref {

base odlif:tunnel-type-base;
}

}
}

}

get-nodeconnector-id-from-interface

This RPC is used to get node-connector-id associated with an interface.

rpc get-nodeconnector-id-from-interface {
description "to get nodeconnector id associated with an interface";

input {
leaf intf-name {

type string;
}

}
output {

leaf nodeconnector-id {
type inv:node-connector-id;

}
}

}

get-interface-from-if-index

This RPC is used to get interface associated with an if-index (dataplane interface id).

rpc get-interface-from-if-index {
description "to get interface associated with an if-index";

input {
leaf if-index {

type int32;
}

}
output {

leaf interface-name {
type string;

}
}

}

1.3. OpenDaylight User Guide 681

OpenDaylight Documentation Documentation, Release Carbon

create-terminating-service-actions

This RPC is used to create the tunnel termination service table entries.

rpc create-terminating-service-actions {
description "create the ingress terminating service table entries";

input {
leaf dpid {

type uint64;
}
leaf tunnel-key {

type uint64;
}
leaf interface-name {

type string;
}
uses offlow:instruction-list;

}
}

remove-terminating-service-actions

This RPC is used to remove the tunnel termination service table entries.

rpc remove-terminating-service-actions {
description "remove the ingress terminating service table entries";

input {
leaf dpid {

type uint64;
}
leaf interface-name {

type string;
}
leaf tunnel-key {

type uint64;
}

}
}

ID Manager

TBD.

Group Based Policy User Guide

Overview

OpenDaylight Group Based Policy allows users to express network configuration in a declarative versus imperative
way.

This is often described as asking for “what you want”, rather than “how to do it”.

In order to achieve this Group Based Policy (herein referred to as GBP) is an implementation of an Intent System.

682 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

An Intent System:

• is a process around an intent driven data model

• contains no domain specifics

• is capable of addressing multiple semantic definitions of intent

To this end, GBP Policy views an Intent System visually as:

Fig. 1.28: Intent System Process and Policy Surfaces

• expressed intent is the entry point into the system.

• operational constraints provide policy for the usage of the system which modulates how the system is con-
sumed. For instance “All Financial applications must use a specific encryption standard”.

• capabilities and state are provided by renderers. Renderers dynamically provide their capabilities to the core
model, allowing the core model to remain non-domain specific.

• governance provides feedback on the delivery of the expressed intent. i.e. “Did we do what you asked us?”

In summary GBP is about the Automation of Intent.

By thinking of Intent Systems in this way, it enables:

• automation of intent

1.3. OpenDaylight User Guide 683

OpenDaylight Documentation Documentation, Release Carbon

By focusing on Model. Process. Automation, a consistent policy resolution process enables for mapping
between the expressed intent and renderers responsible for providing the capabilities of implementing that
intent.

• recursive/intent level-independent behaviour.

Where one person’s concrete is another’s abstract, intent can be fulfilled through a hierarchical implementation
of non-domain specific policy resolution. Domain specifics are provided by the renderers, and exposed via the
API, at each policy resolution instance. For example:

– To DNS: The name “www.foo.com” is abstract, and it’s IPv4 address 10.0.0.10 is concrete,

– To an IP stack: 10.0.0.10 is abstract and the MAC 08:05:04:03:02:01 is concrete,

– To an Ethernet switch: The MAC 08:05:04:03:02:01 is abstract, the resolution to a port in it’s CAM table
is concrete,

– To an optical network: The port maybe abstract, yet the optical wavelength is concrete.

Note: This is a very domain specific analogy, tied to something most readers will understand. It in no way implies the
**GBP* should be implemented in an OSI type fashion. The premise is that by implementing a full Intent System,
the user is freed from a lot of the constraints of how the expressed intent is realised.*

It is important to show the overall philosophy of GBP as it sets the project’s direction.

In this release of OpenDaylight, GBP focused on expressed intent, refactoring of how renderers consume and
publish Subject Feature Definitions for multi-renderer support.

GBP Base Architecture and Value Proposition

Terminology

In order to explain the fundamental value proposition of GBP, an illustrated example is given. In order to do that some
terminology must be defined.

The Access Model is the core of the GBP Intent System policy resolution process.

• Endpoints:

Define concrete uniquely identifiable entities. In this release, examples could be a Docker container, or a Neutron
port

• EndpointGroups:

EndpointGroups are sets of endpoints that share a common set of policies. EndpointGroups can participate in
contracts that determine the kinds of communication that are allowed. EndpointGroups consume and provide
contracts. They also expose both requirements and capabilities, which are labels that help to determine how
contracts will be applied. An EndpointGroup can specify a parent EndpointGroup from which it inherits.

• Contracts:

Contracts determine which endpoints can communicate and in what way. Contracts between pairs of Endpoint-
Groups are selected by the contract selectors defined by the EndpointGroup. Contracts expose qualities, which
are labels that can help EndpointGroups to select contracts. Once the contract is selected, contracts have clauses
that can match against requirements and capabilities exposed by EndpointGroups, as well as any conditions that
may be set on endpoints, in order to activate subjects that can allow specific kinds of communication. A contract
is allowed to specify a parent contract from which it inherits.

684 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.29: GBP Access Model Terminology - Endpoints, EndpointGroups, Contract

1.3. OpenDaylight User Guide 685

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.30: GBP Access Model Terminology - Subject, Classifier, Action

686 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.31: GBP Forwarding Model Terminology - L3 Context, L2 Bridge Context, L2 Flood Context/Domain, Subnet

1.3. OpenDaylight User Guide 687

OpenDaylight Documentation Documentation, Release Carbon

• Subject

Subjects describe some aspect of how two endpoints are allowed to communicate. Subjects define an ordered list
of rules that will match against the traffic and perform any necessary actions on that traffic. No communication
is allowed unless a subject allows that communication.

• Clause

Clauses are defined as part of a contract. Clauses determine how a contract should be applied to particular
endpoints and EndpointGroups. Clauses can match against requirements and capabilities exposed by Endpoint-
Groups, as well as any conditions that may be set on endpoints. Matching clauses define some set of subjects
which can be applied to the communication between the pairs of endpoints.

Architecture and Value Proposition

GBP offers an intent based interface, accessed via the UX, via the REST API or directly from a domain-specific-
language such as Neutron through a mapping interface.

There are two models in GBP:

• the access (or core) model

• the forwarding model

Fig. 1.32: GBP Access (or Core) Model

688 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

The classifier and action portions of the model can be thought of as hooks, with their definition provided by each
renderer about its domain specific capabilities. In GBP for this release, there is one renderer, the OpenFlow Overlay
renderer (OfOverlay).

These hooks are filled with definitions of the types of features the renderer can provide the subject, and are called
subject-feature-definitions.

This means an expressed intent can be fulfilled by, and across, multiple renderers simultaneously, without any specific
provisioning from the consumer of GBP.

Since GBP is implemented in OpenDaylight, which is an SDN controller, it also must address networking. This is
done via the forwarding model, which is domain specific to networking, but could be applied to many different types
of networking.

Fig. 1.33: GBP Forwarding Model

Each endpoint is provisioned with a network-containment. This can be a:

• subnet

– normal IP stack behaviour, where ARP is performed in subnet, and for out of subnet, traffic is sent to
default gateway.

– a subnet can be a child of any of the below forwarding model contexts, but typically would be a child of a
flood-domain

• L2 flood-domain

1.3. OpenDaylight User Guide 689

OpenDaylight Documentation Documentation, Release Carbon

– allows flooding behaviour.

– is a n:1 child of a bridge-domain

– can have multiple children

• L2 bridge-domain

– is a layer2 namespace

– is the realm where traffic can be sent at layer 2

– is a n:1 child of a L3 context

– can have multiple children

• L3 context

– is a layer3 namespace

– is the realm where traffic is passed at layer 3

– is a n:1 child of a tenant

– can have multiple children

A simple example of how the access and forwarding models work is as follows:

Fig. 1.34: GBP Endpoints, EndpointGroups and Contracts

In this example, the EPG:webservers is providing the web and ssh contracts. The EPG:client is consuming those
contracts. EPG:client is providing the any contract, which is consumed by EPG:webservers.

The direction keyword is always from the perspective of the provider of the contract. In this case contract web, being
provided by EPG:webservers, with the classifier to match TCP destination port 80, means:

• packets with a TCP destination port of 80

690 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• sent to (in) endpoints in the EPG:webservers

• will be allowed.

Fig. 1.35: GBP Endpoints and the Forwarding Model

When the forwarding model is considered in the figure above, it can be seen that even though all endpoints are
communicating using a common set of contracts, their forwarding is contained by the forwarding model contexts or
namespaces. In the example shown, the endpoints associated with a network-containment that has an ultimate parent
of L3Context:Sales can only communicate with other endpoints within this L3Context. In this way L3VPN services
can be implemented without any impact to the Intent of the contract.

High-level implementation Architecture

The overall architecture, including Neutron domain specific mapping, and the OpenFlow Overlay renderer looks as
so:

The major benefit of this architecture is that the mapping of the domain-specific-language is completely separate and
independent of the underlying renderer implementation.

For instance, using the Neutron Mapper, which maps the Neutron API to the GBP core model, any contract automat-
ically generated from this mapping can be augmented via the UX to use Service Function Chaining, a capability not
currently available in OpenStack Neutron.

When another renderer is added, for instance, NetConf, the same policy can now be leveraged across NetConf devices
simultaneously:

As other domain-specific mappings occur, they too can leverage the same renderers, as the renderers only need to

1.3. OpenDaylight User Guide 691

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.36: GBP High Level Architecture

692 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.37: GBP High Level Architecture - adding a renderer

1.3. OpenDaylight User Guide 693

OpenDaylight Documentation Documentation, Release Carbon

implement the GBP access and forwarding models, and the domain-specific mapping need only manage mapping to
the access and forwarding models. For instance:

In summary, the GBP architecture:

• separates concerns: the Expressed Intent is kept completely separated from the underlying renderers.

• is cohesive: each part does it’s part and it’s part only

• is scalable: code can be optimised around model mapping/implementation, and functionality re-used

Policy Resolution

Contract Selection

The first step in policy resolution is to select the contracts that are in scope.

EndpointGroups participate in contracts either as a provider or as a consumer of a contract. Each EndpointGroup can
participate in many contracts at the same time, but for each contract it can be in only one role at a time. In addition,
there are two ways for an EndpointGroup to select a contract: either with either a:

• named selector

Named selectors simply select a specific contract by its contract ID.

• target selector.

Target selectors allow for additional flexibility by matching against qualities of the contract’s target.

Thus, there are a total of 4 kinds of contract selector:

• provider named selector

Select a contract by contract ID, and participate as a provider.

• provider target selector

Match against a contract’s target with a quality matcher, and participate as a provider.

• consumer named selector

Select a contract by contract ID, and participate as a consumer.

• consumer target selector

Match against a contract’s target with a quality matcher, and participate as a consumer.

To determine which contracts are in scope, contracts are found where either the source EndpointGroup selects a
contract as either a provider or consumer, while the destination EndpointGroup matches against the same contract in
the corresponding role. So if endpoint x in EndpointGroup X is communicating with endpoint y in EndpointGroup Y,
a contract C is in scope if either X selects C as a provider and Y selects C as a consumer, or vice versa.

The details of how quality matchers work are described further in Matchers. Quality matchers provide a flexible
mechanism for contract selection based on labels.

The end result of the contract selection phase can be thought of as a set of tuples representing selected contract scopes.
The fields of the tuple are:

• Contract ID

• The provider EndpointGroup ID

• The name of the selector in the provider EndpointGroup that was used to select the contract, called the matching
provider selector.

694 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.38: GBP High Level Architecture - adding a renderer

1.3. OpenDaylight User Guide 695

OpenDaylight Documentation Documentation, Release Carbon

• The consumer EndpointGroup ID

• The name of the selector in the consumer EndpointGroup that was used to select the contract, called the matching
consumer selector.

The result is then stored in the datastore under Resolved Policy.

Subject Selection

The second phase in policy resolution is to determine which subjects are in scope. The subjects define what kinds of
communication are allowed between endpoints in the EndpointGroups. For each of the selected contract scopes from
the contract selection phase, the subject selection procedure is applied.

Labels called, capabilities, requirements and conditions are matched against to bring a Subject into scope. Endpoint-
Groups have capabilities and requirements, while endpoints have conditions.

Requirements and Capabilities

When acting as a provider, EndpointGroups expose capabilities, which are labels representing specific pieces of
functionality that can be exposed to other EndpointGroups that may meet functional requirements of those Endpoint-
Groups.

When acting as a consumer, EndpointGroups expose requirements, which are labels that represent that the Endpoint-
Group requires some specific piece of functionality.

As an example, we might create a capability called “user-database” which indicates that an EndpointGroup contains
endpoints that implement a database of users.

We might create a requirement also called “user-database” to indicate an EndpointGroup contains endpoints that will
need to communicate with the endpoints that expose this service.

Note that in this example the requirement and capability have the same name, but the user need not follow this
convention.

The matching provider selector (that was used by the provider EndpointGroup to select the contract) is examined to
determine the capabilities exposed by the provider EndpointGroup for this contract scope.

The provider selector will have a list of capabilities either directly included in the provider selector or inherited from
a parent selector or parent EndpointGroup. (See Inheritance).

Similarly, the matching consumer selector will expose a set of requirements.

Conditions

Endpoints can have conditions, which are labels representing some relevant piece of operational state related to the
endpoint.

An example of a condition might be “malware-detected,” or “authentication-succeeded.” Conditions are used to affect
how that particular endpoint can communicate.

To continue with our example, the “malware-detected” condition might cause an endpoint’s connectivity to be cut
off, while “authentication-succeeded” might open up communication with services that require an endpoint to be first
authenticated and then forward its authentication credentials.

696 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Clauses

Clauses perform the actual selection of subjects. A clause has lists of matchers in two categories. In order for a clause
to become active, all lists of matchers must match. A matching clause will select all the subjects referenced by the
clause. Note that an empty list of matchers counts as a match.

The first category is the consumer matchers, which match against the consumer EndpointGroup and endpoints. The
consumer matchers are:

• Group Idenfication Constraint: Requirement matchers

Matches against requirements in the matching consumer selector.

• Group Identification Constraint: GroupName

Matches against the group name

• Consumer condition matchers

Matches against conditions on endpoints in the consumer EndpointGroup

• Consumer Endpoint Identification Constraint

Label based criteria for matching against endpoints. In this release this can be used to label endpoints based on
IpPrefix.

The second category is the provider matchers, which match against the provider EndpointGroup and endpoints. The
provider matchers are:

• Group Idenfication Constraint: Capability matchers

Matches against capabilities in the matching provider selector.

• Group Identification Constraint: GroupName

Matches against the group name

• Consumer condition matchers

Matches against conditions on endpoints in the provider EndpointGroup

• Consumer Endpoint Identification Constraint

Label based criteria for matching against endpoints. In this release this can be used to label endpoints based on
IpPrefix.

Clauses have a list of subjects that apply when all the matchers in the clause match. The output of the subject selection
phase logically is a set of subjects that are in scope for any particular pair of endpoints.

Rule Application

Now subjects have been selected that apply to the traffic between a particular set of endpoints, policy can be applied
to allow endpoints to communicate. The applicable subjects from the previous step will each contain a set of rules.

Rules consist of a set of classifiers and a set of actions. Classifiers match against traffic between two endpoints. An
example of a classifier would be something that matches against all TCP traffic on port 80, or one that matches against
HTTP traffic containing a particular cookie. Actions are specific actions that need to be taken on the traffic before it
reaches its destination. Actions could include tagging or encapsulating the traffic in some way, redirecting the traffic,
or applying a service function chain.

Rules, subjects, and actions have an order parameter, where a lower order value means that a particular item will be
applied first. All rules from a particular subject will be applied before the rules of any other subject, and all actions
from a particular rule will be applied before the actions from another rule. If more than item has the same order

1.3. OpenDaylight User Guide 697

OpenDaylight Documentation Documentation, Release Carbon

parameter, ties are broken with a lexicographic ordering of their names, with earlier names having logically lower
order.

Matchers

Matchers specify a set of labels (which include requirements, capabilities, conditions, and qualities) to match against.
There are several kinds of matchers that operate similarly:

• Quality matchers

used in target selectors during the contract selection phase. Quality matchers provide a more advanced and
flexible way to select contracts compared to a named selector.

• Requirement and capability matchers

used in clauses during the subject selection phase to match against requirements and capabilities on Endpoint-
Groups

• Condition matchers

used in clauses during the subject selection phase to match against conditions on endpoints

A matcher is, at its heart, fairly simple. It will contain a list of label names, along with a match type. The match type
can be either:

• “all”

which means the matcher matches when all of its labels match

• “any”

which means the matcher matches when any of its labels match,

• “none”

which means the matcher matches when none of its labels match.

Note a match all matcher can be made by matching against an empty set of labels with a match type of “all.”

Additionally each label to match can optionally include a relevant name field. For quality matchers, this is a target
name. For capability and requirement matchers, this is a selector name. If the name field is specified, then the matcher
will only match against targets or selectors with that name, rather than any targets or selectors.

Inheritance

Some objects in the system include references to parents, from which they will inherit definitions. The graph of parent
references must be loop free. When resolving names, the resolution system must detect loops and raise an exception.
Objects that are part of these loops may be considered as though they are not defined at all. Generally, inheritance
works by simply importing the objects in the parent into the child object. When there are objects with the same name
in the child object, then the child object will override the parent object according to rules which are specific to the type
of object. We’ll next explore the detailed rules for inheritance for each type of object

EndpointGroups

EndpointGroups will inherit all their selectors from their parent EndpointGroups. Selectors with the same names as
selectors in the parent EndpointGroups will inherit their behavior as defined below.

Selectors

Selectors include provider named selectors, provider target selectors, consumer named selectors, and consumer target
selectors. Selectors cannot themselves have parent selectors, but when selectors have the same name as a selector of

698 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

the same type in the parent EndpointGroup, then they will inherit from and override the behavior of the selector in the
parent EndpointGroup.

Named Selectors

Named selectors will add to the set of contract IDs that are selected by the parent named selector.

Target Selectors

A target selector in the child EndpointGroup with the same name as a target selector in the parent EndpointGroup will
inherit quality matchers from the parent. If a quality matcher in the child has the same name as a quality matcher in
the parent, then it will inherit as described below under Matchers.

Contracts

Contracts will inherit all their targets, clauses and subjects from their parent contracts. When any of these objects have
the same name as in the parent contract, then the behavior will be as defined below.

Targets

Targets cannot themselves have a parent target, but it may inherit from targets with the same name as the target in a
parent contract. Qualities in the target will be inherited from the parent. If a quality with the same name is defined
in the child, then this does not have any semantic effect except if the quality has its inclusion-rule parameter set to
“exclude.” In this case, then the label should be ignored for the purpose of matching against this target.

Subjects

Subjects cannot themselves have a parent subject, but it may inherit from a subject with the same name as the subject
in a parent contract. The order parameter in the child subject, if present, will override the order parameter in the parent
subject. The rules in the parent subject will be added to the rules in the child subject. However, the rules will not
override rules of the same name. Instead, all rules in the parent subject will be considered to run with a higher order
than all rules in the child; that is all rules in the child will run before any rules in the parent. This has the effect of
overriding any rules in the parent without the potentially-problematic semantics of merging the ordering.

Clauses

Clauses cannot themselves have a parent clause, but it may inherit from a clause with the same name as the clause in
a parent contract. The list of subject references in the parent clause will be added to the list of subject references in
the child clause. This is just a union operation. A subject reference that refers to a subject name in the parent contract
might have that name overridden in the child contract. Each of the matchers in the clause are also inherited by the child
clause. Matchers in the child of the same name and type as a matcher from the parent will inherit from and override
the parent matcher. See below under Matchers for more information.

Matchers

Matchers include quality matchers, condition matchers, requirement matchers, and capability matchers. Matchers
cannot themselves have parent matchers, but when there is a matcher of the same name and type in the parent object,
then the matcher in the child object will inherit and override the behavior of the matcher in the parent object. The
match type, if specified in the child, overrides the value specified in the parent. Labels are also inherited from the
parent object. If there is a label with the same name in the child object, this does not have any semantic effect except if
the label has its inclusion-rule parameter set to “exclude.” In this case, then the label should be ignored for the purpose
of matching. Otherwise, the label with the same name will completely override the label from the parent.

Using the GBP UX interface

Overview

These following components make up this application and are described in more detail in following sections:

• Basic view

1.3. OpenDaylight User Guide 699

OpenDaylight Documentation Documentation, Release Carbon

• Governance view

• Policy Expression view

• Wizard view

The GBP UX is access via:

http://<odl controller>:8181/index.html

Basic view

Basic view contains 5 navigation buttons which switch user to the desired section of application:

• Governance – switch to the Governance view (middle of graphic has the same function)

• Renderer configuration – switch to the Policy expression view with Renderers section expanded

• Policy expression – switch to the Policy expression view with Policy section expanded

• Operational constraints – placeholder for development in next release

Fig. 1.39: Basic view

Governance view

Governance view consists from three columns.

Governance view – Basic view – Left column

In the left column is Health section with Exception and Conflict buttons with no functionality yet. This is a placeholder
for development in further releases.

Governance view – Basic view – Middle column

In the top half of this section is select box with list of tenants for select. Once the tenant is selected, all sub sections in
application operate and display data with actual selected tenant.

700 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.40: Governance view

Below the select box are buttons which display Expressed or Delivered policy of Governance section. In the bottom
half of this section is select box with list of renderers for select. There is currently only OfOverlay renderer available.

Below the select box is Renderer configuration button, which switch the app into the Policy expression view with
Renderers section expanded for performing CRUD operations. Renderer state button display Renderer state view.

Governance view – Basic view – Right column

In the bottom part of the right section of Governance view is Home button which switch the app to the Basic view.

In the top part is situated navigation menu with four main sections.

Policy expression button expand/collapse sub menu with three main parts of Policy expression. By clicking on sub
menu buttons, user will be switched into the Policy expressions view with appropriate section expanded for performing
CRUD operations.

Renderer configuration button switches user into the Policy expressions view.

Governance button expand/collapse sub menu with four main parts of Governance section. Sub menu buttons of
Governance section display appropriate section of Governance view.

Operational constraints have no functionality yet, and is a placeholder for development in further releases.

Below the menu is place for view info section which displays info about actual selected element from the topology
(explained below).

Governance view – Expressed policy

In this view are displayed contracts with their consumed and provided EndpointGroups of actual selected tenant, which
can be changed in select box in the upper left corner.

By single-clicking on any contract or EPG, the data of actual selected element will be shown in the right column below
the menu. A Manage button launches a display wizard window for managing configuration of items such as Service
Function Chaining.

Governance view – Delivered policy In this view are displayed subjects with their consumed and provided Endpoint-
Groups of actual selected tenant, which can be changed in select box in the upper left corner.

1.3. OpenDaylight User Guide 701

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.41: Expressed policy

By single-clicking on any subject or EPG, the data of actual selected element will be shown in the right column below
the menu.

By double-click on subject the subject detail view will be displayed with subject’s rules of actual selected subject,
which can be changed in select box in the upper left corner.

By single-clicking on rule or subject, the data of actual selected element will be shown in the right column below the
menu.

By double-clicking on EPG in Delivered policy view, the EPG detail view will be displayed with EPG’s endpoints of
actual selected EPG, which can be changed in select box in the upper left corner.

By single-clicking on EPG or endpoint the data of actual selected element will be shown in the right column below
the menu.

Governance view – Renderer state

In this part are displayed Subject feature definition data with two main parts: Action definition and Classifier definition.

By clicking on the down/right arrow in the circle is possible to expand/hide data of appropriate container or list. Next
to the list node are displayed names of list’s elements where one is always selected and element’s data are shown (blue
line under the name).

By clicking on names of children nodes is possible to select desired node and node’s data will be displayed.

Policy expression view

In the left part of this view is placed topology of actual selected elements with the buttons for switching between types
of topology at the bottom.

Right column of this view contains four parts. At the top of this column are displayed breadcrumbs with actual position
in the application.

702 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.42: Delivered policy

Fig. 1.43: Subject detail

1.3. OpenDaylight User Guide 703

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.44: EPG detail

Fig. 1.45: Renderer state

704 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Below the breadcrumbs is select box with list of tenants for select. In the middle part is situated navigation menu,
which allows switch to the desired section for performing CRUD operations.

At the bottom is quick navigation menu with Access Model Wizard button which display Wizard view, Home button
which switch application to the Basic view and occasionally Back button, which switch application to the upper
section.

Policy expression - Navigation menu

To open Policy expression, select Policy expression from the GBP Home screen.

In the top of navigation box you can select the tenant from the tenants list to activate features addicted to selected
tenant.

In the right menu, by default, the Policy menu section is expanded. Subitems of this section are modules for CRUD
(creating, reading, updating and deleting) of tenants, EndpointGroups, contracts, L2/L3 objects.

• Section Renderers contains CRUD forms for Classifiers and Actions.

• Section Endpoints contains CRUD forms for Endpoint and L3 prefix endpoint.

Fig. 1.46: Navigation menu

Policy expression - Types of topology

There are three different types of topology:

• Configured topology - EndpointGroups and contracts between them from CONFIG datastore

• Operational topology - displays same information but is based on operational data.

• L2/L3 - displays relationships between L3Contexts, L2 Bridge domains, L2 Flood domains and Subnets.

Policy expression - CRUD operations

In this part are described basic flows for viewing, adding, editing and deleting system elements like tenants, Endpoint-
Groups etc.

1.3. OpenDaylight User Guide 705

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.47: CRUD operations

Fig. 1.48: L2/L3 Topology

706 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.49: Config Topology

Tenants

To edit tenant objects click the Tenants button in the right menu. You can see the CRUD form containing tenants list
and control buttons.

To add new tenant, click the Add button This will display the form for adding a new tenant. After filling tenant
attributes Name and Description click Save button. Saving of any object can be performed only if all the object
attributes are filled correctly. If some attribute doesn’t have correct value, exclamation mark with mouse-over tooltip
will be displayed next to the label for the attribute. After saving of tenant the form will be closed and the tenants list
will be set to default value.

To view an existing tenant, select the tenant from the select box Tenants list. The view form is read-only and can be
closed by clicking cross mark in the top right of the form.

To edit selected tenant, click the Edit button, which will display the edit form for selected tenant. After editing the
Name and Description of selected tenant click the Save button to save selected tenant. After saving of tenant the edit
form will be closed and the tenants list will be set to default value.

To delete tenant select the tenant from the Tenants list and click Delete button.

To return to the Policy expression click Back button on the bottom of window.

EndpointGroups

For managing EndpointGroups (EPG) the tenant from the top Tenants list must be selected.

To add new EPG click Add button and after filling required attributes click Save button. After adding the EPG you
can edit it and assign Consumer named selector or Provider named selector to it.

To edit EPG click the Edit button after selecting the EPG from Group list.

To add new Consumer named selector (CNS) click the Add button next to the Consumer named selectors list. While

1.3. OpenDaylight User Guide 707

OpenDaylight Documentation Documentation, Release Carbon

CNS editing you can set one or more contracts for current CNS pressing the Plus button and selecting the contract from
the Contracts list. To remove the contract, click on the cross mark next to the contract. Added CNS can be viewed,
edited or deleted by selecting from the Consumer named selectors list and clicking the Edit and Delete buttons like
with the EPG or tenants.

To add new Provider named selector (PNS) click the Add button next to the Provider named selectors list. While PNS
editing you can set one or more contracts for current PNS pressing the Plus button and selecting the contract from the
Contracts list. To remove the contract, click on the cross mark next to the contract. Added PNS can be viewed, edited
or deleted by selecting from the Provider named selectors list and clicking the Edit and Delete buttons like with the
EPG or tenants.

To delete EPG, CNS or PNS select it in selectbox and click the Delete button next to the selectbox.

Contracts

For managing contracts the tenant from the top Tenants list must be selected.

To add new Contract click Add button and after filling required fields click Save button.

After adding the Contract user can edit it by selecting in the Contracts list and clicking Edit button.

To add new Clause click Add button next to the Clause list while editing the contract. While editing the Clause after
selecting clause from the Clause list user can assign clause subjects by clicking the Plus button next to the Clause
subjects label. Adding and editing action must be submitted by pressing Save button. To manage Subjects you can use
CRUD form like with the Clause list.

L2/L3

For managing L2/L3 the tenant from the top Tenants list must be selected.

To add L3 Context click the Add button next to the L3 Context list ,which will display the form for adding a new L3
Context. After filling L3 Context attributes click Save button. After saving of L3 Context, form will be closed and the
L3 Context list will be set to default value.

To view an existing L3 Context, select the L3 Context from the select box L3 Context list. The view form is read-only
and can be closed by clicking cross mark in the top right of the form.

If user wants to edit selected L3 Context, click the Edit button, which will display the edit form for selected L3
Context. After editing click the Save button to save selected L3 Context. After saving of L3 Context, the edit form
will be closed and the L3 Context list will be set to default value.

To delete L3 Context, select it from the L3 Context list and click Delete button.

To add L2 Bridge Domain, click the Add button next to the L2 Bridge Domain list. This will display the form for
adding a new L2 Bridge Domain. After filling L2 Bridge Domain attributes click Save button. After saving of L2
Bridge Domain, form will be closed and the L2 Bridge Domain list will be set to default value.

To view an existing L2 Bridge Domain, select the L2 Bridge Domain from the select box L2 Bridge Domain list. The
view form is read-only and can be closed by clicking cross mark in the top right of the form.

If user wants to edit selected L2 Bridge Domain, click the Edit button, which will display the edit form for selected
L2 Bridge Domain. After editing click the Save button to save selected L2 Bridge Domain. After saving of L2 Bridge
Domain the edit form will be closed and the L2 Bridge Domain list will be set to default value.

To delete L2 Bridge Domain select it from the L2 Bridge Domain list and click Delete button.

To add L3 Flood Domain, click the Add button next to the L3 Flood Domain list. This will display the form for
adding a new L3 Flood Domain. After filling L3 Flood Domain attributes click Save button. After saving of L3 Flood
Domain, form will be closed and the L3 Flood Domain list will be set to default value.

To view an existing L3 Flood Domain, select the L3 Flood Domain from the select box L3 Flood Domain list. The
view form is read-only and can be closed by clicking cross mark in the top right of the form.

708 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

If user wants to edit selected L3 Flood Domain, click the Edit button, which will display the edit form for selected
L3 Flood Domain. After editing click the Save button to save selected L3 Flood Domain. After saving of L3 Flood
Domain the edit form will be closed and the L3 Flood Domain list will be set to default value.

To delete L3 Flood Domain select it from the L3 Flood Domain list and click Delete button.

To add Subnet click the Add button next to the Subnet list. This will display the form for adding a new Subnet. After
filling Subnet attributes click Save button. After saving of Subnet, form will be closed and the Subnet list will be set
to default value.

To view an existing Subnet, select the Subnet from the select box Subnet list. The view form is read-only and can be
closed by clicking cross mark in the top right of the form.

If user wants to edit selected Subnet, click the Edit button, which will display the edit form for selected Subnet. After
editing click the Save button to save selected Subnet. After saving of Subnet the edit form will be closed and the
Subnet list will be set to default value.

To delete Subnet select it from the Subnet list and click Delete button.

Classifiers

To add Classifier, click the Add button next to the Classifier list. This will display the form for adding a new Classifier.
After filling Classifier attributes click Save button. After saving of Classifier, form will be closed and the Classifier list
will be set to default value.

To view an existing Classifier, select the Classifier from the select box Classifier list. The view form is read-only and
can be closed by clicking cross mark in the top right of the form.

If you want to edit selected Classifier, click the Edit button, which will display the edit form for selected Classifier.
After editing click the Save button to save selected Classifier. After saving of Classifier the edit form will be closed
and the Classifier list will be set to default value.

To delete Classifier select it from the Classifier list and click Delete button.

Actions

To add Action, click the Add button next to the Action list. This will display the form for adding a new Action. After
filling Action attributes click Save button. After saving of Action, form will be closed and the Action list will be set to
default value.

To view an existing Action, select the Action from the select box Action list. The view form is read-only and can be
closed by clicking cross mark in the top right of the form.

If user wants to edit selected Action, click the Edit button, which will display the edit form for selected Action. After
editing click the Save button to save selected Action. After saving of Action the edit form will be closed and the Action
list will be set to default value.

To delete Action select it from the Action list and click Delete button.

Endpoint

To add Endpoint, click the Add button next to the Endpoint list. This will display the form for adding a new Endpoint.
To add EndpointGroup assignment click the Plus button next to the label EndpointGroups. To add Condition click
Plus button next to the label Condition. To add L3 Address click the Plus button next to the L3 Addresses label. After
filling Endpoint attributes click Save button. After saving of Endpoint, form will be closed and the Endpoint list will
be set to default value.

To view an existing Endpoint just, the Endpoint from the select box Endpoint list. The view form is read-only and can
be closed by clicking cross mark in the top right of the form.

If you want to edit selected Endpoint, click the Edit button, which will display the edit form for selected Endpoint.
After editing click the Save button to save selected Endpoint. After saving of Endpoint the edit form will be closed
and the Endpoint list will be set to default value.

1.3. OpenDaylight User Guide 709

OpenDaylight Documentation Documentation, Release Carbon

To delete Endpoint select it from the Endpoint list and click Delete button.

L3 prefix endpoint

To add L3 prefix endpoint, click the Add button next to the L3 prefix endpoint list. This will display the form for
adding a new Endpoint. To add EndpointGroup assignment, click the Plus button next to the label EndpointGroups.
To add Condition, click Plus button next to the label Condition. To add L2 gateway click the Plus button next to the
L2 gateways label. To add L3 gateway, click the Plus button next to the L3 gateways label. After filling L3 prefix
endpoint attributes click Save button. After saving of L3 prefix endpoint, form will be closed and the Endpoint list
will be set to default value.

To view an existing L3 prefix endpoint, select the Endpoint from the select box L3 prefix endpoint list. The view form
is read-only and can be closed by clicking cross mark in the top right of the form.

If you want to edit selected L3 prefix endpoint, click the Edit button, which will display the edit form for selected L3
prefix endpoint. After editing click the Save button to save selected L3 prefix endpoint. After saving of Endpoint the
edit form will be closed and the Endpoint list will be set to default value.

To delete Endpoint select it from the L3 prefix endpoint list and click Delete button.

Wizard

Wizard provides quick method to send basic data to controller necessary for basic usage of GBP application. It is
useful in the case that there aren’t any data in controller. In the first tab is form for create tenant. The second tab is
for CRUD operations with contracts and their sub elements such as subjects, rules, clauses, action refs and classifier
refs. The last tab is for CRUD operations with EndpointGroups and their CNS and PNS. Created structure of data is
possible to send by clicking on Submit button.

Fig. 1.50: Wizard

710 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Using the GBP API

Please see:

• Using the GBP OpenFlow Overlay (OfOverlay) renderer

• Policy Resolution

• Forwarding Model

• the **GBP** demo and development environments for tips

It is recommended to use either:

• Neutron mapper <gbp-neutron>

• the UX

If the REST API must be used, and the above resources are not sufficient:

• feature:install odl-dluxapps-yangui

• browse to: http://<odl-controller>:8181/index.html and select YangUI from the left menu.

to explore the various GBP REST options

Using OpenStack with GBP

Overview

This section is for Application Developers and Network Administrators who are looking to integrate Group Based
Policy with OpenStack.

To enable the GBP Neutron Mapper feature, at the Karaf console:

feature:install odl-groupbasedpolicy-neutronmapper

Neutron Mapper has the following dependencies that are automatically loaded:

odl-neutron-service

Neutron Northbound implementing REST API used by OpenStack

odl-groupbasedpolicy-base

Base GBP feature set, such as policy resolution, data model etc.

odl-groupbasedpolicy-ofoverlay

REST calls from OpenStack Neutron are by the Neutron NorthBound project.

GBP provides the implementation of the Neutron V2.0 API.

Features

List of supported Neutron entities:

• Port

• Network

1.3. OpenDaylight User Guide 711

http://developer.openstack.org/api-ref-networking-v2.html

OpenDaylight Documentation Documentation, Release Carbon

– Standard Internal

– External provider L2/L3 network

• Subnet

• Security-groups

• Routers

– Distributed functionality with local routing per compute

– External gateway access per compute node (dedicated port required)

– Multiple routers per tenant

• FloatingIP NAT

• IPv4/IPv6 support

The mapping of Neutron entities to GBP entities is as follows:

Neutron Port

Fig. 1.51: Neutron Port

The Neutron port is mapped to an endpoint.

The current implementation supports one IP address per Neutron port.

712 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

An endpoint and L3-endpoint belong to multiple EndpointGroups if the Neutron port is in multiple Neutron Security
Groups.

The key for endpoint is L2-bridge-domain obtained as the parent of L2-flood-domain representing Neutron network.
The MAC address is from the Neutron port. An L3-endpoint is created based on L3-context (the parent of the L2-
bridge-domain) and IP address of Neutron Port.

Neutron Network

Fig. 1.52: Neutron Network

A Neutron network has the following characteristics:

• defines a broadcast domain

• defines a L2 transmission domain

• defines a L2 name space.

To represent this, a Neutron Network is mapped to multiple GBP entities. The first mapping is to an L2 flood-domain
to reflect that the Neutron network is one flooding or broadcast domain. An L2-bridge-domain is then associated as
the parent of L2 flood-domain. This reflects both the L2 transmission domain as well as the L2 addressing namespace.

The third mapping is to L3-context, which represents the distinct L3 address space. The L3-context is the parent of
L2-bridge-domain.

Neutron Subnet

1.3. OpenDaylight User Guide 713

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.53: Neutron Subnet

714 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Neutron subnet is associated with a Neutron network. The Neutron subnet is mapped to a GBP subnet where the
parent of the subnet is L2-flood-domain representing the Neutron network.

Neutron Security Group

Fig. 1.54: Neutron Security Group and Rules

GBP entity representing Neutron security-group is EndpointGroup.

Infrastructure EndpointGroups

Neutron-mapper automatically creates EndpointGroups to manage key infrastructure items such as:

• DHCP EndpointGroup - contains endpoints representing Neutron DHCP ports

• Router EndpointGroup - contains endpoints representing Neutron router interfaces

• External EndpointGroup - holds L3-endpoints representing Neutron router gateway ports, also associated with
FloatingIP ports.

Neutron Security Group Rules

This is the most involved amongst all the mappings because Neutron security-group-rules are mapped to contracts
with clauses, subjects, rules, action-refs, classifier-refs, etc. Contracts are used between EndpointGroups representing
Neutron Security Groups. For simplification it is important to note that Neutron security-group-rules are similar to a
GBP rule containing:

• classifier with direction

1.3. OpenDaylight User Guide 715

OpenDaylight Documentation Documentation, Release Carbon

• action of allow.

Neutron Routers

Fig. 1.55: Neutron Router

Neutron router is represented as a L3-context. This treats a router as a Layer3 namespace, and hence every network
attached to it a part of that Layer3 namespace.

This allows for multiple routers per tenant with complete isolation.

The mapping of the router to an endpoint represents the router’s interface or gateway port.

The mapping to an EndpointGroup represents the internal infrastructure EndpointGroups created by the GBP Neutron
Mapper

When a Neutron router interface is attached to a network/subnet, that network/subnet and its associated endpoints or
Neutron Ports are seamlessly added to the namespace.

Neutron FloatingIP

When associated with a Neutron Port, this leverages the OfOverlay renderer’s NAT capabilities.

A dedicated external interface on each Nova compute host allows for disitributed external access. Each Nova instance
associated with a FloatingIP address can access the external network directly without having to route via the Neutron
controller, or having to enable any form of Neutron distributed routing functionality.

716 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Assuming the gateway provisioned in the Neutron Subnet command for the external network is reachable, the com-
bination of GBP Neutron Mapper and OfOverlay renderer will automatically ARP for this default gateway, requiring
no user intervention.

Troubleshooting within GBP

Logging level for the mapping functionality can be set for package org.opendaylight.groupbasedpolicy.neutron.mapper.
An example of enabling TRACE logging level on Karaf console:

log:set TRACE org.opendaylight.groupbasedpolicy.neutron.mapper

Neutron mapping example

As an example for mapping can be used creation of Neutron network, subnet and port. When a Neutron network is
created 3 GBP entities are created: l2-flood-domain, l2-bridge-domain, l3-context.

Fig. 1.56: Neutron network mapping

After an subnet is created in the network mapping looks like this.

Fig. 1.57: Neutron subnet mapping

1.3. OpenDaylight User Guide 717

OpenDaylight Documentation Documentation, Release Carbon

If an Neutron port is created in the subnet an endpoint and l3-endpoint are created. The endpoint has key composed
from l2-bridge-domain and MAC address from Neutron port. A key of l3-endpoint is compesed from l3-context and
IP address. The network containment of endpoint and l3-endpoint points to the subnet.

Fig. 1.58: Neutron port mapping

Configuring GBP Neutron

No intervention passed initial OpenStack setup is required by the user.

More information about configuration can be found in our DevStack demo environment on the GBP wiki.

Administering or Managing GBP Neutron

For consistencies sake, all provisioning should be performed via the Neutron API. (CLI or Horizon).

The mapped policies can be augmented via the GBP UX, to:

• Enable Service Function Chaining

• Add endpoints from outside of Neutron i.e. VMs/containers not provisioned in OpenStack

• Augment policies/contracts derived from Security Group Rules

• Overlay additional contracts or groupings

Tutorials

A DevStack demo environment can be found on the GBP wiki.

718 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)
https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)

OpenDaylight Documentation Documentation, Release Carbon

GBP Renderer manager

Overview

The GBP Renderer manager is an integral part of GBP base module. It dispatches information about endpoints’ policy
configuration to specific device renderer by writing a renderer policy configuration into the registered renderer’s policy
store.

Installing and Pre-requisites

Renderer manager is integrated into GBP base module, so no additional installation is required.

Architecture

Renderer manager gets data notifications about:

• Endoints (base-endpoint.yang)

• EndpointLocations (base-endpoint.yang)

• ResolvedPolicies (resolved-policy.yang)

• Forwarding (forwarding.yang)

Based on data from notifications it creates a configuration task for specific renderers by writing a renderer policy
configuration into the registered renderer’s policy store. Configuration is stored to CONF data store as Renderers
(renderer.yang).

Configuration is signed with version number which is incremented by every change. All renderers are supposed to be
on the same version. Renderer manager waits for all renderers to respond with version update in OPER data store.
After a version of every renderer in OPER data store has the same value as the one in CONF data store, renderer
manager moves to the next configuration with incremented version.

GBP Location manager

Overview

Location manager monitors information about Endpoint Location providers (see endpoint-location-provider.yang) and
manages Endpoint locations in OPER data store accordingly.

Installing and Pre-requisites

Location manager is integrated into GBP base module, so no additional installation is required.

Architecture

The endpoint-locations container in OPER data store (see base-endpoint.yang) contains two lists for two types of
EP location, namely address-endpoint-location and containment-endpoint-location. LocationResolver is a class that
processes Location providers in CONF data store and puts location information to OPER data store.

When a new Location provider is created in CONF data store, its Address EP locations are being processed first,
and their info is stored locally in accordance with processed Location provider’s priority. Then a location of type

1.3. OpenDaylight User Guide 719

OpenDaylight Documentation Documentation, Release Carbon

“absolute” with the highest priority is selected for an EP, and is put in OPER data store. If Address EP locations
contain locations of type “relative”, those are put to OPER data store.

If current Location provider contains Containment EP locations of type “relative”, then those are put to OPER data
store.

Similarly, when a Location provider is deleted, information of its locations is removed from the OPER data store.

Using the GBP OpenFlow Overlay (OfOverlay) renderer

Overview

The OpenFlow Overlay (OfOverlay) feature enables the OpenFlow Overlay renderer, which creates a network virtu-
alization solution across nodes that host Open vSwitch software switches.

Installing and Pre-requisites

From the Karaf console in OpenDaylight:

feature:install odl-groupbasedpolicy-ofoverlay

This renderer is designed to work with OpenVSwitch (OVS) 2.1+ (although 2.3 is strongly recommended) and Open-
Flow 1.3.

When used in conjunction with the Neutron Mapper feature no extra OfOverlay specific setup is required.

When this feature is loaded “standalone”, the user is required to configure infrastructure, such as

• instantiating OVS bridges,

• attaching hosts to the bridges,

• and creating the VXLAN/VXLAN-GPE tunnel ports on the bridges.

The GBP OfOverlay renderer also supports a table offset option, to offset the pipeline post-table 0. The value of table
offset is stored in the config datastore and it may be rewritten at runtime.

PUT http://{{controllerIp}}:8181/restconf/config/ofoverlay:of-overlay-config
{

"of-overlay-config": {
"gbp-ofoverlay-table-offset": 6

}
}

The default value is set by changing: <gbp-ofoverlay-table-offset>0</gbp-ofoverlay-table-offset>

in file: distribution-karaf/target/assembly/etc/opendaylight/karaf/15-groupbasedpolicy-ofoverlay.xml

To avoid overwriting runtime changes, the default value is used only when the OfOverlay renderer starts and no other
value has been written before.

OpenFlow Overlay Architecture

These are the primary components of GBP. The OfOverlay components are highlighted in red.

In terms of the inner components of the GBP OfOverlay renderer:

OfOverlay Renderer

720 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.59: OfOverlay within GBP

1.3. OpenDaylight User Guide 721

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.60: OfOverlay expanded view:

722 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Launches components below:

Policy Resolver

Policy resolution is completely domain independent, and the OfOverlay leverages process policy information inter-
nally. See Policy Resolution process.

It listens to inputs to the Tenants configuration datastore, validates tenant input, then writes this to the Tenants opera-
tional datastore.

From there an internal notification is generated to the PolicyManager.

In the next release, this will be moving to a non-renderer specific location.

Endpoint Manager

The endpoint repository operates in orchestrated mode. This means the user is responsible for the provisioning of
endpoints via:

• UX/GUI

• REST API

Note: When using the Neutron mapper feature, everything is managed transparently via Neutron.

The Endpoint Manager is responsible for listening to Endpoint repository updates and notifying the Switch Manager
when a valid Endpoint has been registered.

It also supplies utility functions to the flow pipeline process.

Switch Manager

The Switch Manager is purely a state manager.

Switches are in one of 3 states:

• DISCONNECTED

• PREPARING

• READY

Ready is denoted by a connected switch:

• having a tunnel interface

• having at least one endpoint connected.

In this way GBP is not writing to switches it has no business to.

Preparing simply means the switch has a controller connection but is missing one of the above complete and necessary
conditions

Disconnected means a previously connected switch is no longer present in the Inventory operational datastore.

The OfOverlay leverages Nicira registers as follows:

• REG0 = Source EndpointGroup + Tenant ordinal

• REG1 = Source Conditions + Tenant ordinal

• REG2 = Destination EndpointGroup + Tenant ordinal

• REG3 = Destination Conditions + Tenant ordinal

• REG4 = Bridge Domain + Tenant ordinal

1.3. OpenDaylight User Guide 723

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.61: OfOverlay Flow Pipeline

• REG5 = Flood Domain + Tenant ordinal

• REG6 = Layer 3 Context + Tenant ordinal

Port Security

Table 0 of the OpenFlow pipeline. Responsible for ensuring that only valid connections can send packets into the
pipeline:

cookie=0x0, <snip> , priority=200,in_port=3 actions=goto_table:2
cookie=0x0, <snip> , priority=200,in_port=1 actions=goto_table:1
cookie=0x0, <snip> , priority=121,arp,in_port=5,dl_src=fa:16:3e:d5:b9:8d,arp_spa=10.1.
→˓1.3 actions=goto_table:2
cookie=0x0, <snip> , priority=120,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_src=10.1.1.
→˓3 actions=goto_table:2
cookie=0x0, <snip> , priority=115,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_dst=255.
→˓255.255.255 actions=goto_table:2
cookie=0x0, <snip> , priority=112,ipv6 actions=drop
cookie=0x0, <snip> , priority=111, ip actions=drop
cookie=0x0, <snip> , priority=110,arp actions=drop
cookie=0x0, <snip> ,in_port=5,dl_src=fa:16:3e:d5:b9:8d actions=goto_table:2
cookie=0x0, <snip> , priority=1 actions=drop

Ingress from tunnel interface, go to Table Source Mapper:

cookie=0x0, <snip> , priority=200,in_port=3 actions=goto_table:2

Ingress from outside, goto Table Ingress NAT Mapper:

cookie=0x0, <snip> , priority=200,in_port=1 actions=goto_table:1

ARP from Endpoint, go to Table Source Mapper:

cookie=0x0, <snip> , priority=121,arp,in_port=5,dl_src=fa:16:3e:d5:b9:8d,arp_spa=10.1.
→˓1.3 actions=goto_table:2

IPv4 from Endpoint, go to Table Source Mapper:

cookie=0x0, <snip> , priority=120,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_src=10.1.1.
→˓3 actions=goto_table:2

724 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

DHCP DORA from Endpoint, go to Table Source Mapper:

cookie=0x0, <snip> , priority=115,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_dst=255.
→˓255.255.255 actions=goto_table:2

Series of DROP tables with priority set to capture any non-specific traffic that should have matched above:

cookie=0x0, <snip> , priority=112,ipv6 actions=drop
cookie=0x0, <snip> , priority=111, ip actions=drop
cookie=0x0, <snip> , priority=110,arp actions=drop

“L2” catch all traffic not identified above:

cookie=0x0, <snip> ,in_port=5,dl_src=fa:16:3e:d5:b9:8d actions=goto_table:2

Drop Flow:

cookie=0x0, <snip> , priority=1 actions=drop

Ingress NAT Mapper

Table offset +1.

ARP responder for external NAT address:

cookie=0x0, <snip> , priority=150,arp,arp_tpa=192.168.111.51,arp_op=1
→˓actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:fa:16:3e:58:c3:dd->eth_
→˓src,load:0x2->NXM_OF_ARP_OP[],move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],
→˓load:0xfa163e58c3dd->NXM_NX_ARP_SHA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],
→˓load:0xc0a86f33->NXM_OF_ARP_SPA[],IN_PORT

Translate from Outside to Inside and perform same functions as SourceMapper.

cookie=0x0, <snip> , priority=100,ip,nw_dst=192.168.111.51 actions=set_field:10.1.1.2-
→˓>ip_dst,set_field:fa:16:3e:58:c3:dd->eth_dst,load:0x2->NXM_NX_REG0[],load:0x1->NXM_
→˓NX_REG1[],load:0x4->NXM_NX_REG4[],load:0x5->NXM_NX_REG5[],load:0x7->NXM_NX_REG6[],
→˓load:0x3->NXM_NX_TUN_ID[0..31],goto_table:3

Source Mapper

Table offset +2.

Determines based on characteristics from the ingress port, which:

• EndpointGroup(s) it belongs to

• Forwarding context

• Tunnel VNID ordinal

Establishes tunnels at valid destination switches for ingress.

Ingress Tunnel established at remote node with VNID Ordinal that maps to Source EPG, Forwarding Context etc:

cookie=0x0, <snip>, priority=150,tun_id=0xd,in_port=3 actions=load:0xc->NXM_NX_REG0[],
→˓load:0xffffff->NXM_NX_REG1[],load:0x4->NXM_NX_REG4[],load:0x5->NXM_NX_REG5[],
→˓load:0x7->NXM_NX_REG6[],goto_table:3

Maps endpoint to Source EPG, Forwarding Context based on ingress port, and MAC:

1.3. OpenDaylight User Guide 725

OpenDaylight Documentation Documentation, Release Carbon

cookie=0x0, <snip> , priority=100,in_port=5,dl_src=fa:16:3e:b4:b4:b1 actions=load:0xc-
→˓>NXM_NX_REG0[],load:0x1->NXM_NX_REG1[],load:0x4->NXM_NX_REG4[],load:0x5->NXM_NX_
→˓REG5[],load:0x7->NXM_NX_REG6[],load:0xd->NXM_NX_TUN_ID[0..31],goto_table:3

Generic drop:

cookie=0x0, duration=197.622s, table=2, n_packets=0, n_bytes=0, priority=1
→˓actions=drop

Destination Mapper

Table offset +3.

Determines based on characteristics of the endpoint:

• EndpointGroup(s) it belongs to

• Forwarding context

• Tunnel Destination value

Manages routing based on valid ingress nodes ARP’ing for their default gateway, and matches on either gateway MAC
or destination endpoint MAC.

ARP for default gateway for the 10.1.1.0/24 subnet:

cookie=0x0, <snip> , priority=150,arp,reg6=0x7,arp_tpa=10.1.1.1,arp_op=1
→˓actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:fa:16:3e:28:4c:82->eth_
→˓src,load:0x2->NXM_OF_ARP_OP[],move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],
→˓load:0xfa163e284c82->NXM_NX_ARP_SHA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],
→˓load:0xa010101->NXM_OF_ARP_SPA[],IN_PORT

Broadcast traffic destined for GroupTable:

cookie=0x0, <snip> , priority=140,reg5=0x5,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00
→˓actions=load:0x5->NXM_NX_TUN_ID[0..31],group:5

Layer3 destination matching flows, where priority=100+masklength. Since GBP now support L3Prefix endpoint, we
can set default routes etc:

cookie=0x0, <snip>, priority=132,ip,reg6=0x7,dl_dst=fa:16:3e:b4:b4:b1,nw_dst=10.1.1.3
→˓actions=load:0xc->NXM_NX_REG2[],load:0x1->NXM_NX_REG3[],load:0x5->NXM_NX_REG7[],set_
→˓field:fa:16:3e:b4:b4:b1->eth_dst,dec_ttl,goto_table:4

Layer2 destination matching flows, designed to be caught only after last IP flow (lowest priority IP flow is 100):

cookie=0x0, duration=323.203s, table=3, n_packets=4, n_bytes=168, priority=50,
→˓reg4=0x4,dl_dst=fa:16:3e:58:c3:dd actions=load:0x2->NXM_NX_REG2[],load:0x1->NXM_NX_
→˓REG3[],load:0x2->NXM_NX_REG7[],goto_table:4

General drop flow: cookie=0x0, duration=323.207s, table=3, n_packets=6, n_bytes=588, priority=1 actions=drop

Policy Enforcer

Table offset +4.

Once the Source and Destination EndpointGroups are assigned, policy is enforced based on resolved rules.

In the case of Service Function Chaining, the encapsulation and destination for traffic destined to a chain, is discovered
and enforced.

Policy flow, allowing IP traffic between EndpointGroups:

726 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

cookie=0x0, <snip> , priority=64998,ip,reg0=0x8,reg1=0x1,reg2=0xc,reg3=0x1
→˓actions=goto_table:5

Egress NAT Mapper

Table offset +5.

Performs NAT function before Egressing OVS instance to the underlay network.

Inside to Outside NAT translation before sending to underlay:

cookie=0x0, <snip> , priority=100,ip,reg6=0x7,nw_src=10.1.1.2 actions=set_field:192.
→˓168.111.51->ip_src,goto_table:6

External Mapper

Table offset +6.

Manages post-policy enforcement for endpoint specific destination effects. Specifically for Service Function Chaining,
which is why we can support both symmetric and asymmetric chains and distributed ingress/egress classification.

Generic allow:

cookie=0x0, <snip>, priority=100 actions=output:NXM_NX_REG7[]

Configuring OpenFlow Overlay via REST

Note: Please see the UX section on how to configure GBP via the GUI.

Endpoint

POST http://{{controllerIp}}:8181/restconf/operations/endpoint:register-endpoint
{

"input": {
"endpoint-group": "<epg0>",
"endpoint-groups" : ["<epg1>","<epg2>"],
"network-containment" : "<fowarding-model-context1>",
"l2-context": "<bridge-domain1>",
"mac-address": "<mac1>",
"l3-address": [

{
"ip-address": "<ipaddress1>",
"l3-context": "<l3_context1>"

}
],
"*ofoverlay:port-name*": "<ovs port name>",
"tenant": "<tenant1>"

}
}

Note: The usage of “port-name” preceded by “ofoverlay”. In OpenDaylight, base datastore objects can be augmented.
In GBP, the base endpoint model has no renderer specifics, hence can be leveraged across multiple renderers.

OVS Augmentations to Inventory

1.3. OpenDaylight User Guide 727

OpenDaylight Documentation Documentation, Release Carbon

PUT http://{{controllerIp}}:8181/restconf/config/opendaylight-inventory:nodes/
{

"opendaylight-inventory:nodes": {
"node": [

{
"id": "openflow:123456",
"ofoverlay:tunnel": [

{
"tunnel-type": "overlay:tunnel-type-vxlan",
"ip": "<ip_address_of_ovs>",
"port": 4789,
"node-connector-id": "openflow:123456:1"

}
]

},
{

"id": "openflow:654321",
"ofoverlay:tunnel": [

{
"tunnel-type": "overlay:tunnel-type-vxlan",
"ip": "<ip_address_of_ovs>",
"port": 4789,
"node-connector-id": "openflow:654321:1"

}
]

}
]

}
}

Tenants see Policy Resolution and Forwarding Model for details:

{
"policy:tenant": {
"contract": [

{
"clause": [
{

"name": "allow-http-clause",
"subject-refs": [
"allow-http-subject",
"allow-icmp-subject"

]
}

],
"id": "<id>",
"subject": [
{

"name": "allow-http-subject",
"rule": [
{
"classifier-ref": [
{
"direction": "in",
"name": "http-dest"

},
{
"direction": "out",

728 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"name": "http-src"
}

],
"action-ref": [
{
"name": "allow1",
"order": 0

}
],
"name": "allow-http-rule"

}
]

},
{

"name": "allow-icmp-subject",
"rule": [
{
"classifier-ref": [
{
"name": "icmp"

}
],
"action-ref": [
{
"name": "allow1",
"order": 0

}
],
"name": "allow-icmp-rule"

}
]

}
]

}
],
"endpoint-group": [

{
"consumer-named-selector": [

{
"contract": [
"<id>"

],
"name": "<name>"

}
],
"id": "<id>",
"provider-named-selector": []

},
{
"consumer-named-selector": [],
"id": "<id>",
"provider-named-selector": [

{
"contract": [
"<id>"

],
"name": "<name>"

}

1.3. OpenDaylight User Guide 729

OpenDaylight Documentation Documentation, Release Carbon

]
}

],
"id": "<id>",
"l2-bridge-domain": [

{
"id": "<id>",
"parent": "<id>"

}
],
"l2-flood-domain": [

{
"id": "<id>",
"parent": "<id>"

},
{

"id": "<id>",
"parent": "<id>"

}
],
"l3-context": [

{
"id": "<id>"

}
],
"name": "GBPPOC",
"subject-feature-instances": {

"classifier-instance": [
{
"classifier-definition-id": "<id>",
"name": "http-dest",
"parameter-value": [
{
"int-value": "6",
"name": "proto"

},
{
"int-value": "80",
"name": "destport"

}
]

},
{
"classifier-definition-id": "<id>",
"name": "http-src",
"parameter-value": [

{
"int-value": "6",
"name": "proto"

},
{
"int-value": "80",
"name": "sourceport"

}
]

},
{
"classifier-definition-id": "<id>",

730 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"name": "icmp",
"parameter-value": [

{
"int-value": "1",
"name": "proto"

}
]

}
],
"action-instance": [

{
"name": "allow1",
"action-definition-id": "<id>"

}
]

},
"subnet": [

{
"id": "<id>",
"ip-prefix": "<ip_prefix>",
"parent": "<id>",
"virtual-router-ip": "<ip address>"

},
{

"id": "<id>",
"ip-prefix": "<ip prefix>",
"parent": "<id>",
"virtual-router-ip": "<ip address>"

}
]

}
}

Tutorials

Comprehensive tutorials, along with a demonstration environment leveraging Vagrant can be found on the GBP wiki

Using the GBP eBPF IO Visor Agent renderer

Overview

The IO Visor renderer feature enables container endpoints (e.g. Docker, LXC) to leverage GBP policies.

The renderer interacts with a IO Visor module from the Linux Foundation IO Visor project.

Installing and Pre-requisites

From the Karaf console in OpenDaylight:

feature:install odl-groupbasedpolicy-iovisor odl-restconf

Installation details, usage, and other information for the IO Visor GBP module can be found here: IO Visor github
repo for IO Modules

1.3. OpenDaylight User Guide 731

https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)
https://github.com/iovisor/iomodules
https://github.com/iovisor/iomodules

OpenDaylight Documentation Documentation, Release Carbon

Using the GBP FaaS renderer

Overview

The FaaS renderer feature enables leveraging the FaaS project as a GBP renderer.

Installing and Pre-requisites

From the Karaf console in OpenDaylight:

feature:install odl-groupbasedpolicy-faas

More information about FaaS can be found here: https://wiki.opendaylight.org/view/FaaS:GBPIntegration

Using Service Function Chaining (SFC) with GBP Neutron Mapper and OfOverlay

Overview

Please refer to the Service Function Chaining project for specifics on SFC provisioning and theory.

GBP allows for the use of a chain, by name, in policy.

This takes the form of an action in GBP.

Using the GBP demo and development environment as an example:

In the topology above, a symmetrical chain between H35_2 and H36_3 could take path:

H35_2 to sw1 to sff1 to sf1 to sff1 to sff2 to sf2 to sff2 to sw6 to H36_3

If symmetric chaining was desired, the return path is:

If asymmetric chaining was desired, the return path could be direct, or an entirely different chain.

All these scenarios are supported by the integration.

In the Subject Feature Instance section of the tenant config, we define the instances of the classifier definitions for
ICMP and HTTP:

"subject-feature-instances": {
"classifier-instance": [
{

"name": "icmp",
"parameter-value": [

{
"name": "proto",
"int-value": 1

}
]

},
{

"name": "http-dest",
"parameter-value": [

{
"int-value": "6",
"name": "proto"

},

732 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/FaaS:GBPIntegration

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.62: GBP and SFC integration environment

1.3. OpenDaylight User Guide 733

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.63: GBP and SFC symmetric chain environment

Fig. 1.64: GBP and SFC assymmetric chain environment

734 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

{
"int-value": "80",
"name": "destport"

}
]

},
{

"name": "http-src",
"parameter-value": [

{
"int-value": "6",
"name": "proto"

},
{
"int-value": "80",
"name": "sourceport"

}
]

}
],

Then the action instances to associate to traffic that matches classifiers are defined.

Note the SFC chain name must exist in SFC, and is validated against the datastore once the tenant configuration is
entered, before entering a valid tenant configuration into the operational datastore (which triggers policy resolution).

"action-instance": [
{

"name": "chain1",
"parameter-value": [

{
"name": "sfc-chain-name",
"string-value": "SFCGBP"

}
]

},
{

"name": "allow1",
}

]
},

When ICMP is matched, allow the traffic:

"contract": [
{
"subject": [

{
"name": "icmp-subject",
"rule": [
{

"name": "allow-icmp-rule",
"order" : 0,
"classifier-ref": [
{
"name": "icmp"

}
],

1.3. OpenDaylight User Guide 735

OpenDaylight Documentation Documentation, Release Carbon

"action-ref": [
{
"name": "allow1",
"order": 0

}
]

}

]
},

When HTTP is matched, in to the provider of the contract with a TCP destination port of 80 (HTTP) or the HTTP
request. The chain action is triggered, and similarly out from the provider for traffic with TCP source port of 80
(HTTP), or the HTTP response.

{
"name": "http-subject",
"rule": [
{

"name": "http-chain-rule-in",
"classifier-ref": [

{
"name": "http-dest",
"direction": "in"

}
],
"action-ref": [

{
"name": "chain1",
"order": 0

}
]

},
{

"name": "http-chain-rule-out",
"classifier-ref": [

{
"name": "http-src",
"direction": "out"

}
],
"action-ref": [

{
"name": "chain1",
"order": 0

}
]

}
]

}

To enable asymmetrical chaining, for instance, the user desires that HTTP requests traverse the chain, but the HTTP
response does not, the HTTP response is set to allow instead of chain:

{
"name": "http-chain-rule-out",
"classifier-ref": [
{

736 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"name": "http-src",
"direction": "out"

}
],
"action-ref": [
{

"name": "allow1",
"order": 0

}
]

}

Demo/Development environment

The GBP project for this release has two demo/development environments.

• Docker based GBP and GBP+SFC integration Vagrant environment

• DevStack based GBP+Neutron integration Vagrant environment

Demo @ GBP wiki

L2 Switch User Guide

Overview

The L2 Switch project provides Layer2 switch functionality.

L2 Switch Architecture

• Packet Handler

– Decodes the packets coming to the controller and dispatches them appropriately

• Loop Remover

– Removes loops in the network

• Arp Handler

– Handles the decoded ARP packets

• Address Tracker

– Learns the Addresses (MAC and IP) of entities in the network

• Host Tracker

– Tracks the locations of hosts in the network

• L2 Switch Main

– Installs flows on each switch based on network traffic

1.3. OpenDaylight User Guide 737

https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)/Consumability/Demo

OpenDaylight Documentation Documentation, Release Carbon

Configurable parameters in L2 Switch

The sections below give details about the configuration settings for the components that can be configured.

The process to change the configuration has been changed with the introduction of Blueprint in the Boron release.
Please refer to Change configuration in L2 Switch for an example illustrating how to change the configurations.

Configurable parameters in Loop Remover

• l2switch/loopremover/implementation/src/main/yang/loop-remover-config.yang

– is-install-lldp-flow

* “true” means a flow that sends all LLDP packets to the controller will be installed on each switch

* “false” means this flow will not be installed

* default value is true

– lldp-flow-table-id

* The LLDP flow will be installed on the specified flow table of each switch

* This field is only relevant when “is-install-lldp-flow” is set to “true”

* default value is 0

– lldp-flow-priority

* The LLDP flow will be installed with the specified priority

* This field is only relevant when “is-install-lldp-flow” is set to “true”

* default value is 100

– lldp-flow-idle-timeout

* The LLDP flow will timeout (removed from the switch) if the flow doesn’t forward a packet for x
seconds

* This field is only relevant when “is-install-lldp-flow” is set to “true”

* default value is 0

– lldp-flow-hard-timeout

* The LLDP flow will timeout (removed from the switch) after x seconds, regardless of how many
packets it is forwarding

* This field is only relevant when “is-install-lldp-flow” is set to “true”

* default value is 0

– graph-refresh-delay

* A graph of the network is maintained and gets updated as network elements go up/down (i.e. links go
up/down and switches go up/down)

* After a network element going up/down, it waits graph-refresh-delay seconds before recomputing the
graph

* A higher value has the advantage of doing less graph updates, at the potential cost of losing some
packets because the graph didn’t update immediately.

* A lower value has the advantage of handling network topology changes quicker, at the cost of doing
more computation.

738 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

* default value is 1000

Configurable parameters in Arp Handler

• l2switch/arphandler/src/main/yang/arp-handler-config.yang

– is-proactive-flood-mode

* “true” means that flood flows will be installed on each switch. With this flood flow, each switch will
flood a packet that doesn’t match any other flows.

· Advantage: Fewer packets are sent to the controller because those packets are flooded to the
network.

· Disadvantage: A lot of network traffic is generated.

* “false” means the previously mentioned flood flows will not be installed. Instead an ARP flow will be
installed on each switch that sends all ARP packets to the controller.

· Advantage: Less network traffic is generated.

· Disadvantage: The controller handles more packets (ARP requests & replies) and the ARP pro-
cess takes longer than if there were flood flows.

* default value is true

– flood-flow-table-id

* The flood flow will be installed on the specified flow table of each switch

* This field is only relevant when “is-proactive-flood-mode” is set to “true”

* default value is 0

– flood-flow-priority

* The flood flow will be installed with the specified priority

* This field is only relevant when “is-proactive-flood-mode” is set to “true”

* default value is 2

– flood-flow-idle-timeout

* The flood flow will timeout (removed from the switch) if the flow doesn’t forward a packet for x
seconds

* This field is only relevant when “is-proactive-flood-mode” is set to “true”

* default value is 0

– flood-flow-hard-timeout

* The flood flow will timeout (removed from the switch) after x seconds, regardless of how many packets
it is forwarding

* This field is only relevant when “is-proactive-flood-mode” is set to “true”

* default value is 0

– arp-flow-table-id

* The ARP flow will be installed on the specified flow table of each switch

* This field is only relevant when “is-proactive-flood-mode” is set to “false”

* default value is 0

1.3. OpenDaylight User Guide 739

OpenDaylight Documentation Documentation, Release Carbon

– arp-flow-priority

* The ARP flow will be installed with the specified priority

* This field is only relevant when “is-proactive-flood-mode” is set to “false”

* default value is 1

– arp-flow-idle-timeout

* The ARP flow will timeout (removed from the switch) if the flow doesn’t forward a packet for x
seconds

* This field is only relevant when “is-proactive-flood-mode” is set to “false”

* default value is 0

– arp-flow-hard-timeout

* The ARP flow will timeout (removed from the switch) after arp-flow-hard-timeout seconds, regardless
of how many packets it is forwarding

* This field is only relevant when “is-proactive-flood-mode” is set to “false”

* default value is 0

Configurable parameters in Address Tracker

• l2switch/addresstracker/implementation/src/main/yang/address-tracker-config.yang

– timestamp-update-interval

* A last-seen timestamp is associated with each address. This last-seen timestamp will only be updated
after timestamp-update-interval milliseconds.

* A higher value has the advantage of performing less writes to the database.

* A lower value has the advantage of knowing how fresh an address is.

* default value is 600000

– observe-addresses-from

* IP and MAC addresses can be observed/learned from ARP, IPv4, and IPv6 packets. Set which packets
to make these observations from.

* default value is arp

Configurable parameters in L2 Switch Main

• l2switch/l2switch-main/src/main/yang/l2switch-config.yang

– is-install-dropall-flow

* “true” means a drop-all flow will be installed on each switch, so the default action will be to drop a
packet instead of sending it to the controller

* “false” means this flow will not be installed

* default value is true

– dropall-flow-table-id

* The dropall flow will be installed on the specified flow table of each switch

740 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

* This field is only relevant when “is-install-dropall-flow” is set to “true”

* default value is 0

– dropall-flow-priority

* The dropall flow will be installed with the specified priority

* This field is only relevant when “is-install-dropall-flow” is set to “true”

* default value is 0

– dropall-flow-idle-timeout

* The dropall flow will timeout (removed from the switch) if the flow doesn’t forward a packet for x
seconds

* This field is only relevant when “is-install-dropall-flow” is set to “true”

* default value is 0

– dropall-flow-hard-timeout

* The dropall flow will timeout (removed from the switch) after x seconds, regardless of how many
packets it is forwarding

* This field is only relevant when “is-install-dropall-flow” is set to “true”

* default value is 0

– is-learning-only-mode

* “true” means that the L2 Switch will only be learning addresses. No additional flows to optimize
network traffic will be installed.

* “false” means that the L2 Switch will react to network traffic and install flows on the switches to
optimize traffic. Currently, MAC-to-MAC flows are installed.

* default value is false

– reactive-flow-table-id

* The reactive flow will be installed on the specified flow table of each switch

* This field is only relevant when “is-learning-only-mode” is set to “false”

* default value is 0

– reactive-flow-priority

* The reactive flow will be installed with the specified priority

* This field is only relevant when “is-learning-only-mode” is set to “false”

* default value is 10

– reactive-flow-idle-timeout

* The reactive flow will timeout (removed from the switch) if the flow doesn’t forward a packet for x
seconds

* This field is only relevant when “is-learning-only-mode” is set to “false”

* default value is 600

– reactive-flow-hard-timeout

* The reactive flow will timeout (removed from the switch) after x seconds, regardless of how many
packets it is forwarding

1.3. OpenDaylight User Guide 741

OpenDaylight Documentation Documentation, Release Carbon

* This field is only relevant when “is-learning-only-mode” is set to “false”

* default value is 300

Change configuration in L2 Switch

Note: For more information on Blueprint in OpenDaylight, see this wiki page.

The following is an example on how to change the configurations of the L2 Switch components.

Use Case: Change the L2 switch from proactive flood mode to reactive mode.

Option 1: (external xml file)

1. Navigate to etc folder under download distribution

2. Create following directory structure:

mkdir - p opendaylight/datastore/initial/config

3. Create a new xml file corresponding to <yang module name>_<container name>.xml:

vi arp-handler-config_arp-handler-config.xml

4. Add following contents to the created file:

<?xml version="1.0" encoding="UTF-8"?>
<arp-handler-config xmlns="urn:opendaylight:packet:arp-handler-config">
<is-proactive-flood-mode>false</is-proactive-flood-mode>

</arp-handler-config>

5. Restart the controller which injects the configurations.

Option 2: (REST URL)

1. Make the following REST call

• URL: http://{{LOCALIP}}:8181/restconf/config/arp-handler-config:arp-handler-config/

• Content-Type: application/json

• Body:

{
"arp-handler-config":
{
"is-proactive-flood-mode":false

}
}

• Expected Result: 201 Created

2. Restart the controller to see updated configurations. With out a restart new configurations will be merged with
old configurations which is not desirable.

742 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Using_Blueprint

OpenDaylight Documentation Documentation, Release Carbon

Running the L2 Switch

To run the L2 Switch inside the OpenDaylight distribution simply install the odl-l2switch-switch-ui feature;

feature:install odl-l2switch-switch-ui

Create a network using mininet

sudo mn --controller=remote,ip=<Controller IP> --topo=linear,3 --switch ovsk,
→˓protocols=OpenFlow13
sudo mn --controller=remote,ip=127.0.0.1 --topo=linear,3 --switch ovsk,
→˓protocols=OpenFlow13

The above command will create a virtual network consisting of 3 switches. Each switch will connect to the controller
located at the specified IP, i.e. 127.0.0.1

sudo mn --controller=remote,ip=127.0.0.1 --mac --topo=linear,3 --switch ovsk,
→˓protocols=OpenFlow13

The above command has the “mac” option, which makes it easier to distinguish between Host MAC addresses and
Switch MAC addresses.

Generating network traffic using mininet

h1 ping h2

The above command will cause host1 (h1) to ping host2 (h2)

pingall

pingall will cause each host to ping every other host.

Checking Address Observations

Address Observations are added to the Inventory data tree.

The Address Observations on a Node Connector can be checked through a browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/
→˓openflow:1/node-connector/openflow:1:1

Checking Hosts

Host information is added to the Topology data tree.

• Host address

• Attachment point (link) to a node/switch

This host information and attachment point information can be checked through a browser or a REST Client.

1.3. OpenDaylight User Guide 743

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.65: Address Observations

744 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

http://10.194.126.91:8080/restconf/operational/network-topology:network-topology/
→˓topology/flow:1/

Fig. 1.66: Hosts

Checking STP status of each link

STP Status information is added to the Inventory data tree.

• A status of “forwarding” means the link is active and packets are flowing on it.

• A status of “discarding” means the link is inactive and packets are not sent over it.

The STP status of a link can be checked through a browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/
→˓openflow:1/node-connector/openflow:1:2

1.3. OpenDaylight User Guide 745

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.67: STP status

Miscellaneous mininet commands

link s1 s2 down

This will bring the link between switch1 (s1) and switch2 (s2) down

link s1 s2 up

This will bring the link between switch1 (s1) and switch2 (s2) up

link s1 h1 down

This will bring the link between switch1 (s1) and host1 (h1) down

Link Aggregation Control Protocol User Guide

Overview

This section contains information about how to use the LACP plugin project with OpenDaylight, including configura-
tions.

Link Aggregation Control Protocol Architecture

The LACP Project within OpenDaylight implements Link Aggregation Control Protocol (LACP) as an MD-SAL
service module and will be used to auto-discover and aggregate multiple links between an OpenDaylight controlled
network and LACP-enabled endpoints or switches. The result is the creation of a logical channel, which represents the
aggregation of the links. Link aggregation provides link resiliency and bandwidth aggregation. This implementation
adheres to IEEE Ethernet specification 802.3ad.

746 Chapter 1. Content for OpenDaylight Users

http://www.ieee802.org/3/hssg/public/apr07/frazier_01_0407.pdf

OpenDaylight Documentation Documentation, Release Carbon

Configuring Link Aggregation Control Protocol

This feature can be enabled in the Karaf console of the OpenDaylight Karaf distribution by issuing the following
command:

feature:install odl-lacp-ui

Note:

1. Ensure that legacy (non-OpenFlow) switches are configured with LACP mode active with a long timeout to
allow for the LACP plugin in OpenDaylight to respond to its messages.

2. Flows that want to take advantage of LACP-configured Link Aggregation Groups (LAGs) must explicitly use a
OpenFlow group table entry created by the LACP plugin. The plugin only creates group table entries, it does
not program any flows on its own.

Administering or Managing Link Aggregation Control Protocol

LACP-discovered network inventory and network statistics can be viewed using the following REST APIs.

1. List of aggregators available for a node:

http://<ControllerIP>:8181/restconf/operational/opendaylight-inventory:nodes/node/
→˓<node-id>

Aggregator information will appear within the <lacp-aggregators> XML tag.

2. To view only the information of an aggregator:

http://<ControllerIP>:8181/restconf/operational/opendaylight-inventory:nodes/node/
→˓<node-id>/lacp-aggregators/<agg-id>

The group ID associated with the aggregator can be found inside the <lag-groupid> XML tag.

The group table entry information for the <lag-groupid> added for the aggregator is also available in the
opendaylight-inventory node database.

3. To view physical port information.

http://<ControllerIP>:8181/restconf/operational/opendaylight-inventory:nodes/node/
→˓<node-id>/node-connector/<node-connector-id>

Ports that are associated with an aggregator will have the tag <lacp-agg-ref> updated with valid aggregator
information.

Tutorials

The below tutorial demonstrates LACP LAG creation for a sample mininet topology.

Sample LACP Topology creation on Mininet

sudo mn --controller=remote,ip=<Controller IP> --topo=linear,1 --switch ovsk,
→˓protocols=OpenFlow13

1.3. OpenDaylight User Guide 747

OpenDaylight Documentation Documentation, Release Carbon

The above command will create a virtual network consisting of a switch and a host. The switch will be connected to
the controller.

Once the topology is discovered, verify the presence of a flow entry with “dl_type” set to “0x8809” to handle LACP
packets using the below ovs-ofctl command:

ovs-ofctl -O OpenFlow13 dump-flows s1
OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x300000000000001e, duration=60.067s, table=0, n_packets=0, n_bytes=0,
→˓priority=5,dl_dst=01:80:c2:00:00:02,dl_type=0x8809 actions=CONTROLLER:65535

Configure an additional link between the switch (s1) and host (h1) using the below command on mininet shell to
aggregate 2 links:

mininet> py net.addLink(s1, net.get('h1'))
mininet> py s1.attach('s1-eth2')

The LACP module will listen for LACP control packets that are generated from legacy switch (non-OpenFlow en-
abled). In our example, host (h1) will act as a LACP packet generator. In order to generate the LACP control packets,
a bond interface has to be created on the host (h1) with mode type set to LACP with long-timeout. To configure bond
interface, create a new file bonding.conf under the /etc/modprobe.d/ directory and insert the below lines in this new
file:

alias bond0 bonding
options bonding mode=4

Here mode=4 is referred to LACP and the default timeout is set to long.

Enable bond interface and associate both physical interface h1-eth0 & h1-eth1 as members of the bond interface on
host (h1) using the below commands on the mininet shell:

mininet> py net.get('h1').cmd('modprobe bonding')
mininet> py net.get('h1').cmd('ip link add bond0 type bond')
mininet> py net.get('h1').cmd('ip link set bond0 address <bond-mac-address>')
mininet> py net.get('h1').cmd('ip link set h1-eth0 down')
mininet> py net.get('h1').cmd('ip link set h1-eth0 master bond0')
mininet> py net.get('h1').cmd('ip link set h1-eth1 down')
mininet> py net.get('h1').cmd('ip link set h1-eth1 master bond0')
mininet> py net.get('h1').cmd('ip link set bond0 up')

Once the bond0 interface is up, the host (h1) will send LACP packets to the switch (s1). The LACP Module will then
create a LAG through exchange of LACP packets between the host (h1) and switch (s1). To view the bond interface
output on the host (h1) side:

mininet> py net.get('h1').cmd('cat /proc/net/bonding/bond0')
Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)
Bonding Mode: IEEE 802.3ad Dynamic link aggregation
Transmit Hash Policy: layer2 (0)
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 0
Down Delay (ms): 0
802.3ad info
LACP rate: slow
Min links: 0
Aggregator selection policy (ad_select): stable
Active Aggregator Info:

Aggregator ID: 1

748 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Number of ports: 2
Actor Key: 33
Partner Key: 27
Partner Mac Address: 00:00:00:00:01:01

Slave Interface: h1-eth0
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 00:00:00:00:00:11
Aggregator ID: 1
Slave queue ID: 0

Slave Interface: h1-eth1
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 00:00:00:00:00:12
Aggregator ID: 1
Slave queue ID: 0

A corresponding group table entry would be created on the OpenFlow switch (s1) with “type” set to “select” to perform
the LAG functionality. To view the group entries:

mininet>ovs-ofctl -O Openflow13 dump-groups s1
OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):
group_id=60169,type=select,bucket=weight:0,actions=output:1,output:2

To apply the LAG functionality on the switches, the flows should be configured with action set to GroupId instead of
output port. A sample add-flow configuration with output action set to GroupId:

sudo ovs-ofctl -O Openflow13 add-flow s1 dl_type=0x0806,dl_src=SRC_MAC,dl_dst=DST_MAC,
→˓actions=group:60169

LISP Flow Mapping User Guide

Overview

Locator/ID Separation Protocol

Locator/ID Separation Protocol (LISP) is a technology that provides a flexible map-and-encap framework that can be
used for overlay network applications such as data center network virtualization and Network Function Virtualization
(NFV).

LISP provides the following name spaces:

• Endpoint Identifiers (EIDs)

• Routing Locators (RLOCs)

In a virtualization environment EIDs can be viewed as virtual address space and RLOCs can be viewed as physical
network address space.

The LISP framework decouples network control plane from the forwarding plane by providing:

1.3. OpenDaylight User Guide 749

http://tools.ietf.org/html/rfc6830
http://tools.ietf.org/html/rfc6830#page-6
http://tools.ietf.org/html/rfc6830#section-3

OpenDaylight Documentation Documentation, Release Carbon

• A data plane that specifies how the virtualized network addresses are encapsulated in addresses from the under-
lying physical network.

• A control plane that stores the mapping of the virtual-to-physical address spaces, the associated forwarding
policies and serves this information to the data plane on demand.

Network programmability is achieved by programming forwarding policies such as transparent mobility, service chain-
ing, and traffic engineering in the mapping system; where the data plane elements can fetch these policies on demand
as new flows arrive. This chapter describes the LISP Flow Mapping project in OpenDaylight and how it can be used
to enable advanced SDN and NFV use cases.

LISP data plane Tunnel Routers are available at OpenOverlayRouter.org in the open source community on the follow-
ing platforms:

• Linux

• Android

• OpenWRT

For more details and support for LISP data plane software please visit the OOR web site.

LISP Flow Mapping Service

The LISP Flow Mapping service provides LISP Mapping System services. This includes LISP Map-Server and LISP
Map-Resolver services to store and serve mapping data to data plane nodes as well as to OpenDaylight applications.
Mapping data can include mapping of virtual addresses to physical network address where the virtual nodes are
reachable or hosted at. Mapping data can also include a variety of routing policies including traffic engineering and
load balancing. To leverage this service, OpenDaylight applications and services can use the northbound REST API to
define the mappings and policies in the LISP Mapping Service. Data plane devices capable of LISP control protocol
can leverage this service through a southbound LISP plugin. LISP-enabled devices must be configured to use this
OpenDaylight service as their Map Server and/or Map Resolver.

The southbound LISP plugin supports the LISP control protocol (Map-Register, Map-Request, Map-Reply messages),
and can also be used to register mappings in the OpenDaylight mapping service.

LISP Flow Mapping Architecture

The following figure shows the various LISP Flow Mapping modules.

A brief description of each module is as follows:

• DAO (Data Access Object): This layer separates the LISP logic from the database, so that we can separate the
map server and map resolver from the specific implementation of the mapping database. Currently we have an
implementation of this layer with an in-memory HashMap, but it can be switched to any other key/value store
and you only need to implement the ILispDAO interface.

• Map Server: This module processes the adding or registration of authentication tokens (keys) and mappings.
For a detailed specification of LISP Map Server, see LISP.

• Map Resolver: This module receives and processes the mapping lookup queries and provides the mappings to
requester. For a detailed specification of LISP Map Server, see LISP.

• RPC/RESTCONF: This is the auto-generated RESTCONF-based northbound API. This module enables defin-
ing key-EID associations as well as adding mapping information through the Map Server. Key-EID associations
and mappings can also be queried via this API.

• GUI: This module enables adding and querying the mapping service through a GUI based on ODL DLUX.

750 Chapter 1. Content for OpenDaylight Users

http://www.openoverlayrouter.org/
http://www.openoverlayrouter.org/
http://tools.ietf.org/search/rfc6830
http://tools.ietf.org/search/rfc6830

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.68: LISP Mapping Service Internal Architecture

1.3. OpenDaylight User Guide 751

OpenDaylight Documentation Documentation, Release Carbon

• Neutron: This module implements the OpenDaylight Neutron Service APIs. It provides integration between
the LISP service and the OpenDaylight Neutron service, and thus OpenStack.

• Java API: The API module exposes the Map Server and Map Resolver capabilities via a Java API.

• LISP Proto: This module includes LISP protocol dependent data types and associated processing.

• In Memory DB: This module includes the in memory database implementation of the mapping service.

• LISP Southbound Plugin: This plugin enables data plane devices that support LISP control plane protocol
(see LISP) to register and query mappings to the LISP Flow Mapping via the LISP control plane protocol.

Configuring LISP Flow Mapping

In order to use the LISP mapping service for registering EID to RLOC mappings from northbound or southbound,
keys have to be defined for the EID prefixes first. Once a key is defined for an EID prefix, it can be used to add
mappings for that EID prefix multiple times. If the service is going to be used to process Map-Register messages from
the southbound LISP plugin, the same key must be used by the data plane device to create the authentication data in
the Map-Register messages for the associated EID prefix.

The etc/custom.properties file in the Karaf distribution allows configuration of several OpenDaylight param-
eters. The LISP service has the following properties that can be adjusted:

lisp.smr (default: false) Enables/disables the Solicit-Map-Request (SMR) functionality. SMR is a method to notify
changes in an EID-to-RLOC mapping to “subscribers”. The LISP service considers all Map-Request’s source
RLOC as a subscriber to the requested EID prefix, and will send an SMR control message to that RLOC if the
mapping changes.

lisp.elpPolicy (default: default) Configures how to build a Map-Reply southbound message from a mapping con-
taining an Explicit Locator Path (ELP) RLOC. It is used for compatibility with dataplane devices that don’t
understand the ELP LCAF format. The default setting doesn’t alter the mapping, returning all RLOCs unmodi-
fied. The both setting adds a new RLOC to the mapping, with a lower priority than the ELP, that is the next hop
in the service chain. To determine the next hop, it searches the source RLOC of the Map-Request in the ELP,
and chooses the next hop, if it exists, otherwise it chooses the first hop. The replace setting adds a new RLOC
using the same algorithm as the both setting, but using the origin priority of the ELP RLOC, which is removed
from the mapping.

lisp.lookupPolicy (default: northboundFirst) Configures the mapping lookup algorithm. When set to northbound-
First mappings programmed through the northbound API will take precedence. If no northbound programmed
mappings exist, then the mapping service will return mappings registered through the southbound plugin, if
any exists. When set to northboundAndSouthbound the mapping programmed by the northbound is returned,
updated by the up/down status of these mappings as reported by the southbound (if existing).

lisp.mappingMerge (default: false) Configures the merge policy on the southbound registrations through the LISP
SB Plugin. When set to false, only the latest mapping registered through the SB plugin is valid in the southbound
mapping database, independent of which device it came from. When set to true, mappings for the same EID
registered by different devices are merged together and a union of the locators is maintained as the valid mapping
for that EID.

Textual Conventions for LISP Address Formats

In addition to the more common IPv4, IPv6 and MAC address data types, the LISP control plane supports arbitrary
Address Family Identifiers assigned by IANA, and in addition to those the LISP Canoncal Address Format (LCAF).

The LISP Flow Mapping project in OpenDaylight implements support for many of these different address formats, the
full list being summarized in the following table. While some of the address formats have well defined and widely
used textual representation, many don’t. It became necessary to define a convention to use for text rendering of all

752 Chapter 1. Content for OpenDaylight Users

http://tools.ietf.org/search/rfc6830
http://tools.ietf.org/html/rfc6830#section-6.6.2
http://www.iana.org/assignments/address-family-numbers
https://tools.ietf.org/html/draft-ietf-lisp-lcaf

OpenDaylight Documentation Documentation, Release Carbon

implemented address types in logs, URLs, input fields, etc. The below table lists the supported formats, along with
their AFI number and LCAF type, including the prefix used for disambiguation of potential overlap, and examples
output.

Name AFI LCAF Prefix Text Rendering
No Address 0 • no: No Address Present

IPv4 Prefix 1 • ipv4: 192.0.2.0/24

IPv6 Prefix 2 • ipv6: 2001:db8::/32

MAC Address 16389 • mac: 00:00:5E:00:53:00

Distinguished
Name

17 • dn: stringAsIs

AS Number 18 • as: AS64500

AFI List 16387 1 list: {192.0.2.1,192.0.2.2,2001:db8::1
}

Instance ID 16387 2 • [223] 192.0.2.0/24

Application Data 16387 4 appdata: 192.0.2.1!128!17!80-
81!6667-7000

Explicit Locator
Path

16387 10 elp: {192.0.2.1→192.0.2.2|lps→192.0.
2.3}

Source/Destina
tion Key

16387 12 srcdst: 192.0.2.1/32|192.0.2.2/32

Key/Value Address
Pair

16387 15 kv: 192.0.2.1192.0.2.2

Service Path 16387 N/A sp: 42(3)

Table: LISP Address Formats

Please note that the forward slash character / typically separating IPv4 and IPv6 addresses from the mask length is
transformed into %2f when used in a URL.

Karaf commands

In this section we will discuss two types of Karaf commands: built-in, and LISP specific. Some built-in commands are
quite useful, and are needed for the tutorial, so they will be discussed here. A reference of all LISP specific commands,
added by the LISP Flow Mapping project is also included. They are useful mostly for debugging.

Useful built-in commands

help Lists all available command, with a short description of each.

help <command_name> Show detailed help about a specific command.

feature:list [-i] Show all locally available features in the Karaf container. The -i option lists only features
that are currently installed. It is possible to use | grep to filter the output (for all commands, not just this one).

feature:install <feature_name> Install feature feature_name.

1.3. OpenDaylight User Guide 753

OpenDaylight Documentation Documentation, Release Carbon

log:set <level> <class> Set the log level for class to level. The default log level for all classes
is INFO. For debugging, or learning about LISP internals it is useful to run log:set TRACE org.
opendaylight.lispflowmapping right after Karaf starts up.

log:display Outputs the log file to the console, and returns control to the user.

log:tail Continuously shows log output, requires Ctrl+C to return to the console.

LISP specific commands

The available lisp commands can always be obtained by help mappingservice. Currently they are:

mappingservice:addkey Add the default password password for the IPv4 EID prefix 0.0.0.0/0 (all ad-
dresses). This is useful when experimenting with southbound devices, and using the REST interface would
be combersome for whatever reason.

mappingservice:mappings Show the list of all mappings stored in the internal non-persistent data store (the
DAO), listing the full data structure. The output is not human friendly, but can be used for debugging.

LISP Flow Mapping Karaf Features

LISP Flow Mapping has the following Karaf features that can be installed from the Karaf console:

odl-lispflowmapping-msmr This includes the core features required to use the LISP Flow Mapping Service
such as mapping service and the LISP southbound plugin.

odl-lispflowmapping-ui This includes the GUI module for the LISP Mapping Service.

odl-lispflowmapping-neutron This is the experimental Neutron provider module for LISP mapping service.

Tutorials

This section provides a tutorial demonstrating various features in this service. We have included tutorials using two
forwarding platforms:

1. Using Open Overlay Router (OOR)

2. Using FD.io

Both have different approaches to create the overlay but ultimately do the same job. Details of both approaches have
been explained below.

Creating a LISP overlay with OOR

This section provides instructions to set up a LISP network of three nodes (one “client” node and two “server” nodes)
using OOR as data plane LISP nodes and the LISP Flow Mapping project from OpenDaylight as the LISP pro-
grammable mapping system for the LISP network.

Overview

The steps shown below will demonstrate setting up a LISP network between a client and two servers, then performing
a failover between the two “server” nodes.

754 Chapter 1. Content for OpenDaylight Users

https://github.com/OpenOverlayRouter/oor#overview
https://wiki.fd.io/view/ONE

OpenDaylight Documentation Documentation, Release Carbon

Prerequisites

• The OpenDaylight Karaf Distribution (download)

• The Postman Chrome App: the most convenient way to follow along this tutorial is to use the Postman App
to edit and send the requests. The project git repository hosts a collection of the requests that are used in this
tutorial in the resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection
file. You can import this file to Postman by clicking Import at the top, choosing Download from link
and then entering the following URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_
plain;f=resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection;hb=refs/heads/stable/carbon. Al-
ternatively, you can save the file on your machine, or if you have the repository checked out, you can im-
port from there. You will need to create a new Postman Environment and define some variables within:
controllerHost set to the hostname or IP address of the machine running the OpenDaylight instance,
and restconfPort to 8181, if you didn’t modify the default controller settings.

• OOR version 1.0 or later The README.md lists the dependencies needed to build it from source.

• A virtualization platform

Target Environment

The three LISP data plane nodes and the LISP mapping system are assumed to be running in Linux virtual machines,
which have the eth0 interface in NAT mode to allow outside internet access and eth1 connected to a host-only
network, with the following IP addresses (please adjust configuration files, JSON examples, etc. accordingly if you’re
using another addressing scheme):

Node Node Type IP Address
controller OpenDaylight 192.168.16.11
client OOR 192.168.16.30
server1 OOR 192.168.16.31
server2 OOR 192.168.16.32
service-node OOR 192.168.16.33

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

In LISP terminology client, server1 and server2 are mobile nodes (MN in OOR), controller is a MS/MR and service-
node is a RTR.

Instructions

The below steps use the command line tool cURL to talk to the LISP Flow Mapping RPC REST API. This is so that
you can see the actual request URLs and body content on the page.

1. Install and run the OpenDaylight distribution on the controller VM. Please follow the general OpenDaylight
Installation Guide for this step. Once the OpenDaylight controller is running install the odl-lispflowmapping-
msmr feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It takes quite a while to load and initialize all features and their dependencies. It’s worth running the command
log:tail in the Karaf console to see when the log output is winding down, and continue with the tutorial
after that.

1.3. OpenDaylight User Guide 755

https://www.opendaylight.org/downloads
https://www.getpostman.com/apps
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

2. Install OOR on the client, server1, server2, and service-node VMs following the installation instructions from
the OOR README file.

3. Configure the OOR installations from the previous step. Take a look at the oor.conf.example to get a
general idea of the structure of the conf file. First, check if the file /etc/oor.conf exists. If the file doesn’t
exist, create the file /etc/oor.conf. Set the EID in /etc/oor.conf file from the IP address space
selected for your virtual/LISP network. In this tutorial the EID of the client is set to 1.1.1.1/32, and that of
server1 and server2 to 2.2.2.2/32.

4. Set the RLOC interface to eth1 in each oor.conf file. LISP will determine the RLOC (IP address of the
corresponding VM) based on this interface.

5. Set the Map-Resolver address to the IP address of the controller, and on the client the Map-Server too. On
server1 and server2 remove the Map-Server configuration, so that it doesn’t interfere with the mappings on the
controller, since we’re going to program them manually.

6. Modify the “key” parameter in each oor.conf file to a key/password of your choice (password in this tutorial).

Note: The resources/tutorial/OOR directory in the project git repository has the files used in the
tutorial checked in, so you can just copy the files to /etc/oor.conf on the respective VMs. You will also
find the JSON files referenced below in the same directory.

7. Define a key and EID prefix association in OpenDaylight using the RPC REST API for the client EID
(1.1.1.1/32) to allow registration from the southbound. Since the mappings for the server EID will be con-
figured from the REST API, no such association is necessary. Run the below command on the controller (or
any machine that can reach controller, by replacing localhost with the IP address of controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/ \

756 Chapter 1. Content for OpenDaylight Users

https://github.com/OpenOverlayRouter/oor#software-prerequisites
https://github.com/OpenOverlayRouter/oor#software-prerequisites
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/OOR;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

--data @add-key.json

where the content of the add-key.json file is the following:

{
"authentication-key": {

"eid-uri": "ipv4:1.1.1.1/32",
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "1.1.1.1/32"

},
"mapping-authkey": {

"key-string": "password",
"key-type": 1

}
}

}

8. Verify that the key is added properly by requesting the following URL:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/

The output the above invocation should look like this:

{
"authentication-key":[

{
"eid-uri":"ipv4:1.1.1.1/32",
"eid":{

"ipv4-prefix":"1.1.1.1/32",
"address-type":"ietf-lisp-address-types:ipv4-prefix-afi"

},
"mapping-authkey":{

"key-string":"password"
,"key-type":1

}
}

]
}

9. Run the oor OOR daemon on all VMs:

oor -f /etc/oor.conf

For more information on accessing OOR logs, take a look at OOR README

10. The client OOR node should now register its EID-to-RLOC mapping in OpenDaylight. To verify you can
lookup the corresponding EIDs via the REST API

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
http://localhost:8181/restconf/operational/odl-mappingservice:mapping-

→˓database/virtual-network-identifier/0/mapping/ipv4:1.1.1.1%2f32/southbound/

An alternative way for retrieving mappings from OpenDaylight using the southbound interface is using the lig
open source tool.

1.3. OpenDaylight User Guide 757

https://github.com/OpenOverlayRouter/oor#readme
https://github.com/davidmeyer/lig

OpenDaylight Documentation Documentation, Release Carbon

11. Register the EID-to-RLOC mapping of the server EID 2.2.2.2/32 to the controller, pointing to server1 and
server2 with a higher priority for server1

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
--data @mapping.json

where the mapping.json file looks like this:

{
"mapping": {

"eid-uri": "ipv4:2.2.2.2/32",
"origin": "northbound",
"mapping-record": {

"recordTtl": 1440,
"action": "NoAction",
"authoritative": true,
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "2.2.2.2/32"

},
"LocatorRecord": [

{
"locator-id": "server1",
"priority": 1,
"weight": 1,
"multicastPriority": 255,
"multicastWeight": 0,
"localLocator": true,
"rlocProbed": false,
"routed": true,
"rloc": {

"address-type": "ietf-lisp-address-types:ipv4-afi",
"ipv4": "192.168.16.31"

}
},
{

"locator-id": "server2",
"priority": 2,
"weight": 1,
"multicastPriority": 255,
"multicastWeight": 0,
"localLocator": true,
"rlocProbed": false,
"routed": true,
"rloc": {

"address-type": "ietf-lisp-address-types:ipv4-afi",
"ipv4": "192.168.16.32"

}
}

]
}

}
}

Here the priority of the second RLOC (192.168.16.32 - server2) is 2, a higher numeric value than the priority of
192.168.16.31, which is 1. This policy is saying that server1 is preferred to server2 for reaching EID 2.2.2.2/32.

758 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Note that lower priority value has higher preference in LISP.

12. Verify the correct registration of the 2.2.2.2/32 EID:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/

13. Now the LISP network is up. To verify, log into the client VM and ping the server EID:

ping 2.2.2.2

14. Let’s test fail-over now. Suppose you had a service on server1 which became unavailable, but server1 itself
is still reachable. LISP will not automatically fail over, even if the mapping for 2.2.2.2/32 has two locators,
since both locators are still reachable and uses the one with the higher priority (lowest priority value). To force
a failover, we need to set the priority of server2 to a lower value. Using the file mapping.json above, swap the
priority values between the two locators (lines 14 and 28 in mapping.json) and repeat the request from step 11.
You can also repeat step 12 to see if the mapping is correctly registered. If you leave the ping on, and monitor
the traffic using wireshark, you can see that the ping traffic to 2.2.2.2 will be diverted from the server1 RLOC
to the server2 RLOC.

With the default OpenDaylight configuration the failover should be near instantaneous (we observed 3 lost pings
in the worst case), because of the LISP Solicit-Map-Request (SMR) mechanism that can ask a LISP data plane
element to update its mapping for a certain EID (enabled by default). It is controlled by the lisp.smr variable
in etc/custom.porperties. When enabled, any mapping change from the RPC interface will trigger an
SMR packet to all data plane elements that have requested the mapping in the last 24 hours (this value was
chosen because it’s the default TTL of Cisco IOS xTR mapping registrations). If disabled, ITRs keep their
mappings until the TTL specified in the Map-Reply expires.

15. To add a service chain into the path from the client to the server, we can use an Explicit Locator Path, specifying
the service-node as the first hop and server1 (or server2) as the second hop. The following will achieve that:

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
--data @elp.json

where the elp.json file is as follows:

{
"mapping": {

"eid-uri": "ipv4:2.2.2.2/32",
"origin": "northbound",
"mapping-record": {

"recordTtl": 1440,
"action": "NoAction",
"authoritative": true,
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "2.2.2.2/32"

},
"LocatorRecord": [

{
"locator-id": "ELP",
"priority": 1,
"weight": 1,
"multicastPriority": 255,
"multicastWeight": 0,

1.3. OpenDaylight User Guide 759

http://tools.ietf.org/html/rfc6830#section-6.6.2

OpenDaylight Documentation Documentation, Release Carbon

"localLocator": true,
"rlocProbed": false,
"routed": true,
"rloc": {

"address-type": "ietf-lisp-address-types:explicit-locator-
→˓path-lcaf",

"explicit-locator-path": {
"hop": [

{
"hop-id": "service-node",
"address": "192.168.16.33",
"lrs-bits": "strict"

},
{

"hop-id": "server1",
"address": "192.168.16.31",
"lrs-bits": "strict"

}
]

}
}

}
]

}
}

}

After the mapping for 2.2.2.2/32 is updated with the above, the ICMP traffic from client to server1 will flow
through the service-node. You can confirm this in the OOR logs, or by sniffing the traffic on either the service-
node or server1. Note that service chains are unidirectional, so unless another ELP mapping is added for the
return traffic, packets will go from server1 to client directly.

16. Suppose the service-node is actually a firewall, and traffic is diverted there to support access control lists (ACLs).
In this tutorial that can be emulated by using iptables firewall rules in the service-node VM. To deny traffic
on the service chain defined above, the following rule can be added:

iptables -A OUTPUT --dst 192.168.16.31 -j DROP

The ping from the client should now have stopped.

In this case the ACL is done on the destination RLOC. There is an effort underway in the OOR community to
allow filtering on EIDs, which is the more logical place to apply ACLs.

17. To delete the rule and restore connectivity on the service chain, delete the ACL by issuing the following com-
mand:

iptables -D OUTPUT --dst 192.168.16.31 -j DROP

which should restore connectivity.

Creating a simple LISP overlay with FD.io

In this section, we use the Overlay Network Engine (ONE) project in FD.io to facilitate fully scripted setup and testing
of a LISP/VXLAN-GPE network. Overlay Network Engine (ONE) is a FD.io project that enables programmable
dynamic software defined overlays. Details about this project can be found in ONE wiki.

760 Chapter 1. Content for OpenDaylight Users

https://fd.io/
https://wiki.fd.io/view/ONE

OpenDaylight Documentation Documentation, Release Carbon

The steps shown below will demonstrate setting up a LISP network between a client and a server using VPP. We
demonstrate how to use VPP lite to build a IP4 LISP overlay on an Ubuntu host using namespaces and af_packet
interfaces. All configuration files used in the tutorials can be found here.

Prerequisites

• The OpenDaylight Karaf Distribution (download)

• The Postman Chrome App: Please follow the instructions and import postman collection from the follow-
ing URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=resources/tutorial/FD_io/
lfm_vpp.postman_collection.json;hb=refs/heads/stable/carbon.

• Vagrant (optional): Download it from Vagrant website and follow the setup instructions.

Target Environment

Unlike the case with OOR, we use network namespace functionality of Linux to create the overlay in this case. The
following table contains ip addresses of nodes in the overlay topology used in the tutorial. Our objective will be to
create this topology and be able to ping from client to server through an intermediary hop, service node, which is a
rtr node providing the service of re-encapsulation. So, all the packets from client to server will be through this
service node.

Node Node Type IP Address
controller OpenDaylight 6.0.3.100
client VPP 6.0.2.2
server VPP 6.0.4.4
service node VPP 6.0.3.3

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

1.3. OpenDaylight User Guide 761

https://gerrit.fd.io/r/gitweb?p=one.git;a=tree;f=tutorial
https://www.opendaylight.org/downloads
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=resources/tutorial/FD_io/lfm_vpp.postman_collection.json;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=resources/tutorial/FD_io/lfm_vpp.postman_collection.json;hb=refs/heads/stable/carbon
https://www.vagrantup.com/downloads.html

OpenDaylight Documentation Documentation, Release Carbon

Instructions

Follow the instructions below sequentially.

1. Pull the VPP code anonymously using:

git clone https://gerrit.fd.io/r/vpp

2. Then, use the vagrant file from repository to build virtual machine with proper environment.

cd vpp/build-root/vagrant/
vagrant up
vagrant ssh

3. In case there is any error from vagrant up, try vargant ssh. if it works, no worries. If it still doesn’t
work, you can try any Ubuntu virtual machine. Or sometimes there is an issue with the Vagrant properly copying
the VPP repo code from the host VM after the first installation. In that case /vpp doesn’t exist. In both cases,
follow the instructions from below.

(a) Clone the code in / directory. So, the codes will be in /vpp.

(b) Run the following commands:

cd /vpp/build-root
make distclean
./bootstrap.sh
make V=0 PLATFORM=vpp TAG=vpp install-deb
sudo dpkg -i /vpp/build-root/*.deb

Alternative and more detailed build instructions can be found in VPP’s wiki

4. By now, you should have a Ubuntu VM with VPP repository in /vpp with sudo access. Now, we need VPP
Lite build. The following commands builds VPP Lite.

cd /vpp
export PLATFORM=vpp_lite
make build

Successful build create the binary in /vpp/build-root/install-vpp_lite_debug-native/vpp/
bin

5. Install bridge-utils and ethtool if needed by using following commands:

sudo apt-get install bridge-utils ethtool

6. Now, install and run OpenDaylight on the VM. Please follow the general OpenDaylight Installation Guide for
this step from Installing OpenDaylight. Before running OpenDaylight, we need to change the configuration for
RTR to work. Update etc/custom.properties with the lisp.elpPolicy to be replace.

lisp.elpPolicy = replace

Then, run OpenDaylight. For details regarding configuring LISP Flow Mapping, please take a look at Config-
uring LISP Flow Mapping. Once the OpenDaylight controller is running install the odl-lispflowmapping-msmr
feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

762 Chapter 1. Content for OpenDaylight Users

https://wiki.fd.io/view/VPP/Build,_install,_and_test_images

OpenDaylight Documentation Documentation, Release Carbon

It may take quite a while to load and initialize all features and their dependencies. It’s worth running the
command log:tail in the Karaf console to see when the log output is winding down, and continue with the
tutorial after that.

7. For setting up VPP, get the files from resources/tutorial/FD_io folder of the lispflowmapping repo.
The files can also be found here. Copy the vpp1.config, vpp2.config and rtr.config files in /etc/
vpp/lite/.

8. In this example, VPP doesn’t make any southbound map registers to OpenDaylight. So, we add the mappings
directly from northbound. For that, we need to add the mappings to OpenDaylight via RESTCONF API.

Register EID-to-RLOC mapping of the Client EID 6.0.2.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:6.0.2.0%2f24/northbound/ \
--data @epl1.json

Content of epl1.json:

{
"mapping": {

"eid-uri": "ipv4:6.0.2.0/24",
"origin": "northbound",
"mapping-record": {

"recordTtl": 1440,
"action": "NoAction",
"authoritative": true,
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "6.0.2.0/24"

},
"LocatorRecord": [

{
"locator-id": "ELP",
"priority": 1,
"weight": 1,
"multicastPriority": 255,
"multicastWeight": 0,
"localLocator": true,
"rlocProbed": false,
"routed": false,
"rloc": {

"address-type": "ietf-lisp-address-types:explicit-locator-
→˓path-lcaf",

"explicit-locator-path": {
"hop": [

{
"hop-id": "Hop 1",
"address": "6.0.3.3",
"lrs-bits": "lookup rloc-probe strict"

},
{

"hop-id": "Hop 2",
"address": "6.0.3.1",
"lrs-bits": "lookup strict"

}
]

}

1.3. OpenDaylight User Guide 763

https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

}
}

]
}

}
}

Similarly add EID-to-RLOC mapping of the Server EID 6.0.4.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/mapping/ipv4:6.0.4.0%2f24/northbound/ \
--data @epl2.json

Content of elp2.json:

{
"mapping": {

"eid-uri": "ipv4:6.0.4.0/24",
"origin": "northbound",
"mapping-record": {

"recordTtl": 1440,
"action": "NoAction",
"authoritative": true,
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "6.0.4.0/24"

},
"LocatorRecord": [

{
"locator-id": "ELP",
"priority": 1,
"weight": 1,
"multicastPriority": 255,
"multicastWeight": 0,
"localLocator": true,
"rlocProbed": false,
"routed": false,
"rloc": {

"address-type": "ietf-lisp-address-types:explicit-locator-
→˓path-lcaf",

"explicit-locator-path": {
"hop": [

{
"hop-id": "Hop 1",
"address": "6.0.3.3",
"lrs-bits": "lookup rloc-probe strict"

},
{

"hop-id": "Hop 2",
"address": "6.0.3.2",
"lrs-bits": "lookup strict"

}
]

}
}

}
]

764 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

}
}

}

The JSON files regarding these can be found in here. Even though there is no southbound registration for
mapping to OpenDaylight, using northbound policy we can specify mappings, when Client requests for the
Server eid, Client gets a reply from OpenDaylight.

9. Assuming all files have been created and OpenDaylight has been configured as explained above, execute the
host script you’ve created or the topology_setup.sh script from here.

10. If all goes well, you can now test connectivity between the namespaces with:

sudo ip netns exec vpp-ns1 ping 6.0.4.4

11. Traffic and control plane message exchanges can be checked with a wireshark listening on the odl interface.

12.
Important: Delete the topology by running the topology_setup.sh with clean argument.

sudo ./topology_setup.sh clean

Creating a LISP overlay with Cisco IOS-XE

This section describes how to create a simple LISP overlay using the Cisco IOS-XE network operating system as the
data plane software running on the Cisco CSR 1000v Series Cloud Services Router.

Prerequisites

• The OpenDaylight Karaf Distribution (download)

• CSR1Kv image with Cisco IOS-XE version 03.13.00.S or later (download; the instructions have been tested
on version 03.15.00.S).

• A virtualization platform supported by CSR1Kv images (VMware ESXi, Citrix XenServer, KVM, and Mi-
crosoft Hyper-V).

Target Environment

The CSR1Kv images are configured with one management interface (GigabitEthernet1), and another interface
(GigabitEthernet2) connected to a host-only network on the virtualization platform, while the LISP mapping
system is assumed to be running in a Linux virtual machine, which has the eth0 interface in NAT mode to allow
outside internet access and eth1 connected to the host-only network, with the following IP addresses (please adjust
configuration files, JSON examples, etc. accordingly if you’re using another addressing scheme):

Node Node Type IP Address
controller OpenDaylight 192.168.16.11
client CSR1Kv 192.168.16.30
server CSR1Kv 192.168.16.31

Table: Nodes in the tutorial

The scenario and EID allocation is the same as the OOR scenario, except that there is no server2 and service-node
(for now).

1.3. OpenDaylight User Guide 765

https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/carbon
http://www.cisco.com/c/en/us/support/routers/cloud-services-router-1000v/model.html
https://www.opendaylight.org/downloads
http://www.cisco.com/c/en/us/support/routers/cloud-services-router-1000v/model.html#~tab-downloads

OpenDaylight Documentation Documentation, Release Carbon

Before this tutorial can be followed, basic connectivity between the Linux VM and the CSRs should work on the
host-only network.

Instructions

The below steps use the command line tool cURL to talk to the LISP Flow Mapping RPC REST API. This is so that
you can see the actual request URLs and body content on the page. The easy way is to just use Postman.

1. Install and run the OpenDaylight distribution on the controller VM. Please follow the general OpenDaylight
Installation Guide from Installing OpenDaylight for this step. Once the OpenDaylight controller is running
install the odl-lispflowmapping-msmr feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It takes quite a while to load and initialize all features and their dependencies. It’s worth running the command
log:tail in the Karaf console to see when the log output is winding down, and continue with the tutorial
after that.

2. Create the client and server VMs following the installation instructions from the CSR1Kv Configuration Guide.

3. Define a key and EID prefix association in OpenDaylight using the RPC REST API for the client and server
EIDs (1.1.1.1/32 and 2.2.2.2/32 respectively) to allow registration from the southbound. Run the below com-
mand on the controller (or any machine that can reach controller, by replacing localhost with the IP address of
controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/ \
--data @add-key.json

where the content of the add-key.json file is the following:

{
"authentication-key": {

"eid-uri": "ipv4:1.1.1.1/32",
"eid": {

"address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
"ipv4-prefix": "1.1.1.1/32"

},
"mapping-authkey": {

"key-string": "password",
"key-type": 1

}
}

}

The same should be done for 2.2.2.2/32 too.

4. Verify that the key is added properly by requesting the following URL:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/

→˓virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/

The output the above invocation should look like this:

766 Chapter 1. Content for OpenDaylight Users

http://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/configuration/b_CSR1000v_Configuration_Guide.html

OpenDaylight Documentation Documentation, Release Carbon

{
"authentication-key":[

{
"eid-uri":"ipv4:1.1.1.1/32",
"eid":{

"ipv4-prefix":"1.1.1.1/32",
"address-type":"ietf-lisp-address-types:ipv4-prefix-afi"

},
"mapping-authkey":{

"key-string":"password"
,"key-type":1

}
}

]
}

5. Configure the CSR installations from the previous step. The EID needs to be configured on a loopback interface
(except when the CSR is used as a router not a simple client like in this tutorial and the EID is assigned to a real
interface).

interface Loopback0
ip address 1.1.1.1 255.255.255.255

6. The LISP specific configuration goes to a router lisp section in the configuration. A locator-set
defines the list of locators with their priorities and weights, either statically, or better yet, as an interface name:

locator-set rloc-network
IPv4-interface GigabitEthernet2 priority 1 weight 1
exit

7. To make sure a Map-Request is using the above defined rloc-network locator set, the following configura-
tion is used:

map-request itr-rlocs rloc-network

8. Each Instance ID needs its own configuration. For the default Instance ID of 0, the following configuration is
needed for a besic setup:

eid-table default instance-id 0
database-mapping 1.1.1.1/32 locator-set rloc-network
map-cache 0.0.0.0/0 map-request
no ipv4 map-cache-persistent
ipv4 itr map-resolver 192.168.16.11
ipv4 itr
ipv4 etr map-server 192.168.16.11 key password
ipv4 etr
exit

database-mapping defines the EID prefix the router will register in the mapping system and which locator
set it will use (rloc-network in this case, which was defined in step 6).

The next line creates a static map-cache entry for the whole IPv4 EID space, causing a Map-Request to be
triggered for every destination (that is not directly connected on some interface).

LISP routers save their map cache to a fie which is used to restore previous state on reboot. To avoid confusion
due to state restored from a previous run, no ipv4 map-cache-persistent can be used to disable this
behavior for non-production testing environments.

1.3. OpenDaylight User Guide 767

OpenDaylight Documentation Documentation, Release Carbon

A map-resolver is then defined, where Map-Requests will be directed to for mapping lookups, and then a
map-server association with a shared secret key.

9. Here’s the full configuration that needs to be pasted into the configuration of the client to follow this tutorial:

interface Loopback0
ip address 1.1.1.1 255.255.255.255
!
router lisp
locator-set rloc-network
IPv4-interface GigabitEthernet2 priority 1 weight 1
exit

!
map-request itr-rlocs rloc-network
eid-table default instance-id 0
database-mapping 1.1.1.1/32 locator-set rloc-network
map-cache 0.0.0.0/0 map-request
no ipv4 map-cache-persistent
ipv4 itr map-resolver 192.168.16.11
ipv4 itr
ipv4 etr map-server 192.168.16.11 key password
ipv4 etr
exit

!
exit

Configuring the server is done by replacing 1.1.1.1 with 2.2.2.2 in the above configuration snippet.

10. The CSR nodes should now register their EID-to-RLOC mappings to OpenDaylight. To verify, the correspond-
ing EIDs can be looked up via the REST API:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
http://localhost:8181/restconf/operational/odl-mappingservice:mapping-

→˓database/virtual-network-identifier/0/mapping/ipv4:1.1.1.1%2f32/southbound/

An alternative way for retrieving mappings from OpenDaylight using the southbound interface is using the lig
open source tool.

Yet another different way is to use the OpenDaylight mappingservice CLI, and type the following at the Karaf
prompt:

mappingservice:mappings

This needs the odl-lispflowmapping-mappingservice-shell feature to be loaded. The output is intended for de-
bugging purposes and shows the full Java objects stored in the map-cache.

11. Now the LISP network is up. It can be verified by pinging the server EID from the client CSR EID:

ping 2.2.2.2 source 1.1.1.1

LISP Flow Mapping Support

For support the lispflowmapping project can be reached by emailing the developer mailing list: lispflowmapping-
dev@lists.opendaylight.org or on the #opendaylight-lispflowmapping IRC channel on irc.freenode.net.

Additional information is also available on the Lisp Flow Mapping wiki

768 Chapter 1. Content for OpenDaylight Users

https://github.com/davidmeyer/lig
mailto:lispflowmapping-dev@lists.opendaylight.org
mailto:lispflowmapping-dev@lists.opendaylight.org
https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Main

OpenDaylight Documentation Documentation, Release Carbon

Clustering in LISP Flow Mapping

Documentation regarding setting up a 3-node OpenDaylight cluster is described at following odl wiki page.

To turn on clustering in LISP Flow Mapping it is necessary:

• run script deploy.py script. This script is in integration-test project placed at tools/clustering/cluster-
deployer/deploy.py. A whole deploy.py command can looks like:

{path_to_integration_test_project}/tools/clustering/cluster-deployer/deploy.py
–distribution {path_to_distribution_in_zip_format}
–rootdir {dir_at_remote_host_where_copy_odl_distribution}
–hosts {ip1},{ip2},{ip3}
–clean
–template lispflowmapping
–rf 3
–user {user_name_of_remote_hosts}
–password {password_to_remote_hosts}

Running this script will cause that specified distribution to be deployed to remote hosts specified through their IP
adresses with using credentials (user and password). The distribution will be copied to specified rootdir. As part of
the deployment, a template which contains a set of controller files which are different from standard ones. In this
case it is specified in
{path_to_integration_test_project}/tools/clustering/cluster-deployer/lispflowmapping directory.
Lispflowmapping templates are part of integration-test project. There are 5 template files:

• akka.conf.template

• jolokia.xml.template

• module-shards.conf.template

• modules.conf.template

• org.apache.karaf.features.cfg.template

After copying the distribution, it is unzipped and started on all of specified hosts in cluster aware manner.

Remarks

It is necessary to have:

• unzip program installed on all of the host

• set all remote hosts /etc/sudoers files to not requiretty (should only matter on debian hosts)

NEtwork MOdeling (NEMO)

This section describes how to use the NEMO feature in OpenDaylight and contains contains configuration, adminis-
tration, and management sections for the feature.

1.3. OpenDaylight User Guide 769

https://wiki.opendaylight.org/view/Running_and_testing_an_OpenDaylight_Cluster#Three-node_cluster
https://git.opendaylight.org/gerrit/integration/test

OpenDaylight Documentation Documentation, Release Carbon

Overview

With the network becoming more complicated, users and applications must handle more complex configurations to
deploy new services. NEMO project aims to simplify the usage of network by providing a new intent northbound
interface (NBI). Instead of tons of APIs, users/applications just need to describe their intent without caring about
complex physical devices and implementation means. The intent will be translated into detailed configurations on the
devices in the NEMO engine. A typical scenario is user just need to assign which nodes to implement an VPN, without
considering which technique is used.

NEMO Engine Architecture

• NEMO API * The NEMO API provide users the NEMO model, which guides users how to construct the instance
of intent, and how to construct the instance of predefined types.

• NEMO REST * The NEMO REST provides users REST APIs to access NEMO engine, that is, user could
transmit the intent instance to NEMO engine through basic REST methods.

• NEMO UI * The NEMO UI provides users a visual interface to deploy service with NEMO model, and display
the state in DLUX UI.

Installing NEMO engine

To install NEMO engine, download OpenDaylight and use the Karaf console to install the following feature:

odl-nemo-engine-ui

Administering or Managing NEMO Engine

After install features NEMO engine used, user could use NEMO to express his intent with NEMO UI or REST APIs
in apidoc.

Go to http://{controller-ip}:8181/index.html. In this interface, user could go to NEMO UI, and use
the tabs and input box to input intent, and see the state of intent deployment with the image.

Go to http://{controller-ip}:8181/apidoc/explorer/index.html. In this interface, user could
REST methods “POST”, “PUT”,”GET” and “DELETE” to deploy intent or query the state of deployment.

Tutorials

Below are tutorials for NEMO Engine.

Using NEMO Engine

The purpose of the tutorial is to describe how to use use UI to deploy intent.

Overview

This tutorial will describe how to use the NEMO UI to check the operated resources, the steps to deploy service, and
the ultimate state.

770 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Prerequisites

To understand the tutorial well, we hope there are a physical or virtual network exist, and OpenDaylight with NEMO
engine must be deployed in one host.

Target Environment

The intent expressed by NEMO model is depended on network resources, so user need to have enough resources to
use, or else, the deployment of intent will fail.

Instructions

• Run the OpenDaylight distribution and install odl-nemo-engine-ui from the Karaf console.

• Go to http://{controller-ip}:8181/index.html, and sign in.

• Go the NEMO UI interface. And Register a new user with user name, password, and tenant.

• Check the existing resources to see if it is consistent with yours.

• Deploy service with NEMO model by the create intent menu.

NETCONF User Guide

Overview

NETCONF is an XML-based protocol used for configuration and monitoring devices in the network. The base NET-
CONF protocol is described in RFC-6241.

NETCONF in OpenDaylight:.

OpenDaylight supports the NETCONF protocol as a northbound server as well as a southbound plugin. It also includes
a set of test tools for simulating NETCONF devices and clients.

Southbound (netconf-connector)

The NETCONF southbound plugin is capable of connecting to remote NETCONF devices and exposing their configu-
ration/operational datastores, RPCs and notifications as MD-SAL mount points. These mount points allow applications
and remote users (over RESTCONF) to interact with the mounted devices.

In terms of RFCs, the connector supports:

• RFC-6241

• RFC-5277

• RFC-6022

• draft-ietf-netconf-yang-library-06

Netconf-connector is fully model-driven (utilizing the YANG modeling language) so in addition to the above
RFCs, it supports any data/RPC/notifications described by a YANG model that is implemented by the device.

Tip: NETCONF southbound can be activated by installing odl-netconf-connector-all Karaf feature.

1.3. OpenDaylight User Guide 771

http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc5277
https://tools.ietf.org/html/rfc6022
https://tools.ietf.org/html/draft-ietf-netconf-yang-library-06

OpenDaylight Documentation Documentation, Release Carbon

Netconf-connector configuration

There are 2 ways for configuring netconf-connector: NETCONF or RESTCONF. This guide focuses on using REST-
CONF.

Default configuration

The default configuration contains all the necessary dependencies (file: 01-netconf.xml) and a single instance of
netconf-connector (file: 99-netconf-connector.xml) called controller-config which connects itself to the NETCONF
northbound in OpenDaylight in a loopback fashion. The connector mounts the NETCONF server for config-subsystem
in order to enable RESTCONF protocol for config-subsystem. This RESTCONF still goes via NETCONF, but using
RESTCONF is much more user friendly than using NETCONF.

Spawning additional netconf-connectors while the controller is running

Preconditions:

1. OpenDaylight is running

2. In Karaf, you must have the netconf-connector installed (at the Karaf prompt, type: feature:install
odl-netconf-connector-all); the loopback NETCONF mountpoint will be automatically configured
and activated

3. Wait until log displays following entry: RemoteDevice{controller-config}: NETCONF connector initialized
successfully

To configure a new netconf-connector you need to send following request to RESTCONF:

POST http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/
controller-config/yang-ext:mount/config:modules

Headers:

• Accept application/xml

• Content-Type application/xml

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
→˓prefix:sal-netconf-connector</type>
<name>new-netconf-device</name>
<address xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">127.0.0.1
→˓</address>
<port xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf

→˓">830</port>
<username xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">admin</
→˓username>
<password xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">admin</
→˓password>
<tcp-only xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">false</
→˓tcp-only>
<event-executor xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">

772 Chapter 1. Content for OpenDaylight Users

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules

OpenDaylight Documentation Documentation, Release Carbon

<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:netty">
→˓prefix:netty-event-executor</type>

<name>global-event-executor</name>
</event-executor>
<binding-registry xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding

→˓">prefix:binding-broker-osgi-registry</type>
<name>binding-osgi-broker</name>

</binding-registry>
<dom-registry xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">

→˓prefix:dom-broker-osgi-registry</type>
<name>dom-broker</name>

</dom-registry>
<client-dispatcher xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:config:netconf

→˓">prefix:netconf-client-dispatcher</type>
<name>global-netconf-dispatcher</name>

</client-dispatcher>
<processing-executor xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">

→˓prefix:threadpool</type>
<name>global-netconf-processing-executor</name>

</processing-executor>
<keepalive-executor xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">

→˓prefix:scheduled-threadpool</type>
<name>global-netconf-ssh-scheduled-executor</name>

</keepalive-executor>
</module>

This spawns a new netconf-connector which tries to connect to (or mount) a NETCONF device at 127.0.0.1 and port
830. You can check the configuration of config-subsystem’s configuration datastore. The new netconf-connector will
now be present there. Just invoke:

GET http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/
controller-config/yang-ext:mount/config:modules

The response will contain the module for new-netconf-device.

Right after the new netconf-connector is created, it writes some useful metadata into the datastore of MD-SAL under
the network-topology subtree. This metadata can be found at:

GET http://localhost:8181/restconf/operational/network-topology:network-topology/

Information about connection status, device capabilities, etc. can be found there.

Connecting to a device not supporting NETCONF monitoring

The netconf-connector in OpenDaylight relies on ietf-netconf-monitoring support when connecting to remote NET-
CONF device. The ietf-netconf-monitoring support allows netconf-connector to list and download all YANG schemas
that are used by the device. NETCONF connector can only communicate with a device if it knows the set of used
schemas (or at least a subset). However, some devices use YANG models internally but do not support NETCONF

1.3. OpenDaylight User Guide 773

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules
http://localhost:8181/restconf/operational/network-topology:network-topology/

OpenDaylight Documentation Documentation, Release Carbon

monitoring. Netconf-connector can also communicate with these devices, but you have to side load the necessary yang
models into OpenDaylight’s YANG model cache for netconf-connector. In general there are 2 situations you might
encounter:

1. NETCONF device does not support ietf-netconf-monitoring but it does list all its YANG models as capabilities
in HELLO message

This could be a device that internally uses only ietf-inet-types YANG model with revision 2010-09-24. In the HELLO
message that is sent from this device there is this capability reported:

urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&revision=2010-09-24

For such devices you only need to put the schema into folder cache/schema inside your Karaf distribution.

Important: The file with YANG schema for ietf-inet-types has to be called ietf-inet-types@2010-09-24.yang. It is
the required naming format of the cache.

2. NETCONF device does not support ietf-netconf-monitoring and it does NOT list its YANG models as capa-
bilities in HELLO message

Compared to device that lists its YANG models in HELLO message, in this case there would be no capability with ietf-
inet-types in the HELLO message. This type of device basically provides no information about the YANG schemas it
uses so its up to the user of OpenDaylight to properly configure netconf-connector for this device.

Netconf-connector has an optional configuration attribute called yang-module-capabilities and this attribute can con-
tain a list of “YANG module based” capabilities. So by setting this configuration attribute, it is possible to override
the “yang-module-based” capabilities reported in HELLO message of the device. To do this, we need to modify the
configuration of netconf-connector by adding this XML (It needs to be added next to the address, port, username etc.
configuration elements):

<yang-module-capabilities xmlns=
→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<capability xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&

→˓revision=2010-09-24
</capability>

</yang-module-capabilities>

Remember to also put the YANG schemas into the cache folder.

Note: For putting multiple capabilities, you just need to replicate the capability xml element inside yang-module-
capability element. Capability element is modeled as a leaf-list. With this configuration, we would make the remote
device report usage of ietf-inet-types in the eyes of netconf-connector.

Reconfiguring Netconf-Connector While the Controller is Running

It is possible to change the configuration of a running module while the whole controller is running. This example
will continue where the last left off and will change the configuration for the brand new netconf-connector after it was
spawned. Using one RESTCONF request, we will change both username and password for the netconf-connector.

To update an existing netconf-connector you need to send following request to RESTCONF:

774 Chapter 1. Content for OpenDaylight Users

mailto:ietf-inet-types@2010-09-24.yang

OpenDaylight Documentation Documentation, Release Carbon

PUT http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/
controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/
new-netconf-device

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
→˓prefix:sal-netconf-connector</type>
<name>new-netconf-device</name>
<username xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">bob</
→˓username>
<password xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">passwd</
→˓password>
<tcp-only xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">false</
→˓tcp-only>
<event-executor xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:netty">

→˓prefix:netty-event-executor</type>
<name>global-event-executor</name>

</event-executor>
<binding-registry xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding

→˓">prefix:binding-broker-osgi-registry</type>
<name>binding-osgi-broker</name>

</binding-registry>
<dom-registry xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">

→˓prefix:dom-broker-osgi-registry</type>
<name>dom-broker</name>

</dom-registry>
<client-dispatcher xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:config:netconf

→˓">prefix:netconf-client-dispatcher</type>
<name>global-netconf-dispatcher</name>

</client-dispatcher>
<processing-executor xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">

→˓prefix:threadpool</type>
<name>global-netconf-processing-executor</name>

</processing-executor>
<keepalive-executor xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">

→˓prefix:scheduled-threadpool</type>
<name>global-netconf-ssh-scheduled-executor</name>

</keepalive-executor>
</module>

Since a PUT is a replace operation, the whole configuration must be specified along with the new values for username
and password. This should result in a 2xx response and the instance of netconf-connector called new-netconf-device

1.3. OpenDaylight User Guide 775

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device

OpenDaylight Documentation Documentation, Release Carbon

will be reconfigured to use username bob and password passwd. New configuration can be verified by executing:

GET http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/
controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/
new-netconf-device

With new configuration, the old connection will be closed and a new one established.

Destroying Netconf-Connector While the Controller is Running

Using RESTCONF one can also destroy an instance of a module. In case of netconf-connector, the module will be
destroyed, NETCONF connection dropped and all resources will be cleaned. To do this, simply issue a request to
following URL:

DELETE http://localhost:8181/restconf/config/network-topology:network-topology/topology/
topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:
sal-netconf-connector/new-netconf-device

The last element of the URL is the name of the instance and its predecessor is the type of that module (In our case the
type is sal-netconf-connector and name new-netconf-device). The type and name are actually the keys of the module
list.

Netconf-connector configuration with MD-SAL

It is also possible to configure new NETCONF connectors directly through MD-SAL with the usage of the network-
topology model. You can configure new NETCONF connectors both through the NETCONF server for MD-SAL
(port 2830) or RESTCONF. This guide focuses on RESTCONF.

Tip: To enable NETCONF connector configuration through MD-SAL install either the odl-netconf-topology
or odl-netconf-clustered-topology feature. We will explain the difference between these features later.

Preconditions

1. OpenDaylight is running

2. In Karaf, you must have the odl-netconf-topology or odl-netconf-clustered-topology fea-
ture installed.

3. Feature odl-restconf must be installed

4. Wait until log displays following entry:

Successfully pushed configuration snapshot 02-netconf-topology.xml(odl-netconf-
→˓topology,odl-netconf-topology)

or until

GET http://localhost:8181/restconf/operational/network-topology:network-topology/
→˓topology/topology-netconf/

returns a non-empty response, for example:

776 Chapter 1. Content for OpenDaylight Users

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device

OpenDaylight Documentation Documentation, Release Carbon

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<topology-id>topology-netconf</topology-id>

</topology>

Spawning new NETCONF connectors

To create a new NETCONF connector you need to send the following request to RESTCONF:

PUT http://localhost:8181/restconf/config/network-topology:network-topology/topology/
→˓topology-netconf/node/new-netconf-device

Headers:

• Accept: application/xml

• Content-Type: application/xml

Payload:

<node xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<node-id>new-netconf-device</node-id>
<host xmlns="urn:opendaylight:netconf-node-topology">127.0.0.1</host>
<port xmlns="urn:opendaylight:netconf-node-topology">17830</port>
<username xmlns="urn:opendaylight:netconf-node-topology">admin</username>
<password xmlns="urn:opendaylight:netconf-node-topology">admin</password>
<tcp-only xmlns="urn:opendaylight:netconf-node-topology">false</tcp-only>
<!-- non-mandatory fields with default values, you can safely remove these if you

→˓do not wish to override any of these values-->
<reconnect-on-changed-schema xmlns="urn:opendaylight:netconf-node-topology">false</

→˓reconnect-on-changed-schema>
<connection-timeout-millis xmlns="urn:opendaylight:netconf-node-topology">20000</

→˓connection-timeout-millis>
<max-connection-attempts xmlns="urn:opendaylight:netconf-node-topology">0</max-

→˓connection-attempts>
<between-attempts-timeout-millis xmlns="urn:opendaylight:netconf-node-topology">2000

→˓</between-attempts-timeout-millis>
<sleep-factor xmlns="urn:opendaylight:netconf-node-topology">1.5</sleep-factor>
<!-- keepalive-delay set to 0 turns off keepalives-->
<keepalive-delay xmlns="urn:opendaylight:netconf-node-topology">120</keepalive-

→˓delay>
</node>

Note that the device name in <node-id> element must match the last element of the restconf URL.

Reconfiguring an existing connector

The steps to reconfigure an existing connector are exactly the same as when spawning a new connector. The old
connection will be disconnected and a new connector with the new configuration will be created.

Deleting an existing connector

To remove an already configured NETCONF connector you need to send the following:

1.3. OpenDaylight User Guide 777

OpenDaylight Documentation Documentation, Release Carbon

DELETE http://localhost:8181/restconf/config/network-topology:network-topology/
→˓topology/topology-netconf/node/new-netconf-device

Connecting to a device supporting only NETCONF 1.0

OpenDaylight is schema-based distribution and heavily depends on YANG models. However some legacy NETCONF
devices are not schema-based and implement just RFC 4741. This type of device does not utilize YANG models
internally and OpenDaylight does not know how to communicate with such devices, how to validate data, or what the
semantics of data are.

NETCONF connector can communicate also with these devices, but the trade-offs are worsened possibilities in uti-
lization of NETCONF mountpoints. Using RESTCONF with such devices is not suported. Also communicating with
schemaless devices from application code is slightly different.

To connect to schemaless device, there is a optional configuration option in netconf-node-topology model called
schemaless. You have to set this option to true.

Clustered NETCONF connector

To spawn NETCONF connectors that are cluster-aware you need to install the
odl-netconf-clustered-topology karaf feature.

Warning: The odl-netconf-topology and odl-netconf-clustered-topology features are con-
sidered INCOMPATIBLE. They both manage the same space in the datastore and would issue conflicting writes
if installed together.

Configuration of clustered NETCONF connectors works the same as the configuration through the topology model in
the previous section.

When a new clustered connector is configured the configuration gets distributed among the member nodes and a
NETCONF connector is spawned on each node. From these nodes a master is chosen which handles the schema
download from the device and all the communication with the device. You will be able to read/write to/from the
device from all slave nodes due to the proxy data brokers implemented.

You can use the odl-netconf-clustered-topology feature in a single node scenario as well but the code
that uses akka will be used, so for a scenario where only a single node is used, odl-netconf-topology might be
preferred.

Netconf-connector utilization

Once the connector is up and running, users can utilize the new mount point instance. By using RESTCONF or from
their application code. This chapter deals with using RESTCONF and more information for app developers can be
found in the developers guide or in the official tutorial application ncmount that can be found in the coretutorials
project:

• https://github.com/opendaylight/coretutorials/tree/stable/beryllum/ncmount

Reading data from the device

Just invoke (no body needed):

778 Chapter 1. Content for OpenDaylight Users

https://github.com/opendaylight/coretutorials/tree/stable/beryllum/ncmount

OpenDaylight Documentation Documentation, Release Carbon

GET http://localhost:8080/restconf/operational/network-topology:network-topology/topology/topology-netconf/
node/new-netconf-device/yang-ext:mount/

This will return the entire content of operation datastore from the device. To view just the configuration datastore,
change operational in this URL to config.

Writing configuration data to the device

In general, you cannot simply write any data you want to the device. The data have to conform to the YANG models
implemented by the device. In this example we are adding a new interface-configuration to the mounted device
(assuming the device supports Cisco-IOS-XR-ifmgr-cfg YANG model). In fact this request comes from the tutorial
dedicated to the ncmount tutorial app.

POST http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/
new-netconf-device/yang-ext:mount/Cisco-IOS-XR-ifmgr-cfg:interface-configurations

<interface-configuration xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg">
<active>act</active>
<interface-name>mpls</interface-name>
<description>Interface description</description>
<bandwidth>32</bandwidth>
<link-status></link-status>

</interface-configuration>

Should return 200 response code with no body.

Tip: This call is transformed into a couple of NETCONF RPCs. Resulting NETCONF RPCs that go directly
to the device can be found in the OpenDaylight logs after invoking log:set TRACE org.opendaylight.
controller.sal.connect.netconf in the Karaf shell. Seeing the NETCONF RPCs might help with debug-
ging.

This request is very similar to the one where we spawned a new netconf device. That’s because we used the loopback
netconf-connector to write configuration data into config-subsystem datastore and config-subsystem picked it up from
there.

Invoking custom RPC

Devices can implement any additional RPC and as long as it provides YANG models for it, it can be invoked from
OpenDaylight. Following example shows how to invoke the get-schema RPC (get-schema is quite common among
netconf devices). Invoke:

POST http://localhost:8181/restconf/operations/network-topology:network-topology/topology/topology-netconf/
node/new-netconf-device/yang-ext:mount/ietf-netconf-monitoring:get-schema

<input xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<identifier>ietf-yang-types</identifier>
<version>2013-07-15</version>

</input>

This call should fetch the source for ietf-yang-types YANG model from the mounted device.

1.3. OpenDaylight User Guide 779

http://localhost:8080/restconf/operational/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/
http://localhost:8080/restconf/operational/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/Cisco-IOS-XR-ifmgr-cfg:interface-configurations
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/Cisco-IOS-XR-ifmgr-cfg:interface-configurations
http://localhost:8181/restconf/operations/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/ietf-netconf-monitoring:get-schema
http://localhost:8181/restconf/operations/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/ietf-netconf-monitoring:get-schema

OpenDaylight Documentation Documentation, Release Carbon

Netconf-connector + Netopeer

Netopeer (an open-source NETCONF server) can be used for testing/exploring NETCONF southbound in OpenDay-
light.

Netopeer installation

A Docker container with netopeer will be used in this guide. To install Docker and start the netopeer image perform
following steps:

1. Install docker http://docs.docker.com/linux/step_one/

2. Start the netopeer image:

docker run -rm -t -p 1831:830 dockeruser/netopeer

3. Verify netopeer is running by invoking (netopeer should send its HELLO message right away:

ssh root@localhost -p 1831 -s netconf
(password root)

Mounting netopeer NETCONF server

Preconditions:

• OpenDaylight is started with features odl-restconf-all and odl-netconf-connector-all.

• Netopeer is up and running in docker

Now just follow the chapter: Spawning netconf-connector. In the payload change the:

• name, e.g., to netopeer

• username/password to your system credentials

• ip to localhost

• port to 1831.

After netopeer is mounted successfully, its configuration can be read using RESTCONF by invoking:

GET http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/
netopeer/yang-ext:mount/

Northbound (NETCONF servers)

OpenDaylight provides 2 types of NETCONF servers:

• NETCONF server for config-subsystem (listening by default on port 1830)

– Serves as a default interface for config-subsystem and allows users to spawn/reconfigure/destroy modules
(or applications) in OpenDaylight

• NETCONF server for MD-SAL (listening by default on port 2830)

– Serves as an alternative interface for MD-SAL (besides RESTCONF) and allows users to read/write data
from MD-SAL’s datastore and to invoke its rpcs (NETCONF notifications are not available in the Boron
release of OpenDaylight)

780 Chapter 1. Content for OpenDaylight Users

https://github.com/cesnet/netopeer
https://www.docker.com/
https://index.docker.io/u/dockeruser/netopeer/
http://docs.docker.com/linux/step_one/
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/netopeer/yang-ext:mount/
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/netopeer/yang-ext:mount/

OpenDaylight Documentation Documentation, Release Carbon

Note: The reason for having 2 NETCONF servers is that config-subsystem and MD-SAL are 2 different compo-
nents of OpenDaylight and require different approach for NETCONF message handling and data translation. These 2
components will probably merge in the future.

NETCONF server for config-subsystem

This NETCONF server is the primary interface for config-subsystem. It allows the users to interact with config-
subsystem in a standardized NETCONF manner.

In terms of RFCs, these are supported:

• RFC-6241

• RFC-5277

• RFC-6470

– (partially, only the schema-change notification is available in Boron release)

• RFC-6022

For regular users it is recommended to use RESTCONF + the controller-config loopback mountpoint instead of using
pure NETCONF. How to do that is spesific for each component/module/application in OpenDaylight and can be found
in their dedicated user guides.

NETCONF server for MD-SAL

This NETCONF server is just a generic interface to MD-SAL in OpenDaylight. It uses the stadard MD-SAL APIs and
serves as an alternative to RESTCONF. It is fully model driven and supports any data and rpcs that are supported by
MD-SAL.

In terms of RFCs, these are supported:

• RFC-6241

• RFC-6022

• draft-ietf-netconf-yang-library-06

Notifications over NETCONF are not supported in the Boron release.

Tip: Install NETCONF northbound for MD-SAL by installing feature: odl-netconf-mdsal in karaf. Default
binding port is 2830.

Configuration

The default configuration can be found in file: 08-netconf-mdsal.xml. The file contains the configuration for all
necessary dependencies and a single SSH endpoint starting on port 2830. There is also a (by default disabled) TCP
endpoint. It is possible to start multiple endpoints at the same time either in the initial configuration file or while
OpenDaylight is running.

The credentials for SSH endpoint can also be configured here, the defaults are admin/admin. Credentials in the SSH
endpoint are not yet managed by the centralized AAA component and have to be configured separately.

1.3. OpenDaylight User Guide 781

http://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc5277
https://tools.ietf.org/html/rfc6470
https://tools.ietf.org/html/rfc6022
http://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6022
https://tools.ietf.org/html/draft-ietf-netconf-yang-library-06

OpenDaylight Documentation Documentation, Release Carbon

Verifying MD-SAL’s NETCONF server

After the NETCONF server is available it can be examined by a command line ssh tool:

ssh admin@localhost -p 2830 -s netconf

The server will respond by sending its HELLO message and can be used as a regular NETCONF server from then on.

Mounting the MD-SAL’s NETCONF server

To perform this operation, just spawn a new netconf-connector as described in Spawning netconf-connector. Just
change the ip to “127.0.0.1” port to “2830” and its name to “controller-mdsal”.

Now the MD-SAL’s datastore can be read over RESTCONF via NETCONF by invoking:

GET http://localhost:8181/restconf/operational/network-topology:network-topology/topology/topology-netconf/
node/controller-mdsal/yang-ext:mount

Note: This might not seem very useful, since MD-SAL can be accessed directly from RESTCONF or from Ap-
plication code, but the same method can be used to mount and control other OpenDaylight instances by the “master
OpenDaylight”.

NETCONF testtool

NETCONF testtool is a set of standalone runnable jars that can:

• Simulate NETCONF devices (suitable for scale testing)

• Stress/Performance test NETCONF devices

• Stress/Performance test RESTCONF devices

These jars are part of OpenDaylight’s controller project and are built from the NETCONF codebase in OpenDaylight.

Tip: Download testtool from OpenDaylight Nexus at: https://nexus.opendaylight.org/content/repositories/public/org/
opendaylight/netconf/netconf-testtool/1.1.0-Boron/

Nexus contains 3 executable tools:

• executable.jar - device simulator

• stress.client.tar.gz - NETCONF stress/performance measuring tool

• perf-client.jar - RESTCONF stress/performance measuring tool

Tip: Each executable tool provides help. Just invoke java -jar <name-of-the-tool.jar> --help

NETCONF device simulator

NETCONF testtool (or NETCONF device simulator) is a tool that

• Simulates 1 or more NETCONF devices

782 Chapter 1. Content for OpenDaylight Users

http://localhost:8181/restconf/operational/network-topology:network-topology/topology/topology-netconf/node/controller-mdsal/yang-ext:mount
http://localhost:8181/restconf/operational/network-topology:network-topology/topology/topology-netconf/node/controller-mdsal/yang-ext:mount
https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/netconf/netconf-testtool/1.1.0-Boron/
https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/netconf/netconf-testtool/1.1.0-Boron/

OpenDaylight Documentation Documentation, Release Carbon

• Is suitable for scale, performance or crud testing

• Uses core implementation of NETCONF server from OpenDaylight

• Generates configuration files for controller so that the OpenDaylight distribution (Karaf) can easily connect to
all simulated devices

• Provides broad configuration options

• Can start a fully fledged MD-SAL datastore

• Supports notifications

Building testtool

1. Check out latest NETCONF repository from git

2. Move into the opendaylight/netconf/tools/netconf-testtool/ folder

3. Build testtool using the mvn clean install command

Downloading testtool

Netconf-testtool is now part of default maven build profile for controller and can be also downloaded from nexus. The
executable jar for testtool can be found at: nexus-artifacts

Running testtool

1. After successfully building or downloading, move into the opendaylight/netconf/
tools/netconf-testtool/target/ folder and there is file netconf-testtool-1.1.
0-SNAPSHOT-executable.jar (or if downloaded from nexus just take that jar file)

2. Execute this file using, e.g.:

java -jar netconf-testtool-1.1.0-SNAPSHOT-executable.jar

This execution runs the testtool with default for all parameters and you should see this log output from the
testtool :

10:31:08.206 [main] INFO o.o.c.n.t.t.NetconfDeviceSimulator - Starting 1, SSH
→˓simulated devices starting on port 17830
10:31:08.675 [main] INFO o.o.c.n.t.t.NetconfDeviceSimulator - All simulated
→˓devices started successfully from port 17830 to 17830

Default Parameters

The default parameters for testtool are:

• Use SSH

• Run 1 simulated device

• Device port is 17830

• YANG modules used by device are only: ietf-netconf-monitoring, ietf-yang-types, ietf-inet-types (these modules
are required for device in order to support NETCONF monitoring and are included in the netconf-testtool)

1.3. OpenDaylight User Guide 783

https://git.opendaylight.org/gerrit/#/admin/projects/netconf
https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/netconf/netconf-testtool/1.1.0-Boron/

OpenDaylight Documentation Documentation, Release Carbon

• Connection timeout is set to 30 minutes (quite high, but when testing with 10000 devices it might take some
time for all of them to fully establish a connection)

• Debug level is set to false

• No distribution is modified to connect automatically to the NETCONF testtool

Verifying testtool

To verify that the simulated device is up and running, we can try to connect to it using command line ssh tool. Execute
this command to connect to the device:

ssh admin@localhost -p 17830 -s netconf

Just accept the server with yes (if required) and provide any password (testtool accepts all users with all passwords).
You should see the hello message sent by simulated device.

Testtool help

usage: netconf testool [-h] [--device-count DEVICES-COUNT] [--devices-per-port
→˓DEVICES-PER-PORT] [--schemas-dir SCHEMAS-DIR] [--notification-file NOTIFICATION-
→˓FILE]

[--initial-config-xml-file INITIAL-CONFIG-XML-FILE] [--
→˓starting-port STARTING-PORT] [--generate-config-connection-timeout GENERATE-CONFIG-
→˓CONNECTION-TIMEOUT]

[--generate-config-address GENERATE-CONFIG-ADDRESS] [--
→˓generate-configs-batch-size GENERATE-CONFIGS-BATCH-SIZE] [--distribution-folder
→˓DISTRO-FOLDER] [--ssh SSH] [--exi EXI]

[--debug DEBUG] [--md-sal MD-SAL]

NETCONF device simulator. Detailed info can be found at https://wiki.opendaylight.org/
→˓view/OpenDaylight_Controller:Netconf:Testtool#Building_testtool

optional arguments:
-h, --help show this help message and exit
--device-count DEVICES-COUNT

Number of simulated netconf devices to spin. This is the
→˓number of actual ports open for the devices.
--devices-per-port DEVICES-PER-PORT

Amount of config files generated per port to spoof more
→˓devices then are actually running
--schemas-dir SCHEMAS-DIR

Directory containing yang schemas to describe simulated
→˓devices. Some schemas e.g. netconf monitoring and inet types are included by default
--notification-file NOTIFICATION-FILE

Xml file containing notifications that should be sent to
→˓clients after create subscription is called
--initial-config-xml-file INITIAL-CONFIG-XML-FILE

Xml file containing initial simulatted configuration to be
→˓returned via get-config rpc
--starting-port STARTING-PORT

First port for simulated device. Each other device will have
→˓previous+1 port number
--generate-config-connection-timeout GENERATE-CONFIG-CONNECTION-TIMEOUT

Timeout to be generated in initial config files
--generate-config-address GENERATE-CONFIG-ADDRESS

784 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Address to be placed in generated configs
--generate-configs-batch-size GENERATE-CONFIGS-BATCH-SIZE

Number of connector configs per generated file
--distribution-folder DISTRO-FOLDER

Directory where the karaf distribution for controller is
→˓located
--ssh SSH Whether to use ssh for transport or just pure tcp
--exi EXI Whether to use exi to transport xml content
--debug DEBUG Whether to use debug log level instead of INFO
--md-sal MD-SAL Whether to use md-sal datastore instead of default simulated

→˓datastore.

Supported operations

Testtool default simple datastore supported operations:

get-schema returns YANG schemas loaded from user specified directory,

edit-config always returns OK and stores the XML from the input in a local variable available for get-config and get
RPC. Every edit-config replaces the previous data,

commit always returns OK, but does not actually commit the data,

get-config returns local XML stored by edit-config,

get returns local XML stored by edit-config with netconf-state subtree, but also supports filtering.

(un)lock returns always OK with no lock guarantee

create-subscription returns always OK and after the operation is triggered, provided NETCONF notifications (if any)
are fed to the client. No filtering or stream recognition is supported.

Note: when operation=”delete” is present in the payload for edit-config, it will wipe its local store to simulate the
removal of data.

When using the MD-SAL datastore testtool behaves more like normal NETCONF server and is suitable for crud
testing. create-subscription is not supported when testtool is running with the MD-SAL datastore.

Notification support

Testtool supports notifications via the –notification-file switch. To trigger the notification feed, create-subscription
operation has to be invoked. The XML file provided should look like this example file:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>
<notifications>

<!-- Notifications are processed in the order they are defined in XML -->

<!-- Notification that is sent only once right after create-subscription is called -->
<notification>

<!-- Content of each notification entry must contain the entire notification with
→˓event time. Event time can be hardcoded, or generated by testtool if XXXX is set as
→˓eventtime in this XML -->

<content><![CDATA[
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">

<eventTime>2011-01-04T12:30:46</eventTime>
<random-notification xmlns="http://www.opendaylight.org/netconf/event:1.0

→˓">

1.3. OpenDaylight User Guide 785

OpenDaylight Documentation Documentation, Release Carbon

<random-content>single no delay</random-content>
</random-notification>

</notification>
]]></content>

</notification>

<!-- Repeated Notification that is sent 5 times with 2 second delay inbetween -->
<notification>

<!-- Delay in seconds from previous notification -->
<delay>2</delay>
<!-- Number of times this notification should be repeated -->
<times>5</times>
<content><![CDATA[

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>XXXX</eventTime>
<random-notification xmlns="http://www.opendaylight.org/netconf/event:1.0

→˓">
<random-content>scheduled 5 times 10 seconds each</random-content>

</random-notification>
</notification>

]]></content>
</notification>

<!-- Single notification that is sent only once right after the previous notification
→˓-->
<notification>

<delay>2</delay>
<content><![CDATA[

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>XXXX</eventTime>
<random-notification xmlns="http://www.opendaylight.org/netconf/event:1.0

→˓">
<random-content>single with delay</random-content>

</random-notification>
</notification>

]]></content>
</notification>

</notifications>

Connecting testtool with controller Karaf distribution

Auto connect to OpenDaylight

It is possible to make OpenDaylight auto connect to the simulated devices spawned by testtool (so user does not
have to post a configuration for every NETCONF connector via RESTCONF). The testtool is able to modify the
OpenDaylight distribution to auto connect to the simulated devices after feature odl-netconf-connector-all
is installed. When running testtool, issue this command (just point the testool to the distribution:

java -jar netconf-testtool-1.1.0-SNAPSHOT-executable.jar --device-count 10 --
→˓distribution-folder ~/distribution-karaf-0.4.0-SNAPSHOT/ --debug true

With the distribution-folder parameter, the testtool will modify the distribution to include configuration for netconf-
connector to connect to all simulated devices. So there is no need to spawn netconf-connectors via RESTCONF.

786 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Running testtool and OpenDaylight on different machines

The testtool binds by default to 0.0.0.0 so it should be accessible from remote machines. However you need to set the
parameter “generate-config-address” (when using autoconnect) to the address of machine where testtool will be run
so OpenDaylight can connect. The default value is localhost.

Executing operations via RESTCONF on a mounted simulated device

Simulated devices support basic RPCs for editing their config. This part shows how to edit data for simulated device
via RESTCONF.

Test YANG schema

The controller and RESTCONF assume that the data that can be manipulated for mounted device is described by a
YANG schema. For demonstration, we will define a simple YANG model:

module test {
yang-version 1;
namespace "urn:opendaylight:test";
prefix "tt";

revision "2014-10-17";

container cont {

leaf l {
type string;

}
}

}

Save this schema in file called test@2014-10-17.yang and store it a directory called test-schemas/, e.g., your home
folder.

Editing data for simulated device

• Start the device with following command:

java -jar netconf-testtool-1.1.0-SNAPSHOT-executable.jar --device-count 10 --
→˓distribution-folder ~/distribution-karaf-0.4.0-SNAPSHOT/ --debug true --schemas-
→˓dir ~/test-schemas/

• Start OpenDaylight

• Install odl-netconf-connector-all feature

• Install odl-restconf feature

• Check that you can see config data for simulated device by executing GET request to

http://localhost:8181/restconf/config/network-topology:network-topology/topology/
→˓topology-netconf/node/17830-sim-device/yang-ext:mount/

1.3. OpenDaylight User Guide 787

mailto:test@2014-10-17.yang

OpenDaylight Documentation Documentation, Release Carbon

• The data should be just and empty data container

• Now execute edit-config request by executing a POST request to:

http://localhost:8181/restconf/config/network-topology:network-topology/topology/
→˓topology-netconf/node/17830-sim-device/yang-ext:mount

with headers:

Accept application/xml
Content-Type application/xml

and payload:

<cont xmlns="urn:opendaylight:test">
<l>Content</l>

</cont>

• Check that you can see modified config data for simulated device by executing GET request to

http://localhost:8181/restconf/config/network-topology:network-topology/topology/
→˓topology-netconf/node/17830-sim-device/yang-ext:mount/

• Check that you can see the same modified data in operational for simulated device by executing GET request to

http://localhost:8181/restconf/operational/network-topology:network-topology/
→˓topology/topology-netconf/node/17830-sim-device/yang-ext:mount/

Warning: Data will be mirrored in operational datastore only when using the default simple datastore.

Known problems

Slow creation of devices on virtual machines

When testtool seems to take unusually long time to create the devices use this flag when running it:

-Dorg.apache.sshd.registerBouncyCastle=false

Too many files open

When testtool or OpenDaylight starts to fail with TooManyFilesOpen exception, you need to increase the limit of open
files in your OS. To find out the limit in linux execute:

ulimit -a

Example sufficient configuration in linux:

core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 63338
max locked memory (kbytes, -l) 64

788 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

max memory size (kbytes, -m) unlimited
open files (-n) 500000
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 63338
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

To set these limits edit file: /etc/security/limits.conf, for example:

* hard nofile 500000

* soft nofile 500000
root hard nofile 500000
root soft nofile 500000

“Killed”

The testtool might end unexpectedly with a simple message: “Killed”. This means that the OS killed the tool due to
too much memory consumed or too many threads spawned. To find out the reason on linux you can use following
command:

dmesg | egrep -i -B100 'killed process'

Also take a look at this file: /proc/sys/kernel/threads-max. It limits the number of threads spawned by a process.
Sufficient (but probably much more than enough) value is, e.g., 126676

NETCONF stress/performance measuring tool

This is basically a NETCONF client that puts NETCONF servers under heavy load of NETCONF RPCs and measures
the time until a configurable amount of them is processed.

RESTCONF stress-performance measuring tool

Very similar to NETCONF stress tool with the difference of using RESTCONF protocol instead of NETCONF.

YANGLIB remote repository

There are scenarios in NETCONF deployment, that require for a centralized YANG models repository. YANGLIB
plugin provides such remote repository.

To start this plugin, you have to install odl-yanglib feature. Then you have to configure YANGLIB either through
RESTCONF or NETCONF. We will show how to configure YANGLIB through RESTCONF.

YANGLIB configuration through RESTCONF

You have to specify what local YANG modules directory you want to provide. Then you have to specify address and
port whre you want to provide YANG sources. For example, we want to serve yang sources from folder /sources on

1.3. OpenDaylight User Guide 789

OpenDaylight Documentation Documentation, Release Carbon

localhost:5000 adress. The configuration for this scenario will be as follows:

PUT http://localhost:8181/restconf/config/network-topology:network-topology/topology/
→˓topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/
→˓yanglib:yanglib/example

Headers:

• Accept: application/xml

• Content-Type: application/xml

Payload:

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
<name>example</name>
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">

→˓prefix:yanglib</type>
<broker xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding

→˓">prefix:binding-broker-osgi-registry</type>
<name>binding-osgi-broker</name>

</broker>
<cache-folder xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">/

→˓sources</cache-folder>
<binding-addr xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">

→˓localhost</binding-addr>
<binding-port xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">

→˓5000</binding-port>
</module>

This should result in a 2xx response and new YANGLIB instance should be created. This YANGLIB takes all YANG
sources from /sources folder and for each generates URL in form:

http://localhost:5000/schemas/{modelName}/{revision}

On this URL will be hosted YANG source for particular module.

YANGLIB instance also write this URL along with source identifier to ietf-netconf-yang-library/modules-state/module
list.

Netconf-connector with YANG library as fallback

There is an optional configuration in netconf-connector called yang-library. You can specify YANG library to be
plugged as additional source provider into the mount’s schema repository. Since YANGLIB plugin is advertising
provided modules through yang-library model, we can use it in mount point’s configuration as YANG library. To do
this, we need to modify the configuration of netconf-connector by adding this XML

<yang-library xmlns="urn:opendaylight:netconf-node-topology">
<yang-library-url xmlns="urn:opendaylight:netconf-node-topology">http://

→˓localhost:8181/restconf/operational/ietf-yang-library:modules-state</yang-library-
→˓url>
<username xmlns="urn:opendaylight:netconf-node-topology">admin</username>
<password xmlns="urn:opendaylight:netconf-node-topology">admin</password>

</yang-library>

This will register YANGLIB provided sources as a fallback schemas for particular mount point.

790 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

NETCONF Call Home

Important: The call home feature is experimental and will change in a future release. In particular, the Yang models
will change to those specified in the RFC 8071

Call Home Installation

ODL Call-Home server is installed in Karaf by installing karaf feature odl-netconf-callhome-ssh. REST-
CONF feature is recommended for configuring Call Home & testing its functionality.

feature:install odl-netconf-callhome-ssh

Note: In order to test Call Home functionality we recommend Netopeer. See Netopeer Call Home to learn how to
enable call-home on Netopeer.

Northbound Call-Home API

The northbound Call Home API is used for administering the Call-Home Server. The following describes this config-
uration.

Global Configuration

Configuring global credentials

ODL Call-Home server allows user to configure global credentials, which will be used for devices which does not
have device-specific credentials configured.

This is done by creating /odl-netconf-callhome-server:netconf-callhome-server/global/
credentials with username and passwords specified.

Configuring global username & passwords to try

PUT
/restconf/config/odl-netconf-callhome-server:netconf-callhome-server/global/
→˓credentials HTTP/1.1
Content-Type: application/json
Accept: application/json

{
"credentials":
{
"username": "example",
"passwords": ["first-password-to-try", "second-password-to-try"]

}
}

1.3. OpenDaylight User Guide 791

https://tools.ietf.org/html/rfc8071
https://github.com/CESNET/netopeer/wiki/CallHome

OpenDaylight Documentation Documentation, Release Carbon

Configuring to accept any ssh server key using global credentials

By default Netconf Call-Home Server accepts only incoming connections from allowed devices /
odl-netconf-callhome-server:netconf-callhome-server/allowed-devices, if user
desire to allow all incoming connections, it is possible to set accept-all-ssh-keys to true in /
odl-netconf-callhome-server:netconf-callhome-server/global.

The name of this devices in netconf-topology will be in format ip-address:port. For naming devices see
Device-Specific Configuration.

Allowing unknown devices to connect

This is a debug feature and should not be used in production. Besides being an obvious security issue, this also causes
the Call-Home Server to drastically increase its output to the log.

POST
/restconf/config/odl-netconf-callhome-server:netconf-callhome-server/global HTTP/1.1
Content-Type: application/json
Accept: application/json

{
"global": {
"accept-all-ssh-keys": "true"

}
}

Device-Specific Configuration

Allowing Device & Configuring Name

Netconf Call Home Server uses device provided SSH server key (host key) to identify device. The pairing of
name and server key is configured in /odl-netconf-callhome-server:netconf-callhome-server/
allowed-devices. This list is colloquially called a whitelist.

If the Call-Home Server finds the SSH host key in the whitelist, it continues to negotiate a NETCONF connection
over an SSH session. If the SSH host key is not found, the connection between the Call Home server and the device is
dropped immediately. In either case, the device that connects to the Call home server leaves a record of its presence in
the operational store.

Example of configuring device

PUT
/restconf/config/odl-netconf-callhome-server:netconf-callhome-server/allowed-devices/
→˓device/example HTTP/1.1
Content-Type: application/json
Accept: application/json

{
"device": {
"unique-id": "example",
"ssh-host-key":

→˓"AAAAB3NzaC1yc2EAAAADAQABAAABAQDHoH1jMjltOJnCt999uaSfc48ySutaD3ISJ9fSECe1Spdq9o9mxj0kBTTTq+2V8hPspuW75DNgN+V/
→˓rgJeoUewWwCAasRx9X4eTcRrJrwOQKzb5Fk+UKgQmenZ5uhLAefi2qXX/
→˓agFCtZi99vw+jHXZStfHm9TZCAf2zi+HIBzoVksSNJD0VvPo66EAvLn5qKWQD4AdpQQbKqXRf5/
→˓W8diPySbYdvOP2/7HFhDukW8yV/
→˓7ZtcywFUIu3gdXsrzwMnTqnATSLPPuckoi0V2jd8dQvEcu1DY+rRqmqu0tEkFBurlRZDf1yhNzq5xWY3OXcjgDGN+RxwuWQK3cRimcosH
→˓"

792 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

}
}

Configuring Device with Device-specific Credentials

Call Home Server also allows to configure credentials per device basis, this is done by introducing credentials
container into device-specific configuration. Format is same as in global credentials.

Configuring Device with Credentials

PUT
/restconf/config/odl-netconf-callhome-server:netconf-callhome-server/allowed-devices/
→˓device/example HTTP/1.1
Content-Type: application/json
Accept: application/json

{
"device": {
"unique-id": "example",
"credentials": {
"username": "example",
"passwords": ["password"]

},
"ssh-host-key":

→˓"AAAAB3NzaC1yc2EAAAADAQABAAABAQDHoH1jMjltOJnCt999uaSfc48ySutaD3ISJ9fSECe1Spdq9o9mxj0kBTTTq+2V8hPspuW75DNgN+V/
→˓rgJeoUewWwCAasRx9X4eTcRrJrwOQKzb5Fk+UKgQmenZ5uhLAefi2qXX/
→˓agFCtZi99vw+jHXZStfHm9TZCAf2zi+HIBzoVksSNJD0VvPo66EAvLn5qKWQD4AdpQQbKqXRf5/
→˓W8diPySbYdvOP2/7HFhDukW8yV/
→˓7ZtcywFUIu3gdXsrzwMnTqnATSLPPuckoi0V2jd8dQvEcu1DY+rRqmqu0tEkFBurlRZDf1yhNzq5xWY3OXcjgDGN+RxwuWQK3cRimcosH
→˓"
}

}

Operational Status

Once an entry is made into the config side of “allowed-devices”, the Call-Home Server will populate an correspond-
ing operational device that is the same as the config device but has an additional status. By default, this status is
DISCONNECTED. Once a device calls home, this status will change to one of:

CONNECTED — The device is currently connected and the NETCONF mount is available for network management.

FAILED_AUTH_FAILURE — The last attempted connection was unsuccessful because the Call-Home Server was
unable to provide the acceptable credentials of the device. The device is also disconnected and not available for
network management.

FAILED_NOT_ALLOWED — The last attempted connection was unsuccessful because the device was not recognized
as an acceptable device. The device is also disconnected and not available for network management.

FAILED — The last attempted connection was unsuccessful for a reason other than not allowed to connect or incorrect
client credentials. The device is also disconnected and not available for network management.

DISCONNECTED — The device is currently disconnected.

1.3. OpenDaylight User Guide 793

OpenDaylight Documentation Documentation, Release Carbon

Rogue Devices

Devices which are not on the whitelist might try to connect to the Call-Home Server. In these cases, the server will keep
a record by instantiating an operational device. There will be no corresponding config device for these rogues. They
can be identified readily because their device id, rather than being user-supplied, will be of the form “address:port”.
Note that if a device calls back multiple times, there will only be a single operatinal entry (even if the port changes);
these devices are recognized by their unique host key.

Southbound Call-Home API

The Call-Home Server listens for incoming TCP connections and assumes that the other side of the connection is a
device calling home via a NETCONF connection with SSH for management. The server uses port 6666 by default and
this can be configured via a blueprint configuration file.

The device must initiate the connection and the server will not try to re-establish the connection in case of a drop. By
requirement, the server cannot assume it has connectivity to the device due to NAT or firewalls among others.

NetIDE User Guide

Overview

OpenDaylight’s NetIDE project allows users to run SDN applications written for different SDN controllers, e.g.,
Floodlight or Ryu, on top of OpenDaylight managed infrastructure. The NetIDE Network Engine integrates a client
controller layer that executes the modules that compose a Network Application and interfaces with a server SDN
controller layer that drives the underlying infrastructure. In addition, it provides a uniform interface to common tools
that are intended to allow the inspection/debug of the control channel and the management of the network resources.

The Network Engine provides a compatibility layer capable of translating calls of the network applications running
on top of the client controllers, into calls for the server controller framework. The communication between the client
and the server layers is achieved through the NetIDE intermediate protocol, which is an application-layer protocol
on top of TCP that transmits the network control/management messages from the client to the server controller and
vice-versa. Between client and server controller sits the Core Layer which also speaks the intermediate protocol.

NetIDE API

Architecture and Design

The NetIDE engine follows the ONF’s proposed Client/Server SDN Application architecture.

Core

The NetIDE Core is a message-based system that allows for the exchange of messages between OpenDaylight and
subscribed Client SDN Controllers

Handling reply messages correctly

When an application module sends a request to the network (e.g. flow statistics, features, etc.), the Network Engine
must be able to correctly drive the corresponding reply to such a module. This is not a trivial task, as many modules
may compose the network application running on top of the Network Engine, and there is no way for the Core to pair

794 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.69: NetIDE Network Engine Architecture

1.3. OpenDaylight User Guide 795

OpenDaylight Documentation Documentation, Release Carbon

replies and requests. The transaction IDs (xid) in the OpenFlow header are unusable in this case, as it may happen that
different modules use the same values.

In the proposed approach, represented in the figure below, the task of pairing replies with requests is performed by
the Shim Layer which replaces the original xid of the OpenFlow requests coming from the core with new unique xid
values. The Shim also saves the original OpenFlow xid value and the module id it finds in the NetIDE header. As the
network elements must use the same xid values in the replies, the Shim layer can easily pair a reply with the correct
request as it is using unique xid values.

The below figure shows how the Network Engine should handle the controller-to-switch OpenFlow messages. The
diagram shows the case of a request message sent by an application module to a network element where the Backend
inserts the module id of the module in the NetIDE header (X in the Figure). For other messages generated by the client
controller platform (e.g. echo requests) or by the Backend, the module id of the Backend is used (Y in the Figure).

Fig. 1.70: NetIDE Communication Flow

Configuration

Below are the configuration items which can be edited, including their default values.

• core-address: This is the ip address of the NetIDE Core, default is 127.0.0.1

• core-port: The port of on which the NetIDE core is listening on

• address: IP address where the controller listens for switch connections, default is 127.0.0.1

796 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• port: Port where controller listens for switch connections, default: 6644

• transport-protocol: default is TCP

• switch-idle-timeout: default is 15000ms

NetVirt User Guide

L3VPN Service: User Guide

Overview

L3VPN Service in OpenDaylight provides a framework to create L3VPN based on BGP-MP. It also helps to create
Network Virtualization for DC Cloud environment.

Modules & Interfaces

L3VPN service can be realized using the following modules -

VPN Service Modules

1. VPN Manager : Creates and manages VPNs and VPN Interfaces

2. BGP Manager : Configures BGP routing stack and provides interface to routing services

3. FIB Manager : Provides interface to FIB, creates and manages forwarding rules in Dataplane

4. Nexthop Manager : Creates and manages nexthop egress pointer, creates egress rules in Dataplane

5. Interface Manager : Creates and manages different type of network interfaces, e.g., VLAN, l3tunnel etc.,

6. Id Manager : Provides cluster-wide unique ID for a given key. Used by different modules to get unique IDs for
different entities.

7. MD-SAL Util : Provides interface to MD-SAL. Used by service modules to access MD-SAL Datastore and
services.

All the above modules can function independently and can be utilized by other services as well.

Configuration Interfaces

The following modules expose configuration interfaces through which user can configure L3VPN Service.

1. BGP Manager

2. VPN Manager

3. Interface Manager

4. FIB Manager

1.3. OpenDaylight User Guide 797

OpenDaylight Documentation Documentation, Release Carbon

Configuration Interface Details

1. Data Node Path : /config/bgp:bgp-router/

(a) Fields :

i. local-as-identifier

ii. local-as-number

(b) REST Methods : GET, PUT, DELETE, POST

2. Data Node Path : /config/bgp:bgp-neighbors/

(a) Fields :

i. List of bgp-neighbor

(b) REST Methods : GET, PUT, DELETE, POST

3. Data Node Path : /config/bgp:bgp-neighbors/bgp-neighbor/‘‘{as-number}‘‘/

(a) Fields :

i. as-number

ii. ip-address

(b) REST Methods : GET, PUT, DELETE, POST

1. Data Node Path : /config/l3vpn:vpn-instances/

(a) Fields :

i. List of vpn-instance

(b) REST Methods : GET, PUT, DELETE, POST

2. Data Node Path : /config/l3vpn:vpn-interfaces/vpn-instance

(a) Fields :

i. name

ii. route-distinguisher

iii. import-route-policy

iv. export-route-policy

(b) REST Methods : GET, PUT, DELETE, POST

3. Data Node Path : /config/l3vpn:vpn-interfaces/

(a) Fields :

i. List of vpn-interface

(b) REST Methods : GET, PUT, DELETE, POST

4. Data Node Path : /config/l3vpn:vpn-interfaces/vpn-interface

(a) Fields :

i. name

ii. vpn-instance-name

(b) REST Methods : GET, PUT, DELETE, POST

5. Data Node Path : /config/l3vpn:vpn-interfaces/vpn-interface/‘‘{name}‘‘/adjacency

798 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

(a) Fields :

i. ip-address

ii. mac-address

(b) REST Methods : GET, PUT, DELETE, POST

1. Data Node Path : /config/if:interfaces/interface

(a) Fields :

i. name

ii. type

iii. enabled

iv. of-port-id

v. tenant-id

vi. base-interface

(b) type specific fields

i. when type = l2vlan

A. vlan-id

ii. when type = stacked_vlan

A. stacked-vlan-id

iii. when type = l3tunnel

A. tunnel-type

B. local-ip

C. remote-ip

D. gateway-ip

iv. when type = mpls

A. list labelStack

B. num-labels

(c) REST Methods : GET, PUT, DELETE, POST

1. Data Node Path : /config/odl-fib:fibEntries/vrfTables

(a) Fields :

i. List of vrfTables

(b) REST Methods : GET, PUT, DELETE, POST

2. Data Node Path : /config/odl-fib:fibEntries/vrfTables/‘‘{routeDistinguisher}‘‘/

(a) Fields :

i. route-distinguisher

ii. list vrfEntries

A. destPrefix

B. label

1.3. OpenDaylight User Guide 799

OpenDaylight Documentation Documentation, Release Carbon

C. nexthopAddress

(b) REST Methods : GET, PUT, DELETE, POST

3. Data Node Path : /config/odl-fib:fibEntries/ipv4Table

(a) Fields :

i. list ipv4Entry

A. destPrefix

B. nexthopAddress

(b) REST Methods : GET, PUT, DELETE, POST

Provisioning Sequence & Sample Configurations

Installation

1. Edit etc/custom.properties and set the following property: vpnservice.bgpspeaker.host.name = <bgpserver-ip>
<bgpserver-ip> here refers to the IP address of the host where BGP is running.

2. Run ODL and install VPN Service feature:install odl-vpnservice-core

Use REST interface to configure L3VPN service

Pre-requisites:

1. BGP stack with VRF support needs to installed and configured

(a) Configure BGP as specified in Step 1 below.

2. Create pairs of GRE/VxLAN Tunnels (using ovsdb/ovs-vsctl) between each switch and between each switch to
the Gateway node

(a) Create *l3tunnel interfaces corresponding to each tunnel in interfaces DS as specified in Step 2 below.*

Step 1 : Configure BGP

1. Configure BGP Router

REST API : PUT /config/bgp:bgp-router/

Sample JSON Data

{
"bgp-router": {

"local-as-identifier": "10.10.10.10",
"local-as-number": 108

}
}

800 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

2. Configure BGP Neighbors

REST API : PUT /config/bgp:bgp-neighbors/

Sample JSON Data

{
"bgp-neighbor" : [

{
"as-number": 105,
"ip-address": "169.144.42.168"

}
]

}

Step 2 : Create Tunnel Interfaces

Create l3tunnel interfaces corresponding to all GRE/VxLAN tunnels created with ovsdb (refer Prerequisites). Use
following REST Interface -

REST API : PUT /config/if:interfaces/if:interfacce

Sample JSON Data

{
"interface": [

{
"name" : "GRE_192.168.57.101_192.168.57.102",
"type" : "odl-interface:l3tunnel",
"odl-interface:tunnel-type": "odl-interface:tunnel-type-gre",
"odl-interface:local-ip" : "192.168.57.101",
"odl-interface:remote-ip" : "192.168.57.102",
"odl-interface:portId" : "openflow:1:3",
"enabled" : "true"

}
]

}

Following is expected as a result of these configurations

1. Unique If-index is generated

2. Interface-state operational DS is updated

3. Corresponding Nexthop Group Entry is created

Step 3 : OS Create Neutron Ports and attach VMs

At this step user creates VMs.

Step 4 : Create VM Interfaces

Create l2vlan interfaces corresponding to VM created in step 3

1.3. OpenDaylight User Guide 801

OpenDaylight Documentation Documentation, Release Carbon

REST API : PUT /config/if:interfaces/if:interface

Sample JSON Data

{
"interface": [

{
"name" : "dpn1-dp1.2",
"type" : "l2vlan",
"odl-interface:of-port-id" : "openflow:1:2",
"odl-interface:vlan-id" : "1",
"enabled" : "true"

}
]

}

Step 5: Create VPN Instance

REST API : PUT /config/l3vpn:vpn-instances/l3vpn:vpn-instance/

Sample JSON Data

{
"vpn-instance": [
{

"description": "Test VPN Instance 1",
"vpn-instance-name": "testVpn1",
"ipv4-family": {

"route-distinguisher": "4000:1",
"export-route-policy": "4000:1,5000:1",
"import-route-policy": "4000:1,5000:1",

}
}

]
}

Following is expected as a result of these configurations

1. VPN ID is allocated and updated in data-store

2. Corresponding VRF is created in BGP

3. If there are vpn-interface configurations for this VPN, corresponding action is taken as defined in step 5

Step 5 : Create VPN-Interface and Local Adjacency

this can be done in two steps as well

1. Create vpn-interface

REST API : PUT /config/l3vpn:vpn-interfaces/l3vpn:vpn-interface/

Sample JSON Data

802 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

{
"vpn-interface": [
{

"vpn-instance-name": "testVpn1",
"name": "dpn1-dp1.2",

}
]

}

Note: name here is the name of VM interface created in step 3, 4

2. Add Adjacencies on vpn-interafce

REST API : PUT /config/l3vpn:vpn-interfaces/l3vpn:vpn-interface/dpn1-dp1.3/adjacency

Sample JSON Data

{
"adjacency" : [

{
"ip-address" : "169.144.42.168",
"mac-address" : "11:22:33:44:55:66"

}
]

}

its a list, user can define more than one adjacency on a
vpn_interface

Above steps can be carried out in a single step as following

{
"vpn-interface": [

{
"vpn-instance-name": "testVpn1",
"name": "dpn1-dp1.3",
"odl-l3vpn:adjacency": [

{
"odl-l3vpn:mac_address": "11:22:33:44:55:66",
"odl-l3vpn:ip_address": "11.11.11.2",

}
]

}
]

}

Following is expected as a result of these configurations

1. Prefix label is generated and stored in DS

2. Ingress table is programmed with flow corresponding to interface

3. Local Egress Group is created

1.3. OpenDaylight User Guide 803

OpenDaylight Documentation Documentation, Release Carbon

4. Prefix is added to BGP for advertisement

5. BGP pushes route update to FIB YANG Interface

6. FIB Entry flow is added to FIB Table in OF pipeline

Support

Table of Contents

• Support

– Verified Combinations

– Open vSwitch Kernel and DPDK Modes

Verified Combinations

This section describes which versions of OpenStack and Open vSwitch are expected to work with with OpenDaylight.
Using combinations outside this list may work but have not been verified.

Note: Verified is defined as combinations that are actively tested and maintained. OpenDaylight, OpenStack and
Open vSwitch are very active and quickly adding new features that makes it difficult to verify all the different release
combinations. Different combinations are likely to work but support will be limited.

The following table details the expected supported combinations.

Table 1.5: Supported Version Matrix

OpenDaylight OpenStack Open vSwitch Sync Notes
Boron Newton 2.6 S
Carbon Ocata 2.7 Combination drops when Pike releases
Carbon Pike 2.7 S
Nitrogen Ocata 2.7 Combination drops when Pike releases
Nitrogen Pike 2.7 Combination drops when Queens releases
Nitrogen Queens 2.8/2.9 S
Oxygen Pike 2.7 Combination drops when Queens releases
Oxygen Queens 2.8/2.9 Combination drops when OpenStack R releases
Oxygen R 2.9 S

• (S): in the Sync column indicates the final supported combination for that OpenDaylight release.

• Differing release schedules will lead to short-lived combinations that will drop as the releases line up. An
example is with Carbon that releases before Pike so for a period of time Carbon is supported with Ocata.

• The current OpenDaylight version and the previous will be supported. Boron support will drop when Nitrogen
releases; Carbon support will drop when Oxygen releases.

Open vSwitch Kernel and DPDK Modes

The table below lists the Open vSwitch requirements for the Carbon release.

804 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Table 1.6: Kernel and DPDK Modes

Feature OVS 2.6 kernel mode OVS 2.6 dpdk mode
Conntrack - security groups yes yes
Conntrack - NAT yes no (target 2.8*)
Security groups stateful yes (conntrack) yes(conntrack)
Security groups learn yes (but not needed) yes (but not needed)
IPV4 NAT (without pkt punt to controller) yes (conntrack) no (target 2.8*)
IPV4 NAT (with pkt punt to controller) not needed yes (until 2.8*)

(*) support is tentatively scheduled for Open vSwitch 2.8

Bridge Configuration

Table of Contents

• Bridge Configuration

– The “br-int” Bridge

– Provider Networks

The following describes OVS bridge configurations supported by OpenDaylight.

The “br-int” Bridge

If the br-int bridge is not configured prior to the ovsdb manager connection with ODL, ODL will create it. If br-int
exists prior to the ovsdb manager connection, ODL will retain any existing configurations on br-int. Note that if
you choose to create br-int prior to connecting to ODL, disable-in-band MUST be set to true and any flows
configured may interfere with the flows ODL will create. ODL will add the following configuration items to br-int:

1. ODL will set itself as br-int’s controller

2. Any provider network configuration (see section “Provider Networks” below)

It is important to note that once the ovsdb manager connection is established with ODL, ODL “owns” br-int and other
applications should not modify its settings.

Provider Networks

Provider networks should be configured prior to OVSDB connecting to ODL. These are configured in the
Open_vSwitch table’s other_Config column and have the format <physnet>:<connector> where <physnet>
is the name of the provider network and <connector> is one of the following three options:

1. The name of a local interface (ODL will add this port to br-int)

2. The name of a bridge on OpenVSwitch (ODL will create patch ports between br-int and this bridge)

3. The name of a port already present on br-int (ODL will use that port)

For example, assume your provider network is called extnet and it is attached to the eth0 interface on your host you
can set this in OVSDB using the following command:

sudo ovs-vsctl set Open_vSwitch . Other_Config:provider_mappings=extnet:eth0

1.3. OpenDaylight User Guide 805

OpenDaylight Documentation Documentation, Release Carbon

If instead of eth0 the provider network is accesable via on OVS bridge called br-int, eth0 in the above command
would be substituted with br-int.

Neutron Service User Guide

Overview

This Karaf feature (odl-neutron-service) provides integration support for OpenStack Neutron via the Open-
Daylight ML2 mechanism driver. The Neutron Service is only one of the components necessary for OpenStack
integration. For those related components please refer to documentations of each component:

• https://wiki.openstack.org/wiki/Neutron

• https://launchpad.net/networking-odl

• http://git.openstack.org/cgit/openstack/networking-odl/

• https://wiki.opendaylight.org/view/NeutronNorthbound:Main

Use cases and who will use the feature

If you want OpenStack integration with OpenDaylight, you will need this feature with an OpenDaylight provider
feature like ovsdb/netvirt, group based policy, VTN, and lisp mapper. For provider configuration, please refer to each
individual provider’s documentation. Since the Neutron service only provides the northbound API for the OpenStack
Neutron ML2 mechanism driver. Without those provider features, the Neutron service itself isn’t useful.

Neutron Service feature Architecture

The Neutron service provides northbound API for OpenStack Neutron via RESTCONF and also its dedicated REST
API. It communicates through its YANG model with providers.

Configuring Neutron Service feature

As the Karaf feature includes everything necessary for communicating northbound, no special configuration is needed.
Usually this feature is used with an OpenDaylight southbound plugin that implements actual network virtualization
functionality and OpenStack Neutron. The user wants to setup those configurations. Refer to each related documenta-
tions for each configurations.

Administering or Managing odl-neutron-service

There is no specific configuration regarding to Neutron service itself. For related configuration, please refer to Open-
Stack Neutron configuration and OpenDaylight related services which are providers for OpenStack.

installing odl-neutron-service while the controller running

1. While OpenDaylight is running, in Karaf prompt, type: feature:install odl-neutron-service.

2. Wait a while until the initialization is done and the controller stabilizes.

806 Chapter 1. Content for OpenDaylight Users

https://wiki.openstack.org/wiki/Neutron
https://launchpad.net/networking-odl
http://git.openstack.org/cgit/openstack/networking-odl/
https://wiki.opendaylight.org/view/NeutronNorthbound:Main

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.71: Neutron Service Architecture

1.3. OpenDaylight User Guide 807

OpenDaylight Documentation Documentation, Release Carbon

odl-neutron-service provides only a unified interface for OpenStack Neutron. It doesn’t provide actual func-
tionality for network virtualization. Refer to each OpenDaylight project documentation for actual configuration with
OpenStack Neutron.

Neutron Logger

Another service, the Neutron Logger, is provided for debugging/logging purposes. It logs changes on Neutron YANG
models.

feature:install odl-neutron-logger

Network Intent Composition (NIC) User Guide

Overview

Network Intent Composition (NIC) is an interface that allows clients to express a desired state in an implementation-
neutral form that will be enforced via modification of available resources under the control of the OpenDaylight
system.

This description is purposely abstract as an intent interface might encompass network services, virtual devices, storage,
etc.

The intent interface is meant to be a controller-agnostic interface so that “intents” are portable across implementations,
such as OpenDaylight and ONOS. Thus an intent specification should not contain implementation or technology
specifics.

The intent specification will be implemented by decomposing the intent and augmenting it with implementation
specifics that are driven by local implementation rules, policies, and/or settings.

Network Intent Composition (NIC) Architecture

The core of the NIC architecture is the intent model, which specifies the details of the desired state. It is the respon-
sibility of the NIC implementation transforms this desired state to the resources under the control of OpenDaylight.
The component that transforms the intent to the implementation is typically referred to as a renderer.

For the Boron release, multiple, simultaneous renderers will not be supported. Instead either the VTN or GBP renderer
feature can be installed, but not both.

For the Boron release, the only actions supported are “ALLOW” and “BLOCK”. The “ALLOW” action indicates
that traffic can flow between the source and destination end points, while “BLOCK” prevents that flow; although it is
possible that an given implementation may augment the available actions with additional actions.

Besides transforming a desired state to an actual state it is the responsibility of a renderer to update the operational
state tree for the NIC data model in OpenDaylight to reflect the intent which the renderer implemented.

Configuring Network Intent Composition (NIC)

For the Boron release there is no default implementation of a renderer, thus without an additional module installed the
NIC will not function.

808 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Administering or Managing Network Intent Composition (NIC)

There is no additional administration of management capabilities related to the Network Intent Composition features.

Interactions

A user can interact with the Network Intent Composition (NIC) either through the RESTful interface using standard
RESTCONF operations and syntax or via the Karaf console CLI.

REST

Configuration

The Network Intent Composition (NIC) feature supports the following REST operations against the configuration data
store.

• POST - creates a new instance of an intent in the configuration store, which will trigger the realization of that
intent. An ID must be specified as part of this request as an attribute of the intent.

• GET - fetches a list of all configured intents or a specific configured intent.

• DELETE - removes a configured intent from the configuration store, which triggers the removal of the intent
from the network.

Operational

The Network Intent Composition (NIC) feature supports the following REST operations against the operational data
store.

• GET - fetches a list of all operational intents or a specific operational intent.

Karaf Console CLI

This feature provides karaf console CLI command to manipulate the intent data model. The CLI essentailly invokes
the equivalent data operations.

intent:add

Creates a new intent in the configuration data tree

DESCRIPTION
intent:add

Adds an intent to the controller.

Examples: --actions [ALLOW] --from <subject> --to <subject>
--actions [BLOCK] --from <subject>

SYNTAX
intent:add [options]

1.3. OpenDaylight User Guide 809

OpenDaylight Documentation Documentation, Release Carbon

OPTIONS
-a, --actions

Action to be performed.
-a / --actions BLOCK/ALLOW
(defaults to [BLOCK])

--help
Display this help message

-t, --to
Second Subject.
-t / --to <subject>
(defaults to any)

-f, --from
First subject.
-f / --from <subject>
(defaults to any)

intent:delete

Removes an existing intent from the system

DESCRIPTION
intent:remove

Removes an intent from the controller.

SYNTAX
intent:remove id

ARGUMENTS
id Intent Id

intent:list

Lists all the intents in the system

DESCRIPTION
intent:list

Lists all intents in the controller.

SYNTAX
intent:list [options]

OPTIONS
-c, --config

List Configuration Data (optional).
-c / --config <ENTER>

--help
Display this help message

intent:show

Displayes the details of a single intent

810 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

DESCRIPTION
intent:show

Shows detailed information about an intent.

SYNTAX
intent:show id

ARGUMENTS
id Intent Id

intent:map

List/Add/Delete current state from/to the mapping service.

DESCRIPTION
intent:map

List/Add/Delete current state from/to the mapping service.

SYNTAX
intent:map [options]

Examples: --list, -l [ENTER], to retrieve all keys.
--add-key <key> [ENTER], to add a new key with empty contents.
--del-key <key> [ENTER], to remove a key with it's values."
--add-key <key> --value [<value 1>, <value 2>, ...] [ENTER],
to add a new key with some values (json format).

OPTIONS
--help

Display this help message
-l, --list

List values associated with a particular key.
-l / --filter <regular expression> [ENTER]
--add-key

Adds a new key to the mapping service.
--add-key <key name> [ENTER]
--value

Specifies which value should be added/delete from the mapping service.
--value "key=>value"... --value "key=>value" [ENTER]

(defaults to [])
--del-key

Deletes a key from the mapping service.
--del-key <key name> [ENTER]

NIC Usage Examples

Default Requirements

Start mininet, and create three switches (s1, s2, and s3) and four hosts (h1, h2, h3, and h4) in it.

Replace <Controller IP> based on your environment.

1.3. OpenDaylight User Guide 811

OpenDaylight Documentation Documentation, Release Carbon

$ sudo mn --mac --topo single,2 --controller=remote,ip=<Controller IP>

mininet> net
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2

Downloading and deploy Karaf distribution

• Get the Boron distribution.

• Unzip the downloaded zip distribution.

• To run the Karaf.

./bin/karaf

• Once the console is up, type as below to install feature.

feature:install odl-nic-core-mdsal odl-nic-console odl-nic-listeners

Simple Mininet topology

!/usr/bin/python

from mininet.topo import Topo

class SimpleTopology(Topo):
"Simple topology example."

def __init__(self):
"Create custom topo."

Topo.__init__(self)

Switch1 = self.addSwitch('s1')
Switch2 = self.addSwitch('s2')
Switch3 = self.addSwitch('s3')
Switch4 = self.addSwitch('s4')
Host11 = self.addHost('h1')
Host12 = self.addHost('h2')
Host21 = self.addHost('h3')
Host22 = self.addHost('h4')
Host23 = self.addHost('h5')
Service1 = self.addHost('srvc1')

self.addLink(Host11, Switch1)

812 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

self.addLink(Host12, Switch1)
self.addLink(Host21, Switch2)
self.addLink(Host22, Switch2)
self.addLink(Host23, Switch2)
self.addLink(Switch1, Switch2)
self.addLink(Switch2, Switch4)
self.addLink(Switch4, Switch3)
self.addLink(Switch3, Switch1)
self.addLink(Switch3, Service1)
self.addLink(Switch4, Service1)

topos = { 'simpletopology': (lambda: SimpleTopology()) }

• Initialize topology

• Add hosts and switches

• Host used to represent the service

• Add links

Source: https://gist.github.com/vinothgithub15/315d0a427d5afc39f2d7

How to configure VTN Renderer

The section demonstrates allow or block packets of the traffic within a VTN Renderer, according to the specified flow
conditions.

The table below lists the actions to be applied when a packet matches the condition:

Action Function
Allow Permits the packet to be forwarded normally.
Block Discards the packet preventing it from being forwarded.

Requirement

• Before execute the follow steps, please, use default requirements. See section Default Requirements.

Configuration

Please execute the following curl commands to test network intent using mininet:

Create Intent

To provision the network for the two hosts(h1 and h2) and demonstrates the action allow.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/
→˓intent/b9a13232-525e-4d8c-be21-cd65e3436034 -d '{ "intent:intent" : { "intent:id":
→˓"b9a13232-525e-4d8c-be21-cd65e3436034", "intent:actions" : [{ "order" : 2, "allow"
→˓: {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"10.0.0.1
→˓"} }, { "order":2 , "end-point-group" : {"name":"10.0.0.2"}}] } }'

1.3. OpenDaylight User Guide 813

https://gist.github.com/vinothgithub15/315d0a427d5afc39f2d7

OpenDaylight Documentation Documentation, Release Carbon

To provision the network for the two hosts(h2 and h3) and demonstrates the action allow.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/
→˓intent/b9a13232-525e-4d8c-be21-cd65e3436035 -d '{ "intent:intent" : { "intent:id":
→˓"b9a13232-525e-4d8c-be21-cd65e3436035", "intent:actions" : [{ "order" : 2, "allow"
→˓: {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"10.0.0.2
→˓"} }, { "order":2 , "end-point-group" : {"name":"10.0.0.3"}}] } }'

Verification

As we have applied action type allow now ping should happen between hosts (h1 and h2) and (h2 and h3).

mininet> pingall
Ping: testing ping reachability
h1 -> h2 X X
h2 -> h1 h3 X
h3 -> X h2 X
h4 -> X X X

Update the intent

To provision block action that indicates traffic is not allowed between h1 and h2.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/
→˓intent/b9a13232-525e-4d8c-be21-cd65e3436034 -d '{ "intent:intent" : { "intent:id":
→˓"b9a13232-525e-4d8c-be21-cd65e3436034", "intent:actions" : [{ "order" : 2, "block"
→˓: {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"10.0.0.1
→˓"} }, { "order":2 , "end-point-group" : {"name":"10.0.0.2"}}] } }'

Verification

As we have applied action type block now ping should not happen between hosts (h1 and h2).

mininet> pingall
Ping: testing ping reachability
h1 -> X X X
h2 -> X h3 X
h3 -> X h2 X
h4 -> X X X

Note: Old actions and hosts are replaced by the new action and hosts.

Delete the intent

Respective intent and the traffics will be deleted.

814 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X DELETE http://localhost:8181/restconf/config/intent:intents/
→˓intent/b9a13232-525e-4d8c-be21-cd65e3436035

Verification

Deletion of intent and flow.

mininet> pingall
Ping: testing ping reachability
h1 -> X X X
h2 -> X X X
h3 -> X X X
h4 -> X X X

Note: Ping between two hosts can also be done using MAC Address

To provision the network for the two hosts(h1 MAC address and h2 MAC address).

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/
→˓intent/b9a13232-525e-4d8c-be21-cd65e3436035 -d '{ "intent:intent" : { "intent:id":
→˓"b9a13232-525e-4d8c-be21-cd65e3436035", "intent:actions" : [{ "order" : 2, "allow"
→˓: {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":
→˓"6e:4f:f7:27:15:c9"} }, { "order":2 , "end-point-group" : {"name":"aa:7d:1f:4a:70:81
→˓"}}] } }'

How to configure Redirect Action

The section explains the redirect action supported in NIC. The redirect functionality supports forwarding (to redirect)
the traffic to a service configured in SFC before forwarding it to the destination.

Following steps explain Redirect action function:

• Configure the service in SFC using the SFC APIs.

• Configure the intent with redirect action and the service information where the traffic needs to be redirected.

• The flows are computed as below

1. First flow entry between the source host connected node and the ingress node of the configured service.

2. Second flow entry between the egress Node id the configured service and the ID and destination host
connected host.

3. Third flow entry between the destination host node and the source host node.

Requirement

• Save the mininet Simple Mininet topology script as redirect_test.py

• Start mininet, and create switches in it.

Replace <Controller IP> based on your environment.

1.3. OpenDaylight User Guide 815

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.72: REDIRECT SERVICE

sudo mn --controller=remote,ip=<Controller IP>--custom redirect_test.py --topo mytopo2

mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
h3 h3-eth0:s2-eth1
h4 h4-eth0:s2-eth2
h5 h5-eth0:s2-eth3
srvc1 srvc1-eth0:s3-eth3 srvc1-eth1:s4-eth3
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0 s1-eth3:s2-eth4 s1-eth4:s3-eth2
s2 lo: s2-eth1:h3-eth0 s2-eth2:h4-eth0 s2-eth3:h5-eth0 s2-eth4:s1-eth3 s2-eth5:s4-
→˓eth1
s3 lo: s3-eth1:s4-eth2 s3-eth2:s1-eth4 s3-eth3:srvc1-eth0
s4 lo: s4-eth1:s2-eth5 s4-eth2:s3-eth1 s4-eth3:srvc1-eth1
c0

Starting the Karaf

• Before execute the following steps, please, use the default requirements. See section Downloading and deploy
Karaf distribution.

Configuration

Mininet

• Configure srvc1 as service node in the mininet environment.

Please execute the following commands in the mininet console (where mininet script is executed).

816 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.73: CONFIGURATION THE NETWORK IN MININET

srvc1 ip addr del 10.0.0.6/8 dev srvc1-eth0
srvc1 brctl addbr br0
srvc1 brctl addif br0 srvc1-eth0
srvc1 brctl addif br0 srvc1-eth1
srvc1 ifconfig br0 up
srvc1 tc qdisc add dev srvc1-eth1 root netem delay 200ms

Configure service in SFC

The service (srvc1) is configured using SFC REST API. As part of the configuration the ingress and egress node
connected the service is configured.

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{
"service-functions": {
"service-function": [

{
"name": "srvc1",
"sf-data-plane-locator": [
{

"name": "Egress",
"service-function-forwarder": "openflow:4"

},
{

"name": "Ingress",
"service-function-forwarder": "openflow:3"

}
],
"nsh-aware": false,
"type": "delay"

}
]

}
}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function:service-functions/

1.3. OpenDaylight User Guide 817

OpenDaylight Documentation Documentation, Release Carbon

SFF RESTCONF Request

Configuring switch and port information for the service functions.

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{
"service-function-forwarders": {
"service-function-forwarder": [

{
"name": "openflow:3",
"service-node": "OVSDB2",
"sff-data-plane-locator": [
{

"name": "Ingress",
"data-plane-locator":
{

"vlan-id": 100,
"mac": "11:11:11:11:11:11",
"transport": "service-locator:mac"

},
"service-function-forwarder-ofs:ofs-port":
{

"port-id" : "3"
}

}
],
"service-function-dictionary": [
{

"name": "srvc1",
"sff-sf-data-plane-locator":
{

"sf-dpl-name" : "openflow:3",
"sff-dpl-name" : "Ingress"

}
}

]
},
{

"name": "openflow:4",
"service-node": "OVSDB3",
"sff-data-plane-locator": [
{

"name": "Egress",
"data-plane-locator":
{

"vlan-id": 200,
"mac": "44:44:44:44:44:44",
"transport": "service-locator:mac"

},
"service-function-forwarder-ofs:ofs-port":
{

"port-id" : "3"
}

}
],
"service-function-dictionary": [
{

"name": "srvc1",

818 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"sff-sf-data-plane-locator":
{

"sf-dpl-name" : "openflow:4",
"sff-dpl-name" : "Egress"

}
}

]
}

]
}

}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-
→˓forwarder:service-function-forwarders/

CLI Command

To provision the network for the two hosts (h1 and h5).

Demonstrates the redirect action with service name srvc1.

intent:add -f <SOURCE_MAC> -t <DESTINATION_MAC> -a REDIRECT -s <SERVICE_NAME>

Example:

intent:add -f 32:bc:ec:65:a7:d1 -t c2:80:1f:77:41:ed -a REDIRECT -s srvc1

Verification

• As we have applied action type redirect now ping should happen between hosts h1 and h5.

mininet> h1 ping h5
PING 10.0.0.5 (10.0.0.5) 56(84) bytes of data.
64 bytes from 10.0.0.5: icmp_seq=2 ttl=64 time=201 ms
64 bytes from 10.0.0.5: icmp_seq=3 ttl=64 time=200 ms
64 bytes from 10.0.0.5: icmp_seq=4 ttl=64 time=200 ms

The redirect functionality can be verified by the time taken by the ping operation (200ms). The service srvc1 configured
using SFC introduces 200ms delay. As the traffic from h1 to h5 is redirected via the srvc1, the time taken by the traffic
from h1 to h5 will take about 200ms.

• Flow entries added to nodes for the redirect action.

mininet> dpctl dump-flows

*** s1 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.406s, table=0, n_packets=6, n_bytes=588, idle_age=3,
→˓priority=9000,in_port=1,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed
→˓actions=output:4
cookie=0x0, duration=9.475s, table=0, n_packets=6, n_bytes=588, idle_age=3,
→˓priority=9000,in_port=3,dl_src=c2:80:1f:77:41:ed, dl_dst=32:bc:ec:65:a7:d1
→˓actions=output:1
cookie=0x1, duration=362.315s, table=0, n_packets=144, n_bytes=12240, idle_age=4,
→˓priority=9500,dl_type=0x88cc actions=CONTROLLER:65535
cookie=0x1, duration=362.324s, table=0, n_packets=4, n_bytes=168, idle_age=3,
→˓priority=10000,arp actions=CONTROLLER:65535,NORMAL

*** s2 --

1.3. OpenDaylight User Guide 819

OpenDaylight Documentation Documentation, Release Carbon

NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.503s, table=0, n_packets=6, n_bytes=588, idle_age=3,
→˓priority=9000,in_port=3,dl_src=c2:80:1f:77:41:ed, dl_dst=32:bc:ec:65:a7:d1
→˓actions=output:4
cookie=0x0, duration=9.437s, table=0, n_packets=6, n_bytes=588, idle_age=3,
→˓priority=9000,in_port=5,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed
→˓actions=output:3
cookie=0x3, duration=362.317s, table=0, n_packets=144, n_bytes=12240, idle_age=4,
→˓priority=9500,dl_type=0x88cc actions=CONTROLLER:65535
cookie=0x3, duration=362.32s, table=0, n_packets=4, n_bytes=168, idle_age=3,
→˓priority=10000,arp actions=CONTROLLER:65535,NORMAL

*** s3 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.41s, table=0, n_packets=6, n_bytes=588, idle_age=3,
→˓priority=9000,in_port=2,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed
→˓actions=output:3

*** s4 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.486s, table=0, n_packets=6, n_bytes=588, idle_age=3,
→˓priority=9000,in_port=3,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed
→˓actions=output:1

How to configure QoS Attribute Mapping

This section explains how to provision QoS attribute mapping constraint using NIC OF-Renderer.

The QoS attribute mapping currently supports DiffServ. It uses a 6-bit differentiated services code point (DSCP) in
the 8-bit differentiated services field (DS field) in the IP header.

Ac-
tion

Function

Allow Permits the packet to be forwarded normally, but allows for packet header fields, e.g., DSCP, to be
modified.

The following steps explain QoS Attribute Mapping function:

• Initially configure the QoS profile which contains profile name and DSCP value.

• When a packet is transferred from a source to destination, the flow builder evaluates whether the transferred
packet matches the condition such as action, endpoints in the flow.

• If the packet matches the endpoints, the flow builder applies the flow matching action and DSCP value.

Requirement

• Before execute the following steps, please, use the default requirements. See section Default Requirements.

Configuration

Please execute the following CLI commands to test network intent using mininet:

• To apply the QoS constraint, configure the QoS profile.

intent:qosConfig -p <qos_profile_name> -d <valid_dscp_value>

820 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Example:

intent:qosConfig -p High_Quality -d 46

Note: Valid DSCP value ranges from 0-63.

• To provision the network for the two hosts (h1 and h3), add intents that allows traffic in both directions by
execute the following CLI command.

Demonstrates the ALLOW action with constraint QoS and QoS profile name.

intent:add -a ALLOW -t <DESTINATION_MAC> -f <SOURCE_MAC> -q QOS -p <qos_profile_name>

Example:

intent:add -a ALLOW -t 00:00:00:00:00:03 -f 00:00:00:00:00:01 -q QOS -p High_Quality
intent:add -a ALLOW -t 00:00:00:00:00:01 -f 00:00:00:00:00:03 -q QOS -p High_Quality

Verification

• As we have applied action type ALLOW now ping should happen between hosts h1 and h3.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

• Verification of the flow entry and ensuring the mod_nw_tos is part of actions.

mininet> dpctl dump-flows

*** s1 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=21.873s, table=0, n_packets=3, n_bytes=294, idle_age=21,
→˓priority=9000,dl_src=00:00:00:00:00:03,dl_dst=00:00:00:00:00:01 actions=NORMAL,mod_
→˓nw_tos:184
cookie=0x0, duration=41.252s, table=0, n_packets=3, n_bytes=294, idle_age=41,
→˓priority=9000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:03 actions=NORMAL,mod_
→˓nw_tos:184

Requirement

• Before execute the follow steps, please, use default requirements. See section Default Requirements.

How to configure Log Action

This section demonstrates log action in OF Renderer. This demonstration aims at enabling communication between
two hosts and logging the flow statistics details of the particular traffic.

1.3. OpenDaylight User Guide 821

OpenDaylight Documentation Documentation, Release Carbon

Configuration

Please execute the following CLI commands to test network intent using mininet:

• To provision the network for the two hosts (h1 and h3), add intents that allows traffic in both directions by
execute the following CLI command.

intent:add -a ALLOW -t <DESTINATION_MAC> -f <SOURCE_MAC>

Example:

intent:add -a ALLOW -t 00:00:00:00:00:03 -f 00:00:00:00:00:01
intent:add -a ALLOW -t 00:00:00:00:00:01 -f 00:00:00:00:00:03

• To log the flow statistics details of the particular traffic.

intent:add -a LOG -t <DESTINATION_MAC> -f <SOURCE_MAC>

Example:

intent:add -a LOG -t 00:00:00:00:00:03 -f 00:00:00:00:00:01

Verification

• As we have applied action type ALLOW now ping should happen between hosts h1 and h3.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

• To view the flow statistics log details such as, byte count, packet count and duration, check the karaf.log.

2015-12-15 22:56:20,256 | INFO | lt-dispatcher-23 | IntentFlowManager | 264 - org.
→˓opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Creating block intent for
→˓endpoints: source00:00:00:00:00:01 destination 00:00:00:00:00:03
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 -
→˓org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for
→˓Byte Count:Counter64 [_value=238]
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 -
→˓org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for
→˓Packet Count:Counter64 [_value=3]
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 -
→˓org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for
→˓Duration in Nano second:Counter32 [_value=678000000]
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 -
→˓org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for
→˓Duration in Second:Counter32 [_value=49]

OCP Plugin User Guide

This document describes how to use the ORI Control & Management Protocol (OCP) feature in OpenDaylight. This
document contains overview, scope, architecture and design, installation, configuration and tutorial sections for the
feature.

822 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Overview

OCP is an ETSI standard protocol for control and management of Remote Radio Head (RRH) equipment. The OCP
Project addresses the need for a southbound plugin that allows applications and controller services to interact with
RRHs using OCP. The OCP southbound plugin will allow applications acting as a Radio Equipment Control (REC) to
interact with RRHs that support an OCP agent.

Fig. 1.74: OCP southbound plugin

It is foreseen that, in 5G, C-RAN will use the packet-based Transport-SDN (T-SDN) as the fronthaul network to
transport both control plane and user plane data between RRHs and BBUs. As a result, the addition of the OCP
plugin to OpenDaylight will make it possible to build an RRH controller on top of OpenDaylight to centrally manage
deployed RRHs, as well as integrating the RRH controller with T-SDN on one single platform, achieving the joint
RRH and fronthaul network provisioning in C-RAN.

Scope

The OCP Plugin project includes:

• OCP v4.1.1 support

• Integration of OCP protocol library

• Simple API invoked as a RPC

• Simple API that allows applications to perform elementary functions of the following categories:

– Device management

1.3. OpenDaylight User Guide 823

OpenDaylight Documentation Documentation, Release Carbon

– Config management

– Object lifecycle

– Object state management

– Fault management

– Software management (not yet implemented)

• Indication processing

• Logging (not yet implemented)

• AISG/Iuant interface message tunnelling (not yet implemented)

• ALD connection management (not yet implemented)

Architecture and Design

OCP is a vendor-neutral standard communications interface defined to enable control and management between RE
and REC of an ORI architecture. The OCP Plugin supports the implementation of the OCP specification; it is based
on the Model Driven Service Abstraction Layer (MD-SAL) architecture.

OCP Plugin will support the following functionality:

• Connection handling

• Session management

• State management

• Error handling

• Connection establishment will be handled by OCP library using opensource netty.io library

• Message handling

• Event/indication handling and propagation to upper layers

Activities in OCP plugin module

• Integration with OCP protocol library

• Integration with corresponding MD-SAL infrastructure

OCP protocol library is a component in OpenDaylight that mediates communication between OpenDaylight controller
and RRHs supporting OCP protocol. Its primary goal is to provide the OCP Plugin with communication channel that
can be used for managing RRHs.

Key objectives:

• Immutable transfer objects generation (transformation of OCP protocol library’s POJO objects into OpenDay-
light DTO objects)

• Scalable non-blocking implementation

• Pipeline processing

• Scatter buffer

• TLS support

OCP Service addresses the need for a northbound interface that allows applications and other controller services to
interact with RRHs using OCP, by providing API for abstracting OCP operations.

824 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.75: Overall architecture

Message Flow

Installation

The OCP Plugin project has two top level Karaf features, odl-ocpplugin-all and odl-ocpjava-all, which contain the
following sub-features:

• odl-ocpplugin-southbound

• odl-ocpplugin-app-ocp-service

• odl-ocpjava-protocol

The OCP service (odl-ocpplugin-app-ocp-service), together with the OCP southbound (odl-ocpplugin-southbound)
and OCP protocol library (odl-ocpjava-protocol), provides OpenDaylight with basic OCP v4.1.1 functionality.

There are two ways to interact with OCP service: one is via RESTCONF (programmatic) and the other is using DLUX
web interface (manual), so you have to install the following features to enable RESTCONF and DLUX.

karaf#>feature:install odl-restconf odl-l2switch-switch odl-mdsal-apidocs odl-dlux-
→˓core odl-dluxapps-applications

Then install the odl-ocpplugin-all feature which includes the odl-ocpplugin-southbound and odl-ocpplugin-app-ocp-
service features. Note that the odl-ocpjava-all feature will be installed automatically as the odl-ocpplugin-southbound
feature is dependent on the odl-ocpjava-protocol feature.

karaf#>feature:install odl-ocpplugin-all

After all required features are installed, use following command from karaf console to check and make sure features
are correctly installed and initialized.

karaf#>feature:list | grep ocp

1.3. OpenDaylight User Guide 825

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.76: Message flow example

Configuration

Configuring the OCP plugin can be done via its configuration file, 62-ocpplugin.xml, which can be found in the
<odl-install-dir>/etc/opendaylight/karaf/ directory.

There are the following settings that are configurable:

1. port specifies the port number on which the OCP plugin listens for connection requests

2. radioHead-idle-timeout determines the time duration (unit: milliseconds) for which a radio head has been idle
before the idle event is triggered to perform health check

3. ocp-version specifies the OCP protocol version supported by the OCP plugin

4. rpc-requests-quota sets the maximum number of concurrent rpc requests allowed

5. global-notification-quota sets the maximum number of concurrent notifications allowed

Test Environment

The OCP Plugin project contains a simple OCP agent for testing purposes; the agent has been designed specifically to
act as a fake radio head device, giving you an idea of what it would look like during the OCP handshake taking place
between the OCP agent and OpenDaylight (OCP plugin).

To run the simple OCP agent, you have to first download its JAR file from OpenDaylight Nexus Repository.

wget https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/
→˓opendaylight/ocpplugin/simple-agent/${ocp-version}/simple-agent-${ocp-version}.jar

826 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.77: OCP plugin configuration

1.3. OpenDaylight User Guide 827

OpenDaylight Documentation Documentation, Release Carbon

Then run the agent with no arguments (assuming you already have JDK 1.8 or above installed) and it should display
the usage that lists the expected arguments.

java -classpath simple-agent-${ocp-version}.jar org.opendaylight.ocpplugin.OcpAgent

Usage: java org.opendaylight.ocpplugin.OcpAgent <controller's ip address> <port
→˓number> <vendor id> <serial number>

Here is an example:

java -classpath simple-agent-${ocp-version}.jar org.opendaylight.ocpplugin.OcpAgent
→˓127.0.0.1 1033 XYZ 123

Web / Graphical Interface

Once you enable the DLUX feature, you can access the Controller GUI using following URL.

http://<controller-ip>:8080/index.html

Expand Nodes. You should see all the radio head devices that are connected to the controller running at <controller-
ip>.

Fig. 1.78: DLUX Nodes

And expand Yang UI if you want to browse the various northbound APIs exposed by the OCP service.

For information on how to use these northbound APIs, please refer to the OCP Plugin Developer Guide.

828 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.79: DLUX Yang UI

1.3. OpenDaylight User Guide 829

OpenDaylight Documentation Documentation, Release Carbon

Programmatic Interface

The OCP Plugin project has implemented a complete set of the C&M operations (elementary functions) defined in the
OCP specification, in the form of both northbound and southbound APIs, including:

• health-check

• set-time

• re-reset

• get-param

• modify-param

• create-obj

• delete-obj

• get-state

• modify-state

• get-fault

The API is documented in the OCP Plugin Developer Guide under the section Southbound API and Northbound API,
respectively.

ODL-SDNi User Guide

Introduction

This user guide will help to setup the ODL-SDNi application.

Components

SDNiAggregator, SDNi API, SDNiWrapper, and SDNiUI are the four components in ODL-SDNi App:

• SDNiAggregator: Connects with switch, topology, hosttracker managers of controller to get the topology and
other related data.

• SDNi REST API: It is a part of controller northbound, which gives the required information by quering SDNi-
Aggregator through RESTCONF.

• SDNiWrapper: This component uses the SDNi REST API and gathers the information required to be shared
among controllers.

• SDNiUI:This component displays all the SDN controllers which are connected to each other.

Troubleshooting

To work with multiple controllers, change some of the configuration in config.ini file.
For example change the listening port of one controller to 6653 and other controller to
6663 in /root/controller/opendaylight/distribution/opendaylight/target/distribution.opendaylight-
osgipackage/opendaylight/configuration/config.ini (i.e., of.listenPort=6653).

OpenFlow related system parameters.

TCP port on which the controller is listening (default 6633) of.listenPort=6653

830 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

OF-CONFIG User Guide

Overview

OF-CONFIG defines an OpenFlow switch as an abstraction called an OpenFlow Logical Switch. The OF-CONFIG
protocol enables configuration of essential artifacts of an OpenFlow Logical Switch so that an OpenFlow controller
can communicate and control the OpenFlow Logical switch via the OpenFlow protocol. OF-CONFIG introduces an
operating context for one or more OpenFlow data paths called an OpenFlow Capable Switch for one or more switches.
An OpenFlow Capable Switch is intended to be equivalent to an actual physical or virtual network element (e.g.
an Ethernet switch) which is hosting one or more OpenFlow data paths by partitioning a set of OpenFlow related
resources such as ports and queues among the hosted OpenFlow data paths. The OF-CONFIG protocol enables
dynamic association of the OpenFlow related resources of an OpenFlow Capable Switch with specific OpenFlow
Logical Switches which are being hosted on the OpenFlow Capable Switch. OF-CONFIG does not specify or report
how the partitioning of resources on an OpenFlow Capable Switch is achieved. OF-CONFIG assumes that resources
such as ports and queues are partitioned amongst multiple OpenFlow Logical Switches such that each OpenFlow
Logical Switch can assume full control over the resources that is assigned to it.

How to start

• start OF-CONFIG feature as below:

feature:install odl-of-config-all

Configuration on the OVS supporting OF-CONFIG

Note: OVS is not supported by OF-CONFIG temporarily because the OpenDaylight version of OF-CONFIG is 1.2
while the OVS version of OF-CONFIG is not standard.

The introduction of configuring the OVS can be referred to:

https://github.com/openvswitch/of-config.

Connection Establishment between the Capable/Logical Switch and OF-CONFIG

The OF-CONFIG protocol is based on NETCONF. So the switches supporting OF-CONFIG can also access Open-
Daylight using the functions provided by NETCONF. This is the preparation step before connecting to OF-CONFIG.
How to access the switch to OpenDaylight using the NETCONF can be referred to the NETCONF Southbound User
Guide or NETCONF Southbound examples on the wiki.

Now the switches supporting OF-CONFIG and they have connected to the controller using NETCONF as described
in preparation phase. OF-CONFIG can check whether the switch can support OF-CONFIG by reading the capability
list in NETCONF.

The OF-CONFIG will get the information of the capable switch and logical switch via the NETCONF connection,
and creates separate topologies for the capable and logical switches in the OpenDaylight Topology module.

The Connection between the capable/logical switches and OF-CONFIG is finished.

1.3. OpenDaylight User Guide 831

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf

OpenDaylight Documentation Documentation, Release Carbon

Configuration On Capable Switch

Here is an example showing how to make the configuration to modify-controller-connection on the capable switch
using OF-CONFIG. Other configurations can follow the same way of the example.

• Example: modify-controller-connection

Note: this configuration can execute via the NETCONF, which can be referred to the NETCONF Southbound User
Guide or NETCONF Southbound examples on the wiki.

OpenFlow Plugin Project User Guide

Overview and Architecture

Overview and Architecture

Overview

OpenFlow is a vendor-neutral standard communications interface defined to enable interaction between the control
and forwarding layers of an SDN architecture. The OpenFlow plugin project intends to develop a plugin to support
implementations of the OpenFlow specification as it develops and evolves. Specifically the project has developed
a plugin aiming to support OpenFlow 1.0 and 1.3.x. It can be extended to add support for subsequent OpenFlow
specifications. The plugin is based on the Model Driven Service Abstraction Layer (MD-SAL) architecture (https://
wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL). This new OpenFlow 1.0/1.3 MD-SAL based plugin
is distinct from the old OpenFlow 1.0 plugin which was based on the API driven SAL (AD-SAL) architecture.

Scope

• Southbound plugin and integration of OpenFlow 1.0/1.3.x library project

• Ongoing support and integration of the OpenFlow specification

• The plugin should be implemented in an easily extensible manner

• Protocol verification activities will be performed on supported OpenFlow specifications

Architecture and Design

Functionality

OpenFlow 1.3 Plugin will support the following functionality

• Connection Handling

• Session Management

• State Management.

• Error Handling.

• Mapping function(Infrastructure to OF structures).

• Connection establishment will be handled by OpenFlow library using opensource netty.io library.

832 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL

OpenDaylight Documentation Documentation, Release Carbon

• Message handling(Ex: Packet in).

• Event handling and propagation to upper layers.

• Plugin will support both MD-SAL and Hard SAL.

• Will be backward compatible with OF 1.0.

Activities in OF plugin module

• New OF plugin bundle will support both OF 1.0 and OF 1.3.

• Integration with OpenFlow library.

• Integration with corresponding MD-SAL infrastructure.

• Hard SAL will be supported as adapter on top of MD-SAL plugin.

• OF 1.3 and OF 1.0 plugin will be integrated as single bundle.

Design

Overall Architecture

Fig. 1.80: overal architecture

1.3. OpenDaylight User Guide 833

OpenDaylight Documentation Documentation, Release Carbon

Coverage

Intro

This page is to catalog the things that have been tested and confirmed to work:

Coverage

Coverage has been moved to a GoogleDoc Spreadsheet

OF 1.3 Considerations

The baseline model is a OF 1.3 model, and the coverage tables primarily deal with OF 1.3. However for OF 1.0, we
have a column to indicate either N/A if it doesn’t apply, or whether its been confirmed working.

OF 1.0 Considerations

OF 1.0 is being considered as a switch with: * 1 Table * 0 Groups * 0 Meters * 1 Instruction (Apply Actions) * and a
limited vocabulary of matches and actions.

Tutorial / How-To

Running the controller with the new OpenFlow Plugin

How to start

There are all helium features (from features-openflowplugin) duplicated into features-openflowplugin-li. The dupli-
cates got suffix -li and provide Lithium codebase functionality.

These are most used:

• odl-openflowplugin-app-lldp-speaker-li

• odl-openflowplugin-flow-services-rest-li

• odl-openflowplugin-drop-test-li

In case topology is required then the first one should be installed.

feature:install odl-openflowplugin-app-lldp-speaker-li

The Li-southbound currently provides:

• flow management

• group management

• meter management

• statistics polling

What to log

In order to see really low level messages enter these in karaf console:

834 Chapter 1. Content for OpenDaylight Users

https://docs.google.com/spreadsheet/ccc?key=0AtpUuSEP8OyMdHNTZjBoM0VjOE9BcGhHMzk3N19uamc&usp=sharing%23gid=2#gid=0

OpenDaylight Documentation Documentation, Release Carbon

log:set TRACE org.opendaylight.openflowplugin.openflow.md.core
log:set TRACE org.opendaylight.openflowplugin.impl

How enable topology

In order for topology to work (fill dataStore/operational with links) there must be LLDP responses delivered back to
controller. This requires table-miss-entries. Table-miss-entry is a flow in table.id=0 with low priority, empty match
and one output action = send to controller. Having this flow installed on every node will enable for gathering and
exporting links between nodes into dataStore/operational. This is done if you use for example l2 switch application.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<barrier>false</barrier>
<cookie>54</cookie>
<flags>SEND_FLOW_REM</flags>
<flow-name>FooXf54</flow-name>
<hard-timeout>0</hard-timeout>
<id>4242</id>
<idle-timeout>0</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<apply-actions>

<action>
<output-action>

<max-length>65535</max-length>
<output-node-connector>CONTROLLER</output-node-connector>

</output-action>
<order>0</order>

</action>
</apply-actions>
<order>0</order>

</instruction>
</instructions>
<match/>
<priority>0</priority>
<strict>false</strict>
<table_id>0</table_id>

</flow>

Enable RESTCONF and Controller GUI

If you want to use RESTCONF with openflowplugin project, you have to install odl-restconf feature to enable that.
To install odl-restconf feature run the following command

karaf#>feature:install odl-restconf

If you want to access the Controller GUI, you have to install odl-dlux-core feature to enable that. Run following
command to install it

karaf#>feature:install odl-dlux-core

Once you enable the feature, access the Controller GUI using following URL

http://<controller-ip>:8181/dlux/index.html

1.3. OpenDaylight User Guide 835

OpenDaylight Documentation Documentation, Release Carbon

OpenFlow 1.3 Enabled Software Switches / Environment

Getting Mininet with OF 1.3

Download Mininet VM Upgraded to OF 1.3 (or the newer mininet-2.1.0 with OVS-2.0 that works with VMware
Player. For using this on VirtualBox, import this to VMware Player and then export the .vmdk) or you could build
one yourself Openflow Protocol Library:OpenVirtualSwitch[Instructions for setting up Mininet with OF 1.3].

Installing under VirtualBox

Fig. 1.81: configuring a host-only adapter

For whatever reason, at least on the Mac, NATed interfaces in VirtualBox don’t actually seem to allow for connections
from the host to the VM. Instead, you need to configure a host-only network and set it up. Do this by:

• Go to the VM’s settings in VirtualBox then to network and add a second adapter attached to “Host-only Adapter”
(see the screenshot to the right)

• Edit the /etc/network/interfaces file to configure the adapter properly by adding these two lines

836 Chapter 1. Content for OpenDaylight Users

https://www.dropbox.com/s/dbf9a372elqs1s1/mininet-of-1.3.zip
https://www.dropbox.com/s/t66vqfqx57a7nhk/mininet-2.1.0-of1.3.zip

OpenDaylight Documentation Documentation, Release Carbon

auto eth1
iface eth1 inet dhcp

• Reboot the VM

At this point you should have two interfaces one which gives you NATed access to the internet and another that gives
you access between your mac and the VMs. At least for me, the NATed interface gets a 10.0.2.x address and the the
host-only interface gets a 192.168.56.x address.

Your simplest choice: Use Vagrant

Download Virtual Box and install it Download Vagrant and install it

cd openflowplugin/vagrant/mininet-2.1.0-of-1.3/
vagrant up
vagrant ssh

This will leave you sshed into a fully provisioned Ubuntu Trusty box with mininet-2.1.0 and OVS 2.0 patches to work
with OF 1.3.

Setup CPqD Openflow 1.3 Soft Switch

Latest version of Openvswitch (v2.0.0) doesn’t support all the openflow 1.3 features, e.g group multipart statistics
request. Alternate options is CPqD Openflow 1.3 soft switch, It supports most of the openflow 1.3 features.

• You can setup the switch as per the instructions given on the following URL

https://github.com/CPqD/ofsoftswitch13

• Fire following command to start the switch

Start the datapath :

$ sudo udatapath/ofdatapath --datapath-id=<dpid> --interfaces=<if-list> ptcp:<port>
e.g $ sudo udatapath/ofdatapath --datapath-id=000000000001 --interfaces=ethX
→˓ptcp:6680

ethX should not be associated with ip address and ipv6 should be disabled on it. If you are installing the switch on
your local machine, you can use following command (for Ubuntu) to create virtual interface.

ip link add link ethX address 00:19:d1:29:d2:58 macvlan0 type macvlan

ethX - Any existing interface.

Or if you are using mininet VM for installing this switch, you can simply add one more adaptor to your VM.

Start Openflow protocol agent:

$secchan/ofprotocol tcp:<switch-host>:<switch-port> tcp:<ctrl-host>:<ctrl-port>
e.g $secchan/ofprotocol tcp:127.0.0.1:6680 tcp:127.0.0.1:6653

Commands to add entries to various tables of the switch

• Add meter

1.3. OpenDaylight User Guide 837

https://www.virtualbox.org/
http://www.vagrantup.com/
https://github.com/CPqD/ofsoftswitch13

OpenDaylight Documentation Documentation, Release Carbon

$utilities/dpctl tcp:<switch-host>:<switch-port> meter-mod cmd=add,meter=1
→˓drop:rate=50

• Add Groups

$utilities/dpctl tcp:127.0.0.1:6680 group-mod cmd=add,type=all,group=1

$utilities/dpctl tcp:127.0.0.1:6680 group-mod cmd=add,type=sel,group=2 weight=10
→˓output:1

• Create queue

$utilities/dpctl tcp:<ip>:<switch port> queue-mod <port-number> <queue-number>
→˓<minimum-bandwidth>
e.g - $utilities/dpctl tcp:127.0.0.1:6680 queue-mod 1 1 23

“dpctl” –help is not very intuitive, so please keep adding any new command you figured out while your experiment
with the switch.

Using the built-in Wireshark

Mininet comes with pre-installed Wireshark, but for some reason it does not include the Openflow protocol dissector.
You may want to get and install it in the /.wireshark/plugins/ directory.

First login to your mininet VM

ssh mininet@<your mininet vm ip> -X

The -X option in ssh will enable x-session over ssh so that the wireshark window can be shown on your host machine’s
display. when prompted, enter the password (mininet).

From the mininet vm shell, set the wireshark capture privileges (http://wiki.wireshark.org/CaptureSetup/
CapturePrivileges):

sudo chgrp mininet /usr/bin/dumpcap
sudo chmod 754 /usr/bin/dumpcap
sudo setcap 'CAP_NET_RAW+eip CAP_NET_ADMIN+eip' /usr/bin/dumpcap

Finally, start wireshark:

wireshark

The wireshark window should show up.

To see only Openflow packets, you may want to apply the following filter in the Filter window:

tcp.port == 6633 and tcp.flags.push == 1

Start the capture on any port.

Running Mininet with OF 1.3

From within the Mininet VM, run:

838 Chapter 1. Content for OpenDaylight Users

http://wiki.wireshark.org/CaptureSetup/CapturePrivileges
http://wiki.wireshark.org/CaptureSetup/CapturePrivileges

OpenDaylight Documentation Documentation, Release Carbon

sudo mn --topo single,3 --controller 'remote,ip=<your controller ip>,port=6653' --
→˓switch ovsk,protocols=OpenFlow13

End to End Inventory

Introduction

The purpose of this page is to walk you through how to see the Inventory Manager working end to end with the
openflowplugin using OpenFlow 1.3.

Basically, you will learn how to:

1. Run the Base/Virtualization/Service provider Edition with the new openflowplugin: OpenDay-
light_OpenFlow_Plugin::Running_controller_with_the_new_OF_plugin[Running the controller with the
new OpenFlow Plugin]

2. Start mininet to use OF 1.3: OpenDaylight_OpenFlow_Plugin::Test_Environment[OpenFlow 1.3 Enabled Soft-
ware Switches / Environment]

3. Use RESTCONF to see the nodes appear in inventory.

Restconf for Inventory

The REST url for listing all the nodes is:

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/

You will need to set the Accept header:

Accept: application/xml

You will also need to use HTTP Basic Auth with username: admin password: admin.

Alternately, if you have a node’s id you can address it as

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/<id>

for example

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/
→˓openflow:1

How to hit RestConf with Postman

Install Postman for Chrome

In the chrome browser bar enter

chrome://apps/

And click on Postman.

Enter the URL. Click on the Headers button on the far right. Enter the Accept: header. Click on the Basic Auth Tab at
the top and setup the username and password. Send.

1.3. OpenDaylight User Guide 839

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en

OpenDaylight Documentation Documentation, Release Carbon

Known Bug

If you have not had any switches come up, and though no children for http://localhost:8080/restconf/datastore/
opendaylight-inventory:nodes/ and exception will be thrown. I’m pretty sure I know how to fix this bug, just need
to get to it :)

End to End Flows

Instructions

Learn End to End for Inventory

See End to End Inventory

Check inventory

• Run mininet with support for OF 1.3 as described in End to End Inventory

• Make sure you see the openflow:1 node come up as described in End to End Inventory

Flow Strategy

Current way to flush a flow to switch looks like this:

1. Create MD-SAL modeled flow and commit it into dataStore using two phase commit MD-SAL FAQ

2. FRM gets notified and invokes corresponding rpc (addFlow) on particular service provider (if suitable provider
for given node registered)

3. The provider (plugin in this case) transforms MD-SAL modeled flow into OF-API modeled flow

4. OF-API modeled flow is then flushed into OFLibrary

5. OFLibrary encodes flow into particular version of wire protocol and sends it to particular switch

6. Check on mininet side if flow is set

Push your flow

• With PostMan:

– Set headers:

* Content-Type: application/xml

* Accept: application/xml

* Authentication

– Use URL: “http://<controller IP>:8181/restconf/config/opendaylight-
inventory:nodes/node/openflow:1/table/0/flow/1”

– PUT

– Use Body:

840 Chapter 1. Content for OpenDaylight Users

http://localhost:8080/restconf/datastore/opendaylight-inventory:nodes/
http://localhost:8080/restconf/datastore/opendaylight-inventory:nodes/
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ
http:/

OpenDaylight Documentation Documentation, Release Carbon

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<priority>2</priority>
<flow-name>Foo</flow-name>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

</ethernet-match>
<ipv4-destination>10.0.10.2/24</ipv4-destination>

</match>
<id>1</id>
<table_id>0</table_id>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>

</flow>

*Note: If you want to try a different flow id or a different table, make sure the URL and the body stay in sync. For
example, if you wanted to try: table 2 flow 20 you’d change the URL to:

“http://<controller IP>:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/20”

but you would also need to update the 20 and 2 in the body of the XML.

Other caveat, we have a known bug with updates, so please only write to a given flow id and table id on a given node
once at this time until we resolve it. Or you can use the DELETE method with the same URL in PostMan to delete the
flow information on switch and controller cache.

Check for your flow on the switch

• See your flow on your mininet:

mininet@mininet-vm:~$ sudo ovs-ofctl -O OpenFlow13 dump-flows s1
OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=7.325s, table=0, n_packets=0, n_bytes=0, idle_timeout=300, hard_
→˓timeout=600, send_flow_rem priority=2,ip,nw_dst=10.0.10.0/24 actions=dec_ttl

If you want to see the above information from the mininet prompt - use “sh” instead of “sudo” i.e. use “sh ovs-ofctl
-O OpenFlow13 dump-flows s1”.

Check for your flow in the controller config via RESTCONF

• See your configured flow in POSTMAN with

– URL http://<controller IP>:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/

– GET

1.3. OpenDaylight User Guide 841

http:/
http:/

OpenDaylight Documentation Documentation, Release Carbon

– You no longer need to set Accept header

Return Response:

{
"flow-node-inventory:table": [
{

"flow-node-inventory:id": 0,
"flow-node-inventory:flow": [

{
"flow-node-inventory:priority": 1,
"flow-node-inventory:id": "10b1a23c-5299-4f7b-83d6-563bab472754",
"flow-node-inventory:table_id": 0,
"flow-node-inventory:hard-timeout": 0,
"flow-node-inventory:idle-timeout": 0,
"flow-node-inventory:instructions": {

"flow-node-inventory:instruction": [
{
"flow-node-inventory:apply-actions": {
"flow-node-inventory:action": [
{
"flow-node-inventory:output-action": {
"flow-node-inventory:output-node-connector": "openflow:1:1"

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:match": {

"flow-node-inventory:ethernet-match": {
"flow-node-inventory:ethernet-type": {
"flow-node-inventory:type": 2048

}
},
"flow-node-inventory:ipv4-destination": "10.0.0.2"

},
"flow-node-inventory:cookie": 0

},
{
"flow-node-inventory:priority": 1,
"flow-node-inventory:id": "020bf359-1299-4da6-b4f7-368bd83b5841",
"flow-node-inventory:table_id": 0,
"flow-node-inventory:hard-timeout": 0,
"flow-node-inventory:idle-timeout": 0,
"flow-node-inventory:instructions": {

"flow-node-inventory:instruction": [
{
"flow-node-inventory:apply-actions": {
"flow-node-inventory:action": [
{
"flow-node-inventory:output-action": {
"flow-node-inventory:output-node-connector": "openflow:1:1"

},
"flow-node-inventory:order": 0

}

842 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

]
},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:match": {

"flow-node-inventory:ethernet-match": {
"flow-node-inventory:ethernet-type": {
"flow-node-inventory:type": 2048

}
},
"flow-node-inventory:ipv4-destination": "10.0.0.1"

},
"flow-node-inventory:cookie": 0

},
{

"flow-node-inventory:priority": 1,
"flow-node-inventory:id": "42172bfc-9142-4a92-9e90-ee62529b1e85",
"flow-node-inventory:table_id": 0,
"flow-node-inventory:hard-timeout": 0,
"flow-node-inventory:idle-timeout": 0,
"flow-node-inventory:instructions": {

"flow-node-inventory:instruction": [
{
"flow-node-inventory:apply-actions": {
"flow-node-inventory:action": [
{
"flow-node-inventory:output-action": {
"flow-node-inventory:output-node-connector": "openflow:1:1"

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:match": {

"flow-node-inventory:ethernet-match": {
"flow-node-inventory:ethernet-type": {
"flow-node-inventory:type": 2048

}
},
"flow-node-inventory:ipv4-destination": "10.0.0.3"

},
"flow-node-inventory:cookie": 0

},
{

"flow-node-inventory:priority": 1,
"flow-node-inventory:id": "99bf566e-89f3-4c6f-ae9e-e26012ceb1e4",
"flow-node-inventory:table_id": 0,
"flow-node-inventory:hard-timeout": 0,
"flow-node-inventory:idle-timeout": 0,
"flow-node-inventory:instructions": {

"flow-node-inventory:instruction": [
{

1.3. OpenDaylight User Guide 843

OpenDaylight Documentation Documentation, Release Carbon

"flow-node-inventory:apply-actions": {
"flow-node-inventory:action": [
{
"flow-node-inventory:output-action": {
"flow-node-inventory:output-node-connector": "openflow:1:1"

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:match": {

"flow-node-inventory:ethernet-match": {
"flow-node-inventory:ethernet-type": {
"flow-node-inventory:type": 2048

}
},
"flow-node-inventory:ipv4-destination": "10.0.0.4"

},
"flow-node-inventory:cookie": 0

},
{

"flow-node-inventory:priority": 1,
"flow-node-inventory:id": "019dcc2e-5b4f-44f0-90cc-de490294b862",
"flow-node-inventory:table_id": 0,
"flow-node-inventory:hard-timeout": 0,
"flow-node-inventory:idle-timeout": 0,
"flow-node-inventory:instructions": {

"flow-node-inventory:instruction": [
{
"flow-node-inventory:apply-actions": {
"flow-node-inventory:action": [
{
"flow-node-inventory:output-action": {
"flow-node-inventory:output-node-connector": "openflow:1:2"

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:match": {

"flow-node-inventory:ethernet-match": {
"flow-node-inventory:ethernet-type": {
"flow-node-inventory:type": 2048

}
},
"flow-node-inventory:ipv4-destination": "10.0.0.5"

},
"flow-node-inventory:cookie": 0

},
{

844 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"flow-node-inventory:priority": 1,
"flow-node-inventory:id": "968cf81e-3f16-42f1-8b16-d01ff719c63c",
"flow-node-inventory:table_id": 0,
"flow-node-inventory:hard-timeout": 0,
"flow-node-inventory:idle-timeout": 0,
"flow-node-inventory:instructions": {

"flow-node-inventory:instruction": [
{
"flow-node-inventory:apply-actions": {
"flow-node-inventory:action": [
{
"flow-node-inventory:output-action": {
"flow-node-inventory:output-node-connector": "openflow:1:2"

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:match": {

"flow-node-inventory:ethernet-match": {
"flow-node-inventory:ethernet-type": {
"flow-node-inventory:type": 2048

}
},
"flow-node-inventory:ipv4-destination": "10.0.0.8"

},
"flow-node-inventory:cookie": 0

},
{

"flow-node-inventory:priority": 1,
"flow-node-inventory:id": "1c14ea3c-9dcc-4434-b566-7e99033ea252",
"flow-node-inventory:table_id": 0,
"flow-node-inventory:hard-timeout": 0,
"flow-node-inventory:idle-timeout": 0,
"flow-node-inventory:instructions": {

"flow-node-inventory:instruction": [
{
"flow-node-inventory:apply-actions": {
"flow-node-inventory:action": [
{
"flow-node-inventory:output-action": {
"flow-node-inventory:output-node-connector": "openflow:1:2"

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:match": {

"flow-node-inventory:ethernet-match": {
"flow-node-inventory:ethernet-type": {

1.3. OpenDaylight User Guide 845

OpenDaylight Documentation Documentation, Release Carbon

"flow-node-inventory:type": 2048
}

},
"flow-node-inventory:ipv4-destination": "10.0.0.6"

},
"flow-node-inventory:cookie": 0

},
{
"flow-node-inventory:priority": 1,
"flow-node-inventory:id": "ed9deeb2-be8f-4b84-bcd8-9d12049383d6",
"flow-node-inventory:table_id": 0,
"flow-node-inventory:hard-timeout": 0,
"flow-node-inventory:idle-timeout": 0,
"flow-node-inventory:instructions": {

"flow-node-inventory:instruction": [
{
"flow-node-inventory:apply-actions": {
"flow-node-inventory:action": [
{
"flow-node-inventory:output-action": {
"flow-node-inventory:output-node-connector": "openflow:1:2"

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:order": 0

}
]

},
"flow-node-inventory:match": {

"flow-node-inventory:ethernet-match": {
"flow-node-inventory:ethernet-type": {
"flow-node-inventory:type": 2048

}
},
"flow-node-inventory:ipv4-destination": "10.0.0.7"

},
"flow-node-inventory:cookie": 0

}
]

}
]

}

Look for your flow stats in the controller operational data via

RESTCONF

• See your operational flow stats in POSTMAN with

– URL “http://<controller IP>:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/”

– GET

Return Response:

846 Chapter 1. Content for OpenDaylight Users

http:/

OpenDaylight Documentation Documentation, Release Carbon

{
"flow-node-inventory:table": [
{

"flow-node-inventory:id": 0,
"flow-node-inventory:flow": [

{
"flow-node-inventory:id": "10b1a23c-5299-4f7b-83d6-563bab472754",
"opendaylight-flow-statistics:flow-statistics": {

"opendaylight-flow-statistics:cookie": 0,
"opendaylight-flow-statistics:duration": {
"opendaylight-flow-statistics:nanosecond": 886000000,
"opendaylight-flow-statistics:second": 2707

},
"opendaylight-flow-statistics:hard-timeout": 0,
"opendaylight-flow-statistics:byte-count": 784,
"opendaylight-flow-statistics:match": {
"opendaylight-flow-statistics:ethernet-match": {
"opendaylight-flow-statistics:ethernet-type": {
"opendaylight-flow-statistics:type": 2048

}
},
"opendaylight-flow-statistics:ipv4-destination": "10.0.0.2/32"

},
"opendaylight-flow-statistics:priority": 1,
"opendaylight-flow-statistics:packet-count": 8,
"opendaylight-flow-statistics:table_id": 0,
"opendaylight-flow-statistics:idle-timeout": 0,
"opendaylight-flow-statistics:instructions": {
"opendaylight-flow-statistics:instruction": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:apply-actions": {
"opendaylight-flow-statistics:action": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:output-action": {
"opendaylight-flow-statistics:output-node-connector": "1",
"opendaylight-flow-statistics:max-length": 0

}
}

]
}

}
]

}
}

},
{
"flow-node-inventory:id": "020bf359-1299-4da6-b4f7-368bd83b5841",
"opendaylight-flow-statistics:flow-statistics": {

"opendaylight-flow-statistics:cookie": 0,
"opendaylight-flow-statistics:duration": {
"opendaylight-flow-statistics:nanosecond": 826000000,
"opendaylight-flow-statistics:second": 2711

},
"opendaylight-flow-statistics:hard-timeout": 0,
"opendaylight-flow-statistics:byte-count": 1568,
"opendaylight-flow-statistics:match": {

1.3. OpenDaylight User Guide 847

OpenDaylight Documentation Documentation, Release Carbon

"opendaylight-flow-statistics:ethernet-match": {
"opendaylight-flow-statistics:ethernet-type": {
"opendaylight-flow-statistics:type": 2048

}
},
"opendaylight-flow-statistics:ipv4-destination": "10.0.0.1/32"

},
"opendaylight-flow-statistics:priority": 1,
"opendaylight-flow-statistics:packet-count": 16,
"opendaylight-flow-statistics:table_id": 0,
"opendaylight-flow-statistics:idle-timeout": 0,
"opendaylight-flow-statistics:instructions": {
"opendaylight-flow-statistics:instruction": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:apply-actions": {
"opendaylight-flow-statistics:action": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:output-action": {
"opendaylight-flow-statistics:output-node-connector": "1",
"opendaylight-flow-statistics:max-length": 0

}
}

]
}

}
]

}
}

},
{

"flow-node-inventory:id": "42172bfc-9142-4a92-9e90-ee62529b1e85",
"opendaylight-flow-statistics:flow-statistics": {

"opendaylight-flow-statistics:cookie": 0,
"opendaylight-flow-statistics:duration": {
"opendaylight-flow-statistics:nanosecond": 548000000,
"opendaylight-flow-statistics:second": 2708

},
"opendaylight-flow-statistics:hard-timeout": 0,
"opendaylight-flow-statistics:byte-count": 784,
"opendaylight-flow-statistics:match": {
"opendaylight-flow-statistics:ethernet-match": {
"opendaylight-flow-statistics:ethernet-type": {
"opendaylight-flow-statistics:type": 2048

}
},
"opendaylight-flow-statistics:ipv4-destination": "10.0.0.3/32"

},
"opendaylight-flow-statistics:priority": 1,
"opendaylight-flow-statistics:packet-count": 8,
"opendaylight-flow-statistics:table_id": 0,
"opendaylight-flow-statistics:idle-timeout": 0,
"opendaylight-flow-statistics:instructions": {
"opendaylight-flow-statistics:instruction": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:apply-actions": {

848 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"opendaylight-flow-statistics:action": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:output-action": {
"opendaylight-flow-statistics:output-node-connector": "1",
"opendaylight-flow-statistics:max-length": 0

}
}

]
}

}
]

}
}

},
{

"flow-node-inventory:id": "99bf566e-89f3-4c6f-ae9e-e26012ceb1e4",
"opendaylight-flow-statistics:flow-statistics": {

"opendaylight-flow-statistics:cookie": 0,
"opendaylight-flow-statistics:duration": {
"opendaylight-flow-statistics:nanosecond": 296000000,
"opendaylight-flow-statistics:second": 2710

},
"opendaylight-flow-statistics:hard-timeout": 0,
"opendaylight-flow-statistics:byte-count": 1274,
"opendaylight-flow-statistics:match": {
"opendaylight-flow-statistics:ethernet-match": {
"opendaylight-flow-statistics:ethernet-type": {
"opendaylight-flow-statistics:type": 2048

}
},
"opendaylight-flow-statistics:ipv4-destination": "10.0.0.4/32"

},
"opendaylight-flow-statistics:priority": 1,
"opendaylight-flow-statistics:packet-count": 13,
"opendaylight-flow-statistics:table_id": 0,
"opendaylight-flow-statistics:idle-timeout": 0,
"opendaylight-flow-statistics:instructions": {
"opendaylight-flow-statistics:instruction": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:apply-actions": {
"opendaylight-flow-statistics:action": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:output-action": {
"opendaylight-flow-statistics:output-node-connector": "1",
"opendaylight-flow-statistics:max-length": 0

}
}

]
}

}
]

}
}

},
{

1.3. OpenDaylight User Guide 849

OpenDaylight Documentation Documentation, Release Carbon

"flow-node-inventory:id": "019dcc2e-5b4f-44f0-90cc-de490294b862",
"opendaylight-flow-statistics:flow-statistics": {

"opendaylight-flow-statistics:cookie": 0,
"opendaylight-flow-statistics:duration": {
"opendaylight-flow-statistics:nanosecond": 392000000,
"opendaylight-flow-statistics:second": 2711

},
"opendaylight-flow-statistics:hard-timeout": 0,
"opendaylight-flow-statistics:byte-count": 1470,
"opendaylight-flow-statistics:match": {
"opendaylight-flow-statistics:ethernet-match": {
"opendaylight-flow-statistics:ethernet-type": {
"opendaylight-flow-statistics:type": 2048

}
},
"opendaylight-flow-statistics:ipv4-destination": "10.0.0.5/32"

},
"opendaylight-flow-statistics:priority": 1,
"opendaylight-flow-statistics:packet-count": 15,
"opendaylight-flow-statistics:table_id": 0,
"opendaylight-flow-statistics:idle-timeout": 0,
"opendaylight-flow-statistics:instructions": {
"opendaylight-flow-statistics:instruction": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:apply-actions": {
"opendaylight-flow-statistics:action": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:output-action": {
"opendaylight-flow-statistics:output-node-connector": "2",
"opendaylight-flow-statistics:max-length": 0

}
}

]
}

}
]

}
}

},
{

"flow-node-inventory:id": "968cf81e-3f16-42f1-8b16-d01ff719c63c",
"opendaylight-flow-statistics:flow-statistics": {

"opendaylight-flow-statistics:cookie": 0,
"opendaylight-flow-statistics:duration": {
"opendaylight-flow-statistics:nanosecond": 344000000,
"opendaylight-flow-statistics:second": 2707

},
"opendaylight-flow-statistics:hard-timeout": 0,
"opendaylight-flow-statistics:byte-count": 784,
"opendaylight-flow-statistics:match": {
"opendaylight-flow-statistics:ethernet-match": {
"opendaylight-flow-statistics:ethernet-type": {
"opendaylight-flow-statistics:type": 2048

}
},
"opendaylight-flow-statistics:ipv4-destination": "10.0.0.8/32"

850 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

},
"opendaylight-flow-statistics:priority": 1,
"opendaylight-flow-statistics:packet-count": 8,
"opendaylight-flow-statistics:table_id": 0,
"opendaylight-flow-statistics:idle-timeout": 0,
"opendaylight-flow-statistics:instructions": {
"opendaylight-flow-statistics:instruction": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:apply-actions": {
"opendaylight-flow-statistics:action": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:output-action": {
"opendaylight-flow-statistics:output-node-connector": "2",
"opendaylight-flow-statistics:max-length": 0

}
}

]
}

}
]

}
}

},
{
"flow-node-inventory:id": "ed9deeb2-be8f-4b84-bcd8-9d12049383d6",
"opendaylight-flow-statistics:flow-statistics": {

"opendaylight-flow-statistics:cookie": 0,
"opendaylight-flow-statistics:duration": {
"opendaylight-flow-statistics:nanosecond": 577000000,
"opendaylight-flow-statistics:second": 2706

},
"opendaylight-flow-statistics:hard-timeout": 0,
"opendaylight-flow-statistics:byte-count": 784,
"opendaylight-flow-statistics:match": {
"opendaylight-flow-statistics:ethernet-match": {
"opendaylight-flow-statistics:ethernet-type": {
"opendaylight-flow-statistics:type": 2048

}
},
"opendaylight-flow-statistics:ipv4-destination": "10.0.0.7/32"

},
"opendaylight-flow-statistics:priority": 1,
"opendaylight-flow-statistics:packet-count": 8,
"opendaylight-flow-statistics:table_id": 0,
"opendaylight-flow-statistics:idle-timeout": 0,
"opendaylight-flow-statistics:instructions": {
"opendaylight-flow-statistics:instruction": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:apply-actions": {
"opendaylight-flow-statistics:action": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:output-action": {
"opendaylight-flow-statistics:output-node-connector": "2",
"opendaylight-flow-statistics:max-length": 0

1.3. OpenDaylight User Guide 851

OpenDaylight Documentation Documentation, Release Carbon

}
}

]
}

}
]

}
}

},
{

"flow-node-inventory:id": "1c14ea3c-9dcc-4434-b566-7e99033ea252",
"opendaylight-flow-statistics:flow-statistics": {

"opendaylight-flow-statistics:cookie": 0,
"opendaylight-flow-statistics:duration": {
"opendaylight-flow-statistics:nanosecond": 659000000,
"opendaylight-flow-statistics:second": 2705

},
"opendaylight-flow-statistics:hard-timeout": 0,
"opendaylight-flow-statistics:byte-count": 784,
"opendaylight-flow-statistics:match": {
"opendaylight-flow-statistics:ethernet-match": {
"opendaylight-flow-statistics:ethernet-type": {
"opendaylight-flow-statistics:type": 2048

}
},
"opendaylight-flow-statistics:ipv4-destination": "10.0.0.6/32"

},
"opendaylight-flow-statistics:priority": 1,
"opendaylight-flow-statistics:packet-count": 8,
"opendaylight-flow-statistics:table_id": 0,
"opendaylight-flow-statistics:idle-timeout": 0,
"opendaylight-flow-statistics:instructions": {
"opendaylight-flow-statistics:instruction": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:apply-actions": {
"opendaylight-flow-statistics:action": [
{
"opendaylight-flow-statistics:order": 0,
"opendaylight-flow-statistics:output-action": {
"opendaylight-flow-statistics:output-node-connector": "2",
"opendaylight-flow-statistics:max-length": 0

}
}

]
}

}
]

}
}

}
],
"opendaylight-flow-table-statistics:flow-table-statistics": {
"opendaylight-flow-table-statistics:active-flows": 8,
"opendaylight-flow-table-statistics:packets-matched": 97683,
"opendaylight-flow-table-statistics:packets-looked-up": 101772

}
}

852 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

]
}

Discovering and testing new Flow Types

Currently, the openflowplugin has a test-provider that allows you to push various flows through the system from the
OSGI command line. Once those flows have been pushed through, you can see them as examples and then use them
to see in the config what a particular flow example looks like.

Using addMDFlow

From the

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet at the controller as described above.

once you can see your node (probably openflow:1 if you’ve been following along) in the inventory, at the OSGI
command line try running:

addMDFlow openflow:1 f#

Where # is a number between 1 and 80. This will create one of 80 possible flows. You can go confirm they were
created on the switch.

Once you’ve done that, use

• GET

• Accept: application/xml

• URL: “http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/“

To see a full listing of the flows in table 2 (where they will be put). If you want to see a particular flow, look at

• URL: “http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:
1/table/2/flow/#”

Where # is 123 + the f# you used. So for example, for f22, your url would be

• URL: “http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:
1/table/2/flow/145“

Note: You may have to trim out some of the sections like that contain bitfields and binary types that are not correctly
modeled.

Note: Before attempting to PUT a flow you have created via addMDFlow, please change its URL and body to, for
example, use table 1 instead of table 2 or another Flow Id, so you don’t collide.

Note: There are several test command providers and the one handling flows is OpenflowpluginTestCommand-
Provider. Methods, which can be use as commands in OSGI-console have prefix _.

Example Flows

Examples for XML for various flow matches, instructions & actions can be found in following section here.

1.3. OpenDaylight User Guide 853

http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/
http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow
http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow
http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/145
http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/145

OpenDaylight Documentation Documentation, Release Carbon

End to End Topology

Introduction

The purpose of this page is to walk you through how to see the Topology Manager working end to end with the
openflowplugin using OpenFlow 1.3.

Basically, you will learn how to:

1. Run the Base/Virtualization/Service provider Edition with the new openflowplugin: Running the controller with
the new OpenFlow Plugin

2. Start mininet to use OF 1.3: OpenFlow 1.3 Enabled Software Switches / Environment

3. Use RESTCONF to see the topology information.

Restconf for Topology

The REST url for listing all the nodes is:

http://localhost:8080/restconf/operational/network-topology:network-topology/

You will need to set the Accept header:

Accept: application/xml

You will also need to use HTTP Basic Auth with username: admin password: admin.

Alternately, if you have a node’s id you can address it as

http://localhost:8080/restconf/operational/network-topology:network-topology/topology/
→˓<id>

for example

http://localhost:8080/restconf/operational/network-topology:network-topology/topology/
→˓flow:1/

How to hit RestConf with Postman

Install postman for Chrome

In the chrome browser bar enter

chrome://apps/

And click on Postman.

Enter the URL. Click on the Headers button on the far right. Enter the Accept: header. Click on the Basic Auth Tab at
the top and setup the username and password. Send.

854 Chapter 1. Content for OpenDaylight Users

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en

OpenDaylight Documentation Documentation, Release Carbon

End to End Groups

NOTE

Groups are NOT SUPPORTED in current (2.0.0) version of openvswitch. See

• http://openvswitch.org/releases/NEWS-2.0.0

• http://comments.gmane.org/gmane.linux.network.openvswitch.general/3251

For testing group feature please use for example CPQD virtual switch in the End to End Inventory section.

Instructions

Learn End to End for Inventory

End to End Inventory

Check inventory

Run CPqD with support for OF 1.3 as described in End to End Inventory

Make sure you see the openflow:1 node come up as described in End to End Inventory

Group Strategy

Current way to flush a group to switch looks like this:

1. create MD-SAL modeled group and commit it into dataStore using two phase commit

2. FRM gets notified and invokes corresponding rpc (addGroup) on particular service provider (if suitable provider
for given node registered)

3. the provider (plugin in this case) transforms MD-SAL modeled group into OF-API modeled group

4. OF-API modeled group is then flushed into OFLibrary

5. OFLibrary encodes group into particular version of wire protocol and sends it to particular switch

6. check on CPqD if group is installed

Push your Group

• With PostMan:

– Set

* Content-Type: application/xml

* Accept: application/xml

– Use URL: “http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/1”

– PUT

– Use Body:

1.3. OpenDaylight User Guide 855

http://www.openvswitch.org/download
http://openvswitch.org/releases/NEWS-2.0.0
http://comments.gmane.org/gmane.linux.network.openvswitch.general/3251
http:/

OpenDaylight Documentation Documentation, Release Carbon

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<group xmlns="urn:opendaylight:flow:inventory">

<group-type>group-all</group-type>
<buckets>

<bucket>
<action>

<pop-vlan-action/>
<order>0</order>

</action>
<bucket-id>12</bucket-id>
<watch_group>14</watch_group>
<watch_port>1234</watch_port>

</bucket>
<bucket>

<action>
<set-field>

<ipv4-source>100.1.1.1</ipv4-source>
</set-field>
<order>0</order>

</action>
<action>

<set-field>
<ipv4-destination>200.71.9.5210</ipv4-destination>

</set-field>
<order>1</order>

</action>
<bucket-id>13</bucket-id>
<watch_group>14</watch_group>
<watch_port>1234</watch_port>

</bucket>
</buckets>
<barrier>false</barrier>
<group-name>Foo</group-name>
<group-id>1</group-id>

</group>

Note: If you want to try a different group id, make sure the URL and the body stay in sync. For example, if
you wanted to try: group-id 20 you’d change the URL to “http://<ip-address>:8080/restconf/config/opendaylight-
inventory:nodes/node/openflow:1/group/20” but you would also need to update the <group-id>20</group-id> in the
body to match.

Note: <ip-address> :Provide the IP Address of the machine on which the controller is running.

Check for your group on the switch

• See your group on your cpqd switch:

COMMAND: sudo dpctl tcp:127.0.0.1:6000 stats-group

SENDING:
stat_req{type="grp", flags="0x0", group="all"}

856 Chapter 1. Content for OpenDaylight Users

http:/

OpenDaylight Documentation Documentation, Release Carbon

RECEIVED:
stat_repl{type="grp", flags="0x0", stats=[
{group="1", ref_cnt="0", pkt_cnt="0", byte_cnt="0", cntrs=[{pkt_cnt="0", byte_cnt="0"}
→˓, {pkt_cnt="0", byte_cnt="0"}]}]}

Check for your group in the controller config via RESTCONF

• See your configured group in POSTMAN with

– URL http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/1

– GET

– You should no longer need to set Accept

– Note: <ip-address> :Provide the IP Address of the machine on which the controller is running.

Look for your group stats in the controller operational data via RESTCONF

• See your operational group stats in POSTMAN with

– URL http://<ip-address>:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/group/1

– GET

– Note: <ip-address> :Provide the IP Address of the machine on which the controller is running.

Discovering and testing Group Types

Currently, the openflowplugin has a test-provider that allows you to push various groups through the system from the
OSGI command line. Once those groups have been pushed through, you can see them as examples and then use them
to see in the config what a particular group example looks like.

Using addGroup

From the

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your CPqD at the controller as described above.

once you can see your node (probably openflow:1 if you’ve been following along) in the inventory, at the OSGI
command line try running:

addGroup openflow:1

This will install a group in the switch. You can check whether the group is installed or not.

Once you’ve done that, use

• GET

• Accept: application/xml

1.3. OpenDaylight User Guide 857

http:/
http:/

OpenDaylight Documentation Documentation, Release Carbon

• URL: “http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/1”

– Note: <ip-address> :Provide the IP Address of the machine on which the controller is running.

Note: Before attempting to PUT a group you have created via addGroup, please change its URL and body to, for
example, use group 1 instead of group 2 or another Group Id, so that they don’t collide.

Note: There are several test command providers and the one handling groups is OpenflowpluginGroupTestCom-
mandProvider. Methods, which can be use as commands in OSGI-console have prefix _.

Example Group

Examples for XML for various Group Types can be found in the test-scripts bundle of the plugin code with names
g1.xml, g2.xml and g3.xml.

End to End Meters

Instructions

Learn End to End for Inventory

• End to End Inventory

Check inventory

• Run mininet with support for OF 1.3 as described in End to End Inventory

• Make sure you see the openflow:1 node come up as described in End to End Inventory

Meter Strategy

Current way to flush a meter to switch looks like this:

1. create MD-SAL modeled flow and commit it into dataStore using two phase commit

2. FRM gets notified and invokes corresponding rpc (addMeter) on particular service provider (if suitable provider
for given node registered)

3. the provider (plugin in this case) transforms MD-SAL modeled meter into OF-API modeled meter

4. OF-API modeled meter is then flushed into OFLibrary

5. OFLibrary encodes meter into particular version of wire protocol and sends it to particular switch

6. check on mininet side if meter is installed

858 Chapter 1. Content for OpenDaylight Users

http:/

OpenDaylight Documentation Documentation, Release Carbon

Push your Meter

• Using PostMan:

– Set Request Headers

* Content-Type: application/xml

* Accept: application/xml

– Use URL: “http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/1“

– Method:PUT

– Request Body:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<meter xmlns="urn:opendaylight:flow:inventory">

<container-name>abcd</container-name>
<flags>meter-burst</flags>
<meter-band-headers>

<meter-band-header>
<band-burst-size>444</band-burst-size>
<band-id>0</band-id>
<band-rate>234</band-rate>
<dscp-remark-burst-size>5</dscp-remark-burst-size>
<dscp-remark-rate>12</dscp-remark-rate>
<prec_level>1</prec_level>
<meter-band-types>

<flags>ofpmbt-dscp-remark</flags>
</meter-band-types>

</meter-band-header>
</meter-band-headers>
<meter-id>1</meter-id>
<meter-name>Foo</meter-name>

</meter>

Note: If you want to try a different meter id, make sure the URL and the body stay in sync. For example, if you
wanted to try: meter-id 20 you’d change the URL to “http://:8080/restconf/config/opendaylight-inventory:nodes/node/
openflow:1/meter/20” but you would also need to update the 20 in the body to match.

Note: :Provide the IP Address of the machine on which the controller is running.

Check for your meter on the switch

• See your meter on your CPqD switch:

COMMAND: $ sudo dpctl tcp:127.0.0.1:6000 meter-config

SENDING:
stat_req{type="mconf", flags="0x0"{meter_id= ffffffff"}

RECEIVED:
stat_repl{type="mconf", flags="0x0", stats=[{meter= c"", flags="4", bands=[{type =
→˓dscp_remark, rate="12", burst_size="5", prec_level="1"}]}]}

1.3. OpenDaylight User Guide 859

http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/1
http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/20
http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/20

OpenDaylight Documentation Documentation, Release Carbon

Check for your meter in the controller config via RESTCONF

• See your configured flow in POSTMAN with

– URL “http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/1“

– Method: GET

– You should no longer need to set Request Headers for Accept

– Note: :Provide the IP Address of the machine on which the controller is running.

Look for your meter stats in the controller operational data via RESTCONF

• See your operational meter stats in POSTMAN with

– URL “http://:8080/restconfig/operational/opendaylight-inventory:nodes/node/openflow:1/meter/1“

– Method: GET

– Note: :Provide the IP Address of the machine on which the controller is running.

Discovering and testing Meter Types

Currently, the openflowplugin has a test-provider that allows you to push various meters through the system from the
OSGI command line. Once those meters have been pushed through, you can see them as examples and then use them
to see in the config what a particular meter example looks like.

Using addMeter

From the

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your CPqD at the controller as described above.

Once you can see your CPqD connected to the controller, at the OSGI command line try running:

addMeter openflow:1

Once you’ve done that, use

• GET

• Accept: application/xml

• URL: “http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/12“

– Note: :Provide the IP Address of the machine on which the controller is running.

860 Chapter 1. Content for OpenDaylight Users

http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/1
http://:8080/restconfig/operational/opendaylight-inventory:nodes/node/openflow:1/meter/1
http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/12

OpenDaylight Documentation Documentation, Release Carbon

Note: Before attempting to PUT a meter you have created via addMeter, please change its URL and body to, for
example, use meter 1 instead of meter 2 or another Meter Id, so you don’t collide.

Note: There are several test command providers and the one handling Meter is OpenflowpluginMeterTestCom-
mandProvider. Methods, which can be used as commands in OSGI-console have prefix _. Examples: addMeter,
modifyMeter and removeMeter.

Example Meter

Examples for XML for various Meter Types can be found in the test-scripts bundle of the plugin code with names
m1.xml, m2.xml and m3.xml.

Statistics

Overview

This page contains high level detail about the statistics collection mechanism in new OpenFlow plugin.

Statistics collection in new OpenFlow plugin

New OpenFlow plugin collects following statistics from OpenFlow enabled node(switch):

1. Individual Flow Statistics

2. Aggregate Flow Statistics

3. Flow Table Statistics

4. Port Statistics

5. Group Description

6. Group Statistics

7. Meter Configuration

8. Meter Statistics

9. Queue Statistics

10. Node Description

11. Flow Table Features

12. Port Description

13. Group Features

14. Meter Features

At a high level statistics collection mechanism is divided into following three parts

1. Statistics related YANG models, service APIs and notification interfaces are defined in the MD-SAL.

2. Service APIs (RPCs) defined in yang models are implemented by OpenFlow plugin. Notification interfaces are
wired up by OpenFlow plugin to MD-SAL.

1.3. OpenDaylight User Guide 861

https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=tree;f=opendaylight/md-sal/model/model-flow-statistics;h=3488133625ccf18d023bc59aa35c38e922b17d8d;hb=HEAD

OpenDaylight Documentation Documentation, Release Carbon

3. Statistics Manager Module: This module use service APIs implemented by OpenFlow plugin to send statistics
requests to all the connected OpenFlow enabled nodes. Module also implements notification interfaces to receive
statistics response from nodes. Once it receives statistics response, it augment all the statistics data to the
relevant element of the node (like node-connector, flow, table,group, meter) and store it in MD-SAL operational
data store.

Details of statistics collection

• Current implementation collects above mentioned statistics (except 10-14) at a periodic interval of 15 seconds.

• Statistics mentioned in 10 to 14 are only fetched when any node connects to the controller because these statistics
are just static details about the respective elements.

• Whenever any new element is added to node (like flow, group, meter, queue) it sends statistics request immedi-
ately to fetch the latest statistics and store it in the operational data store.

• Whenever any element is deleted from the node, it immediately remove the relevant statistics from operational
data store.

• Statistics data are augmented to their respective element stored in the configuration data store. E.g Controller
installed flows are stored in configuration data store. Whenever Statistics Manager receive statistics data related
to these flow, it search the corresponding flow in the configuration data store and augment statistics in the
corresponding location in operational data store. Similar approach is used for other elements of the node.

• Statistics Manager stores flow statistics as an unaccounted flow statistics in operational data store if there is no
corresponding flow exist in configuration data store. ID format of unaccounted flow statistics is as follows -
[#UF$TABLE**Unaccounted-flow-count - e.g #UF$TABLE*2*1].

• All the unaccounted flows will be cleaned up periodically after every two cycle of flow statistics collection,
given that there is no update for these flows in the last two cycles.

• Statistics Manager only entertains statistics response for the request sent by itself. User can write its own
statistics collector using the statistics service APIs and notification defined in yang models, it won’t effect the
functioning of Statistics Manager.

• OpenFlow 1.0 don’t have concept of Meter and Group, so Statistics Manager don’t send any group & meter
related statistics request to OpenFlow 1.0 enabled switch.

RESTCONF Uris to access statistics of various node elements

• Aggregate Flow Statistics & Flow Table Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/
→˓node/{node-id}/table/{table-id}

• Individual Flow Statistics from specific table

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/
→˓node/{node-id}/table/{table-id}/flow/{flow-id}

• Group Features & Meter Features Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/
→˓node/{node-id}

• Group Description & Group Statistics

862 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/
→˓node/{node-id}/group/{group-id}

• Meter Configuration & Meter Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/
→˓node/{node-id}/meter/{meter-id}

• Node Connector Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/
→˓node/{node-id}/node-connector/{node-connector-id}

• Queue Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/
→˓node/{node-id}/node-connector/{node-connector-id}/queue/{queue-id}

Bugs

For more details and queuries, please send mail to openflowplugin-dev@lists.opendaylight.org or avish-
noi@in.ibm.com If you want to report any bug in statistics collection, please use bugzilla.

Web / Graphical Interface

In the Hydrogen & Helium release, the current Web UI does not support the new OpenFlow 1.3 constructs such as
groups, meters, new fields in the flows, multiple flow tables, etc.

Command Line Interface

The following is not exactly CLI - just a set of test commands which can be executed on the OSGI console testing
various features in OpenFlow 1.3 spec.

• OSGI Console Test Provider Commands: Flows

• OSGI Console Test Provider Commands: Groups

• OSGI Console Test Provider Commands: Meters

• OSGI Console Test Provider Commands: Topology Events

Flows : Test Provider

Currently, the openflowplugin has a test-provider that allows you to push various flows through the system from the
OSGI command line. Once those flows have been pushed through, you can see them as examples and then use them
to see in the config what a particular flow example looks like.

AddFlow : addMDFlow

Run the controller by executing:

1.3. OpenDaylight User Guide 863

mailto:openflowplugin-dev@lists.opendaylight.org
mailto:avishnoi@in.ibm.com
mailto:avishnoi@in.ibm.com
https://bugs.opendaylight.org

OpenDaylight Documentation Documentation, Release Carbon

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters –controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following along) in the inventory, at the OSGI command
line try running:

addMDFlow openflow:1 f#

Where # is a number between 1 and 80 and openflow:1 is the of the switch. This will create one of 80 possible flows.
You can confirm that they were created on the switch.

RemoveFlow : removeMDFlow

Similar to addMDFlow, from the controller OSGi prompt, while your switch is connected to the controller, try running:

removeMDFlow openflow:1 f#

where # is a number between 1 and 80 and openflow:1 is the of the switch. The flow to be deleted should have same
flowid and Nodeid as used for flow add.

ModifyFlow : modifyMDFlow

Similar to addMDFlow, from the controller OSGi prompt, while your switch is connected to the controller, try running:

modifyMDFlow openflow:1 f#

where # is a number between 1 and 80 and openflow:1 is the of the switch. The flow to be deleted should have same
flowid and Nodeid as used for flow add.

Group : Test Provider

Currently, the openflowplugin has a test-provider that allows you to push various flows through the system from the
OSGI command line. Once those flows have been pushed through, you can see them as examples and then use them
to see in the config what a particular flow example looks like.

AddGroup : addGroup

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters –controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following along) in the inventory, at the OSGI command
line try running:

864 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

addGroup openflow:1 a# g#

Where # is a number between 1 and 4 for grouptype(g#) and 1 and 28 for actiontype(a#). You can confirm that they
were created on the switch.

RemoveGroup : removeGroup

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet at the controller as described above.

Once you see your node (probably openflow:1 if you’ve been following along) in the inventory, at the OSGI command
line try running:

removeGroup openflow:1 a# g#

Where # is a number between 1 and 4 for grouptype(g#) and 1 and 28 for actiontype(a#). GroupId should be same as
that used for adding the flow. You can confirm that it was removed from the switch.

ModifyGroup : modifyGroup

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet at the controller as described above.

Once you see your node (probably openflow:1 if you’ve been following along) in the inventory, at the OSGI command
line try running:

modifyGroup openflow:1 a# g#

Where # is a number between 1 and 4 for grouptype(g#) and 1 and 28 for actiontype(a#). GroupId should be same as
that used for adding the flow. You can confirm that it was modified on the switch.

Meters : Test Provider

Currently, the openflowplugin has a test-provider that allows you to push various flows through the system from the
OSGI command line. Once those flows have been pushed through, you can see them as examples and then use them
to see in the config what a particular flow example looks like.

AddMeter : addMeter

Run the controller by executing:

1.3. OpenDaylight User Guide 865

OpenDaylight Documentation Documentation, Release Carbon

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters –controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following along) in the inventory, at the OSGI command
line try running:

addMeter openflow:1

You can now confirm that meter has been created on the switch.

RemoveMeter : removeMeter

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters –controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following along) in the inventory, at the OSGI command
line try running:

removeMeter openflow:1

The CLI takes care of using the same meterId and nodeId as used for meter add. You can confirm that it was removed
from the switch.

ModifyMeter : modifyMeter

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters –controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following along) in the inventory, at the OSGI command
line try running:

modifyMeter openflow:1

The CLI takes care of using the same meterId and nodeId as used for meter add. You can confirm that it was modified
on the switch.

Topology : Notification

Currently, the openflowplugin has a test-provider that allows you to get notifications for the topology related events
like Link-Discovered , Link-Removed events.

866 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Link Discovered Event : Testing

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-
→˓SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters –controller=remote,ip=. Once the controller is connected
to the switch, Link-Discovered event can be tested by initially configuring the specific flows on the switch. For Link
Discovered event either table-miss flow or LLDP ether-type flow can be configured.

Configuring Table-Miss flow using OpenflowpluginTestCommandProvider

addMDFlow Openflow:1 fTM

as per this OpenDaylight_OpenFlow_Plugin:Test_Provider#Flows_:_Test_Provider[link]. fTM is the table-miss sce-
nario here.

Once the table-miss flow is configured through above command, we can see the Link-Discovered event in the debug
logs on the controller console.

Configuring LLDP ether-type flow using OpenflowpluginTestCommandProvider

addMDFlow Openflow:1 0(table-id) f81

You can confirm that they were created on the switch.

Once the LLDP ether-type flow is configured through above command, we can see the Link-Discovered event in the
debug logs on the controller console.

Link Removed Event : Testing

Having configured either table-miss or lldp ether-type flow on switch, once the switch is disconnected we see the
Link-Removed event

Programmatic Interface

The API is documented in the model documentation under the section OpenFlow Services at:

• Models Documentation (OpenFlow Services Section)

Example flows

Overview

The flow examples on this page are tested to work with OVS.

Use, for example, POSTMAN with the following parameters:

PUT http://<ctrl-addr>:8080/restconf/config/opendaylight-inventory:nodes/node/<Node-
→˓id>/table/<Table-#>/flow/<Flow-#>

- Accept: application/xml
- Content-Type: application/xml

1.3. OpenDaylight User Guide 867

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Model_Reference

OpenDaylight Documentation Documentation, Release Carbon

For example:

PUT http://localhost:8080/restconf/config/opendaylight-inventory:nodes/node/
→˓openflow:1/table/2/flow/127

Make sure that the Table-# and Flow-# in the URL and in the XML match.

The format of the flow-programming XML is determined by by the grouping flow in the opendaylight-flow-types yang
model: MISSING LINK.

Match Examples

The format of the XML that describes OpenFlow matches is determined by the opendaylight-match-types yang model:
.

IPv4 Dest Address

• Flow=124, Table=2, Priority=2, Instructions=\{Apply_Actions={dec_nw_ttl}},
match=\{ipv4_destination_address=10.0.1.1/24}

• Note that ethernet-type MUST be 2048 (0x800)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>124</id>
<cookie_mask>255</cookie_mask>
<installHw>false</installHw>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

</ethernet-match>
<ipv4-destination>10.0.1.1/24</ipv4-destination>

</match>
<hard-timeout>12</hard-timeout>
<cookie>1</cookie>
<idle-timeout>34</idle-timeout>
<flow-name>FooXf1</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

868 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Ethernet Src Address

• Flow=126, Table=2, Priority=2, Instructions=\{Apply_Actions={drop}}, match=\{ethernet-
source=00:00:00:00:00:01}

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<drop-action/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>126</id>
<cookie_mask>255</cookie_mask>
<installHw>false</installHw>
<match>

<ethernet-match>
<ethernet-source>

<address>00:00:00:00:00:01</address>
</ethernet-source>

</ethernet-match>
</match>
<hard-timeout>12</hard-timeout>
<cookie>3</cookie>
<idle-timeout>34</idle-timeout>
<flow-name>FooXf3</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

Ethernet Src & Dest Addresses, Ethernet Type

• Flow=127, Table=2, Priority=2, Instructions=\{Apply_Actions={drop}}, match=\{ethernet-
source=00:00:00:00:23:ae, ethernet-destination=ff:ff:ff:ff:ff:ff, ethernet-type=45}

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-mpls-ttl/>

</action>
</apply-actions>

</instruction>

1.3. OpenDaylight User Guide 869

OpenDaylight Documentation Documentation, Release Carbon

</instructions>
<table_id>2</table_id>
<id>127</id>
<cookie_mask>255</cookie_mask>
<installHw>false</installHw>
<match>

<ethernet-match>
<ethernet-type>

<type>45</type>
</ethernet-type>
<ethernet-destination>

<address>ff:ff:ff:ff:ff:ff</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:00:00:23:ae</address>
</ethernet-source>

</ethernet-match>
</match>
<hard-timeout>12</hard-timeout>
<cookie>4</cookie>
<idle-timeout>34</idle-timeout>
<flow-name>FooXf4</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, Input Port

• Note that ethernet-type MUST be 34887 (0x8847)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-mpls-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>128</id>
<cookie_mask>255</cookie_mask>
<match>

<ethernet-match>
<ethernet-type>

<type>34887</type>
</ethernet-type>
<ethernet-destination>

<address>ff:ff:ff:ff:ff:ff</address>
</ethernet-destination>
<ethernet-source>

870 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<address>00:00:00:00:23:ae</address>
</ethernet-source>

</ethernet-match>
<ipv4-source>10.1.2.3/24</ipv4-source>
<ipv4-destination>20.4.5.6/16</ipv4-destination>
<in-port>0</in-port>

</match>
<hard-timeout>12</hard-timeout>
<cookie>5</cookie>
<idle-timeout>34</idle-timeout>
<flow-name>FooXf5</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, IP

Protocol #, IP DSCP, IP ECN, Input Port

• Note that ethernet-type MUST be 2048 (0x800)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>130</id>
<cookie_mask>255</cookie_mask>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>
<ethernet-destination>

<address>ff:ff:ff:ff:ff:aa</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:ae</address>
</ethernet-source>

</ethernet-match>
<ipv4-source>10.1.2.3/24</ipv4-source>
<ipv4-destination>20.4.5.6/16</ipv4-destination>
<ip-match>

<ip-protocol>56</ip-protocol>
<ip-dscp>15</ip-dscp>
<ip-ecn>1</ip-ecn>

</ip-match>

1.3. OpenDaylight User Guide 871

OpenDaylight Documentation Documentation, Release Carbon

<in-port>0</in-port>
</match>
<hard-timeout>12000</hard-timeout>
<cookie>7</cookie>
<idle-timeout>12000</idle-timeout>
<flow-name>FooXf7</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, TCP Src &

Dest Ports, IP DSCP, IP ECN, Input Port

• Note that ethernet-type MUST be 2048 (0x800)

• Note that IP Protocol Type MUST be 6

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>131</id>
<cookie_mask>255</cookie_mask>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>
<ethernet-destination>

<address>ff:ff:29:01:19:61</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:ae</address>
</ethernet-source>

</ethernet-match>
<ipv4-source>17.1.2.3/8</ipv4-source>
<ipv4-destination>172.168.5.6/16</ipv4-destination>
<ip-match>

<ip-protocol>6</ip-protocol>
<ip-dscp>2</ip-dscp>
<ip-ecn>2</ip-ecn>

</ip-match>
<tcp-source-port>25364</tcp-source-port>
<tcp-destination-port>8080</tcp-destination-port>
<in-port>0</in-port>

872 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</match>
<hard-timeout>1200</hard-timeout>
<cookie>8</cookie>
<idle-timeout>3400</idle-timeout>
<flow-name>FooXf8</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, UDP Src &

Dest Ports, IP DSCP, IP ECN, Input Port

• Note that ethernet-type MUST be 2048 (0x800)

• Note that IP Protocol Type MUST be 17

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>132</id>
<cookie_mask>255</cookie_mask>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>
<ethernet-destination>

<address>20:14:29:01:19:61</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:ae</address>
</ethernet-source>

</ethernet-match>
<ipv4-source>19.1.2.3/10</ipv4-source>
<ipv4-destination>172.168.5.6/18</ipv4-destination>
<ip-match>

<ip-protocol>17</ip-protocol>
<ip-dscp>8</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<udp-source-port>25364</udp-source-port>
<udp-destination-port>8080</udp-destination-port>
<in-port>0</in-port>

</match>

1.3. OpenDaylight User Guide 873

OpenDaylight Documentation Documentation, Release Carbon

<hard-timeout>1200</hard-timeout>
<cookie>9</cookie>
<idle-timeout>3400</idle-timeout>
<flow-name>FooXf9</flow-name>
<priority>2</priority>
<barrier>false</barrier>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, ICMPv4

Type & Code, IP DSCP, IP ECN, Input Port

• Note that ethernet-type MUST be 2048 (0x800)

• Note that IP Protocol Type MUST be 1

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>134</id>
<cookie_mask>255</cookie_mask>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>
<ethernet-destination>

<address>ff:ff:29:01:19:61</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:ae</address>
</ethernet-source>

</ethernet-match>
<ipv4-source>17.1.2.3/8</ipv4-source>
<ipv4-destination>172.168.5.6/16</ipv4-destination>
<ip-match>

<ip-protocol>1</ip-protocol>
<ip-dscp>27</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<icmpv4-match>

<icmpv4-type>6</icmpv4-type>
<icmpv4-code>3</icmpv4-code>

</icmpv4-match>
<in-port>0</in-port>

</match>

874 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<hard-timeout>1200</hard-timeout>
<cookie>11</cookie>
<idle-timeout>3400</idle-timeout>
<flow-name>FooXf11</flow-name>
<priority>2</priority>

</flow>

Ethernet Src & Dest Addresses, ARP Operation, ARP Src & Target

Transport Addresses, ARP Src & Target Hw Addresses

• Note that ethernet-type MUST be 2054 (0x806)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
<action>

<order>1</order>
<dec-mpls-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>137</id>
<cookie_mask>255</cookie_mask>
<match>

<ethernet-match>
<ethernet-type>

<type>2054</type>
</ethernet-type>
<ethernet-destination>

<address>ff:ff:ff:ff:FF:ff</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:FC:01:23:ae</address>
</ethernet-source>

</ethernet-match>
<arp-op>1</arp-op>
<arp-source-transport-address>192.168.4.1</arp-source-transport-address>
<arp-target-transport-address>10.21.22.23</arp-target-transport-address>
<arp-source-hardware-address>

<address>12:34:56:78:98:AB</address>
</arp-source-hardware-address>
<arp-target-hardware-address>

<address>FE:DC:BA:98:76:54</address>
</arp-target-hardware-address>

</match>
<hard-timeout>12</hard-timeout>

1.3. OpenDaylight User Guide 875

OpenDaylight Documentation Documentation, Release Carbon

<cookie>14</cookie>
<idle-timeout>34</idle-timeout>
<flow-name>FooXf14</flow-name>
<priority>2</priority>
<barrier>false</barrier>

Ethernet Src & Dest Addresses, Ethernet Type, VLAN ID, VLAN PCP

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>138</id>
<cookie_mask>255</cookie_mask>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>
<ethernet-destination>

<address>ff:ff:29:01:19:61</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:ae</address>
</ethernet-source>

</ethernet-match>
<vlan-match>

<vlan-id>
<vlan-id>78</vlan-id>
<vlan-id-present>true</vlan-id-present>

</vlan-id>
<vlan-pcp>3</vlan-pcp>

</vlan-match>
</match>
<hard-timeout>1200</hard-timeout>
<cookie>15</cookie>
<idle-timeout>3400</idle-timeout>
<flow-name>FooXf15</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

876 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Ethernet Src & Dest Addresses, MPLS Label, MPLS TC, MPLS BoS

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<flow-name>FooXf17</flow-name>
<id>140</id>
<cookie_mask>255</cookie_mask>
<cookie>17</cookie>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<priority>2</priority>
<table_id>2</table_id>
<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34887</type>
</ethernet-type>
<ethernet-destination>

<address>ff:ff:29:01:19:61</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:ae</address>
</ethernet-source>

</ethernet-match>
<protocol-match-fields>

<mpls-label>567</mpls-label>
<mpls-tc>3</mpls-tc>
<mpls-bos>1</mpls-bos>

</protocol-match-fields>
</match>

</flow>

IPv6 Src & Dest Addresses

• Note that ethernet-type MUST be 34525

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf18</flow-name>
<id>141</id>
<cookie_mask>255</cookie_mask>
<cookie>18</cookie>
<table_id>2</table_id>

1.3. OpenDaylight User Guide 877

OpenDaylight Documentation Documentation, Release Carbon

<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34525</type>
</ethernet-type>

</ethernet-match>
<ipv6-source>fe80::2acf:e9ff:fe21:6431/128</ipv6-source>
<ipv6-destination>aabb:1234:2acf:e9ff::fe21:6431/64</ipv6-destination>

</match>
</flow>

Metadata

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf19</flow-name>
<id>142</id>
<cookie_mask>255</cookie_mask>
<cookie>19</cookie>
<table_id>2</table_id>
<priority>1</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<match>

<metadata>
<metadata>12345</metadata>

</metadata>
</match>

878 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</flow>

Metadata, Metadata Mask

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf20</flow-name>
<id>143</id>
<cookie_mask>255</cookie_mask>
<cookie>20</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<match>

<metadata>
<metadata>12345</metadata>
<metadata-mask>//FF</metadata-mask>

</metadata>
</match>

</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, UDP Src & Dest Ports

• Note that ethernet-type MUST be 34525

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf21</flow-name>
<id>144</id>
<cookie_mask>255</cookie_mask>
<cookie>21</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>

1.3. OpenDaylight User Guide 879

OpenDaylight Documentation Documentation, Release Carbon

<apply-actions>
<action>

<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34525</type>
</ethernet-type>

</ethernet-match>
<ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
<ipv6-destination>fe80::2acf:e9ff:fe21:6431/128</ipv6-destination>
<metadata>

<metadata>12345</metadata>
</metadata>
<ip-match>

<ip-protocol>17</ip-protocol>
<ip-dscp>8</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<udp-source-port>25364</udp-source-port>
<udp-destination-port>8080</udp-destination-port>

</match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dest Ports

• Note that ethernet-type MUST be 34525

• Note that IP Protocol MUST be 6

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf22</flow-name>
<id>145</id>
<cookie_mask>255</cookie_mask>
<cookie>22</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>

880 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34525</type>
</ethernet-type>

</ethernet-match>
<ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
<ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
<metadata>

<metadata>12345</metadata>
</metadata>
<ip-match>

<ip-protocol>6</ip-protocol>
<ip-dscp>60</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<tcp-source-port>183</tcp-source-port>
<tcp-destination-port>8080</tcp-destination-port>

</match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dest Ports, IPv6 Label

• Note that ethernet-type MUST be 34525

• Note that IP Protocol MUST be 6

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf23</flow-name>
<id>146</id>
<cookie_mask>255</cookie_mask>
<cookie>23</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34525</type>
</ethernet-type>

</ethernet-match>

1.3. OpenDaylight User Guide 881

OpenDaylight Documentation Documentation, Release Carbon

<ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
<ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
<metadata>

<metadata>12345</metadata>
</metadata>
<ipv6-label>

<ipv6-flabel>33</ipv6-flabel>
</ipv6-label>
<ip-match>

<ip-protocol>6</ip-protocol>
<ip-dscp>60</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<tcp-source-port>183</tcp-source-port>
<tcp-destination-port>8080</tcp-destination-port>

</match>
</flow>

Tunnel ID

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf24</flow-name>
<id>147</id>
<cookie_mask>255</cookie_mask>
<cookie>24</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<match>

<tunnel>
<tunnel-id>2591</tunnel-id>

</tunnel>
</match>

</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, ICMPv6 Type & Code, IPv6 Label

• Note that ethernet-type MUST be 34525

• Note that IP Protocol MUST be 58

882 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf25</flow-name>
<id>148</id>
<cookie_mask>255</cookie_mask>
<cookie>25</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34525</type>
</ethernet-type>

</ethernet-match>
<ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
<ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
<metadata>

<metadata>12345</metadata>
</metadata>
<ipv6-label>

<ipv6-flabel>33</ipv6-flabel>
</ipv6-label>
<ip-match>

<ip-protocol>58</ip-protocol>
<ip-dscp>60</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<icmpv6-match>

<icmpv6-type>6</icmpv6-type>
<icmpv6-code>3</icmpv6-code>

</icmpv6-match>
</match>

</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dst Ports, IPv6 Label, IPv6 Ext
Header

• Note that ethernet-type MUST be 34525

• Note that IP Protocol MUST be 58

1.3. OpenDaylight User Guide 883

OpenDaylight Documentation Documentation, Release Carbon

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf27</flow-name>
<id>150</id>
<cookie_mask>255</cookie_mask>
<cookie>27</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<dec-nw-ttl/>

</action>
</apply-actions>

</instruction>
</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34525</type>
</ethernet-type>

</ethernet-match>
<ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
<ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
<metadata>

<metadata>12345</metadata>
</metadata>
<ipv6-label>

<ipv6-flabel>33</ipv6-flabel>
</ipv6-label>
<ipv6-ext-header>

<ipv6-exthdr>0</ipv6-exthdr>
</ipv6-ext-header>
<ip-match>

<ip-protocol>6</ip-protocol>
<ip-dscp>60</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<tcp-source-port>183</tcp-source-port>
<tcp-destination-port>8080</tcp-destination-port>

</match>
</flow>

Actions

The format of the XML that describes OpenFlow actions is determined by the opendaylight-action-types yang model:
.

884 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Apply Actions

Output to TABLE

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf101</flow-name>
<id>256</id>
<cookie_mask>255</cookie_mask>
<cookie>101</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<output-action>

<output-node-connector>TABLE</output-node-connector>
<max-length>60</max-length>

</output-action>
</action>

</apply-actions>
</instruction>

</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34525</type>
</ethernet-type>

</ethernet-match>
<ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
<ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
<metadata>

<metadata>12345</metadata>
</metadata>
<ip-match>

<ip-protocol>6</ip-protocol>
<ip-dscp>60</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<tcp-source-port>183</tcp-source-port>
<tcp-destination-port>8080</tcp-destination-port>

</match>
</flow>

Output to INPORT

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

1.3. OpenDaylight User Guide 885

OpenDaylight Documentation Documentation, Release Carbon

<strict>false</strict>
<flow-name>FooXf102</flow-name>
<id>257</id>
<cookie_mask>255</cookie_mask>
<cookie>102</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<output-action>

<output-node-connector>INPORT</output-node-connector>
<max-length>60</max-length>

</output-action>
</action>

7 </apply-actions>
</instruction>

</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>
<ethernet-destination>

<address>ff:ff:29:01:19:61</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:ae</address>
</ethernet-source>

</ethernet-match>
<ipv4-source>17.1.2.3/8</ipv4-source>
<ipv4-destination>172.168.5.6/16</ipv4-destination>
<ip-match>

<ip-protocol>6</ip-protocol>
<ip-dscp>2</ip-dscp>
<ip-ecn>2</ip-ecn>

</ip-match>
<tcp-source-port>25364</tcp-source-port>
<tcp-destination-port>8080</tcp-destination-port>

</match>
</flow>

Output to Physical Port

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf103</flow-name>
<id>258</id>
<cookie_mask>255</cookie_mask>

886 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<cookie>103</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<output-action>

<output-node-connector>1</output-node-connector>
<max-length>60</max-length>

</output-action>
</action>

</apply-actions>
</instruction>

</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>
<ethernet-destination>

<address>ff:ff:29:01:19:61</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:ae</address>
</ethernet-source>

</ethernet-match>
<ipv4-source>17.1.2.3/8</ipv4-source>
<ipv4-destination>172.168.5.6/16</ipv4-destination>
<ip-match>

<ip-protocol>6</ip-protocol>
<ip-dscp>2</ip-dscp>
<ip-ecn>2</ip-ecn>

</ip-match>
<tcp-source-port>25364</tcp-source-port>
<tcp-destination-port>8080</tcp-destination-port>

</match>
</flow>

Output to LOCAL

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf104</flow-name>
<id>259</id>
<cookie_mask>255</cookie_mask>
<cookie>104</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>

1.3. OpenDaylight User Guide 887

OpenDaylight Documentation Documentation, Release Carbon

<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<output-action>

<output-node-connector>LOCAL</output-node-connector>
<max-length>60</max-length>

</output-action>
</action>

</apply-actions>
</instruction>

</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34525</type>
</ethernet-type>

</ethernet-match>
<ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
<ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
<metadata>

<metadata>12345</metadata>
</metadata>
<ip-match>

<ip-protocol>6</ip-protocol>
<ip-dscp>60</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<tcp-source-port>183</tcp-source-port>
<tcp-destination-port>8080</tcp-destination-port>

</match>
</flow>

Output to NORMAL

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf105</flow-name>
<id>260</id>
<cookie_mask>255</cookie_mask>
<cookie>105</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>

888 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<order>0</order>
<output-action>

<output-node-connector>NORMAL</output-node-connector>
<max-length>60</max-length>

</output-action>
</action>

</apply-actions>
</instruction>

</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34525</type>
</ethernet-type>

</ethernet-match>
<ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/84</ipv6-source>
<ipv6-destination>fe80:2acf:e9ff:fe21::6431/90</ipv6-destination>
<metadata>

<metadata>12345</metadata>
</metadata>
<ip-match>

<ip-protocol>6</ip-protocol>
<ip-dscp>45</ip-dscp>
<ip-ecn>2</ip-ecn>

</ip-match>
<tcp-source-port>20345</tcp-source-port>
<tcp-destination-port>80</tcp-destination-port>

</match>
</flow>

Output to FLOOD

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf106</flow-name>
<id>261</id>
<cookie_mask>255</cookie_mask>
<cookie>106</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<output-action>

<output-node-connector>FLOOD</output-node-connector>
<max-length>60</max-length>

</output-action>
</action>

</apply-actions>

1.3. OpenDaylight User Guide 889

OpenDaylight Documentation Documentation, Release Carbon

</instruction>
</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>34525</type>
</ethernet-type>

</ethernet-match>
<ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/100</ipv6-source>
<ipv6-destination>fe80:2acf:e9ff:fe21::6431/67</ipv6-destination>
<metadata>

<metadata>12345</metadata>
</metadata>
<ip-match>

<ip-protocol>6</ip-protocol>
<ip-dscp>45</ip-dscp>
<ip-ecn>2</ip-ecn>

</ip-match>
<tcp-source-port>20345</tcp-source-port>
<tcp-destination-port>80</tcp-destination-port>

</match>
</flow>

Output to ALL

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf107</flow-name>
<id>262</id>
<cookie_mask>255</cookie_mask>
<cookie>107</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<output-action>

<output-node-connector>ALL</output-node-connector>
<max-length>60</max-length>

</output-action>
</action>

</apply-actions>
</instruction>

</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

890 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

<ethernet-destination>
<address>20:14:29:01:19:61</address>

</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:ae</address>
</ethernet-source>

</ethernet-match>
<ipv4-source>19.1.2.3/10</ipv4-source>
<ipv4-destination>172.168.5.6/18</ipv4-destination>
<ip-match>

<ip-protocol>17</ip-protocol>
<ip-dscp>8</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<udp-source-port>25364</udp-source-port>
<udp-destination-port>8080</udp-destination-port>
<in-port>0</in-port>

</match>
</flow>

Output to CONTROLLER

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf108</flow-name>
<id>263</id>
<cookie_mask>255</cookie_mask>
<cookie>108</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<output-action>

<output-node-connector>CONTROLLER</output-node-connector>
<max-length>60</max-length>

</output-action>
</action>

</apply-actions>
</instruction>

</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>
<ethernet-destination>

<address>20:14:29:01:19:61</address>
</ethernet-destination>

1.3. OpenDaylight User Guide 891

OpenDaylight Documentation Documentation, Release Carbon

<ethernet-source>
<address>00:00:00:11:23:ae</address>

</ethernet-source>
</ethernet-match>
<ipv4-source>19.1.2.3/10</ipv4-source>
<ipv4-destination>172.168.5.6/18</ipv4-destination>
<ip-match>

<ip-protocol>17</ip-protocol>
<ip-dscp>8</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<udp-source-port>25364</udp-source-port>
<udp-destination-port>8080</udp-destination-port>
<in-port>0</in-port>

</match>
</flow>

Output to ANY

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<flow-name>FooXf109</flow-name>
<id>264</id>
<cookie_mask>255</cookie_mask>
<cookie>109</cookie>
<table_id>2</table_id>
<priority>2</priority>
<hard-timeout>1200</hard-timeout>
<idle-timeout>3400</idle-timeout>
<installHw>false</installHw>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<output-action>

<output-node-connector>ANY</output-node-connector>
<max-length>60</max-length>

</output-action>
</action>

</apply-actions>
</instruction>

</instructions>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>
<ethernet-destination>

<address>20:14:29:01:19:61</address>
</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:ae</address>
</ethernet-source>

892 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</ethernet-match>
<ipv4-source>19.1.2.3/10</ipv4-source>
<ipv4-destination>172.168.5.6/18</ipv4-destination>
<ip-match>

<ip-protocol>17</ip-protocol>
<ip-dscp>8</ip-dscp>
<ip-ecn>3</ip-ecn>

</ip-match>
<udp-source-port>25364</udp-source-port>
<udp-destination-port>8080</udp-destination-port>
<in-port>0</in-port>

</match>
</flow>

Push VLAN

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">

<strict>false</strict>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<push-vlan-action>

<ethernet-type>33024</ethernet-type>
</push-vlan-action>
<order>0</order>

</action>
<action>

<set-field>
<vlan-match>

<vlan-id>
<vlan-id>79</vlan-id>
<vlan-id-present>true</vlan-id-present>

</vlan-id>
</vlan-match>

</set-field>
<order>1</order>

</action>
<action>

<output-action>
<output-node-connector>5</output-node-connector>

</output-action>
<order>2</order>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>0</table_id>
<id>31</id>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

1.3. OpenDaylight User Guide 893

OpenDaylight Documentation Documentation, Release Carbon

<ethernet-destination>
<address>FF:FF:29:01:19:61</address>

</ethernet-destination>
<ethernet-source>

<address>00:00:00:11:23:AE</address>
</ethernet-source>

</ethernet-match>
<in-port>1</in-port>

</match>
<flow-name>vlan_flow</flow-name>
<priority>2</priority>

</flow>

Push MPLS

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow

xmlns="urn:opendaylight:flow:inventory">
<flow-name>push-mpls-action</flow-name>
<instructions>

<instruction>
<order>3</order>
<apply-actions>

<action>
<push-mpls-action>

<ethernet-type>34887</ethernet-type>
</push-mpls-action>
<order>0</order>

</action>
<action>

<set-field>
<protocol-match-fields>

<mpls-label>27</mpls-label>
</protocol-match-fields>

</set-field>
<order>1</order>

</action>
<action>

<output-action>
<output-node-connector>2</output-node-connector>

</output-action>
<order>2</order>

</action>
</apply-actions>

</instruction>
</instructions>
<strict>false</strict>
<id>100</id>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

</ethernet-match>
<in-port>1</in-port>
<ipv4-destination>10.0.0.4/32</ipv4-destination>

894 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

</match>
<idle-timeout>0</idle-timeout>
<cookie_mask>255</cookie_mask>
<cookie>401</cookie>
<priority>8</priority>
<hard-timeout>0</hard-timeout>
<installHw>false</installHw>
<table_id>0</table_id>

</flow>

Swap MPLS

• Note that ethernet-type MUST be 34887

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow

xmlns="urn:opendaylight:flow:inventory">
<flow-name>push-mpls-action</flow-name>
<instructions>

<instruction>
<order>2</order>
<apply-actions>

<action>
<set-field>

<protocol-match-fields>
<mpls-label>37</mpls-label>

</protocol-match-fields>
</set-field>
<order>1</order>

</action>
<action>

<output-action>
<output-node-connector>2</output-node-connector>

</output-action>
<order>2</order>

</action>
</apply-actions>

</instruction>
</instructions>
<strict>false</strict>
<id>101</id>
<match>

<ethernet-match>
<ethernet-type>

<type>34887</type>
</ethernet-type>

</ethernet-match>
<in-port>1</in-port>
<protocol-match-fields>

<mpls-label>27</mpls-label>
</protocol-match-fields>

</match>
<idle-timeout>0</idle-timeout>
<cookie_mask>255</cookie_mask>
<cookie>401</cookie>
<priority>8</priority>

1.3. OpenDaylight User Guide 895

OpenDaylight Documentation Documentation, Release Carbon

<hard-timeout>0</hard-timeout>
<installHw>false</installHw>
<table_id>0</table_id>

</flow>

Pop MPLS

• Note that ethernet-type MUST be 34887

• Issue with OVS 2.1 OVS fix

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow

xmlns="urn:opendaylight:flow:inventory">
<flow-name>FooXf10</flow-name>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<pop-mpls-action>

<ethernet-type>2048</ethernet-type>
</pop-mpls-action>
<order>1</order>

</action>
<action>

<output-action>
<output-node-connector>2</output-node-connector>
<max-length>60</max-length>

</output-action>
<order>2</order>

</action>
</apply-actions>

</instruction>
</instructions>
<id>11</id>
<strict>false</strict>
<match>

<ethernet-match>
<ethernet-type>

<type>34887</type>
</ethernet-type>

</ethernet-match>
<in-port>1</in-port>
<protocol-match-fields>

<mpls-label>37</mpls-label>
</protocol-match-fields>

</match>
<idle-timeout>0</idle-timeout>
<cookie>889</cookie>
<cookie_mask>255</cookie_mask>
<installHw>false</installHw>
<hard-timeout>0</hard-timeout>
<priority>10</priority>
<table_id>0</table_id>

</flow>

896 Chapter 1. Content for OpenDaylight Users

http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=openvswitch;a=commitdiff;h=b3f2fc93e3f357f8d05a92f53ec253339a40887f

OpenDaylight Documentation Documentation, Release Carbon

Learn

• Nicira extension defined in https://github.com/osrg/openvswitch/blob/master/include/openflow/nicira-ext.h

• Example section is - https://github.com/osrg/openvswitch/blob/master/include/openflow/nicira-ext.h#L788

<flow>
<id>ICMP_Ingress258a5a5ad-08a8-4ff7-98f5-ef0b96ca3bb8</id>
<hard-timeout>0</hard-timeout>
<idle-timeout>0</idle-timeout>
<match>
<ethernet-match>

<ethernet-type>
<type>2048</type>

</ethernet-type>
</ethernet-match>
<metadata>

<metadata>2199023255552</metadata>
<metadata-mask>2305841909702066176</metadata-mask>

</metadata>
<ip-match>

<ip-protocol>1</ip-protocol>
</ip-match>

</match>
<cookie>110100480</cookie>
<instructions>
<instruction>

<order>0</order>
<apply-actions>

<action>
<order>1</order>
<nx-resubmit

xmlns="urn:opendaylight:openflowplugin:extension:nicira:action">
<table>220</table>

</nx-resubmit>
</action>
<action>
<order>0</order>
<nx-learn

xmlns="urn:opendaylight:openflowplugin:extension:nicira:action">
<idle-timeout>60</idle-timeout>
<fin-idle-timeout>0</fin-idle-timeout>
<hard-timeout>60</hard-timeout>
<flags>0</flags>
<table-id>41</table-id>
<priority>61010</priority>
<fin-hard-timeout>0</fin-hard-timeout>
<flow-mods>
<flow-mod-add-match-from-value>
<src-ofs>0</src-ofs>
<value>2048</value>
<src-field>1538</src-field>
<flow-mod-num-bits>16</flow-mod-num-bits>

</flow-mod-add-match-from-value>
</flow-mods>
<flow-mods>
<flow-mod-add-match-from-field>
<src-ofs>0</src-ofs>

1.3. OpenDaylight User Guide 897

https://github.com/osrg/openvswitch/blob/master/include/openflow/nicira-ext.h
https://github.com/osrg/openvswitch/blob/master/include/openflow/nicira-ext.h#L788

OpenDaylight Documentation Documentation, Release Carbon

<dst-ofs>0</dst-ofs>
<dst-field>4100</dst-field>
<src-field>3588</src-field>
<flow-mod-num-bits>32</flow-mod-num-bits>

</flow-mod-add-match-from-field>
</flow-mods>
<flow-mods>
<flow-mod-add-match-from-field>
<src-ofs>0</src-ofs>
<dst-ofs>0</dst-ofs>
<dst-field>518</dst-field>
<src-field>1030</src-field>
<flow-mod-num-bits>48</flow-mod-num-bits>

</flow-mod-add-match-from-field>
</flow-mods>
<flow-mods>
<flow-mod-add-match-from-field>
<src-ofs>0</src-ofs>
<dst-ofs>0</dst-ofs>
<dst-field>3073</dst-field>
<src-field>3073</src-field>
<flow-mod-num-bits>8</flow-mod-num-bits>

</flow-mod-add-match-from-field>
</flow-mods>
<flow-mods>
<flow-mod-copy-value-into-field>
<dst-ofs>0</dst-ofs>
<value>1</value>
<dst-field>65540</dst-field>
<flow-mod-num-bits>8</flow-mod-num-bits>

</flow-mod-copy-value-into-field>
</flow-mods>
<cookie>110100480</cookie>

</nx-learn>
</action>

</apply-actions>
</instruction>

</instructions>
<installHw>true</installHw>
<barrier>false</barrier>
<strict>false</strict>
<priority>61010</priority>
<table_id>253</table_id>
<flow-name>ACL</flow-name>

</flow>

Opendaylight OpenFlow Plugin: Troubleshooting

empty section

898 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

OpFlex agent-ovs User Guide

Introduction

agent-ovs is a policy agent that works with OVS to enforce a group-based policy networking model with locally
attached virtual machines or containers. The policy agent is designed to work well with orchestration tools like
OpenStack.

Agent Configuration

The agent configuration is handled using its config file which is by default found at “/etc/opflex-agent-ovs/opflex-
agent-ovs.conf”

Here is an example configuration file that documents the available options:

{
// Logging configuration
// "log": {
// // Set the log level.
// // Possible values in descending order of verbosity:
// // "debug7"-"debug0", "debug" (synonym for "debug0"),
// // "info", "warning", "error", "fatal"
// // Default: "info"
// "level": "info"
// },

// Configuration related to the OpFlex protocol
"opflex": {

// The policy domain for this agent.
"domain": "openstack",

// The unique name in the policy domain for this agent.
"name": "example-agent",

// a list of peers to connect to, by hostname and port. One
// peer, or an anycast pseudo-peer, is sufficient to bootstrap
// the connection without needing an exhaustive list of all
// peers.
"peers": [

// EXAMPLE:
// {"hostname": "10.0.0.30", "port": 8009}

],

"ssl": {
// SSL mode. Possible values:
// disabled: communicate without encryption (default)
// encrypted: encrypt but do not verify peers
// secure: encrypt and verify peer certificates
"mode": "encrypted",

// The path to a directory containing trusted certificate
// authority public certificates, or a file containing a
// specific CA certificate.
// Default: "/etc/ssl/certs"
"ca-store": "/etc/ssl/certs"

},

1.3. OpenDaylight User Guide 899

OpenDaylight Documentation Documentation, Release Carbon

"inspector": {
// Enable the MODB inspector service, which allows
// inspecting the state of the managed object database.
// Default: true
"enabled": true,

// Listen on the specified socket for the inspector
// Default: "/var/run/opflex-agent-ovs-inspect.sock"
"socket-name": "/var/run/opflex-agent-ovs-inspect.sock"

},

"notif": {
// Enable the agent notification service, which sends
// notifications to interested listeners over a UNIX
// socket.
// Default: true
"enabled": true,

// Listen on the specified socket for the inspector
// Default: "/var/run/opflex-agent-ovs-notif.sock"
"socket-name": "/var/run/opflex-agent-ovs-notif.sock",

// Set the socket owner user after binding if the user
// exists
// Default: do not set the owner
// "socket-owner": "root",

// Set the socket group after binding if the group name
// exists
// Default: do not set the group
"socket-group": "opflexep",

// Set the socket permissions after binding to the
// specified octal permissions mask
// Default: do not set the permissions
"socket-permissions": "770"

}
},

// Endpoint sources provide metadata about local endpoints
"endpoint-sources": {

// Filesystem path to monitor for endpoint information
// Default: no endpoint sources
"filesystem": ["/var/lib/opflex-agent-ovs/endpoints"]

},

// Service sources provide metadata about services that can
// provide functionality for local endpoints
"service-sources": {

// Filesystem path to monitor for service information
// Default: no service sources
"filesystem": ["/var/lib/opflex-agent-ovs/services"]

},

// Renderers enforce policy obtained via OpFlex.
// Default: no renderers
"renderers": {

// Stitched-mode renderer for interoperating with a

900 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

// hardware fabric such as ACI
// EXAMPLE:
"stitched-mode": {

// "Integration" bridge used to enforce contracts and forward
// packets
"int-bridge-name": "br-int",

// "Access" bridge used to enforce access control and enforce
// security groups.
"access-bridge-name": "br-access",

// Set encapsulation type. Must set either vxlan or vlan.
"encap": {

// Encapsulate traffic with VXLAN.
"vxlan" : {

// The name of the tunnel interface in OVS
"encap-iface": "br0_vxlan0",

// The name of the interface whose IP should be used
// as the source IP in encapsulated traffic.
"uplink-iface": "team0.4093",

// The vlan tag, if any, used on the uplink interface.
// Set to zero or omit if the uplink is untagged.
"uplink-vlan": 4093,

// The IP address used for the destination IP in
// the encapsulated traffic. This should be an
// anycast IP address understood by the upstream
// stiched-mode fabric.
"remote-ip": "10.0.0.32",

// UDP port number of the encapsulated traffic.
"remote-port": 8472

}

// Encapsulate traffic with a locally-significant VLAN
// tag
// EXAMPLE:
// "vlan" : {
// // The name of the uplink interface in OVS
// "encap-iface": "team0"
// }

},

// Configure forwarding policy
"forwarding": {

// Configure the virtual distributed router
"virtual-router": {

// Enable virtual distributed router. Set to true
// to enable or false to disable.
// Default: true.
"enabled": true,

// Override MAC address for virtual router.
// Default: "00:22:bd:f8:19:ff"
"mac": "00:22:bd:f8:19:ff",

1.3. OpenDaylight User Guide 901

OpenDaylight Documentation Documentation, Release Carbon

// Configure IPv6-related settings for the virtual
// router
"ipv6" : {

// Send router advertisement messages in
// response to router solicitation requests as
// well as unsolicited advertisements. This
// is not required in stitched mode since the
// hardware router will send them.
"router-advertisement": false

}
},

// Configure virtual distributed DHCP server
"virtual-dhcp": {

// Enable virtual distributed DHCP server. Set to
// true to enable or false to disable.
// Default: true
"enabled": true,

// Override MAC address for virtual dhcp server.
// Default: "00:22:bd:f8:19:ff"
"mac": "00:22:bd:f8:19:ff"

},

"endpoint-advertisements": {
// Set mode for generation of periodic ARP/NDP
// advertisements for endpoints. Possible values:
// disabled: Do not send advertisements
// gratuitous-unicast: Send gratuitous endpoint
// advertisements as unicast packets to the router
// mac.
// gratuitous-broadcast: Send gratuitous endpoint
// advertisements as broadcast packets.
// router-request: Unicast a spoofed request/solicitation
// for the subnet's gateway router.
// Default: router-request.
"mode": "gratuitous-broadcast"

}
},

// Location to store cached IDs for managing flow state
// Default: "/var/lib/opflex-agent-ovs/ids"
"flowid-cache-dir": "/var/lib/opflex-agent-ovs/ids",

// Location to write multicast groups for the mcast-daemon
// Default: "/var/lib/opflex-agent-ovs/mcast/opflex-groups.json"
"mcast-group-file": "/var/lib/opflex-agent-ovs/mcast/opflex-groups.json"

}
}

}

Endpoint Registration

The agent learns about endpoints using endpoint metadata files located by default in “/var/lib/opflex-agent-
ovs/endpoints”.

These are JSON-format files such as the (unusually complex) example below:

902 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

{
"uuid": "83f18f0b-80f7-46e2-b06c-4d9487b0c754",
"policy-space-name": "test",
"endpoint-group-name": "group1",
"interface-name": "veth0",
"ip": [

"10.0.0.1", "fd8f:69d8:c12c:ca62::1"
],
"dhcp4": {

"ip": "10.200.44.2",
"prefix-len": 24,
"routers": ["10.200.44.1"],
"dns-servers": ["8.8.8.8", "8.8.4.4"],
"domain": "example.com",
"static-routes": [

{
"dest": "169.254.169.0",
"dest-prefix": 24,
"next-hop": "10.0.0.1"

}
]

},
"dhcp6": {

"dns-servers": ["2001:4860:4860::8888", "2001:4860:4860::8844"],
"search-list": ["test1.example.com", "example.com"]

},
"ip-address-mapping": [

{
"uuid": "91c5b217-d244-432c-922d-533c6c036ab4",
"floating-ip": "5.5.5.1",
"mapped-ip": "10.0.0.1",
"policy-space-name": "common",
"endpoint-group-name": "nat-epg"

},
{

"uuid": "22bfdc01-a390-4b6f-9b10-624d4ccb957b",
"floating-ip": "fdf1:9f86:d1af:6cc9::1",
"mapped-ip": "fd8f:69d8:c12c:ca62::1",
"policy-space-name": "common",
"endpoint-group-name": "nat-epg"

}
],
"mac": "00:00:00:00:00:01",
"promiscuous-mode": false

}

The possible parameters for these files are:

uuid A globally unique ID for the endpoint

endpoint-group-name The name of the endpoint group for the endpoint

policy-space-name The name of the policy space for the endpoint group.

interface-name The name of the OVS interface to which the endpoint is attached

ip A list of strings contains either IPv4 or IPv6 addresses that the endpoint is allowed to use

mac The MAC address for the endpoint’s interface.

promiscuous-mode Allow traffic from this VM to bypass default port security

1.3. OpenDaylight User Guide 903

OpenDaylight Documentation Documentation, Release Carbon

dhcp4 A distributed DHCPv4 configuration block (see below)

dhcp6 A distributed DHCPv6 configuration block (see below)

ip-address-mapping A list of IP address mapping configuration blocks (see below)

DHCPv4 configuration blocks can contain the following parameters:

ip the IP address to return with DHCP. Must be one of the configured IPv4 addresses.

prefix the subnet prefix length

routers a list of default gateways for the endpoint

dns a list of DNS server addresses

domain The domain name parameter to send in the DHCP reply

static-routes A list of static route configuration blocks, which contains a “dest”, “dest-prefix”, and “next-hop” pa-
rameters to send as static routes to the end host

DHCPv6 configuration blocks can contain the following parameters:

dns A list of DNS servers for the endpoint

search-patch The DNS search path for the endpoint

IP address mapping configuration blocks can contain the following parameters:

uuid a globally unique ID for the virtual endpoint created by the mapping.

floating-ip Map using DNAT to this floating IPv4 or IPv6 address

mapped-ip the source IPv4 or IPv6 address; must be one of the IPs assigned to the endpoint.

endpoint-group-name The name of the endpoint group for the NATed IP

policy-space-name The name of the policy space for the NATed IP

Inspector

The Opflex inspector is a useful command-line tool that will allow you to inspect the state of the managed object
database for the agent for debugging and diagnosis purposes.

The command is called “gbp_inspect” and takes the following arguments:

gbp_inspect -h
Usage: gbp_inspect [options]
Allowed options:

-h [--help] Print this help message
--log arg Log to the specified file (default

standard out)
--level arg (=warning) Use the specified log level (default

warning)
--syslog Log to syslog instead of file or

standard out
--socket arg (=/usr/var/run/opflex-agent-ovs-inspect.sock)

Connect to the specified UNIX domain
socket (default /usr/var/run/opfl
ex-agent-ovs-inspect.sock)

-q [--query] arg Query for a specific object with
subjectname,uri or all objects of a
specific type with subjectname

-r [--recursive] Retrieve the whole subtree for each

904 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

returned object
-f [--follow-refs] Follow references in returned objects
--load arg Load managed objects from the specified

file into the MODB view
-o [--output] arg Output the results to the specified

file (default standard out)
-t [--type] arg (=tree) Specify the output format: tree,

asciitree, list, or dump (default tree)
-p [--props] Include object properties in output

Here are some examples of the ways to use this tool.

You can get information about the running system using one or more queries, which consist of an object model class
name and optionally the URI of a specific object. The simplest query is to get a single object, nonrecursively:

gbp_inspect -q DmtreeRoot
-- DmtreeRoot,/
gbp_inspect -q GbpEpGroup
-- GbpEpGroup,/PolicyUniverse/PolicySpace/test/GbpEpGroup/group1/
-- GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
gbp_inspect -q GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
-- GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/

You can also display all the properties for each object:

gbp_inspect -p -q GbpeL24Classifier
-- GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier4/

{
connectionTracking : 1 (reflexive)
dFromPort : 80
dToPort : 80
etherT : 2048 (ipv4)
name : classifier4
prot : 6

}
-- GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier3/

{
etherT : 34525 (ipv6)
name : classifier3
order : 100
prot : 58

}
-- GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier1/

{
etherT : 2054 (arp)
name : classifier1
order : 102

}
-- GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier2/

{
etherT : 2048 (ipv4)
name : classifier2
order : 101
prot : 1

}

You can also request to get the all the children of an object you query for:

1.3. OpenDaylight User Guide 905

OpenDaylight Documentation Documentation, Release Carbon

gbp_inspect -r -q GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
- GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/

- GbpeInstContext,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
→˓GbpeInstContext/
- GbpEpGroupToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/

→˓GbpEpGroupToNetworkRSrc/

You can also follow references found in any object downloads:

gbp_inspect -fr -q GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
- GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/

- GbpeInstContext,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
→˓GbpeInstContext/
- GbpEpGroupToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/

→˓GbpEpGroupToNetworkRSrc/
- GbpBridgeDomain,/PolicyUniverse/PolicySpace/common/GbpBridgeDomain/bd_ext/

- GbpBridgeDomainToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpBridgeDomain/
→˓bd_ext/GbpBridgeDomainToNetworkRSrc/
- GbpFloodDomain,/PolicyUniverse/PolicySpace/common/GbpFloodDomain/fd_ext/

- GbpFloodDomainToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpFloodDomain/fd_
→˓ext/GbpFloodDomainToNetworkRSrc/
- GbpRoutingDomain,/PolicyUniverse/PolicySpace/common/GbpRoutingDomain/rd_ext/

- GbpRoutingDomainToIntSubnetsRSrc,/PolicyUniverse/PolicySpace/common/
→˓GbpRoutingDomain/rd_ext/GbpRoutingDomainToIntSubnetsRSrc/152/%2fPolicyUniverse
→˓%2fPolicySpace%2fcommon%2fGbpSubnets%2fsubnets_ext%2f/
- GbpForwardingBehavioralGroupToSubnetsRSrc,/PolicyUniverse/PolicySpace/common/

→˓GbpRoutingDomain/rd_ext/GbpForwardingBehavioralGroupToSubnetsRSrc/
- GbpSubnets,/PolicyUniverse/PolicySpace/common/GbpSubnets/subnets_ext/

- GbpSubnet,/PolicyUniverse/PolicySpace/common/GbpSubnets/subnets_ext/GbpSubnet/
→˓subnet_ext4/
- GbpSubnet,/PolicyUniverse/PolicySpace/common/GbpSubnets/subnets_ext/GbpSubnet/

→˓subnet_ext6/

OVSDB User Guide

The OVSDB project implements the OVSDB protocol (RFC 7047), as well as plugins to support OVSDB Schemas,
such as the Open_vSwitch database schema and the hardware_vtep database schema.

OVSDB Plugins

Overview and Architecture

There are currently two OVSDB Southbound plugins:

• odl-ovsdb-southbound: Implements the OVSDB Open_vSwitch database schema.

• odl-ovsdb-hwvtepsouthbound: Implements the OVSDB hardware_vtep database schema.

These plugins are normally installed and used automatically by higher level applications such as odl-ovsdb-openstack;
however, they can also be installed separately and used via their REST APIs as is described in the following sections.

906 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

OVSDB Southbound Plugin

The OVSDB Southbound Plugin provides support for managing OVS hosts via an OVSDB model in the MD-SAL
which maps to important tables and attributes present in the Open_vSwitch schema. The OVSDB Southbound Plugin
is able to connect actively or passively to OVS hosts and operate as the OVSDB manager of the OVS host. Using the
OVSDB protocol it is able to manage the OVS database (OVSDB) on the OVS host as defined by the Open_vSwitch
schema.

OVSDB YANG Model

The OVSDB Southbound Plugin provides a YANG model which is based on the abstract network topology model.

The details of the OVSDB YANG model are defined in the ovsdb.yang file.

The OVSDB YANG model defines three augmentations:

ovsdb-node-augmentation This augments the network-topology node and maps primarily to the Open_vSwitch table
of the OVSDB schema. The ovsdb-node-augmentation is a representation of the OVS host. It contains the
following attributes.

• connection-info - holds the local and remote IP address and TCP port numbers for the OpenDaylight to
OVSDB node connections

• db-version - version of the OVSDB database

• ovs-version - version of OVS

• list managed-node-entry - a list of references to ovsdb-bridge-augmentation nodes, which are the OVS
bridges managed by this OVSDB node

• list datapath-type-entry - a list of the datapath types supported by the OVSDB node (e.g. system, netdev)
- depends on newer OVS versions

• list interface-type-entry - a list of the interface types supported by the OVSDB node (e.g. internal, vxlan,
gre, dpdk, etc.) - depends on newer OVS verions

• list openvswitch-external-ids - a list of the key/value pairs in the Open_vSwitch table external_ids column

• list openvswitch-other-config - a list of the key/value pairs in the Open_vSwitch table other_config col-
umn

• list managery-entry - list of manager information entries and connection status

• list qos-entries - list of QoS entries present in the QoS table

• list queues - list of queue entries present in the queue table

ovsdb-bridge-augmentation This augments the network-topology node and maps to an specific bridge in the OVSDB
bridge table of the associated OVSDB node. It contains the following attributes.

• bridge-uuid - UUID of the OVSDB bridge

• bridge-name - name of the OVSDB bridge

• bridge-openflow-node-ref - a reference (instance-identifier) of the OpenFlow node associated with this
bridge

• list protocol-entry - the version of OpenFlow protocol to use with the OpenFlow controller

• list controller-entry - a list of controller-uuid and is-connected status of the OpenFlow controllers associ-
ated with this bridge

• datapath-id - the datapath ID associated with this bridge on the OVSDB node

1.3. OpenDaylight User Guide 907

https://github.com/opendaylight/yangtools/blob/stable/boron/yang/yang-parser-impl/src/test/resources/ietf/network-topology%402013-10-21.yang
https://github.com/opendaylight/ovsdb/blob/stable/boron/southbound/southbound-api/src/main/yang/ovsdb.yang

OpenDaylight Documentation Documentation, Release Carbon

• datapath-type - the datapath type of this bridge

• fail-mode - the OVSDB fail mode setting of this bridge

• flow-node - a reference to the flow node corresponding to this bridge

• managed-by - a reference to the ovsdb-node-augmentation (OVSDB node) that is managing this bridge

• list bridge-external-ids - a list of the key/value pairs in the bridge table external_ids column for this bridge

• list bridge-other-configs - a list of the key/value pairs in the bridge table other_config column for this
bridge

ovsdb-termination-point-augmentation This augments the topology termination point model. The OVSDB South-
bound Plugin uses this model to represent both the OVSDB port and OVSDB interface for a given port/interface
in the OVSDB schema. It contains the following attributes.

• port-uuid - UUID of an OVSDB port row

• interface-uuid - UUID of an OVSDB interface row

• name - name of the port and interface

• interface-type - the interface type

• list options - a list of port options

• ofport - the OpenFlow port number of the interface

• ofport_request - the requested OpenFlow port number for the interface

• vlan-tag - the VLAN tag value

• list trunks - list of VLAN tag values for trunk mode

• vlan-mode - the VLAN mode (e.g. access, native-tagged, native-untagged, trunk)

• list port-external-ids - a list of the key/value pairs in the port table external_ids column for this port

• list interface-external-ids - a list of the key/value pairs in the interface table external_ids interface for this
interface

• list port-other-configs - a list of the key/value pairs in the port table other_config column for this port

• list interface-other-configs - a list of the key/value pairs in the interface table other_config column for
this interface

• list inteface-lldp - LLDP Auto Attach configuration for the interface

• qos - UUID of the QoS entry in the QoS table assigned to this port

Getting Started

To install the OVSDB Southbound Plugin, use the following command at the Karaf console:

feature:install odl-ovsdb-southbound-impl-ui

After installing the OVSDB Southbound Plugin, and before any OVSDB topology nodes have been created, the
OVSDB topology will appear as follows in the configuration and operational MD-SAL.

HTTP GET:

908 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/
or

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/
→˓topology/ovsdb:1/

Result Body:

{
"topology": [
{

"topology-id": "ovsdb:1"
}

]
}

Where

<controller-ip> is the IP address of the OpenDaylight controller

OpenDaylight as the OVSDB Manager

An OVS host is a system which is running the OVS software and is capable of being managed by an OVSDB manager.
The OVSDB Southbound Plugin is capable of connecting to an OVS host and operating as an OVSDB manager.
Depending on the configuration of the OVS host, the connection of OpenDaylight to the OVS host will be active or
passive.

Active Connection to OVS Hosts

An active connection is when the OVSDB Southbound Plugin initiates the connection to an OVS host. This happens
when the OVS host is configured to listen for the connection (i.e. the OVSDB Southbound Plugin is active the the
OVS host is passive). The OVS host is configured with the following command:

sudo ovs-vsctl set-manager ptcp:6640

This configures the OVS host to listen on TCP port 6640.

The OVSDB Southbound Plugin can be configured via the configuration MD-SAL to actively connect to an OVS host.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:%2F%2FHOST1

Body:

{
"network-topology:node": [
{

"node-id": "ovsdb://HOST1",
"connection-info": {

"ovsdb:remote-port": "6640",
"ovsdb:remote-ip": "<ovs-host-ip>"

}
}

1.3. OpenDaylight User Guide 909

OpenDaylight Documentation Documentation, Release Carbon

]
}

Where

<ovs-host-ip> is the IP address of the OVS Host

Note that the configuration assigns a node-id of “ovsdb://HOST1” to the OVSDB node. This node-id will be used as
the identifier for this OVSDB node in the MD-SAL.

Query the configuration MD-SAL for the OVSDB topology.

HTTP GET:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/

Result Body:

{
"topology": [
{

"topology-id": "ovsdb:1",
"node": [

{
"node-id": "ovsdb://HOST1",
"ovsdb:connection-info": {

"remote-ip": "<ovs-host-ip>",
"remote-port": 6640

}
}

]
}

]
}

As a result of the OVSDB node configuration being added to the configuration MD-SAL, the OVSDB Southbound
Plugin will attempt to connect with the specified OVS host. If the connection is successful, the plugin will connect
to the OVS host as an OVSDB manager, query the schemas and databases supported by the OVS host, and register
to monitor changes made to the OVSDB tables on the OVS host. It will also set an external id key and value in the
external-ids column of the Open_vSwtich table of the OVS host which identifies the MD-SAL instance identifier of the
OVSDB node. This ensures that the OVSDB node will use the same node-id in both the configuration and operational
MD-SAL.

"opendaylight-iid" = "instance identifier of OVSDB node in the MD-SAL"

When the OVS host sends the OVSDB Southbound Plugin the first update message after the monitoring has been
established, the plugin will populate the operational MD-SAL with the information it receives from the OVS host.

Query the operational MD-SAL for the OVSDB topology.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/
→˓topology/ovsdb:1/

Result Body:

910 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

{
"topology": [
{

"topology-id": "ovsdb:1",
"node": [

{
"node-id": "ovsdb://HOST1",
"ovsdb:openvswitch-external-ids": [

{
"external-id-key": "opendaylight-iid",
"external-id-value": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb://HOST1']"

}
],
"ovsdb:connection-info": {

"local-ip": "<controller-ip>",
"remote-port": 6640,
"remote-ip": "<ovs-host-ip>",
"local-port": 39042

},
"ovsdb:ovs-version": "2.3.1-git4750c96",
"ovsdb:manager-entry": [

{
"target": "ptcp:6640",
"connected": true,
"number_of_connections": 1

}
]

}
]

}
]

}

To disconnect an active connection, just delete the configuration MD-SAL entry.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:%2F%2FHOST1

Note in the above example, that / characters which are part of the node-id are specified in hexadecimal format as
“%2F”.

Passive Connection to OVS Hosts

A passive connection is when the OVS host initiates the connection to the OVSDB Southbound Plugin. This happens
when the OVS host is configured to connect to the OVSDB Southbound Plugin. The OVS host is configured with the
following command:

sudo ovs-vsctl set-manager tcp:<controller-ip>:6640

The OVSDB Southbound Plugin is configured to listen for OVSDB connections on TCP port 6640. This value
can be changed by editing the ”./karaf/target/assembly/etc/custom.properties” file and changing the value of the
“ovsdb.listenPort” attribute.

1.3. OpenDaylight User Guide 911

OpenDaylight Documentation Documentation, Release Carbon

When a passive connection is made, the OVSDB node will appear first in the operational MD-SAL. If the
Open_vSwitch table does not contain an external-ids value of opendaylight-iid, then the node-id of the new OVSDB
node will be created in the format:

"ovsdb://uuid/<actual UUID value>"

If there an opendaylight-iid value was already present in the external-ids column, then the instance identifier defined
there will be used to create the node-id instead.

Query the operational MD-SAL for an OVSDB node after a passive connection.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/
→˓topology/ovsdb:1/

Result Body:

{
"topology": [
{

"topology-id": "ovsdb:1",
"node": [

{
"node-id": "ovsdb://uuid/163724f4-6a70-428a-a8a0-63b2a21f12dd",
"ovsdb:openvswitch-external-ids": [

{
"external-id-key": "system-id",
"external-id-value": "ecf160af-e78c-4f6b-a005-83a6baa5c979"

}
],
"ovsdb:connection-info": {

"local-ip": "<controller-ip>",
"remote-port": 46731,
"remote-ip": "<ovs-host-ip>",
"local-port": 6640

},
"ovsdb:ovs-version": "2.3.1-git4750c96",
"ovsdb:manager-entry": [

{
"target": "tcp:10.11.21.7:6640",
"connected": true,
"number_of_connections": 1

}
]

}
]

}
]

}

Take note of the node-id that was created in this case.

Manage Bridges

The OVSDB Southbound Plugin can be used to manage bridges on an OVS host.

This example shows how to add a bridge to the OVSDB node ovsdb://HOST1.

912 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest

Body:

{
"network-topology:node": [
{

"node-id": "ovsdb://HOST1/bridge/brtest",
"ovsdb:bridge-name": "brtest",
"ovsdb:protocol-entry": [

{
"protocol": "ovsdb:ovsdb-bridge-protocol-openflow-13"

}
],
"ovsdb:managed-by": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb://HOST1']"

}
]

}

Notice that the ovsdb:managed-by attribute is specified in the command. This indicates the association of the new
bridge node with its OVSDB node.

Bridges can be updated. In the following example, OpenDaylight is configured to be the OpenFlow controller for the
bridge.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest

Body:

{
"network-topology:node": [

{
"node-id": "ovsdb://HOST1/bridge/brtest",

"ovsdb:bridge-name": "brtest",
"ovsdb:controller-entry": [
{
"target": "tcp:<controller-ip>:6653"

}
],

"ovsdb:managed-by": "/network-topology:network-topology/network-
→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb://HOST1']"

}
]

}

If the OpenDaylight OpenFlow Plugin is installed, then checking on the OVS host will show that OpenDaylight has
successfully connected as the controller for the bridge.

$ sudo ovs-vsctl show
Manager "ptcp:6640"

1.3. OpenDaylight User Guide 913

OpenDaylight Documentation Documentation, Release Carbon

is_connected: true
Bridge brtest

Controller "tcp:<controller-ip>:6653"
is_connected: true

Port brtest
Interface brtest

type: internal
ovs_version: "2.3.1-git4750c96"

Query the operational MD-SAL to see how the bridge appears.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/

Result Body:

{
"node": [
{

"node-id": "ovsdb://HOST1/bridge/brtest",
"ovsdb:bridge-name": "brtest",
"ovsdb:datapath-type": "ovsdb:datapath-type-system",
"ovsdb:datapath-id": "00:00:da:e9:0c:08:2d:45",
"ovsdb:managed-by": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb://HOST1']",

"ovsdb:bridge-external-ids": [
{
"bridge-external-id-key": "opendaylight-iid",
"bridge-external-id-value": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb://HOST1/bridge/brtest']"

}
],
"ovsdb:protocol-entry": [

{
"protocol": "ovsdb:ovsdb-bridge-protocol-openflow-13"

}
],
"ovsdb:bridge-uuid": "080ce9da-101e-452d-94cd-ee8bef8a4b69",
"ovsdb:controller-entry": [

{
"target": "tcp:10.11.21.7:6653",
"is-connected": true,
"controller-uuid": "c39b1262-0876-4613-8bfd-c67eec1a991b"

}
],
"termination-point": [

{
"tp-id": "brtest",
"ovsdb:port-uuid": "c808ae8d-7af2-4323-83c1-e397696dc9c8",
"ovsdb:ofport": 65534,
"ovsdb:interface-type": "ovsdb:interface-type-internal",
"ovsdb:interface-uuid": "49e9417f-4479-4ede-8faf-7c873b8c0413",
"ovsdb:name": "brtest"

}

914 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

]
}

]
}

Notice that just like with the OVSDB node, an opendaylight-iid has been added to the external-ids column of the
bridge since it was created via the configuration MD-SAL.

A bridge node may be deleted as well.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest

Manage Ports

Similarly, ports may be managed by the OVSDB Southbound Plugin.

This example illustrates how a port and various attributes may be created on a bridge.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/termination-point/
→˓testport/

Body:

{
"network-topology:termination-point": [
{

"ovsdb:options": [
{
"ovsdb:option": "remote_ip",
"ovsdb:value" : "10.10.14.11"

}
],
"ovsdb:name": "testport",
"ovsdb:interface-type": "ovsdb:interface-type-vxlan",
"tp-id": "testport",
"vlan-tag": "1",
"trunks": [

{
"trunk": "5"

}
],
"vlan-mode":"access"

}
]

}

Ports can be updated - add another VLAN trunk.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/termination-point/
→˓testport/

1.3. OpenDaylight User Guide 915

OpenDaylight Documentation Documentation, Release Carbon

Body:

{
"network-topology:termination-point": [
{

"ovsdb:name": "testport",
"tp-id": "testport",
"trunks": [

{
"trunk": "5"

},
{
"trunk": "500"

}
]

}
]

}

Query the operational MD-SAL for the port.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/termination-point/
→˓testport/

Result Body:

{
"termination-point": [
{

"tp-id": "testport",
"ovsdb:port-uuid": "b1262110-2a4f-4442-b0df-84faf145488d",
"ovsdb:options": [

{
"option": "remote_ip",
"value": "10.10.14.11"

}
],
"ovsdb:port-external-ids": [

{
"external-id-key": "opendaylight-iid",
"external-id-value": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb://HOST1/bridge/brtest']/network-
→˓topology:termination-point[network-topology:tp-id='testport']"

}
],
"ovsdb:interface-type": "ovsdb:interface-type-vxlan",
"ovsdb:trunks": [

{
"trunk": 5

},
{
"trunk": 500

}

916 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

],
"ovsdb:vlan-mode": "access",
"ovsdb:vlan-tag": 1,
"ovsdb:interface-uuid": "7cec653b-f407-45a8-baec-7eb36b6791c9",
"ovsdb:name": "testport",
"ovsdb:ofport": 1

}
]

}

Remember that the OVSDB YANG model includes both OVSDB port and interface table attributes in the termination-
point augmentation. Both kinds of attributes can be seen in the examples above. Again, note the creation of an
opendaylight-iid value in the external-ids column of the port table.

Delete a port.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest2/termination-point/
→˓testport/

Overview of QoS and Queue

The OVSDB Southbound Plugin provides the capability of managing the QoS and Queue tables on an OVS host with
OpenDaylight configured as the OVSDB manager.

QoS and Queue Tables in OVSDB

The OVSDB includes a QoS and Queue table. Unlike most of the other tables in the OVSDB, except the Open_vSwitch
table, the QoS and Queue tables are “root set” tables, which means that entries, or rows, in these tables are not
automatically deleted if they can not be reached directly or indirectly from the Open_vSwitch table. This means that
QoS entries can exist and be managed independently of whether or not they are referenced in a Port entry. Similarly,
Queue entries can be managed independently of whether or not they are referenced by a QoS entry.

Modelling of QoS and Queue Tables in OpenDaylight MD-SAL

Since the QoS and Queue tables are “root set” tables, they are modeled in the OpenDaylight MD-SAL as lists which
are part of the attributes of the OVSDB node model.

The MD-SAL QoS and Queue models have an additonal identifier attribute per entry (e.g. “qos-id” or “queue-id”)
which is not present in the OVSDB schema. This identifier is used by the MD-SAL as a key for referencing the
entry. If the entry is created originally from the configuration MD-SAL, then the value of the identifier is whatever
is specified by the configuration. If the entry is created on the OVSDB node and received by OpenDaylight in an
operational update, then the id will be created in the following format.

"queue-id": "queue://<UUID>"
"qos-id": "qos://<UUID>"

The UUID in the above identifiers is the actual UUID of the entry in the OVSDB database.

When the QoS or Queue entry is created by the configuration MD-SAL, the identifier will be configured as part of
the external-ids column of the entry. This will ensure that the corresponding entry that is created in the operational
MD-SAL uses the same identifier.

1.3. OpenDaylight User Guide 917

OpenDaylight Documentation Documentation, Release Carbon

"queues-external-ids": [
{
"queues-external-id-key": "opendaylight-queue-id",
"queues-external-id-value": "QUEUE-1"

}
]

See more in the examples that follow in this section.

The QoS schema in OVSDB currently defines two types of QoS entries.

• linux-htb

• linux-hfsc

These QoS types are defined in the QoS model. Additional types will need to be added to the model in order to be
supported. See the examples that folow for how the QoS type is specified in the model.

QoS entries can be configured with addtional attritubes such as “max-rate”. These are configured via the other-config
column of the QoS entry. Refer to OVSDB schema (in the reference section below) for all of the relevant attributes
that can be configured. The examples in the rest of this section will demonstrate how the other-config column may be
configured.

Similarly, the Queue entries may be configured with additional attributes via the other-config column.

Managing QoS and Queues via Configuration MD-SAL

This section will show some examples on how to manage QoS and Queue entries via the configuration MD-SAL. The
examples will be illustrated by using RESTCONF (see QoS and Queue Postman Collection).

A pre-requisite for managing QoS and Queue entries is that the OVS host must be present in the configuration MD-
SAL.

For the following examples, the following OVS host is configured.

HTTP POST:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/

Body:

{
"node": [
{

"node-id": "ovsdb:HOST1",
"connection-info": {

"ovsdb:remote-ip": "<ovs-host-ip>",
"ovsdb:remote-port": "<ovs-host-ovsdb-port>"

}
}

]
}

Where

• <controller-ip> is the IP address of the OpenDaylight controller

• <ovs-host-ip> is the IP address of the OVS host

918 Chapter 1. Content for OpenDaylight Users

https://github.com/opendaylight/ovsdb/blob/stable/boron/resources/commons/Qos-and-Queue-Collection.json.postman_collection

OpenDaylight Documentation Documentation, Release Carbon

• <ovs-host-ovsdb-port> is the TCP port of the OVSDB server on the OVS host (e.g. 6640)

This command creates an OVSDB node with the node-id “ovsdb:HOST1”. This OVSDB node will be used in the
following examples.

QoS and Queue entries can be created and managed without a port, but ultimately, QoS entries are associated with a
port in order to use them. For the following examples a test bridge and port will be created.

Create the test bridge.

HTTP PUT

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test

Body:

{
"network-topology:node": [
{

"node-id": "ovsdb:HOST1/bridge/br-test",
"ovsdb:bridge-name": "br-test",
"ovsdb:managed-by": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb:HOST1']"

}
]

}

Create the test port (which is modeled as a termination point in the OpenDaylight MD-SAL).

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Body:

{
"network-topology:termination-point": [
{

"ovsdb:name": "testport",
"tp-id": "testport"

}
]

}

If all of the previous steps were successful, a query of the operational MD-SAL should look something like the
following results. This indicates that the configuration commands have been successfully instantiated on the OVS
host.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test

Result Body:

{
"node": [

1.3. OpenDaylight User Guide 919

OpenDaylight Documentation Documentation, Release Carbon

{
"node-id": "ovsdb:HOST1/bridge/br-test",
"ovsdb:bridge-name": "br-test",
"ovsdb:datapath-type": "ovsdb:datapath-type-system",
"ovsdb:managed-by": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb:HOST1']",

"ovsdb:datapath-id": "00:00:8e:5d:22:3d:09:49",
"ovsdb:bridge-external-ids": [

{
"bridge-external-id-key": "opendaylight-iid",
"bridge-external-id-value": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb:HOST1/bridge/br-test']"

}
],
"ovsdb:bridge-uuid": "3d225d8d-d060-4909-93ef-6f4db58ef7cc",
"termination-point": [

{
"tp-id": "br=-est",
"ovsdb:port-uuid": "f85f7aa7-4956-40e4-9c94-e6ca2d5cd254",
"ovsdb:ofport": 65534,
"ovsdb:interface-type": "ovsdb:interface-type-internal",
"ovsdb:interface-uuid": "29ff3692-6ed4-4ad7-a077-1edc277ecb1a",
"ovsdb:name": "br-test"

},
{
"tp-id": "testport",
"ovsdb:port-uuid": "aa79a8e2-147f-403a-9fa9-6ee5ec276f08",
"ovsdb:port-external-ids": [

{
"external-id-key": "opendaylight-iid",
"external-id-value": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb:HOST1/bridge/br-test']/network-
→˓topology:termination-point[network-topology:tp-id='testport']"

}
],
"ovsdb:interface-uuid": "e96f282e-882c-41dd-a870-80e6b29136ac",
"ovsdb:name": "testport"

}
]

}
]

}

Create Queue

Create a new Queue in the configuration MD-SAL.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:queues/QUEUE-1/

Body:

920 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

{
"ovsdb:queues": [
{

"queue-id": "QUEUE-1",
"dscp": 25,
"queues-other-config": [

{
"queue-other-config-key": "max-rate",
"queue-other-config-value": "3600000"

}
]

}
]

}

Query Queue

Now query the operational MD-SAL for the Queue entry.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:queues/QUEUE-1/

Result Body:

{
"ovsdb:queues": [
{

"queue-id": "QUEUE-1",
"queues-other-config": [

{
"queue-other-config-key": "max-rate",
"queue-other-config-value": "3600000"

}
],
"queues-external-ids": [

{
"queues-external-id-key": "opendaylight-queue-id",
"queues-external-id-value": "QUEUE-1"

}
],
"queue-uuid": "83640357-3596-4877-9527-b472aa854d69",
"dscp": 25

}
]

}

Create QoS

Create a QoS entry. Note that the UUID of the Queue entry, obtained by querying the operational MD-SAL of the
Queue entry, is specified in the queue-list of the QoS entry. Queue entries may be added to the QoS entry at the
creation of the QoS entry, or by a subsequent update to the QoS entry.

HTTP PUT:

1.3. OpenDaylight User Guide 921

OpenDaylight Documentation Documentation, Release Carbon

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/

Body:

{
"ovsdb:qos-entries": [
{

"qos-id": "QOS-1",
"qos-type": "ovsdb:qos-type-linux-htb",
"qos-other-config": [

{
"other-config-key": "max-rate",
"other-config-value": "4400000"

}
],
"queue-list": [

{
"queue-number": "0",
"queue-uuid": "83640357-3596-4877-9527-b472aa854d69"

}
]

}
]

}

Query QoS

Query the operational MD-SAL for the QoS entry.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/

Result Body:

{
"ovsdb:qos-entries": [
{

"qos-id": "QOS-1",
"qos-other-config": [

{
"other-config-key": "max-rate",
"other-config-value": "4400000"

}
],
"queue-list": [

{
"queue-number": 0,
"queue-uuid": "83640357-3596-4877-9527-b472aa854d69"

}
],
"qos-type": "ovsdb:qos-type-linux-htb",
"qos-external-ids": [

{

922 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"qos-external-id-key": "opendaylight-qos-id",
"qos-external-id-value": "QOS-1"

}
],
"qos-uuid": "90ba9c60-3aac-499d-9be7-555f19a6bb31"

}
]

}

Add QoS to a Port

Update the termination point entry to include the UUID of the QoS entry, obtained by querying the operational MD-
SAL, to associate a QoS entry with a port.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Body:

{
"network-topology:termination-point": [
{

"ovsdb:name": "testport",
"tp-id": "testport",
"qos": "90ba9c60-3aac-499d-9be7-555f19a6bb31"

}
]

}

Query the Port

Query the operational MD-SAL to see how the QoS entry appears in the termination point model.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Result Body:

{
"termination-point": [
{

"tp-id": "testport",
"ovsdb:port-uuid": "aa79a8e2-147f-403a-9fa9-6ee5ec276f08",
"ovsdb:port-external-ids": [

{
"external-id-key": "opendaylight-iid",
"external-id-value": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb:HOST1/bridge/br-test']/network-
→˓topology:termination-point[network-topology:tp-id='testport']"

}

1.3. OpenDaylight User Guide 923

OpenDaylight Documentation Documentation, Release Carbon

],
"ovsdb:qos": "90ba9c60-3aac-499d-9be7-555f19a6bb31",
"ovsdb:interface-uuid": "e96f282e-882c-41dd-a870-80e6b29136ac",
"ovsdb:name": "testport"

}
]

}

Query the OVSDB Node

Query the operational MD-SAL for the OVS host to see how the QoS and Queue entries appear as lists in the OVS
node model.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1/

Result Body (edited to only show information relevant to the QoS and Queue entries):

{
"node": [
{

"node-id": "ovsdb:HOST1",
<content edited out>
"ovsdb:queues": [

{
"queue-id": "QUEUE-1",
"queues-other-config": [

{
"queue-other-config-key": "max-rate",
"queue-other-config-value": "3600000"

}
],
"queues-external-ids": [

{
"queues-external-id-key": "opendaylight-queue-id",
"queues-external-id-value": "QUEUE-1"

}
],
"queue-uuid": "83640357-3596-4877-9527-b472aa854d69",
"dscp": 25

}
],
"ovsdb:qos-entries": [

{
"qos-id": "QOS-1",
"qos-other-config": [

{
"other-config-key": "max-rate",
"other-config-value": "4400000"

}
],
"queue-list": [

{
"queue-number": 0,

924 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"queue-uuid": "83640357-3596-4877-9527-b472aa854d69"
}

],
"qos-type": "ovsdb:qos-type-linux-htb",
"qos-external-ids": [

{
"qos-external-id-key": "opendaylight-qos-id",
"qos-external-id-value": "QOS-1"

}
],
"qos-uuid": "90ba9c60-3aac-499d-9be7-555f19a6bb31"

}
]
<content edited out>

}
]

}

Remove QoS from a Port

This example removes a QoS entry from the termination point and associated port. Note that this is a PUT command
on the termination point with the QoS attribute absent. Other attributes of the termination point should be included in
the body of the command so that they are not inadvertantly removed.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Body:

{
"network-topology:termination-point": [
{

"ovsdb:name": "testport",
"tp-id": "testport"

}
]

}

Remove a Queue from QoS

This example removes the specific Queue entry from the queue list in the QoS entry. The queue entry is specified by
the queue number, which is “0” in this example.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/queue-list/0/

Remove Queue

Once all references to a specific queue entry have been removed from QoS entries, the Queue itself can be removed.

1.3. OpenDaylight User Guide 925

OpenDaylight Documentation Documentation, Release Carbon

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:queues/QUEUE-1/

Remove QoS

The QoS entry may be removed when it is no longer referenced by any ports.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/
→˓topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/

References

Openvswitch schema

OVSDB and Netvirt Postman Collection

OVSDB Hardware VTEP SouthBound Plugin

Overview

Hwvtepsouthbound plugin is used to configure a hardware VTEP which implements hardware ovsdb schema. This
page will show how to use RESTConf API of hwvtepsouthbound. There are two ways to connect to ODL:

switch initiates connection..

Both will be introduced respectively.

User Initiates Connection

Prerequisite

Configure the hwvtep device/node to listen for the tcp connection in passive mode. In addition, management IP and
tunnel source IP are also configured. After all this configuration is done, a physical switch is created automatically by
the hwvtep node.

Connect to a hwvtep device/node

Send below Restconf request if you want to initiate the connection to a hwvtep node from the controller, where
listening IP and port of hwvtep device/node are provided.

REST API: POST http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/

{
"network-topology:node": [

{
"node-id": "hwvtep://192.168.1.115:6640",
"hwvtep:connection-info":

926 Chapter 1. Content for OpenDaylight Users

http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf
https://github.com/opendaylight/ovsdb/blob/stable/boron/resources/commons
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/

OpenDaylight Documentation Documentation, Release Carbon

{
"hwvtep:remote-port": 6640,
"hwvtep:remote-ip": "192.168.1.115"

}
}

]
}

Please replace odl in the URL with the IP address of your OpenDaylight controller and change 192.168.1.115 to your
hwvtep node IP.

NOTE: The format of node-id is fixed. It will be one of the two:

User initiates connection from ODL:

hwvtep://ip:port

Switch initiates connection:

hwvtep://uuid/<uuid of switch>

The reason for using UUID is that we can distinguish between multiple switches if they are behind a NAT.

After this request is completed successfully, we can get the physical switch from the operational data store.

REST API: GET http://odl:8181/restconf/operational/network-topology:network-topology/topology/hwvtep:1/node/
hwvtep:%2F%2F192.168.1.115:6640

There is no body in this request.

The response of the request is:

{
"node": [

{
"node-id": "hwvtep://192.168.1.115:6640",
"hwvtep:switches": [
{
"switch-ref": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='hwvtep:1']/network-
→˓topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640/physicalswitch/
→˓br0']"

}
],
"hwvtep:connection-info": {
"local-ip": "192.168.92.145",
"local-port": 47802,
"remote-port": 6640,
"remote-ip": "192.168.1.115"

}
},
{

"node-id": "hwvtep://192.168.1.115:6640/physicalswitch/br0",
"hwvtep:management-ips": [
{
"management-ips-key": "192.168.1.115"

}
],
"hwvtep:physical-switch-uuid": "37eb5abd-a6a3-4aba-9952-a4d301bdf371",
"hwvtep:managed-by": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='hwvtep:1']/network-
→˓topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']",

1.3. OpenDaylight User Guide 927

http://odl:8181/restconf/operational/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640
http://odl:8181/restconf/operational/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

OpenDaylight Documentation Documentation, Release Carbon

"hwvtep:hwvtep-node-description": "",
"hwvtep:tunnel-ips": [
{
"tunnel-ips-key": "192.168.1.115"

}
],
"hwvtep:hwvtep-node-name": "br0"

}
]

}

If there is a physical switch which has already been created by manual configuration, we can get the node-id of the
physical switch from this response, which is presented in “swith-ref”. If the switch does not exist, we need to create
the physical switch. Currently, most hwvtep devices do not support running multiple switches.

Create a physical switch

REST API: POST http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/

request body:

{
"network-topology:node": [

{
"node-id": "hwvtep://192.168.1.115:6640/physicalswitch/br0",
"hwvtep-node-name": "ps0",
"hwvtep-node-description": "",
"management-ips": [
{
"management-ips-key": "192.168.1.115"

}
],
"tunnel-ips": [
{
"tunnel-ips-key": "192.168.1.115"

}
],
"managed-by": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='hwvtep:1']/network-
→˓topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']"

}
]

}

Note: “managed-by” must provided by user. We can get its value after the step Connect to a hwvtep device/node
since the node-id of hwvtep device is provided by user. “managed-by” is a reference typed of instance identifier.
Though the instance identifier is a little complicated for RestConf, the primary user of hwvtepsouthbound plugin will
be provider-type code such as NetVirt and the instance identifier is much easier to write code for.

Create a logical switch

Creating a logical switch is effectively creating a logical network. For VxLAN, it is a tunnel network with the same
VNI.

928 Chapter 1. Content for OpenDaylight Users

http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/

OpenDaylight Documentation Documentation, Release Carbon

REST API: POST http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/
hwvtep:%2F%2F192.168.1.115:6640

request body:

{
"logical-switches": [

{
"hwvtep-node-name": "ls0",
"hwvtep-node-description": "",
"tunnel-key": "10000"

}
]

}

Create a physical locator

After the VXLAN network is ready, we will add VTEPs to it. A VTEP is described by a physical locator.

REST API: POST http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/
hwvtep:%2F%2F192.168.1.115:6640

request body:

{
"termination-point": [

{
"tp-id": "vxlan_over_ipv4:192.168.0.116",
"encapsulation-type": "encapsulation-type-vxlan-over-ipv4",
"dst-ip": "192.168.0.116"
}

]
}

The “tp-id” of locator is “{encapsualation-type}: {dst-ip}”.

Note: As far as we know, the OVSDB database does not allow the insertion of a new locator alone. So, no locator is
inserted after this request is sent. We will trigger off the creation until other entity refer to it, such as remote-mcast-
macs.

Create a remote-mcast-macs entry

After adding a physical locator to a logical switch, we need to create a remote-mcast-macs entry to handle unknown
traffic.

REST API: POST http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/
hwvtep:%2F%2F192.168.1.115:6640

request body:

{
"remote-mcast-macs": [

{
"mac-entry-key": "00:00:00:00:00:00",
"logical-switch-ref": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='hwvtep:1']/network-
→˓topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/
→˓hwvtep:logical-switches[hwvtep:hwvtep-node-name='ls0']",

1.3. OpenDaylight User Guide 929

http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

OpenDaylight Documentation Documentation, Release Carbon

"locator-set": [
{

"locator-ref": "/network-topology:network-topology/network-
→˓topology:topology[network-topology:topology-id='hwvtep:1']/network-
→˓topology:node[network-topology:node-id='hwvtep://219.141.189.115:6640']/network-
→˓topology:termination-point[network-topology:tp-id='vxlan_over_ipv4:192.168.0.116']"

}
]

}
]

}

The physical locator vxlan_over_ipv4:192.168.0.116 is just created in “Create a physical locator”. It should be noted
that list “locator-set” is immutable, that is, we must provide a set of “locator-ref” as a whole.

Note: “00:00:00:00:00:00” stands for “unknown-dst” since the type of mac-entry-key is yang:mac and does not accept
“unknown-dst”.

Create a physical port

Now we add a physical port into the physical switch “hwvtep://192.168.1.115:6640/physicalswitch/br0”. The port is
attached with a physical server or an L2 network and with the vlan 100.

REST API: POST http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/
hwvtep:%2F%2F192.168.1.115:6640%2Fphysicalswitch%2Fbr0

{
"network-topology:termination-point": [

{
"tp-id": "port0",
"hwvtep-node-name": "port0",
"hwvtep-node-description": "",
"vlan-bindings": [

{
"vlan-id-key": "100",
"logical-switch-ref": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='hwvtep:1']/network-
→˓topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/
→˓hwvtep:logical-switches[hwvtep:hwvtep-node-name='ls0']"

}
]

}
]

}

At this point, we have completed the basic configuration.

Typically, hwvtep devices learn local MAC addresses automatically. But they also support getting MAC address
entries from ODL.

Create a local-mcast-macs entry

It is similar to Create a remote-mcast-macs entry.

930 Chapter 1. Content for OpenDaylight Users

http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640%2Fphysicalswitch%2Fbr0
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640%2Fphysicalswitch%2Fbr0

OpenDaylight Documentation Documentation, Release Carbon

Create a remote-ucast-macs

REST API: POST http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/
hwvtep:%2F%2F192.168.1.115:6640

request body:

{
"remote-ucast-macs": [

{
"mac-entry-key": "11:11:11:11:11:11",
"logical-switch-ref": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='hwvtep:1']/network-
→˓topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/
→˓hwvtep:logical-switches[hwvtep:hwvtep-node-name='ls0']",

"ipaddr": "1.1.1.1",
"locator-ref": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='hwvtep:1']/network-
→˓topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/network-
→˓topology:termination-point[network-topology:tp-id='vxlan_over_ipv4:192.168.0.116']"

}
]

}

Create a local-ucast-macs entry

This is similar to Create a remote-ucast-macs.

Switch Initiates Connection

We do not need to connect to a hwvtep device/node when the switch initiates the connection. After switches connect
to ODL successfully, we get the node-id’s of switches by reading the operational data store. Once the node-id of a
hwvtep device is received, the remaining steps are the same as when the user initiates the connection.

References

https://wiki.opendaylight.org/view/User_talk:Pzhang

PCEP User Guide

This guide contains information on how to use the OpenDaylight Path Computation Element Configuration Protocol
(PCEP) plugin. The user should learn about PCEP basic concepts, supported capabilities, configuration and operations.

Contents

• Overview

• Running PCEP

• Active Stateful PCE

1.3. OpenDaylight User Guide 931

http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640
https://wiki.opendaylight.org/view/User_talk:Pzhang

OpenDaylight Documentation Documentation, Release Carbon

• Test tools

• Troubleshooting

• References

Overview

This section provides a high-level overview of the PCEP, SDN use-cases and OpenDaylight implementation.

Contents

• Path Computation Element Communication Protocol

• PCEP in SDN

• OpenDaylight PCEP plugin

– List of supported capabilities

Path Computation Element Communication Protocol

The Path Computation Element (PCE) Communication Protocol (PCEP) is used for communication between a Path
Computation Client (PCC) and a PCE in context of MPLS and GMPLS Traffic Engineering (TE) Label Switched Paths
(LSPs). This interaction include path computation requests and computation replies. The PCE operates on a network
graph, built from the (Traffic Engineering Database) TED, in order to compute paths based on the path computation
request issued by the PCC. The path computation request includes the source and destination of the path and set of
constrains to be applied during the computation. The PCE response contains the computed path or the computation
failure reason. The PCEP operates on top the TCP, which provides reliable communication.

PCEP in SDN

The Path Computation Element perfectly fits into the centralized SDN controller architecture. The PCE’s knowledge
of the availability of network resources (i.e. TED) and active LSPs awareness (LSP-DB) allows to perform automated
application-driven network operations:

• LSP Re-optimization

• Resource defragmentation

• Link failure restoration

• Auto-bandwidth adjustment

• Bandwidth scheduling

• Shared Risk Link Group (SRLG) diversity maintenance

OpenDaylight PCEP plugin

The OpenDaylight PCEP plugin provides all basic service units necessary to build-up a PCE-based controller. In
addition, it offers LSP management functionality for Active Stateful PCE - the cornerstone for majority of PCE-
enabled SDN solutions. It consists of the following components:

932 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.82: PCE-based architecture.

1.3. OpenDaylight User Guide 933

OpenDaylight Documentation Documentation, Release Carbon

• Protocol library

• PCEP session handling

• Stateful PCE LSP-DB

• Active Stateful PCE LSP Operations

Fig. 1.83: OpenDaylight PCEP plugin overview.

Important: The PCEP plugin does not provide path computational functionality and does not build TED.

List of supported capabilities

• RFC5440 - Path Computation Element (PCE) Communication Protocol (PCEP)

• RFC5455 - Diffserv-Aware Class-Type Object for the Path Computation Element Communication Protocol

934 Chapter 1. Content for OpenDaylight Users

https://tools.ietf.org/html/rfc5440
https://tools.ietf.org/html/rfc5455

OpenDaylight Documentation Documentation, Release Carbon

• RFC5520 - Preserving Topology Confidentiality in Inter-Domain Path Computation Using a Path-Key-Based
Mechanism

• RFC5521 - Extensions to the Path Computation Element Communication Protocol (PCEP) for Route Exclusions

• RFC5541 - Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)

• RFC5557 - Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions
in Support of Global Concurrent Optimization

• RFC5886 - A Set of Monitoring Tools for Path Computation Element (PCE)-Based Architecture

• RFC7470 - Conveying Vendor-Specific Constraints in the Path Computation Element Communication Protocol

• RFC7896 - Update to the Include Route Object (IRO) Specification in the Path Computation Element Commu-
nication Protocol (PCEP)

• draft-ietf-pce-stateful-pce - PCEP Extensions for Stateful PCE

– draft-ietf-pce-pce-initiated-lsp - PCEP Extensions for PCE-initiated LSP Setup in a Stateful PCE Model

– draft-ietf-pce-segment-routing - PCEP Extension for segment routing

– draft-ietf-pce-lsp-setup-type - PCEP Extension for path setup type

– draft-ietf-pce-stateful-sync-optimizations - Optimizations of Label Switched Path State Synchronization
Procedures for a Stateful PCE

– draft-sivabalan-pce-binding-label-sid - Carrying Binding Label/Segment-ID in PCE-based Networks

• draft-ietf-pce-pceps - Secure Transport for PCEP

Running PCEP

This section explains how to install PCEP plugin.

1. Install PCEP feature - odl-bgpcep-pcep. Also, for sake of this sample, it is required to install RESTCONF.
In the Karaf console, type command:

feature:install odl-restconf odl-bgpcep-pcep

2. The PCEP plugin contains a default configuration, which is applied after the feature starts up. One instance of
PCEP plugin is created (named pcep-topology), and its presence can be verified via REST:

URL: restconf/operational/network-topology:network-topology/topology/
pcep-topology

Method: GET

Response Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<topology-id>pcep-topology</topology-id>
<topology-types>

<topology-pcep xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
→˓</topology-pcep>

</topology-types>
</topology>

1.3. OpenDaylight User Guide 935

https://tools.ietf.org/html/rfc5520
https://tools.ietf.org/html/rfc5521
https://tools.ietf.org/html/rfc5541
https://tools.ietf.org/html/rfc5557
https://tools.ietf.org/html/rfc5886
https://tools.ietf.org/html/rfc7470
https://tools.ietf.org/html/rfc7896
https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-16
https://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp-07
https://tools.ietf.org/html/draft-ietf-pce-segment-routing-07
https://tools.ietf.org/html/draft-ietf-pce-lsp-setup-type-03
https://tools.ietf.org/html/draft-ietf-pce-stateful-sync-optimizations-05
https://tools.ietf.org/html/draft-sivabalan-pce-binding-label-sid-01
https://tools.ietf.org/html/draft-ietf-pce-pceps-10

OpenDaylight Documentation Documentation, Release Carbon

Active Stateful PCE

The PCEP extension for Stateful PCE brings a visibility of active LSPs to PCE, in order to optimize path computation,
while considering individual LSPs and their interactions. This requires state synchronization mechanism between PCE
and PCC. Moreover, Active Stateful PCE is capable to address LSP parameter changes to the PCC.

Contents

• Configuration

– MD5 authentication configuration

• LSP State Database

– LSP-DB API

– LSP Delegation

– LSP Update

• PCE-initiated LSP Setup

– Configuration

– LSP Instantiation

– LSP Deletion

– PCE-initiated LSP Delegation

• Segment Routing

– Configuration

– LSP Operations for PCEP SR

• LSP State Synchronization Optimization Procedures

– Configuration

– State Synchronization Avoidance

– Incremental State Synchronization

– PCE-triggered Initial Synchronization

– PCE-triggered Re-synchronization

Configuration

This capability is enabled by default. No additional configuration is required.

MD5 authentication configuration

The OpenDaylight PCEP implementation is supporting TCP MD5 for authentication. Sample configu-
ration below shows how to set authentication password for a particular PCC. It is required to install
odl-netconf-connector-ssh feature first.

URL: /restconf/config/network-topology:network-topology/topology/
topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/

936 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

odl-pcep-topology-provider-cfg:pcep-topology-provider/pcep-topology

Method: PUT

Content-Type: application/xml

Request Body:

1 <module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
2 <type xmlns:x=

→˓"urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">x:pcep-
→˓topology-provider</type>

3 <name>pcep-topology</name>
4 <data-provider xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
5 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding

→˓">x:binding-async-data-broker</type>
6 <name>pingpong-binding-data-broker</name>
7 </data-provider>
8 <dispatcher xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
9 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:pcep">x:pcep-

→˓dispatcher</type>
10 <name>global-pcep-dispatcher</name>
11 </dispatcher>
12 <rpc-registry xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
13 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding

→˓">x:binding-rpc-registry</type>
14 <name>binding-rpc-broker</name>
15 </rpc-registry>
16 <scheduler xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
17 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:programming:spi

→˓">x:instruction-scheduler</type>
18 <name>global-instruction-scheduler</name>
19 </scheduler>
20 <stateful-plugin xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
21 <type>pcep-topology-stateful</type>
22 <name>stateful07</name>
23 </stateful-plugin>
24 <topology-id xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">pcep-
→˓topology</topology-id>

25 <client xmlns=
→˓"urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">

26 <address>43.43.43.43</address>
27 <password>topsecret</password>
28 </client>
29 </module>

@line 26: address - A PCC IP address.

@line 27: password - MD5 authentication phrase.

Warning: The PCE (pcep-topology-provider) configuration is going to be changed in Carbon release - moving to
configuration datastore.

1.3. OpenDaylight User Guide 937

OpenDaylight Documentation Documentation, Release Carbon

LSP State Database

The LSP State Database (LSP-DB) contains an information about all LSPs and their attributes. The LSP state is
synchronized between the PCC and PCE. First, initial LSP state synchronization is performed once the session between
PCC and PCE is established in order to learn PCC’s LPSs. This step is a prerequisite to following LSPs manipulation
operations.

Fig. 1.84: LSP State Synchronization.

LSP-DB API

path-computation-client
+--ro reported-lsp* [name]

+--ro name string
+--ro path* [lsp-id]
| +--ro lsp-id rsvp:lsp-id
| +--ro ero
| | +--ro processing-rule? boolean
| | +--ro ignore? boolean
| | +--ro subobject*
| | +--ro loose boolean

938 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

| | +--ro (subobject-type)?
| | +--:(as-number-case)
| | | +--ro as-number
| | | +--ro as-number inet:as-number
| | +--:(ip-prefix-case)
| | | +--ro ip-prefix
| | | +--ro ip-prefix inet:ip-prefix
| | +--:(label-case)
| | | +--ro label
| | | +--ro uni-directional boolean
| | | +--ro (label-type)?
| | | +--:(type1-label-case)
| | | | +--ro type1-label
| | | | +--ro type1-label uint32
| | | +--:(generalized-label-case)
| | | | +--ro generalized-label
| | | | +--ro generalized-label binary
| | | +--:(waveband-switching-label-case)
| | | +--ro waveband-switching-label
| | | +--ro end-label uint32
| | | +--ro start-label uint32
| | | +--ro waveband-id uint32
| | +--:(srlg-case)
| | | +--ro srlg
| | | +--ro srlg-id srlg-id
| | +--:(unnumbered-case)
| | | +--ro unnumbered
| | | +--ro router-id uint32
| | | +--ro interface-id uint32
| | +--:(exrs-case)
| | | +--ro exrs
| | | +--ro exrs*
| | | +--ro mandatory? boolean
| | | +--ro attribute enumeration
| | | +--ro (subobject-type)?
| | | +--:(as-number-case)
| | | | +--ro as-number
| | | | +--ro as-number inet:as-number
| | | +--:(ip-prefix-case)
| | | | +--ro ip-prefix
| | | | +--ro ip-prefix inet:ip-prefix
| | | +--:(label-case)
| | | | +--ro label
| | | | +--ro uni-directional boolean
| | | | +--ro (label-type)?
| | | | +--:(type1-label-case)
| | | | | +--ro type1-label
| | | | | +--ro type1-label uint32
| | | | +--:(generalized-label-case)
| | | | | +--ro generalized-label
| | | | | +--ro generalized-label binary
| | | | +--:(waveband-switching-label-case)
| | | | +--ro waveband-switching-label
| | | | +--ro end-label uint32
| | | | +--ro start-label uint32
| | | | +--ro waveband-id uint32
| | | +--:(srlg-case)
| | | | +--ro srlg

1.3. OpenDaylight User Guide 939

OpenDaylight Documentation Documentation, Release Carbon

| | | | +--ro srlg-id srlg-id
| | | +--:(unnumbered-case)
| | | +--ro unnumbered
| | | +--ro router-id uint32
| | | +--ro interface-id uint32
| | +--:(path-key-case)
| | +--ro path-key
| | +--ro pce-id pce-id
| | +--ro path-key path-key
| +--ro lspa
| | +--ro processing-rule? boolean
| | +--ro ignore? boolean
| | +--ro hold-priority? uint8
| | +--ro setup-priority? uint8
| | +--ro local-protection-desired? boolean
| | +--ro label-recording-desired? boolean
| | +--ro se-style-desired? boolean
| | +--ro session-name? string
| | +--ro include-any? attribute-filter
| | +--ro exclude-any? attribute-filter
| | +--ro include-all? attribute-filter
| | +--ro tlvs
| | +--ro vendor-information-tlv*
| | +--ro enterprise-number? iana:enterprise-number
| | +--ro (enterprise-specific-information)?
| +--ro bandwidth
| | +--ro processing-rule? boolean
| | +--ro ignore? boolean
| | +--ro bandwidth? netc:bandwidth
| +--ro reoptimization-bandwidth
| | +--ro processing-rule? boolean
| | +--ro ignore? boolean
| | +--ro bandwidth? netc:bandwidth
| +--ro metrics*
| | +--ro metric
| | +--ro processing-rule? boolean
| | +--ro ignore? boolean
| | +--ro metric-type uint8
| | +--ro bound? boolean
| | +--ro computed? boolean
| | +--ro value? ieee754:float32
| +--ro iro
| | +--ro processing-rule? boolean
| | +--ro ignore? boolean
| | +--ro subobject*
| | +--ro loose boolean
| | +--ro (subobject-type)?
| | +--:(as-number-case)
| | | +--ro as-number
| | | +--ro as-number inet:as-number
| | +--:(ip-prefix-case)
| | | +--ro ip-prefix
| | | +--ro ip-prefix inet:ip-prefix
| | +--:(label-case)
| | | +--ro label
| | | +--ro uni-directional boolean
| | | +--ro (label-type)?
| | | +--:(type1-label-case)

940 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

| | | | +--ro type1-label
| | | | +--ro type1-label uint32
| | | +--:(generalized-label-case)
| | | | +--ro generalized-label
| | | | +--ro generalized-label binary
| | | +--:(waveband-switching-label-case)
| | | +--ro waveband-switching-label
| | | +--ro end-label uint32
| | | +--ro start-label uint32
| | | +--ro waveband-id uint32
| | +--:(srlg-case)
| | | +--ro srlg
| | | +--ro srlg-id srlg-id
| | +--:(unnumbered-case)
| | | +--ro unnumbered
| | | +--ro router-id uint32
| | | +--ro interface-id uint32
| | +--:(exrs-case)
| | | +--ro exrs
| | | +--ro exrs*
| | | +--ro mandatory? boolean
| | | +--ro attribute enumeration
| | | +--ro (subobject-type)?
| | | +--:(as-number-case)
| | | | +--ro as-number
| | | | +--ro as-number inet:as-number
| | | +--:(ip-prefix-case)
| | | | +--ro ip-prefix
| | | | +--ro ip-prefix inet:ip-prefix
| | | +--:(label-case)
| | | | +--ro label
| | | | +--ro uni-directional boolean
| | | | +--ro (label-type)?
| | | | +--:(type1-label-case)
| | | | | +--ro type1-label
| | | | | +--ro type1-label uint32
| | | | +--:(generalized-label-case)
| | | | | +--ro generalized-label
| | | | | +--ro generalized-label binary
| | | | +--:(waveband-switching-label-case)
| | | | +--ro waveband-switching-label
| | | | +--ro end-label uint32
| | | | +--ro start-label uint32
| | | | +--ro waveband-id uint32
| | | +--:(srlg-case)
| | | | +--ro srlg
| | | | +--ro srlg-id srlg-id
| | | +--:(unnumbered-case)
| | | +--ro unnumbered
| | | +--ro router-id uint32
| | | +--ro interface-id uint32
| | +--:(path-key-case)
| | +--ro path-key
| | +--ro pce-id pce-id
| | +--ro path-key path-key
| +--ro rro
| | +--ro processing-rule? boolean
| | +--ro ignore? boolean

1.3. OpenDaylight User Guide 941

OpenDaylight Documentation Documentation, Release Carbon

| | +--ro subobject*
| | +--ro protection-available? boolean
| | +--ro protection-in-use? boolean
| | +--ro (subobject-type)?
| | +--:(ip-prefix-case)
| | | +--ro ip-prefix
| | | +--ro ip-prefix inet:ip-prefix
| | +--:(label-case)
| | | +--ro label
| | | +--ro uni-directional boolean
| | | +--ro (label-type)?
| | | | +--:(type1-label-case)
| | | | | +--ro type1-label
| | | | | +--ro type1-label uint32
| | | | +--:(generalized-label-case)
| | | | | +--ro generalized-label
| | | | | +--ro generalized-label binary
| | | | +--:(waveband-switching-label-case)
| | | | +--ro waveband-switching-label
| | | | +--ro end-label uint32
| | | | +--ro start-label uint32
| | | | +--ro waveband-id uint32
| | | +--ro global? boolean
| | +--:(unnumbered-case)
| | | +--ro unnumbered
| | | +--ro router-id uint32
| | | +--ro interface-id uint32
| | +--:(path-key-case)
| | +--ro path-key
| | +--ro pce-id pce-id
| | +--ro path-key path-key
| +--ro xro
| | +--ro processing-rule? boolean
| | +--ro ignore? boolean
| | +--ro flags bits
| | +--ro subobject*
| | +--ro mandatory? boolean
| | +--ro attribute enumeration
| | +--ro (subobject-type)?
| | +--:(as-number-case)
| | | +--ro as-number
| | | +--ro as-number inet:as-number
| | +--:(ip-prefix-case)
| | | +--ro ip-prefix
| | | +--ro ip-prefix inet:ip-prefix
| | +--:(label-case)
| | | +--ro label
| | | +--ro uni-directional boolean
| | | +--ro (label-type)?
| | | +--:(type1-label-case)
| | | | +--ro type1-label
| | | | +--ro type1-label uint32
| | | +--:(generalized-label-case)
| | | | +--ro generalized-label
| | | | +--ro generalized-label binary
| | | +--:(waveband-switching-label-case)
| | | +--ro waveband-switching-label
| | | +--ro end-label uint32

942 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

| | | +--ro start-label uint32
| | | +--ro waveband-id uint32
| | +--:(srlg-case)
| | | +--ro srlg
| | | +--ro srlg-id srlg-id
| | +--:(unnumbered-case)
| | +--ro unnumbered
| | +--ro router-id uint32
| | +--ro interface-id uint32
| +--ro of
| | +--ro processing-rule? boolean
| | +--ro ignore? boolean
| | +--ro code of-id
| | +--ro tlvs
| | +--ro vendor-information-tlv*
| | +--ro enterprise-number? iana:enterprise-number
| | +--ro (enterprise-specific-information)?
| +--ro class-type
| +--ro processing-rule? boolean
| +--ro ignore? boolean
| +--ro class-type class-type
+--ro metadata
+--ro lsp
| +--ro processing-rule? boolean
| +--ro ignore? boolean
| +--ro tlvs
| | +--ro lsp-error-code
| | | +--ro error-code? uint32
| | +--ro lsp-identifiers
| | | +--ro lsp-id? rsvp:lsp-id
| | | +--ro tunnel-id? rsvp:tunnel-id
| | | +--ro (address-family)?
| | | +--:(ipv4-case)
| | | | +--ro ipv4
| | | | +--ro ipv4-tunnel-sender-address inet:ipv4-address
| | | | +--ro ipv4-extended-tunnel-id rsvp:ipv4-extended-

→˓tunnel-id
| | | | +--ro ipv4-tunnel-endpoint-address inet:ipv4-address
| | | +--:(ipv6-case)
| | | +--ro ipv6
| | | +--ro ipv6-tunnel-sender-address inet:ipv6-address
| | | +--ro ipv6-extended-tunnel-id rsvp:ipv6-extended-

→˓tunnel-id
| | | +--ro ipv6-tunnel-endpoint-address inet:ipv6-address
| | +--ro rsvp-error-spec
| | | +--ro (error-type)?
| | | +--:(rsvp-case)
| | | | +--ro rsvp-error
| | | +--:(user-case)
| | | +--ro user-error
| | +--ro symbolic-path-name
| | | +--ro path-name? symbolic-path-name
| | o--ro vs-tlv
| | | +--ro enterprise-number? iana:enterprise-number
| | | +--ro (vendor-payload)?
| | +--ro vendor-information-tlv*
| | | +--ro enterprise-number? iana:enterprise-number
| | | +--ro (enterprise-specific-information)?

1.3. OpenDaylight User Guide 943

OpenDaylight Documentation Documentation, Release Carbon

| | +--ro path-binding
| | x--ro binding-type? uint8
| | x--ro binding-value? binary
| | +--ro (binding-type-value)?
| | +--:(mpls-label)
| | | +--ro mpls-label? netc:mpls-label
| | +--:(mpls-label-entry)
| | +--ro label? netc:mpls-label
| | +--ro traffic-class? uint8
| | +--ro bottom-of-stack? boolean
| | +--ro time-to-live? uint8
| +--ro plsp-id? plsp-id
| +--ro delegate? boolean
| +--ro sync? boolean
| +--ro remove? boolean
| +--ro administrative? boolean
| +--ro operational? operational-status
+--ro path-setup-type

+--ro pst? uint8

The LSP-DB is accessible via RESTCONF. The PCC’s LSPs are stored in the pcep-topology while the session
is active. In a next example, there is one PCEP session with PCC identified by its IP address (43.43.43.43) and one
reported LSP (foo).

URL: /restconf/operational/network-topology:network-topology/topology/
pcep-topology/node/pcc:%2F%2F43.43.43.43

Method: GET

Response Body:

1 <node>
2 <node-id>pcc://43.43.43.43</node-id>
3 <path-computation-client>
4 <ip-address>43.43.43.43</ip-address>
5 <state-sync>synchronized</state-sync>
6 <stateful-tlv>
7 <stateful>
8 <lsp-update-capability>true</lsp-update-capability>
9 </stateful>

10 </stateful-tlv>
11 <reported-lsp>
12 <name>foo</name>
13 <lsp>
14 <operational>up</operational>
15 <sync>true</sync>
16 <plsp-id>1</plsp-id>
17 <create>false</create>
18 <administrative>true</administrative>
19 <remove>false</remove>
20 <delegate>true</delegate>
21 <tlvs>
22 <lsp-identifiers>
23 <ipv4>
24 <ipv4-tunnel-sender-address>43.43.43.43</ipv4-tunnel-sender-

→˓address>
25 <ipv4-tunnel-endpoint-address>39.39.39.39</ipv4-tunnel-endpoint-

→˓address>

944 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

26 <ipv4-extended-tunnel-id>39.39.39.39</ipv4-extended-tunnel-id>
27 </ipv4>
28 <tunnel-id>1</tunnel-id>
29 <lsp-id>1</lsp-id>
30 </lsp-identifiers>
31 <symbolic-path-name>
32 <path-name>Zm9v</path-name>
33 </symbolic-path-name>
34 </tlvs>
35 </lsp>
36 <ero>
37 <subobject>
38 <loose>false</loose>
39 <ip-prefix>
40 <ip-prefix>201.20.160.40/32</ip-prefix>
41 </ip-prefix>
42 </subobject>
43 <subobject>
44 <loose>false</loose>
45 <ip-prefix>
46 <ip-prefix>195.20.160.39/32</ip-prefix>
47 </ip-prefix>
48 </subobject>
49 <subobject>
50 <loose>false</loose>
51 <ip-prefix>
52 <ip-prefix>39.39.39.39/32</ip-prefix>
53 </ip-prefix>
54 </subobject>
55 </ero>
56 </reported-lsp>
57 </path-computation-client>
58 </node>

@line 2: node-id The PCC identifier.

@line 4: ip-address IP address of the PCC.

@line 5: state-sync Synchronization status of the PCC’s LSPs. The synchronized indicates the State Synchronization
is done.

@line 8: lsp-update-capability - Indicates that PCC allows LSP modifications.

@line 12: name - Textual representation of LPS’s name.

@line 14: operational - Represent operational status of the LSP:

• down - not active.

• up - signaled.

• active - up and carrying traffic.

• going-down - LSP is being torn down, resources are being released.

• going-up - LSP is being signaled.

@line 15: sync - The flag set by PCC during LSPs State Synchronization.

@line 16: plsp-id - A PCEP-specific identifier for the LSP. It is assigned by PCC and it is constant for a lifetime of a
PCEP session.

@line 17: create - The false indicates that LSP is PCC-initiated.

1.3. OpenDaylight User Guide 945

OpenDaylight Documentation Documentation, Release Carbon

@line 18: administrative - The flag indicates target operational status of the LSP.

@line 20: delegate - The delegate flag indicates that the PCC is delegating the LSP to the PCE.

@line 24: ipv4-tunnel-sender-address - Contains the sender node’s IP address.

@line 25: ipv4-tunnel-endpoint-address - Contains the egress node’s IP address.

@line 26: ipv4-extended-tunnel-id - The Extended Tunnel ID identifier.

@line 28: tunnel-id - The Tunnel ID identifier.

@line 29: lsp-id - The LSP ID identifier.

@line 32: path-name - The symbolic name for the LSP.

@line 36: ero - The Explicit Route Object is encoding the path of the TE LSP through the network.

LSP Delegation

The LSP control delegations is an mechanism, where PCC grants to a PCE the temporary right in order to modify LSP
attributes. The PCC can revoke the delegation or the PCE may waive the delegation at any time. The LSP control is
delegated to at most one PCE at the same time.

Fig. 1.85: Returning a Delegation.

Following RPC example illustrates a request for the LSP delegation give up:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

946 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Request Body:

1 <input>
2 <node>pcc://43.43.43.43</node>
3 <name>foo</name>
4 <arguments>
5 <lsp xmlns:stateful="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
6 <delegate>false</delegate>
7 <administrative>true</administrative>
8 <tlvs>
9 <symbolic-path-name>

10 <path-name>Zm9v</path-name>
11 </symbolic-path-name>
12 </tlvs>
13 </lsp>
14 </arguments>
15 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/

→˓topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-
→˓topology-ref>

16 </input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP.

@line 6: delegate - Delegation flag set false in order to return the LSP delegation.

@line 10: path-name - The Symbolic Path Name TLV must be present when sending a request to give up the delega-
tion.

LSP Update

The LSP Update Request is an operation where a PCE requests a PCC to update attributes of an LSP and to rebuild
the LSP with updated attributes. In order to update LSP, the PCE must hold a LSP delegation. The LSP update is done
in make-before-break fashion - first, new LSP is initiated and then the old LSP is torn down.

Following RPC example shows a request for the LSP update:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

1 <input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
2 <node>pcc://43.43.43.43</node>
3 <name>foo</name>
4 <arguments>
5 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
6 <delegate>true</delegate>
7 <administrative>true</administrative>
8 </lsp>
9 <ero>

10 <subobject>
11 <loose>false</loose>
12 <ip-prefix>

1.3. OpenDaylight User Guide 947

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.86: Active Stateful PCE LSP Update.

948 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

13 <ip-prefix>200.20.160.41/32</ip-prefix>
14 </ip-prefix>
15 </subobject>
16 <subobject>
17 <loose>false</loose>
18 <ip-prefix>
19 <ip-prefix>196.20.160.39/32</ip-prefix>
20 </ip-prefix>
21 </subobject>
22 <subobject>
23 <loose>false</loose>
24 <ip-prefix>
25 <ip-prefix>39.39.39.39/32</ip-prefix>
26 </ip-prefix>
27 </subobject>
28 </ero>
29 </arguments>
30 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/

→˓topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-
→˓topology-ref>

31 </input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP to be updated.

@line 6: delegate - Delegation flag set true in order to keep the LSP control.

@line 7: administrative - Desired administrative status of the LSP is active.

@line 9: ero - This LSP attribute is changed.

PCE-initiated LSP Setup

The PCEP Extension for PCE-initiated LSP Setup allows PCE to request a creation and deletion of LSPs.

Configuration

This capability is enabled by default. No additional configuration is required.

LSP Instantiation

The PCE can request LSP creation. The LSP instantiation is done by sending an LSP Initiate Message to PCC. The
PCC assign delegation to PCE which triggered creation. PCE-initiated LSPs are identified by Create flag.

Following RPC example shows a request for the LSP initiation:

URL: /restconf/operations/network-topology-pcep:add-lsp

Method: POST

Content-Type: application/xml

Request Body:

1.3. OpenDaylight User Guide 949

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.87: LSP instantiation.

950 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

1 <input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
2 <node>pcc://43.43.43.43</node>
3 <name>update-tunel</name>
4 <arguments>
5 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
6 <delegate>true</delegate>
7 <administrative>true</administrative>
8 </lsp>
9 <endpoints-obj>

10 <ipv4>
11 <source-ipv4-address>43.43.43.43</source-ipv4-address>
12 <destination-ipv4-address>39.39.39.39</destination-ipv4-address>
13 </ipv4>
14 </endpoints-obj>
15 <ero>
16 <subobject>
17 <loose>false</loose>
18 <ip-prefix>
19 <ip-prefix>201.20.160.40/32</ip-prefix>
20 </ip-prefix>
21 </subobject>
22 <subobject>
23 <loose>false</loose>
24 <ip-prefix>
25 <ip-prefix>195.20.160.39/32</ip-prefix>
26 </ip-prefix>
27 </subobject>
28 <subobject>
29 <loose>false</loose>
30 <ip-prefix>
31 <ip-prefix>39.39.39.39/32</ip-prefix>
32 </ip-prefix>
33 </subobject>
34 </ero>
35 </arguments>
36 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/

→˓topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-
→˓topology-ref>

37 </input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP to be created.

@line 8: endpoints-obj - The END-POINT Object is mandatory for an instantiation request of an RSVP-signaled
LSP. It contains source and destination addresses for provisioning the LSP.

@line 14: ero - The ERO object is mandatory for LSP initiation request.

LSP Deletion

The PCE may request a deletion of PCE-initiated LSPs. The PCE must be delegation holder for this particular LSP.

Following RPC example shows a request for the LSP deletion:

URL: /restconf/operations/network-topology-pcep:remove-lsp

1.3. OpenDaylight User Guide 951

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.88: LSP deletion.

Method: POST

Content-Type: application/xml

Request Body:

1 <input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
2 <node>pcc://43.43.43.43</node>
3 <name>update-tunel</name>
4 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/

→˓topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-
→˓topology-ref>

5 </input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP to be removed.

PCE-initiated LSP Delegation

The PCE-initiated LSP control is delegated to the PCE which requested the initiation. The PCC cannot revoke delega-
tion of PCE-initiated LSP. When PCE returns delegation for such LSP or PCE fails, then the LSP become orphan and
can be removed by a PCC after some time. The PCE may ask for a delegation of the orphan LSP.

Following RPC example illustrates a request for the LSP delegation:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

952 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.89: Orphan PCE-initiated LSP - control taken by PCE.

1 <input>
2 <node>pcc://43.43.43.43</node>
3 <name>update-tunel</name>
4 <arguments>
5 <lsp xmlns:stateful="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
6 <delegate>true</delegate>
7 <administrative>true</administrative>
8 <tlvs>
9 <symbolic-path-name>

10 <path-name>dXBkYXRlLXR1bmVs</path-name>
11 </symbolic-path-name>
12 </tlvs>
13 </lsp>
14 </arguments>
15 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/

→˓topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-
→˓topology-ref>

16 </input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP.

@line 6: delegate - Delegation flag set true in order to take the LSP delegation.

@line 10: path-name - The Symbolic Path Name TLV must be present when sending a request to take a delegation.

Segment Routing

The PCEP Extensions for Segment Routing (SR) allow a stateful PCE to compute and initiate TE paths in SR networks.
The SR path is defined as an order list of segments. Segment Routing architecture can be directly applied to the MPLS
forwarding plane without changes. Segment Identifier (SID) is encoded as a MPLS label.

1.3. OpenDaylight User Guide 953

OpenDaylight Documentation Documentation, Release Carbon

Configuration

This capability is enabled by default. In PCEP-SR draft version 6, SR Explicit Route Object/Record Route Object
subobjects IANA code points change was proposed. In order to use the latest code points, a configuration should be
changed in following way:

URL: /restconf/config/pcep-segment-routing-app-config:pcep-segment-routing-app-config

Method: PUT

Content-Type: application/xml

Request Body:

1 <pcep-segment-routing-config xmlns=
→˓"urn:opendaylight:params:xml:ns:yang:controller:pcep:segment-routing-app-config">

2 <iana-sr-subobjects-type>true</iana-sr-subobjects-type>
3 </pcep-segment-routing-config>

LSP Operations for PCEP SR

The PCEP SR extension defines new ERO subobject - SR-ERO subobject capable of carrying a SID.

sr-ero-type
+---- c-flag? boolean
+---- m-flag? boolean
+---- sid-type? sid-type
+---- sid? uint32
+---- (nai)?

+--:(ip-node-id)
| +---- ip-address inet:ip-address
+--:(ip-adjacency)
| +---- local-ip-address inet:ip-address
| +---- remote-ip-address inet:ip-address
+--:(unnumbered-adjacency)

+---- local-node-id uint32
+---- local-interface-id uint32
+---- remote-node-id uint32
+---- remote-interface-id uint32

Following RPC example illustrates a request for the SR-TE LSP creation:

URL: /restconf/operations/network-topology-pcep:add-lsp

Method: POST

Content-Type: application/xml

Request Body:

1 <input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
2 <node>pcc://43.43.43.43</node>
3 <name>sr-path</name>
4 <arguments>
5 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
6 <delegate>true</delegate>
7 <administrative>true</administrative>

954 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

8 </lsp>
9 <endpoints-obj>

10 <ipv4>
11 <source-ipv4-address>43.43.43.43</source-ipv4-address>
12 <destination-ipv4-address>39.39.39.39</destination-ipv4-address>
13 </ipv4>
14 </endpoints-obj>
15 <path-setup-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
16 <pst>1</pst>
17 </path-setup-type>
18 <ero>
19 <subobject>
20 <loose>false</loose>
21 <sid-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing

→˓">ipv4-node-id</sid-type>
22 <m-flag xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">

→˓true</m-flag>
23 <sid xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">

→˓24001</sid>
24 <ip-address xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">39.39.39.39</ip-address>
25 </subobject>
26 </ero>
27 </arguments>
28 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/

→˓topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-
→˓topology-ref>

29 </input>

@line 16: path-setup-type - Set 1 for SR-TE LSP

@line 21: ipv4-node-id - The SR-ERO subobject represents IPv4 Node ID NAI.

@line 22: m-flag - The SID value represents an MPLS label.

@line 23: sid - The Segment Identifier.

Following RPC example illustrates a request for the SR-TE LSP update including modified path:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

1 <input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
2 <node>pcc://43.43.43.43</node>
3 <name>update-tunnel</name>
4 <arguments>
5 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
6 <delegate>true</delegate>
7 <administrative>true</administrative>
8 </lsp>
9 <path-setup-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">

10 <pst>1</pst>
11 </path-setup-type>
12 <ero>

1.3. OpenDaylight User Guide 955

OpenDaylight Documentation Documentation, Release Carbon

13 <subobject>
14 <loose>false</loose>
15 <sid-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing

→˓">ipv4-node-id</sid-type>
16 <m-flag xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">

→˓true</m-flag>
17 <sid xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">

→˓24002</sid>
18 <ip-address xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">200.20.160.41</ip-
→˓address>

19 </subobject>
20 <subobject>
21 <loose>false</loose>
22 <sid-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing

→˓">ipv4-node-id</sid-type>
23 <m-flag xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">

→˓true</m-flag>
24 <sid xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">

→˓24001</sid>
25 <ip-address xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">39.39.39.39</ip-address>
26 </subobject>
27 </ero>
28 </arguments>
29 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/

→˓topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-
→˓topology-ref>

30 </input>

LSP State Synchronization Optimization Procedures

This extension bring optimizations for state synchronization:

• State Synchronization Avoidance

• Incremental State Synchronization

• PCE-triggered Initial Synchronization

• PCE-triggered Re-synchronization

Configuration

This capability is enabled by default. No additional configuration is required.

State Synchronization Avoidance

The State Synchronization Avoidance procedure is intended to skip state synchronization if the state has survived and
not changed during session restart.

956 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.90: State Synchronization Skipped.

1.3. OpenDaylight User Guide 957

OpenDaylight Documentation Documentation, Release Carbon

Incremental State Synchronization

The Incremental State Synchronization procedure is intended to do incremental (delta) state synchronization when
possible.

Fig. 1.91: Incremental Synchronization Procedure.

PCE-triggered Initial Synchronization

The PCE-triggered Initial Synchronization procedure is intended to do let PCE control the timing of the initial state
synchronization.

Following RPC example illustrates a request for the initial synchronization:

URL: /restconf/operations/network-topology-pcep:trigger-sync

Method: POST

Content-Type: application/xml

Request Body:

1 <input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
2 <node>pcc://43.43.43.43</node>

958 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.92: PCE-triggered Initial State Synchronization Procedure.

1.3. OpenDaylight User Guide 959

OpenDaylight Documentation Documentation, Release Carbon

3 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/
→˓topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-
→˓topology-ref>

4 </input>

PCE-triggered Re-synchronization

The PCE-triggered Re-synchronization: To let PCE re-synchronize the state for sanity check.

Fig. 1.93: PCE-triggered Re-synchronization Procedure.

Following RPC example illustrates a request for the LSP re-synchronization:

URL: /restconf/operations/network-topology-pcep:trigger-sync

Method: POST

Content-Type: application/xml

Request Body:

960 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

1 <input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
2 <node>pcc://43.43.43.43</node>
3 <name>update-lsp</name>
4 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/

→˓topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-
→˓topology-ref>

5 </input>

@line 3: name - The LSP name. If this parameter is omitted, re-synchronization is requested for all PCC’s LSPs.

Test tools

PCC Mock

The PCC Mock is a stand-alone Java application purposed to simulate a PCC(s). The simulator is capable to report
sample LSPs, respond to delegation, LSP management operations and synchronization optimization procedures. This
application is not part of the OpenDaylight Karaf distribution, however it can be downloaded from OpenDaylight’s
Nexus (use latest release version):

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/
opendaylight/bgpcep/pcep-pcc-mock

Usage

The application can be run from command line:

java -jar pcep-pcc-mock-*-executable.jar

with optional input parameters:

--local-address <Address:Port> (optional, default 127.0.0.1)
The first PCC IP address. If more PCCs are required, the IP address will be

→˓incremented. Port number can be optionally specified.

--remote-address <Address1:Port1,Address2:Port2,Address3:Port3,...> (optional,
→˓default 127.0.0.1:4189)

The list of IP address for the PCE servers. Port number can be optionally
→˓specified, otherwise default port number 4189 is used.

--pcc <N> (optional, default 1)
Number of mocked PCC instances.

--lsp <N> (optional, default 1)
Number of tunnels (LSPs) reported per PCC, might be zero.

--pcerr (optional flag)
If the flag is present, response with PCErr, otherwise PCUpd.

--log-level <LEVEL> (optional, default INFO)
Set logging level for pcc-mock.

-d, --deadtimer <0..255> (optional, default 120)
DeadTimer value in seconds.

1.3. OpenDaylight User Guide 961

OpenDaylight Documentation Documentation, Release Carbon

-ka, --keepalive <0.255> (optional, default 30)
KeepAlive timer value in seconds.

--password <password> (optional)
If the password is present, it is used in TCP MD5 signature, otherwise plain TCP

→˓is used.

--reconnect <seconds> (optional)
If the argument is present, the value in seconds, is used as a delay before each

→˓new reconnect (initial connect or connection re-establishment) attempt.
The number of reconnect attempts is unlimited. If the argument is omitted, pcc-

→˓mock is not trying to reconnect.

--redelegation-timeout <seconds> (optional, default 0)
The timeout starts when LSP delegation is returned or PCE fails, stops when LSP is

→˓re-delegated to PCE.
When timeout expires, LSP delegation is revoked and held by PCC.

--state-timeout <seconds> (optional, default -1 (disabled))
The timeout starts when LSP delegation is returned or PCE fails, stops when LSP is

→˓re-delegated to PCE.
When timeout expires, PCE-initiated LSP is removed.

--state-sync-avoidance <disconnect_after_x_seconds> <reconnect_after_x_seconds>
→˓<dbVersion>

Synchronization avoidance capability enabled.
- disconnect_after_x_seconds: seconds that will pass until disconnections is

→˓forced. If set to smaller number than 1, disconnection wont be performed.
- reconnect_after_x_seconds: seconds that will pass between disconnection and

→˓new connection attempt. Only happens if disconnection has been performed.
- dbVersion: dbVersion used in new Open and must be always equal or bigger than

→˓LSP. If equal than LSP skip synchronization will be performed,
if not full synchronization will be performed taking in account new starting

→˓dbVersion desired.
--incremental-sync-procedure <disconnect_after_x_seconds> <reconnect_after_x_seconds>
→˓ <dbVersion>

Incremental synchronization capability enabled.
- dbVersion: dbVersion used in new Open and must be always bigger than LSP.

→˓Incremental synchronization will be performed taking in account new starting
→˓dbVersion desired.

--triggered-initial-sync
PCE-triggered synchronization capability enabled. Can be combined combined with

→˓state-sync-avoidance/incremental-sync-procedure.

--triggered-re-sync
PCE-triggered re-synchronization capability enabled.

Data Change Counter Tool

Data Change Counter tool registers a Data Change Listener to a specified topology’s subtree. This will allow us to
know the quantity of changes produced under it, with each data change event counter will be incremented.

962 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Installation

Installing data change counter tool

feature:install odl-restconf odl-bgpcep-data-change-counter

Configuration

Once we set the configuration, a new data change counter will be created and registers to example-linkstate-topology.

Important: Clustering - Each Counter Identifier should be unique.

URL: /restconf/config/odl-data-change-counter-config:data-change-counter-config/
data-change-counter

Method: PUT

Content-Type: application/xml

Request Body:

1 <data-change-counter-config xmlns="urn:opendaylight:params:xml:ns:yang:bgpcep:data-
→˓change-counter-config">

2 <counter-id>data-change-counter</counter-id>
3 <topology-name>example-linkstate-topology</topology-name>
4 </data-change-counter-config>

@line 2: Counter Id - Unique counter change identifier.

@line 3: Topology Name - An identifier for a topology.

Usage

Counter state for topology

URL: /restconf/operational/data-change-counter:data-change-counter/counter/
data-change-counter

Method: GET

Response Body:

1 <counter xmlns="urn:opendaylight:params:xml:ns:yang:bgp-data-change-counter">
2 <id>data-change-counter</id>
3 <count>0</count>
4 </counter>

@line 2: Counter Id - Unique counter change identifier.

@line 3: Count - Number of changes under registered topology’s subtree.

Troubleshooting

This section offers advices in a case OpenDaylight PCEP plugin is not working as expected.

1.3. OpenDaylight User Guide 963

OpenDaylight Documentation Documentation, Release Carbon

Contents

• PCEP is not working...

• Bug reporting

PCEP is not working...

• First of all, ensure that all required features are installed, local PCE and remote PCC configuration is correct.

To list all installed features in OpenDaylight use the following command at the Karaf console:

feature:list -i

• Check OpenDaylight Karaf logs:

From Karaf console:

log:tail

or open log file: data/log/karaf.log

Possibly, a reason/hint for a cause of the problem can be found there.

• Try to minimize effect of other OpenDaylight features, when searching for a reason of the problem.

• Try to set DEBUG severity level for PCEP logger via Karaf console commands, in order to collect more infor-
mation:

log:set DEBUG org.opendaylight.protocol.pcep

log:set DEBUG org.opendaylight.bgpcep.pcep

Bug reporting

Before you report a bug, check BGPCEP Jira to ensure same/similar bug is not already filed there.

Write an e-mail to bgpcep-users@lists.opendaylight.org and provide following information:

1. State OpenDaylight version

2. Describe your use-case and provide as much details related to PCEP as possible

3. Steps to reproduce

4. Attach Karaf log files, optionally packet captures, REST input/output

References

• A Path Computation Element (PCE)-Based Architecture

• Path Computation Element (PCE) Communication Protocol Generic Requirements

• Unanswered Questions in the Path Computation Element Architecture

• A PCE-Based Architecture for Application-Based Network Operations

964 Chapter 1. Content for OpenDaylight Users

https://jira.opendaylight.org/projects/BGPCEP/issues/BGPCEP-589?filter=allopenissues
mailto:bgpcep-users@lists.opendaylight.org
https://tools.ietf.org/html/rfc4655
https://tools.ietf.org/html/rfc4657
https://tools.ietf.org/html/rfc7399
https://tools.ietf.org/html/rfc7491

OpenDaylight Documentation Documentation, Release Carbon

• Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic Engineering

• Applicability of a Stateful Path Computation Element (PCE)

PacketCable User Guide

Overview

These components introduce a DOCSIS QoS Gates management using the PCMM protocol. The driver component
is responsible for the PCMM/COPS/PDP functionality required to service requests from PacketCable Provider and
FlowManager. Requests are transposed into PCMM Gate Control messages and transmitted via COPS to the CMTS.
This plugin adheres to the PCMM/COPS/PDP functionality defined in the CableLabs specification. PacketCable
solution is an MDSAL compliant component.

PacketCable Components

PacketCable is comprised of two OpenDaylight bundles:

Bundle Description
odl-packetcable-policy-
server

Plugin that provides PCMM model implementation based on CMTS structure and
COPS protocol.

odl-packetcable-policy-
model

The Model provided provides a direct mapping to the underlying QoS Gates of
CMTS.

See the PacketCable YANG Models.

Installing PacketCable

To install PacketCable, run the following feature:install command from the Karaf CLI

feature:install odl-packetcable-policy-server-all odl-restconf odl-mdsal-apidocs

Explore and exercise the PacketCable REST API

To see the PacketCable APIs, browse to this URL: http://localhost:8181/apidoc/explorer/index.html

Replace localhost with the IP address or hostname where OpenDaylight is running if you are not running OpenDaylight
locally on your machine.

Note: Prior to setting any PCMM gates, a CCAP must first be added.

Postman

Install the Chrome extension

Download and import sample packetcable collection

1.3. OpenDaylight User Guide 965

https://tools.ietf.org/html/rfc5623
https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-app-07
https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-policy-model/src/main/yang
http://localhost:8181/apidoc/explorer/index.html
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en
https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-policy-server/doc/restconf-samples

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.94: Postman Operations

Postman Operations

PacketCable REST API Usage Examples

• CCAP “CONFIG” DATASTORE API STRUCTURE

– Add and view CCAPConfigDatastore(add triggers also the CCAP COPS connection):

PUT http://localhost:8181/restconf/config/packetcable:ccaps/ccap/CMTS-1

{"ccap":[
{"ccapId":"CMTS-1",
"amId": {

"am-tag": 51930,
"am-type": 1

},
"connection": {

"ipAddress": "10.20.30.40",
"port":3918

},"subscriber-subnets": [
"2001:4978:030d:1000:0:0:0:0/52",
"44.137.0.0/16"

],"upstream-scns": [
"SCNA",
"extrm_up"

],"downstream-scns": [
"extrm_dn",
"ipvideo_dn",

966 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"SCNC"
]}

]}

GET http://localhost:8181/restconf/config/packetcable:ccaps/ccap/CMTS-1

• CCAP OPERATIONAL STATUS - GET CCAP (COPS) CONNECTION STATUS

– Shows the Operational Datastorecontents for the CCAP COPS connection.

– The status is updated when the COPS connection is initiated or after an RPC poll:

GET http://localhost:8181/restconf/operational/packetcable:ccaps/ccap/CMTS-1/
Response: 200 OK

{
"ccap": [

{
"ccapId": "CMTS-1",
"connection": {

"error": [
"E6-CTO: CCAP client is connected"

],
"timestamp": "2016-03-23T14:15:54.129-05:00",
"connected": true

}
}

]
}

• CCAP OPERATIONAL STATUS - RPC CCAP POLL CONNECTION

– A CCAP RPC poll returns the COPS connectivity status info and also triggers an Operational Datastore
status update with the same data:

POST http://localhost:8181/restconf/operations/packetcable:ccap-poll-
→˓connection
{

"input": {
"ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId=

→˓'CMTS-1']"
}

}
Response: 200 OK
{
"output": {

"response": "CMTS-1: CCAP poll complete",
"timestamp": "2016-03-23T14:15:54.131-05:00",
"ccap": {

"ccapId": "CMTS-1",
"connection": {

"connection": {
"error": [

"CMTS-1: CCAP client is connected"
],
"timestamp": "2016-03-23T14:15:54.129-05:00",
"connected": true

}
}

1.3. OpenDaylight User Guide 967

OpenDaylight Documentation Documentation, Release Carbon

}
}

}

• CCAP OPERATIONAL STATUS - RPC CCAP POLL CONNECTION (2) - CONNECTION DOWN:

POST http://localhost:8181/restconf/operations/packetcable:ccap-poll-connection
{

"input": {
"ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId=

→˓'CMTS-1']"
}

}
Response: 200 OK
{
"output": {

"response": "CMTS-1: CCAP poll complete",
"timestamp": "2016-03-23T14:15:54.131-05:00",
"ccap": {

"ccapId": "CMTS-1",
"connection": {

"error": [
"CMTS-1: CCAP client is disconnected with error: null",
"CMTS-1: CCAP Cops socket is closed"],

"timestamp": "2016-03-23T14:15:54.129-05:00",
"connected": false

}
}

}
}

• CCAP OPERATIONAL STATUS - RPC CCAP SET CONNECTION

– A CCAP RPC sets the CCAP COPS connection; possible values true or false meaning that the connection
should be up or down.

– RPC responds with the same info as RPC POLL CONNECTION, and also updates the Operational Data-
store:

POST http://localhost:8181/restconf/operations/packetcable:ccap-set-connection
{

"input": {
"ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId=

→˓'CMTS-1']",
"connection": {

"connected": true
}

}
}
Response: 200 OK
{

"output": {

"response": "CMTS-1: CCAP set complete",
"timestamp": "2016-03-23T17:47:29.446-05:00",
"ccap": {

"ccapId": "CMTS-1",
"connection": {

968 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"error": [
"CMTS-1: CCAP client is connected",
"CMTS-1: CCAP COPS socket is already open

→˓"],
"timestamp": "2016-03-23T17:47:29.436-05:00",
"connected": true

}
}

}
}

• CCAP OPERATIONAL STATUS - RPC CCAP SET CONNECTION (2) - SHUTDOWN COPS CONNEC-
TION:

POST http://localhost:8181/restconf/operations/packetcable:ccap-set-connection
{

"input": {
"ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId='E6-

→˓CTO']",
"connection": {

"connected": false
}

}
}
Response: 200 OK
{

"output": {
"response": "E6-CTO: CCAP set complete",
"timestamp": "2016-03-23T17:47:29.446-05:00",
"ccap": {

"ccapId": "E6-CTO",
"connection": {

"error": [
"E60CTO: CCAP client is disconnected with

→˓error: null"],
"timestamp": "2016-03-23T17:47:29.436-05:00",
"connected": false

}
}

}
}

Note: A “null” in the error information means that the CCAP connection has been disconnected as a result of a RPC
SET.

• GATES “CONFIG” DATASTORE API STRUCTURE CHANGED

– A CCAP RPC poll returns the gate status info, and also triggers a Operational Datastorestatus update.

– At a minimum the appIdneeds to be included in the input, subscriberIdand gateIdare optional.

– A gate status response is only included if the RPC request is done for a specific gate (subscriberIdand
gateIdincluded in input).

– Add and retrieve gates to/from the Config Datastore:

1.3. OpenDaylight User Guide 969

OpenDaylight Documentation Documentation, Release Carbon

PUT http://localhost:8181/restconf/config/packetcable:qos/apps/app/cto-app/
→˓subscribers/subscriber/44.137.0.12/gates/gate/gate88/

{
"gate": [
{
"gateId": "gate88",
"gate0spec": {
"dscp-tos-overwrite": "0xa0",
"dscp-tos-mask": "0xff"

},
"traffic-profile": {
"service-class-name": "extrm_dn"

},
"classifiers": {
"classifier-container": [
{
"classifier-id": "1",
"classifier": {
"srcIp": "44.137.0.0",
"dstIp": "44.137.0.11",
"protocol": "0",
"srcPort": "1234",
"dstPort": "4321",
"tos-byte": "0xa0",
"tos-mask": "0xe0"

}
}

]
}

}
]

}

GET http://localhost:8181/restconf/config/packetcable:qos/apps/app/cto-app/
→˓subscribers/subscriber/44.137.0.12/gates/gate/gate88/

• GATES SUPPORT MULTIPLE (UP TO FOUR) CLASSIFIERS

– Please note that there is a classifier container now that can have up to four classifiers:

PUT http://localhost:8181/restconf/config/packetcable:qos/apps/app/cto-app/
→˓subscribers/subscriber/44.137.0.12/gates/gate/gate88/
{ "gate":{

"gateId": "gate44",
"gate-spec": {
"dscp-tos-overwrite": "0xa0",

"dscp-tos-mask": "0xff" },
"traffic-profile": {

"service-class-name": "extrm_dn"},
"classifiers":

{ "classifier-container":[
{ "classifier-id": "1",

"ipv6-classifier": {
"srcIp6":

→˓"2001:4978:030d:1100:0:0:0:0/64",
"dstIp6":

→˓"2001:4978:030d:1000:0:0:0:0/64",

970 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"flow-label": "102",
"tc-low": "0xa0",
"tc-high": "0xc0",
"tc-mask": "0xe0",
"next-hdr": "256",
"srcPort-start": "4321",
"srcPort-end": "4322",
"dstPort-start": "1234",
"dstPort-end": "1235"

}},
{ "classifier-id": "2",

"ext-classifier" : {
"srcIp": "44.137.0.12",
"srcIpMask": "255.255.255.255",
"dstIp": "10.10.10.0",
"dstIpMask": "255.255.255.0",
"tos-byte": "0xa0",
"tos-mask": "0xe0",
"protocol": "0",
"srcPort-start": "4321",
"srcPort-end": "4322",
"dstPort-start": "1234",
"dstPort-end": "1235"

}
}]

}
}

}

• CCAP OPERATIONAL STATUS - GET GATE STATUS FROM OPERATIONAL DATASTORE

– Shows the Operational Datastore contents for the gate.

– The gate status is updated at the time when the gate is configured or during an RPC poll:

GET http://localhost:8181/restconf/operational/packetcable:qos/apps/app/cto-
→˓app/subscribers/subscriber/44.137.0.12/gates/gate/gate88

Response: 200
{

"gate":[{
"gateId":"gate88",
"cops-gate-usage-info": "0",
"cops-gate-state": "Committed(4)/Other(-1)",
"gatePath": "cto-app/44.137.0.12/gate88",
"cops-gate-time-info": "0",
"cops-gateId": "3e0800e9",
"timestamp": "2016-03-24T10:30:18.763-05:00",
"ccapId": "E6-CTO"

}]
}

• CCAP OPERATIONAL STATUS - RPC GATE STATUS POLL

– A CCAP RPC poll returns the gate status info and also triggers an Operational Datastore status update.

– At a minimum, the appId needs to be included in the input; subscriberId and gateId are optional.

– A gate status response is only included if the RPC request is done for a specific gate (subscriberId and
gateId included in input):

1.3. OpenDaylight User Guide 971

OpenDaylight Documentation Documentation, Release Carbon

POST http://localhost:8181/restconf/operations/packetcable:qos-poll-gates
{

"input": {
"appId": "/packetcable:apps/packetcable:apps[packetcable:appId=

→˓'cto-app]",
"subscriberId": "44.137.0.11",
"gateId": "gate44"

}
}
Response: 200 OK
{

"output": {
"gate": {

"cops-gate-usage-info": "0",
"cops-gate-state": "Committed(4)/Other(-1)",
"gatePath": "ctoapp/44.137.0.12/gate88",
"cops-gate-time-info": "0",
"cops-gateId": "1ceb0001",
"error": [""],
"timestamp": "2016-03-24T13:22:59.900-05:00",
"ccapId": "E6-CTO"

},
"response": "cto-app/44.137.0.12/gate88: gate poll complete",
"timestamp": "2016-03-24T13:22:59.906-05:00"

}
}

– When multiple gates are polled (only appId or appId and subscriberId are provided), a generic response is
returned and the Operational Datastore is updated in the background:

{ "output": {
"gate": {},
"response": "cto-app/: gate subtree poll in progress",
"timestamp": "2016-03-24T13:25:30.471-05:00"

}
}

Service Function Chaining

OpenDaylight Service Function Chaining (SFC) Overview

OpenDaylight Service Function Chaining (SFC) provides the ability to define an ordered list of a network services
(e.g. firewalls, load balancers). These service are then “stitched” together in the network to create a service chain.
This project provides the infrastructure (chaining logic, APIs) needed for ODL to provision a service chain in the
network and an end-user application for defining such chains.

• ACE - Access Control Entry

• ACL - Access Control List

• SCF - Service Classifier Function

• SF - Service Function

• SFC - Service Function Chain

• SFF - Service Function Forwarder

972 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• SFG - Service Function Group

• SFP - Service Function Path

• RSP - Rendered Service Path

• NSH - Network Service Header

SFC User Interface

Overview

SFC User Interface (SFC-UI) is based on Dlux project. It provides an easy way to create, read, update and delete
configuration stored in datastore. Moreover, it shows the status of all SFC features (e.g installed, uninstalled) and
Karaf log messages as well.

SFC-UI Architecture

SFC-UI operates purely by using RESTCONF.

Fig. 1.95: SFC-UI integration into ODL

Configuring SFC-UI

1. Run ODL distribution (run karaf)

2. In Karaf console execute: feature:install odl-sfc-ui

3. Visit SFC-UI on: http://<odl_ip_address>:8181/sfc/index.html

1.3. OpenDaylight User Guide 973

OpenDaylight Documentation Documentation, Release Carbon

SFC Southbound REST Plug-in

Overview

The Southbound REST Plug-in is used to send configuration from datastore down to network devices supporting a
REST API (i.e. they have a configured REST URI). It supports POST/PUT/DELETE operations, which are triggered
accordingly by changes in the SFC data stores.

• Access Control List (ACL)

• Service Classifier Function (SCF)

• Service Function (SF)

• Service Function Group (SFG)

• Service Function Schedule Type (SFST)

• Service Function Forwarder (SFF)

• Rendered Service Path (RSP)

Southbound REST Plug-in Architecture

From the user perspective, the REST plug-in is another SFC Southbound plug-in used to communicate with network
devices.

Configuring Southbound REST Plugin

1. Run ODL distribution (run karaf)

2. In Karaf console execute: feature:install odl-sfc-sb-rest

3. Configure REST URIs for SF/SFF through SFC User Interface or RESTCONF (required configuration steps can
be found in the tutorial stated bellow)

Tutorial

Comprehensive tutorial on how to use the Southbound REST Plug-in and how to control network devices with it can
be found on: https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#SFC_101

SFC-OVS integration

Overview

SFC-OVS provides integration of SFC with Open vSwitch (OVS) devices. Integration is realized through mapping
of SFC objects (like SF, SFF, Classifier, etc.) to OVS objects (like Bridge, TerminationPoint=Port/Interface). The
mapping takes care of automatic instantiation (setup) of corresponding object whenever its counterpart is created. For
example, when a new SFF is created, the SFC-OVS plug-in will create a new OVS bridge and when a new OVS Bridge
is created, the SFC-OVS plug-in will create a new SFF.

The feature is intended for SFC users willing to use Open vSwitch as underlying network infrastructure for deploying
RSPs (Rendered Service Paths).

974 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#SFC_101

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.96: Southbound REST Plug-in integration into ODL

1.3. OpenDaylight User Guide 975

OpenDaylight Documentation Documentation, Release Carbon

SFC-OVS Architecture

SFC-OVS uses the OVSDB MD-SAL Southbound API for getting/writing information from/to OVS devices. From
the user perspective SFC-OVS acts as a layer between SFC datastore and OVSDB.

Fig. 1.97: SFC-OVS integration into ODL

Configuring SFC-OVS

1. Run ODL distribution (run karaf)

2. In Karaf console execute: feature:install odl-sfc-ovs

3. Configure Open vSwitch to use ODL as a manager, using following command: ovs-vsctl set-manager
tcp:<odl_ip_address>:6640

976 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Tutorials

Verifying mapping from OVS to SFF

Overview

This tutorial shows the usual work flow when OVS configuration is transformed to corresponding SFC objects (in this
case SFF).

Prerequisites

• Open vSwitch installed (ovs-vsctl command available in shell)

• SFC-OVS feature configured as stated above

Instructions

1. ovs-vsctl set-manager tcp:<odl_ip_address>:6640

2. ovs-vsctl add-br br1

3. ovs-vsctl add-port br1 testPort

Verification

1. visit SFC User Interface: http://<odl_ip_address>:8181/sfc/index.html#/sfc/
serviceforwarder

2. use pure RESTCONF and send GET request to URL: http://<odl_ip_address>:8181/restconf/
config/service-function-forwarder:service-function-forwarders

There should be SFF, which name will be ending with br1 and the SFF should containt two DataPlane locators: br1
and testPort.

Verifying mapping from SFF to OVS

Overview

This tutorial shows the usual workflow during creation of OVS Bridge with use of SFC APIs.

Prerequisites

• Open vSwitch installed (ovs-vsctl command available in shell)

• SFC-OVS feature configured as stated above

1.3. OpenDaylight User Guide 977

OpenDaylight Documentation Documentation, Release Carbon

Instructions

1. In shell execute: ovs-vsctl set-manager tcp:<odl_ip_address>:6640

2. Send POST request to URL: http://<odl_ip_address>:8181/restconf/operations/
service-function-forwarder-ovs:create-ovs-bridge Use Basic auth with credentials:
“admin”, “admin” and set Content-Type: application/json. The content of POST request should
be following:

{
"input":
{

"name": "br-test",
"ovs-node": {

"ip": "<Open_vSwitch_ip_address>"
}

}
}

Open_vSwitch_ip_address is IP address of machine, where Open vSwitch is installed.

Verification

In shell execute: ovs-vsctl show. There should be Bridge with name br-test and one port/interface called br-test.

Also, corresponding SFF for this OVS Bridge should be configured, which can be verified through SFC User Interface
or RESTCONF as stated in previous tutorial.

SFC Classifier User Guide

Overview

Description of classifier can be found in: https://datatracker.ietf.org/doc/draft-ietf-sfc-architecture/

There are two types of classifier:

1. OpenFlow Classifier

2. Iptables Classifier

OpenFlow Classifier

OpenFlow Classifier implements the classification criteria based on OpenFlow rules deployed into an OpenFlow
switch. An Open vSwitch will take the role of a classifier and performs various encapsulations such NSH, VLAN,
MPLS, etc. In the existing implementation, classifier can support NSH encapsulation. Matching information is based
on ACL for MAC addresses, ports, protocol, IPv4 and IPv6. Supported protocols are TCP, UDP and SCTP. Actions
information in the OF rules, shall be forwarding of the encapsulated packets with specific information related to the
RSP.

Classifier Architecture

The OVSDB Southbound interface is used to create an instance of a bridge in a specific location (via IP address). This
bridge contains the OpenFlow rules that perform the classification of the packets and react accordingly. The OpenFlow

978 Chapter 1. Content for OpenDaylight Users

https://datatracker.ietf.org/doc/draft-ietf-sfc-architecture/

OpenDaylight Documentation Documentation, Release Carbon

Southbound interface is used to translate the ACL information into OF rules within the Open vSwitch.

Note: in order to create the instance of the bridge that takes the role of a classifier, an “empty” SFF must be created.

Configuring Classifier

1. An empty SFF must be created in order to host the ACL that contains the classification information.

2. SFF data plane locator must be configured

3. Classifier interface must be manually added to SFF bridge.

Administering or Managing Classifier

Classification information is based on MAC addresses, protocol, ports and IP. ACL gathers this information and is
assigned to an RSP which turns to be a specific path for a Service Chain.

Iptables Classifier

Classifier manages everything from starting the packet listener to creation (and removal) of appropriate ip(6)tables
rules and marking received packets accordingly. Its functionality is available only on Linux as it leverdges Netfil-
terQueue, which provides access to packets matched by an iptables rule. Classifier requires root privileges to be able
to operate.

So far it is capable of processing ACL for MAC addresses, ports, IPv4 and IPv6. Supported protocols are TCP and
UDP.

Classifier Architecture

Python code located in the project repository sfc-py/common/classifier.py.

Note: classifier assumes that Rendered Service Path (RSP) already exists in ODL when an ACL referencing it is
obtained

1. sfc_agent receives an ACL and passes it for processing to the classifier

2. the RSP (its SFF locator) referenced by ACL is requested from ODL

3. if the RSP exists in the ODL then ACL based iptables rules for it are applied

After this process is over, every packet successfully matched to an iptables rule (i.e. successfully classified) will be
NSH encapsulated and forwarded to a related SFF, which knows how to traverse the RSP.

Rules are created using appropriate iptables command. If the Access Control Entry (ACE) rule is MAC address related
both iptables and IPv6 tables rules re issued. If ACE rule is IPv4 address related, only iptables rules are issued, same
for IPv6.

Note: iptables raw table contains all created rules

1.3. OpenDaylight User Guide 979

OpenDaylight Documentation Documentation, Release Carbon

Configuring Classifier

Classfier does’t need any configuration.
Its only requirement is that the second (2) Netfilter Queue is not used by any other process and is avalilable for the
classifier.

Administering or Managing Classifier

Classifier runs alongside sfc_agent, therefore the command for starting it locally is:

sudo python3.4 sfc-py/sfc_agent.py --rest --odl-ip-port localhost:8181 --auto-sff-
→˓name --nfq-class

SFC OpenFlow Renderer User Guide

Overview

The Service Function Chaining (SFC) OpenFlow Renderer (SFC OF Renderer) implements Service Chaining on
OpenFlow switches. It listens for the creation of a Rendered Service Path (RSP), and once received it programs
Service Function Forwarders (SFF) that are hosted on OpenFlow capable switches to steer packets through the service
chain.

Common acronyms used in the following sections:

• SF - Service Function

• SFF - Service Function Forwarder

• SFC - Service Function Chain

• SFP - Service Function Path

• RSP - Rendered Service Path

SFC OpenFlow Renderer Architecture

The SFC OF Renderer is invoked after a RSP is created using an MD-SAL listener called
SfcOfRspDataListener. Upon SFC OF Renderer initialization, the SfcOfRspDataListener regis-
ters itself to listen for RSP changes. When invoked, the SfcOfRspDataListener processes the RSP and calls
the SfcOfFlowProgrammerImpl to create the necessary flows in the Service Function Forwarders configured in
the RSP. Refer to the following diagram for more details.

SFC OpenFlow Switch Flow pipeline

The SFC OpenFlow Renderer uses the following tables for its Flow pipeline:

• Table 0, Classifier

• Table 1, Transport Ingress

• Table 2, Path Mapper

• Table 3, Path Mapper ACL

980 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.98: SFC OpenFlow Renderer High Level Architecture

1.3. OpenDaylight User Guide 981

OpenDaylight Documentation Documentation, Release Carbon

• Table 4, Next Hop

• Table 10, Transport Egress

The OpenFlow Table Pipeline is intended to be generic to work for all of the different encapsulations supported by
SFC.

All of the tables are explained in detail in the following section.

The SFFs (SFF1 and SFF2), SFs (SF1), and topology used for the flow tables in the following sections are as described
in the following diagram.

Fig. 1.99: SFC OpenFlow Renderer Typical Network Topology

Classifier Table detailed

It is possible for the SFF to also act as a classifier. This table maps subscriber traffic to RSPs, and is explained in detail
in the classifier documentation.

If the SFF is not a classifier, then this table will just have a simple Goto Table 1 flow.

982 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Transport Ingress Table detailed

The Transport Ingress table has an entry per expected tunnel transport type to be received in a particular SFF, as
established in the SFC configuration.

Here are two example on SFF1: one where the RSP ingress tunnel is MPLS assuming VLAN is used for the SFF-SF,
and the other where the RSP ingress tunnel is NSH GRE (UDP port 4789):

Priority Match Action
256 EtherType==0x8847 (MPLS unicast) Goto Table 2
256 EtherType==0x8100 (VLAN) Goto Table 2
256 EtherType==0x0800,udp,tp_dst==4789 (IP v4) Goto Table 2
5 Match Any Drop

Table: Table Transport Ingress

Path Mapper Table detailed

The Path Mapper table has an entry per expected tunnel transport info to be received in a particular SFF, as established
in the SFC configuration. The tunnel transport info is used to determine the RSP Path ID, and is stored in the OpenFlow
Metadata. This table is not used for NSH, since the RSP Path ID is stored in the NSH header.

For SF nodes that do not support NSH tunneling, the IP header DSCP field is used to store the RSP Path Id. The RSP
Path Id is written to the DSCP field in the Transport Egress table for those packets sent to an SF.

Here is an example on SFF1, assuming the following details:

• VLAN ID 1000 is used for the SFF-SF

• The RSP Path 1 tunnel uses MPLS label 100 for ingress and 101 for egress

• The RSP Path 2 (symmetric downlink path) uses MPLS label 101 for ingress and 100 for egress

Priority Match Action
256 MPLS Label==100 RSP Path=1, Pop MPLS, Goto Table 4
256 MPLS Label==101 RSP Path=2, Pop MPLS, Goto Table 4
256 VLAN ID==1000, IP DSCP==1 RSP Path=1, Pop VLAN, Goto Table 4
256 VLAN ID==1000, IP DSCP==2 RSP Path=2, Pop VLAN, Goto Table 4
5 Match Any Goto Table 3

Table: Table Path Mapper

Path Mapper ACL Table detailed

This table is only populated when PacketIn packets are received from the switch for TcpProxy type SFs. These flows
are created with an inactivity timer of 60 seconds and will be automatically deleted upon expiration.

Next Hop Table detailed

The Next Hop table uses the RSP Path Id and appropriate packet fields to determine where to send the packet next.
For NSH, only the NSP (Network Services Path, RSP ID) and NSI (Network Services Index, next hop) fields from the
NSH header are needed to determine the VXLAN tunnel destination IP. For VLAN or MPLS, then the source MAC
address is used to determine the destination MAC address.

1.3. OpenDaylight User Guide 983

OpenDaylight Documentation Documentation, Release Carbon

Here are two examples on SFF1, assuming SFF1 is connected to SFF2. RSP Paths 1 and 2 are symmetric VLAN
paths. RSP Paths 3 and 4 are symmetric NSH paths. RSP Path 1 ingress packets come from external to SFC, for which
we don’t have the source MAC address (MacSrc).

Prior-
ity

Match Action

256 RSP Path==1, MacSrc==SF1 MacDst=SFF2, Goto Table 10
256 RSP Path==2, MacSrc==SF1 Goto Table 10
256 RSP Path==2, MacSrc==SFF2 MacDst=SF1, Goto Table 10
246 RSP Path==1 MacDst=SF1, Goto Table 10
256 nsp=3,nsi=255 (SFF Ingress RSP 3) load:0xa000002→NXM_NX_TUN_I PV4_DST[], Goto

Table 10
256 nsp=3,nsi=254 (SFF Ingress from SF,

RSP 3)
load:0xa00000a→NXM_NX_TUN_I PV4_DST[], Goto
Table 10

256 nsp=4,nsi=254 (SFF1 Ingress from
SFF2)

load:0xa00000a→NXM_NX_TUN_I PV4_DST[], Goto
Table 10

5 Match Any Drop

Table: Table Next Hop

Transport Egress Table detailed

The Transport Egress table prepares egress tunnel information and sends the packets out.

Here are two examples on SFF1. RSP Paths 1 and 2 are symmetric MPLS paths that use VLAN for the SFF-SF. RSP
Paths 3 and 4 are symmetric NSH paths. Since it is assumed that switches used for NSH will only have one VXLAN
port, the NSH packets are just sent back where they came from.

Priority Match Action
256 RSP Path==1, MacDst==SF1 Push VLAN ID 1000, Port=SF1
256 RSP Path==1, MacDst==SFF2 Push MPLS Label 101, Port=SFF2
256 RSP Path==2, MacDst==SF1 Push VLAN ID 1000, Port=SF1
246 RSP Path==2 Push MPLS Label 100, Port=Ingress
256 nsp=3,nsi=255 (SFF Ingress RSP 3) IN_PORT
256 nsp=3,nsi=254 (SFF Ingress from SF, RSP 3) IN_PORT
256 nsp=4,nsi=254 (SFF1 Ingress from SFF2) IN_PORT
5 Match Any Drop

Table: Table Transport Egress

Administering SFC OF Renderer

To use the SFC OpenFlow Renderer Karaf, at least the following Karaf features must be installed.

• odl-openflowplugin-nxm-extensions

• odl-openflowplugin-flow-services

• odl-sfc-provider

• odl-sfc-model

• odl-sfc-openflow-renderer

• odl-sfc-ui (optional)

The following command can be used to view all of the currently installed Karaf features:

984 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

opendaylight-user@root>feature:list -i

Or, pipe the command to a grep to see a subset of the currently installed Karaf features:

opendaylight-user@root>feature:list -i | grep sfc

To install a particular feature, use the Karaf feature:install command.

SFC OF Renderer Tutorial

Overview

In this tutorial, 2 different encapsulations will be shown: MPLS and NSH. The following Network Topology diagram
is a logical view of the SFFs and SFs involved in creating the Service Chains.

Fig. 1.100: SFC OpenFlow Renderer Typical Network Topology

Prerequisites

To use this example, SFF OpenFlow switches must be created and connected as illustrated above. Additionally, the
SFs must be created and connected.

1.3. OpenDaylight User Guide 985

OpenDaylight Documentation Documentation, Release Carbon

Note that RSP symmetry depends on Service Function Path symmetric field, if present. If not, the RSP will be
symmetric if any of the SFs involved in the chain has the bidirectional field set to true.

Target Environment

The target environment is not important, but this use-case was created and tested on Linux.

Instructions

The steps to use this tutorial are as follows. The referenced configuration in the steps is listed in the following sections.

There are numerous ways to send the configuration. In the following configuration chapters, the appropriate curl
command is shown for each configuration to be sent, including the URL.

Steps to configure the SFC OF Renderer tutorial:

1. Send the SF RESTCONF configuration

2. Send the SFF RESTCONF configuration

3. Send the SFC RESTCONF configuration

4. Send the SFP RESTCONF configuration

5. Create the RSP with a RESTCONF RPC command

Once the configuration has been successfully created, query the Rendered Service Paths with either the SFC UI or via
RESTCONF. Notice that the RSP is symmetrical, so the following 2 RSPs will be created:

• sfc-path1

• sfc-path1-Reverse

At this point the Service Chains have been created, and the OpenFlow Switches are programmed to steer traffic through
the Service Chain. Traffic can now be injected from a client into the Service Chain. To debug problems, the OpenFlow
tables can be dumped with the following commands, assuming SFF1 is called s1 and SFF2 is called s2.

sudo ovs-ofctl -O OpenFlow13 dump-flows s1

sudo ovs-ofctl -O OpenFlow13 dump-flows s2

In all the following configuration sections, replace the ${JSON} string with the appropriate JSON configuration.
Also, change the localhost destination in the URL accordingly.

SFC OF Renderer NSH Tutorial

The following configuration sections show how to create the different elements using NSH encapsulation.

NSH Service Function configuration

The Service Function configuration can be sent with the following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function:service-functions/

986 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

SF configuration JSON.

{
"service-functions": {
"service-function": [

{
"name": "sf1",
"type": "http-header-enrichment",
"ip-mgmt-address": "10.0.0.2",
"sf-data-plane-locator": [
{

"name": "sf1dpl",
"ip": "10.0.0.10",
"port": 4789,
"transport": "service-locator:vxlan-gpe",
"service-function-forwarder": "sff1"

}
]

},
{

"name": "sf2",
"type": "firewall",
"ip-mgmt-address": "10.0.0.3",
"sf-data-plane-locator": [
{

"name": "sf2dpl",
"ip": "10.0.0.20",
"port": 4789,
"transport": "service-locator:vxlan-gpe",

"service-function-forwarder": "sff2"
}

]
}

]
}

}

NSH Service Function Forwarder configuration

The Service Function Forwarder configuration can be sent with the following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function-forwarder:service-function-forwarders/

SFF configuration JSON.

{
"service-function-forwarders": {
"service-function-forwarder": [

{
"name": "sff1",
"service-node": "openflow:2",
"sff-data-plane-locator": [
{

"name": "sff1dpl",

1.3. OpenDaylight User Guide 987

OpenDaylight Documentation Documentation, Release Carbon

"data-plane-locator":
{

"ip": "10.0.0.1",
"port": 4789,
"transport": "service-locator:vxlan-gpe"

}
}

],
"service-function-dictionary": [
{

"name": "sf1",
"sff-sf-data-plane-locator":
{

"sf-dpl-name": "sf1dpl",
"sff-dpl-name": "sff1dpl"

}
}

]
},
{

"name": "sff2",
"service-node": "openflow:3",
"sff-data-plane-locator": [
{

"name": "sff2dpl",
"data-plane-locator":
{

"ip": "10.0.0.2",
"port": 4789,
"transport": "service-locator:vxlan-gpe"

}
}

],
"service-function-dictionary": [
{

"name": "sf2",
"sff-sf-data-plane-locator":
{

"sf-dpl-name": "sf2dpl",
"sff-dpl-name": "sff2dpl"

}
}

]
}

]
}

}

NSH Service Function Chain configuration

The Service Function Chain configuration can be sent with the following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function-chain:service-function-chains/

988 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

SFC configuration JSON.

{
"service-function-chains": {
"service-function-chain": [

{
"name": "sfc-chain1",
"sfc-service-function": [
{

"name": "hdr-enrich-abstract1",
"type": "http-header-enrichment"

},
{

"name": "firewall-abstract1",
"type": "firewall"

}
]

}
]

}
}

NSH Service Function Path configuration

The Service Function Path configuration can be sent with the following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function-path:service-function-paths/

SFP configuration JSON.

{
"service-function-paths": {
"service-function-path": [

{
"name": "sfc-path1",
"service-chain-name": "sfc-chain1",
"transport-type": "service-locator:vxlan-gpe",
"symmetric": true

}
]

}
}

NSH Rendered Service Path creation

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X POST --user admin:admin http://localhost:8181/restconf/operations/
→˓rendered-service-path:create-rendered-path/

RSP creation JSON.

1.3. OpenDaylight User Guide 989

OpenDaylight Documentation Documentation, Release Carbon

{
"input": {

"name": "sfc-path1",
"parent-service-function-path": "sfc-path1"

}
}

NSH Rendered Service Path removal

The following command can be used to remove a Rendered Service Path called sfc-path1:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{
→˓"input": {"name": "sfc-path1" } }' -X POST --user admin:admin http://localhost:8181/
→˓restconf/operations/rendered-service-path:delete-rendered-path/

NSH Rendered Service Path Query

The following command can be used to query all of the created Rendered Service Paths:

curl -H "Content-Type: application/json" -H "Cache-Control: no-cache" -X GET --user
→˓admin:admin http://localhost:8181/restconf/operational/rendered-service-
→˓path:rendered-service-paths/

SFC OF Renderer MPLS Tutorial

The following configuration sections show how to create the different elements using MPLS encapsulation.

MPLS Service Function configuration

The Service Function configuration can be sent with the following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function:service-functions/

SF configuration JSON.

{
"service-functions": {
"service-function": [

{
"name": "sf1",
"type": "http-header-enrichment",
"ip-mgmt-address": "10.0.0.2",
"sf-data-plane-locator": [
{

"name": "sf1-sff1",
"mac": "00:00:08:01:02:01",

990 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"vlan-id": 1000,
"transport": "service-locator:mac",
"service-function-forwarder": "sff1"

}
]

},
{

"name": "sf2",
"type": "firewall",
"ip-mgmt-address": "10.0.0.3",
"sf-data-plane-locator": [
{

"name": "sf2-sff2",
"mac": "00:00:08:01:03:01",
"vlan-id": 2000,
"transport": "service-locator:mac",
"service-function-forwarder": "sff2"

}
]

}
]

}
}

MPLS Service Function Forwarder configuration

The Service Function Forwarder configuration can be sent with the following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function-forwarder:service-function-forwarders/

SFF configuration JSON.

{
"service-function-forwarders": {
"service-function-forwarder": [

{
"name": "sff1",
"service-node": "openflow:2",
"sff-data-plane-locator": [
{

"name": "ulSff1Ingress",
"data-plane-locator":
{

"mpls-label": 100,
"transport": "service-locator:mpls"

},
"service-function-forwarder-ofs:ofs-port":
{

"mac": "11:11:11:11:11:11",
"port-id" : "1"

}
},
{

1.3. OpenDaylight User Guide 991

OpenDaylight Documentation Documentation, Release Carbon

"name": "ulSff1ToSff2",
"data-plane-locator":
{

"mpls-label": 101,
"transport": "service-locator:mpls"

},
"service-function-forwarder-ofs:ofs-port":
{

"mac": "33:33:33:33:33:33",
"port-id" : "2"

}
},
{

"name": "toSf1",
"data-plane-locator":
{

"mac": "22:22:22:22:22:22",
"vlan-id": 1000,
"transport": "service-locator:mac",

},
"service-function-forwarder-ofs:ofs-port":
{

"mac": "33:33:33:33:33:33",
"port-id" : "3"

}
}

],
"service-function-dictionary": [
{

"name": "sf1",
"sff-sf-data-plane-locator":
{

"sf-dpl-name": "sf1-sff1",
"sff-dpl-name": "toSf1"

}
}

]
},
{

"name": "sff2",
"service-node": "openflow:3",
"sff-data-plane-locator": [
{

"name": "ulSff2Ingress",
"data-plane-locator":
{

"mpls-label": 101,
"transport": "service-locator:mpls"

},
"service-function-forwarder-ofs:ofs-port":
{

"mac": "44:44:44:44:44:44",
"port-id" : "1"

}
},
{

"name": "ulSff2Egress",
"data-plane-locator":

992 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

{
"mpls-label": 102,
"transport": "service-locator:mpls"

},
"service-function-forwarder-ofs:ofs-port":
{

"mac": "66:66:66:66:66:66",
"port-id" : "2"

}
},
{

"name": "toSf2",
"data-plane-locator":
{

"mac": "55:55:55:55:55:55",
"vlan-id": 2000,
"transport": "service-locator:mac"

},
"service-function-forwarder-ofs:ofs-port":
{

"port-id" : "3"
}

}
],
"service-function-dictionary": [
{

"name": "sf2",
"sff-sf-data-plane-locator":
{

"sf-dpl-name": "sf2-sff2",
"sff-dpl-name": "toSf2"

},
"service-function-forwarder-ofs:ofs-port":
{

"port-id" : "3"
}

}
]

}
]

}
}

MPLS Service Function Chain configuration

The Service Function Chain configuration can be sent with the following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function-chain:service-function-chains/

SFC configuration JSON.

1.3. OpenDaylight User Guide 993

OpenDaylight Documentation Documentation, Release Carbon

{
"service-function-chains": {
"service-function-chain": [

{
"name": "sfc-chain1",
"sfc-service-function": [
{

"name": "hdr-enrich-abstract1",
"type": "http-header-enrichment"

},
{

"name": "firewall-abstract1",
"type": "firewall"

}
]

}
]

}
}

MPLS Service Function Path configuration

The Service Function Path configuration can be sent with the following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function-path:service-function-paths/

SFP configuration JSON.

{
"service-function-paths": {
"service-function-path": [

{
"name": "sfc-path1",
"service-chain-name": "sfc-chain1",
"transport-type": "service-locator:mpls",
"symmetric": true

}
]

}
}

MPLS Rendered Service Path creation

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X POST --user admin:admin http://localhost:8181/restconf/operations/
→˓rendered-service-path:create-rendered-path/

RSP creation JSON.

994 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

{
"input": {

"name": "sfc-path1",
"parent-service-function-path": "sfc-path1"

}
}

MPLS Rendered Service Path removal

The following command can be used to remove a Rendered Service Path called sfc-path1:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{
→˓"input": {"name": "sfc-path1" } }' -X POST --user admin:admin http://localhost:8181/
→˓restconf/operations/rendered-service-path:delete-rendered-path/

MPLS Rendered Service Path Query

The following command can be used to query all of the created Rendered Service Paths:

curl -H "Content-Type: application/json" -H "Cache-Control: no-cache" -X GET --user
→˓admin:admin http://localhost:8181/restconf/operational/rendered-service-
→˓path:rendered-service-paths/

SFC IOS XE Renderer User Guide

Overview

The early Service Function Chaining (SFC) renderer for IOS-XE devices (SFC IOS-XE renderer) implements Service
Chaining functionality on IOS-XE capable switches. It listens for the creation of a Rendered Service Path (RSP) and
sets up Service Function Forwarders (SFF) that are hosted on IOS-XE switches to steer traffic through the service
chain.

Common acronyms used in the following sections:

• SF - Service Function

• SFF - Service Function Forwarder

• SFC - Service Function Chain

• SP - Service Path

• SFP - Service Function Path

• RSP - Rendered Service Path

• LSF - Local Service Forwarder

• RSF - Remote Service Forwarder

1.3. OpenDaylight User Guide 995

OpenDaylight Documentation Documentation, Release Carbon

SFC IOS-XE Renderer Architecture

When the SFC IOS-XE renderer is initialized, all required listeners are registered to handle incoming data. It in-
volves CSR/IOS-XE NodeListener which stores data about all configurable devices including their mountpoints
(used here as databrokers), ServiceFunctionListener, ServiceForwarderListener (see mapping)
and RenderedPathListener used to listen for RSP changes. When the SFC IOS-XE renderer is invoked,
RenderedPathListener calls the IosXeRspProcessor which processes the RSP change and creates all
necessary Service Paths and Remote Service Forwarders (if necessary) on IOS-XE devices.

Service Path details

Each Service Path is defined by index (represented by NSP) and contains service path entries. Each entry has appro-
priate service index (NSI) and definition of next hop. Next hop can be Service Function, different Service Function
Forwarder or definition of end of chain - terminate. After terminating, the packet is sent to destination. If a SFF is
defined as a next hop, it has to be present on device in the form of Remote Service Forwarder. RSFs are also created
during RSP processing.

Example of Service Path:

service-chain service-path 200
service-index 255 service-function firewall-1
service-index 254 service-function dpi-1
service-index 253 terminate

Mapping to IOS-XE SFC entities

Renderer contains mappers for SFs and SFFs. IOS-XE capable device is using its own definition of Service Functions
and Service Function Forwarders according to appropriate .yang file. ServiceFunctionListener serves as a lis-
tener for SF changes. If SF appears in datastore, listener extracts its management ip address and looks into cached IOS-
XE nodes. If some of available nodes match, Service function is mapped in IosXeServiceFunctionMapper to
be understandable by IOS-XE device and it’s written into device’s config. ServiceForwarderListener is used
in a similar way. All SFFs with suitable management ip address it mapped in IosXeServiceForwarderMapper.
Remapped SFFs are configured as a Local Service Forwarders. It is not possible to directly create Remote Service
Forwarder using IOS-XE renderer. RSF is created only during RSP processing.

Administering SFC IOS-XE renderer

To use the SFC IOS-XE Renderer Karaf, at least the following Karaf features must be installed:

• odl-aaa-shiro

• odl-sfc-model

• odl-sfc-provider

• odl-restconf

• odl-netconf-topology

• odl-sfc-ios-xe-renderer

996 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

SFC IOS-XE renderer Tutorial

Overview

This tutorial is a simple example how to create Service Path on IOS-XE capable device using IOS-XE renderer

Preconditions

To connect to IOS-XE device, it is necessary to use several modified yang models and override device’s ones. All
.yang files are in the Yang/netconf folder in the sfc-ios-xe-renderer module in the SFC project. These
files have to be copied to the cache/schema directory, before Karaf is started. After that, custom capabilities have
to be sent to network-topology:

PUT ./config/network-topology:network-topology/topology/topology-netconf/node/<device-
→˓name>

<node xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<node-id>device-name</node-id>
<host xmlns="urn:opendaylight:netconf-node-topology">device-ip</host>
<port xmlns="urn:opendaylight:netconf-node-topology">2022</port>
<username xmlns="urn:opendaylight:netconf-node-topology">login</username>
<password xmlns="urn:opendaylight:netconf-node-topology">password</password>
<tcp-only xmlns="urn:opendaylight:netconf-node-topology">false</tcp-only>
<keepalive-delay xmlns="urn:opendaylight:netconf-node-topology">0</keepalive-delay>
<yang-module-capabilities xmlns="urn:opendaylight:netconf-node-topology">

<override>true</override>
<capability xmlns="urn:opendaylight:netconf-node-topology">

urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&
→˓revision=2013-07-15

</capability>
<capability xmlns="urn:opendaylight:netconf-node-topology">

urn:ietf:params:xml:ns:yang:ietf-yang-types?module=ietf-yang-types&
→˓revision=2013-07-15

</capability>
<capability xmlns="urn:opendaylight:netconf-node-topology">

urn:ios?module=ned&revision=2016-03-08
</capability>
<capability xmlns="urn:opendaylight:netconf-node-topology">

http://tail-f.com/yang/common?module=tailf-common&revision=2015-05-22
</capability>
<capability xmlns="urn:opendaylight:netconf-node-topology">

http://tail-f.com/yang/common?module=tailf-meta-extensions&revision=2013-
→˓11-07

</capability>
<capability xmlns="urn:opendaylight:netconf-node-topology">

http://tail-f.com/yang/common?module=tailf-cli-extensions&revision=2015-
→˓03-19

</capability>
</yang-module-capabilities>

</node>

Note: The device name in the URL and in the XML must match.

1.3. OpenDaylight User Guide 997

OpenDaylight Documentation Documentation, Release Carbon

Instructions

When the IOS-XE renderer is installed, all NETCONF nodes in topology-netconf are processed and all capable nodes
with accessible mountpoints are cached. The first step is to create LSF on node.

Service Function Forwarder configuration

PUT ./config/service-function-forwarder:service-function-forwarders

{
"service-function-forwarders": {

"service-function-forwarder": [
{

"name": "CSR1Kv-2",
"ip-mgmt-address": "172.25.73.23",
"sff-data-plane-locator": [

{
"name": "CSR1Kv-2-dpl",
"data-plane-locator": {

"transport": "service-locator:vxlan-gpe",
"port": 6633,
"ip": "10.99.150.10"

}
}

]
}

]
}

}

If the IOS-XE node with appropriate management IP exists, this configuration is mapped and LSF is created on the
device. The same approach is used for Service Functions.

PUT ./config/service-function:service-functions

{
"service-functions": {

"service-function": [
{

"name": "Firewall",
"ip-mgmt-address": "172.25.73.23",
"type": "firewall",
"sf-data-plane-locator": [

{
"name": "firewall-dpl",
"port": 6633,
"ip": "12.1.1.2",
"transport": "service-locator:gre",
"service-function-forwarder": "CSR1Kv-2"

}
]

},
{

"name": "Dpi",
"ip-mgmt-address": "172.25.73.23",
"type":"dpi",
"sf-data-plane-locator": [

{

998 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"name": "dpi-dpl",
"port": 6633,
"ip": "12.1.1.1",
"transport": "service-locator:gre",
"service-function-forwarder": "CSR1Kv-2"

}
]

},
{

"name": "Qos",
"ip-mgmt-address": "172.25.73.23",
"type":"qos",
"sf-data-plane-locator": [

{
"name": "qos-dpl",
"port": 6633,
"ip": "12.1.1.4",
"transport": "service-locator:gre",
"service-function-forwarder": "CSR1Kv-2"

}
]

}
]

}
}

All these SFs are configured on the same device as the LSF. The next step is to prepare Service Function Chain.

PUT ./config/service-function-chain:service-function-chains/

{
"service-function-chains": {

"service-function-chain": [
{

"name": "CSR3XSF",
"sfc-service-function": [

{
"name": "Firewall",
"type": "firewall"

},
{

"name": "Dpi",
"type": "dpi"

},
{

"name": "Qos",
"type": "qos"

}
]

}
]

}
}

Service Function Path:

PUT ./config/service-function-path:service-function-paths/

1.3. OpenDaylight User Guide 999

OpenDaylight Documentation Documentation, Release Carbon

{
"service-function-paths": {

"service-function-path": [
{

"name": "CSR3XSF-Path",
"service-chain-name": "CSR3XSF",
"starting-index": 255,
"symmetric": "true"

}
]

}
}

Without a classifier, there is possibility to POST RSP directly.

POST ./operations/rendered-service-path:create-rendered-path

{
"input": {

"name": "CSR3XSF-Path-RSP",
"parent-service-function-path": "CSR3XSF-Path"

}
}

The resulting configuration:

!
service-chain service-function-forwarder local

ip address 10.99.150.10
!
service-chain service-function firewall
ip address 12.1.1.2

encapsulation gre enhanced divert
!
service-chain service-function dpi
ip address 12.1.1.1

encapsulation gre enhanced divert
!
service-chain service-function qos
ip address 12.1.1.4

encapsulation gre enhanced divert
!
service-chain service-path 1

service-index 255 service-function firewall
service-index 254 service-function dpi
service-index 253 service-function qos
service-index 252 terminate

!
service-chain service-path 2

service-index 255 service-function qos
service-index 254 service-function dpi
service-index 253 service-function firewall
service-index 252 terminate

!

Service Path 1 is direct, Service Path 2 is reversed. Path numbers may vary.

1000 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Service Function Scheduling Algorithms

Overview

When creating the Rendered Service Path, the origin SFC controller chose the first available service function from
a list of service function names. This may result in many issues such as overloaded service functions and a longer
service path as SFC has no means to understand the status of service functions and network topology. The service
function selection framework supports at least four algorithms (Random, Round Robin, Load Balancing and Shortest
Path) to select the most appropriate service function when instantiating the Rendered Service Path. In addition, it is an
extensible framework that allows 3rd party selection algorithm to be plugged in.

Architecture

The following figure illustrates the service function selection framework and algorithms.

Fig. 1.101: SF Selection Architecture

A user has three different ways to select one service function selection algorithm:

1. Integrated RESTCONF Calls. OpenStack and/or other administration system could provide plugins to call the
APIs to select one scheduling algorithm.

2. Command line tools. Command line tools such as curl or browser plugins such as POSTMAN (for Google
Chrome) and RESTClient (for Mozilla Firefox) could select schedule algorithm by making RESTCONF calls.

1.3. OpenDaylight User Guide 1001

OpenDaylight Documentation Documentation, Release Carbon

3. SFC-UI. Now the SFC-UI provides an option for choosing a selection algorithm when creating a Rendered
Service Path.

The RESTCONF northbound SFC API provides GUI/RESTCONF interactions for choosing the service function se-
lection algorithm. MD-SAL data store provides all supported service function selection algorithms, and provides APIs
to enable one of the provided service function selection algorithms. Once a service function selection algorithm is
enabled, the service function selection algorithm will work when creating a Rendered Service Path.

Select SFs with Scheduler

Administrator could use both the following ways to select one of the selection algorithm when creating a Rendered
Service Path.

• Command line tools. Command line tools includes Linux commands curl or even browser plugins such as
POSTMAN(for Google Chrome) or RESTClient(for Mozilla Firefox). In this case, the following JSON content
is needed at the moment: Service_function_schudule_type.json

{
"service-function-scheduler-types": {

"service-function-scheduler-type": [
{
"name": "random",
"type": "service-function-scheduler-type:random",
"enabled": false

},
{
"name": "roundrobin",
"type": "service-function-scheduler-type:round-robin",
"enabled": true

},
{
"name": "loadbalance",
"type": "service-function-scheduler-type:load-balance",
"enabled": false

},
{
"name": "shortestpath",
"type": "service-function-scheduler-type:shortest-path",
"enabled": false

}
]

}
}

If using the Linux curl command, it could be:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓${Service_function_schudule_type.json}'
-X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-
→˓scheduler-type:service-function-scheduler-types/

Here is also a snapshot for using the RESTClient plugin:

• SFC-UI.SFC-UI provides a drop down menu for service function selection algorithm. Here is a snapshot for the
user interaction from SFC-UI when creating a Rendered Service Path.

Note: Some service function selection algorithms in the drop list are not implemented yet. Only the first three

1002 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.102: Mozilla Firefox RESTClient

Fig. 1.103: Karaf Web UI

1.3. OpenDaylight User Guide 1003

OpenDaylight Documentation Documentation, Release Carbon

algorithms are committed at the moment.

Random

Select Service Function from the name list randomly.

Overview

The Random algorithm is used to select one Service Function from the name list which it gets from the Service
Function Type randomly.

Prerequisites

• Service Function information are stored in datastore.

• Either no algorithm or the Random algorithm is selected.

Target Environment

The Random algorithm will work either no algorithm type is selected or the Random algorithm is selected.

Instructions

Once the plugins are installed into Karaf successfully, a user can use his favorite method to select the Random schedul-
ing algorithm type. There are no special instructions for using the Random algorithm.

Round Robin

Select Service Function from the name list in Round Robin manner.

Overview

The Round Robin algorithm is used to select one Service Function from the name list which it gets from the Service
Function Type in a Round Robin manner, this will balance workloads to all Service Functions. However, this method
cannot help all Service Functions load the same workload because it’s flow-based Round Robin.

Prerequisites

• Service Function information are stored in datastore.

• Round Robin algorithm is selected

Target Environment

The Round Robin algorithm will work one the Round Robin algorithm is selected.

1004 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Instructions

Once the plugins are installed into Karaf successfully, a user can use his favorite method to select the Round Robin
scheduling algorithm type. There are no special instructions for using the Round Robin algorithm.

Load Balance Algorithm

Select appropriate Service Function by actual CPU utilization.

Overview

The Load Balance Algorithm is used to select appropriate Service Function by actual CPU utilization of service
functions. The CPU utilization of service function obtained from monitoring information reported via NETCONF.

Prerequisites

• CPU-utilization for Service Function.

• NETCONF server.

• NETCONF client.

• Each VM has a NETCONF server and it could work with NETCONF client well.

Instructions

Set up VMs as Service Functions. enable NETCONF server in VMs. Ensure that you specify them separately. For
example:

1. Set up 4 VMs include 2 SFs’ type are Firewall, Others are Napt44. Name them as firewall-1, firewall-2, napt44-
1, napt44-2 as Service Function. The four VMs can run either the same server or different servers.

2. Install NETCONF server on every VM and enable it. More information on NETCONF can be found on
the OpenDaylight wiki here: https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:
Netconf:Manual_netopeer_installation

3. Get Monitoring data from NETCONF server. These monitoring data should be get from the NETCONF server
which is running in VMs. The following static XML data is an example:

static XML data like this:

<?xml version="1.0" encoding="UTF-8"?>
<service-function-description-monitor-report>

<SF-description>
<number-of-dataports>2</number-of-dataports>
<capabilities>

<supported-packet-rate>5</supported-packet-rate>
<supported-bandwidth>10</supported-bandwidth>
<supported-ACL-number>2000</supported-ACL-number>
<RIB-size>200</RIB-size>
<FIB-size>100</FIB-size>
<ports-bandwidth>

<port-bandwidth>
<port-id>1</port-id>

1.3. OpenDaylight User Guide 1005

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf:Manual_netopeer_installation
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf:Manual_netopeer_installation

OpenDaylight Documentation Documentation, Release Carbon

<ipaddress>10.0.0.1</ipaddress>
<macaddress>00:1e:67:a2:5f:f4</macaddress>
<supported-bandwidth>20</supported-bandwidth>

</port-bandwidth>
<port-bandwidth>
<port-id>2</port-id>
<ipaddress>10.0.0.2</ipaddress>
<macaddress>01:1e:67:a2:5f:f6</macaddress>
<supported-bandwidth>10</supported-bandwidth>

</port-bandwidth>
</ports-bandwidth>

</capabilities>
</SF-description>
<SF-monitoring-info>
<liveness>true</liveness>
<resource-utilization>

<packet-rate-utilization>10</packet-rate-utilization>
<bandwidth-utilization>15</bandwidth-utilization>
<CPU-utilization>12</CPU-utilization>
<memory-utilization>17</memory-utilization>
<available-memory>8</available-memory>
<RIB-utilization>20</RIB-utilization>
<FIB-utilization>25</FIB-utilization>
<power-utilization>30</power-utilization>
<SF-ports-bandwidth-utilization>
<port-bandwidth-utilization>
<port-id>1</port-id>
<bandwidth-utilization>20</bandwidth-utilization>

</port-bandwidth-utilization>
<port-bandwidth-utilization>

<port-id>2</port-id>
<bandwidth-utilization>30</bandwidth-utilization>

</port-bandwidth-utilization>
</SF-ports-bandwidth-utilization>

</resource-utilization>
</SF-monitoring-info>

</service-function-description-monitor-report>

1. Unzip SFC release tarball.

2. Run SFC: ${sfc}/bin/karaf. More information on Service Function Chaining can be found on the OpenDaylight
SFC’s wiki page: https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

1. Deploy the SFC2 (firewall-abstract2napt44-abstract2) and click button to Create Rendered Service Path in SFC
UI (http://localhost:8181/sfc/index.html).

2. Verify the Rendered Service Path to ensure the CPU utilization of the selected hop is the minimum one among
all the service functions with same type. The correct RSP is firewall-1napt44-2

Shortest Path Algorithm

Select appropriate Service Function by Dijkstra’s algorithm. Dijkstra’s algorithm is an algorithm for finding the
shortest paths between nodes in a graph.

1006 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Service_Function_Chaining:Main
http://localhost:8181/sfc/index.html

OpenDaylight Documentation Documentation, Release Carbon

Overview

The Shortest Path Algorithm is used to select appropriate Service Function by actual topology.

Prerequisites

• Deployed topology (include SFFs, SFs and their links).

• Dijkstra’s algorithm. More information on Dijkstra’s algorithm can be found on the wiki here: http://en.
wikipedia.org/wiki/Dijkstra%27s_algorithm

Instructions

1. Unzip SFC release tarball.

2. Run SFC: ${sfc}/bin/karaf.

3. Depoly SFFs and SFs. import the service-function-forwarders.json and service-functions.json in UI (http://
localhost:8181/sfc/index.html#/sfc/config)

service-function-forwarders.json:

{
"service-function-forwarders": {
"service-function-forwarder": [

{
"name": "SFF-br1",
"service-node": "OVSDB-test01",
"rest-uri": "http://localhost:5001",
"sff-data-plane-locator": [
{

"name": "eth0",
"service-function-forwarder-ovs:ovs-bridge": {
"uuid": "4c3778e4-840d-47f4-b45e-0988e514d26c",
"bridge-name": "br-tun"

},
"data-plane-locator": {
"port": 5000,
"ip": "192.168.1.1",
"transport": "service-locator:vxlan-gpe"

}
}

],
"service-function-dictionary": [
{

"sff-sf-data-plane-locator": {
"sf-dpl-name": "sf1dpl",
"sff-dpl-name": "sff1dpl"

},
"name": "napt44-1",
"type": "napt44"

},
{

"sff-sf-data-plane-locator": {
"sf-dpl-name": "sf2dpl",
"sff-dpl-name": "sff2dpl"

1.3. OpenDaylight User Guide 1007

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://localhost:8181/sfc/index.html#/sfc/config
http://localhost:8181/sfc/index.html#/sfc/config

OpenDaylight Documentation Documentation, Release Carbon

},
"name": "firewall-1",
"type": "firewall"

}
],
"connected-sff-dictionary": [
{

"name": "SFF-br3"
}

]
},
{

"name": "SFF-br2",
"service-node": "OVSDB-test01",
"rest-uri": "http://localhost:5002",
"sff-data-plane-locator": [
{

"name": "eth0",
"service-function-forwarder-ovs:ovs-bridge": {
"uuid": "fd4d849f-5140-48cd-bc60-6ad1f5fc0a1",
"bridge-name": "br-tun"

},
"data-plane-locator": {
"port": 5000,
"ip": "192.168.1.2",
"transport": "service-locator:vxlan-gpe"

}
}

],
"service-function-dictionary": [
{

"sff-sf-data-plane-locator": {
"sf-dpl-name": "sf1dpl",
"sff-dpl-name": "sff1dpl"

},
"name": "napt44-2",
"type": "napt44"

},
{

"sff-sf-data-plane-locator": {
"sf-dpl-name": "sf2dpl",
"sff-dpl-name": "sff2dpl"

},
"name": "firewall-2",
"type": "firewall"

}
],
"connected-sff-dictionary": [
{

"name": "SFF-br3"
}

]
},
{

"name": "SFF-br3",
"service-node": "OVSDB-test01",
"rest-uri": "http://localhost:5005",
"sff-data-plane-locator": [

1008 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

{
"name": "eth0",
"service-function-forwarder-ovs:ovs-bridge": {
"uuid": "fd4d849f-5140-48cd-bc60-6ad1f5fc0a4",
"bridge-name": "br-tun"

},
"data-plane-locator": {
"port": 5000,
"ip": "192.168.1.2",
"transport": "service-locator:vxlan-gpe"

}
}

],
"service-function-dictionary": [
{

"sff-sf-data-plane-locator": {
"sf-dpl-name": "sf1dpl",
"sff-dpl-name": "sff1dpl"

},
"name": "test-server",
"type": "dpi"

},
{

"sff-sf-data-plane-locator": {
"sf-dpl-name": "sf2dpl",
"sff-dpl-name": "sff2dpl"

},
"name": "test-client",
"type": "dpi"

}
],
"connected-sff-dictionary": [
{

"name": "SFF-br1"
},
{

"name": "SFF-br2"
}

]
}

]
}

}

service-functions.json:

{
"service-functions": {
"service-function": [

{
"rest-uri": "http://localhost:10001",
"ip-mgmt-address": "10.3.1.103",
"sf-data-plane-locator": [
{

"name": "preferred",
"port": 10001,
"ip": "10.3.1.103",
"service-function-forwarder": "SFF-br1"

1.3. OpenDaylight User Guide 1009

OpenDaylight Documentation Documentation, Release Carbon

}
],
"name": "napt44-1",
"type": "napt44"

},
{

"rest-uri": "http://localhost:10002",
"ip-mgmt-address": "10.3.1.103",
"sf-data-plane-locator": [
{

"name": "master",
"port": 10002,
"ip": "10.3.1.103",
"service-function-forwarder": "SFF-br2"

}
],
"name": "napt44-2",
"type": "napt44"

},
{

"rest-uri": "http://localhost:10003",
"ip-mgmt-address": "10.3.1.103",
"sf-data-plane-locator": [
{

"name": "1",
"port": 10003,
"ip": "10.3.1.102",
"service-function-forwarder": "SFF-br1"

}
],
"name": "firewall-1",
"type": "firewall"

},
{

"rest-uri": "http://localhost:10004",
"ip-mgmt-address": "10.3.1.103",
"sf-data-plane-locator": [
{

"name": "2",
"port": 10004,
"ip": "10.3.1.101",
"service-function-forwarder": "SFF-br2"

}
],
"name": "firewall-2",
"type": "firewall"

},
{

"rest-uri": "http://localhost:10005",
"ip-mgmt-address": "10.3.1.103",
"sf-data-plane-locator": [
{

"name": "3",
"port": 10005,
"ip": "10.3.1.104",
"service-function-forwarder": "SFF-br3"

}
],

1010 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"name": "test-server",
"type": "dpi"

},
{

"rest-uri": "http://localhost:10006",
"ip-mgmt-address": "10.3.1.103",
"sf-data-plane-locator": [
{
"name": "4",
"port": 10006,
"ip": "10.3.1.102",
"service-function-forwarder": "SFF-br3"

}
],
"name": "test-client",
"type": "dpi"

}
]

}
}

The deployed topology like this:

+----+ +----+ +----+
|sff1|+----------|sff3|---------+|sff2|
+----+ +----+ +----+

| |
+--------------+ +--------------+
| | | |

+----------+ +--------+ +----------+ +--------+
|firewall-1| |napt44-1| |firewall-2| |napt44-2|
+----------+ +--------+ +----------+ +--------+

• Deploy the SFC2(firewall-abstract2napt44-abstract2), select “Shortest Path” as schedule type and click button
to Create Rendered Service Path in SFC UI (http://localhost:8181/sfc/index.html).

• Verify the Rendered Service Path to ensure the selected hops are linked in one SFF. The correct RSP is firewall-
1napt44-1 or firewall-2napt44-2. The first SF type is Firewall in Service Function Chain. So the algorithm will
select first Hop randomly among all the SFs type is Firewall. Assume the first selected SF is firewall-2. All the
path from firewall-1 to SF which type is Napt44 are list:

– Path1: firewall-2 → sff2 → napt44-2

– Path2: firewall-2 → sff2 → sff3 → sff1 → napt44-1 The shortest path is Path1, so the selected next hop is
napt44-2.

Service Function Load Balancing User Guide

Overview

SFC Load-Balancing feature implements load balancing of Service Functions, rather than a one-to-one mapping be-
tween Service-Function-Forwarder and Service-Function.

1.3. OpenDaylight User Guide 1011

http://localhost:8181/sfc/index.html

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.104: select schedule type

Fig. 1.105: rendered service path

1012 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Load Balancing Architecture

Service Function Groups (SFG) can replace Service Functions (SF) in the Rendered Path model. A Service Path can
only be defined using SFGs or SFs, but not a combination of both.

Relevant objects in the YANG model are as follows:

1. Service-Function-Group-Algorithm:

Service-Function-Group-Algorithms {
Service-Function-Group-Algorithm {

String name
String type

}
}

Available types: ALL, SELECT, INDIRECT, FAST_FAILURE

2. Service-Function-Group:

Service-Function-Groups {
Service-Function-Group {

String name
String serviceFunctionGroupAlgorithmName
String type
String groupId
Service-Function-Group-Element {

String service-function-name
int index

}
}

}

3. ServiceFunctionHop: holds a reference to a name of SFG (or SF)

Tutorials

This tutorial will explain how to create a simple SFC configuration, with SFG instead of SF. In this example, the SFG
will include two existing SF.

Setup SFC

For general SFC setup and scenarios, please see the SFC wiki page: https://wiki.opendaylight.org/view/Service_
Function_Chaining:Main#SFC_101

Create an algorithm

POST - http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms

{
"service-function-group-algorithm": [

{
"name": "alg1"
"type": "ALL"

1.3. OpenDaylight User Guide 1013

https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#SFC_101
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#SFC_101
http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms

OpenDaylight Documentation Documentation, Release Carbon

}
]

}

(Header “content-type”: application/json)

Verify: get all algorithms

GET - http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms

In order to delete all algorithms: DELETE - http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:
service-function-group-algorithms

Create a group

POST - http://127.0.0.1:8181/restconf/config/service-function-group:service-function-groups

{
"service-function-group": [
{

"rest-uri": "http://localhost:10002",
"ip-mgmt-address": "10.3.1.103",
"algorithm": "alg1",
"name": "SFG1",
"type": "napt44",
"sfc-service-function": [

{
"name":"napt44-104"

},
{

"name":"napt44-103-1"
}

]
}

]
}

Verify: get all SFG’s

GET - http://127.0.0.1:8181/restconf/config/service-function-group:service-function-groups

SFC Proof of Transit User Guide

Overview

Several deployments use traffic engineering, policy routing, segment routing or service function chaining (SFC) to
steer packets through a specific set of nodes. In certain cases regulatory obligations or a compliance policy require
to prove that all packets that are supposed to follow a specific path are indeed being forwarded across the exact set
of nodes specified. I.e. if a packet flow is supposed to go through a series of service functions or network nodes, it
has to be proven that all packets of the flow actually went through the service chain or collection of nodes specified
by the policy. In case the packets of a flow weren’t appropriately processed, a proof of transit egress device would be

1014 Chapter 1. Content for OpenDaylight Users

http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms
http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms
http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms
http://127.0.0.1:8181/restconf/config/service-function-group:service-function-groups
http://127.0.0.1:8181/restconf/config/service-function-group:service-function-groups

OpenDaylight Documentation Documentation, Release Carbon

required to identify the policy violation and take corresponding actions (e.g. drop or redirect the packet, send an alert
etc.) corresponding to the policy.

Service Function Chaining (SFC) Proof of Transit (SFC PoT) implements Service Chaining Proof of Transit func-
tionality on capable network devices. Proof of Transit defines mechanisms to securely prove that traffic transited the
defined path. After the creation of an Rendered Service Path (RSP), a user can configure to enable SFC proof of transit
on the selected RSP to effect the proof of transit.

To ensure that the data traffic follows a specified path or a function chain, meta-data is added to user traffic in the form
of a header. The meta-data is based on a ‘share of a secret’ and provisioned by the SFC PoT configuration from ODL
over a secure channel to each of the nodes in the SFC. This meta-data is updated at each of the service-hop while a
designated node called the verifier checks whether the collected meta-data allows the retrieval of the secret.

The following diagram shows the overview and essentially utilizes Shamir’s secret sharing algorithm, where each
service is given a point on the curve and when the packet travels through each service, it collects these points (meta-
data) and a verifier node tries to re-construct the curve using the collected points, thus verifying that the packet
traversed through all the service functions along the chain.

Fig. 1.106: SFC Proof of Transit overview

Transport options for different protocols includes a new TLV in SR header for Segment Routing, NSH Type-2 meta-
data, IPv6 extension headers, IPv4 variants and for VXLAN-GPE. More details are captured in the following link.

In-situ OAM: https://github.com/CiscoDevNet/iOAM

Common acronyms used in the following sections:

• SF - Service Function

• SFF - Service Function Forwarder

• SFC - Service Function Chain

• SFP - Service Function Path

• RSP - Rendered Service Path

• SFC PoT - Service Function Chain Proof of Transit

1.3. OpenDaylight User Guide 1015

https://github.com/CiscoDevNet/iOAM

OpenDaylight Documentation Documentation, Release Carbon

SFC Proof of Transit Architecture

SFC PoT feature is implemented as a two-part implementation with a north-bound handler that augments the RSP
while a south-bound renderer auto-generates the required parameters and passes it on to the nodes that belong to the
SFC.

The north-bound feature is enabled via odl-sfc-pot feature while the south-bound renderer is enabled via the odl-sfc-
pot-netconf-renderer feature. For the purposes of SFC PoT handling, both features must be installed.

RPC handlers to augment the RSP are part of SfcPotRpc while the RSP augmentation to enable or disable SFC PoT
feature is done via SfcPotRspProcessor.

SFC Proof of Transit entities

In order to implement SFC Proof of Transit for a service function chain, an RSP is a pre-requisite to identify the SFC
to enable SFC PoT on. SFC Proof of Transit for a particular RSP is enabled by an RPC request to the controller along
with necessary parameters to control some of the aspects of the SFC Proof of Transit process.

The RPC handler identifies the RSP and adds PoT feature meta-data like enable/disable, number of PoT profiles,
profiles refresh parameters etc., that directs the south-bound renderer appropriately when RSP changes are noticed via
call-backs in the renderer handlers.

Administering SFC Proof of Transit

To use the SFC Proof of Transit Karaf, at least the following Karaf features must be installed:

• odl-sfc-model

• odl-sfc-provider

• odl-sfc-netconf

• odl-restconf

• odl-netconf-topology

• odl-netconf-connector-all

• odl-sfc-pot

Please note that the odl-sfc-pot-netconf-renderer or other renderers in future must be installed for the feature to take
full-effect. The details of the renderer features are described in other parts of this document.

SFC Proof of Transit Tutorial

Overview

This tutorial is a simple example how to configure Service Function Chain Proof of Transit using SFC POT feature.

Preconditions

To enable a device to handle SFC Proof of Transit, it is expected that the NETCONF node device advertise capability
as under ioam-sb-pot.yang present under sfc-model/src/main/yang folder. It is also expected that base NETCONF
support be enabled and its support capability advertised as capabilities.

1016 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

NETCONF support:urn:ietf:params:netconf:base:1.0

PoT support: (urn:cisco:params:xml:ns:yang:sfc-ioam-sb-pot?
revision=2017-01-12)sfc-ioam-sb-pot

It is also expected that the devices are netconf mounted and available in the topology-netconf store.

Instructions

When SFC Proof of Transit is installed, all netconf nodes in topology-netconf are processed and all capable nodes
with accessible mountpoints are cached.

First step is to create the required RSP as is usually done using RSP creation steps in SFC main.

Once RSP name is available it is used to send a POST RPC to the controller similar to below:

POST - http://ODL-IP:8181/restconf/operations/sfc-ioam-nb-pot:enable-sfc-ioam-pot-rendered-path/

{
"input":
{

"sfc-ioam-pot-rsp-name": "sfc-path-3sf3sff",
"ioam-pot-enable":true,
"ioam-pot-num-profiles":2,
"ioam-pot-bit-mask":"bits32",
"refresh-period-time-units":"milliseconds",
"refresh-period-value":5000

}
}

The following can be used to disable the SFC Proof of Transit on an RSP which disables the PoT feature.

POST - http://ODL-IP:8181/restconf/operations/sfc-ioam-nb-pot:disable-sfc-ioam-pot-rendered-path/

{
"input":
{

"sfc-ioam-pot-rsp-name": "sfc-path-3sf3sff",
}

}

SFC PoT NETCONF Renderer User Guide

Overview

The SFC Proof of Transit (PoT) NETCONF renderer implements SFC Proof of Transit functionality on NETCONF-
capable devices, that have advertised support for in-situ OAM (iOAM) support.

It listens for an update to an existing RSP with enable or disable proof of transit support and adds the auto-generated
SFC PoT configuration parameters to all the SFC hop nodes. The last node in the SFC is configured as a verifier node
to allow SFC PoT process to be completed.

Common acronyms are used as below:

• SF - Service Function

• SFC - Service Function Chain

1.3. OpenDaylight User Guide 1017

http://ODL-IP:8181/restconf/operations/sfc-ioam-nb-pot:enable-sfc-ioam-pot-rendered-path/
http://ODL-IP:8181/restconf/operations/sfc-ioam-nb-pot:disable-sfc-ioam-pot-rendered-path/

OpenDaylight Documentation Documentation, Release Carbon

• RSP - Rendered Service Path

• SFF - Service Function Forwarder

Mapping to SFC entities

The renderer module listens to RSP updates in SfcPotNetconfRSPListener and triggers configuration genera-
tion in SfcPotNetconfIoam class. Node arrival and leaving are managed via SfcPotNetconfNodeManager
and SfcPotNetconfNodeListener. In addition there is a timer thread that runs to generate configuration peri-
odically to refresh the profiles in the nodes that are part of the SFC.

Administering SFC PoT NETCONF Renderer

To use the SFC Proof of Transit Karaf, the following Karaf features must be installed:

• odl-sfc-model

• odl-sfc-provider

• odl-sfc-netconf

• odl-restconf-all

• odl-netconf-topology

• odl-netconf-connector-all

• odl-sfc-pot

• odl-sfc-pot-netconf-renderer

SFC PoT NETCONF Renderer Tutorial

Overview

This tutorial is a simple example how to enable SFC PoT on NETCONF-capable devices.

Preconditions

The NETCONF-capable device will have to support sfc-ioam-sb-pot.yang file.

It is expected that a NETCONF-capable VPP device has Honeycomb (Hc2vpp) Java-based agent that helps to translate
between NETCONF and VPP internal APIs.

More details are here: In-situ OAM: https://github.com/CiscoDevNet/iOAM

Steps

When the SFC PoT NETCONF renderer module is installed, all NETCONF nodes in topology-netconf are processed
and all sfc-ioam-sb-pot yang capable nodes with accessible mountpoints are cached.

The first step is to create RSP for the SFC as per SFC guidelines above.

Enable SFC PoT is done on the RSP via RESTCONF to the ODL as outlined above.

Internally, the NETCONF renderer will act on the callback to a modified RSP that has PoT enabled.

1018 Chapter 1. Content for OpenDaylight Users

https://github.com/CiscoDevNet/iOAM

OpenDaylight Documentation Documentation, Release Carbon

In-situ OAM algorithms for auto-generation of SFC PoT parameters are generated automatically and sent to these
nodes via NETCONF.

Logical Service Function Forwarder

Overview

Rationale

When the current SFC is deployed in a cloud environment, it is assumed that each switch connected to a Service
Function is configured as a Service Function Forwarder and each Service Function is connected to its Service Function
Forwarder depending on the Compute Node where the Virtual Machine is located.

As shown in the picture above, this solution allows the basic cloud use cases to be fulfilled, as for example, the ones

1.3. OpenDaylight User Guide 1019

OpenDaylight Documentation Documentation, Release Carbon

required in OPNFV Brahmaputra, however, some advanced use cases like the transparent migration of VMs can not
be implemented. The Logical Service Function Forwarder enables the following advanced use cases:

1. Service Function mobility without service disruption

2. Service Functions load balancing and failover

As shown in the picture below, the Logical Service Function Forwarder concept extends the current SFC northbound
API to provide an abstraction of the underlying Data Center infrastructure. The Data Center underlaying network can
be abstracted by a single SFF. This single SFF uses the logical port UUID as data plane locator to connect SFs globally
and in a location-transparent manner. SFC makes use of Genius project to track the location of the SF’s logical ports.

The SFC internally distributes the necessary flow state over the relevant switches based on the internal Data Center
topology and the deployment of SFs.

Changes in data model

The Logical Service Function Forwarder concept extends the current SFC northbound API to provide an abstraction
of the underlying Data Center infrastructure.

The Logical SFF simplifies the configuration of the current SFC data model by reducing the number of parameters
to be be configured in every SFF, since the controller will discover those parameters by interacting with the services
offered by the Genius project.

The following picture shows the Logical SFF data model. The model gets simplified as most of the configuration
parameters of the current SFC data model are discovered in runtime. The complete YANG model can be found here
logical SFF model.

How to configure the Logical SFF

The following are examples to configure the Logical SFF:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/restconf/
→˓config/service-function:service-functions/

Service Functions JSON.

{
"service-functions": {

"service-function": [
{

"name": "firewall-1",
"type": "firewall",

1020 Chapter 1. Content for OpenDaylight Users

./genius-user-guide.html
./genius-user-guide.html
https://github.com/opendaylight/sfc/blob/master/sfc-model/src/main/yang/service-function-forwarder-logical.yang

OpenDaylight Documentation Documentation, Release Carbon

1.3. OpenDaylight User Guide 1021

OpenDaylight Documentation Documentation, Release Carbon

"sf-data-plane-locator": [
{

"name": "firewall-dpl",
"interface-name": "eccb57ae-5a2e-467f-823e-45d7bb2a6a9a",
"transport": "service-locator:eth-nsh",
"service-function-forwarder": "sfflogical1"

}
]

},
{

"name": "dpi-1",
"type": "dpi",
"sf-data-plane-locator": [

{
"name": "dpi-dpl",
"interface-name": "df15ac52-e8ef-4e9a-8340-ae0738aba0c0",
"transport": "service-locator:eth-nsh",
"service-function-forwarder": "sfflogical1"

}
]

}
]

}
}

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function-forwarder:service-function-forwarders/

Service Function Forwarders JSON.

{
"service-function-forwarders": {

"service-function-forwarder": [
{

"name": "sfflogical1"
}

]
}
}

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function-chain:service-function-chains/

Service Function Chains JSON.

{
"service-function-chains": {

"service-function-chain": [
{

"name": "SFC1",
"sfc-service-function": [

{
"name": "dpi-abstract1",
"type": "dpi"

1022 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

},
{

"name": "firewall-abstract1",
"type": "firewall"

}
]

},
{

"name": "SFC2",
"sfc-service-function": [

{
"name": "dpi-abstract1",
"type": "dpi"

}
]

}
]

}
}

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8182/restconf/config/service-
→˓function-chain:service-function-paths/

Service Function Paths JSON.

{
"service-function-paths": {

"service-function-path": [
{

"name": "SFP1",
"service-chain-name": "SFC1",
"starting-index": 255,
"symmetric": "true",
"context-metadata": "NSH1",
"transport-type": "service-locator:vxlan-gpe"

}
]

}
}

As a result of above configuration, OpenDaylight renders the needed flows in all involved SFFs. Those flows imple-
ment:

• Two Rendered Service Paths:

– dpi-1 (SF1), firewall-1 (SF2)

– firewall-1 (SF2), dpi-1 (SF1)

• The communication between SFFs and SFs based on eth-nsh

• The communication between SFFs based on vxlan-gpe

The following picture shows a topology and traffic flow (in green) which corresponds to the above configuration.

The Logical SFF functionality allows OpenDaylight to find out the SFFs holding the SFs involved in a path. In this
example the SFFs affected are Node3 and Node4 thus the controller renders the flows containing NSH parameters just
in those SFFs.

1.3. OpenDaylight User Guide 1023

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.107: Logical SFF Example

1024 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Here you have the new flows rendered in Node3 and Node4 which implement the NSH protocol. Every Rendered
Service Path is represented by an NSP value. We provisioned a symmetric RSP so we get two NSPs: 8388613 and 5.
Node3 holds the first SF of NSP 8388613 and the last SF of NSP 5. Node 4 holds the first SF of NSP 5 and the last
SF of NSP 8388613. Both Node3 and Node4 will pop the NSH header when the received packet has gone through the
last SF of its path.

Rendered flows Node 3

cookie=0x14, duration=59.264s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5
→˓actions=goto_table:86
cookie=0x14, duration=59.194s, table=83, n_packets=0, n_bytes=0, priority=250,
→˓nsp=8388613 actions=goto_table:86
cookie=0x14, duration=59.257s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,
→˓nsp=5 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e->NXM_
→˓NX_ENCAP_ETH_DST[],goto_table:87
cookie=0x14, duration=59.189s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,
→˓nsp=8388613 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e-
→˓>NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0xba5eba1100000203, duration=59.213s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=253,nsp=5 actions=pop_nsh,set_field:6e:e0:06:b4:c5:1e->eth_src,
→˓resubmit(,17)
cookie=0xba5eba1100000201, duration=59.213s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=254,nsp=5 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000201, duration=59.188s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=255,nsp=8388613 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000201, duration=59.182s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=254,nsp=8388613 actions=set_field:0->tun_id,output:6

Rendered Flows Node 4

cookie=0x14, duration=69.040s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5
→˓actions=goto_table:86
cookie=0x14, duration=69.008s, table=83, n_packets=0, n_bytes=0, priority=250,
→˓nsp=8388613 actions=goto_table:86
cookie=0x14, duration=69.040s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,
→˓nsp=5 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->NXM_
→˓NX_ENCAP_ETH_DST[],goto_table:87
cookie=0x14, duration=69.005s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,
→˓nsp=8388613 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->
→˓NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0xba5eba1100000201, duration=69.029s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=255,nsp=5 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000201, duration=69.029s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=254,nsp=5 actions=set_field:0->tun_id,output:1
cookie=0xba5eba1100000201, duration=68.999s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=254,nsp=8388613 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000203, duration=68.996s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=253,nsp=8388613 actions=pop_nsh,set_field:02:14:84:5e:a8:5d->eth_
→˓src,resubmit(,17)

An interesting scenario to show the Logical SFF strength is the migration of a SF from a compute node to another.
The OpenDaylight will learn the new topology by itself, then it will re-render the new flows to the new SFFs affected.

In our example, SF2 is moved from Node4 to Node2 then OpenDaylight removes NSH specific flows from Node4 and
puts them in Node2. Check below flows showing this effect. Now Node3 keeps holding the first SF of NSP 8388613
and the last SF of NSP 5; but Node2 becomes the new holder of the first SF of NSP 5 and the last SF of NSP 8388613.

Rendered Flows Node 3 After Migration

1.3. OpenDaylight User Guide 1025

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.108: Logical SFF - SF Migration Example

1026 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

cookie=0x14, duration=64.044s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5
→˓actions=goto_table:86
cookie=0x14, duration=63.947s, table=83, n_packets=0, n_bytes=0, priority=250,
→˓nsp=8388613 actions=goto_table:86
cookie=0x14, duration=64.044s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,
→˓nsp=5 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e->NXM_
→˓NX_ENCAP_ETH_DST[],goto_table:87
cookie=0x14, duration=63.947s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,
→˓nsp=8388613 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e-
→˓>NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0xba5eba1100000201, duration=64.034s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=254,nsp=5 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000203, duration=64.034s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=253,nsp=5 actions=pop_nsh,set_field:6e:e0:06:b4:c5:1e->eth_src,
→˓resubmit(,17)
cookie=0xba5eba1100000201, duration=63.947s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=255,nsp=8388613 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000201, duration=63.942s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=254,nsp=8388613 actions=set_field:0->tun_id,output:2

Rendered Flows Node 2 After Migration

cookie=0x14, duration=56.856s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5
→˓actions=goto_table:86
cookie=0x14, duration=56.755s, table=83, n_packets=0, n_bytes=0, priority=250,
→˓nsp=8388613 actions=goto_table:86
cookie=0x14, duration=56.847s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,
→˓nsp=5 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->NXM_
→˓NX_ENCAP_ETH_DST[],goto_table:87
cookie=0x14, duration=56.755s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,
→˓nsp=8388613 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->
→˓NXM_NX_ENCAP_ETH_DST[],goto_table:87
cookie=0xba5eba1100000201, duration=56.823s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=255,nsp=5 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000201, duration=56.823s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=254,nsp=5 actions=set_field:0->tun_id,output:4
cookie=0xba5eba1100000201, duration=56.755s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=254,nsp=8388613 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
cookie=0xba5eba1100000203, duration=56.750s, table=87, n_packets=0, n_bytes=0,
→˓priority=650,nsi=253,nsp=8388613 actions=pop_nsh,set_field:02:14:84:5e:a8:5d->eth_
→˓src,resubmit(,17)

Rendered Flows Node 4 After Migration

-- No flows for NSH processing --

Classifier impacts

As previously mentioned, in the Logical SFF rationale, the Logical SFF feature relies on Genius to get the dataplane
IDs of the OpenFlow switches, in order to properly steer the traffic through the chain.

Since one of the classifier’s objectives is to steer the packets into the SFC domain, the classifier has to be aware
of where the first Service Function is located - if it migrates somewhere else, the classifier table has to be updated
accordingly, thus enabling the seemless migration of Service Functions.

For this feature, mobility of the client VM is out of scope, and should be managed by its high-availability module, or
VNF manager.

1.3. OpenDaylight User Guide 1027

OpenDaylight Documentation Documentation, Release Carbon

Keep in mind that classification always occur in the compute-node where the client VM (i.e. traffic origin) is running.

How to attach the classifier to a Logical SFF

In order to leverage this functionality, the classifier has to be configured using a Logical SFF as an attachment-point,
specifying within it the neutron port to classify.

The following examples show how to configure an ACL, and a classifier having a Logical SFF as an attachment-point:

Configure an ACL

The following ACL enables traffic intended for port 80 within the subnetwork 192.168.2.0/24, for RSP1 and RSP1-
Reverse.

{
"access-lists": {
"acl": [

{
"acl-name": "ACL1",
"acl-type": "ietf-access-control-list:ipv4-acl",
"access-list-entries": {
"ace": [

{
"rule-name": "ACE1",
"actions": {
"service-function-acl:rendered-service-path": "RSP1"

},
"matches": {
"destination-ipv4-network": "192.168.2.0/24",
"source-ipv4-network": "192.168.2.0/24",
"protocol": "6",
"source-port-range": {

"lower-port": 0
},
"destination-port-range": {

"lower-port": 80
}

}
}

]
}

},
{

"acl-name": "ACL2",
"acl-type": "ietf-access-control-list:ipv4-acl",
"access-list-entries": {
"ace": [

{
"rule-name": "ACE2",
"actions": {
"service-function-acl:rendered-service-path": "RSP1-Reverse"

},
"matches": {
"destination-ipv4-network": "192.168.2.0/24",
"source-ipv4-network": "192.168.2.0/24",
"protocol": "6",
"source-port-range": {

"lower-port": 80

1028 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

},
"destination-port-range": {

"lower-port": 0
}

}
}

]
}

}
]

}
}

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/ietf-access-
→˓control-list:access-lists/

Configure a classifier JSON

The following JSON provisions a classifier, having a Logical SFF as an attachment point. The value of the field
‘interface’ is where you indicate the neutron ports of the VMs you want to classify.

{
"service-function-classifiers": {
"service-function-classifier": [

{
"name": "Classifier1",
"scl-service-function-forwarder": [
{

"name": "sfflogical1",
"interface": "09a78ba3-78ba-40f5-a3ea-1ce708367f2b"

}
],
"acl": {

"name": "ACL1",
"type": "ietf-access-control-list:ipv4-acl"

}
}

]
}

}

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$
→˓{JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-
→˓function-classifier:service-function-classifiers/

SFC pipeline impacts

After binding SFC service with a particular interface by means of Genius, as explained in the Genius User Guide, the
entry point in the SFC pipeline will be table 82 (SFC_TRANSPORT_CLASSIFIER_TABLE), and from that point,
packet processing will be similar to the SFC OpenFlow pipeline, just with another set of specific tables for the SFC
service.

This picture shows the SFC pipeline after service integration with Genius:

1.3. OpenDaylight User Guide 1029

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.109: SFC Logical SFF OpenFlow pipeline

1030 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

SNMP Plugin User Guide

Installing Feature

The SNMP Plugin can be installed using a single karaf feature: odl-snmp-plugin

After starting Karaf:

• Install the feature: feature:install odl-snmp-plugin

• Expose the northbound API: feature:install odl-restconf

Northbound APIs

There are two exposed northbound APIs: snmp-get & snmp-set

SNMP GET

Default URL: http://localhost:8181/restconf/operations/snmp:snmp-get

POST Input

Field
Name

Type Description Example Required?

ip-
address

Ipv4 Address The IPv4 Address of the desired
network node

10.86.3.13 Yes

oid String The Object Identifier of the
desired MIB table/object

1.3.6.1.2.1.1.
1

Yes

get-type ENUM (GET, GET-NEXT,
GET-BULK, GET-WALK)

The type of get request to send GET-
BULK

Yes

commu-
nity

String The community string to use for
the SNMP request

private No. (Default:
public)

Example.

{
"input": {

"ip-address": "10.86.3.13",
"oid" : "1.3.6.1.2.1.1.1",
"get-type" : "GET-BULK",
"community" : "private"

}
}

POST Output

Field Name Type Description
results List of { “value” : String } pairs The results of the SNMP query

Example.

1.3. OpenDaylight User Guide 1031

http://localhost:8181/restconf/operations/snmp:snmp-get

OpenDaylight Documentation Documentation, Release Carbon

{
"snmp:results": [

{
"value": "Ethernet0/0/0",
"oid": "1.3.6.1.2.1.2.2.1.2.1"

},
{

"value": "FastEthernet0/0/0",
"oid": "1.3.6.1.2.1.2.2.1.2.2"

},
{

"value": "GigabitEthernet0/0/0",
"oid": "1.3.6.1.2.1.2.2.1.2.3"

}
]

}

SNMP SET

Default URL: http://localhost:8181/restconf/operations/snmp:snmp-set

POST Input

Field
Name

Type Description Example Required?

ip-address Ipv4
Address

The Ipv4 address of the desired network node 10.86.3.13 Yes

oid String The Object Identifier of the desired MIB
object

1.3.6.2.1.1.1 Yes

value String The value to set on the network device “Hello
World”

Yes

community String The community string to use for the SNMP
request

private No. (Default:
public)

Example.

{
"input": {

"ip-address": "10.86.3.13",
"oid" : "1.3.6.1.2.1.1.1.0",
"value" : "Sample description",
"community" : "private"

}
}

POST Output

On a successful SNMP-SET, no output is presented, just a HTTP status of 200.

1032 Chapter 1. Content for OpenDaylight Users

http://localhost:8181/restconf/operations/snmp:snmp-set

OpenDaylight Documentation Documentation, Release Carbon

Errors

If any errors happen in the set request, you will be presented with an error message in the output.

For example, on a failed set request you may see an error like:

{
"errors": {

"error": [
{

"error-type": "application",
"error-tag": "operation-failed",
"error-message": "SnmpSET failed with error status: 17, error index:

→˓1. StatusText: Not writable"
}

]
}

}

which corresponds to Error status 17 in the SNMPv2 RFC: https://tools.ietf.org/html/rfc1905.

SNMP4SDN User Guide

Overview

We propose a southbound plugin that can control the off-the-shelf commodity Ethernet switches for the purpose of
building SDN using Ethernet switches. For Ethernet switches, forwarding table, VLAN table, and ACL are where
one can install flow configuration on, and this is done via SNMP and CLI in the proposed plugin. In addition, some
settings required for Ethernet switches in SDN, e.g., disabling STP and flooding, are proposed.

Fig. 1.110: SNMP4SDN as an OpenDaylight southbound plugin

Configuration

Just follow the steps:

1.3. OpenDaylight User Guide 1033

https://tools.ietf.org/html/rfc1905

OpenDaylight Documentation Documentation, Release Carbon

Prepare the switch list database file

A sample is here, and we suggest to save it as /etc/snmp4sdn_swdb.csv so that SNMP4SDN Plugin can automatically
load this file. Note that the first line is title and should not be removed.

Prepare the vendor-specific configuration file

A sample is here, and we suggest to save it as /etc/snmp4sdn_VendorSpecificSwitchConfig.xml so that SNMP4SDN
Plugin can automatically load this file.

Install SNMP4SDN Plugin

If using SNMP4SDN Plugin provided in OpenDaylight release, just do the following from the Karaf CLI:

feature:install odl-snmp4sdn-all

Troubleshooting

Installation Troubleshooting

Feature installation failure

When trying to install a feature, if the following failure occurs:

Error executing command: Could not start bundle ...
Reason: Missing Constraint: Require-Capability: osgi.ee; filter="(&(osgi.
→˓ee=JavaSE)(version=1.7))"

A workaround: exit Karaf, and edit the file <karaf_directory>/etc/config.properties, remove the line ${services-
${karaf.framework}} and the ”, \” in the line above.

Runtime Troubleshooting

Problem starting SNMP Trap Interface

It is possible to get the following exception during controller startup. (The error would not be printed in Karaf console,
one may see it in <karaf_directory>/data/log/karaf.log)

2014-01-31 15:00:44.688 CET [fileinstall-./plugins] WARN o.o.snmp4sdn.internal.
→˓SNMPListener - Problem starting SNMP Trap Interface: {}
java.net.BindException: Permission denied

at java.net.PlainDatagramSocketImpl.bind0(Native Method) ~[na:1.7.0_51]
at java.net.AbstractPlainDatagramSocketImpl.

→˓bind(AbstractPlainDatagramSocketImpl.java:95) ~[na:1.7.0_51]
at java.net.DatagramSocket.bind(DatagramSocket.java:376) ~[na:1.7.0_51]
at java.net.DatagramSocket.<init>(DatagramSocket.java:231) ~[na:1.7.0_51]
at java.net.DatagramSocket.<init>(DatagramSocket.java:284) ~[na:1.7.0_51]
at java.net.DatagramSocket.<init>(DatagramSocket.java:256) ~[na:1.7.0_51]
at org.snmpj.SNMPTrapReceiverInterface.<init>(SNMPTrapReceiverInterface.

→˓java:126) ~[org.snmpj-1.4.3.jar:na]

1034 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file
https://wiki.opendaylight.org/view/SNMP4SDN:snmp4sdn_VendorSpecificSwitchConfig_file

OpenDaylight Documentation Documentation, Release Carbon

at org.snmpj.SNMPTrapReceiverInterface.<init>(SNMPTrapReceiverInterface.
→˓java:99) ~[org.snmpj-1.4.3.jar:na]

at org.opendaylight.snmp4sdn.internal.SNMPListener.<init>(SNMPListener.
→˓java:75) ~[bundlefile:na]

at org.opendaylight.snmp4sdn.core.internal.Controller.start(Controller.
→˓java:174) [bundlefile:na]
...

This indicates that the controller is being run as a user which does not have sufficient OS privileges to bind the
SNMPTRAP port (162/UDP)

Switch list file missing

The SNMP4SDN Plugin needs a switch list file, which is necessary for topology discovery and should be provided
by the administrator (so please prepare one for the first time using SNMP4SDN Plugin, here is the sample). The
default file path is /etc/snmp4sdn_swdb.csv. SNMP4SDN Plugin would automatically load this file and start topology
discovery. If this file is not ready there, the following message like this will pop up:

2016-02-02 04:21:52,476 | INFO| Event Dispatcher | CmethUtil |
→˓466 - org.opendaylight.snmp4sdn - 0.3.0.SNAPSHOT | CmethUtil.readDB() err: {}
java.io.FileNotFoundException: /etc/snmp4sdn_swdb.csv (No such file or directory)

at java.io.FileInputStream.open0(Native Method)[:1.8.0_65]
at java.io.FileInputStream.open(FileInputStream.java:195)[:1.8.0_65]
at java.io.FileInputStream.<init>(FileInputStream.java:138)[:1.8.0_65]
at java.io.FileInputStream.<init>(FileInputStream.java:93)[:1.8.0_65]
at java.io.FileReader.<init>(FileReader.java:58)[:1.8.0_65]
at org.opendaylight.snmp4sdn.internal.util.CmethUtil.readDB(CmethUtil.java:66)
at org.opendaylight.snmp4sdn.internal.util.CmethUtil.<init>(CmethUtil.java:43)

...

Configuration

Just follow the steps:

1. Prepare the switch list database file

A sample is here, and we suggest to save it as /etc/snmp4sdn_swdb.csv so that SNMP4SDN Plugin can automatically
load this file.

Note: The first line is title and should not be removed.

2. Prepare the vendor-specific configuration file

A sample is here, and we suggest to save it as /etc/snmp4sdn_VendorSpecificSwitchConfig.xml so that SNMP4SDN
Plugin can automatically load this file.

1.3. OpenDaylight User Guide 1035

https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file
https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file
https://wiki.opendaylight.org/view/SNMP4SDN:snmp4sdn_VendorSpecificSwitchConfig_file

OpenDaylight Documentation Documentation, Release Carbon

3. Install SNMP4SDN Plugin

If using SNMP4SDN Plugin provided in OpenDaylight release, just do the following:

Launch Karaf in Linux console:

cd <Boron_controller_directory>/bin
(for example, cd distribution-karaf-x.x.x-Boron/bin)

./karaf

Then in Karaf console, execute:

feature:install odl-snmp4sdn-all

4. Load switch list

For initialization, we need to feed SNMP4SDN Plugin the switch list. Actually SNMP4SDN Plugin automatically
try to load the switch list at /etc/snmp4sdn_swdb.csv if there is. If so, this step could be skipped. In Karaf console,
execute:

snmp4sdn:ReadDB <switch_list_path>
(For example, snmp4sdn:ReadDB /etc/snmp4sdn_swdb.csv)
(in Windows OS, For example, snmp4sdn:ReadDB D://snmp4sdn_swdb.csv)

A sample is here, and we suggest to save it as /etc/snmp4sdn_swdb.csv so that SNMP4SDN Plugin can automatically
load this file.

Note: The first line is title and should not be removed.

5. Show switch list

snmp4sdn:PrintDB

Tutorial

Topology Service

Execute topology discovery

The SNMP4SDN Plugin automatically executes topology discovery on startup. One may use the following commands
to invoke topology discovery manually. Note that you may need to wait for seconds for itto complete.

Note: Currently, one needs to manually execute snmp4sdn:TopoDiscover first (just once), then later the automatic
topology discovery can be successful. If switches change (switch added or removed), snmp4sdn:TopoDiscover is also
required. A future version will fix it to eliminate these requirements.

1036 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file

OpenDaylight Documentation Documentation, Release Carbon

snmp4sdn:TopoDiscover

If one like to discover all inventory (i.e. switches and their ports) but not edges, just execute “TopoDiscoverSwitches”:

snmp4sdn:TopoDiscoverSwitches

If one like to only discover all edges but not inventory, just execute “TopoDiscoverEdges”:

snmp4sdn:TopoDiscoverEdges

You can also trigger topology discovery via the REST API by using curl from the Linux console (or any other REST
client):

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/
→˓topology:rediscover

You can change the periodic topology discovery interval via a REST API:

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/topology:set-
→˓discovery-interval -d "{"input":{"interval-second":'<interval_time>'}}"
For example, set the interval as 15 seconds:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/topology:set-
→˓discovery-interval -d "{"input":{"interval-second":'15'}}"

Show the topology

SNMP4SDN Plugin supports to show topology via REST API:

• Get topology

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/
→˓topology:get-edge-list

• Get switch list

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/
→˓topology:get-node-list

• Get switches’ ports list

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/
→˓topology:get-node-connector-list

• The three commands above are just for user to get the latest topology discovery result, it does not trigger
SNMP4SDN Plugin to do topology discovery.

• To trigger SNMP4SDN Plugin to do topology discover, as described in aforementioned Execute topology dis-
covery.

1.3. OpenDaylight User Guide 1037

OpenDaylight Documentation Documentation, Release Carbon

Flow configuration

FDB configuration

SNMP4SDN supports to add entry on FDB table via REST API:

• Get FDB table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/fdb:get-fdb-table -d "{input:{"node-id":<switch-mac-address-in-
→˓number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/fdb:get-fdb-
→˓table -d "{input:{"node-id":158969157063648}}"

• Get FDB table entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/fdb:get-fdb-entry -d "{input:{"node-id":<switch-mac-address-in-
→˓number>, "vlan-id":<vlan-id-in-number>, "dest-mac-addr":<destination-mac-
→˓address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/fdb:get-fdb-
→˓entry -d "{input:{"node-id":158969157063648, "vlan-id":1, "dest-mac-addr
→˓":158969157063648}}"

• Set FDB table entry

(Notice invalid value: (1) non unicast mac (2) port not in the VLAN)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/fdb:set-fdb-entry -d "{input:{"node-id":<switch-mac-address-in-
→˓number>, "vlan-id":<vlan-id-in-number>, "dest-mac-addr":<destination-mac-
→˓address-in-number>, "port":<port-in-number>, "type":'<type>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/fdb:set-fdb-
→˓entry -d "{input:{"node-id":158969157063648, "vlan-id":1, "dest-mac-addr
→˓":187649984473770, "port":23, "type":'MGMT'}}"

• Delete FDB table entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/fdb:del-fdb-entry -d "{input:{"node-id":<switch-mac-address-in-
→˓number>, "vlan-id":<vlan-id-in-number>, "dest-mac-addr":<destination-mac-
→˓address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/fdb:del-fdb-
→˓entry -d "{input:{"node-id":158969157063648, "vlan-id":1, "dest-mac-addr
→˓":187649984473770}}"

1038 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

VLAN configuration

SNMP4SDN supports to add entry on VLAN table via REST API:

• Get VLAN table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/vlan:get-vlan-table -d "{input:{node-id:<switch-mac-address-in-
→˓number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/vlan:get-
→˓vlan-table -d "{input:{node-id:158969157063648}}"

• Add VLAN

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/vlan:add-vlan -d "{"input":{"node-id":<switch-mac-address-in-number>,
→˓ "vlan-id":<vlan-id-in-number>, "vlan-name":'<vlan-name>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/vlan:add-
→˓vlan -d "{"input":{"node-id":158969157063648, "vlan-id":123, "vlan-name":'v123'}
→˓}"

• Delete VLAN

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/vlan:delete-vlan -d "{"input":{"node-id":<switch-mac-address-in-
→˓number>, "vlan-id":<vlan-id-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/vlan:delete-
→˓vlan -d "{"input":{"node-id":158969157063648, "vlan-id":123}}"

• Add VLAN and set ports

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/vlan:add-vlan-and-set-ports -d "{"input":{"node-id":<switch-mac-
→˓address-in-number>, "vlan-id":<vlan-id-in-number>, "vlan-name":'<vlan-name>',
→˓"tagged-port-list":'<tagged-ports-separated-by-comma>', "untagged-port-list":'
→˓<untagged-ports-separated-by-comma>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/vlan:add-
→˓vlan-and-set-ports -d "{"input":{"node-id":158969157063648, "vlan-id":123,
→˓"vlan-name":'v123', "tagged-port-list":'1,2,3', "untagged-port-list":'4,5,6'}}"

1.3. OpenDaylight User Guide 1039

OpenDaylight Documentation Documentation, Release Carbon

• Set VLAN ports

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/vlan:set-vlan-ports -d "{"input":{"node-id":<switch-mac-address-in-
→˓number>, "vlan-id":<vlan-id-in-number>, "tagged-port-list":'<tagged-ports-
→˓separated-by-comma>', "untagged-port-list":'<untagged-ports-separated-by-comma>
→˓'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/vlan:set-
→˓vlan-ports -d "{"input":{"node-id":"158969157063648", "vlan-id":"123", "tagged-
→˓port-list":'4,5', "untagged-port-list":'2,3'}}"

ACL configuration

SNMP4SDN supports to add flow on ACL table via REST API. However, it is so far only implemented for the D-Link
DGS-3120 switch.

ACL configuration via CLI is vendor-specific, and SNMP4SDN will support configuration with vendor-specific CLI
in future release.

To do ACL configuration using the REST APIs, use commands like the following:

• Clear ACL table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/acl:clear-acl-table -d "{"input":{"nodeId":<switch-mac-address-in-
→˓number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/acl:clear-
→˓acl-table -d "{"input":{"nodeId":158969157063648}}"

• Create ACL profile (IP layer)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/acl:create-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-
→˓number>,"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',
→˓"acl-layer":'IP',"vlan-mask":<vlan_mask_in_number>,"src-ip-mask":'<src_ip_mask>
→˓',"dst-ip-mask":"<destination_ip_mask>"}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/acl:create-
→˓acl-profile -d "{input:{"nodeId":158969157063648,"profile-id":1,"profile-name":
→˓'profile_1',"acl-layer":'IP',"vlan-mask":1,"src-ip-mask":'255.255.0.0',"dst-ip-
→˓mask":'255.255.255.255'}}"

• Create ACL profile (MAC layer)

1040 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/acl:create-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-
→˓number>,"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',
→˓"acl-layer":'ETHERNET',"vlan-mask":<vlan_mask_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/acl:create-
→˓acl-profile -d "{input:{"nodeId":158969157063648,"profile-id":2,"profile-name":
→˓'profile_2',"acl-layer":'ETHERNET',"vlan-mask":4095}}"

• Delete ACL profile

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-
→˓profile -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":
→˓<profile_id_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-
→˓profile -d "{input:{"nodeId":158969157063648,"profile-id":1}}"

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/acl:del-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-
→˓number>,"profile-name":"<profile_name>"}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-
→˓profile -d "{input:{"nodeId":158969157063648,"profile-name":'profile_2'}}"

• Set ACL rule

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/acl:set-acl-rule -d "{input:{"nodeId":<switch-mac-address-in-number>,
→˓"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',"rule-id":
→˓<rule_id_in_number>,"port-list":[<port_number>,<port_number>,...],"acl-layer":'
→˓<acl_layer>',"vlan-id":<vlan_id_in_number>,"src-ip":"<src_ip_address>","dst-ip":
→˓'<dst_ip_address>',"acl-action":'<acl_action>'}}"
(<acl_layer>: IP or ETHERNET)
(<acl_action>: PERMIT as permit, DENY as deny)

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/acl:set-acl-
→˓rule -d "{input:{"nodeId":158969157063648,"profile-id":1,"profile-name":
→˓'profile_1',"rule-id":1,"port-list":[1,2,3],"acl-layer":'IP',"vlan-id":2,"src-ip
→˓":'1.1.1.1',"dst-ip":'2.2.2.2',"acl-action":'PERMIT'}}"

• Delete ACL rule

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/acl:del-acl-rule -d "{input:{"nodeId":<switch-mac-address-in-number>,
→˓"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',"rule-id":
→˓<rule_id_in_number>}}"

1.3. OpenDaylight User Guide 1041

OpenDaylight Documentation Documentation, Release Carbon

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-
→˓rule -d "{input:{"nodeId":158969157063648,"profile-id":1,"profile-name":
→˓'profile_1',"rule-id":1}}"

Special configuration

SNMP4SDN supports setting the following special configurations via REST API:

• Set STP port state

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/config:set-stp-port-state -d "{input:{"node-id":<switch-mac-address-
→˓in-number>, "port":<port_number>, enable:<true_or_false>}}"
(true: enable, false: disable)

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/config:set-
→˓stp-port-state -d "{input:{"node-id":158969157063648, "port":2, enable:false}}"

• Get STP port state

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/config:get-stp-port-state -d "{input:{"node-id":<switch-mac-address-
→˓in-number>, "port":<port_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/config:get-
→˓stp-port-state -d "{input:{"node-id":158969157063648, "port":2}}"

• Get STP port root

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/config:get-stp-port-root -d "{input:{"node-id":<switch-mac-address-
→˓in-number>, "port":<port_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/config:get-
→˓stp-port-root -d "{input:{"node-id":158969157063648, "port":2}}"

• Enable STP

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/config:enable-stp -d "{input:{"node-id":<switch-mac-address-in-
→˓number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/
→˓config:enable-stp -d "{input:{"node-id":158969157063648}}"

1042 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• Disable STP

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/config:disable-stp -d "{input:{"node-id":<switch-mac-address-in-
→˓number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/
→˓config:disable-stp -d "{input:{"node-id":158969157063648}}"

• Get ARP table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/config:get-arp-table -d "{input:{"node-id":<switch-mac-address-in-
→˓number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/config:get-
→˓arp-table -d "{input:{"node-id":158969157063648}}"

• Set ARP entry

(Notice to give IP address with subnet prefix)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/config:set-arp-entry -d "{input:{"node-id":<switch-mac-address-in-
→˓number>, "ip-address":'<ip_address>', "mac-address":<mac_address_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/config:set-
→˓arp-entry -d "{input:{"node-id":158969157063648, "ip-address":'10.217.9.9',
→˓"mac-address":1}}"

• Get ARP entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/config:get-arp-entry -d "{input:{"node-id":<switch-mac-address-in-
→˓number>, "ip-address":'<ip_address>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/config:get-
→˓arp-entry -d "{input:{"node-id":158969157063648, "ip-address":'10.217.9.9'}}"

• Delete ARP entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://<controller_ip_address>:8181/restconf/
→˓operations/config:delete-arp-entry -d "{input:{"node-id":<switch-mac-address-in-
→˓number>, "ip-address":'<ip_address>'}}"

1.3. OpenDaylight User Guide 1043

OpenDaylight Documentation Documentation, Release Carbon

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type:
→˓application/json" -X POST http://localhost:8181/restconf/operations/
→˓config:delete-arp-entry -d "{input:{"node-id":158969157063648, "ip-address":'10.
→˓217.9.9'}}"

Using Postman to invoke REST API

Besides using the curl tool to invoke REST API, like the examples aforementioned, one can also use GUI tool like
Postman for better data display.

• Install Postman: Install Postman in the Chrome browser

• In the chrome browser bar enter

chrome://apps/

• Click on Postman.

Example: Get VLAN table using Postman

As the screenshot shown below, one needs to fill in required fields.

URL:
http://<controller_ip_address>:8181/restconf/operations/vlan:get-vlan-table

Accept header:
application/json

Content-type:
application/json

Body:
{input:{"node-id":<node_id>}}
for example:
{input:{"node-id":158969157063648}}

Multi-vendor support

So far the supported vendor-specific configurations:

• Add VLAN and set ports

• (More functions are TBD)

The SNMP4SDN Plugin would examine whether the configuration is described in the vendor-specific configuration
file. If yes, the configuration description would be adopted, otherwise just use the default configuration. For example,
adding VLAN and setting the ports is supported via SNMP standard MIB. However we found some special cases, for
example, certain Accton switch requires to add VLAN first and then allows to set the ports. So one may describe this
in the vendor-specific configuration file.

A vendor-specific configuration file sample is here, and we suggest to save it as
/etc/snmp4sdn_VendorSpecificSwitchConfig.xml so that SNMP4SDN Plugin can automatically load it.

1044 Chapter 1. Content for OpenDaylight Users

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en
https://wiki.opendaylight.org/view/SNMP4SDN:snmp4sdn_VendorSpecificSwitchConfig_file

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.111: Example: Get VLAN table using Postman

1.3. OpenDaylight User Guide 1045

OpenDaylight Documentation Documentation, Release Carbon

Help

• SNMP4SDN Wiki

• SNMP4SDN Mailing Lists: (user, developer)

• Latest troubleshooting in Wiki

SXP User Guide

Overview

SXP (Scalable-Group Tag eXchange Protocol) project is an effort to enhance OpenDaylight platform with IP-SGT (IP
Address to Source Group Tag) bindings that can be learned from connected SXP-aware network nodes. The current
implementation supports SXP protocol version 4 according to the Smith, Kandula - SXP IETF draft and grouping of
peers and creating filters based on ACL/Prefix-list syntax for filtering outbound and inbound IP-SGT bindings. All
protocol legacy versions 1-3 are supported as well. Additionally, version 4 adds bidirectional connection type as an
extension of a unidirectional one.

SXP Architecture

The SXP Server manages all connected clients in separate threads and a common SXP protocol agreement is used
between connected peers. Each SXP network peer is modelled with its pertaining class, e.g., SXP Server represents
the SXP Speaker, SXP Listener the Client. The server program creates the ServerSocket object on a specified port and
waits until a client starts up and requests connect on the IP address and port of the server. The client program opens a
Socket that is connected to the server running on the specified host IP address and port.

The SXP Listener maintains connection with its speaker peer. From an opened channel pipeline, all incoming SXP
messages are processed by various handlers. Message must be decoded, parsed and validated.

The SXP Speaker is a counterpart to the SXP Listener. It maintains a connection with its listener peer and sends
composed messages.

The SXP Binding Handler extracts the IP-SGT binding from a message and pulls it into the SXP-Database. If an error
is detected during the IP-SGT extraction, an appropriate error code and sub-code is selected and an error message
is sent back to the connected peer. All transitive messages are routed directly to the output queue of SXP Binding
Dispatcher.

The SXP Binding Dispatcher represents a selector that will decides how many data from the SXP-database will be
sent and when. It is responsible for message content composition based on maximum message length.

The SXP Binding Filters handles filtering of outgoing and incoming IP-SGT bindings according to BGP filtering using
ACL and Prefix List syntax for specifying filter or based on Peer-sequence length.

The SXP Domains feature provides isolation of SXP peers and bindings learned between them, also exchange of
Bindings is possible across SXP-Domains by ACL, Prefix List or Peer-Sequence filters

Configuring SXP

The OpenDaylight Karaf distribution comes pre-configured with baseline SXP configuration. Configuration of SXP
Nodes is also possible via NETCONF.

• 22-sxp-controller-one-node.xml (defines the basic parameters)

1046 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/SNMP4SDN:Main
https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-users
https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-dev
https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Troubleshooting
https://tools.ietf.org/html/draft-smith-kandula-sxp-05

OpenDaylight Documentation Documentation, Release Carbon

Administering or Managing SXP

By RPC (response is XML document containing requested data or operation status):

• Get Connections POST http://127.0.0.1:8181/restconf/operations/sxp-controller:get-connections

<input xmlns:xsi="urn:opendaylight:sxp:controller">
<domain-name>global</domain-name>
<requested-node>0.0.0.100</requested-node>

</input>

• Add Connection POST http://127.0.0.1:8181/restconf/operations/sxp-controller:add-connection

<input xmlns:xsi="urn:opendaylight:sxp:controller">
<requested-node>0.0.0.100</requested-node>
<domain-name>global</domain-name>
<connections>
<connection>
<peer-address>172.20.161.50</peer-address>
<tcp-port>64999</tcp-port>
<!-- Password setup: default | none leave empty -->
<password>default</password>
<!-- Mode: speaker/listener/both -->
<mode>speaker</mode>
<version>version4</version>
<description>Connection to ASR1K</description>
<!-- Timers setup: 0 to disable specific timer usability, the default value will

→˓be used -->
<connection-timers>
<!-- Speaker -->
<hold-time-min-acceptable>45</hold-time-min-acceptable>
<keep-alive-time>30</keep-alive-time>

</connection-timers>
</connection>
<connection>
<peer-address>172.20.161.178</peer-address>
<tcp-port>64999</tcp-port>
<!-- Password setup: default | none leave empty-->
<password>default</password>
<!-- Mode: speaker/listener/both -->
<mode>listener</mode>
<version>version4</version>
<description>Connection to ISR</description>
<!-- Timers setup: 0 to disable specific timer usability, the default value will

→˓be used -->
<connection-timers>
<!-- Listener -->
<reconciliation-time>120</reconciliation-time>
<hold-time>90</hold-time>
<hold-time-min>90</hold-time-min>
<hold-time-max>180</hold-time-max>

</connection-timers>
</connection>

</connections>
</input>

• Delete Connection POST http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-connection

1.3. OpenDaylight User Guide 1047

http://127.0.0.1:8181/restconf/operations/sxp-controller:get-connections
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-connection
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-connection

OpenDaylight Documentation Documentation, Release Carbon

<input xmlns:xsi="urn:opendaylight:sxp:controller">
<requested-node>0.0.0.100</requested-node>
<domain-name>global</domain-name>
<peer-address>172.20.161.50</peer-address>

</input>

• Add Binding Entry POST http://127.0.0.1:8181/restconf/operations/sxp-controller:add-entry

<input xmlns:xsi="urn:opendaylight:sxp:controller">
<requested-node>0.0.0.100</requested-node>
<domain-name>global</domain-name>
<ip-prefix>192.168.2.1/32</ip-prefix>
<sgt>20</sgt >

</input>

• Update Binding Entry POST http://127.0.0.1:8181/restconf/operations/sxp-controller:update-entry

<input xmlns:xsi="urn:opendaylight:sxp:controller">
<requested-node>0.0.0.100</requested-node>
<domain-name>global</domain-name>
<original-binding>
<ip-prefix>192.168.2.1/32</ip-prefix>
<sgt>20</sgt>

</original-binding>
<new-binding>
<ip-prefix>192.168.3.1/32</ip-prefix>
<sgt>30</sgt>

</new-binding>
</input>

• Delete Binding Entry POST http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-entry

<input xmlns:xsi="urn:opendaylight:sxp:controller">
<requested-node>0.0.0.100</requested-node>
<domain-name>global</domain-name>
<ip-prefix>192.168.3.1/32</ip-prefix>
<sgt>30</sgt >

</input>

• Get Node Bindings

This RPC gets particular device bindings. An SXP-aware node is identified with a unique Node-ID. If a user
requests bindings for a Speaker 20.0.0.2, the RPC will search for an appropriate path, which contains 20.0.0.2
Node-ID, within locally learnt SXP data in the SXP database and replies with associated bindings. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-node-bindings

<input xmlns:xsi="urn:opendaylight:sxp:controller">
<requested-node>20.0.0.2</requested-node>
<bindings-range>all</bindings-range>
<domain-name>global</domain-name>

</input>

• Get Binding SGTs POST http://127.0.0.1:8181/restconf/operations/sxp-controller:get-binding-sgts

<input xmlns:xsi="urn:opendaylight:sxp:controller">
<requested-node>0.0.0.100</requested-node>
<domain-name>global</domain-name>

1048 Chapter 1. Content for OpenDaylight Users

http://127.0.0.1:8181/restconf/operations/sxp-controller:add-entry
http://127.0.0.1:8181/restconf/operations/sxp-controller:update-entry
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-entry
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-node-bindings
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-binding-sgts

OpenDaylight Documentation Documentation, Release Carbon

<ip-prefix>192.168.12.2/32</ip-prefix>
</input>

• Add PeerGroup with or without filters to node. POST http://127.0.0.1:8181/restconf/operations/sxp-controller:
add-peer-group

<input xmlns="urn:opendaylight:sxp:controller">
<requested-node>127.0.0.1</requested-node>
<sxp-peer-group>
<name>TEST</name>
<sxp-peers>
</sxp-peers>
<sxp-filter>
<filter-type>outbound</filter-type>
<acl-entry>
<entry-type>deny</entry-type>
<entry-seq>1</entry-seq>
<sgt-start>1</sgt-start>
<sgt-end>100</sgt-end>

</acl-entry>
<acl-entry>
<entry-type>permit</entry-type>
<entry-seq>45</entry-seq>
<matches>1</matches>
<matches>3</matches>
<matches>5</matches>

</acl-entry>
</sxp-filter>

</sxp-peer-group>
</input>

• Delete PeerGroup with peer-group-name from node request-node. POST http://127.0.0.1:8181/restconf/
operations/sxp-controller:delete-peer-group

<input xmlns="urn:opendaylight:sxp:controller">
<requested-node>127.0.0.1</requested-node>
<peer-group-name>TEST</peer-group-name>

</input>

• Get PeerGroup with peer-group-name from node request-node. POST http://127.0.0.1:8181/restconf/operations/
sxp-controller:get-peer-group

<input xmlns="urn:opendaylight:sxp:controller">
<requested-node>127.0.0.1</requested-node>
<peer-group-name>TEST</peer-group-name>

</input>

• Add Filter to peer group on node request-node. POST http://127.0.0.1:8181/restconf/operations/sxp-controller:
add-filter

<input xmlns="urn:opendaylight:sxp:controller">
<requested-node>127.0.0.1</requested-node>
<peer-group-name>TEST</peer-group-name>
<sxp-filter>
<filter-type>outbound</filter-type>
<acl-entry>
<entry-type>deny</entry-type>
<entry-seq>1</entry-seq>

1.3. OpenDaylight User Guide 1049

http://127.0.0.1:8181/restconf/operations/sxp-controller:add-peer-group
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-peer-group
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-peer-group
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-peer-group
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-peer-group
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-peer-group
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-filter
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-filter

OpenDaylight Documentation Documentation, Release Carbon

<sgt-start>1</sgt-start>
<sgt-end>100</sgt-end>
</acl-entry>
<acl-entry>
<entry-type>permit</entry-type>
<entry-seq>45</entry-seq>
<matches>1</matches>
<matches>3</matches>
<matches>5</matches>
</acl-entry>

</sxp-filter>
</input>

• Delete Filter from peer group on node request-node. POST http://127.0.0.1:8181/restconf/operations/
sxp-controller:delete-filter

<input xmlns="urn:opendaylight:sxp:controller">
<requested-node>127.0.0.1</requested-node>
<peer-group-name>TEST</peer-group-name>
<filter-type>outbound</filter-type>

</input>

• Update Filter of the same type in peer group on node request-node. POST http://127.0.0.1:8181/restconf/
operations/sxp-controller:update-filter

<input xmlns="urn:opendaylight:sxp:controller">
<requested-node>127.0.0.1</requested-node>
<peer-group-name>TEST</peer-group-name>
<sxp-filter>
<filter-type>outbound</filter-type>
<acl-entry>
<entry-type>deny</entry-type>
<entry-seq>1</entry-seq>
<sgt-start>1</sgt-start>
<sgt-end>100</sgt-end>
</acl-entry>
<acl-entry>
<entry-type>permit</entry-type>
<entry-seq>45</entry-seq>
<matches>1</matches>
<matches>3</matches>
<matches>5</matches>
</acl-entry>

</sxp-filter>
</input>

• Add new SXP aware Node POST http://127.0.0.1:8181/restconf/operations/sxp-controller:add-node

<input xmlns="urn:opendaylight:sxp:controller">
<node-id>1.1.1.1</node-id>
<source-ip>0.0.0.0</source-ip>
<timers>

<retry-open-time>5</retry-open-time>
<hold-time-min-acceptable>120</hold-time-min-acceptable>
<delete-hold-down-time>120</delete-hold-down-time>
<hold-time-min>90</hold-time-min>
<reconciliation-time>120</reconciliation-time>
<hold-time>90</hold-time>

1050 Chapter 1. Content for OpenDaylight Users

http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-filter
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-filter
http://127.0.0.1:8181/restconf/operations/sxp-controller:update-filter
http://127.0.0.1:8181/restconf/operations/sxp-controller:update-filter
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-node

OpenDaylight Documentation Documentation, Release Carbon

<hold-time-max>180</hold-time-max>
<keep-alive-time>30</keep-alive-time>

</timers>
<mapping-expanded>150</mapping-expanded>
<security>

<password>password</password>
</security>
<tcp-port>64999</tcp-port>
<version>version4</version>
<description>ODL SXP Controller</description>
<master-database></master-database>

</input>

• Delete SXP aware node POST http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-node

<input xmlns="urn:opendaylight:sxp:controller">
<node-id>1.1.1.1</node-id>

</input>

• Add SXP Domain on node request-node. POST http://127.0.0.1:8181/restconf/operations/sxp-controller:
add-domain

<input xmlns="urn:opendaylight:sxp:controller">
<node-id>1.1.1.1</node-id>
<domain-name>global</domain-name>

</input>

• Delete SXP Domain on node request-node. POST http://127.0.0.1:8181/restconf/operations/sxp-controller:
delete-domain

<input xmlns="urn:opendaylight:sxp:controller">
<node-id>1.1.1.1</node-id>
<domain-name>global</domain-name>

</input>

• Add Route Adds route to leader Node. PUT http://127.0.0.1:8181/restconf/config/sxp-cluster-route:
sxp-cluster-route/

<sxp-cluster-route xmlns="urn:opendaylight:sxp:cluster:route">
<routing-definition>

<ip-address>80.12.43.2</ip-address>
<interface>eth1:0</interface>
<netmask>255.255.255.0</netmask>

</routing-definition>
</sxp-cluster-route>

Use cases for SXP

Cisco has a wide installed base of network devices supporting SXP. By including SXP in OpenDaylight, the binding
of policy groups to IP addresses can be made available for possible further processing to a wide range of devices, and
applications running on OpenDaylight. The range of applications that would be enabled is extensive. Here are just a
few of them:

OpenDaylight based applications can take advantage of the IP-SGT binding information. For example, access control
can be defined by an operator in terms of policy groups, while OpenDaylight can configure access control lists on
network elements using IP addresses, e.g., existing technology.

1.3. OpenDaylight User Guide 1051

http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-node
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-domain
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-domain
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-domain
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-domain
http://127.0.0.1:8181/restconf/config/sxp-cluster-route:sxp-cluster-route/
http://127.0.0.1:8181/restconf/config/sxp-cluster-route:sxp-cluster-route/

OpenDaylight Documentation Documentation, Release Carbon

Interoperability between different vendors. Vendors have different policy systems. Knowing the IP-SGT binding for
Cisco makes it possible to maintain policy groups between Cisco and other vendors.

OpenDaylight can aggregate the binding information from many devices and communicate it to a network element. For
example, a firewall can use the IP-SGT binding information to know how to handle IPs based on the group-based ACLs
it has set. But to do this with SXP alone, the firewall has to maintain a large number of network connections to get the
binding information. This incurs heavy overhead costs to maintain all of the SXP peering and protocol information.
OpenDaylight can aggregate the IP-group information so that the firewall need only connect to OpenDaylight. By
moving the information flow outside of the network elements to a centralized position, we reduce the overhead of the
CPU consumption on the enforcement element. This is a huge savings - it allows the enforcement point to only have
to make one connection rather than thousands, so it can concentrate on its primary job of forwarding and enforcing.

OpenDaylight can relay the binding information from one network element to others. Changes in group membership
can be propagated more readily through a centralized model. For example, in a security application a particular host
(e.g., user or IP Address) may be found to be acting suspiciously or violating established security policies. The
defined response is to put the host into a different source group for remediation actions such as a lower quality of
service, restricted access to critical servers, or special routing conditions to ensure deeper security enforcement (e.g.,
redirecting the host’s traffic through an IPS with very restrictive policies). Updated group membership for this host
needs to be communicated to multiple network elements as soon as possible; a very efficient and effective method of
propagation can be performed using OpenDaylight as a centralized point for relaying the information.

OpenDaylight can create filters for exporting and receiving IP-SGT bindings used on specific peer groups, thus can
provide more complex maintaining of policy groups.

Although the IP-SGT binding is only one specific piece of information, and although SXP is implemented widely in
a single vendor’s equipment, bringing the ability of OpenDaylight to process and distribute the bindings, is a very
specific immediate useful implementation of policy groups. It would go a long way to develop both the usefulness of
OpenDaylight and of policy groups.

TSDR User Guide

This document describes how to use HSQLDB, HBase, and Cassandra data stores to capture time series data using
Time Series Data Repository (TSDR) features in OpenDaylight. This document contains configuration, administration,
management, usage, and troubleshooting sections for these features.

Overview

The Time Series Data Repository (TSDR) project in OpenDaylight (ODL) creates a framework for collecting, storing,
querying, and maintaining time series data. TSDR provides the framework for plugging in data collectors to collect
various time series data and store the data into TSDR Data Stores. With a common data model and generic TSDR
data persistence APIs, the user can choose various data stores to be plugged into the TSDR persistence framework.
Currently, three types of data stores are supported: HSQLDB relational database (default installed), HBase NoSQL
database and Cassandra NoSQL database.

With the capabilities of data collection, storage, query, aggregation, and purging provided by TSDR, network admin-
istrators can leverage various data driven applications built on top of TSDR for security risk detection, performance
analysis, operational configuration optimization, traffic engineering and network analytics with automated intelligence.

TSDR Architecture

TSDR has the following major components:

• Data Collection Service

• Data Storage Service

1052 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• TSDR Persistence Layer with data stores as plugins

• TSDR Data Stores

• Data Query Service

• Grafana integration for time series data visualization

• Data Aggregation Service

• Data Purging Service

The Data Collection Service handles the collection of time series data into TSDR and hands it over to the Data Storage
Service. The Data Storage Service stores the data into TSDR through the TSDR Persistence Layer. The TSDR
Persistence Layer provides generic Service APIs allowing various data stores to be plugged in. The Data Aggregation
Service aggregates time series fine-grained raw data into course-grained roll-up data to control the size of the data. The
Data Purging Service periodically purges both fine-grained raw data and course-grained aggregated data according to
user-defined schedules.

TSDR provides component-based services on a common data model. These services include the data collection ser-
vice, data storage service and data query service. The TSDR data storage service supports HSQLDB (the default
datastore), HBASE and Cassandra datastores. Between these services and components, time series data is commu-
nicated using a common TSDR data model. This data model is designed around the abstraction of time series data
commonalities. With these services, TSDR is able to collect the data from the data sources and store them into one of
the TSDR data stores; HSQLDB, HBase and Cassandra datastores. Data can be retrieved with the Data Query service
using the default OpenDaylight RestConf interface or its ODL API interface. TSDR also has integrated support for
ElasticSearch capabilities. TSDR data can also be viewed directly with Grafana for time series visualization or various
chart formats.

Configuring TSDR Data Stores

To Configure HSQLDB Data Store

The HSQLDB based storage files get stored automatically in <karaf install folder>/tsdr/ directory. If you want to
change the default storage location, the configuration file to change can be found in <karaf install folder>/etc directory.
The filename is org.ops4j.datasource-metric.cfg. Change the last portion of the url=jdbc:hsqldb:./tsdr/metric to point
to different directory.

To Configure HBase Data Store

After installing HBase Server on the same machine as OpenDaylight, if the user accepts the default configuration of
the HBase Data Store, the user can directly proceed with the installation of HBase Data Store from Karaf console.

Optionally, the user can configure TSDR HBase Data Store following HBase Data Store Configuration Procedure.

• HBase Data Store Configuration Steps

– Open the file etc/tsdr-persistence-hbase.peroperties under karaf distribution directory.

– Edit the following parameters:

* HBase server name

* HBase server port

* HBase client connection pool size

* HBase client write buffer size

1.3. OpenDaylight User Guide 1053

OpenDaylight Documentation Documentation, Release Carbon

After the configuration of HBase Data Store is complete, proceed with the installation of HBase Data Store from Karaf
console.

• HBase Data Store Installation Steps

– Start Karaf Console

– Run the following commands from Karaf Console: feature:install odl-tsdr-hbase

To Configure Cassandra Data Store

Currently, there’s no configuration needed for Cassandra Data Store. The user can use Cassandra data store directly
after installing the feature from Karaf console.

Additionally separate commands have been implemented to install various data collectors.

Administering or Managing TSDR Data Stores

To Administer HSQLDB Data Store

Once the TSDR default datastore feature (odl-tsdr-hsqldb-all) is enabled, the TSDR captured OpenFlow statistics
metrics can be accessed from Karaf Console by executing the command

tsdr:list <metric-category> <starttimestamp> <endtimestamp>

wherein

• <metric-category> = any one of the following categories FlowGroupStats, FlowMeterStats, FlowStats, FlowTa-
bleStats, PortStats, QueueStats

• <starttimestamp> = to filter the list of metrics starting this timestamp

• <endtimestamp> = to filter the list of metrics ending this timestamp

• <starttimestamp> and <endtimestamp> are optional.

• Maximum 1000 records will be displayed.

To Administer HBase Data Store

• Using Karaf Command to retrieve data from HBase Data Store

The user first need to install hbase data store from karaf console:

feature:install odl-tsdr-hbase

The user can retrieve the data from HBase data store using the following commands from Karaf console:

tsdr:list
tsdr:list <CategoryName> <StartTime> <EndTime>

Typing tab will get the context prompt of the arguments when typeing the command in Karaf console.

1054 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

To Administer Cassandra Data Store

The user first needs to install Cassandra data store from Karaf console:

feature:install odl-tsdr-cassandra

Then the user can retrieve the data from Cassandra data store using the following commands from Karaf console:

tsdr:list
tsdr:list <CategoryName> <StartTime> <EndTime>

Typing tab will get the context prompt of the arguments when typeing the command in Karaf console.

Installing TSDR Data Collectors

When the user uses HSQLDB data store and installed “odl-tsdr-hsqldb-all” feature from Karaf console, besides the
HSQLDB data store, OpenFlow data collector is also installed with this command. However, if the user needs to use
other collectors, such as NetFlow Collector, Syslog Collector, SNMP Collector, and Controller Metrics Collector, the
user needs to install them with separate commands. If the user uses HBase or Cassandra data store, no collectors will
be installed when the data store is installed. Instead, the user needs to install each collector separately using feature
install command from Karaf console.

The following is the list of supported TSDR data collectors with the associated feature install commands:

• OpenFlow Data Collector

feature:install odl-tsdr-openflow-statistics-collector

• NetFlow Data Collector

feature:install odl-tsdr-netflow-statistics-collector

• sFlow Data Collector

feature:install odl-tsdr-sflow-statistics-colletor

• SNMP Data Collector

feature:install odl-tsdr-snmp-data-collector

• Syslog Data Collector

feature:install odl-tsdr-syslog-collector

• Controller Metrics Collector

feature:install odl-tsdr-controller-metrics-collector

• Web Activity Collector

feature:install odl-tsdr-restconf-collector

In order to use controller metrics collector, the user needs to install Sigar library.

The following is the instructions for installing Sigar library on Ubuntu:

• Install back end library by “sudo apt-get install libhyperic-sigar-java”

1.3. OpenDaylight User Guide 1055

OpenDaylight Documentation Documentation, Release Carbon

• Execute “export LD_LIBRARY_PATH=/usr/lib/jni/:/usr/lib:/usr/local/lib” to set the path of the JNI (you can
add this to the ”.bashrc” in your home directory)

• Download the file “sigar-1.6.4.jar”. It might be also in your ”.m2” directory under
“~/.m2/resources/org/fusesource/sigar/1.6.4”

• Create the directory “org/fusesource/sigar/1.6.4” under the “system” directory in your controller home directory
and place the “sigar-1.6.4.jar” there

Configuring TSDR Data Collectors

• SNMP Data Collector Device Credential Configuration

After installing SNMP Data Collector, a configuration file under etc/ directory of ODL distribution is generated:
etc/tsdr.snmp.cfg is created.

The following is a sample tsdr.snmp.cfg file:

credentials=[192.168.0.2,public],[192.168.0.3,public]

The above credentials indicate that TSDR SNMP Collector is going to connect to two devices. The IPAddress and
Read community string of these two devices are (192.168.0.2, public), and (192.168.0.3) respectively.

The user can make changes to this configuration file any time during runtime. The configuration will be picked up by
TSDR in the next cycle of data collection.

Polling interval configuration for SNMP Collector and OpenFlow Stats Collector

The default polling interval of SNMP Collector and OpenFlow Stats Collector is 30 seconds and 15 seconds respec-
tively. The user can change the polling interval through restconf APIs at any time. The new polling interval will be
picked up by TSDR in the next collection cycle.

• Retrieve Polling Interval API for SNMP Collector

– URL: http://localhost:8181/restconf/config/tsdr-snmp-data-collector:TSDRSnmpDataCollectorConfig

– Verb: GET

• Update Polling Interval API for SNMP Collector

– URL: http://localhost:8181/restconf/operations/tsdr-snmp-data-collector:setPollingInterval

– Verb: POST

– Content Type: application/json

– Input Payload:

{
"input": {

"interval": "15000"
}

}

• Retrieve Polling Interval API for OpenFlowStats Collector

– URL: http://localhost:8181/restconf/config/tsdr-openflow-statistics-collector:TSDROSCConfig

– Verb: GET

• Update Polling Interval API for OpenFlowStats Collector

1056 Chapter 1. Content for OpenDaylight Users

http://localhost:8181/restconf/config/tsdr-snmp-data-collector:TSDRSnmpDataCollectorConfig
http://localhost:8181/restconf/operations/tsdr-snmp-data-collector:setPollingInterval
http://localhost:8181/restconf/config/tsdr-openflow-statistics-collector:TSDROSCConfig

OpenDaylight Documentation Documentation, Release Carbon

– URL: http://localhost:8181/restconf/operations/tsdr-openflow-statistics-collector:setPollingInterval

– Verb: POST

– Content Type: application/json

– Input Payload:

{
"input": {

"interval": "15000"
}

}

Querying TSDR from REST APIs

TSDR provides two REST APIs for querying data stored in TSDR data stores.

• Query of TSDR Metrics

– URL: http://localhost:8181/tsdr/metrics/query

– Verb: GET

– Parameters:

* tsdrkey=[NID=][DC=][MN=][RK=]

The TSDRKey format indicates the NodeID(NID), DataCategory(DC),
→˓MetricName(MN), and RecordKey(RK) of the monitored objects.
For example, the following is a valid tsdrkey:
[NID=openflow:1][DC=FLOWSTATS][MN=PacketCount][RK=Node:openflow:1,Table:0,
→˓Flow:3]
The following is also a valid tsdrkey:
tsdrkey=[NID=][DC=FLOWSTATS][MN=][RK=]
In the case when the sections in the tsdrkey is empty, the query will
→˓return all the records in the TSDR data store that matches the filled
→˓tsdrkey. In the above example, the query will return all the data in
→˓FLOWSTATS data category.
The query will return only the first 1000 records that match the query
→˓criteria.

* from=<time_in_seconds>

* until=<time_in_seconds>

The following is an example curl command for querying metric data from TSDR data store:

curl -G -v -H “Accept: application/json” -H “Content-Type: application/json” “http://localhost:8181/tsdr/
metrics/query” –data-urlencode “tsdrkey=[NID=][DC=FLOWSTATS][MN=][RK=]” –data-urlencode “from=0” –
data-urlencode “until=240000000000”|more

• Query of TSDR Log type of data

– URL:http://localhost:8181/tsdr/logs/query

– Verb: GET

– Parameters:

* tsdrkey=tsdrkey=[NID=][DC=][RK=]

1.3. OpenDaylight User Guide 1057

http://localhost:8181/restconf/operations/tsdr-openflow-statistics-collector:setPollingInterval
http://localhost:8181/tsdr/metrics/query
http://localhost:8181/tsdr/metrics/query
http://localhost:8181/tsdr/metrics/query

OpenDaylight Documentation Documentation, Release Carbon

The TSDRKey format indicates the NodeID(NID), DataCategory(DC), and
→˓RecordKey(RK) of the monitored objects.
For example, the following is a valid tsdrkey:
[NID=openflow:1][DC=NETFLOW][RK]
The query will return only the first 1000 records that match the query
→˓criteria.

* from=<time_in_seconds>

* until=<time_in_seconds>

The following is an example curl command for querying log type of data from TSDR data store:

curl -G -v -H “Accept: application/json” -H “Content-Type: application/json” “http://localhost:8181/tsdr/logs/
query” –data-urlencode “tsdrkey=[NID=][DC=NETFLOW][RK=]” –data-urlencode “from=0” –data-urlencode “un-
til=240000000000”|more

Grafana integration with TSDR

TSDR provides northbound integration with Grafana time series data visualization tool. All the metric type of data
stored in TSDR data store can be visualized using Grafana.

For the detailed instruction about how to install and configure Grafana to work with TSDR, please refer to the following
link:

https://wiki.opendaylight.org/view/Grafana_Integration_with_TSDR_Step-by-Step

Purging Service configuration

After the data stores are installed from Karaf console, the purging service will be installed as well. A configuration
file called tsdr.data.purge.cfg will be generated under etc/ directory of ODL distribution.

The following is the sample default content of the tsdr.data.purge.cfg file:

host=127.0.0.1 data_purge_enabled=true data_purge_time=23:59:59 data_purge_interval_in_minutes=1440 reten-
tion_time_in_hours=168

The host indicates the IPAddress of the data store. In the case when the data store is together with ODL controller,
127.0.0.1 should be the right value for the host IP. The other attributes are self-explained. The user can change those
attributes at any time. The configuration change will be picked up right away by TSDR Purging service at runtime.

How to use TSDR to collect, store, and view OpenFlow Interface Statistics

Overview

This tutorial describes an example of using TSDR to collect, store, and view one type of time series data in OpenDay-
light environment.

Prerequisites

You would need to have the following as prerequisits:

• One or multiple OpenFlow enabled switches. Alternatively, you can use mininet to simulate such a switch.

• Successfully installed OpenDaylight Controller.

1058 Chapter 1. Content for OpenDaylight Users

http://localhost:8181/tsdr/logs/query
http://localhost:8181/tsdr/logs/query
https://wiki.opendaylight.org/view/Grafana_Integration_with_TSDR_Step-by-Step

OpenDaylight Documentation Documentation, Release Carbon

• Successfully installed HBase Data Store following TSDR HBase Data Store Installation Guide.

• Connect the OpenFlow enabled switch(es) to OpenDaylight Controller.

Target Environment

HBase data store is only supported in Linux operation system.

Instructions

• Start OpenDaylight.

• Connect OpenFlow enabled switch(es) to the controller.

– If using mininet, run the following commands from mininet command line:

* mn –topo single,3 –controller remote,ip=172.17.252.210,port=6653 –switch
ovsk,protocols=OpenFlow13

• Install TSDR hbase feature from Karaf:

– feature:install odl-tsdr-hbase

• Install OpenFlow Statistics Collector from Karaf:

– feature:install odl-tsdr-openflow-statistics-collector

• run the following command from Karaf console:

– tsdr:list PORTSTATS

You should be able to see the interface statistics of the switch(es) from the HBase Data Store. If there are too many
rows, you can use “tsdr:list InterfaceStats|more” to view it page by page.

By tabbing after “tsdr:list”, you will see all the supported data categories. For example, “tsdr:list FlowStats” will
output the Flow statistics data collected from the switch(es).

ElasticSearch

To setup and run the TSDR data store ElasticSearch feature, you need to have an ElasticSearch node (or a cluster of
such nodes) running. You can use a customized ElasticSearch docker image for this purpose.

Your ElasticSearch (ES) setup must have the “Delete By Query Plugin” installed. Without this, some of the ES
functionality won’t work properly.

(You can skip this section if you already have an instance of ElasticSearch running)

Run the following set of commands:

cat << EOF > Dockerfile
FROM elasticsearch:2
RUN /usr/share/elasticsearch/bin/plugin install --batch delete-by-query
EOF

To build the image, run the following command in the directory where the Dockerfile was created:

docker build . -t elasticsearch-dd

You can check whether the image was properly created by running:

1.3. OpenDaylight User Guide 1059

OpenDaylight Documentation Documentation, Release Carbon

docker images

This should print all your container images including the elasticsearch-dd.

Now we can create and run a container from our image by typing:

docker run -d -p 9200:9200 -p 9300:9300 --name elasticsearch-dd elasticsearch-dd

To see whether the container is running, run the following command:

docker ps

The output should include a row with elasticsearch-dd in the NAMES column. To check the std out of this container
use

docker logs elasticsearch-dd

Running the ElasticSearch feature

Once the features have been installed, you can change some of its properties. For example, to setup
the URL where your ElasticSearch installation runs, change the serverUrl parameter in tsdr/persistence-
elasticsearch/src/main/resources/configuration/initial/:

tsdr-persistence-elasticsearch.properties

All the data are stored into the TSDR index under a type. The metric data are stored under the met-
ric type and the log data are store under the log type. You can modify the files in tsdr/persistence-
elasticsearch/src/main/resources/configuration/initial/:

tsdr-persistence-elasticsearch_metric_mapping.json
tsdr-persistence-elasticsearch_log_mapping.json

to change or tune the mapping for those types. The changes in those files will be promoted after the feature is reloaded
or the distribution is restarted.

We can now test whether the setup is correct by downloading and installing mininet, which we use to send some data
to the running ElasticSearch instance.

Installing the necessary features:

start OpenDaylight
feature:install odl-restconf odl-l2switch-switch odl-tsdr-core odl-tsdr-openflow-
→˓statistics-collector
feature:install odl-tsdr-elasticsearch

We can check whether the distribution is now listening on port 6653:

netstat -an | grep 6653

Run mininet

sudo mn --topo single,3 --controller 'remote,ip=distro_ip,port=6653' --switch ovsk,
→˓protocols=OpenFlow13

where the distro_ip is the IP address of the machine where the OpenDaylight distribution is running. This command
will create three hosts connected to one OpenFlow capable switch.

1060 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

We can check if data was stored by ElasticSearch in TSDR by running the following command:

tsdr:list FLOWTABLESTATS

The output should look similar to the following:

[NID=openflow:1][DC=FLOWTABLESTATS][MN=ActiveFlows][RK=Node:openflow:1,
→˓Table:50][TS=1473427383598][3]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,
→˓Table:50][TS=1473427383598][12]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketLookup][RK=Node:openflow:1,
→˓Table:50][TS=1473427383598][12]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=ActiveFlows][RK=Node:openflow:1,
→˓Table:80][TS=1473427383598][3]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,
→˓Table:80][TS=1473427383598][17]
[NID=openflow:1][DC=FLOWTABLESTATS][MN=PacketMatch][RK=Node:openflow:1,
→˓Table:246][TS=1473427383598][19]
...

Or you can query your ElasticSearch instance:

curl -XPOST "http://elasticseach_ip:9200/_search?pretty" -d'{ "from": 0, "size":
→˓10000, "query": { "match_all": {} } }'

The elasticseach_ip is the IP address of the server where the ElasticSearch is running.

Web Activity Collector

The Web Activity Collector records the meaningful REST requests made through the OpenDaylight RESTCONF
interface.

• Install some other feature that has a RESTCONF interface, for example. “odl-tsdr-syslog-collector”

• Issue a RESTCONF command that uses either POST,PUT or DELETE. For example, you could call the register-
filter RPC of tsdr-syslog-collector.

• Look up data in TSDR database from Karaf.

tsdr:list RESTCONF

• You should see the request that you have sent, along with its information (URL, HTTP method, requesting IP
address and request body)

• Try to send a GET request, then check again, your request should not be registered, because the collector does
not register GET requests by default.

• Open the file: “etc/tsdr.restconf.collector.cfg”, and add GET to the list of METHODS_TO_LOG, so that it
becomes:

METHODS_TO_LOG=POST,PUT,DELETE,GET

– Try again to issue your GET request, and check if it was recorded this time, it should be recorder.

– Try manipulating the other properties (PATHS_TO_LOG (which URLs do we want to log from), RE-
MOTE_ADDRESSES_TO_LOG (which requesting IP addresses do we want to log from) and CON-
TENT_TO_LOG (what should be in the request’s body in order to log it)), and see if the requests are
getting logged.

1.3. OpenDaylight User Guide 1061

OpenDaylight Documentation Documentation, Release Carbon

– Try providing invalid properties (unknown methods for the METHODS_TO_LOG parameter, or the same
method repeated multiple times, and invalid regular expressions for the other parameters), then check
karaf’s log using “log:display”. It should tell you that the value is invalid, and that it will use the default
value instead.

Troubleshooting

Karaf logs

All TSDR features and components write logging information including information messages, warnings, errors and
debug messages into karaf.log.

HBase and Cassandra logs

For HBase and Cassandra data stores, the database level logs are written into HBase log and Cassandra logs.

• HBase log

– HBase log is under <HBase-installation-directory>/logs/.

• Cassandra log

– Cassandra log is under {cassandra.logdir}/system.log. The default {cassandra.logdir} is
/var/log/cassandra/.

Security

TSDR gets the data from a variety of sources, which can be secured in different ways.

• OpenFlow Security

– The OpenFlow data can be configured with Transport Layer Security (TLS) since the OpenFlow Plugin
that TSDR depends on provides this security support.

• SNMP Security

– The SNMP version3 has security support. However, since ODL SNMP Plugin that TSDR depends on does
not support version 3, we (TSDR) will not have security support at this moment.

• NetFlow Security

– NetFlow, which cannot be configured with security so we recommend making sure it flows only over a
secured management network.

• Syslog Security

– Syslog, which cannot be configured with security so we recommend making sure it flows only over a
secured management network.

Support multiple data stores simultaneously at runtime

TSDR supports running multiple data stores simultaneously at runtim. For example, it is possible to configure TSDR
to push log type of data into Cassandra data store, while pushing metrics type of data into HBase.

1062 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

When you install one TSDR data store from karaf console, such as using feature:install odl-tsdr-hsqldb, a properties
file will be generated under <Karaf-distribution-directory>/etc/. For example, when you install hsqldb, a file called
tsdr-persistence-hsqldb.properties is generated under that directory.

By default, all the types of data are supported in the data store. For example, the default content of tsdr-persistence-
hsqldb.properties is as follows:

metric-persistency=true
log-persistency=true
binary-persistency=true

When the user would like to use different data stores to support different types of data, he/she could enable or disable
a particular type of data persistence in the data stores by configuring the properties file accordingly.

For example, if the user would like to store the log type of data in HBase, and store the metric and binary type of data
in Cassandra, he/she needs to install both hbase and cassandra data stores from Karaf console. Then the user needs to
modify the properties file under <Karaf-distribution-directory>/etc as follows:

• tsdr-persistence-hbase.properties

metric-persistency=false
log-persistency=true
binary-persistency=true

• tsdr-persistence-cassandra.properties

metric-psersistency=true
log-persistency=false
binary-persistency=false

TTP CLI Tools User Guide

Overview

Table Type Patterns are a specification developed by the Open Networking Foundation to enable the description and
negotiation of subsets of the OpenFlow protocol. This is particularly useful for hardware switches that support Open-
Flow as it enables the to describe what features they do (and thus also what features they do not) support. More details
can be found in the full specification listed on the OpenFlow specifications page.

TTP CLI Tools Architecture

The TTP CLI Tools use the TTP Model and the YANG Tools/RESTCONF codecs to translate between the Data
Transfer Objects (DTOs) and JSON/XML.

User Network Interface Manager Plug-in (Unimgr) User Guide

Overview

The User Network Interface (UNI) Manager project within OpenDaylight provides data models and APIs that enable
software applications and service orchestrators to configure and provision connectivity services; in particular, Carrier
Ethernet services as defined by MEF Forum, in physical and virtual network elements.

MEF has defined the Lifecycle Service Orchestration (LSO) Reference Architecture for the management and control
of domains and entities that enable cooperative network services across one or more service provider networks. The

1.3. OpenDaylight User Guide 1063

https://www.opennetworking.org/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow

OpenDaylight Documentation Documentation, Release Carbon

architecture also identifies LSO Reference Points, which are the logical points of interaction between specific func-
tional management components. These LSO Reference Points are further defined by interface profiles and instantiated
by APIs.

The LSO Reference Architecture is shown below. Note that this is a functional architecture that does not describe how
the management components are implemented (e.g., single vs. multiple instances), but rather identifies management
components that provide logical functionality as well as the points of interaction among them.

Fig. 1.112: MEF LSO Reference Architecture

Unimgr provides support for both the Legato as well as the Presto interfaces. These interfaces, and the APIs associated
with them, are defined by YANG models developed within MEF in collaboration with ONF and IETF. For the Carbon
release, these are as follows:

Legato YANG modules: https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=legato-api/src/main/yang;
hb=refs/heads/stable/carbon

Presto YANG modules: https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=presto-api/src/main/yang;
hb=refs/heads/stable/carbon

An application/user can interact with Unimgr at either the service orchestration layer (Legato) or the network resource
provisioning layer (Presto).

Unimgr Architecture

Unimgr is comprised of the following OpenDaylight Karaf features:

1064 Chapter 1. Content for OpenDaylight Users

https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=legato-api/src/main/yang;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=legato-api/src/main/yang;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=presto-api/src/main/yang;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=presto-api/src/main/yang;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

odl-unimgr-api OpenDaylight :: UniMgr :: api
odl-unimgr OpenDaylight :: UniMgr
odl-unimgr-console OpenDaylight :: UniMgr :: CLI
odl-unimgr-rest OpenDaylight :: UniMgr :: REST
odl-unimgr-ui OpenDaylight :: UniMgr :: UI

Configuring Unimgr

After launching OpenDaylight, install the feature for Unimgr. From the karaf command prompt execute the following
command:

$ feature:install odl-unimgr-ui

Explore and exercise the Unimgr REST API

To see the Unimgr API, browse to this URL: http://localhost:8181/apidoc/explorer/index.html

Replace localhost with the IP address or hostname where OpenDaylight is running if you are not running OpenDaylight
locally on your machine.

See also the Unimgr Developer Guide for a full listing of the API.

Unified Secure Channel

This document describes how to use the Unified Secure Channel (USC) feature in OpenDaylight. This document
contains configuration, administration, and management sections for the feature.

Overview

In enterprise networks, more and more controller and network management systems are being deployed remotely, such
as in the cloud. Additionally, enterprise networks are becoming more heterogeneous - branch, IoT, wireless (including
cloud access control). Enterprise customers want a converged network controller and management system solution.
This feature is intended for device and network administrators looking to use unified secure channels for their systems.

USC Channel Architecture

• USC Agent

– The USC Agent provides proxy and agent functionality on top of all standard protocols supported by the
device. It initiates call-home with the controller, maintains live connections with with the controller, acts
as a demuxer/muxer for packets with the USC header, and authenticates the controller.

• USC Plugin

– The USC Plugin is responsible for communication between the controller and the USC agent . It responds
to call-home with the controller, maintains live connections with the devices, acts as a muxer/demuxer for
packets with the USC header, and provides support for TLS/DTLS.

• USC Manager

– The USC Manager handles configurations, high availability, security, monitoring, and clustering support
for USC.

1.3. OpenDaylight User Guide 1065

http://localhost:8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

• USC UI

– The USC UI is responsible for displaying a graphical user interface representing the state of USC in the
OpenDaylight DLUX UI.

Installing USC Channel

To install USC, download OpenDaylight and use the Karaf console to install the following feature:

odl-usc-channel-ui

Configuring USC Channel

This section gives details about the configuration settings for various components in USC.

The USC configuration files for the Karaf distribution are located in distribution/karaf/target/assembly/etc/usc

• certificates

– The certificates folder contains the client key, pem, and rootca files as is necessary for security.

• akka.conf

– This file contains configuration related to clustering. Potential configuration properties can be found on
the akka website at http://doc.akka.io

• usc.properties

– This file contains configuration related to USC. Use this file to set the location of certificates, define the
source of additional akka configurations, and assign default settings to the USC behavior.

Administering or Managing USC Channel

After installing the odl-usc-channel-ui feature from the Karaf console, users can administer and manage USC channels
from the the UI or APIDOCS explorer.

Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/index.html, sign
in, and click on the USC side menu tab. From there, users can view the state of USC channels.

Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/explorer/
index.html, sign in, and expand the usc-channel panel. From there, users can execute various API calls to test their
USC deployment such as add-channel, delete-channel, and view-channel.

Tutorials

Below are tutorials for USC Channel

Viewing USC Channel

The purpose of this tutorial is to view USC Channel

1066 Chapter 1. Content for OpenDaylight Users

http://doc.akka.io
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

Overview

This tutorial walks users through the process of viewing the USC Channel environment topology including established
channels connecting the controllers and devices in the USC topology.

Prerequisites

For this tutorial, we assume that a device running a USC agent is already installed.

Instructions

• Run the OpenDaylight distribution and install odl-usc-channel-ui from the Karaf console.

• Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/
explorer/index.html

• Execute add-channel with the following json data:

– {“input”:{“channel”:{“hostname”:”127.0.0.1”,”port”:1068,”remote”:false}}}

• Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/index.html

• Click on the USC side menu tab.

• The UI should display a table including the added channel from step 3.

Virtual Tenant Network (VTN)

VTN Overview

OpenDaylight Virtual Tenant Network (VTN) is an application that provides multi-tenant virtual network on an SDN
controller.

Conventionally, huge investment in the network systems and operating expenses are needed because the network is
configured as a silo for each department and system. So, various network appliances must be installed for each tenant
and those boxes cannot be shared with others. It is a heavy work to design, implement and operate the entire complex
network.

The uniqueness of VTN is a logical abstraction plane. This enables the complete separation of logical plane from
physical plane. Users can design and deploy any desired network without knowing the physical network topology or
bandwidth restrictions.

VTN allows the users to define the network with a look and feel of conventional L2/L3 network. Once the network
is designed on VTN, it will automatically be mapped into underlying physical network, and then configured on the
individual switch leveraging SDN control protocol. The definition of logical plane makes it possible not only to
hide the complexity of the underlying network but also to better manage network resources. It achieves reducing
reconfiguration time of network services and minimizing network configuration errors.

It is implemented as two major components

• VTN Manager

• VTN Coordinator

1.3. OpenDaylight User Guide 1067

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/index.html

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.113: VTN Overview

VTN Manager

An OpenDaylight Plugin that interacts with other modules to implement the components of the VTN model. It also
provides a REST interface to configure VTN components in OpenDaylight. VTN Manager is implemented as one
plugin to the OpenDaylight. This provides a REST interface to create/update/delete VTN components. The user
command in VTN Coordinator is translated as REST API to VTN Manager by the OpenDaylight Driver component.
In addition to the above mentioned role, it also provides an implementation to the OpenStack L2 Network Functions
API.

Features Overview

• odl-vtn-manager provides VTN Manager’s JAVA API.

• odl-vtn-manager-rest provides VTN Manager’s REST API.

• odl-vtn-manager-neutron provides the integration with Neutron interface.

REST API

VTN Manager provides REST API for virtual network functions.

Here is an example of how to create a virtual tenant network.

curl --user "admin":"admin" -H "Accept: application/json" -H \
"Content-type: application/json" -X POST \

1068 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

http://localhost:8181/restconf/operations/vtn:update-vtn \
-d '{"input":{"tenant-name":"vtn1"}}'

You can check the list of all tenants by executing the following command.

curl --user "admin":"admin" -H "Accept: application/json" -H \
"Content-type: application/json" -X GET \
http://localhost:8181/restconf/operational/vtn:vtns

REST Conf documentation for VTN Manager, please refer to: https://nexus.opendaylight.org/content/sites/site/org.
opendaylight.vtn/boron/manager.model/apidocs/index.html

VTN Coordinator

The VTN Coordinator is an external application that provides a REST interface for an user to use OpenDaylight
VTN Virtualization. It interacts with VTN Manager plugin to implement the user configuration. It is also capable
of multiple OpenDaylight orchestration. It realizes Virtual Tenant Network (VTN) provisioning in OpenDaylight
instances. In the OpenDaylight architecture VTN Coordinator is part of the network application, orchestration and
services layer. VTN Coordinator will use the REST interface exposed by the VTN Manger to realize the virtual
network using OpenDaylight. It uses OpenDaylight APIs (REST) to construct the virtual network in OpenDaylight
instances. It provides REST APIs for northbound VTN applications and supports virtual networks spanning across
multiple OpenDaylight by coordinating across OpenDaylight.

For VTN Coordinator REST API, please refer to: https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_
Network_%28VTN%29:VTN_Coordinator:RestApi

Network Virtualization Function

The user first defines a VTN. Then, the user maps the VTN to a physical network, which enables communication to
take place according to the VTN definition. With the VTN definition, L2 and L3 transfer functions and flow-based
traffic control functions (filtering and redirect) are possible.

Virtual Network Construction

The following table shows the elements which make up the VTN. In the VTN, a virtual network is constructed using
virtual nodes (vBridge, vRouter) and virtual interfaces and links. It is possible to configure a network which has L2
and L3 transfer function, by connecting the virtual intrefaces made on virtual nodes via virtual links.

vBridge The logical representation of L2 switch function.
vRouter The logical representation of router function.
vTep The logical representation of Tunnel End Point - TEP.
vTunnel The logical representation of Tunnel.
vBypass The logical representation of connectivity between controlled networks.
Virtual interface The representation of end point on the virtual node.
Virtual Linkv(vLink) The logical representation of L1 connectivity between virtual interfaces.

The following figure shows an example of a constructed virtual network. VRT is defined as the vRouter, BR1 and BR2
are defined as vBridges. interfaces of the vRouter and vBridges are connected using vLinks.

1.3. OpenDaylight User Guide 1069

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:VTN_Coordinator:RestApi
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:VTN_Coordinator:RestApi

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.114: VTN Construction

1070 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Mapping of Physical Network Resources

Map physical network resources to the constructed virtual network. Mapping identifies which virtual network each
packet transmitted or received by an OpenFlow switch belongs to, as well as which interface in the OpenFlow switch
transmits or receives that packet. There are two mapping methods. When a packet is received from the OFS, port
mapping is first searched for the corresponding mapping definition, then VLAN mapping is searched, and the packet
is mapped to the relevant vBridge according to the first matching mapping.

Port
mapping

Maps physical network resources to an interface of vBridge using Switch ID, Port ID and VLAN ID
of the incoming L2 frame. Untagged frame mapping is also supported.

VLAN
mapping

Maps physical network resources to a vBridge using VLAN ID of the incoming L2 frame.Maps
physical resources of a particular switch to a vBridge using switch ID and VLAN ID of the incoming
L2 frame.

MAC
mapping

Maps physical resources to an interface of vBridge using MAC address of the incoming L2
frame(The initial contribution does not include this method).

VTN can learn the terminal information from a terminal that is connected to a switch which is mapped to VTN.
Further, it is possible to refer that terminal information on the VTN.

• Learning terminal information VTN learns the information of a terminal that belongs to VTN. It will store the
MAC address and VLAN ID of the terminal in relation to the port of the switch.

• Aging of terminal information Terminal information, learned by the VTN, will be maintained until the packets
from terminal keep flowing in VTN. If the terminal gets disconnected from the VTN, then the aging timer will
start clicking and the terminal information will be maintained till timeout.

The following figure shows an example of mapping. An interface of BR1 is mapped to port GBE0/1 of OFS1 using
port mapping. Packets received from GBE0/1 of OFS1 are regarded as those from the corresponding interface of BR1.
BR2 is mapped to VLAN 200 using VLAN mapping. Packets with VLAN tag 200 received from any ports of any
OFSs are regarded as those from an interface of BR2.

vBridge Functions

The vBridge provides the bridge function that transfers a packet to the intended virtual port according to the destination
MAC address. The vBridge looks up the MAC address table and transmits the packet to the corresponding virtual
interface when the destination MAC address has been learned. When the destination MAC address has not been
learned, it transmits the packet to all virtual interfaces other than the receiving port (flooding). MAC addresses are
learned as follows.

• MAC address learning The vBridge learns the MAC address of the connected host. The source MAC address
of each received frame is mapped to the receiving virtual interface, and this MAC address is stored in the MAC
address table created on a per-vBridge basis.

• MAC address aging The MAC address stored in the MAC address table is retained as long as the host returns
the ARP reply. After the host is disconnected, the address is retained until the aging timer times out. To have
the vBridge learn MAC addresses statically, you can register MAC addresses manually.

vRouter Functions

The vRouter transfers IPv4 packets between vBridges. The vRouter supports routing, ARP learning, and ARP aging
functions. The following outlines the functions.

• Routing function When an IP address is registered with a virtual interface of the vRouter, the default routing
information for that interface is registered. It is also possible to statically register routing information for a
virtual interface.

1.3. OpenDaylight User Guide 1071

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.115: VTN Mapping

1072 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• ARP learning function The vRouter associates a destination IP address, MAC address and a virtual interface,
based on an ARP request to its host or a reply packet for an ARP request, and maintains this information in
an ARP table prepared for each routing domain. The registered ARP entry is retained until the aging timer,
described later, times out. The vRouter transmits an ARP request on an individual aging timer basis and deletes
the associated entry from the ARP table if no reply is returned. For static ARP learning, you can register ARP
entry information manually.

• DHCP relay agent function The vRouter also provides the DHCP relay agent function.

Flow Filter Functions

Flow Filter function is similar to ACL. It is possible to allow or prohibit communication with only certain kind of
packets that meet a particular condition. Also, it can perform a processing called Redirection - WayPoint routing,
which is different from the existing ACL. Flow Filter can be applied to any interface of a vNode within VTN, and it is
possible to the control the packets that pass interface. The match conditions that could be specified in Flow Filter are
as follows. It is also possible to specify a combination of multiple conditions.

• Source MAC address

• Destination MAC address

• MAC ether type

• VLAN Priority

• Source IP address

• Destination IP address

• DSCP

• IP Protocol

• TCP/UDP source port

• TCP/UDP destination port

• ICMP type

• ICMP code

The types of Action that can be applied on packets that match the Flow Filter conditions are given in the following
table. It is possible to make only those packets, which match a particular condition, to pass through a particular server
by specifying Redirection in Action. E.g., path of flow can be changed for each packet sent from a particular terminal,
depending upon the destination IP address. VLAN priority control and DSCP marking are also supported.

Action Function
Pass Pass particular packets matching the specified conditions.
Drop Discards particular packets matching the specified conditions.
Redi-
rection

Redirects the packet to a desired virtual interface. Both Transparent Redirection (not changing MAC
address) and Router Redirection (changing MAC address) are supported.

The following figure shows an example of how the flow filter function works.

If there is any matching condition specified by flow filter when a packet being transferred within a virtual network
goes through a virtual interface, the function evaluates the matching condition to see whether the packet matches it.
If the packet matches the condition, the function applies the matching action specified by flow filter. In the example
shown in the figure, the function evaluates the matching condition at BR1 and discards the packet if it matches the
condition.

1.3. OpenDaylight User Guide 1073

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.116: VTN FlowFilter

1074 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Multiple SDN Controller Coordination

With the network abstractions, VTN enables to configure virtual network across multiple SDN controllers. This
provides highly scalable network system.

VTN can be created on each SDN controller. If users would like to manage those multiple VTNs with one policy,
those VTNs can be integrated to a single VTN.

As a use case, this feature is deployed to multi data center environment. Even if those data centers are geographically
separated and controlled with different controllers, a single policy virtual network can be realized with VTN.

Also, one can easily add a new SDN Controller to an existing VTN or delete a particular SDN Controller from VTN.

In addition to this, one can define a VTN which covers both OpenFlow network and Overlay network at the same time.

Flow Filter, which is set on the VTN, will be automatically applied on the newly added SDN Controller.

Coordination between OpenFlow Network and L2/L3 Network

It is possible to configure VTN on an environment where there is mix of L2/L3 switches as well. L2/L3 switch will
be shown on VTN as vBypass. Flow Filter or policing cannot be configured for a vBypass. However, it is possible to
treat it as a virtual node inside VTN.

Virtual Tenant Network (VTN) API

VTN provides Web APIs. They are implemented by REST architecture and provide the access to resources within
VTN that are identified by URI. User can perform the operations like GET/PUT/POST/DELETE against the virtual
network resources (e.g. vBridge or vRouter) by sending a message to VTN through HTTPS communication in XML
or JSON format.

Fig. 1.117: VTN API

Function Outline

VTN provides following operations for various network resources.

1.3. OpenDaylight User Guide 1075

OpenDaylight Documentation Documentation, Release Carbon

Resources GET POST PUT DELETE
VTN Yes Yes Yes Yes
vBridge Yes Yes Yes Yes
vRouter Yes Yes Yes Yes
vTep Yes Yes Yes Yes
vTunnel Yes Yes Yes Yes
vBypass Yes Yes Yes Yes
vLink Yes Yes Yes Yes
Interface Yes Yes Yes Yes
Port map Yes No Yes Yes
Vlan map Yes Yes Yes Yes
Flowfilter (ACL/redirect) Yes Yes Yes Yes
Controller information Yes Yes Yes Yes
Physical topology information Yes No No No
Alarm information Yes No No No

Example usage

The following is an example of the usage to construct a virtual network.

• Create VTN

curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"vtn":{"vtn_name":"VTN1"}}' http://172.1.0.1:8083/vtn-webapi/vtns.json

• Create Controller Information

curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"controller": {"controller_id":"CONTROLLER1","ipaddr":"172.1.0.1","type":"odc",
→˓"username":"admin", \
"password":"admin","version":"1.0"}}' http://172.1.0.1:8083/vtn-webapi/controllers.
→˓json

• Create vBridge under VTN

curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"vbridge":{"vbr_name":"VBR1","controller_id": "CONTROLLER1","domain_id":
→˓"(DEFAULT)"}}' \
http://172.1.0.1:8083/vtn-webapi/vtns/VTN1/vbridges.json

• Create the interface under vBridge

curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"interface":{"if_name":"IF1"}}' http://172.1.0.1:8083/vtn-webapi/vtns/VTN1/
→˓vbridges/VBR1/interfaces.json

VTN OpenStack Configuration

This guide describes how to set up OpenStack for integration with OpenDaylight Controller.

While OpenDaylight Controller provides several ways to integrate with OpenStack, this guide focus on the way which
uses VTN features available on OpenDaylight. In the integration, VTN Manager work as network service provider for
OpenStack.

1076 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

VTN Manager features, enable OpenStack to work in pure OpenFlow environment in which all switches in data plane
are OpenFlow switch.

Requirements

• OpenDaylight Controller. (VTN features must be installed)

• OpenStack Control Node.

• OpenStack Compute Node.

• OpenFlow Switch like mininet(Not Mandatory).

The VTN features support multiple OpenStack nodes. You can deploy multiple OpenStack Compute Nodes. In
management plane, OpenDaylight Controller, OpenStack nodes and OpenFlow switches should communicate with
each other. In data plane, Open vSwitches running in OpenStack nodes should communicate with each other through
a physical or logical OpenFlow switches. The core OpenFlow switches are not mandatory. Therefore, you can directly
connect to the Open vSwitch’s.

Fig. 1.118: Openstack Overview

Sample Configuration

Below steps depicts the configuration of single OpenStack Control node and OpenStack Compute node setup. Our test
setup is as follows

Server Preparation

1.3. OpenDaylight User Guide 1077

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.119: LAB Setup

1078 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• Install Ubuntu 14.04 LTS in two servers (OpenStack Control node and Compute node respectively)

• While installing, Ubuntu mandates creation of a User, we created the user “stack”(We will use the same user for
running devstack)

• Proceed with the below mentioned User Settings and Network Settings in both the Control and Compute nodes.

User Settings for devstack - Login to both servers - Disable Ubuntu Firewall

sudo ufw disable

• Install the below packages (optional, provides ifconfig and route coammnds, handy for debugging!!)

sudo apt-get install net-tools

• Edit sudo vim /etc/sudoers and add an entry as follows

stack ALL=(ALL) NOPASSWD: ALL

Network Settings - Checked the output of ifconfig -a, two interfaces were listed eth0 and eth1 as indicated in the
image above. - We had connected eth0 interface to the Network where OpenDaylight is reachable. - eth1 interface in
both servers were connected to a different network to act as data plane for the VM’s created using the OpenStack. -
Manually edited the file : sudo vim /etc/network/interfaces and made entries as follows

stack@ubuntu-devstack:~/devstack$ cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).
The loop-back network interface
auto lo
iface lo inet loopback
The primary network interface
auto eth0
iface eth0 inet static

address <IP_ADDRESS_TO_REACH_ODL>
netmask <NET_MASK>
broadcast <BROADCAST_IP_ADDRESS>
gateway <GATEWAY_IP_ADDRESS>

auto eth1
iface eth1 inet static

address <IP_ADDRESS_UNIQ>
netmask <NETMASK>

Note: Please ensure that the eth0 interface is the default route and it is able to reach the ODL_IP_ADDRESS NOTE:
The entries for eth1 are not mandatory, If not set, we may have to manually do “ifup eth1” after the stacking is complete
to activate the interface

Finalize the user and network settings - Please reboot both nodes after the user and network settings to have the
network settings applied to the network - Login again and check the output of ifconfig to ensure that both interfaces
are listed

OpenDaylight Settings and Execution

VTN Configuration for OpenStack Integration:

• VTN uses the configuration parameters from “90-vtn-neutron.xml” file for the OpenStack integration.

1.3. OpenDaylight User Guide 1079

OpenDaylight Documentation Documentation, Release Carbon

• These values will be set for the OpenvSwitch, in all the participating OpenStack nodes.

• A configuration file “90-vtn-neutron.xml” will be generated automatically by following the below steps,

• Download the latest Boron karaf distribution from the below link,

http://www.opendaylight.org/software/downloads

• cd “distribution-karaf-0.5.0-Boron” and run karaf by using the following command ”./bin/karaf”.

• Install the below feature to generate “90-vtn-neutron.xml”

feature:install odl-vtn-manager-neutron

• Logout from the karaf console and Check “90-vtn-neutron.xml” file from the following path “distribution-karaf-
0.5.0-Boron/etc/opendaylight/karaf/”.

• The contents of “90-vtn-neutron.xml” should be as follows:

bridgename=br-int portname=eth1 protocols=OpenFlow13 failmode=secure

• The values of the configuration parameters must be changed based on the user environment.

• Especially, “portname” should be carefully configured, because if the value is wrong, OpenDaylight fails to
forward packets.

• Other parameters works fine as is for general use cases.

– bridgename

* The name of the bridge in Open vSwitch, that will be created by OpenDaylight Controller.

* It must be “br-int”.

– portname

* The name of the port that will be created in the vbridge in Open vSwitch.

* This must be the same name of the interface of OpenStack Nodes which is used for interconnecting
OpenStack Nodes in data plane.(in our case:eth1)

* By default, if 90-vtn-neutron.xml is not created, VTN uses ens33 as portname.

– protocols

* OpenFlow protocol through which OpenFlow Switch and Controller communicate.

* The values can be OpenFlow13 or OpenFlow10.

– failmode

* The value can be “standalone” or “secure”.

* Please use “secure” for general use cases.

Start ODL Controller

• Please refer to the Installation Pages to run ODL with VTN Feature enabled.

• After running ODL Controller, please ensure ODL Controller listens to the ports:6633,6653, 6640 and 8080

• Please allow the ports in firewall for the devstack to be able to communicate with ODL Controller.

Note:

1080 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• 6633/6653 - OpenFlow Ports

• 6640 - OVS Manager Port

• 8080 - Port for REST API

Devstack Setup

Get Devstack (All nodes)

• Install git application using

– sudo apt-get install git

• Get devstack

– git clone https://git.openstack.org/openstack-dev/devstack;

• Switch to stable/Juno Version branch

– cd devstack

git checkout stable/juno

Note: If you want to use stable/kilo Version branch, Please execute the below command in devstack folder

git checkout stable/kilo

Note: If you want to use stable/liberty Version branch, Please execute the below command in devstack folder

git checkout stable/liberty

Stack Control Node

• local.conf:

• cd devstack in the controller node

• Copy the contents of local.conf for juno (devstack control node) from https://wiki.opendaylight.org/view/
OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack and save it as “local.conf” in the “devstack”.

• Copy the contents of local.conf for kilo and liberty (devstack control node) from https://wiki.opendaylight.org/
view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack_post_juno_versions and save it as “lo-
cal.conf” in the “devstack”.

• Please modify the IP Address values as required.

• Stack the node

./stack.sh

1.3. OpenDaylight User Guide 1081

https://git.openstack.org/openstack-dev/devstack
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack_post_juno_versions
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack_post_juno_versions

OpenDaylight Documentation Documentation, Release Carbon

Verify Control Node stacking

• stack.sh prints out Horizon is now available at http://<CONTROL_NODE_IP_ADDRESS>:8080/

• Execute the command sudo ovs-vsctl show in the control node terminal and verify if the bridge br-int is created.

• Typical output of the ovs-vsctl show is indicated below:

e232bbd5-096b-48a3-a28d-ce4a492d4b4f
Manager "tcp:192.168.64.73:6640"

is_connected: true
Bridge br-int

Controller "tcp:192.168.64.73:6633"
is_connected: true

fail_mode: secure
Port "eth1"

Interface "eth1"
ovs_version: "2.0.2"

Stack Compute Node

• local.conf:

• cd devstack in the controller node

• Copy the contents of local.conf for juno (devstack compute node) from https://wiki.opendaylight.org/view/
OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack and save it as “local.conf” in the “devstack”.

• Copy the contents of local.conf file for kilo and liberty (devstack compute node) from https://wiki.opendaylight.
org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack_post_juno_versions and save it as
“local.conf” in the “devstack”.

• Please modify the IP Address values as required.

• Stack the node

./stack.sh

Verify Compute Node Stacking

• stack.sh prints out This is your host ip: <COMPUTE_NODE_IP_ADDRESS>

• Execute the command sudo ovs-vsctl show in the control node terminal and verify if the bridge br-int is created.

• The output of the ovs-vsctl show will be similar to the one seen in control node.

Additional Verifications

• Please visit the OpenDaylight DLUX GUI after stacking all the nodes, http:
//<ODL_IP_ADDRESS>:8181/index.html. The switches, topology and the ports that are currently read
can be validated.

http://<controller-ip>:8181/index.html

1082 Chapter 1. Content for OpenDaylight Users

http:/
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack_post_juno_versions
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack_post_juno_versions
http:/
http:/

OpenDaylight Documentation Documentation, Release Carbon

Tip: If the interconnected between the Open vSwitch is not seen, Please bring up the interface for the dataplane
manually using the below comamnd

ifup <interface_name>

• Please Accept Promiscuous mode in the networks involving the interconnect.

Create VM from Devstack Horizon GUI

• Login to http://<CONTROL_NODE_IP>:8080/ to check the horizon GUI.

Fig. 1.120: Horizon GUI

Enter the value for User Name as admin and enter the value for Password as labstack.

• We should first ensure both the hypervisors(control node and compute node) are mapped under hypervisors by
clicking on Hpervisors tab.

• Create a new Network from Horizon GUI.

• Click on Networks Tab.

1.3. OpenDaylight User Guide 1083

http:/

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.121: Hypervisors

1084 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• click on the Create Network button.

Fig. 1.122: Create Network

• A popup screen will appear.

• Enter network name and click Next button.

• Create a sub network by giving Network Address and click Next button .

• Specify the additional details for subnetwork (please refer the image for your reference).

• Click Create button

• Create VM Instance

• Navigate to Instances tab in the GUI.

• Click on Launch Instances button.

• Click on Details tab to enter the VM details.For this demo we are creating Ten VM’s(instances).

• In the Networking tab, we must select the network,for this we need to drag and drop the Available networks to
Selected Networks (i.e.,) Drag vtn1 we created from Available networks to Selected Networks and click Launch
to create the instances.

• Ten VM’s will be created.

1.3. OpenDaylight User Guide 1085

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.123: Step 1

1086 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.124: Step 2

1.3. OpenDaylight User Guide 1087

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.125: Step 3

1088 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.126: Instance Creation

1.3. OpenDaylight User Guide 1089

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.127: Launch Instance

1090 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.128: Launch Network

1.3. OpenDaylight User Guide 1091

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.129: Load All Instances

1092 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• Click on any VM displayed in the Instances tab and click the Console tab.

Fig. 1.130: Instance Console

• Login to the VM console and verify with a ping command.

Verification of Control and Compute Node after VM creation

• Every time a new VM is created, more interfaces are added to the br-int bridge in Open vSwitch.

• Use sudo ovs-vsctl show to list the number of interfaces added.

• Please visit the DLUX GUI to list the new nodes in every switch.

Getting started with DLUX

Ensure that you have created a topology and enabled MD-SAL feature in the Karaf distribution before you use DLUX
for network management.

1.3. OpenDaylight User Guide 1093

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.131: Ping

1094 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Logging In

To log in to DLUX, after installing the application: * Open a browser and enter the login URL. If you have installed
DLUX as a stand-alone, then the login URL is http://localhost:9000/DLUX/index.html. However if you have deployed
DLUX with Karaf, then the login URL is http://<your IP>:8181/dlux/index.html. * Login to the application with user
ID and password credentials as admin. NOTE:admin is the only user type available for DLUX in this release.

Working with DLUX

To get a complete DLUX feature list, install restconf, odl l2 switch, and switch while you start the DLUX distribution.

Fig. 1.132: DLUX_GUI

Note: DLUX enables only those modules, whose APIs are responding. If you enable just the MD-SAL in beginning
and then start dlux, only MD-SAL related tabs will be visible. While using the GUI if you enable AD-SAL karaf
features, those tabs will appear automatically.

Viewing Network Statistics

The Nodes module on the left pane enables you to view the network statistics and port information for the switches in
the network. * To use the Nodes module: ** Select Nodeson the left pane.

The right pane displays atable that lists all the nodes, node connectors and the
→˓statistics.

• Enter a node ID in the Search Nodes tab to search by node connectors.

1.3. OpenDaylight User Guide 1095

http://localhost:9000/DLUX/index.html
http:/

OpenDaylight Documentation Documentation, Release Carbon

• Click on the Node Connector number to view details such as port ID, port name, number of ports per switch,
MAC Address, and so on.

• Click Flows in the Statistics column to view Flow Table Statistics for the particular node like table ID, packet
match, active flows and so on.

• Click Node Connectors to view Node Connector Statistics for the particular node ID.

Viewing Network Topology

To view network topology: * Select Topology on the left pane. You will view the graphical representation on the right
pane.

In the diagram
blue boxes represent the switches,black represents the hosts available, and lines
→˓represents how switches are connected.

Note: DLUX UI does not provide ability to add topology information. The Topology should be created using an open
flow plugin. Controller stores this information in the database and displays on the DLUX page, when the you connect
to the controller using OpenFlow.

Fig. 1.133: Topology

OpenStack PackStack Installation Steps

• Please go through the below wiki page for OpenStack PackStack installation steps.

– https://wiki.opendaylight.org/view/Release/Lithium/VTN/User_Guide/Openstack_Packstack_Support

1096 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Release/Lithium/VTN/User_Guide/Openstack_Packstack_Support

OpenDaylight Documentation Documentation, Release Carbon

References

• http://devstack.org/guides/multinode-lab.html

• https://wiki.opendaylight.org/view/File:Vtn_demo_hackfest_2014_march.pdf

VTN Manager Usage Examples

How to provision virtual L2 Network

Overview

This page explains how to provision virtual L2 network using VTN Manager. This page targets Boron release, so the
procedure described here does not work in other releases.

Fig. 1.134: Virtual L2 network for host1 and host3

Requirements

Mininet

• To provision OpenFlow switches, this page uses Mininet. Mininet details and set-up can be referred at the
following page: https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

• Start Mininet and create three switches(s1, s2, and s3) and four hosts(h1, h2, h3, and h4) in it.

1.3. OpenDaylight User Guide 1097

http://devstack.org/guides/multinode-lab.html
https://wiki.opendaylight.org/view/File:Vtn_demo_hackfest_2014_march.pdf
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

OpenDaylight Documentation Documentation, Release Carbon

mininet@mininet-vm:~$ sudo mn --controller=remote,ip=192.168.0.100 --topo tree,2

Note: Replace “192.168.0.100” with the IP address of OpenDaylight controller based on your environment.

• you can check the topology that you have created by executing “net” command in the Mininet console.

mininet> net
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2

• In this guide, you will provision the virtual L2 network to establish communication between h1 and h3.

Configuration

To provision the virtual L2 network for the two hosts (h1 and h3), execute REST API provided by VTN Manager as
follows. It uses curl command to call the REST API.

• Create a virtual tenant named vtn1 by executing the update-vtn RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1
→˓"}}'

• Create a virtual bridge named vbr1 in the tenant vtn1 by executing the update-vbridge RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-
→˓name":"vtn1", "bridge-name":"vbr1"}}'

• Create two interfaces into the virtual bridge by executing the update-vinterface RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2"}}'

• Configure two mappings on the created interfaces by executing the set-port-map RPC.

– The interface if1 of the virtual bridge will be mapped to the port “s2-eth1” of the switch “openflow:2” of
the Mininet.

* The h1 is connected to the port “s2-eth1”.

– The interface if2 of the virtual bridge will be mapped to the port “s3-eth1” of the switch “openflow:3” of
the Mininet.

* The h3 is connected to the port “s3-eth1”.

1098 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map

OpenDaylight Documentation Documentation, Release Carbon

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-
→˓name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1", "node":"openflow:2",
→˓"port-name":"s2-eth1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-
→˓name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2", "node":"openflow:3",
→˓"port-name":"s3-eth1"}}'

Verification

• Please execute ping from h1 to h3 to verify if the virtual L2 network for h1 and h3 is provisioned successfully.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=243 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=64 time=0.341 ms
64 bytes from 10.0.0.3: icmp_seq=3 ttl=64 time=0.078 ms
64 bytes from 10.0.0.3: icmp_seq=4 ttl=64 time=0.079 ms

• You can also verify the configuration by executing the following REST API. It shows all configuration in VTN
Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://
→˓localhost:8181/restconf/operational/vtn:vtns/

• The result of the command should be like this.

{
"vtns": {
"vtn": [
{

"name": "vtn1",
"vtenant-config": {
"idle-timeout": 300,
"hard-timeout": 0

},
"vbridge": [
{
"name": "vbr1",
"bridge-status": {

"state": "UP",
"path-faults": 0

},
"vbridge-config": {

"age-interval": 600
},
"vinterface": [
{

"name": "if2",
"vinterface-status": {
"entity-state": "UP",
"state": "UP",
"mapped-port": "openflow:3:3"

},

1.3. OpenDaylight User Guide 1099

OpenDaylight Documentation Documentation, Release Carbon

"vinterface-config": {
"enabled": true

},
"port-map-config": {
"vlan-id": 0,
"port-name": "s3-eth1",
"node": "openflow:3"

}
},
{

"name": "if1",
"vinterface-status": {
"entity-state": "UP",
"state": "UP",
"mapped-port": "openflow:2:1"

},
"vinterface-config": {
"enabled": true

},
"port-map-config": {
"vlan-id": 0,
"port-name": "s2-eth1",
"node": "openflow:2"

}
}
]

}
]

}
]

}
}

Cleaning Up

• You can delete the virtual tenant vtn1 by executing the remove-vtn RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1
→˓"}}'

How To Test Vlan-Map In Mininet Environment

Overview

This page explains how to test Vlan-map in a multi host scenario using mininet. This page targets Boron release, so
the procedure described here does not work in other releases.

Requirements

Save the mininet script given below as vlan_vtn_test.py and run the mininet script in the mininet environment where
Mininet is installed.

1100 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.135: Example that demonstrates vlanmap testing in Mininet Environment

Mininet Script

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_
hosts_in_different_vlan

• Run the mininet script

sudo mn --controller=remote,ip=192.168.64.13 --custom vlan_vtn_test.py --topo mytopo

Note: Replace “192.168.64.13” with the IP address of OpenDaylight controller based on your environment.

• You can check the topology that you have created by executing “net” command in the Mininet console.

mininet> net
h1 h1-eth0.200:s1-eth1
h2 h2-eth0.300:s2-eth2
h3 h3-eth0.200:s2-eth3
h4 h4-eth0.300:s2-eth4
h5 h5-eth0.200:s3-eth2
h6 h6-eth0.300:s3-eth3
s1 lo: s1-eth1:h1-eth0.200 s1-eth2:s2-eth1 s1-eth3:s3-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0.300 s2-eth3:h3-eth0.200 s2-eth4:h4-eth0.300
s3 lo: s3-eth1:s1-eth3 s3-eth2:h5-eth0.200 s3-eth3:h6-eth0.300
c0

Configuration

To test vlan-map, execute REST API provided by VTN Manager as follows.

• Create a virtual tenant named vtn1 by executing the update-vtn RPC.

1.3. OpenDaylight User Guide 1101

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_hosts_in_different_vlan
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_hosts_in_different_vlan
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn

OpenDaylight Documentation Documentation, Release Carbon

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1
→˓"}}'

• Create a virtual bridge named vbr1 in the tenant vtn1 by executing the update-vbridge RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-
→˓name":"vtn1","bridge-name":"vbr1"}}'

• Configure a vlan map with vlanid 200 for vBridge vbr1 by executing the add-vlan-map RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vlan-map:add-vlan-map -d '{"input":{"vlan-id
→˓":200,"tenant-name":"vtn1","bridge-name":"vbr1"}}'

• Create a virtual bridge named vbr2 in the tenant vtn1 by executing the update-vbridge RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-
→˓name":"vtn1","bridge-name":"vbr2"}}'

• Configure a vlan map with vlanid 300 for vBridge vbr2 by executing the add-vlan-map RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vlan-map:add-vlan-map -d '{"input":{"vlan-id
→˓":300,"tenant-name":"vtn1","bridge-name":"vbr2"}}'

Verification

• Please execute pingall in mininet environment to view the host reachability.

mininet> pingall
Ping: testing ping reachability
h1 -> X h3 X h5 X
h2 -> X X h4 X h6
h3 -> h1 X X h5 X
h4 -> X h2 X X h6
h5 -> h1 X h3 X X
h6 -> X h2 X h4 X

• You can also verify the configuration by executing the following REST API. It shows all configurations in VTN
Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://
→˓localhost:8181/restconf/operational/vtn:vtns

• The result of the command should be like this.

{
"vtns": {
"vtn": [
{

"name": "vtn1",
"vtenant-config": {
"hard-timeout": 0,

1102 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vlan-map.html#add-vlan-map
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vlan-map.html#add-vlan-map

OpenDaylight Documentation Documentation, Release Carbon

"idle-timeout": 300,
"description": "creating vtn"

},
"vbridge": [
{
"name": "vbr2",
"vbridge-config": {

"age-interval": 600,
"description": "creating vbr2"

},
"bridge-status": {

"state": "UP",
"path-faults": 0

},
"vlan-map": [
{

"map-id": "ANY.300",
"vlan-map-config": {
"vlan-id": 300

},
"vlan-map-status": {
"active": true

}
}
]

},
{
"name": "vbr1",
"vbridge-config": {

"age-interval": 600,
"description": "creating vbr1"

},
"bridge-status": {

"state": "UP",
"path-faults": 0

},
"vlan-map": [
{

"map-id": "ANY.200",
"vlan-map-config": {
"vlan-id": 200

},
"vlan-map-status": {
"active": true

}
}
]

}
]

}
]

}
}

1.3. OpenDaylight User Guide 1103

OpenDaylight Documentation Documentation, Release Carbon

Cleaning Up

• You can delete the virtual tenant vtn1 by executing the remove-vtn RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1
→˓"}}'

How To Configure Service Function Chaining using VTN Manager

Overview

This page explains how to configure VTN Manager for Service Chaining. This page targets Boron release, so the
procedure described here does not work in other releases.

Fig. 1.136: Service Chaining With One Service

Requirements

• Please refer to the Installation Pages to run ODL with VTN Feature enabled.

• Please ensure Bridge-Utils package is installed in mininet environment before running the mininet script.

• To install Bridge-Utils package run sudo apt-get install bridge-utils (assuming Ubuntu is used to run mininet, If
not then this is not required).

• Save the mininet script given below as topo_handson.py and run the mininet script in the mininet environment
where Mininet is installed.

1104 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn
https://wiki.opendaylight.org/view/VTN:Boron:Installation_Guide

OpenDaylight Documentation Documentation, Release Carbon

Mininet Script

• Script for emulating network with multiple hosts.

• Before executing the mininet script, please confirm Controller is up and running.

• Run the mininet script.

• Replace <path> and <Controller IP> based on your environment

sudo mn --controller=remote,ip=<Controller IP> --custom <path>\topo_handson.py --topo
→˓mytopo2

mininet> net
h11 h11-eth0:s1-eth1
h12 h12-eth0:s1-eth2
h21 h21-eth0:s2-eth1
h22 h22-eth0:s2-eth2
h23 h23-eth0:s2-eth3
srvc1 srvc1-eth0:s3-eth3 srvc1-eth1:s4-eth3
srvc2 srvc2-eth0:s3-eth4 srvc2-eth1:s4-eth4
s1 lo: s1-eth1:h11-eth0 s1-eth2:h12-eth0 s1-eth3:s2-eth4 s1-eth4:s3-eth2
s2 lo: s2-eth1:h21-eth0 s2-eth2:h22-eth0 s2-eth3:h23-eth0 s2-eth4:s1-eth3 s2-eth5:s4-
→˓eth1
s3 lo: s3-eth1:s4-eth2 s3-eth2:s1-eth4 s3-eth3:srvc1-eth0 s3-eth4:srvc2-eth0
s4 lo: s4-eth1:s2-eth5 s4-eth2:s3-eth1 s4-eth3:srvc1-eth1 s4-eth4:srvc2-eth1

Configurations

Mininet

• Please follow the below steps to configure the network in mininet as in the below image:

Configure service nodes

• Please execute the following commands in the mininet console where mininet script is executed.

mininet> srvc1 ip addr del 10.0.0.6/8 dev srvc1-eth0
mininet> srvc1 brctl addbr br0
mininet> srvc1 brctl addif br0 srvc1-eth0
mininet> srvc1 brctl addif br0 srvc1-eth1
mininet> srvc1 ifconfig br0 up
mininet> srvc1 tc qdisc add dev srvc1-eth1 root netem delay 200ms
mininet> srvc2 ip addr del 10.0.0.7/8 dev srvc2-eth0
mininet> srvc2 brctl addbr br0
mininet> srvc2 brctl addif br0 srvc2-eth0
mininet> srvc2 brctl addif br0 srvc2-eth1
mininet> srvc2 ifconfig br0 up
mininet> srvc2 tc qdisc add dev srvc2-eth1 root netem delay 300ms

1.3. OpenDaylight User Guide 1105

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.137: Mininet Configuration

Controller

Multi-Tenancy

• Please execute the below commands to configure the network topology in the controller as in the below image:

Please execute the below commands in controller

Note: The below commands are for the difference in behavior of Manager in Boron topology. The Link below has
the details for this bug: https://bugs.opendaylight.org/show_bug.cgi?id=3818.

curl --user admin:admin -H 'content-type: application/json' -H 'ipaddr:127.0.0.1' -X
→˓PUT http://localhost:8181/restconf/config/vtn-static-topology:vtn-static-topology/
→˓static-edge-ports -d '{"static-edge-ports": {"static-edge-port": [{"port":
→˓"openflow:3:3"}, {"port": "openflow:3:4"}, {"port": "openflow:4:3"}, {"port":
→˓"openflow:4:4"}]}}'

• Create a virtual tenant named vtn1 by executing the update-vtn RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1
→˓","update-mode":"CREATE","operation":"SET","description":"creating vtn","idle-
→˓timeout":300,"hard-timeout":0}}'

• Create a virtual bridge named vbr1 in the tenant vtn1 by executing the update-vbridge RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"update-
→˓mode":"CREATE","operation":"SET","description":"creating vbr","tenant-name":"vtn1",
→˓"bridge-name":"vbr1"}}'

1106 Chapter 1. Content for OpenDaylight Users

https://bugs.opendaylight.org/show_bug.cgi?id=3818
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.138: Tenant2

• Create interface if1 into the virtual bridge vbr1 by executing the update-vinterface RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","description":"Creating vbrif1 interface",
→˓"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1"}}'

• Configure port mapping on the interface by executing the set-port-map RPC.

– The interface if1 of the virtual bridge will be mapped to the port “s1-eth2” of the switch “openflow:1” of
the Mininet.

* The h12 is connected to the port “s1-eth2”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"vlan-id
→˓":0,"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1","node":
→˓"openflow:1","port-name":"s1-eth2"}}'

• Create interface if2 into the virtual bridge vbr1 by executing the update-vinterface RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","description":"Creating vbrif2 interface",
→˓"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2"}}'

• Configure port mapping on the interface by executing the set-port-map RPC.

– The interface if2 of the virtual bridge will be mapped to the port “s2-eth2” of the switch “openflow:2” of
the Mininet.

* The h22 is connected to the port “s2-eth2”.

1.3. OpenDaylight User Guide 1107

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map

OpenDaylight Documentation Documentation, Release Carbon

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"vlan-id
→˓":0,"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2","node":
→˓"openflow:2","port-name":"s2-eth2"}}'

• Create interface if3 into the virtual bridge vbr1 by executing the update-vinterface RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","description":"Creating vbrif3 interface",
→˓"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if3"}}'

• Configure port mapping on the interfaces by executing the set-port-map RPC.

– The interface if3 of the virtual bridge will be mapped to the port “s2-eth3” of the switch “openflow:2” of
the Mininet.

* The h23 is connected to the port “s2-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"vlan-id
→˓":0,"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if3","node":
→˓"openflow:2","port-name":"s2-eth3"}}'

Traffic filtering

• Create flowcondition named cond_1 by executing the set-flow-condition RPC.

– For option source and destination-network, get inet address of host h12(src) and h22(dst) from mininet.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input
→˓":{"operation":"SET","present":"false","name":"cond_1","vtn-flow-match":[{"index":1,
→˓"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.2/32","destination-
→˓network":"10.0.0.4/32"}}]}}'

• Flow filter demonstration with DROP action-type. Create Flowfilter in VBR Interface if1 by executing the
set-flow-filter RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{
→˓"output":"false","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1",
→˓"vtn-flow-filter":[{"condition":"cond_1","index":10,"vtn-drop-filter":{}}]}}'

Service Chaining

With One Service

• Please execute the below commands to configure the network topology which sends some specific traffic via a
single service(External device) in the controller as in the below image:

• Create a virtual terminal named vt_srvc1_1 in the tenant vtn1 by executing the update-vterminal RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_
→˓srvc1_1","description":"Creating vterminal"}}'

1108 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.139: Service Chaining With One Service LLD

• Create interface IF into the virtual terminal vt_srvc1_1 by executing the update-vinterface RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF",
→˓"enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc1_1","interface-name":
→˓"IF"}}'

• Configure port mapping on the interfaces by executing the set-port-map RPC.

– The interface IF of the virtual terminal will be mapped to the port “s3-eth3” of the switch “openflow:3” of
the Mininet.

* The h12 is connected to the port “s3-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-
→˓name":"vtn1","terminal-name":"vt_srvc1_1","interface-name":"IF","node":"openflow:3",
→˓"port-name":"s3-eth3"}}'

• Create a virtual terminal named vt_srvc1_2 in the tenant vtn1 by executing the update-vterminal RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_
→˓srvc1_2","description":"Creating vterminal"}}'

• Create interface IF into the virtual terminal vt_srvc1_2 by executing the update-vinterface RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF",
→˓"enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":
→˓"IF"}}'

1.3. OpenDaylight User Guide 1109

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface

OpenDaylight Documentation Documentation, Release Carbon

• Configure port mapping on the interfaces by executing the set-port-map RPC.

– The interface IF of the virtual terminal will be mapped to the port “s4-eth3” of the switch “openflow:4” of
the Mininet.

* The h22 is connected to the port “s4-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-
→˓name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":"IF","node":"openflow:4",
→˓"port-name":"s4-eth3"}}'

• Create flowcondition named cond_1 by executing the set-flow-condition RPC.

– For option source and destination-network, get inet address of host h12(src) and h22(dst) from mininet.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input
→˓":{"operation":"SET","present":"false","name":"cond_1","vtn-flow-match":[{"index":1,
→˓"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.2/32","destination-
→˓network":"10.0.0.4/32"}}]}}'

• Create flowcondition named cond_any by executing the set-flow-condition RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input
→˓":{"operation":"SET","present":"false","name":"cond_any","vtn-flow-match":[{"index
→˓":1}]}}'

• Flow filter demonstration with redirect action-type. Create Flowfilter in virtual terminal vt_srvc1_2 interface IF
by executing the set-flow-filter RPC.

– Flowfilter redirects vt_srvc1_2 to bridge1-IF2

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{
→˓"output":"false","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":
→˓"IF","vtn-flow-filter":[{"condition":"cond_any","index":10,"vtn-redirect-filter":{
→˓"redirect-destination":{"bridge-name":"vbr1","interface-name":"if2"},"output":"true
→˓"}}]}}'

• Flow filter demonstration with redirect action-type. Create Flowfilter in vbridge vbr1 interface if1 by executing
the set-flow-filter RPC.

– Flow filter redirects Bridge1-IF1 to vt_srvc1_1

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{
→˓"output":"false","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1",
→˓"vtn-flow-filter":[{"condition":"cond_1","index":10,"vtn-redirect-filter":{
→˓"redirect-destination":{"terminal-name":"vt_srvc1_1","interface-name":"IF"},"output
→˓":"true"}}]}}'

Verification

• Ping host12 to host22 to view the host rechability, a delay of 200ms will be taken to reach host22 as below.

1110 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.140: Service Chaining With One Service

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=35 ttl=64 time=209 ms
64 bytes from 10.0.0.4: icmp_seq=36 ttl=64 time=201 ms
64 bytes from 10.0.0.4: icmp_seq=37 ttl=64 time=200 ms
64 bytes from 10.0.0.4: icmp_seq=38 ttl=64 time=200 ms

With two services

• Please execute the below commands to configure the network topology which sends some specific traffic via
two services(External device) in the controller as in the below image.

Fig. 1.141: Service Chaining With Two Services LLD

1.3. OpenDaylight User Guide 1111

OpenDaylight Documentation Documentation, Release Carbon

• Create a virtual terminal named vt_srvc2_1 in the tenant vtn1 by executing the update-vterminal RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_
→˓srvc2_1","description":"Creating vterminal"}}'

• Create interface IF into the virtual terminal vt_srvc2_1 by executing the update-vinterface RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF",
→˓"enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc2_1","interface-name":
→˓"IF"}}'

• Configure port mapping on the interfaces by executing the set-port-map RPC.

– The interface IF of the virtual terminal will be mapped to the port “s3-eth4” of the switch “openflow:3” of
the Mininet.

* The host h12 is connected to the port “s3-eth4”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-
→˓name":"vtn1","terminal-name":"vt_srvc2_1","interface-name":"IF","node":"openflow:3",
→˓"port-name":"s3-eth4"}}'

• Create a virtual terminal named vt_srvc2_2 in the tenant vtn1 by executing the update-vterminal RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_
→˓srvc2_2","description":"Creating vterminal"}}'

• Create interfaces IF into the virtual terminal vt_srvc2_2 by executing the update-vinterface RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF",
→˓"enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc2_2","interface-name":
→˓"IF"}}'

• Configure port mapping on the interfaces by executing the set-port-map RPC.

– The interface IF of the virtual terminal will be mapped to the port “s4-eth4” of the switch “openflow:4” of
the mininet.

* The host h22 is connected to the port “s4-eth4”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-
→˓name":"vtn1","terminal-name":"vt_srvc2_2","interface-name":"IF","node":"openflow:4",
→˓"port-name":"s4-eth4"}}'

• Flow filter demonstration with redirect action-type. Create Flowfilter in virtual terminal vt_srvc2_2 interface IF
by executing the set-flow-filter RPC.

– Flow filter redirects vt_srvc2_2 to Bridge1-IF2.

1112 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter

OpenDaylight Documentation Documentation, Release Carbon

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{
→˓"output":"false","tenant-name":"vtn1","terminal-name":"vt_srvc2_2","interface-name":
→˓"IF","vtn-flow-filter":[{"condition":"cond_any","index":10,"vtn-redirect-filter":{
→˓"redirect-destination":{"bridge-name":"vbr1","interface-name":"if2"},"output":"true
→˓"}}]}}'

• Flow filter demonstration with redirect action-type. Create Flowfilter in virtual terminal vt_srvc2_2 interface IF
by executing the set-flow-filter RPC.

– Flow filter redirects vt_srvc1_2 to vt_srvc2_1.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{
→˓"output":"false","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":
→˓"IF","vtn-flow-filter":[{"condition":"cond_any","index":10,"vtn-redirect-filter":{
→˓"redirect-destination":{"terminal-name":"vt_srvc2_1","interface-name":"IF"},"output
→˓":"true"}}]}}'

Verification

Fig. 1.142: Service Chaining With Two Service

• Ping host12 to host22 to view the host rechability, a delay of 500ms will be taken to reach host22 as below.

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=512 ms
64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=501 ms
64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=500 ms
64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=500 ms

• You can verify the configuration by executing the following REST API. It shows all configuration in VTN
Manager.

1.3. OpenDaylight User Guide 1113

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter

OpenDaylight Documentation Documentation, Release Carbon

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://
→˓localhost:8181/restconf/operational/vtn:vtns

{
"vtn": [
{
"name": "vtn1",

"vtenant-config": {
"hard-timeout": 0,
"idle-timeout": 300,
"description": "creating vtn"

},
"vbridge": [
{

"name": "vbr1",
"vbridge-config": {
"age-interval": 600,
"description": "creating vbr"

},
"bridge-status": {
"state": "UP",
"path-faults": 0

},
"vinterface": [
{
"name": "if1",
"vinterface-status": {

"mapped-port": "openflow:1:2",
"state": "UP",
"entity-state": "UP"

},
"port-map-config": {

"vlan-id": 0,
"node": "openflow:1",
"port-name": "s1-eth2"

},
"vinterface-config": {

"description": "Creating vbrif1 interface",
"enabled": true

},
"vinterface-input-filter": {

"vtn-flow-filter": [
{
"index": 10,
"condition": "cond_1",
"vtn-redirect-filter": {
"output": true,
"redirect-destination": {
"terminal-name": "vt_srvc1_1",
"interface-name": "IF"

}
}

}
]

}
},
{
"name": "if2",

1114 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"vinterface-status": {
"mapped-port": "openflow:2:2",
"state": "UP",
"entity-state": "UP"

},
"port-map-config": {

"vlan-id": 0,
"node": "openflow:2",
"port-name": "s2-eth2"

},
"vinterface-config": {

"description": "Creating vbrif2 interface",
"enabled": true

}
},
{
"name": "if3",
"vinterface-status": {

"mapped-port": "openflow:2:3",
"state": "UP",
"entity-state": "UP"

},
"port-map-config": {

"vlan-id": 0,
"node": "openflow:2",
"port-name": "s2-eth3"

},
"vinterface-config": {

"description": "Creating vbrif3 interface",
"enabled": true

}
}
]

}
],

"vterminal": [
{

"name": "vt_srvc2_2",
"bridge-status": {
"state": "UP",
"path-faults": 0

},
"vinterface": [
{
"name": "IF",
"vinterface-status": {

"mapped-port": "openflow:4:4",
"state": "UP",
"entity-state": "UP"

},
"port-map-config": {

"vlan-id": 0,
"node": "openflow:4",
"port-name": "s4-eth4"

},
"vinterface-config": {

"description": "Creating vterminal IF",
"enabled": true

1.3. OpenDaylight User Guide 1115

OpenDaylight Documentation Documentation, Release Carbon

},
"vinterface-input-filter": {

"vtn-flow-filter": [
{
"index": 10,
"condition": "cond_any",
"vtn-redirect-filter": {
"output": true,
"redirect-destination": {
"bridge-name": "vbr1",
"interface-name": "if2"

}
}

}
]

}
}
],
"vterminal-config": {

"description": "Creating vterminal"
}

},
{

"name": "vt_srvc1_1",
"bridge-status": {
"state": "UP",
"path-faults": 0

},
"vinterface": [
{
"name": "IF",
"vinterface-status": {
"mapped-port": "openflow:3:3",
"state": "UP",
"entity-state": "UP"

},
"port-map-config": {

"vlan-id": 0,
"node": "openflow:3",
"port-name": "s3-eth3"

},
"vinterface-config": {

"description": "Creating vterminal IF",
"enabled": true

}
}
],
"vterminal-config": {

"description": "Creating vterminal"
}

},
{

"name": "vt_srvc1_2",
"bridge-status": {
"state": "UP",
"path-faults": 0

},
"vinterface": [

1116 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

{
"name": "IF",
"vinterface-status": {
"mapped-port": "openflow:4:3",
"state": "UP",
"entity-state": "UP"

},
"port-map-config": {

"vlan-id": 0,
"node": "openflow:4",
"port-name": "s4-eth3"

},
"vinterface-config": {

"description": "Creating vterminal IF",
"enabled": true

},
"vinterface-input-filter": {

"vtn-flow-filter": [
{
"index": 10,
"condition": "cond_any",
"vtn-redirect-filter": {
"output": true,
"redirect-destination": {
"terminal-name": "vt_srvc2_1",
"interface-name": "IF"

}
}

}
]

}
}
],
"vterminal-config": {

"description": "Creating vterminal"
}

},
{

"name": "vt_srvc2_1",
"bridge-status": {
"state": "UP",
"path-faults": 0

},
"vinterface": [
{
"name": "IF",
"vinterface-status": {
"mapped-port": "openflow:3:4",
"state": "UP",
"entity-state": "UP"

},
"port-map-config": {

"vlan-id": 0,
"node": "openflow:3",
"port-name": "s3-eth4"

},
"vinterface-config": {

"description": "Creating vterminal IF",

1.3. OpenDaylight User Guide 1117

OpenDaylight Documentation Documentation, Release Carbon

"enabled": true
}

}
],
"vterminal-config": {

"description": "Creating vterminal"
}

}
]

}
]

}

Cleaning Up

• To clean up both VTN and flowconditions.

• You can delete the virtual tenant vtn1 by executing the remove-vtn RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1
→˓"}}'

• You can delete the flowcondition cond_1 and cond_any by executing the remove-flow-condition RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{
→˓"input":{"name":"cond_1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{
→˓"input":{"name":"cond_any"}}'

How To View Dataflows

Overview

This page explains how to view Dataflows using VTN Manager. This page targets Boron release, so the procedure
described here does not work in other releases.

Dataflow feature enables retrieval and display of data flows in the OpenFlow network. The data flows can be retrieved
based on an OpenFlow switch or a switch port or a L2 source host.

The flow information provided by this feature are

• Location of virtual node which maps the incoming packet and outgoing packets.

• Location of physical switch port where incoming and outgoing packets is sent and received.

• A sequence of physical route info which represents the packet route in the physical network.

1118 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#remove-flow-condition

OpenDaylight Documentation Documentation, Release Carbon

Configuration

• To view Dataflow information, configure with VLAN Mapping https://wiki.opendaylight.org/view/VTN:
Mananger:How_to_test_Vlan-map_using_mininet.

Verification

After creating vlan mapping configuration from the above page, execute as below in mininet to get switch details.

mininet> net
h1 h1-eth0.200:s1-eth1
h2 h2-eth0.300:s2-eth2
h3 h3-eth0.200:s2-eth3
h4 h4-eth0.300:s2-eth4
h5 h5-eth0.200:s3-eth2
h6 h6-eth0.300:s3-eth3
s1 lo: s1-eth1:h1-eth0.200 s1-eth2:s2-eth1 s1-eth3:s3-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0.300 s2-eth3:h3-eth0.200 s2-eth4:h4-eth0.300
s3 lo: s3-eth1:s1-eth3 s3-eth2:h5-eth0.200 s3-eth3:h6-eth0.300
c0
mininet>

Please execute ping from h1 to h3 to check hosts reachability.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=11.4 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=64 time=0.654 ms
64 bytes from 10.0.0.3: icmp_seq=3 ttl=64 time=0.093 ms

Parallely execute below Restconf command to get data flow information of node “openflow:1” and its port “s1-eth1”.

• Get the Dataflows information by executing the get-data-flow RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow:get-data-flow -d '{"input":{"tenant-name
→˓":"vtn1","mode":"DETAIL","node":"openflow:1","data-flow-port":{"port-id":"1","port-
→˓name":"s1-eth1"}}}'

{
"output": {
"data-flow-info": [
{

"averaged-data-flow-stats": {
"packet-count": 1.1998800119988002,
"start-time": 1455241209151,
"end-time": 1455241219152,
"byte-count": 117.58824117588242

},
"physical-route": [
{
"physical-ingress-port": {
"port-name": "s2-eth3",
"port-id": "3"

},
"physical-egress-port": {

1.3. OpenDaylight User Guide 1119

https://wiki.opendaylight.org/view/VTN:Mananger:How_to_test_Vlan-map_using_mininet
https://wiki.opendaylight.org/view/VTN:Mananger:How_to_test_Vlan-map_using_mininet
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow.html#get-data-flow

OpenDaylight Documentation Documentation, Release Carbon

"port-name": "s2-eth1",
"port-id": "1"

},
"node": "openflow:2",
"order": 0

},
{
"physical-ingress-port": {

"port-name": "s1-eth2",
"port-id": "2"

},
"physical-egress-port": {

"port-name": "s1-eth1",
"port-id": "1"

},
"node": "openflow:1",
"order": 1

}
],

"data-egress-node": {
"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"hard-timeout": 0,
"idle-timeout": 300,
"data-flow-stats": {
"duration": {

"nanosecond": 640000000,
"second": 362

},
"packet-count": 134,
"byte-count": 12932

},
"data-egress-port": {
"node": "openflow:1",
"port-name": "s1-eth1",
"port-id": "1"

},
"data-ingress-node": {
"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"data-ingress-port": {
"node": "openflow:2",
"port-name": "s2-eth3",
"port-id": "3"

},
"creation-time": 1455240855753,
"data-flow-match": {
"vtn-ether-match": {

"vlan-id": 200,
"source-address": "6a:ff:e2:81:86:bb",
"destination-address": "26:9f:82:70:ec:66"

}
},
"virtual-route": [
{
"reason": "VLANMAPPED",

1120 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"virtual-node-path": {
"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"order": 0

},
{
"reason": "FORWARDED",
"virtual-node-path": {

"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"order": 1

}
],

"flow-id": 16
},
{

"averaged-data-flow-stats": {
"packet-count": 1.1998800119988002,
"start-time": 1455241209151,
"end-time": 1455241219152,
"byte-count": 117.58824117588242

},
"physical-route": [
{

"physical-ingress-port": {
"port-name": "s1-eth1",
"port-id": "1"

},
"physical-egress-port": {
"port-name": "s1-eth2",
"port-id": "2"

},
"node": "openflow:1",
"order": 0

},
{

"physical-ingress-port": {
"port-name": "s2-eth1",
"port-id": "1"

},
"physical-egress-port": {
"port-name": "s2-eth3",
"port-id": "3"

},
"node": "openflow:2",
"order": 1

}
],

"data-egress-node": {
"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"hard-timeout": 0,
"idle-timeout": 300,
"data-flow-stats": {
"duration": {

1.3. OpenDaylight User Guide 1121

OpenDaylight Documentation Documentation, Release Carbon

"nanosecond": 587000000,
"second": 362

},
"packet-count": 134,
"byte-count": 12932

},
"data-egress-port": {
"node": "openflow:2",
"port-name": "s2-eth3",
"port-id": "3"

},
"data-ingress-node": {
"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"data-ingress-port": {
"node": "openflow:1",
"port-name": "s1-eth1",
"port-id": "1"

},
"creation-time": 1455240855747,
"data-flow-match": {
"vtn-ether-match": {

"vlan-id": 200,
"source-address": "26:9f:82:70:ec:66",
"destination-address": "6a:ff:e2:81:86:bb"

}
},
"virtual-route": [
{
"reason": "VLANMAPPED",
"virtual-node-path": {

"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"order": 0

},
{
"reason": "FORWARDED",
"virtual-node-path": {

"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"order": 1

}
],

"flow-id": 15
}
]

}
}

1122 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

How To Create Mac Map In VTN

Overview

• This page demonstrates Mac Mapping. This demonstration aims at enabling communication between two hosts
and denying communication of particular host by associating a Vbridge to the hosts and configuring Mac Map-
ping (mac address) to the Vbridge.

• This page targets Boron release, so the procedure described here does not work in other releases.

Fig. 1.143: Single Controller Mapping

Requirement

Configure mininet and create a topology

• Script for emulating network with multiple hosts.

• Before executing the mininet script, please confirm Controller is up and running.

• Run the mininet script.

• Replace <path> and <Controller IP> based on your environment.

sudo mn --controller=remote,ip=<Controller IP> --custom <path>\topo_handson.py --topo
→˓mytopo2

mininet> net
h11 h11-eth0:s1-eth1
h12 h12-eth0:s1-eth2
h21 h21-eth0:s2-eth1
h22 h22-eth0:s2-eth2
h23 h23-eth0:s2-eth3
srvc1 srvc1-eth0:s3-eth3 srvc1-eth1:s4-eth3
srvc2 srvc2-eth0:s3-eth4 srvc2-eth1:s4-eth4

1.3. OpenDaylight User Guide 1123

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_Multiple_Hosts_for_Service_Function_Chain

OpenDaylight Documentation Documentation, Release Carbon

s1 lo: s1-eth1:h11-eth0 s1-eth2:h12-eth0 s1-eth3:s2-eth4 s1-eth4:s3-eth2
s2 lo: s2-eth1:h21-eth0 s2-eth2:h22-eth0 s2-eth3:h23-eth0 s2-eth4:s1-eth3 s2-eth5:s4-
→˓eth1
s3 lo: s3-eth1:s4-eth2 s3-eth2:s1-eth4 s3-eth3:srvc1-eth0 s3-eth4:srvc2-eth0
s4 lo: s4-eth1:s2-eth5 s4-eth2:s3-eth1 s4-eth3:srvc1-eth1 s4-eth4:srvc2-eth1

Configuration

To create Mac Map in VTN, execute REST API provided by VTN Manager as follows. It uses curl command to call
REST API.

• Create a virtual tenant named Tenant1 by executing the update-vtn RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":
→˓"Tenant1"}}'

• Create a virtual bridge named vBridge1 in the tenant Tenant1 by executing the update-vbridge RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-
→˓name":"Tenant1","bridge-name":"vBridge1"}}'

• Configuring Mac Mappings on the vBridge1 by giving the mac address of host h12 and host h22 as follows to
allow the communication by executing the set-mac-map RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-mac-map:set-mac-map -d '{"input":{"operation
→˓":"SET","allowed-hosts":["de:05:40:c4:96:76@0","62:c5:33:bc:d7:4e@0"],"tenant-name":
→˓"Tenant1","bridge-name":"vBridge1"}}'

Note: Mac Address of host h12 and host h22 can be obtained with the following command in mininet.

mininet> h12 ifconfig
h12-eth0 Link encap:Ethernet HWaddr 62:c5:33:bc:d7:4e
inet addr:10.0.0.2 Bcast:10.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::60c5:33ff:febc:d74e/64 Scope:Link

mininet> h22 ifconfig
h22-eth0 Link encap:Ethernet HWaddr de:05:40:c4:96:76
inet addr:10.0.0.4 Bcast:10.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::dc05:40ff:fec4:9676/64 Scope:Link

• MAC Mapping will not be activated just by configuring it, a two end communication needs to be established to
activate Mac Mapping.

• Ping host h22 from host h12 in mininet, the ping will not happen between the hosts as only one way activation
is enabled.

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
From 10.0.0.2 icmp_seq=1 Destination Host Unreachable
From 10.0.0.2 icmp_seq=2 Destination Host Unreachable

1124 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-mac-map.html#set-mac-map

OpenDaylight Documentation Documentation, Release Carbon

• Ping host h12 from host h22 in mininet, now the ping communication will take place as the two end communi-
cation is enabled.

mininet> h22 ping h12
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=91.8 ms
64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=0.510 ms

• After two end communication enabled, now host h12 can ping host h22

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_req=1 ttl=64 time=0.780 ms
64 bytes from 10.0.0.4: icmp_req=2 ttl=64 time=0.079 ms

Verification

• To view the configured Mac Map of allowed host execute the following command.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://
→˓localhost:8181/restconf/operational/vtn:vtns/vtn/Tenant1/vbridge/vBridge1/mac-map

{
"mac-map": {
"mac-map-status": {

"mapped-host": [
{

"mac-address": "c6:44:22:ba:3e:72",
"vlan-id": 0,
"port-id": "openflow:1:2"

},
{

"mac-address": "f6:e0:43:b6:3a:b7",
"vlan-id": 0,
"port-id": "openflow:2:2"

}
]

},
"mac-map-config": {

"allowed-hosts": {
"vlan-host-desc-list": [
{
"host": "c6:44:22:ba:3e:72@0"

},
{

"host": "f6:e0:43:b6:3a:b7@0"
}
]

}
}

}
}

Note: When Deny is configured a broadcast message is sent to all the hosts connected to the vBridge, so a two end
communication need not be establihed like allow, the hosts can communicate directly without any two way communi-

1.3. OpenDaylight User Guide 1125

OpenDaylight Documentation Documentation, Release Carbon

cation enabled.

1. To Deny host h23 communication from hosts connected on vBridge1, the following configuration can be applied.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-mac-map:set-mac-map -d '{"input":{"operation
→˓": "SET", "denied-hosts": ["0a:d3:ea:3d:8f:a5@0"],"tenant-name": "Tenant1","bridge-
→˓name": "vBridge1"}}'

Cleaning Up

• You can delete the virtual tenant Tenant1 by executing the remove-vtn RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":
→˓"Tenant1"}}'

How To Configure Flowfilters

Overview

• This page explains how to provision flowfilter using VTN Manager. This page targets Boron release, so the
procedure described here does not work in other releases.

• The flow-filter function discards, permits, or redirects packets of the traffic within a VTN, according to specified
flow conditions. The table below lists the actions to be applied when a packet matches the condition:

Action Function
Pass

Permits the packet to pass along the determined path.
As options, packet transfer priority (set priority) and
DSCP change (set ip-dscp) is specified.

Drop Discards the packet.
Redirect

Redirects the packet to a desired virtual interface.
As an option, it is possible to change the MAC address
when the packet is transferred.

• Following steps explain flow-filter function:

– when a packet is transferred to an interface within a virtual network, the flow-filter function evaluates
whether the transferred packet matches the condition specifed in the flow-list.

– If the packet matches the condition, the flow-filter applies the flow-list matching action specified in the
flow-filter.

Requirements

To apply the packet filter, configure the following:

1126 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.144: Flow Filter Example

• Create a flow condition.

• Specify where to apply the flow-filter, for example VTN, vBridge, or interface of vBridge.

To provision OpenFlow switches, this page uses Mininet. Mininet details and set-up can be referred at the below page:
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

Start Mininet, and create three switches (s1, s2, and s3) and four hosts (h1, h2, h3 and h4) in it.

sudo mn --controller=remote,ip=192.168.0.100 --topo tree,2

Note: Replace “192.168.0.100” with the IP address of OpenDaylight controller based on your environment.

You can check the topology that you have created by executing “net” command in the Mininet console.

mininet> net
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2

In this guide, you will provision flowfilters to establish communication between h1 and h3.

Configuration

To provision the virtual L2 network for the two hosts (h1 and h3), execute REST API provided by VTN Manager as
follows. It uses curl command to call the REST API.

• Create a virtual tenant named vtn1 by executing the update-vtn RPC.

1.3. OpenDaylight User Guide 1127

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn

OpenDaylight Documentation Documentation, Release Carbon

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1
→˓"}}'

• Create a virtual bridge named vbr1 in the tenant vtn1 by executing the update-vbridge RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-
→˓name":"vtn1","bridge-name":"vbr1"}}'

• Create two interfaces into the virtual bridge by executing the update-vinterface RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2"}}'

• Configure two mappings on the interfaces by executing the set-port-map RPC.

– The interface if1 of the virtual bridge will be mapped to the port “s2-eth1” of the switch “openflow:2” of
the Mininet.

* The h1 is connected to the port “s2-eth1”.

– The interface if2 of the virtual bridge will be mapped to the port “s3-eth1” of the switch “openflow:3” of
the Mininet.

* The h3 is connected to the port “s3-eth1”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-
→˓name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1", "node":"openflow:2",
→˓"port-name":"s2-eth1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-
→˓name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2", "node":"openflow:3",
→˓"port-name":"s3-eth1"}}'

• Create flowcondition named cond_1 by executing the set-flow-condition RPC.

– For option source and destination-network, get inet address of host h1 and h3 from mininet.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input
→˓":{"name":"cond_1", "vtn-flow-match":[{"vtn-ether-match":{},"vtn-inet-match":{
→˓"source-network":"10.0.0.1/32","protocol":1,"destination-network":"10.0.0.3/32"},
→˓"index":"1"}]}}'

• Flowfilter can be applied either in VTN, VBR or VBR Interfaces. Here in this page we provision flowfilter with
VBR Interface and demonstrate with action type drop and then pass.

• Flow filter demonstration with DROP action-type. Create Flowfilter in VBR Interface if1 by executing the
set-flow-filter RPC.

1128 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter

OpenDaylight Documentation Documentation, Release Carbon

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input": {
→˓"tenant-name": "vtn1", "bridge-name": "vbr1","interface-name":"if1","vtn-flow-filter
→˓":[{"condition":"cond_1","vtn-drop-filter":{},"vtn-flow-action":[{"order": "1","vtn-
→˓set-inet-src-action":{"ipv4-address":"10.0.0.1/32"}},{"order": "2","vtn-set-inet-
→˓dst-action":{"ipv4-address":"10.0.0.3/32"}}],"index": "1"}]}}'

Verification of the drop filter

• Please execute ping from h1 to h3. As we have applied the action type “drop” , ping should fail with no packet
flows between hosts h1 and h3 as below,

mininet> h1 ping h3

Configuration for pass filter

• Update the flow filter to pass the packets by executing the set-flow-filter RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input": {
→˓"tenant-name": "vtn1", "bridge-name": "vbr1","interface-name":"if1","vtn-flow-filter
→˓":[{"condition":"cond_1","vtn-pass-filter":{},"vtn-flow-action":[{"order": "1","vtn-
→˓set-inet-src-action":{"ipv4-address":"10.0.0.1/32"}},{"order": "2","vtn-set-inet-
→˓dst-action":{"ipv4-address":"10.0.0.3/32"}}],"index": "1"}]}}'

Verification For Packets Success

• As we have applied action type PASS now ping should happen between hosts h1 and h3.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

• You can also verify the configurations by executing the following REST API. It shows all configuration in VTN
Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://
→˓localhost:8181/restconf/operational/vtn:vtns/vtn/vtn1

{
"vtn": [
{
"name": "vtn1",

"vtenant-config": {
"hard-timeout": 0,
"idle-timeout": 300,
"description": "creating vtn"

},
"vbridge": [
{

1.3. OpenDaylight User Guide 1129

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter

OpenDaylight Documentation Documentation, Release Carbon

"name": "vbr1",
"vbridge-config": {
"age-interval": 600,
"description": "creating vBridge1"

},
"bridge-status": {
"state": "UP",
"path-faults": 0

},
"vinterface": [
{
"name": "if1",
"vinterface-status": {
"mapped-port": "openflow:2:1",
"state": "UP",
"entity-state": "UP"

},
"port-map-config": {

"vlan-id": 0,
"node": "openflow:2",
"port-name": "s2-eth1"

},
"vinterface-config": {

"description": "Creating if1 interface",
"enabled": true

},
"vinterface-input-filter": {

"vtn-flow-filter": [
{
"index": 1,
"condition": "cond_1",
"vtn-flow-action": [
{
"order": 1,
"vtn-set-inet-src-action": {
"ipv4-address": "10.0.0.1/32"

}
},
{
"order": 2,
"vtn-set-inet-dst-action": {
"ipv4-address": "10.0.0.3/32"

}
}
],
"vtn-pass-filter": {}

},
{
"index": 10,
"condition": "cond_1",
"vtn-drop-filter": {}

}
]

}
},
{
"name": "if2",
"vinterface-status": {

1130 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"mapped-port": "openflow:3:1",
"state": "UP",
"entity-state": "UP"

},
"port-map-config": {

"vlan-id": 0,
"node": "openflow:3",
"port-name": "s3-eth1"

},
"vinterface-config": {

"description": "Creating if2 interface",
"enabled": true

}
}
]

}
]

}
]

}

Cleaning Up

• To clean up both VTN and flowcondition.

• You can delete the virtual tenant vtn1 by executing the remove-vtn RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1
→˓"}}'

• You can delete the flowcondition cond_1 by executing the remove-flow-condition RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{
→˓"input":{"name":"cond_1"}}'

How to use VTN to change the path of the packet flow

Overview

• This page explains how to create specific VTN Pathmap using VTN Manager. This page targets Boron release,
so the procedure described here does not work in other releases.

Requirement

• Save the mininet script given below as pathmap_test.py and run the mininet script in the mininet environment
where Mininet is installed.

• Create topology using the below mininet script:

1.3. OpenDaylight User Guide 1131

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#remove-flow-condition

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.145: Pathmap

from mininet.topo import Topo
class MyTopo(Topo):

"Simple topology example."
def __init__(self):

"Create custom topo."
Initialize topology
Topo.__init__(self)
Add hosts and switches
leftHost = self.addHost('h1')
rightHost = self.addHost('h2')
leftSwitch = self.addSwitch('s1')
middleSwitch = self.addSwitch('s2')
middleSwitch2 = self.addSwitch('s4')
rightSwitch = self.addSwitch('s3')
Add links
self.addLink(leftHost, leftSwitch)
self.addLink(leftSwitch, middleSwitch)
self.addLink(leftSwitch, middleSwitch2)
self.addLink(middleSwitch, rightSwitch)
self.addLink(middleSwitch2, rightSwitch)
self.addLink(rightSwitch, rightHost)

topos = { 'mytopo': (lambda: MyTopo()) }

• After creating new file with the above script start the mininet as below,

sudo mn --controller=remote,ip=10.106.138.124 --custom pathmap_test.py --topo mytopo

Note: Replace “10.106.138.124” with the IP address of OpenDaylight controller based on your environment.

mininet> net
h1 h1-eth0:s1-eth1

1132 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

h2 h2-eth0:s3-eth3
s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1 s1-eth3:s4-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:s3-eth1
s3 lo: s3-eth1:s2-eth2 s3-eth2:s4-eth2 s3-eth3:h2-eth0
s4 lo: s4-eth1:s1-eth3 s4-eth2:s3-eth2
c0

• Generate traffic by pinging between host h1 and host h2 before creating the portmaps respectively.

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable
From 10.0.0.1 icmp_seq=3 Destination Host Unreachable
From 10.0.0.1 icmp_seq=4 Destination Host Unreachable

Configuration

• To change the path of the packet flow, execute REST API provided by VTN Manager as follows. It uses curl
command to call the REST API.

• Create a virtual tenant named vtn1 by executing the update-vtn RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1
→˓"}}'

• Create a virtual bridge named vbr1 in the tenant vtn1 by executing the update-vbridge RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-
→˓name":"vtn1","bridge-name":"vbr1"}}'

• Create two interfaces into the virtual bridge by executing the update-vinterface RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{
→˓"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2"}}'

• Configure two mappings on the interfaces by executing the set-port-map RPC.

– The interface if1 of the virtual bridge will be mapped to the port “s2-eth1” of the switch “openflow:1” of
the Mininet.

* The h1 is connected to the port “s1-eth1”.

– The interface if2 of the virtual bridge will be mapped to the port “s3-eth1” of the switch “openflow:3” of
the Mininet.

* The h3 is connected to the port “s3-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-
→˓name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1", "node":"openflow:1",
→˓"port-name":"s1-eth1"}}'

1.3. OpenDaylight User Guide 1133

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map

OpenDaylight Documentation Documentation, Release Carbon

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-
→˓name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2", "node":"openflow:3",
→˓"port-name":"s3-eth3"}}'

• Genarate traffic by pinging between host h1 and host h2 after creating the portmaps respectively.

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.861 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.101 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.101 ms

• Get the Dataflows information by executing the get-data-flow RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow:get-data-flow -d '{"input":{"tenant-name
→˓":"vtn1","mode":"DETAIL","node":"openflow:1","data-flow-port":{"port-id":1,"port-
→˓name":"s1-eth1"}}}'

• Create flowcondition named cond_1 by executing the set-flow-condition RPC.

– For option source and destination-network, get inet address of host h1 or host h2 from mininet

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input
→˓":{"operation":"SET","present":"false","name":"cond_1", "vtn-flow-match":[{"vtn-
→˓ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.1/32","protocol":1,
→˓"destination-network":"10.0.0.2/32"},"index":"1"}]}}'

• Create pathmap with flowcondition cond_1 by executing the set-path-map RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-path-map:set-path-map -d '{"input":{"tenant-
→˓name":"vtn1","path-map-list":[{"condition":"cond_1","policy":"1","index": "1","idle-
→˓timeout":"300","hard-timeout":"0"}]}}'

• Create pathpolicy by executing the set-path-policy RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-path-policy:set-path-policy -d '{"input":{
→˓"operation":"SET","id": "1","default-cost": "10000","vtn-path-cost": [{"port-desc":
→˓"openflow:1,3,s1-eth3","cost":"1000"},{"port-desc":"openflow:4,2,s4-eth2","cost":
→˓"1000"},{"port-desc":"openflow:3,3,s3-eth3","cost":"100000"}]}}'

Verification

• Before applying Path policy get node information by executing get dataflow command.

"data-flow-info": [
{

"physical-route": [
{
"physical-ingress-port": {

"port-name": "s3-eth3",

1134 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow.html#get-data-flow
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-path-map.html#set-path-map
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-path-policy.html#set-path-policy

OpenDaylight Documentation Documentation, Release Carbon

"port-id": "3"
},

"physical-egress-port": {
"port-name": "s3-eth1",
"port-id": "1"

},
"node": "openflow:3",
"order": 0

},
{
"physical-ingress-port": {

"port-name": "s2-eth2",
"port-id": "2"

},
"physical-egress-port": {

"port-name": "s2-eth1",
"port-id": "1"

},
"node": "openflow:2",
"order": 1

},
{
"physical-ingress-port": {

"port-name": "s1-eth2",
"port-id": "2"

},
"physical-egress-port": {

"port-name": "s1-eth1",
"port-id": "1"

},
"node": "openflow:1",
"order": 2

}
],
"data-egress-node": {

"interface-name": "if1",
"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"data-egress-port": {

"node": "openflow:1",
"port-name": "s1-eth1",
"port-id": "1"

},
"data-ingress-node": {

"interface-name": "if2",
"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"data-ingress-port": {

"node": "openflow:3",
"port-name": "s3-eth3",
"port-id": "3"

},
"flow-id": 32

},
}

1.3. OpenDaylight User Guide 1135

OpenDaylight Documentation Documentation, Release Carbon

• After applying Path policy get node information by executing get dataflow command.

"data-flow-info": [
{

"physical-route": [
{
"physical-ingress-port": {

"port-name": "s1-eth1",
"port-id": "1"

},
"physical-egress-port": {

"port-name": "s1-eth3",
"port-id": "3"

},
"node": "openflow:1",
"order": 0

},
{
"physical-ingress-port": {

"port-name": "s4-eth1",
"port-id": "1"

},
"physical-egress-port": {

"port-name": "s4-eth2",
"port-id": "2"

},
"node": "openflow:4",
"order": 1

},
{
"physical-ingress-port": {

"port-name": "s3-eth2",
"port-id": "2"

},
"physical-egress-port": {

"port-name": "s3-eth3",
"port-id": "3"

},
"node": "openflow:3",
"order": 2

}
],
"data-egress-node": {

"interface-name": "if2",
"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"data-egress-port": {

"node": "openflow:3",
"port-name": "s3-eth3",
"port-id": "3"

},
"data-ingress-node": {

"interface-name": "if1",
"bridge-name": "vbr1",
"tenant-name": "vtn1"

},
"data-ingress-port": {

"node": "openflow:1",

1136 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

"port-name": "s1-eth1",
"port-id": "1"

},
}

Cleaning Up

• To clean up both VTN and flowcondition.

• You can delete the virtual tenant vtn1 by executing the remove-vtn RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1
→˓"}}'

• You can delete the flowcondition cond_1 by executing the remove-flow-condition RPC.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{
→˓"input":{"name":"cond_1"}}'

VTN Coordinator Usage Examples

How to configure L2 Network with Single Controller

Overview

This example provides the procedure to demonstrate configuration of VTN Coordinator with L2 network using VTN
Virtualization(single controller). Here is the Example for vBridge Interface Mapping with Single Controller using
mininet. mininet details and set-up can be referred at below URL: https://wiki.opendaylight.org/view/OpenDaylight_
Controller:Installation#Using_Mininet

Fig. 1.146: EXAMPLE DEMONSTRATING SINGLE CONTROLLER

1.3. OpenDaylight User Guide 1137

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#remove-flow-condition
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

OpenDaylight Documentation Documentation, Release Carbon

Requirements

• Configure mininet and create a topology:

mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo tree,2

• mininet> net

s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0
h1 h1-eth0:s1-eth1
h2 h2-eth0:s2-eth2

Configuration

• Create a Controller named controllerone and mention its ip-address in the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"controller": {"controller_id": "controllerone", "ipaddr":"10.0.0.2", "type": "odc",
→˓ "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/
→˓controllers.json

• Create a VTN named vtn1 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {
→˓"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/
→˓vtns.json

• Create a vBridge named vBridge1 in the vtn1 by executing the create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge
→˓" : {"vbr_name":"vBridge1","controller_id":"controllerone","domain_id":"(DEFAULT)" }
→˓}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

• Create two Interfaces named if1 and if2 into the vBridge1

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/
→˓vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.1:8083/
→˓vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

• Get the list of logical ports configured

Curl --user admin:adminpass -H 'content-type: application/json' -X GET http://127.0.0.
→˓1:8083/vtn-webapi/controllers/controllerone/domains/\(DEFAULT\)/logical_ports.json

• Configure two mappings on each of the interfaces by executing the below command.

The interface if1 of the virtual bridge will be mapped to the port “s2-eth1” of the switch “openflow:2” of the Mininet.
The h1 is connected to the port “s2-eth1”.

The interface if2 of the virtual bridge will be mapped to the port “s3-eth1” of the switch “openflow:3” of the Mininet.
The h3 is connected to the port “s3-eth1”.

1138 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":
→˓{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth1"}}' http://127.0.0.
→˓1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/portmap.json
curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":
→˓{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth1"}}' http://127.0.0.
→˓1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/portmap.json

Verification

Please verify whether the Host1 and Host3 are pinging.

• Send packets from Host1 to Host3

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.780 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.079 ms

How to configure L2 Network with Multiple Controllers

• This example provides the procedure to demonstrate configuration of VTN Coordinator with L2 network using
VTN Virtualization Here is the Example for vBridge Interface Mapping with Multi-controller using mininet.

Fig. 1.147: EXAMPLE DEMONSTRATING MULTIPLE CONTROLLERS

Requirements

• Configure multiple controllers using the mininet script given below: https://wiki.opendaylight.org/view/
OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_multiple_switches_

1.3. OpenDaylight User Guide 1139

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_multiple_switches_and_OpenFlow_controllers
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_multiple_switches_and_OpenFlow_controllers
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_multiple_switches_and_OpenFlow_controllers

OpenDaylight Documentation Documentation, Release Carbon

and_OpenFlow_controllers

Configuration

• Create a VTN named vtn3 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" :
→˓{"vtn_name":"vtn3"}}' http://127.0.0.1:8083/vtn-webapi/vtns.json

• Create two Controllers named odc1 and odc2 with its ip-address in the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"controller": {"controller_id": "odc1", "ipaddr":"10.100.9.52", "type": "odc",
→˓"version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/
→˓controllers.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"controller": {"controller_id": "odc2", "ipaddr":"10.100.9.61", "type": "odc",
→˓"version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/
→˓controllers.json

• Create two vBridges in the VTN like, vBridge1 in Controller1 and vBridge2 in Controller2

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge
→˓" : {"vbr_name":"vbr1","controller_id":"odc1","domain_id":"(DEFAULT)" }}' http://
→˓127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge
→˓" : {"vbr_name":"vbr2","controller_id":"odc2","domain_id":"(DEFAULT)" }}' http://
→˓127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges.json

• Create two Interfaces if1, if2 for the two vBridges vbr1 and vbr2.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/
→˓vbridges/vbr1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/
→˓vbridges/vbr1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/
→˓vbridges/vbr2/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/
→˓vbridges/vbr2/interfaces.json

• Get the list of logical ports configured

curl --user admin:adminpass -H 'content-type: application/json' -X GET http://127.0.0.
→˓1:8083/vtn-webapi/controllers/odc1/domains/\(DEFAULT\)/logical_ports/detail.json

• Create boundary and vLink for the two controllers

1140 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_multiple_switches_and_OpenFlow_controllers
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_multiple_switches_and_OpenFlow_controllers

OpenDaylight Documentation Documentation, Release Carbon

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"boundary": {"boundary_id": "b1", "link": {"controller1_id": "odc1", "domain1_id":
→˓"(DEFAULT)", "logical_port1_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth3",
→˓"controller2_id": "odc2", "domain2_id": "(DEFAULT)", "logical_port2_id": "PP-
→˓OF:00:00:00:00:00:00:00:04-s4-eth3"}}}' http://127.0.0.1:8083/vtn-webapi/boundaries.
→˓json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vlink
→˓": {"vlk_name": "vlink1" , "vnode1_name": "vbr1", "if1_name":"if2", "vnode2_name":
→˓"vbr2", "if2_name": "if2", "boundary_map": {"boundary_id":"b1","vlan_id": "50"}}}'
→˓http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vlinks.json

• Configure two mappings on each of the interfaces by executing the below command.

The interface if1 of the vbr1 will be mapped to the port “s2-eth2” of the switch “openflow:2” of the Mininet. The h2
is connected to the port “s2-eth2”.

The interface if2 of the vbr2 will be mapped to the port “s5-eth2” of the switch “openflow:5” of the Mininet. The h6
is connected to the port “s5-eth2”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":
→˓{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth2"}}' http://127.0.0.
→˓1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr1/interfaces/if1/portmap.json

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap
→˓":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:05-s5-eth2"}}' http://127.0.0.
→˓1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr2/interfaces/if1/portmap.json

Verification

Please verify whether Host h2 and Host h6 are pinging.

• Send packets from h2 to h6

mininet> h2 ping h6

PING 10.0.0.6 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.6: icmp_req=1 ttl=64 time=0.780 ms
64 bytes from 10.0.0.6: icmp_req=2 ttl=64 time=0.079 ms

How To Test Vlan-Map In Mininet Environment

Overview

This example explains how to test vlan-map in a multi host scenario.

Requirements

• Save the mininet script given below as vlan_vtn_test.py and run the mininet script in the mininet environment
where Mininet is installed.

1.3. OpenDaylight User Guide 1141

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.148: Example that demonstrates vlanmap testing in Mininet Environment

Mininet Script

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_
hosts_in_different_vlan

• Run the mininet script

sudo mn --controller=remote,ip=192.168.64.13 --custom vlan_vtn_test.py --topo mytopo

Configuration

Please follow the below steps to test a vlan map using mininet:

• Create a Controller named controllerone and mention its ip-address in the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"controller": {"controller_id": "controllerone", "ipaddr":"10.0.0.2", "type": "odc",
→˓ "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/
→˓controllers

• Create a VTN named vtn1 by executing the create-vtn command

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password:
→˓adminpass' -d '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.
→˓0.0.1:8083/vtn-webapi/vtns.json

• Create a vBridge named vBridge1 in the vtn1 by executing the create-vbr command.

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password:
→˓adminpass' -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"controllerone",
→˓"domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

• Create a vlan map with vlanid 200 for vBridge vBridge1

1142 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_hosts_in_different_vlan
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_hosts_in_different_vlan

OpenDaylight Documentation Documentation, Release Carbon

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password:
→˓adminpass' -d '{"vlanmap" : {"vlan_id": 200 }}' http://127.0.0.1:8083/vtn-webapi/
→˓vtns/vtn1/vbridges/vBridge1/vlanmaps.json

• Create a vBridge named vBridge2 in the vtn1 by executing the create-vbr command.

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password:
→˓adminpass' -d '{"vbridge" : {"vbr_name":"vBridge2","controller_id":"controllerone",
→˓"domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

• Create a vlan map with vlanid 300 for vBridge vBridge2

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password:
→˓adminpass' -d '{"vlanmap" : {"vlan_id": 300 }}' http://127.0.0.1:8083/vtn-webapi/
→˓vtns/vtn1/vbridges/vBridge2/vlanmaps.json

Verification

Ping all in mininet environment to view the host reachability.

mininet> pingall
Ping: testing ping reachability
h1 -> X h3 X h5 X
h2 -> X X h4 X h6
h3 -> h1 X X h5 X
h4 -> X h2 X X h6
h5 -> h1 X h3 X X
h6 -> X h2 X h4 X

How To View Specific VTN Station Information.

This example demonstrates on how to view a specific VTN Station information.

Requirement

• Configure mininet and create a topology:

$ sudo mn --custom /home/mininet/mininet/custom/topo-2sw-2host.py --
→˓controller=remote,ip=10.100.9.61 --topo mytopo
mininet> net

s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0
h1 h1-eth0:s1-eth1
h2 h2-eth0:s2-eth2

• Generate traffic by pinging between hosts h1 and h2 after configuring the portmaps respectively

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=16.7 ms
64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=13.2 ms

1.3. OpenDaylight User Guide 1143

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.149: EXAMPLE DEMONSTRATING VTN STATIONS

Configuration

• Create a Controller named controllerone and mention its ip-address in the below create-controller command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"controller": {"controller_id": "controllerone", "ipaddr":"10.100.9.61", "type":
→˓"odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/
→˓controllers.json

• Create a VTN named vtn1 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {
→˓"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/
→˓vtns.json

• Create a vBridge named vBridge1 in the vtn1 by executing the create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge
→˓" : {"vbr_name":"vBridge1","controller_id":"controllerone","domain_id":"(DEFAULT)" }
→˓}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

• Create two Interfaces named if1 and if2 into the vBridge1

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/
→˓vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.1:8083/
→˓vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

• Configure two mappings on each of the interfaces by executing the below command.

The interface if1 of the virtual bridge will be mapped to the port “s1-eth1” of the switch “openflow:1” of the Mininet.
The h1 is connected to the port “s1-eth1”.

1144 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

The interface if2 of the virtual bridge will be mapped to the port “s1-eth2” of the switch “openflow:1” of the Mininet.
The h2 is connected to the port “s1-eth2”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":
→˓{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth1"}}' http://127.0.0.
→˓1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/portmap.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{
→˓"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth2"}}' http://17.
→˓0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/portmap.json

• Get the VTN stations information

curl -X GET -H 'content-type: application/json' -H 'username: admin' -H 'password:
→˓adminpass' "http://127.0.0.1:8083/vtn-webapi/vtnstations?controller_
→˓id=controllerone&vtn_name=vtn1"

Verification

curl -X GET -H 'content-type: application/json' -H 'username: admin' -H 'password:
→˓adminpass' "http://127.0.0.1:8083/vtn-webapi/vtnstations?controller_
→˓id=controllerone&vtn_name=vtn1"
{

"vtnstations": [
{

"domain_id": "(DEFAULT)",
"interface": {},
"ipaddrs": [

"10.0.0.2"
],
"macaddr": "b2c3.06b8.2dac",
"no_vlan_id": "true",
"port_name": "s2-eth2",
"station_id": "178195618445172",
"switch_id": "00:00:00:00:00:00:00:02",
"vnode_name": "vBridge1",
"vnode_type": "vbridge",
"vtn_name": "vtn1"

},
{

"domain_id": "(DEFAULT)",
"interface": {},
"ipaddrs": [

"10.0.0.1"
],
"macaddr": "ce82.1b08.90cf",
"no_vlan_id": "true",
"port_name": "s1-eth1",
"station_id": "206130278144207",
"switch_id": "00:00:00:00:00:00:00:01",
"vnode_name": "vBridge1",
"vnode_type": "vbridge",
"vtn_name": "vtn1"

}
]

}

1.3. OpenDaylight User Guide 1145

OpenDaylight Documentation Documentation, Release Carbon

How To View Dataflows in VTN

This example demonstrates on how to view a specific VTN Dataflow information.

Configuration

The same Configuration as Vlan Mapping Example(https://wiki.opendaylight.org/view/VTN:Coordinator:Beryllium:
HowTos:How_To_test_vlanmap_using_mininet)

Verification

Get the VTN Dataflows information

curl -X GET -H 'content-type: application/json' --user 'admin:adminpass' "http://127.
→˓0.0.1:8083/vtn-webapi/dataflows?controller_id=controllerone&srcmacaddr=924c.e4a3.
→˓a743&vlan_id=300&switch_id=openflow:2&port_name=s2-eth1"

{
"dataflows": [

{
"controller_dataflows": [

{
"controller_id": "controllerone",
"controller_type": "odc",
"egress_domain_id": "(DEFAULT)",
"egress_port_name": "s3-eth3",
"egress_station_id": "3",
"egress_switch_id": "00:00:00:00:00:00:00:03",
"flow_id": "29",
"ingress_domain_id": "(DEFAULT)",
"ingress_port_name": "s2-eth2",
"ingress_station_id": "2",
"ingress_switch_id": "00:00:00:00:00:00:00:02",
"match": {

"macdstaddr": [
"4298.0959.0e0b"

],
"macsrcaddr": [

"924c.e4a3.a743"
],
"vlan_id": [

"300"
]

},
"pathinfos": [

{
"in_port_name": "s2-eth2",
"out_port_name": "s2-eth1",
"switch_id": "00:00:00:00:00:00:00:02"

},
{

"in_port_name": "s1-eth2",
"out_port_name": "s1-eth3",
"switch_id": "00:00:00:00:00:00:00:01"

},

1146 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/VTN:Coordinator:Beryllium:HowTos:How_To_test_vlanmap_using_mininet
https://wiki.opendaylight.org/view/VTN:Coordinator:Beryllium:HowTos:How_To_test_vlanmap_using_mininet

OpenDaylight Documentation Documentation, Release Carbon

{
"in_port_name": "s3-eth1",
"out_port_name": "s3-eth3",
"switch_id": "00:00:00:00:00:00:00:03"

}
]

}
],
"reason": "success"

}
]

}

How To Configure Flow Filters Using VTN

Overview

The flow-filter function discards, permits, or redirects packets of the traffic within a VTN, according to specified flow
conditions The table below lists the actions to be applied when a packet matches the condition:

Ac-
tion

Function

Pass Permits the packet to pass. As options, packet transfer priority (set priority) and DSCP change (se t
ip-dscp) is specified.

Drop Discards the packet.
Redi-
rect

Redirects the packet to a desired virtual interface. As an option, it is possible to change the MAC
address when the packet is transferred.

Fig. 1.150: Flow Filter

Following steps explain flow-filter function:

• When a packet is transferred to an interface within a virtual network, the flow-filter function evaluates whether
the transferred packet matches the condition specified in the flow-list.

1.3. OpenDaylight User Guide 1147

OpenDaylight Documentation Documentation, Release Carbon

• If the packet matches the condition, the flow-filter applies the flow-list matching action specified in the flow-
filter.

Requirements

To apply the packet filter, configure the following:

• Create a flow-list and flow-listentry.

• Specify where to apply the flow-filter, for example VTN, vBridge, or interface of vBridge.

Configure mininet and create a topology:

$ mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo tree

Please generate the following topology

$ mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo tree,2
mininet> net
c0
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2

Configuration

• Create a Controller named controller1 and mention its ip-address in the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"controller": {"controller_id": "controller1", "ipaddr":"10.100.9.61", "type": "odc
→˓", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/
→˓controllers

• Create a VTN named vtn_one by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {
→˓"vtn_name":"vtn_one","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/
→˓vtns.json

• Create a vBridge named vbr_two in the vtn1 by executing the create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge
→˓" : {"vbr_name":"vbr_one^C"controller_id":"controller1","domain_id":"(DEFAULT)" }}'
→˓http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"vbridge" :
{"vbr_name":"vbr_two","controller_id":"controller1","domain_id":"(DEFAULT)" }}' http:/
→˓/127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges.json

• Create two Interfaces named if1 and if2 into the vbr_two

1148 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/
→˓vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/
→˓vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces.json

• Get the list of logical ports configured

curl --user admin:adminpass -H 'content-type: application/json' -X GET http://127.0.
→˓0.1:8083/vtn-webapi/controllers/controllerone/domains/\(DEFAULT\)/logical_ports.json

• Configure two mappings on each of the interfaces by executing the below command.

The interface if1 of the virtual bridge will be mapped to the port “s2-eth1” of the switch “openflow:2” of the Mininet.
The h1 is connected to the port “s2-eth1”.

The interface if2 of the virtual bridge will be mapped to the port “s3-eth1” of the switch “openflow:3” of the Mininet.
The h3 is connected to the port “s3-eth1”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":
→˓{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth1"}}' http://127.0.0.
→˓1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/portmap.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{
→˓"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth1"}}' http://127.
→˓0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if2/portmap.json

• Create Flowlist

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"flowlist
→˓": {"fl_name": "flowlist1", "ip_version":"IP"}}' http://127.0.0.1:8083/vtn-webapi/
→˓flowlists.json

• Create Flowlistentry

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"flowlistentry": {"seqnum": "233","macethertype": "0x8000","ipdstaddr": "10.0.0.3",
→˓"ipdstaddrprefix": "2","ipsrcaddr": "10.0.0.2","ipsrcaddrprefix": "2","ipproto": "17
→˓","ipdscp": "55","icmptypenum":"232","icmpcodenum": "232"}}' http://127.0.0.1:8083/
→˓vtn-webapi/flowlists/flowlist1/flowlistentries.json

• Create vBridge Interface Flowfilter

curl --user admin:adminpass -X POST -H 'content-type: application/json' -d '{
→˓"flowfilter" : {"ff_type": "in"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/
→˓vbridges/vbr_two/interfaces/if1/flowfilters.json

Flow filter demonstration with DROP action-type

curl --user admin:adminpass -X POST -H 'content-type: application/json' -d '{
→˓"flowfilterentry": {"seqnum": "233", "fl_name": "flowlist1", "action_type":"drop",
→˓"priority":"3", "dscp":"55" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/
→˓vbridges/vbr_two/interfaces/if1/flowfilters/in/flowfilterentries.json

1.3. OpenDaylight User Guide 1149

OpenDaylight Documentation Documentation, Release Carbon

Verification

As we have applied the action type “drop” , ping should fail.

mininet> h1 ping h3
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable

Flow filter demonstration with PASS action-type

curl --user admin:adminpass -X PUT -H 'content-type: application/json' -d '{
→˓"flowfilterentry": {"seqnum": "233", "fl_name": "flowlist1", "action_type":"pass",
→˓"priority":"3", "dscp":"55" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/
→˓vbridges/vbr_two/interfaces/if1/flowfilters/in/flowfilterentries/233.json

Verification

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

How To Use VTN To Make Packets Take Different Paths

This example demonstrates on how to create a specific VTN Path Map information.

Fig. 1.151: PathMap

1150 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Requirement

• Save the mininet script given below as pathmap_test.py and run the mininet script in the mininet environment
where Mininet is installed.

• Create topology using the below mininet script:

from mininet.topo import Topo
class MyTopo(Topo):

"Simple topology example."
def __init__(self):

"Create custom topo."
Initialize topology
Topo.__init__(self)
Add hosts and switches
leftHost = self.addHost('h1')
rightHost = self.addHost('h2')
leftSwitch = self.addSwitch('s1')
middleSwitch = self.addSwitch('s2')
middleSwitch2 = self.addSwitch('s4')
rightSwitch = self.addSwitch('s3')
Add links
self.addLink(leftHost, leftSwitch)
self.addLink(leftSwitch, middleSwitch)
self.addLink(leftSwitch, middleSwitch2)
self.addLink(middleSwitch, rightSwitch)
self.addLink(middleSwitch2, rightSwitch)
self.addLink(rightSwitch, rightHost)

topos = { 'mytopo': (lambda: MyTopo()) }

mininet> net
c0
s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1 s1-eth3:s4-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:s3-eth1
s3 lo: s3-eth1:s2-eth2 s3-eth2:s4-eth2 s3-eth3:h2-eth0
s4 lo: s4-eth1:s1-eth3 s4-eth2:s3-eth2
h1 h1-eth0:s1-eth1
h2 h2-eth0:s3-eth3

• Generate traffic by pinging between hosts h1 and h2 before creating the portmaps respectively

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable
From 10.0.0.1 icmp_seq=3 Destination Host Unreachable
From 10.0.0.1 icmp_seq=4 Destination Host Unreachable

Configuration

• Create a Controller named controller1 and mention its ip-address in the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"controller": {"controller_id": "odc", "ipaddr":"10.100.9.42", "type": "odc",
→˓"version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/
→˓controllers.json

1.3. OpenDaylight User Guide 1151

OpenDaylight Documentation Documentation, Release Carbon

• Create a VTN named vtn1 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" :
→˓{"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/
→˓vtns.json

• Create a vBridge named vBridge1 in the vtn1 by executing the create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge
→˓" : {"vbr_name":"vBridge1","controller_id":"odc","domain_id":"(DEFAULT)" }}' http://
→˓127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

• Create two Interfaces named if1 and if2 into the vBridge1

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/
→˓vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json
curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{
→˓"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.1:8083/
→˓vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

• Configure two mappings on each of the interfaces by executing the below command.

The interface if1 of the virtual bridge will be mapped to the port “s1-eth1” of the switch “openflow:1” of the Mininet.
The h1 is connected to the port “s1-eth1”.

The interface if2 of the virtual bridge will be mapped to the port “s3-eth3” of the switch “openflow:3” of the Mininet.
The h2 is connected to the port “s3-eth3”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap
→˓":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth1"}}' http://127.0.0.
→˓1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/portmap.json
curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap
→˓":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth3"}}' http://127.0.0.
→˓1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/portmap.json

• Generate traffic by pinging between hosts h1 and h2 after creating the portmaps respectively

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=36.4 ms
64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=0.880 ms
64 bytes from 10.0.0.2: icmp_req=3 ttl=64 time=0.073 ms
64 bytes from 10.0.0.2: icmp_req=4 ttl=64 time=0.081 ms

• Get the VTN Dataflows information

curl -X GET -H 'content-type: application/json' --user 'admin:adminpass' "http://127.
→˓0.0.1:8083/vtn-webapi/dataflows?&switch_id=00:00:00:00:00:00:00:01&port_name=s1-
→˓eth1&controller_id=odc&srcmacaddr=de3d.7dec.e4d2&no_vlan_id=true"

• Create a Flowcondition in the VTN

(The flowconditions, pathmap and pathpolicy commands have to be executed in the controller).

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input
→˓":{"operation":"SET","present":"false","name":"cond_1", "vtn-flow-match":[{"vtn-
→˓ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.1/32","protocol":1,
→˓"destination-network":"10.0.0.2/32"},"index":"1"}]}}'

1152 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• Create a Pathmap in the VTN

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-path-map:set-path-map -d '{"input":{"tenant-
→˓name":"vtn1","path-map-list":[{"condition":"cond_1","policy":"1","index": "1","idle-
→˓timeout":"300","hard-timeout":"0"}]}}'

• Get the Path policy information

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://
→˓localhost:8181/restconf/operations/vtn-path-policy:set-path-policy -d '{"input":{
→˓"operation":"SET","id": "1","default-cost": "10000","vtn-path-cost": [{"port-desc":
→˓"openflow:1,3,s1-eth3","cost":"1000"},{"port-desc":"openflow:4,2,s4-eth2","cost":
→˓"100000"},{"port-desc":"openflow:3,3,s3-eth3","cost":"10000"}]}}'

Verification

• Before applying Path policy information in the VTN

{
"pathinfos": [

{
"in_port_name": "s1-eth1",
"out_port_name": "s1-eth3",
"switch_id": "openflow:1"

},
{
"in_port_name": "s4-eth1",
"out_port_name": "s4-eth2",
"switch_id": "openflow:4"

},
{

"in_port_name": "s3-eth2",
"out_port_name": "s3-eth3",
"switch_id": "openflow:3"

}
]

}

• After applying Path policy information in the VTN

{
"pathinfos": [

{
"in_port_name": "s1-eth1",
"out_port_name": "s1-eth2",
"switch_id": "openflow:1"

},
{
"in_port_name": "s2-eth1",
"out_port_name": "s2-eth2",
"switch_id": "openflow:2"

},
{

"in_port_name": "s3-eth1",

1.3. OpenDaylight User Guide 1153

OpenDaylight Documentation Documentation, Release Carbon

"out_port_name": "s3-eth3",
"switch_id": "openflow:3"

}
]

}

VTN Coordinator(Troubleshooting HowTo)

Overview

This page demonstrates Installation troubleshooting steps of VTN Coordinator. OpenDaylight VTN provides multi-
tenant virtual network functions on OpenDaylight controllers. OpenDaylight VTN consists of two parts:

• VTN Coordinator.

• VTN Manager.

VTN Coordinator orchestrates multiple VTN Managers running in OpenDaylight Controllers, and provides VTN
Applications with VTN API. VTN Manager is OSGi bundles running in OpenDaylight Controller. Current VTN
Manager supports only OpenFlow switches. It handles PACKET_IN messages, sends PACKET_OUT messages,
manages host information, and installs flow entries into OpenFlow switches to provide VTN Coordinator with virtual
network functions. The requirements for installing these two are different.Therefore, we recommend that you install
VTN Manager and VTN Coordinator in different machines.

List of installation Troubleshooting How to’s

• https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:VTN_
Coordinator

After executing db_setup, you have encountered the error “Failed to setup database”?

The error could be due to the below reasons

• Access Restriction

The user who owns /usr/local/vtn/ directory and installs VTN Coordinator, can only start db_setup. Example :

The directory should appear as below (assuming the user as "vtn"):
ls -l /usr/local/

drwxr-xr-x. 12 vtn vtn 4096 Mar 14 21:53 vtn
If the user doesnot own /usr/local/vtn/ then, please run the below command (assuming
→˓the username as vtn),

chown -R vtn:vtn /usr/local/vtn

• Postgres not Present

1. In case of Fedora/CentOS/RHEL, please check if /usr/pgsql/<version> directory is
→˓present and also ensure the commands initdb, createdb,pg_ctl,psql are working. If,
→˓not please re-install postgres packages
2. In case of Ubuntu, check if /usr/lib/postgres/<version> directory is present and
→˓check for the commands as in the previous step.

• Not enough space to create tables

Please check df -k and ensure enough free space is available.

1154 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:VTN_Coordinator
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:VTN_Coordinator

OpenDaylight Documentation Documentation, Release Carbon

• If the above steps do not solve the problem, please refer to the log file for the exact problem

/usr/local/vtn/var/dbm/unc_setup_db.log for the exact error.

• list of VTN Coordinator processes

• Run the below command ensure the Coordinator daemons are running.

Command: /usr/local/vtn/bin/unc_dmctl status
Name Type IPC Channel PID

----------- ----------- -------------- ------
drvodcd DRIVER drvodcd 15972
lgcnwd LOGICAL lgcnwd 16010
phynwd PHYSICAL phynwd 15996

• Issue the curl command to fetch version and ensure the process is able to respond.

How to debug a startup failure?.

The following activities take place in order during startup

• Database server is started after setting virtual memory to required value,Any database startup errors will be
reflected in any of the below logs.

/usr/local/vtn/var/dbm/unc_db_script.log.
/usr/local/vtn/var/db/pg_log/postgresql-*.log (the pattern will have the date)

• uncd daemon is kicked off, The daemon in turn kicks off the rest of the daemons.

Any uncd startup failures will be reflected in /usr/local/vtn/var/uncd/uncd_start.
→˓err.

After setting up the apache tomcat server, what are the aspects that should be checked.

Please check if catalina is running..

The command ps -ef | grep catalina | grep -v grep should list a catalina process

If you encounter an erroneous situation where the REST API is always failing..

Please ensure the firewall settings for port:8181 (Beryllium release) or port:8083
→˓(Post Beryllium release) and enable the same.

How to debug a REST API returning a failure message?.

Please check the /usr/share/java/apache-tomcat-7.0.39/logs/core/core.log for failure details.

REST API for VTN configuration fails, how to debug?.

The default log level for all daemons is “INFO”, to debug the situation TRACE or DEBUG logs may be needed. To
increase the log level for individual daemons, please use the commands suggested below

/usr/local/vtn/bin/lgcnw_control loglevel trace -- upll daemon log
/usr/local/vtn/bin/phynw_control loglevel trace -- uppl daemon log
/usr/local/vtn/bin/unc_control loglevel trace -- uncd daemon log
/usr/local/vtn/bin/drvodc_control loglevel trace -- Driver daemon log

1.3. OpenDaylight User Guide 1155

OpenDaylight Documentation Documentation, Release Carbon

After setting the log levels, the operation can be repeated and the log files can be referred for debugging.

Problems while Installing PostgreSQL due to openssl.

Errors may occur when trying to install postgreSQL rpms. Recently PostgreSQL has upgraded all their binaries to use
the latest openssl versions with fix for http://en.wikipedia.org/wiki/Heartbleed Please upgrade the openssl package to
the latest version and re-install. For RHEL 6.1/6.4 : If you have subscription, Please use the same and update the rpms.
The details are available in the following link https://access.redhat.com/site/solutions/781793 ACCESS-REDHAT

rpm -Uvh http://mirrors.kernel.org/centos/6/os/x86_64/Packages/openssl-1.0.1e-15.el6.
→˓x86_64.rpm
rpm -ivh http://mirrors.kernel.org/centos/6/os/x86_64/Packages/openssl-devel-1.0.1e-
→˓15.el6.x86_64.rpm

For other linux platforms, Please do yum update, the public respositroes will have the latest openssl, please install the
same.

Support for Microsoft SCVMM 2012 R2 with ODL VTN

Introduction

System Center Virtual Machine Manager (SCVMM) is Microsoft’s virtual machine support center for window’s based
emulations. SCVMM is a management solution for the virtualized data center. You can use it to configure and manage
your virtualization host, networking, and storage resources in order to create and deploy virtual machines and services
to private clouds that you have created.

The VSEM Provider is a plug-in to bridge between SCVMM and OpenDaylight.

Microsoft Hyper-V is a server virtualization developed by Microsoft, which provides virtualization services through
hypervisor-based emulations.

The topology used in this set-up is:

• A SCVMM with VSEM Provider installed and a running VTN Coordinator and OpenDaylight with VTN Fea-
ture installed.

• PF1000 virtual switch extension has been installed in the two Hyper-V servers as it implements the OpenFlow
capability in Hyper-V.

• Three OpenFlow switches simulated using mininet and connected to Hyper-V.

• Four VM’s hosted using SCVMM.

It is implemented as two major components:

• SCVMM

• OpenDaylight (VTN Feature)

• VTN Coordinator

VTN Coordinator

OpenDaylight VTN as Network Service provider for SCVMM where VSEM provider is added in the Network Service
which will handle all requests from SCVMM and communicate with the VTN Coordinator. It is used to manage the
network virtualization provided by OpenDaylight.

1156 Chapter 1. Content for OpenDaylight Users

http://en.wikipedia.org/wiki/Heartbleed
https://access.redhat.com/site/solutions/781793

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.152: Set-Up Diagram

1.3. OpenDaylight User Guide 1157

OpenDaylight Documentation Documentation, Release Carbon

Installing HTTPS in VTN Coordinator

• System Center Virtual Machine Manager (SCVMM) supports only https protocol.

Apache Portable Runtime (APR) Installation Steps

• Enter the command “yum install apr” in VTN Coordinator installed machine.

• In /usr/bin, create a soft link as “ln –s /usr/bin/apr-1-config /usr/bin/apr-config”.

• Extract tomcat under “/usr/share/java” by using the below command “tar -xvf apache-tomcat-8.0.27.tar.gz –C
/usr/share/java”.

Note: Please go through the bleow link to download apache-tomcat-8.0.27.tar.gz file, https://archive.apache.org/dist/
tomcat/tomcat-8/v8.0.27/bin/

• Please go to the directory “cd /usr/share/java/apache-tomcat-8.0.27/bin and unzip tomcat-native.gz using this
command “tar -xvf tomcat-native.gz”.

• Go to the directory “cd /usr/share/java/apache-tomcat-8.0.27/bin/tomcat-native-1.1.33-src/jni/native”.

• Enter the command ”./configure –with-os-type=bin –with-apr=/usr/bin/apr-config”.

• Enter the command “make” and “make install”.

• Apr libraries are successfully installed in “/usr/local/apr/lib”.

Enable HTTP/HTTPS in VTN Coordinator

Enter the command “firewall-cmd –zone=public –add-port=8083/tcp –permanent” and “firewall-cmd –reload” to en-
able firewall settings in server.

Create a CA’s private key and a self-signed certificate in server

• Execute the following command “openssl req -x509 -days 365 -extensions v3_ca -newkey rsa:2048 –out
/etc/pki/CA/cacert.pem –keyout /etc/pki/CA/private/cakey.pem” in a single line.

Argument Description
Country Name

Specify the country code.
For example, JP

State or Province Name

Specify the state or province.
For example, Tokyo

Locality Name

Locality Name
For example, Chuo-Ku

Organization Name Specify the company.
Organizational Unit Name Specify the department, division, or the like.
Common Name Specify the host name.
Email Address Specify the e-mail address.

• Execute the following commands: “touch /etc/pki/CA/index.txt” and “echo 00 > /etc/pki/CA/serial” in server
after setting your CA’s private key.

1158 Chapter 1. Content for OpenDaylight Users

https://archive.apache.org/dist/tomcat/tomcat-8/v8.0.27/bin/
https://archive.apache.org/dist/tomcat/tomcat-8/v8.0.27/bin/

OpenDaylight Documentation Documentation, Release Carbon

Create a private key and a CSR for web server

• Execute the following command “openssl req -new -newkey rsa:2048 -out csr.pem –keyout
/usr/local/vtn/tomcat/conf/key.pem” in a single line.

• Enter the PEM pass phrase: Same password you have given in CA’s private key PEM pass phrase.

Argument Description
Country Name

Specify the country code.
For example, JP

State or Province Name

Specify the state or province.
For example, Tokyo

Locality Name

Locality Name
For example, Chuo-Ku

Organization Name Specify the company.
Organizational Unit Name Specify the department, division, or the like.
Common Name Specify the host name.
Email Address Specify the e-mail address.
A challenge password Specify the challenge password.
An optional company name Specify an optional company name.

Create a certificate for web server

• Execute the following command “openssl ca –in csr.pem –out /usr/local/vtn/tomcat/conf/cert.pem –days 365
–batch” in a single line.

• Enter pass phrase for /etc/pki/CA/private/cakey.pem: Same password you have given in CA’s private key PEM
pass phrase.

• Open the tomcat file using “vim /usr/local/vtn/tomcat/bin/tomcat”.

• Include the line ” TOMCAT_PROPS=”$TOMCAT_PROPS -Djava.library.path=\”/usr/local/apr/lib\”” ” in 131th
line and save the file.

Edit server.xml file and restart the server

• Open the server.xml file using “vim /usr/local/vtn/tomcat/conf/server.xml” and add the below lines.

<Connector port="${vtn.port}" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
SSLCertificateFile="/usr/local/vtn/tomcat/conf/cert.pem"
SSLCertificateKeyFile="/usr/local/vtn/tomcat/conf/key.pem"
SSLPassword=same password you have given in CA's private key PEM pass phrase
connectionTimeout="20000" />

• Save the file and restart the server.

• To stop vtn use the following command.

/usr/local/vtn/bin/vtn_stop

• To start vtn use the following command.

1.3. OpenDaylight User Guide 1159

OpenDaylight Documentation Documentation, Release Carbon

/usr/local/vtn/bin/vtn_start

• Copy the created CA certificate from cacert.pem to cacert.crt by using the following command,

openssl x509 -in /etc/pki/CA/cacert.pem -out cacert.crt

Checking the HTTP and HTTPS connection from client

• You can check the HTTP connection by using the following command:

curl -X GET -H 'contenttype:application/json' -H 'username:admin' -H
→˓'password:adminpass' http://<server IP address>:8083/vtn-webapi/api_version.json

• You can check the HTTPS connection by using the following command:

curl -X GET -H 'contenttype:application/json' -H 'username:admin' -H
→˓'password:adminpass' https://<server IP address>:8083/vtn-webapi/api_version.
→˓json --cacert /etc/pki/CA/cacert.pem

• The response should be like this for both HTTP and HTTPS:

{"api_version":{"version":"V1.4"}}

Prerequisites to create Network Service in SCVMM machine, Please follow the below steps

1. Please go through the below link to download VSEM Provider zip file, https://nexus.opendaylight.
org/content/groups/public/org/opendaylight/vtn/application/vtnmanager-vsemprovider/1.2.0-Boron/
vtnmanager-vsemprovider-1.2.0-Boron-bin.zip

2. Unzip the vtnmanager-vsemprovider-1.2.0-Boron-bin.zip file anywhere in your SCVMM machine.

3. Stop SCVMM service from “service manager→tools→servers→select system center virtual machine man-
ager” and click stop.

4. Go to “C:/Program Files” in your SCVMM machine. Inside “C:/Program Files”, create a folder named as
“ODLProvider”.

5. Inside “C:/Program Files/ODLProvider”, create a folder named as “Module” in your SCVMM machine.

6. Inside “C:/Program Files/ODLProvider/Module”, Create two folders named as “Odl.VSEMProvider” and
“VSEMOdlUI” in your SCVMM machine.

7. Copy the “VSEMOdl.dll” file from “ODL_SCVMM_PROVIDER/ODL_VSEM_PROVIDER” to
“C:/Program Files/ODLProvider/Module/Odl.VSEMProvider” in your SCVMM machine.

8. Copy the “VSEMOdlProvider.psd1” file from “application/vsemprovider/VSEMOdlProvider/VSEMOdlProvider.psd1”
to “C:/Program Files/ODLProvider/Module/Odl.VSEMProvider” in your SCVMM machine.

9. Copy the “VSEMOdlUI.dll” file from “ODL_SCVMM_PROVIDER/ODL_VSEM_PROVIDER_UI” to
“C:/Program Files/ODLProvider/Module/VSEMOdlUI” in your SCVMM machine.

10. Copy the “VSEMOdlUI.psd1” file from “application/vsemprovider/VSEMOdlUI” to “C:/Program
Files/ODLProvider/Module/VSEMOdlUI” in your SCVMM machine.

11. Copy the “reg_entry.reg” file from “ODL_SCVMM_PROVIDER/Register_settings” to your SCVMM desk-
top and double click the “reg_entry.reg” file to install registry entry in your SCVMM machine.

12. Download “PF1000.msi” from this link, https://www.pf-info.com/License/en/index.php?url=index/index_non_
buyer and place into “C:/Program Files/Switch Extension Drivers” in your SCVMM machine.

1160 Chapter 1. Content for OpenDaylight Users

https://nexus.opendaylight.org/content/groups/public/org/opendaylight/vtn/application/vtnmanager-vsemprovider/1.2.0-Boron/vtnmanager-vsemprovider-1.2.0-Boron-bin.zip
https://nexus.opendaylight.org/content/groups/public/org/opendaylight/vtn/application/vtnmanager-vsemprovider/1.2.0-Boron/vtnmanager-vsemprovider-1.2.0-Boron-bin.zip
https://nexus.opendaylight.org/content/groups/public/org/opendaylight/vtn/application/vtnmanager-vsemprovider/1.2.0-Boron/vtnmanager-vsemprovider-1.2.0-Boron-bin.zip
https://www.pf-info.com/License/en/index.php?url=index/index_non_buyer
https://www.pf-info.com/License/en/index.php?url=index/index_non_buyer

OpenDaylight Documentation Documentation, Release Carbon

13. Start SCVMM service from “service manager→tools→servers→select system center virtual machine man-
ager” and click start.

System Center Virtual Machine Manager (SCVMM)

It supports two major features:

• Failover Clustering

• Live Migration

Failover Clustering

A single Hyper-V can host a number of virtual machines. If the host were to fail then all of the virtual machines
that are running on it will also fail, thereby resulting in a major outage. Failover clustering treats individual virtual
machines as clustered resources. If a host were to fail then clustered virtual machines are able to fail over to a different
Hyper-V server where they can continue to run.

Live Migration

Live Migration is used to migrate the running virtual machines from one Hyper-V server to another Hyper-V server
without any interruptions. Please go through the below video for more details,

• https://youtu.be/34YMOTzbNJM

SCVMM User Guide

• Please go through the below link for SCVMM user guide: https://wiki.opendaylight.org/images/c/ca/ODL_
SCVMM_USER_GUIDE_final.pdf

• Please go through the below links for more details

– OpenDaylight SCVMM VTN Integration: https://youtu.be/iRt4dxtiz94

– OpenDaylight Congestion Control with SCVMM VTN: https://youtu.be/34YMOTzbNJM

1.4 OpenDaylight with Openstack Guide

1.4.1 Overview

OpenStack is a popular open source Infrastructure as a service project, covering compute, storage and network man-
agement. OpenStack can use OpenDaylight as its network management provider through the Modular Layer 2 (ML2)
north-bound plug-in. OpenDaylight manages the network flows for the OpenStack compute nodes via the OVSDB
south-bound plug-in. This page describes how to set that up, and how to tell when everything is working.

1.4.2 Installing OpenStack

Installing OpenStack is out of scope for this document, but to get started, it is useful to have a minimal multi-node
OpenStack deployment.

The reference deployment we will use for this document is a 3 node cluster:

1.4. OpenDaylight with Openstack Guide 1161

https://youtu.be/34YMOTzbNJM
https://wiki.opendaylight.org/images/c/ca/ODL_SCVMM_USER_GUIDE_final.pdf
https://wiki.opendaylight.org/images/c/ca/ODL_SCVMM_USER_GUIDE_final.pdf
https://youtu.be/iRt4dxtiz94
https://youtu.be/34YMOTzbNJM
https://www.openstack.org/

OpenDaylight Documentation Documentation, Release Carbon

• One control node containing all of the management services for OpenStack (Nova, Neutron, Glance, Swift,
Cinder, Keystone)

• Two compute nodes running nova-compute

• Neutron using the OVS back-end and vxlan for tunnels

Once you have installed OpenStack, verify that it is working by connecting to Horizon and performing a few opera-
tions. To check the Neutron configuration, create two instances on a private subnet bridging to your public network,
and verify that you can connect to them, and that they can see each other.

1.4.3 Installing OpenDaylight

OpenStack with NetVirt

OpenStack with NetVirt

Table of Contents

• OpenStack with NetVirt

– Installing OpenDaylight on an existing OpenStack

– Installing OpenStack and OpenDaylight using DevStack

– Troubleshooting

– Useful Links

Prerequisites: OpenDaylight requires Java 1.8.0 and Open vSwitch >= 2.5.0

Installing OpenDaylight on an existing OpenStack

• On the control host, Download the latest OpenDaylight release

• Uncompress it as root, and start OpenDaylight (you can start OpenDaylight by running karaf directly, but exiting
from the shell will shut it down):

tar xvfz distribution-karaf-0.5.1-Boron-SR1.tar.gz
cd distribution-karaf-0.5.1-Boron-SR1
./bin/start # Start OpenDaylight as a server process

• Connect to the Karaf shell, and install the odl-netvirt-openstack bundle, dlux and their dependencies:

./bin/client # Connect to OpenDaylight with the client
opendaylight-user@root> feature:install odl-netvirt-openstack odl-dlux-core odl-
→˓mdsal-apidocs

• If everything is installed correctly, you should now be able to log in to the dlux interface on http://CONTROL_
HOST:8181/index.html - the default username and password is “admin/admin” (see screenshot below)

Optional - Advanced OpenDaylight Installation - Configurations and Clustering

• ACL Implementation - Security Groups - Stateful:

1162 Chapter 1. Content for OpenDaylight Users

https://www.openstack.org/
https://www.openstack.org/
https://www.opendaylight.org/software/downloads
http://CONTROL_HOST:8181/index.html
http://CONTROL_HOST:8181/index.html

OpenDaylight Documentation Documentation, Release Carbon

– Default implementation used is stateful, requiring OVS compiled with conntrack modules.

– This requires using a linux kernel that is >= 4.3

– To check if OVS is running with conntrack support:

root@devstack:~/# lsmod | grep conntrack | grep openvswitch
nf_conntrack 106496 9 xt_CT,openvswitch,nf_nat,nf_nat_ipv4,xt_

→˓conntrack,nf_conntrack_netlink,xt_connmark,nf_conntrack_ipv4,nf_conntrack_
→˓ipv6

– If the conntrack modules are not installed for OVS, either recompile/install an OVS version with conntrack
support, or alternatively configure OpenDaylight to use a non-stateful implementation.

– OpenvSwitch 2.5 with conntrack support can be acquired from this repository for yum based linux distri-
butions:

yum install -y http://rdoproject.org/repos/openstack-newton/rdo-release-
→˓newton.rpm
yum install -y --nogpgcheck openvswitch

• ACL Implementations - Alternative options:

– “learn” - semi-stateful implementation that does not require conntrack support. This is the most complete
non-conntrack implementation.

– “stateless” - naive security group implementation for TCP connections only. UDP and ICMP packets are
allowed by default.

– “transparent” - no security group support. all traffic is allowed, this is the recommended mode if you don’t
need to use security groups at all.

– To configure one of these alternative implementations, the following needs to be done prior to running
OpenDaylight:

1.4. OpenDaylight with Openstack Guide 1163

OpenDaylight Documentation Documentation, Release Carbon

mkdir -p <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/
export CONFFILE=\`find <ODL_FOLDER> -name "*aclservice*config.xml"\`
cp \CONFFILE <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/netvirt-
→˓aclservice-config.xml
sed -i s/stateful/<learn/transparent>/ <ODL_FOLDER>/etc/opendaylight/
→˓datastore/initial/config/netvirt-aclservice-config.xml
cat <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/netvirt-aclservice-
→˓config.xml

• Running multiple OpenDaylight controllers in a cluster:

– For redundancy, it is possible to run OpenDaylight in a 3-node cluster.

– More info on Clustering available here.

– To configure OpenDaylight in clustered mode, run <ODL_FOLDER>/bin/configure_cluster.sh on each
node prior to running OpenDaylight. This script is used to configure cluster parameters on this controller.
The user should restart controller to apply changes.

Usage: ./configure_cluster.sh <index> <seed_nodes_list>
- index: Integer within 1..N, where N is the number of seed nodes.
- seed_nodes_list: List of seed nodes, separated by comma or space.

– The address at the provided index should belong this controller. When running this script on multiple seed
nodes, keep the seed_node_list same, and vary the index from 1 through N.

– Optionally, shards can be configured in a more granular way by modifying the file “cus-
tom_shard_configs.txt” in the same folder as this tool. Please see that file for more details.

Note: OpenDaylight should be restarted after applying any of the above changes via configuration files.

Ensuring OpenStack network state is clean

When using OpenDaylight as the Neutron back-end, OpenDaylight expects to be the only source of truth for Neutron
configurations. Because of this, it is necessary to remove existing OpenStack configurations to give OpenDaylight a
clean slate.

• Delete instances:

nova list
nova delete <instance names>

• Remove links from subnets to routers:

neutron subnet-list
neutron router-list
neutron router-port-list <router name>
neutron router-interface-delete <router name> <subnet ID or name>

• Delete subnets, networks, routers:

neutron subnet-delete <subnet name>
neutron net-list
neutron net-delete <net name>
neutron router-delete <router name>

1164 Chapter 1. Content for OpenDaylight Users

http://docs.opendaylight.org/en/latest/getting-started-guide/common-features/clustering.html

OpenDaylight Documentation Documentation, Release Carbon

• Check that all ports have been cleared - at this point, this should be an empty list:

neutron port-list

Ensure Neutron is stopped

While Neutron is managing the OVS instances on compute and control nodes, OpenDaylight and Neutron can be in
conflict. To prevent issues, we turn off Neutron server on the network controller, and Neutron’s Open vSwitch agents
on all hosts.

• Turn off neutron-server on control node:

systemctl stop neutron-server
systemctl stop neutron-l3-agent

• On each node in the cluster, shut down and disable Neutron’s agent services to ensure that they do not restart
after a reboot:

systemctl stop neutron-openvswitch-agent
systemctl disable
neutron-openvswitch-agent
systemctl stop neutron-l3-agent
systemctl disable neutron-l3-agent

Configuring Open vSwitch to be managed by OpenDaylight

On each host (both compute and control nodes) we will clear the pre-existing Open vSwitch config and set OpenDay-
light to manage the switch:

• Stop the Open vSwitch service, and clear existing OVSDB (OpenDaylight expects to manage vSwitches com-
pletely):

systemctl stop openvswitch
rm -rf /var/log/openvswitch/*
rm -rf /etc/openvswitch/conf.db
systemctl start openvswitch

• At this stage, your Open vSwitch configuration should be empty:

[root@odl-compute2 ~]# ovs-vsctl show
9f3b38cb-eefc-4bc7-828b-084b1f66fbfd

ovs_version: "2.5.1"

• Set OpenDaylight as the manager on all nodes:

ovs-vsctl set-manager tcp:{CONTROL_HOST}:6640

• Set the IP to be used for VXLAN connectivity on all nodes. This IP must correspond to an actual linux interface
on each machine.

sudo ovs-vsctl set Open_vSwitch . other_config:local_ip=<ip>

• You should now see a new section in your Open vSwitch configuration showing that you are connected to the
OpenDaylight server via OVSDB, and OpenDaylight will automatically create a br-int bridge that is connected
via OpenFlow to the controller:

1.4. OpenDaylight with Openstack Guide 1165

OpenDaylight Documentation Documentation, Release Carbon

[root@odl-compute2 ~]# ovs-vsctl show
9f3b38cb-eefc-4bc7-828b-084b1f66fbfd

Manager "tcp:172.16.21.56:6640"
is_connected: true

Bridge br-int
Controller "tcp:172.16.21.56:6633"

is_connected: true
fail_mode: secure
Port br-int

Interface br-int
ovs_version: "2.5.1"

[root@odl-compute2 ~]# ovs-vsctl get Open_vSwitch . other_config
{local_ip="10.0.42.161"}

• If you do not see the result above (specifically, if you do not see “is_connected: true” in the Manager section
or in the Controller section), you may not have a security policies in place to allow Open vSwitch remote
administration.

Note:

There might be iptables restrictions - if so the relevant ports should be opened (6640, 6653).
If SELinux is running on your linux, set to permissive mode on all nodes and ensure it stays that way after boot.

setenforce 0
sed -i -e 's/SELINUX=enforcing/SELINUX=permissive/g' /etc/selinux/config

• Make sure all nodes, including the control node, are connected to OpenDaylight.

• If you reload DLUX, you should now see that all of your Open vSwitch nodes are now connected to OpenDay-
light.

1166 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• If something has gone wrong, check data/log/karaf.log under the OpenDaylight distribution directory.
If you do not see any interesting log entries, set logging for netvirt to TRACE level inside Karaf and try again:

log:set TRACE netvirt

Configuring Neutron to use OpenDaylight

Once you have configured the vSwitches to connect to OpenDaylight, you can now ensure that OpenStack Neutron is
using OpenDaylight.

This requires the neutron networking-odl module to be installed. | pip install networking-odl

First, ensure that port 8080 (which will be used by OpenDaylight to listen for REST calls) is available. By default,
swift-proxy-service listens on the same port, and you may need to move it (to another port or another host), or disable
that service. It can be moved to a different port (e.g. 8081) by editing /etc/swift/proxy-server.conf and /
etc/cinder/cinder.conf, modifying iptables appropriately, and restarting swift-proxy-service. Alternatively,
OpenDaylight can be configured to listen on a different port, by modifying the jetty.port property value in etc/
jetty.conf.

<Set name="port">
<Property name="jetty.port" default="8080" />

</Set>

• Configure Neutron to use OpenDaylight’s ML2 driver:

crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 mechanism_drivers
→˓opendaylight
crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 tenant_network_types vxlan

cat <<EOT>> /etc/neutron/plugins/ml2/ml2_conf.ini
[ml2_odl]
url = http://{CONTROL_HOST}:8080/controller/nb/v2/neutron
password = admin
username = admin
EOT

• Configure Neutron to use OpenDaylight’s odl-router service plugin for L3 connectivity:

crudini --set /etc/neutron/plugins/neutron.conf DEFAULT service_plugins odl-router

• Configure Neutron DHCP agent to provide metadata services:

crudini --set /etc/neutron/plugins/dhcp_agent.ini DEFAULT force_metadata True

Note:

If the OpenStack version being used is Newton, this workaround should be applied,
configuring the Neutron DHCP agent to use vsctl as the OVSDB interface:

crudini --set /etc/neutron/plugins/dhcp_agent.ini OVS ovsdb_interface vsctl

• Reset Neutron’s database

1.4. OpenDaylight with Openstack Guide 1167

OpenDaylight Documentation Documentation, Release Carbon

mysql -e "DROP DATABASE IF EXISTS neutron;"
mysql -e "CREATE DATABASE neutron CHARACTER SET utf8;"
/usr/local/bin/neutron-db-manage --config-file /etc/neutron/neutron.conf --config-
→˓file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade head

• Restart neutron-server:

systemctl start neutron-server

Verifying it works

• Verify that OpenDaylight’s ML2 interface is working:

curl -u admin:admin http://{CONTROL_HOST}:8080/controller/nb/v2/neutron/networks

{
"networks" : []

}

If this does not work or gives an error, check Neutron’s log file in /var/log/neutron/server.log.
Error messages here should give some clue as to what the problem is in the connection with OpenDaylight.

• Create a network, subnet, router, connect ports, and start an instance using the Neutron CLI:

neutron router-create router1
neutron net-create private
neutron subnet-create private --name=private_subnet 10.10.5.0/24
neutron router-interface-add router1 private_subnet
nova boot --flavor <flavor> --image <image id> --nic net-id=<network id> test1
nova boot --flavor <flavor> --image <image id> --nic net-id=<network id> test2

At this point, you have confirmed that OpenDaylight is creating network end-points for instances on your network and
managing traffic to them.

VMs can be reached using Horizon console, or alternatively by issuing nova get-vnc-console <vm> novnc

Through the console, connectivity between VMs can be verified.

Adding an external network for floating IP connectivity

• In order to connect to the VM using a floating IP, we need to configure external network connectivity, by creating
an external network and subnet. This external network must be linked to a physical port on the machine, which
will provide connectivity to an external gateway.

sudo ovs-vsctl set Open_vSwitch . other_config:provider_mappings=physnet1:eth1
neutron net-create public-net -- --router:external --is-default --
→˓provider:network_type=flat --provider:physical_network=physnet1
neutron subnet-create --allocation-pool start=10.10.10.2,end=10.10.10.254 --
→˓gateway 10.10.10.1 --name public-subnet public-net 10.10.0.0/16 -- --enable_
→˓dhcp=False

1168 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

neutron router-gateway-set router1 public-net

neutron floatingip-create public-net
nova floating-ip-associate test1 <floating_ip>

Installing OpenStack and OpenDaylight using DevStack

The easiest way to load and OpenStack setup using OpenDaylight is by using devstack, which does all the steps men-
tioned in previous sections. | git clone https://git.openstack.org/openstack-dev/devstack

• The following lines need to be added to your local.conf:

enable_plugin networking-odl http://git.openstack.org/openstack/networking-odl
→˓<branch>
ODL_MODE=allinone
Q_ML2_PLUGIN_MECHANISM_DRIVERS=opendaylight,logger
ODL_GATE_SERVICE_PROVIDER=vpnservice
disable_service q-l3
ML2_L3_PLUGIN=odl-router
ODL_PROVIDER_MAPPINGS={PUBLIC_PHYSICAL_NETWORK}:<external linux interface>

• More details on using devstack can be found in the following links:

– Devstack All-In-One Single Machine Tutorial

– Devstack networking-odl README

Troubleshooting

VM DHCP Issues

• Trigger DHCP requests - access VM console:

– View log: nova console-log <vm>

– Access using VNC console: nova get-vnc-console <vm> novnc

– Trigger DHCP requests: sudo ifdown eth0 ; sudo ifup eth0

udhcpc (v1.20.1) started
Sending discover...
Sending select for 10.0.123.3...
Lease of 10.0.123.3 obtained, lease time 86400 # This only happens when DHCP
→˓is properly obtained.

• Check if the DHCP requests are reaching the qdhcp agent using the following commands on the OpenStack
controller:

sudo ip netns
sudo ip netns exec qdhcp-xxxxx ifconfig # xxxx is the neutron network id
sudo ip netns exec qdhcp-xxxxx tcpdump -nei tapxxxxx # xxxxx is the neutron port
→˓id

Valid request and response:

1.4. OpenDaylight with Openstack Guide 1169

http://docs.openstack.org/developer/devstack/guides/single-machine.html
https://github.com/openstack/networking-odl/blob/master/devstack/README.rst

OpenDaylight Documentation Documentation, Release Carbon

15:08:41.684932 fa:16:3e:02:14:bb > ff:ff:ff:ff:ff:ff, ethertype IPv4 (0x0800),
→˓length 329: 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from
→˓fa:16:3e:02:14:bb, length 287
15:08:41.685152 fa:16:3e:79:07:98 > fa:16:3e:02:14:bb, ethertype IPv4 (0x0800),
→˓length 354: 10.0.123.2.67 > 10.0.123.3.68: BOOTP/DHCP, Reply, length 312

• If the requests aren’t reaching qdhcp:

– Verify VXLAN tunnels exist between compute and control nodes by using ovs-vsctl show

– Run the following commands to debug the OVS processing of the DHCP request packet:
ovs-ofctl -OOpenFlow13 dump-ports-desc br-int # retrieve VMs ofport and MAC
ovs-appctl ofproto/trace br-int in_port=<ofport>,dl_src=<mac>,
dl_dst=ff:ff:ff:ff:ff:ff,udp,ip_src=0.0.0.0,ip_dst=255.255.255.255 |
grep "Rule\|action"

root@devstack:~# ovs-appctl ofproto/trace br-int in_port=1,dl_
→˓src=fe:16:3e:33:8b:d8,dl_dst=ff:ff:ff:ff:ff:ff,udp,ip_src=0.0.0.0,ip_
→˓dst=255.255.255.255 | grep "Rule\|action"

Rule: table=0 cookie=0x8000000 priority=1,in_port=1
OpenFlow actions=write_metadata:0x20000000001/0xffffff0000000001,goto_

→˓table:17
Rule: table=17 cookie=0x8000001 priority=5,metadata=0x20000000000/

→˓0xffffff0000000000
OpenFlow actions=write_metadata:0xc0000200000222e2/0xfffffffffffffffe,

→˓goto_table:19
Rule: table=19 cookie=0x1080000 priority=0
OpenFlow actions=resubmit(,17)

Rule: table=17 cookie=0x8040000 priority=6,
→˓metadata=0xc000020000000000/0xffffff0000000000

OpenFlow actions=write_metadata:0xe00002138a000000/
→˓0xfffffffffffffffe,goto_table:50

Rule: table=50 cookie=0x8050000 priority=0
OpenFlow actions=CONTROLLER:65535,goto_table:51

Rule: table=51 cookie=0x8030000 priority=0
OpenFlow actions=goto_table:52

Rule: table=52 cookie=0x870138a priority=5,
→˓metadata=0x138a000001/0xffff000001

OpenFlow actions=write_actions(group:210003)
Datapath actions: drop

root@devstack:~# ovs-ofctl -OOpenFlow13 dump-groups br-int | grep 'group_
→˓id=210003'

group_id=210003,type=all

• If the requests are reaching qdhcp, but the response isn’t arriving to the VM:

– Locate the compute the VM is residing on (can use nova show <vm>).

* If the VM is on the same node as the qdhcp namespace, ofproto/trace can be used to track the
packet:
ovs-appctl ofproto/trace br-int
in_port=<dhcp_ofport>,dl_src=<dhcp_port_mac>,dl_dst=<vm_port_mac>,
udp,ip_src=<dhcp_port_ip>,ip_dst=<vm_port_ip> | grep
"Rule\|action"

root@devstack:~# ovs-appctl ofproto/trace br-int in_port=2,dl_
→˓src=fa:16:3e:79:07:98,dl_dst=fa:16:3e:02:14:bb,udp,ip_src=10.0.123.2,ip_
→˓dst=10.0.123.3 | grep "Rule\|action"

1170 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Rule: table=0 cookie=0x8000000 priority=4,in_port=2
OpenFlow actions=write_metadata:0x10000000000/0xffffff0000000001,goto_

→˓table:17
Rule: table=17 cookie=0x8000001 priority=5,metadata=0x10000000000/

→˓0xffffff0000000000
OpenFlow actions=write_metadata:0x60000100000222e0/

→˓0xfffffffffffffffe,goto_table:19
Rule: table=19 cookie=0x1080000 priority=0
OpenFlow actions=resubmit(,17)

Rule: table=17 cookie=0x8040000 priority=6,
→˓metadata=0x6000010000000000/0xffffff0000000000

OpenFlow actions=write_metadata:0x7000011389000000/
→˓0xfffffffffffffffe,goto_table:50

Rule: table=50 cookie=0x8051389 priority=20,
→˓metadata=0x11389000000/0xfffffffff000000,dl_src=fa:16:3e:79:07:98

OpenFlow actions=goto_table:51
Rule: table=51 cookie=0x8031389 priority=20,

→˓metadata=0x1389000000/0xffff000000,dl_dst=fa:16:3e:02:14:bb
OpenFlow actions=load:0x300->NXM_NX_REG6[],

→˓resubmit(,220)
Rule: table=220 cookie=0x8000007 priority=7,

→˓reg6=0x300
OpenFlow actions=output:3

* If the VM isn’t on the same node as the qdhcp namepsace:

· Check if the packet is arriving via VXLAN by running tcpdump -nei <vxlan_port>
port 4789

· If it is arriving via VXLAN, the packet can be tracked on the compute node rules, using
ofproto/trace in a similiar manner to the previous section. Note that packets arriving from
a tunnels have a unique tunnel_id (VNI) that should be used as well in the trace, due to the special
processing of packets arriving from a VXLAN tunnel.

Floating IP Issues

• If you have assigned an external network and associated a floating IP to a VM but there is still no connectivity:

– Verify the external gateway IP is reachable through the provided provider network port.

– Verify OpenDaylight has successfully resolved the MAC address of the external gateway IP. This can be
verified by searching for the line “Installing ext-net group” in the karaf.log.

– Locate the compute the VM is residing on (can use nova show <vm>).

– Run a ping to the VM floating IP.

– If the ping fails, execute a flow dump of br-int, and search for the flows that are relevant to
the VM’s floating IP address: ovs-ofctl -OOpenFlow13 dump-flows br-int | grep
"<floating_ip>"

* Are there packets on the incoming flow (matching dst_ip=<floating_ip>)?
If not this probably means the provider network has not been set up properly, verify
provider_mappings configuration and the configured external network physical_network value
match. Also verify that the Flat/VLAN network configured is actually reachable via the configured
port.

* Are there packets on the outgoing flow (matching src_ip=<floating_ip>)?

1.4. OpenDaylight with Openstack Guide 1171

OpenDaylight Documentation Documentation, Release Carbon

If not, this probably means that OpenDaylight is failing to resolve the MAC of the provided external
gateway, required for forwarding packets to the external network.

* Are there packets being sent on the external network port?
This can be checked using tcpdump <port> or by viewing the appropriate OpenFlow rules. The
mapping between the OpenFlow port number and the linux interface can be acquired using
ovs-ofctl dump-ports-desc br-int

ovs-ofctl -OOpenFlow13 dump-flows br-int | grep "<floating_ip>"
cookie=0x8000003, duration=436.710s, table=21, n_packets=190, n_
→˓bytes=22602, priority=42,ip,metadata=0x222e2/0xfffffffe,nw_dst=10.64.98.
→˓17 actions=goto_table:25
cookie=0x8000004, duration=436.739s, table=25, n_packets=190, n_
→˓bytes=22602, priority=10,ip,nw_dst=10.64.98.17 actions=set_field:10.0.
→˓123.3->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27
cookie=0x8000004, duration=436.730s, table=26, n_packets=120, n_
→˓bytes=15960, priority=10,ip,metadata=0x222e0/0xfffffffe,nw_src=10.0.123.
→˓3 actions=set_field:10.64.98.17->ip_src,write_metadata:0x222e2/
→˓0xfffffffe,goto_table:28
cookie=0x8000004, duration=436.728s, table=28, n_packets=120, n_
→˓bytes=15960, priority=10,ip,metadata=0x222e2/0xfffffffe,nw_src=10.64.98.
→˓17 actions=set_field:fa:16:3e:ec:a8:84->eth_src,group:200000

Useful Links

• NetVirt Tables Pipeline

• NetVirt Wiki Page

• NetVirt Basic Tutorial (OpenDaylight Summit 2016)

• NetVirt Advanced Tutorial (OpenDaylight Summit 2016)

• Other OpenDaylight Documentation

OpenStack with GroupBasedPolicy

This section is for Application Developers and Network Administrators who are looking to integrate Group Based
Policy with OpenStack.

To enable the GBP Neutron Mapper feature, at the karaf console:

feature:install odl-groupbasedpolicy-neutronmapper

Neutron Mapper has the following dependencies that are automatically loaded:

odl-neutron-service

Neutron Northbound implementing REST API used by OpenStack

odl-groupbasedpolicy-base

Base GBP feature set, such as policy resolution, data model etc.

odl-groupbasedpolicy-ofoverlay

1172 Chapter 1. Content for OpenDaylight Users

https://docs.google.com/presentation/d/15h4ZjPxblI5Pz9VWIYnzfyRcQrXYxA1uUoqJsgA53KM
https://wiki.opendaylight.org/view/NetVirt
https://docs.google.com/presentation/d/1VLzRIOEptSOY1b0w4PezRIQ0gF5vx7GyLKECWXRV5mE
https://docs.google.com/presentation/d/13K8Z1kl5XFZrWqBToMwFISSAPOKfzd3m9BtVcb-YAWs
http://docs.opendaylight.org/

OpenDaylight Documentation Documentation, Release Carbon

For this release, GBP has one renderer, hence this is loaded by default.

REST calls from OpenStack Neutron are by the Neutron NorthBound project.

GBP provides the implementation of the Neutron V2.0 API.

Features

List of supported Neutron entities:

• Port

• Network

– Standard Internal

– External provider L2/L3 network

• Subnet

• Security-groups

• Routers

– Distributed functionality with local routing per compute

– External gateway access per compute node (dedicated port required)

– Multiple routers per tenant

• FloatingIP NAT

• IPv4/IPv6 support

The mapping of Neutron entities to GBP entities is as follows:

Neutron Port

The Neutron port is mapped to an endpoint.

The current implementation supports one IP address per Neutron port.

An endpoint and L3-endpoint belong to multiple EndpointGroups if the Neutron port is in multiple Neutron Security
Groups.

The key for endpoint is L2-bridge-domain obtained as the parent of L2-flood-domain representing Neutron network.
The MAC address is from the Neutron port. An L3-endpoint is created based on L3-context (the parent of the L2-
bridge-domain) and IP address of Neutron Port.

Neutron Network

A Neutron network has the following characteristics:

• defines a broadcast domain

• defines a L2 transmission domain

• defines a L2 name space.

To represent this, a Neutron Network is mapped to multiple GBP entities. The first mapping is to an L2 flood-domain
to reflect that the Neutron network is one flooding or broadcast domain. An L2-bridge-domain is then associated as
the parent of L2 flood-domain. This reflects both the L2 transmission domain as well as the L2 addressing namespace.

The third mapping is to L3-context, which represents the distinct L3 address space. The L3-context is the parent of
L2-bridge-domain.

Neutron Subnet

1.4. OpenDaylight with Openstack Guide 1173

http://developer.openstack.org/api-ref-networking-v2.html

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.153: Neutron Port

1174 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.154: Neutron Network

1.4. OpenDaylight with Openstack Guide 1175

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.155: Neutron Subnet

1176 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Neutron subnet is associated with a Neutron network. The Neutron subnet is mapped to a GBP subnet where the parent
of the subnet is L2-flood-domain representing the Neutron network.

Neutron Security Group

Fig. 1.156: Neutron Security Group and Rules

GBP entity representing Neutron security-group is EndpointGroup.

Infrastructure EndpointGroups

Neutron-mapper automatically creates EndpointGroups to manage key infrastructure items such as:

• DHCP EndpointGroup - contains endpoints representing Neutron DHCP ports

• Router EndpointGroup - contains endpoints representing Neutron router interfaces

• External EndpointGroup - holds L3-endpoints representing Neutron router gateway ports, also associated with
FloatingIP ports.

Neutron Security Group Rules

This mapping is most complicated among all others because Neutron security-group-rules are mapped to contracts
with clauses, subjects, rules, action-refs, classifier-refs, etc. Contracts are used between endpoint groups representing
Neutron Security Groups. For simplification it is important to note that Neutron security-group-rules are similar to a
GBP rule containing:

• classifier with direction

1.4. OpenDaylight with Openstack Guide 1177

OpenDaylight Documentation Documentation, Release Carbon

• action of allow.

Neutron Routers

Fig. 1.157: Neutron Router

Neutron router is represented as a L3-context. This treats a router as a Layer3 namespace, and hence every network
attached to it a part of that Layer3 namespace.

This allows for multiple routers per tenant with complete isolation.

The mapping of the router to an endpoint represents the router’s interface or gateway port.

The mapping to an EndpointGroup represents the internal infrastructure EndpointGroups created by the GBP Neutron
Mapper

When a Neutron router interface is attached to a network/subnet, that network/subnet and its associated endpoints or
Neutron Ports are seamlessly added to the namespace.

Neutron FloatingIP

When associated with a Neutron Port, this leverages the GBP OfOverlay renderer’s NAT capabilities.

A dedicated external interface on each Nova compute host allows for disitributed external access. Each Nova instance
associated with a FloatingIP address can access the external network directly without having to route via the Neutron
controller, or having to enable any form of Neutron distributed routing functionality.

1178 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

Assuming the gateway provisioned in the Neutron Subnet command for the external network is reachable, the combi-
nation of GBP Neutron Mapper and OfOverlay renderer will automatically ARP for this default gateway, requiring no
user intervention.

Troubleshooting within GBP

Logging level for the mapping functionality can be set for package org.opendaylight.groupbasedpolicy.neutron.mapper.
An example of enabling TRACE logging level on karaf console:

log:set TRACE org.opendaylight.groupbasedpolicy.neutron.mapper

Neutron mapping example

As an example for mapping can be used creation of Neutron network, subnet and port. When a Neutron network is
created 3 GBP entities are created: l2-flood-domain, l2-bridge-domain, l3-context.

Fig. 1.158: Neutron network mapping

After an subnet is created in the network mapping looks like this.

Fig. 1.159: Neutron subnet mapping

1.4. OpenDaylight with Openstack Guide 1179

OpenDaylight Documentation Documentation, Release Carbon

If an Neutron port is created in the subnet an endpoint and l3-endpoint are created. The endpoint has key composed
from l2-bridge-domain and MAC address from Neutron port. A key of l3-endpoint is compesed from l3-context and
IP address. The network containment of endpoint and l3-endpoint points to the subnet.

Fig. 1.160: Neutron port mapping

Configuring GBP Neutron

No intervention passed initial OpenStack setup is required by the user.

More information about configuration can be found in our DevStack demo environment on the GBP wiki.

Administering or Managing GBP Neutron

For consistencies sake, all provisioning should be performed via the Neutron API. (CLI or Horizon).

The mapped policies can be augmented via the GBP UX,UX, to:

• Enable Service Function Chaining

• Add endpoints from outside of Neutron i.e. VMs/containers not provisioned in OpenStack

• Augment policies/contracts derived from Security Group Rules

• Overlay additional contracts or groupings

Tutorials

A DevStack demo environment can be found on the GBP wiki.

1180 Chapter 1. Content for OpenDaylight Users

https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)
https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)

OpenDaylight Documentation Documentation, Release Carbon

Using Groupbasedpolicy’s Neutron VPP Mapper

Overview

Neutron VPP Mapper implements features for support policy-based routing for OpenStack Neutron interface involving
VPP devices. It allows using of policy-based schemes defined in GBP controller in a network consisting of OpenStack-
provided nodes routed by a VPP node.

Architecture

Neutron VPP Mapper listens to Neutron data store change events, as well as being able to access directly the store.
If the data changed match certain criteria (see Processing Neutron Configuration), Neutron VPP Mapper converts
Neutron data specifically required to render a VPP node configuration with a given End Point, e.g., the virtual host
interface name assigned to a vhostuser socket. Then the mapped data is stored in the VPP info data store.

Administering Neutron VPP Mapper

To use the Neutron VPP Mapper in Karaf, at least the following Karaf features must be installed:

• odl-groupbasedpolicy-neutron-vpp-mapper

• odl-vbd-ui

Initial pre-requisites

A topology should exist in config datastore, it is necessary to define a node with a particular node-id. Later,
node-id will be used as a physical location reference in VPP renderer’s bridge domain:

GET http://localhost:8181/restconf/config/network-topology:network-topology/

{
"network-topology":{

"topology":[
{

"topology-id":"datacentre",
"node":[

{
"node-id":"dut2",
"vlan-tunnel:super-interface":"GigabitEthernet0/9/0",
"termination-point":[

{
"tp-id":"GigabitEthernet0/9/0",
"neutron-provider-topology:physical-interface":{

"interface-name":"GigabitEthernet0/9/0"
}

}
]

}
]

}
]

}
}

1.4. OpenDaylight with Openstack Guide 1181

OpenDaylight Documentation Documentation, Release Carbon

Processing Neutron Configuration

NeutronListener listens to the changes in Neutron datatree in config datastore. It filters the changes, processing
only network and port entities.

For a network entity it is checked that it has physical-network parameter set (i.e., it is backed-up by a
physical network), and that network-type is vlan-network or "flat", and if this check has passed, a
related bridge domain is created in VPP Renderer config datastore (http://{{controller}}:{{port}}/
restconf/config/vpp-renderer:config), referenced to network by vlan field.

In case of "vlan-network", the vlan field contains the same value as
neutron-provider-ext:segmentation-id of network created by Neutron.

In case of "flat", the VLAN specific parameters are not filled out.

Note: In case of VXLAN network (i.e. network-type is "vxlan-network"), no information is actually
written into VPP Renderer datastore, as VXLAN is used for tenant-network (so no packets are going outside). Instead,
VPP Renderer looks up GBP flood domains corresponding to existing VPP bridge domains trying to establish a
VXLAN tunnel between them.

For a port entity it is checked that vif-type contains "vhostuser" substring, and that device-owner con-
tains a specific substring, namely "compute", "router" or "dhcp".

In case of "compute" substring, a vhost-user is written to VPP Renderer config datastore.

In case of "dhcp" or "router", a tap is written to VPP Renderer config datastore.

Input/output examples

OpenStack is creating network, and these data are being put into the data store:

PUT http://{{controller}}:{{port}}/restconf/config/neutron:neutron/networks

{
"networks": {

"network": [
{

"uuid": "43282482-a677-4102-87d6-90708f30a115",
"tenant-id": "94836b88-0e56-4150-aaa7-60f1c2b67faa",
"neutron-provider-ext:segmentation-id": "2016",
"neutron-provider-ext:network-type": "neutron-networks:network-type-

→˓vlan",
"neutron-provider-ext:physical-network": "datacentre",
"neutron-L3-ext:external": true,
"name": "drexternal",
"shared": false,
"admin-state-up": true,
"status": "ACTIVE"

}
]

}
}

Checking bridge domain in VPP Renderer config data store. Note that physical-location-ref is referring to
"dut2", paired by neutron-provider-ext:physical-network -> topology-id:

1182 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

GET http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config

{
"config": {
"bridge-domain": [

{
"id": "43282482-a677-4102-87d6-90708f30a115",
"type": "vpp-renderer:vlan-network",
"description": "drexternal",
"vlan": 2016,
"physical-location-ref": [
{

"node-id": "dut2",
"interface": [
"GigabitEthernet0/9/0"

]
}

]
}

]
}

}

Port (compute):

PUT http://{{controller}}:{{port}}/restconf/config/neutron:neutron/ports

{
"ports": {

"port": [
{

"uuid": "3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
"tenant-id": "94836b88-0e56-4150-aaa7-60f1c2b67faa",
"device-id": "dhcp58155ae3-f2e7-51ca-9978-71c513ab02ee-a91437c0-8492-

→˓47e2-b9d0-25c44aef6cda",
"neutron-binding:vif-details": [

{
"details-key": "somekey"

}
],
"neutron-binding:host-id": "devstack-control",
"neutron-binding:vif-type": "vhostuser",
"neutron-binding:vnic-type": "normal",
"mac-address": "fa:16:3e:4a:9f:c0",
"name": "",
"network-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
"neutron-portsecurity:port-security-enabled": false,
"device-owner": "network:compute",
"fixed-ips": [

{
"subnet-id": "0a5834ed-ed31-4425-832d-e273cac26325",
"ip-address": "10.1.1.3"

}
],
"admin-state-up": true

}
]

}

1.4. OpenDaylight with Openstack Guide 1183

OpenDaylight Documentation Documentation, Release Carbon

}

GET http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config

{
"config": {
"vpp-endpoint": [

{
"context-type": "l2-l3-forwarding:l2-bridge-domain",
"context-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
"address-type": "l2-l3-forwarding:mac-address-type",
"address": "fa:16:3e:4a:9f:c0",
"vpp-node-path": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='topology-netconf']/network-
→˓topology:node[network-topology:node-id='devstack-control']",

"vpp-interface-name": "neutron_port_3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
"socket": "/tmp/socket_3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
"description": "neutron port"

}
]

}
}

Port (dhcp):

PUT http://{{controller}}:{{port}}/restconf/config/neutron:neutron/ports

{
"ports": {

"port": [
{

"uuid": "3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
"tenant-id": "94836b88-0e56-4150-aaa7-60f1c2b67faa",
"device-id": "dhcp58155ae3-f2e7-51ca-9978-71c513ab02ee-a91437c0-8492-

→˓47e2-b9d0-25c44aef6cda",
"neutron-binding:vif-details": [

{
"details-key": "somekey"

}
],
"neutron-binding:host-id": "devstack-control",
"neutron-binding:vif-type": "vhostuser",
"neutron-binding:vnic-type": "normal",
"mac-address": "fa:16:3e:4a:9f:c0",
"name": "",
"network-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
"neutron-portsecurity:port-security-enabled": false,
"device-owner": "network:dhcp",
"fixed-ips": [

{
"subnet-id": "0a5834ed-ed31-4425-832d-e273cac26325",
"ip-address": "10.1.1.3"

}
],
"admin-state-up": true

}
]

}

1184 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

}

GET http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config

{
"config": {
"vpp-endpoint": [

{
"context-type": "l2-l3-forwarding:l2-bridge-domain",
"context-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
"address-type": "l2-l3-forwarding:mac-address-type",
"address": "fa:16:3e:4a:9f:c0",
"vpp-node-path": "/network-topology:network-topology/network-

→˓topology:topology[network-topology:topology-id='topology-netconf']/network-
→˓topology:node[network-topology:node-id='devstack-control']",

"vpp-interface-name": "neutron_port_3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
"physical-address": "fa:16:3e:4a:9f:c0",
"name": "tap3d5dff96-25",
"description": "neutron port"

}
]

}
}

OpenStack with Virtual Tenant Network

This section describes using OpenDaylight with the VTN manager feature providing network service for OpenStack.
VTN manager utilizes the OVSDB southbound service and Neutron for this implementation. The below diagram
depicts the communication of OpenDaylight and two virtual networks connected by an OpenFlow switch using this
implementation.

Configure OpenStack to work with OpenDaylight(VTN Feature) using PackStack

Prerequisites to install OpenStack using PackStack

• Fresh CentOS 7.1 minimal install

• Use the below commands to disable and remove Network Manager in CentOS 7.1,

systemctl stop NetworkManager
systemctl disable NetworkManager

• To make SELINUX as permissive, please open the file “/etc/sysconfig/selinux” and change it as
“SELINUX=permissive”.

• After making selinux as permissive, please restart the CentOS 7.1 machine.

Steps to install OpenStack PackStack in CentOS 7.1

• To install OpenStack juno, use the following command,

yum update -y
yum -y install https://repos.fedorapeople.org/repos/openstack/openstack-juno/rdo-
→˓release-juno-1.noarch.rpm

1.4. OpenDaylight with Openstack Guide 1185

OpenDaylight Documentation Documentation, Release Carbon

Fig. 1.161: OpenStack Architecture

1186 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

• To install the packstack installer, please use the below command,

yum -y install openstack-packstack

• To create all-in-one setup, please use the below command,

packstack --allinone --provision-demo=n --provision-all-in-one-ovs-bridge=n

• This will end up with Horizon started successfully message.

Steps to install and deploy OpenDaylight in CentOS 7.1

• Download the latest Boron distribution code in the below link,

wget https://nexus.opendaylight.org/content/groups/public/org/opendaylight/
→˓integration/distribution-karaf/0.5.0-Boron/distribution-karaf-0.5.0-Boron.zip

• Unzip the Boron distribution code by using the below command,

unzip distribution-karaf-0.5.0-Boron.zip

• Please do the below steps in the OpenDaylight to change jetty port,

– Change the jetty port from 8080 to something else as swift proxy of OpenStack is using it.

– Open the file “etc/jetty.xml” and change the jetty port from 8080 to 8910 (we have used 8910 as jetty port
you can use any other number).

– Start VTN Manager and install odl-vtn-manager-neutron in it.

– Ensure all the required ports(6633/6653,6640 and 8910) are in the listen mode by using the command
“netstat -tunpl” in OpenDaylight.

Steps to reconfigure OpenStack in CentOS 7.1

• Steps to stop Open vSwitch Agent and clean up ovs

sudo systemctl stop neutron-openvswitch-agent
sudo systemctl disable neutron-openvswitch-agent
sudo systemctl stop openvswitch
sudo rm -rf /var/log/openvswitch/*
sudo rm -rf /etc/openvswitch/conf.db
sudo systemctl start openvswitch
sudo ovs-vsctl show

• Stop Neutron Server

systemctl stop neutron-server

• Verify that OpenDaylight’s ML2 interface is working:

curl -v admin:admin http://{CONTROL_HOST}:{PORT}/controller/nb/v2/neutron/networks

{

1.4. OpenDaylight with Openstack Guide 1187

OpenDaylight Documentation Documentation, Release Carbon

"networks" : []
}

If this does not work or gives an error, check Neutron’s log file in /var/log/neutron/server.log. Error messages here
should give some clue as to what the problem is in the connection with OpenDaylight

• Configure Neutron to use OpenDaylight’s ML2 driver:

sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 mechanism_drivers
→˓opendaylight
sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 tenant_network_types
→˓local
sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 type_drivers local
sudo crudini --set /etc/neutron/dhcp_agent.ini DEFAULT ovs_use_veth True

cat <<EOT | sudo tee -a /etc/neutron/plugins/ml2/ml2_conf.ini > /dev/null
[ml2_odl]
password = admin
username = admin
url = http://{CONTROL_HOST}:{PORT}/controller/nb/v2/neutron
EOT

• Reset Neutron’s ML2 database

sudo mysql -e "drop database if exists neutron_ml2;"
sudo mysql -e "create database neutron_ml2 character set utf8;"
sudo mysql -e "grant all on neutron_ml2.* to 'neutron'@'%';"
sudo neutron-db-manage --config-file /usr/share/neutron/neutron-dist.conf --config-
→˓file /etc/neutron/neutron.conf --config-file /etc/neutron/plugin.ini upgrade head

• Start Neutron Server

sudo systemctl start neutron-server

• Restart the Neutron DHCP service

system restart neutron-dhcp-agent.service

• At this stage, your Open vSwitch configuration should be empty:

[root@dneary-odl-compute2 ~]# ovs-vsctl show
686989e8-7113-4991-a066-1431e7277e1f

ovs_version: "2.3.1"

• Set OpenDaylight as the manager on all nodes

ovs-vsctl set-manager tcp:127.0.0.1:6640

• You should now see a section in your Open vSwitch configuration showing that you are connected to the Open-
Daylight server, and OpenDaylight will automatically create a br-int bridge:

[root@dneary-odl-compute2 ~]# ovs-vsctl show
686989e8-7113-4991-a066-1431e7277e1f

Manager "tcp:127.0.0.1:6640"
is_connected: true

Bridge br-int
Controller "tcp:127.0.0.1:6633"

is_connected: true

1188 Chapter 1. Content for OpenDaylight Users

OpenDaylight Documentation Documentation, Release Carbon

fail_mode: secure
Port "ens33"

Interface "ens33"
ovs_version: "2.3.1"

• Add the default flow to OVS to forward packets to controller when there is a table-miss,

ovs-ofctl --protocols=OpenFlow13 add-flow br-int priority=0,actions=output:CONTROLLER

• Please see the VTN OpenStack PackStack support guide on the wiki to create VM’s from OpenStack Horizon
GUI.

Implementation details

VTN Manager

Install odl-vtn-manager-neutron feature which provides the integration with Neutron interface.

feature:install odl-vtn-manager-neutron

It subscribes to the events from Open vSwitch and also implements the Neutron requests received by OpenDaylight.

Functional Behavior

StartUp

• The ML2 implementation for OpenDaylight will ensure that when Open vSwitch is started, the
ODL_IP_ADDRESS configured will be set as manager.

• When OpenDaylight receives the update of the Open vSwitch on port 6640 (manager port), VTN Manager
handles the event and adds a bridge with required port mappings to the Open vSwitch at the OpenStack node.

• When Neutron starts up, a new network create is POSTed to OpenDaylight, for which VTN Manager creates a
Virtual Tenant Network.

• Network and Sub-Network Create: Whenever a new sub network is created, VTN Manager will handle the same
and create a vbridge under the VTN.

• VM Creation in OpenStack: The interface mentioned as integration bridge in the configuration file will be
added with more interfaces on creation of a new VM in OpenStack and the network is provisioned for it by the
VTN Neutron feature. The addition of a new port is captured by the VTN Manager and it creates a vbridge
interface with port mapping for the particular port. When the VM starts to communicate with other VMs, the
VTN Manger will install flows in the Open vSwitch and other OpenFlow switches to facilitate communication
between them.

Note: To use this feature, VTN feature should be installed

Reference

https://wiki.opendaylight.org/images/5/5c/Integration_of_vtn_and_ovsdb_for_helium.pdf

1.4. OpenDaylight with Openstack Guide 1189

https://wiki.opendaylight.org/view/Release/Lithium/VTN/User_Guide/Openstack_Packstack_Support
https://wiki.opendaylight.org/images/5/5c/Integration_of_vtn_and_ovsdb_for_helium.pdf

OpenDaylight Documentation Documentation, Release Carbon

1190 Chapter 1. Content for OpenDaylight Users

CHAPTER 2

Content for OpenDaylight Developers

The Following content is intended for developers building applications or code on top of OpenDaylight, but who do
not plan to modify OpenDaylight code itself.

2.1 Developer Guide

2.1.1 Overview

Getting started with Git and Gerrit

Overview of Git and Gerrit

Git is an opensource distributed version control system (dvcs) written in the C language and originally developed by
Linus Torvalds and others to manage the Linux kernel. In Git, there is no central copy of the repository. After you
have cloned the repository, you have a functioning copy of the source code with all the branches and tagged releases,
in your local repository.

Gerrit is an opensource web-based collaborative code review tool that integrates with Git. It was developed at Google
by Shawn Pearce. Gerrit provides a framework for reviewing code commits before they are accepted into the code
base. Changes can be uploaded to Gerrit by any user. However, the changes are not made a part of the project until a
code review is completed. Gerrit is also a good collaboration tool for storing the conversations that occur around the
code commits.

The OpenDaylight source code is hosted in a repository in Git. Developers must use Gerrit to commit code to the
OpenDaylight repository.

Note: For more information on Git, see http://git-scm.com/. For more information on Gerrit, see https://code.google.
com/p/gerrit/.

1191

http://git-scm.com/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/

OpenDaylight Documentation Documentation, Release Carbon

Setting up a Gerrit account

1. Using a Google Chrome or Mozilla Firefox browser, go to https://git.opendaylight.org/gerrit

The main page shows existing Gerrit requests. These are patches that have been pushed to the repository and not yet
verified, reviewed, and merged.

Note: If you already have an OpenDaylight account, you can click Sign In in the top right corner of the page and
follow the instructions to enter the OpenDaylight page.

Fig. 2.1: Signing in to OpenDaylight account

1. If you do not have an existing OpenDaylight account, click Account signup/management on the top bar of the
main Gerrit page.

The WS02 Identity Server page is displayed.

Fig. 2.2: Gerrit Account signup/management link

1. In the WS02 Identity Server page, click Sign-up in the left pane.

There is also an option to authenticate your sign in with OpenID. This option is not described in this document.

1. Click on the Sign-up with User Name/Password image on the right pane to continue to the actual sign-up page.

1. Fill out the details in the account creation form and then click Submit.

You now have an OpenDaylight account that can be used with Gerrit to pull the OpenDaylight code.

Generating SSH keys for your system

You must have SSH keys for your system to register with your Gerrit account. The method for generating SSH keys is
different for different types of operating systems.

1192 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.3: Sign-up link for Gerrit account

Fig. 2.4: Sign-up with User Name/Password Image

2.1. Developer Guide 1193

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.5: Filling out the details

1194 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

The key you register with Gerrit must be identical to the one you will use later to pull or edit the code. For example,
if you have a development VM which has a different UID login and keygen than that of your laptop, the SSH key you
generate for the VM is different from the laptop. If you register the SSH key generated on your VM with Gerrit and
do not reuse it on your laptop when using Git on the laptop, the pull fails.

Note: For more information on SSH keys for Ubuntu, see https://help.ubuntu.com/community/SSH/OpenSSH/Keys.
For generating SSH keys for Windows, see https://help.github.com/articles/generating-ssh-keys.

For a system running Ubuntu operating system, follow the steps below:

1. Run the following command:

mkdir ~/.ssh
chmod 700 ~/.ssh
ssh-keygen -t rsa

1. You are prompted for a location to save the keys, and a passphrase for the keys.

This passphrase protects your private key while it is stored on the hard drive. You must use the passphrase to use the
keys every time you need to login to a key-based system:

Generating public/private rsa key pair.
Enter file in which to save the key (/home/b/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/b/.ssh/id_rsa.
Your public key has been saved in /home/b/.ssh/id_rsa.pub.

Your public key is now available as .ssh/id_rsa.pub in your home folder.

Registering your SSH key with Gerrit

1. Using a Google Chrome or Mozilla Firefox browser, go to https://git.opendaylight.org/gerrit.

1. Click Sign In to access the OpenDaylight repository.

Fig. 2.6: Signin in to OpenDaylight repository

1. Click your name in the top right corner of the window and then click Settings.

The Settings page is displayed.

1. Click SSH Public Keys under Settings.

2. Click Add Key.

2.1. Developer Guide 1195

https://help.ubuntu.com/community/SSH/OpenSSH/Keys
https://help.github.com/articles/generating-ssh-keys
https://git.opendaylight.org/gerrit

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.7: Settings page for your Gerrit account

3. In the Add SSH Public Key text box, paste the contents of your id_rsa.pub file and then click Add.

Fig. 2.8: Adding your SSH key

To verify your SSH key is working correctly, try using an SSH client to connect to Gerrit’s SSHD port:

$ ssh -p 29418 <sshusername>@git.opendaylight.org
Enter passphrase for key '/home/cisco/.ssh/id_rsa':

**** Welcome to Gerrit Code Review ****
Hi <user>, you have successfully connected over SSH.
Unfortunately, interactive shells are disabled.
To clone a hosted Git repository, use: git clone ssh://<user>@git.opendaylight.
→˓org:29418/REPOSITORY_NAME.git
Connection to git.opendaylight.org closed.

You can now proceed to either Pulling, Hacking, and Pushing the Code from the CLI or Pulling, Hacking, and Pushing
the Code from Eclipse depending on your implementation.

Pulling and Pushing the Code from the CLI

OpenDayligh is a collection of projects, each with their own code repository. This section provides a general guide for
to pulling, hacking, and pushing the code for each project. For project specific detail, refer to the project’s section in

1196 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

this guide.

Code reviews are enabled through Gerrit. For setting up Gerrit see the section on Getting started with Git and Gerrit.

Note: You will need to perform the Gerrit Setup before you can access git via ssh as described below.

Pulling code via Git CLI

Pull the code by cloning the project’s repository.

git clone ssh://<username>@git.opendaylight.org:29418/<project_repo_name>.git

where <username> is your OpenDaylight username, and <project_repo_name> is the name of the repository for project
you are trying to pull. Here is the current list of project repository names:

aaa, affinity, bgpcep, controller, defense4all, dlux, docs, groupbasedpolicy, integration, l2switch, lispflowmapping,
odlparent, opendove, openflowjava, openflowplugin, opflex, ovsdb, packetcable, reservation, sdninterfaceapp, sfc,
snbi, snmp4sdn, toolkit, ttp, vtn, yangtools.

For an anonymous git clone, you can use:

git clone https://git.opendaylight.org/gerrit/p/<project_repo_name>.git

Setting up Gerrit Change-id Commit Message Hook

• This command inserts a unique Change-Id tag in the footer of a commit message. This step is optional but
highly recommended for tracking changes.

cd <project_repo_name>
scp -p -P 29418 <username>@git.opendaylight.org:hooks/commit-msg .git/hooks/
chmod 755 .git/hooks/commit-msg

• Install and setup Git-review. Git-review is a great tool to simplify the hassle of using several git commands
to submit a patch for review. Refer to How to install and push codes with git-review for instructions. After
initializing git-review, both commit-msg hook and a remote repo named gerrit will be created and a patch can
be submitted to Gerrit with a single “git review” command.

• Now you can start making your code changes.

Building the code

While you are in the <project_repo_name> directory, run

mvn clean install

To run without unitests you can skip building those tests running the following:

mvn clean install -DskipTests
/* instead of "mvn clean install" */

2.1. Developer Guide 1197

http://www.mediawiki.org/wiki/Gerrit/git-review#Installation%7Chere

OpenDaylight Documentation Documentation, Release Carbon

Runing OpenDaylight from local build

Change to the karaf distribution sub-directory, and run

./target/assembly/bin/karaf

At this point the OpenDaylight controller is running. You can now open a web browser and point your browser at
http://localhost:8080/

Fig. 2.9: OpenDaylight Main Page

Commit the code using Git CLI

Note: To be accepted, all code mustcome with a developer certificate of origin as expressed by having a Signed-off-
by. This means that you are asserting that you have made the change and you understand that the work was done as
part of an open-source license.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

1198 Chapter 2. Content for OpenDaylight Developers

http://localhost:8080/
http://elinux.org/Developer_Certificate_Of_Origin

OpenDaylight Documentation Documentation, Release Carbon

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

Mechanically you do it this way:

git commit --signoff

You will be prompted for a commit message. If you are fixing a buzilla bug you can add the associated bug number to
your commit message and it will get linked from Gerrit:

For Example:.

Fix for bug 2.

Signed-off-by: Ed Warnicke <eaw@cisco.com>
Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch develop
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: README
#

Pulling the Code changes via Git CLI

Pull the latest changes from the remote repository

git remote update
git rebase origin/<project_main_branch_name>

where <project_main_branch_name> is the the branch you want to commit to. For most projects this is master branch.
For some projects such as lispflowmapping, a different branch name (develop in the case of lispflowmapping) should
be used.

Pushing the Code via Git CLI

Use git review to push your changes back to the remote repository using:

2.1. Developer Guide 1199

OpenDaylight Documentation Documentation, Release Carbon

git review

You can set a topic for your patch by:

git review -t <topic>

You will get a message pointing you to your gerrit request like:

==========================
remote: Resolving deltas: 100% (2/2) +
remote: Processing changes: new: 1, refs: 1, done +
remote: +
remote: New Changes: +
remote: http://git.opendaylight.org/gerrit/64 +
remote: +
==========================

The Jenkins Controller User will verify your code and post the result on the your gerrit request.

Viewing your Changes in Gerrit

Follow the link you got above to see your commit in Gerrit:

Note that the Jenkins Controller User has verified your code and at the bottom is a link to the Jenkins build.

Once your code has been reviewed and submitted by a committer it will be merged into the authoritative repo, which
would look like this:

Troubleshooting

1. What to do if your Firewall blocks port 29418

There have been reports that many corporate firewalls block port 29418. If that’s the case, please follow the Setting up
HTTP in Gerrit instructions and use git URL:

git clone https://<your_username>@git.opendaylight.org/gerrit/p/<project_repo_name>.
→˓git

You will be prompted for the password you generated in Setting up HTTP in Gerrit.

All other instructions on this page remain unchanged.

To download pre-built images with ODP bootstraps see the following Github project:

Pre-Built OpenDaylight VM Images

Developing Apps on the OpenDaylight controller

This section provides information that is required to develop apps on the OpenDaylight controller.

You can either develop apps within the controller using the model-driven SAL (MD-SAL) archetype or develop exter-
nal apps and use the RESTCONF to communicate with the controller.

1200 Chapter 2. Content for OpenDaylight Developers

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit
https://github.com/nerdalert/OpenDaylight-Lab

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.10: Gerritt Code Review Sample

2.1. Developer Guide 1201

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.11: Gerritt Code Merge Sample

1202 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Overview

This section enables you to get started with app development within the OpenDaylight controller. In this example, you
perform the following steps to develop an app.

1. Create a local repository for the code using a simple build process.

2. Start the OpenDaylight controller.

3. Test a simple remote procedure call (RPC) which you have created based on the principle of hello world.

Pre requisites

This example requires the following.

• A development environment with following set up and working correctly from the shell:

– Maven 3.1.1 or later

– Java 7- or Java 8-compliant JDK

– An appropriate Maven settings.xml file. A simple way to get the default OpenDaylight settings.xml file is:

cp -n ~/.m2/settings.xml{,.orig} ; \wget -q -O - https://raw.
→˓githubusercontent.com/opendaylight/odlparent/stable/boron/settings.xml > ~/.
→˓m2/settings.xml

Note: If you are using Linux or Mac OS X as your development OS, your local repository is ~/.m2/repository. For
other platforms the local repository location will vary.

Building an example module

To develop an app perform the following steps.

1. Create an Example project using Maven and an archetype called the opendaylight-startup-archetype. If you
are downloading this project for the first time, then it will take sometime to pull all the code from the remote
repository.

mvn archetype:generate -DarchetypeGroupId=org.opendaylight.controller -
→˓DarchetypeArtifactId=opendaylight-startup-archetype \
-DarchetypeRepository=https://nexus.opendaylight.org/content/repositories/public/
→˓\
-DarchetypeCatalog=https://nexus.opendaylight.org/content/repositories/public/
→˓archetype-catalog.xml

2. Update the properties values as follows. Ensure that the groupid and the artifactid is lower case.

Define value for property 'groupId': : org.opendaylight.example
Define value for property 'artifactId': : example
Define value for property 'version': 1.0-SNAPSHOT: : 1.0.0-SNAPSHOT
Define value for property 'package': org.opendaylight.example: :
Define value for property 'classPrefix': ${artifactId.substring(0,1).
→˓toUpperCase()}${artifactId.substring(1)}
Define value for property 'copyright': : Copyright (c) 2015 Yoyodyne, Inc.

2.1. Developer Guide 1203

OpenDaylight Documentation Documentation, Release Carbon

3. Accept the default value of classPrefix that is, (${artifactId.substring(0,1).
toUpperCase()}${artifactId.substring(1)}). The classPrefix creates a Java Class Prefix
by capitalizing the first character of the artifactId.

Note: In this scenario, the classPrefix used is “Example”. Create a top-level directory for the archetype.

${artifactId}/
example/
cd example/
api/
artifacts/
features/
impl/
karaf/
pom.xml

4. Build the example project.

Note: Depending on your development machine’s specification this might take a little while. Ensure that you
are in the project’s root directory, example/, and then issue the build command, shown below.

mvn clean install

5. Start the example project for the first time.

cd karaf/target/assembly/bin
ls
./karaf

6. Wait for the karaf cli that appears as follows. Wait for OpenDaylight to fully load all the components. This
can take a minute or two after the prompt appears. Check the CPU on your dev machine, specifically the Java
process to see when it calms down.

opendaylight-user@root>

7. Verify if the “example” module is built and search for the log entry which includes the entry ExampleProvider
Session Initiated.

log:display | grep Example

8. Shutdown the OpenDaylight through the console by using the following command.

shutdown -f

Defining a Simple Hello World RPC

1. Run the maven archetype opendaylight-startup-archetype, and create the hello project.

mvn archetype:generate -DarchetypeGroupId=org.opendaylight.controller -
→˓DarchetypeArtifactId=opendaylight-startup-archetype \
-DarchetypeRepository=http://nexus.opendaylight.org/content/repositories/
→˓opendaylight.snapshot/ \
-DarchetypeCatalog=http://nexus.opendaylight.org/content/repositories/
→˓opendaylight.snapshot/archetype-catalog.xml

1204 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

2. Update the Properties values as follows.

Define value for property 'groupId': : org.opendaylight.hello
Define value for property 'artifactId': : hello
Define value for property 'version': 1.0-SNAPSHOT: : 1.0.0-SNAPSHOT
Define value for property 'package': org.opendaylight.hello: :
Define value for property 'classPrefix': ${artifactId.substring(0,1).
→˓toUpperCase()}${artifactId.substring(1)}
Define value for property 'copyright': : Copyright(c) Yoyodyne, Inc.

3. View the hello project.

cd hello/
ls -1
api
artifacts
features
impl
karaf
pom.xml

4. Build hello project by using the following command.

mvn clean install

5. Verify that the project is functioning by executing karaf.

cd karaf/target/assembly/bin
./karaf

6. The karaf cli appears as follows.
NOTE: Remember to wait for OpenDaylight to load completely. Verify that the Java process CPU has
stabilized.+

opendaylight-user@root>

7. Verify that the hello module is loaded by checking the log.

log:display | grep Hello

8. Shutdown karaf.

shutdown -f

9. Return to the top of the directory structure:

cd ../../../../

10. View the entry point to understand where the log line came from. The entry point is in the impl project:

impl/src/main/java/org/opendaylight/hello/impl/HelloProvider.java

11. Add any new things that you are doing in your implementation by using the HelloProvider.onSessionInitiate
method. Its analogous to an Activator.

2.1. Developer Guide 1205

OpenDaylight Documentation Documentation, Release Carbon

@Override
public void onSessionInitiated(ProviderContext session) {

LOG.info("HelloProvider Session Initiated");
}

Add a simple HelloWorld RPC API

1. Navigate to the file.

Edit
api/src/main/yang/hello.yang

2. Edit this file as follows. In the following example, we are adding the code in a YANG module to define the
hello-world RPC:

3. Return to the hello/api directory and build your API as follows.

cd ../../../
mvn clean install

Implement the HelloWorld RPC API

1. Define the HelloService, which is invoked through the hello-world API.

cd ../impl/src/main/java/org/opendaylight/hello/impl/

2. Create a new file called HelloWorldImpl.java and add in the code below.

package org.opendaylight.hello.impl;
import java.util.concurrent.Future;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.
→˓rev150105.HelloService;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.
→˓rev150105.HelloWorldInput;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.
→˓rev150105.HelloWorldOutput;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.
→˓rev150105.HelloWorldOutputBuilder;
import org.opendaylight.yangtools.yang.common.RpcResult;
import org.opendaylight.yangtools.yang.common.RpcResultBuilder;
public class HelloWorldImpl implements HelloService {

@Override
public Future<RpcResult<HelloWorldOutput>> helloWorld(HelloWorldInput input) {

HelloWorldOutputBuilder helloBuilder = new HelloWorldOutputBuilder();
helloBuilder.setGreating("Hello " + input.getName());
return RpcResultBuilder.success(helloBuilder.build()).buildFuture();

}
}

3. The HelloProvider.java file is in the current directory. Register the RPC that you created in the hello.yang file in
the HelloProvider.java file. You can either edit the HelloProvider.java to match what is below or you can simple
replace it with the code below.

1206 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

/*
* Copyright(c) Yoyodyne, Inc. and others. All rights reserved.

*
* This program and the accompanying materials are made available under the

* terms of the Eclipse Public License v1.0 which accompanies this distribution,

* and is available at http://www.eclipse.org/legal/epl-v10.html

*/
package org.opendaylight.hello.impl;

import org.opendaylight.controller.sal.binding.api.BindingAwareBroker.
→˓ProviderContext;
import org.opendaylight.controller.sal.binding.api.BindingAwareBroker.
→˓RpcRegistration;
import org.opendaylight.controller.sal.binding.api.BindingAwareProvider;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.
→˓rev150105.HelloService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class HelloProvider implements BindingAwareProvider, AutoCloseable {
private static final Logger LOG = LoggerFactory.getLogger(HelloProvider.

→˓class);
private RpcRegistration<HelloService> helloService;
@Override
public void onSessionInitiated(ProviderContext session) {

LOG.info("HelloProvider Session Initiated");
helloService = session.addRpcImplementation(HelloService.class, new

→˓HelloWorldImpl());
}
@Override
public void close() throws Exception {

LOG.info("HelloProvider Closed");
if (helloService != null) {

helloService.close();
}

}
}

4. Optionally, you can also build the Java classes which will register the new RPC. This is useful to test the edits
you have made to HelloProvider.java and HelloWorldImpl.java.

cd ../../../../../../../
mvn clean install

5. Return to the top level directory

cd ../

6. Build the entire hello again, which will pickup the changes you have made and build them into your project:

mvn clean install

Execute the hello project for the first time

1. Run karaf

2.1. Developer Guide 1207

OpenDaylight Documentation Documentation, Release Carbon

cd ../karaf/target/assembly/bin
./karaf

2. Wait for the project to load completely. Then view the log to see the loaded Hello Module:

log:display | grep Hello

Test the hello-world RPC via REST

There are a lot of ways to test your RPC. Following are some examples.

1. Using the API Explorer through HTTP

2. Using a browser REST client

Using the API Explorer through HTTP

1. Navigate to apidoc UI with your web browser.
NOTE: In the URL mentioned above, Change localhost to the IP/Host name to reflect your development
machine’s network address.

2. Select

hello(2015-01-05)

3. Select

POST /operations/hello:hello-world

4. Provide the required value.

{"hello:input": { "name":"Your Name"}}

5. Click the button.

6. Enter the username and password, by default the credentials are admin/admin.

7. In the response body you should see.

{
"output": {

"greating": "Hello Your Name"
}

}

Using a browser REST client

For example, use the following information in the Firefox plugin RESTClient
[https://github.com/chao/RESTClient\protect\T1\textbraceright

POST: http://192.168.1.43:8181/restconf/operations/hello:hello-world

1208 Chapter 2. Content for OpenDaylight Developers

http://localhost:8181/apidoc/explorer/index.html
https://github.com/chao/RESTClient\protect \T1\textbraceright

OpenDaylight Documentation Documentation, Release Carbon

Header:

application/json

Body:

{"input": {
"name": "Andrew"

}
}

Troubleshooting

If you get a response code 501 while attempting to POST /operations/hello:hello-world, check the
file: HelloProvider.java and make sure the helloService member is being set. By not invoking “ses-
sion.addRpcImplementation()” the REST API will be unable to map /operations/hello:hello-world url to Hel-
loWorldImpl.

2.1.2 Project-specific Developer Guides

ALTO Developer Guide

Overview

The topics of this guide are:

1. How to add alto projects as dependencies;

2. How to put/fetch data from ALTO;

3. Basic API and DataType;

4. How to use customized service implementations.

Adding ALTO Projects as Dependencies

Most ALTO packages can be added as dependencies in Maven projects by putting the following code in the pom.xml
file.

<dependency>
<groupId>org.opendaylight.alto</groupId>
<artifactId>${THE_NAME_OF_THE_PACKAGE_YOU_NEED}</artifactId>
<version>${ALTO_VERSION}</version>

</dependency>

The current stable version for ALTO is 0.3.0-Boron.

Putting/Fetching data from ALTO

Using RESTful API

There are two kinds of RESTful APIs for ALTO: the one provided by alto-northboundwhich follows the formats
defined in RFC 7285, and the one provided by RESTCONF whose format is defined by the YANG model proposed in

2.1. Developer Guide 1209

https://tools.ietf.org/html/rfc7285

OpenDaylight Documentation Documentation, Release Carbon

this draft.

One way to get the URLs for the resources from alto-northbound is to visit the IRD service first where there
is a uri field for every entry. However, the IRD service is not yet implemented so currently the developers have
to construct the URLs themselves. The base URL is /alto and below is a list of the specific paths defined in
alto-core/standard-northbound-route using Jersey @Path annotation:

• /ird/{rid}: the path to access IRD services;

• /networkmap/{rid}[/{tag}]: the path to access Network Map and Filtered Network Map services;

• /costmap/{rid}[/{tag}[/{mode}/{metric}]]: the path to access Cost Map and Filtered Cost Map
services;

• /endpointprop: the path to access Endpoint Property services;

• /endpointcost: the path to access Endpoint Cost services.

Note: The segments in brackets are optional.

If you want to fetch the data using RESTCONF, it is highly recommended to take a look at the apidoc page (http:
//\protect\T1\textbraceleftcontroller_ip\protect\T1\textbraceright:8181/apidoc/explorer/index.html) after installing the
odl-alto-release feature in karaf.

It is also worth pointing out that alto-northbound only supports GET and POST operations so it is impossible to
manipulate the data through its RESTful APIs. To modify the data, use PUT and DELETE methods with RESTCONF.

Note: The current implementation uses the configuration data store and that enables the developers to modify
the data directly through RESTCONF. In the future this approach might be disabled in the core packages of ALTO but
may still be available as an extension.

Using MD-SAL

You can also fetch data from the datastore directly.

First you must get the access to the datastore by registering your module with a data broker.

Then an InstanceIdentifiermust be created. Here is an example of how to build an InstanceIdentifier
for a network map:

import org.opendaylight...alto...Resources;
import org.opendaylight...alto...resources.NetworkMaps;
import org.opendaylight...alto...resources.network.maps.NetworkMap;
import org.opendaylight...alto...resources.network.maps.NetworkMapKey;
...
protected
InstanceIdentifier<NetworkMap> getNetworkMapIID(String resource_id) {

ResourceId rid = ResourceId.getDefaultInstance(resource_id);
NetworkMapKey key = new NetworkMapKey(rid);
InstanceIdentifier<NetworkMap> iid = null;
iid = InstanceIdentifier.builder(Resources.class)

.child(NetworkMaps.class)

.child(NetworkMap.class, key)

.build();
return iid;

1210 Chapter 2. Content for OpenDaylight Developers

https://tools.ietf.org/html/draft-shi-alto-yang-model-03
http://\protect \T1\textbraceleft controller_ip\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textbraceleft controller_ip\protect \T1\textbraceright :8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

}
...

With the InstanceIdentifier you can use ReadOnlyTransaction, WriteTransaction and
ReadWriteTransaction to manipulate the data accordingly. The simple-impl package, which provides
some of the AD-SAL APIs mentioned above, is using this method to get data from the datastore and then convert
them into RFC7285-compatible objects.

Basic API and DataType

1. alto-basic-types: Defines basic types of ALTO protocol.

2. alto-service-model-api: Includes the YANG models for the five basic ALTO services defined in RFC 7285.

3. alto-resourcepool: Manages the meta data of each ALTO service, including capabilities and versions.

4. alto-northbound: Provides the root of RFC7285-compatible services at http://localhost:8080/alto.

5. alto-northbound-route: Provides the root of the network map resources at http://localhost:8080/alto/
networkmap/.

How to customize service

Define new service API

Add a new module in alto-core/standard-service-models. For example, we named our service model
module as model-example.

Implement service RPC

Add a new module in alto-basic to implement a service RPC in alto-core.

Currently alto-core/standard-service-models/model-base has defined a template of the service
RPC. You can define your own RPC using augment in YANG. Here is an example in alto-simpleird.

Register northbound route

If necessary, you can add a northbound route module in alto-core/standard-northbound-routes.

Authentication, Authorization and Accounting (AAA) Services

Overview

Authentication, Authorization and Accounting (AAA) is a term for a framework controlling access to resources,
enforcing policies to use those resources and auditing their usage. These processes are the fundamental building
blocks for effective network management and security.

Authentication provides a way of identifying a user, typically by having the user enter a valid user name and valid
password before access is granted. The process of authentication is based on each user having a unique set of criteria
for gaining access. The AAA framework compares a user’s authentication credentials with other user credentials

2.1. Developer Guide 1211

https://tools.ietf.org/html/rfc7285
http://localhost:8080/alto
http://localhost:8080/alto/networkmap/
http://localhost:8080/alto/networkmap/

OpenDaylight Documentation Documentation, Release Carbon

stored in a database. If the credentials match, the user is granted access to the network. If the credentials don’t match,
authentication fails and access is denied.

Authorization is the process of finding out what an authenticated user is allowed to do within the system, which tasks
can do, which API can call, etc. The authorization process determines whether the user has the authority to perform
such actions.

Accounting is the process of logging the activity of an authenticated user, for example, the amount of data a user has
sent and/or received during a session, which APIs called, etc.

Terms And Definitions

AAA Authentication, Authorization and Accounting.

Token A claim of access to a group of resources on the controller.

Domain A group of resources, direct or indirect, physical, logical, or virtual, for the purpose of access control.

User A person who either owns or has access to a resource or group of resources on the controller.

Role Opaque representation of a set of permissions, which is merely a unique string as admin or guest.

Credential Proof of identity such as user name and password, OTP, biometrics, or others.

Client A service or application that requires access to the controller.

Claim A data set of validated assertions regarding a user, e.g. the role, domain, name, etc.

IdP Identity Provider.

Quick Start

Building

Get the code:

git clone https://git.opendaylight.org/gerrit/aaa

Build it:

cd aaa && mvn clean install

Installing

AAA is automatically installed upon installation of odl-restconf, but you can install it yourself directly from the Karaf
console through the following command:

feature:install odl-aaa-shiro

Pushing changes

The following are basic instructions to push your contributions to the project’s GIT repository:

1212 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

git add .
git commit -s
make changes, add change id, etc.
git commit --amend
git push ssh://{username}@git.opendaylight.org:29418/aaa.git HEAD:refs/for/master

AAA Framework implementations

Since Boron release, the OpenDaylight’s AAA services are based on the Apache Shiro Java Security Framework. The
main configuration file for AAA is located at “etc/shiro.ini” relative to the OpenDaylight Karaf home directory.

Known limitations

The database (H2) used by ODL AAA Authentication store is not-cluster enabled. When deployed in a clustered
environment each node needs to have its AAA user file synchronized using out of band means.

How to enable AAA

AAA is enabled through installing the odl-aaa-shiro feature. The vast majority of OpenDaylight’s northbound APIs
(and all RESTCONF APIs) are protected by AAA by default when installing the +odl-restconf+ feature, since the
odl-aaa-shiro is automatically installed as part of them.

How to disable AAA

Edit the “etc/shiro.ini” file and replace the following:

/** = authcBasic

with

/** = anon

Then, restart the Karaf process.

How application developers can leverage AAA to provide servlet security

In order to provide security to a servlet, add the following to the servlet’s web.xml file as the first filter definition:

<context-param>
<param-name>shiroEnvironmentClass</param-name>
<param-value>org.opendaylight.aaa.shiro.web.env.KarafIniWebEnvironment</param-value>

</context-param>

<listener>
<listener-class>org.apache.shiro.web.env.EnvironmentLoaderListener</listener-

→˓class>
</listener>

<filter>
<filter-name>ShiroFilter</filter-name>

2.1. Developer Guide 1213

https://shiro.apache.org/

OpenDaylight Documentation Documentation, Release Carbon

<filter-class>org.opendaylight.aaa.shiro.filters.AAAShiroFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>AAAShiroFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Note: It is very important to place this AAAShiroFilter as the first javax.servlet.Filter, as Jersey applies Filters in the
order they appear within web.xml. Placing the AAAShiroFilter first ensures incoming HTTP/HTTPS requests have
proper credentials before any other filtering is attempted.

AAA Realms

AAA plugin utilizes the Shiro Realms to support pluggable authentication & authorization schemes. There are two
parent types of realms:

• AuthenticatingRealm

– Provides no Authorization capability.

– Users authenticated through this type of realm are treated equally.

• AuthorizingRealm

– AuthorizingRealm is a more sophisticated AuthenticatingRealm, which provides the additional mecha-
nisms to distinguish users based on roles.

– Useful for applications in which roles determine allowed capabilities.

OpenDaylight contains five implementations:

• TokenAuthRealm

– An AuthorizingRealm built to bridge the Shiro-based AAA service with the h2-based AAA implementa-
tion.

– Exposes a RESTful web service to manipulate IdM policy on a per-node basis. If identical AAA policy is
desired across a cluster, the backing data store must be synchronized using an out of band method.

– A python script located at “etc/idmtool” is included to help manipulate data contained in the TokenAu-
thRealm.

– Enabled out of the box. This is the realm configured by default.

• ODLJndiLdapRealm

– An AuthorizingRealm built to extract identity information from IdM data contained on an LDAP server.

– Extracts group information from LDAP, which is translated into OpenDaylight roles.

– Useful when federating against an existing LDAP server, in which only certain types of users should have
certain access privileges.

– Disabled out of the box.

• ODLJndiLdapRealmAuthNOnly

– The same as ODLJndiLdapRealm, except without role extraction. Thus, all LDAP users have equal au-
thentication and authorization rights.

1214 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

– Disabled out of the box.

• ODLActiveDirectoryRealm

– Wraps the generic ActiveDirectoryRealm provided by Shiro. This allows for enhanced logging as well as
isolation of all realms in a single package, which enables easier import by consuming servlets.

– Disabled out of the box.

• KeystoneAuthRealm

– This realm authenticates OpenDaylight users against the OpenStack’s Keystone server by using the Key-
stone’s Identity API v3 or later.

– Disabled out of the box.

Note: More than one Realm implementation can be specified. Realms are attempted in order until authentication
succeeds or all realm sources are exhausted. Edit the securityManager.realms = $tokenAuthRealm property in
shiro.ini and add all the realms needed separated by commas.

TokenAuthRealm

How it works

The TokenAuthRealm is the default Authorization Realm deployed in OpenDaylight. TokenAuthRealm uses a direct
authentication mechanism as shown in the following picture:

Fig. 2.12: TokenAuthRealm direct authentication mechanism

A user presents some credentials (e.g., username/password) directly to the OpenDaylight controller token endpoint
/oauth2/token and receives an access token, which then can be used to access protected resources on the controller.

How to access the H2 database

The H2 database provides an optional front-end Web interface, which can be very useful for new users. From the
KARAF_HOME directory, you can run the following command to enable the user interface:

java -cp ./data/cache/org.eclipse.osgi/bundles/217/1/.cp/h2-1.4.185.jar
org.h2.tools.Server -trace -pg -web -webAllowOthers -baseDir `pwd`

2.1. Developer Guide 1215

https://developer.openstack.org/api-ref/identity/v3/
https://developer.openstack.org/api-ref/identity/v3/

OpenDaylight Documentation Documentation, Release Carbon

You can navigate to the following and login via the browser:

http://{IP}:8082/

ODLJndiLdapRealm

How it works

LDAP integration is provided in order to externalize identity management. This configuration allows federation with
an external LDAP server. The user’s OpenDaylight role parameters are mapped to corresponding LDAP attributes
as specified by the groupRolesMap. Thus, an LDAP operator can provision attributes for LDAP users that support
different OpenDaylight role structures.

ODLJndiLdapRealmAuthNOnly

How it works

This is useful for setups where all LDAP users are allowed equal access.

KeystoneAuthRealm

How it works

This realm authenticates OpenDaylight users against the OpenStack’s Keystone server. This realm uses the Keystone’s
Identity API v3 or later.

Fig. 2.13: KeystoneAuthRealm authentication/authorization mechanism

As can shown on the above diagram, once configured, all the RESTCONF APIs calls will require sending user,
password and optionally domain (1). Those credentials are used to authenticate the call against the Keystone server
(2) and, if the authentication succeeds, the call will proceed to the MDSAL (3). The credentials must be provisioned
in advance within the Keystone Server. The user and password are mandatory, while the domain is optional, in case
it is not provided within the REST call, the realm will default to (Default), which is hard-coded. The default domain
can be also configured through the shiro.ini file (see the AAA User Guide).

1216 Chapter 2. Content for OpenDaylight Developers

https://developer.openstack.org/api-ref/identity/v3/
https://developer.openstack.org/api-ref/identity/v3/

OpenDaylight Documentation Documentation, Release Carbon

The protocol between the Controller and the Keystone Server (2) can be either HTTPS or HTTP. In order to use HTTPS
the Keystone Server’s certificate must be exported and imported on the Controller (see the Certificate Management
section).

Authorization Configuration

OpenDaylight supports two authorization engines at present, both of which are roughly similar in behavior:

• Shiro-Based Authorization

• MDSAL-Based Dynamic Authorization

Note: The preferred mechanism for configuring AAA Authentication is the MDSAL-Based Dynamic Authorization.
Read the following section.

Shiro-Based Static Authorization

OpenDaylight AAA has support for Role Based Access Control (RBAC) based on the Apache Shiro permissions
system. Configuration of the authorization system is done off-line; authorization currently cannot be configured after
the controller is started. The Authorization provided by this mechanism is aimed towards supporting coarse-grained
security policies, the MDSAL-Based mechanism allows for a more robust configuration capabilities. Shiro-based
Authorization describes how to configure the Authentication feature in detail.

MDSAL-Based Dynamic Authorization

The MDSAL-Based Dynamic authorization uses the MDSALDynamicAuthorizationFilter engine to restrict access to
particular URL endpoint patterns. Users may define a list of policies that are insertion-ordered. Order matters for that
list of policies, since the first matching policy is applied. This choice was made to emulate behavior of the Shiro-Based
Authorization mechanism.

A policy is a key/value pair, where the key is a resource (i.e., a “URL pattern”) and the value is a list of permissions
for the resource. The following describes the various elements of a policy:

• Resource: the resource is a string URL pattern as outlined by Apache Shiro. For more information, see http:
//shiro.apache.org/web.html.

• Description: an optional description of the URL endpoint and why it is being secured.

• Permissions list: a list of permissions for a particular policy. If more than one permission exists in the per-
missions list they are evaluated using logical “OR”. A permission describes the prerequisites to perform HTTP
operations on a particular endpoint. The following describes the various elements of a permission:

– Role: the role required to access the target URL endpoint.

– Actions list: a leaf-list of HTTP permissions that are allowed for a Subject possessing the required role.

This an example on how to limit access to the modules endpoint:

HTTP Operation:
put URL: /restconf/config/aaa:http-authorization/policies

headers: Content-Type: application/json Accept: application/json

body:

2.1. Developer Guide 1217

http://shiro.apache.org/web.html#Web-%7B%7B%5Curls%5C%7D%7D
http://shiro.apache.org/web.html#Web-%7B%7B%5Curls%5C%7D%7D
http://shiro.apache.org/web.html
http://shiro.apache.org/web.html

OpenDaylight Documentation Documentation, Release Carbon

{ "aaa:policies":
{ "aaa:policies":

[{ "aaa:resource": "/restconf/modules/**",
"aaa:permissions": [{ "aaa:role": "admin",

"aaa:actions": ["get",
"post",
"put",
"patch",
"delete"

]
}

]
}

]
}

}

The above example locks down access to the modules endpoint (and any URLS available past modules) to the “admin”
role. Thus, an attempt from the OOB admin user will succeed with 2XX HTTP status code, while an attempt from the
OOB user user will fail with HTTP status code 401, as the user user is not granted the “admin” role.

Accounting Configuration

Accounting is handled through the standard slf4j logging mechanisms used by the rest of OpenDaylight. Thus, one can
control logging verbosity through manipulating the log levels for individual packages and classes directly through the
Karaf console, JMX, or etc/org.ops4j.pax.logging.cfg. In normal operations, the default levels exposed do not provide
much information about AAA services; this is due to the fact that logging can severely degrade performance.

All AAA logging is output to the standard karaf.log file. For debugging purposes (i.e., to enable maximum verbosity),
issue the following command:

log:set TRACE org.opendaylight.aaa

Enable Successful/Unsuccessful Authentication Attempts Logging

By default, successful/unsuccessful authentication attempts are NOT logged. This is due to the fact that logging can
severely decrease REST performance.

It is possible to add custom AuthenticationListener(s) to the Shiro-based configuration, allowing different ways to
listen for successful/unsuccessful authentication attempts. Custom AuthenticationListener(s) must implement the
org.apache.shiro.authc.AuthenticationListener interface.

Certificate Management

The Certificate Management Service is used to manage the keystores and certificates at the OpenDaylight distribution
to easily provides the TLS communication.

The Certificate Management Service managing two keystores:

1. OpenDaylight Keystore which holds the OpenDaylight distribution certificate self sign certificate or signed
certificate from a root CA based on generated certificate request.

2. Trust Keystore which holds all the network nodes certificates that shall to communicate with the OpenDaylight
distribution through TLS communication.

1218 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

The Certificate Management Service stores the keystores (OpenDaylight & Trust) as .jks files under configuration/ssl/
directory. Also the keystores could be stored at the MD-SAL datastore in case OpenDaylight distribution running
at cluster environment. When the keystores are stored at MD-SAL, the Certificate Management Service rely on the
Encryption-Service to encrypt the keystore data before storing it to MD-SAL and decrypted at runtime.

How to use the Certificate Management Service to manage the TLS communication

The following are the steps to configure the TLS communication within your feature or module:

1. It is assumed that there exists an already created OpenDaylight distribution project following this guide.

2. In the implementation bundle the following artifact must be added to its pom.xml file as dependency.

<dependency>
<groupId>org.opendaylight.aaa</groupId>
<artifactId>aaa-cert</artifactId>
<version>0.5.0-SNAPSHOT</version>

</dependency>

3. Using the provider class in the implementation bundle needs to define a variable holding the Certificate Manager
Service as in the following example:

import org.opendaylight.aaa.cert.api.ICertificateManager;
import org.opendaylight.controller.md.sal.binding.api.DataBroker;

public class UseCertManagerExampleProvider {
private final DataBroker dataBroker;
private final ICertificateManager caManager;

public EncSrvExampleProvider(final DataBroker dataBroker, final ICertificateManager
→˓caManager) {

this.dataBroker = dataBroker;
this.caManager = caManager;

}
public SSLEngine createSSLEngine() {
final SSLContext sslContext = caManager.getServerContext();
if (sslContext != null) {
final SSLEngine sslEngine = sslContext.createSSLEngine();
sslEngine.setEnabledCipherSuites(caManager.getCipherSuites());
// DO the Implementation
return sslEngine;

}
}
public void init() {

// TODO
}
public void close() {

// TODO
}

}

4. The Certificate Manager Service provides two main methods that are needed to establish the SSLEngine object,
getServerContext() and getCipherSuites() as the above example shows. It also provides other methods such as
getODLKeyStore() and getTrustKeyStore() that gives access to the OpenDaylight and Trust keystores.

5. Now the ICertificateManager need to be passed as an argument to the UseCertManagerExampleProvider within
the implementation bundle blueprint configuration. The following example shows how:

2.1. Developer Guide 1219

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype#Part_1_-_Build_with_a_simple_.27Example.27_module

OpenDaylight Documentation Documentation, Release Carbon

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:odl="http://opendaylight.org/xmlns/blueprint/v1.0.0"
odl:use-default-for-reference-types="true">
<reference id="dataBroker"
interface="org.opendaylight.controller.md.sal.binding.api.DataBroker"
odl:type="default" />

<reference id="aaaCertificateManager"
interface="org.opendaylight.aaa.cert.api.ICertificateManager"
odl:type="default-certificate-manager" />

<bean id="provider"
class="org.opendaylight.UseCertManagerExample.impl.UseCertManagerExampleProvider"
init-method="init" destroy-method="close">
<argument ref="dataBroker" />
<argument ref="aaaCertificateManager" />

</bean>
</blueprint>

6. After finishing the bundle implementation the feature module needs to be updated to include the aaa-cert feature
in its feature bundle pom.xml file.

<properties>
<aaa.version>0.5.0-SNAPSHOT</aaa.version>

</properties>
<dependency>

<groupId>org.opendaylight.aaa</groupId>
<artifactId>features-aaa</artifactId>
<version>${aaa.version}</version>
<classifier>features</classifier>
<type>xml</type>

</dependency>

7. Now, in the feature.xml file add the Certificate Manager Service feature and its repository.

<repository>mvn:org.opendaylight.aaa/features-aaa/{VERSION}/xml/features</repository>

The Certificate Manager Service feature can be included inside the implementation bundle feature as shown in the
following example:

<feature name='odl-UseCertManagerExample' version='${project.version}'
description='OpenDaylight :: UseCertManagerExample'>
<feature version='${mdsal.version}'>odl-mdsal-broker</feature>
<feature version='${aaa.version}'>odl-aaa-cert</feature>
<bundle>mvn:org.opendaylight.UseCertManagerExample/UseCertManagerExample-impl/

→˓{VERSION}</bundle>
</feature>

8. Now the project can be built and the OpenDaylight distribution started to continue with the configuration pro-
cess. See the User Guide for more details.

Encryption Service

The AAA Encryption Service is used to encrypt the OpenDaylight users’ passwords and TLS communication cer-
tificates. This section shows how to use the AAA Encryption Service with an OpenDaylight distribution project to
encrypt data.

1. It is assumed that there exists an already created OpenDaylight distribution project following this guide.

1220 Chapter 2. Content for OpenDaylight Developers

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype#Part_1_-_Build_with_a_simple_.27Example.27_module

OpenDaylight Documentation Documentation, Release Carbon

2. In the implementation bundle the following artifact must be added to its pom.xml file as dependency.

<dependency>
<groupId>org.opendaylight.aaa</groupId>
<artifactId>aaa-encrypt-service</artifactId>
<version>0.5.0-SNAPSHOT</version>

</dependency>

3. Using the provider class in the implementation bundle needs to define a variable holding the Encryption Service
as in the following example:

import org.opendaylight.aaa.encrypt.AAAEncryptionService;
import org.opendaylight.controller.md.sal.binding.api.DataBroker;

public class EncSrvExampleProvider {
private final DataBroker dataBroker;

private final AAAEncryptionService encryService;

public EncSrvExampleProvider(final DataBroker dataBroker, final
→˓AAAEncryptionService encryService) {

this.dataBroker = dataBroker;
this.encryService = encryService;

}
public void init() {
// TODO

}
public void close() {
// TODO

}
}

The AAAEncryptionService can be used to encrypt and decrypt any data based on project’s needs.

4. Now the AAAEncryptionService needs to be passed as an argument to the EncSrvExampleProvider within the
implementation bundle blueprint configuration. The following example shows how:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:odl="http://opendaylight.org/xmlns/blueprint/v1.0.0"
odl:use-default-for-reference-types="true">
<reference id="dataBroker"
interface="org.opendaylight.controller.md.sal.binding.api.DataBroker"
odl:type="default" />

<reference id="encryService" interface="org.opendaylight.aaa.encrypt.
→˓AAAEncryptionService"/>
<bean id="provider"
class="org.opendaylight.EncSrvExample.impl.EncSrvExampleProvider"
init-method="init" destroy-method="close">
<argument ref="dataBroker" />
<argument ref="encryService" />

</bean>
</blueprint>

5. After finishing the bundle implementation the feature module needs to be updated to include the aaa-encryption-
service feature in its feature bundle pom.xml file.

<dependency>
<groupId>org.opendaylight.aaa</groupId>
<artifactId>features-aaa</artifactId>
<version>${aaa.version}</version>

2.1. Developer Guide 1221

OpenDaylight Documentation Documentation, Release Carbon

<classifier>features</classifier>
<type>xml</type>

</dependency>

It is also necessary to add the aaa.version in the properties section:

<properties>
<aaa.version>0.5.0-SNAPSHOT</aaa.version>

</properties>

6. Now, in the feature.xml file add the Encryption Service feature and its repository.

<repository>mvn:org.opendaylight.aaa/features-aaa/{VERSION}/xml/features</repository>

The Encryption Service feature can be included inside the implementation bundle feature as shown in the following
example:

<feature name='odl-EncSrvExample' version='${project.version}' description=
→˓'OpenDaylight :: EncSrvExample'>
<feature version='${mdsal.version}'>odl-mdsal-broker</feature>
<feature version='${aaa.version}'>odl-aaa-encryption-service</feature>
<feature version='${project.version}'>odl-EncSrvExample-api</feature>
<bundle>mvn:org.opendaylight.EncSrvExample/EncSrvExample-impl/{VERSION}</bundle>

</feature>

7. Now the project can be built and the OpenDaylight distribution started to continue with the configuration pro-
cess. See the User Guide for more details.

BGP Developer Guide

Overview

This section provides an overview of the odl-bgpcep-bgp-all Karaf feature. This feature will install every-
thing needed for BGP (Border Gateway Protocol) from establishing the connection, storing the data in RIBs (Route
Information Base) and displaying data in network-topology overview.

BGP Architecture

Each feature represents a module in the BGPCEP codebase. The following diagram illustrates how the features are
related.

Key APIs and Interfaces

BGP concepts

This module contains the base BGP concepts contained in RFC 4271, RFC 4760, RFC 4456, RFC 1997 and RFC
4360.

All the concepts are described in one yang model: bgp-types.yang.

Outside generated classes, there is just one class NextHopUtil that contains methods for serializing and parsing Nex-
tHop.

1222 Chapter 2. Content for OpenDaylight Developers

http://tools.ietf.org/html/rfc4271
http://tools.ietf.org/html/rfc4760
http://tools.ietf.org/html/rfc4456
http://tools.ietf.org/html/rfc1997
http://tools.ietf.org/html/rfc4360
http://tools.ietf.org/html/rfc4360
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/concepts/src/main/yang/bgp-types.yang;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/concepts/src/main/java/org/opendaylight/bgp/concepts/NextHopUtil.java;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.14: BGP Dependency Tree

BGP parser

Base BGP parser includes messages and attributes from RFC 4271, RFC 4760, RFC 1997 and RFC 4360.

API module defines BGP messages in YANG.

IMPL module contains actual parsers and serializers for BGP messages and Activator class

SPI module contains helper classes needed for registering parsers into activators

Registration

All parsers and serializers need to be registered into the Extension provider. This Extension provider is configured in
initial configuration of the parser-spi module (31-bgp.xml).

<module>
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:parser:spi">
→˓prefix:bgp-extensions-impl</type>
<name>global-bgp-extensions</name>
<extension>
<type xmlns:bgpspi="urn:opendaylight:params:xml:ns:yang:controller:bgp:parser:spi">

→˓bgpspi:extension</type>
<name>base-bgp-parser</name>

</extension>
<extension>
<type xmlns:bgpspi="urn:opendaylight:params:xml:ns:yang:controller:bgp:parser:spi">

→˓bgpspi:extension</type>
<name>bgp-linkstate</name>

2.1. Developer Guide 1223

http://tools.ietf.org/html/rfc4271
http://tools.ietf.org/html/rfc4760
http://tools.ietf.org/html/rfc1997
http://tools.ietf.org/html/rfc4360
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/parser-impl/src/main/java/org/opendaylight/protocol/bgp/parser/impl/BGPActivator.java;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

</extension>
</module>

• base-bgp-parser - will register parsers and serializers implemented in the bgp-parser-impl module

• bgp-linkstate - will register parsers and serializers implemented in the bgp-linkstate module

The bgp-linkstate module is a good example of a BGP parser extension.

The configuration of bgp-parser-spi specifies one implementation of Extension provider that will take care of regis-
tering mentioned parser extensions: SimpleBGPExtensionProviderContext. All registries are implemented in package
bgp-parser-spi.

Serializing

The serializing of BGP elements is mostly done in the same way as in PCEP, the only exception is the serialization
of path attributes, which is described here. Path attributes are different from any other BGP element, as path attributes
don’t implement one common interface, but this interface contains getters for individual path attributes (this structure
is because update message can contain exactly one instance of each path attribute). This means, that a given PathAt-
tributes object, you can only get to the specific type of the path attribute through checking its presence. Therefore
method serialize() in AttributeRegistry, won’t look up the registered class, instead it will go through the registrations
and offer this object to the each registered parser. This way the object will be passed also to serializers unknown to
module bgp-parser, for example to LinkstateAttributeParser. RFC 4271 recommends ordering path attributes, hence
the serializers are ordered in a list as they are registered in the Activator. In other words, this is the only case, where
registration ordering matters.

Fig. 2.15: PathAttributesSerialization

serialize() method in each Path Attribute parser contains check for presence of its attribute in the PathAttributes object,
which simply returns, if the attribute is not there:

if (pathAttributes.getAtomicAggregate() == null) {
return;

}
//continue with serialization of Atomic Aggregate

1224 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/parser-spi/src/main/java/org/opendaylight/protocol/bgp/parser/spi/pojo/SimpleBGPExtensionProviderContext.java;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=tree;f=bgp/parser-spi/src/main/java/org/opendaylight/protocol/bgp/parser/spi;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

BGP RIB

The BGP RIB module can be divided into two parts:

• BGP listener and speaker session handling

• RIB handling.

Session handling

31-bgp.xml defines only bgp-dispatcher and the parser it should be using (global-bgp-extensions).

<module>
<type>prefix:bgp-dispatcher-impl</type>
<name>global-bgp-dispatcher</name>
<bgp-extensions>
<type>bgpspi:extensions</type>
<name>global-bgp-extensions</name>

</bgp-extensions>
<boss-group>
<type>netty:netty-threadgroup</type>
<name>global-boss-group</name>

</boss-group>
<worker-group>
<type>netty:netty-threadgroup</type>
<name>global-worker-group</name>

</worker-group>
</module>

For user configuration of BGP, check User Guide.

Synchronization

Synchronization is a phase, where upon connection, a BGP speaker sends all available data about topology to its new
client. After the whole topology has been advertised, the synchronization is over. For the listener, the synchronization
is over when the RIB receives End-of-RIB (EOR) messages. There is a special EOR message for each AFI (Address
Family Identifier).

• IPv4 EOR is an empty Update message.

• Ipv6 EOR is an Update message with empty MP_UNREACH attribute where AFI and SAFI (Subsequent Ad-
dress Family Identifier) are set to Ipv6. OpenDaylight also supports EOR for IPv4 in this format.

• Linkstate EOR is an Update message with empty MP_UNREACH attribute where AFI and SAFI are set to
Linkstate.

For BGP connections, where both peers support graceful restart, the EORs are sent by the BGP speaker and are
redirected to RIB, where the specific AFI/SAFI table is set to true. Without graceful restart, the messages are generated
by OpenDaylight itself and sent after second keepalive for each AFI/SAFI. This is done in BGPSynchronization.

Peers

BGPPeer has various meanings. If you configure BGP listener, BGPPeer represents the BGP listener itself. If you are
configuring BGP speaker, you need to provide a list of peers, that are allowed to connect to this speaker. Unknown
peer represents, in this case, a peer that is allowed to be refused. BGPPeer represents in this case peer, that is supposed
to connect to your speaker. BGPPeer is stored in BGPPeerRegistry. This registry controls the number of sessions. Our
strict implementation limits sessions to one per peer.

2.1. Developer Guide 1225

https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/BGPSynchronization.java;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/BGPPeer.java;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/StrictBGPPeerRegistry.java;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

ApplicationPeer is a special case of peer, that has it’s own RIB. This RIB is populated from RESTCONF. The RIB
is synchronized with default BGP RIB. Incoming routes to the default RIB are treated in the same way as they were
from a BGP peer (speaker or listener) in the network.

RIB handling

RIB (Route Information Base) is defined as a concept in RFC 4271. RFC does not define how it should be imple-
mented. In our implementation, the routes are stored in the MD-SAL datastore. There are four supported routes -
Ipv4Routes, Ipv6Routes, LinkstateRoutes and FlowspecRoutes.

Each route type needs to provide a RIBSupport.java implementation. RIBSupport tells RIB how to parse binding-aware
data (BGP Update message) to binding-independent (datastore format).

Following picture describes the data flow from BGP message that is sent to BGPPeer to datastore and various types of
RIB.

Fig. 2.16: RIB

AdjRibInWriter - represents the first step in putting data to datastore. This writer is notified whenever a peer receives an
Update message. The message is transformed into binding-independent format and pushed into datastore to adj-rib-in.
This RIB is associated with a peer.

EffectiveRibInWriter - this writer is notified whenever adj-rib-in is updated. It applies all configured import policies
to the routes and stores them in effective-rib-in. This RIB is also associated with a peer.

LocRibWriter - this writer is notified whenever any effective-rib-in is updated (in any peer). Performs best path
selection filtering and stores the routes in loc-rib. It also determines which routes need to be advertised and fills in
adj-rib-out that is per peer as well.

AdjRibOutListener - listens for changes in adj-rib-out, transforms the routes into BGPUpdate messages and sends
them to its associated peer.

1226 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/ApplicationPeer.java;hb=refs/heads/stable/boron
http://tools.ietf.org/html/rfc4271#section-3.2
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-spi/src/main/java/org/opendaylight/protocol/bgp/rib/spi/RIBSupport.java;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/AdjRibInWriter.java;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/EffectiveRibInWriter.java;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/LocRibWriter.java;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/AdjRibOutListener.java;h=a14fd54a29ea613b381a36248f67491d968963b8;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

BGP inet

This module contains only one YANG model bgp-inet.yang that summarizes the ipv4 and ipv6 extensions to RIB
routes and BGP messages.

BGP flowspec

BGP flowspec is a module that implements RFC 5575 for IPv4 AFI and draft-ietf-idr-flow-spec-v6-06 for IPv6 AFI.
The RFC defines an extension to BGP in form of a new subsequent address family, NLRI and extended communities.
All of those are defined in the bgp-flowspec.yang model. In addition to generated sources, the module contains
parsers for newly defined elements and RIBSupport for flowspec-routes. The route key of flowspec routes is a string
representing human-readable flowspec request.

BGP linkstate

BGP linkstate is a module that implements draft-ietf-idr-ls-distribution version 04. The draft defines an extension to
BGP in form of a new address family, subsequent address family, NLRI and path attribute. All of those are defined
in the bgp-linkstate.yang model. In addition to generated sources, the module contains LinkstateAttributeParser,
LinkstateNlriParser, activators for both, parser and RIB, and RIBSupport handler for linkstate address family. As each
route needs a key, in case of linkstate, the route key is defined as a binary string, containing all the NLRI serialized
to byte format. The BGP linkstate extension also supports distribution of MPLS TE state as defined in draft-ietf-idr-
te-lsp-distribution-03, extension for Segment Routing draft-gredler-idr-bgp-ls-segment-routing-ext-00 and Segment
Routing Egress Peer Engineering draft-ietf-idr-bgpls-segment-routing-epe-02.

BGP labeled-unicast

BGP labeled unicast is a module that implements RFC 3107. The RFC defines an extension to the BGP MP to carry
Label Mapping Information as a part of the NLRI. The AFI indicates, as usual, the address family of the associated
route. The fact that the NLRI contains a label is indicated by using SAFI value 4. All of those are defined in
bgp-labeled-unicast.yang model. In addition to the generated sources, the module contains new NLRI codec and
RIBSupport. The route key is defined as a binary, where whole NLRI information is encoded.

BGP topology provider

BGP data besides RIB, is stored in network-topology view. The format of how the data is displayed there conforms to
draft-clemm-netmod-yang-network-topo.

API Reference Documentation

Javadocs are generated while creating mvn:site and they are located in target/ directory in each module.

BGP Monitoring Protocol Developer Guide

Overview

This section provides an overview of feature odl-bgpcep-bmp. This feature will install everything needed for BMP
(BGP Monitoring Protocol) including establishing the connection, processing messages, storing information about

2.1. Developer Guide 1227

https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/inet/src/main/yang/bgp-inet.yang;hb=refs/heads/stable/boron
http://tools.ietf.org/html/rfc5575
https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-06
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/flowspec/src/main/yang/bgp-flowspec.yang;hb=refs/heads/stable/boron
http://tools.ietf.org/html/draft-ietf-idr-ls-distribution-04
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/linkstate/src/main/yang/bgp-linkstate.yang;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/linkstate/src/main/java/org/opendaylight/protocol/bgp/linkstate/attribute/LinkstateAttributeParser.java;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/linkstate/src/main/java/org/opendaylight/protocol/bgp/linkstate/nlri/LinkstateNlriParser.java;hb=refs/heads/stable/boron
https://tools.ietf.org/html/draft-ietf-idr-te-lsp-distribution-03
https://tools.ietf.org/html/draft-ietf-idr-te-lsp-distribution-03
https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-00
https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-02
https://tools.ietf.org/html/rfc3107
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob_plain;f=bgp/labeled-unicast/src/main/yang/bgp-labeled-unicast.yang;hb=refs/heads/stable/boron
https://tools.ietf.org/html/draft-clemm-netmod-yang-network-topo-01

OpenDaylight Documentation Documentation, Release Carbon

monitored routers, peers and their Adj-RIB-In (unprocessed routing information) and Post-Policy Adj-RIB-In and
displaying data in BGP RIBs overview. The OpenDaylight BMP plugin plays the role of a monitoring station.

Key APIs and Interfaces

Session handling

32-bmp.xml defines only bmp-dispatcher the parser should be using (global-bmp-extensions).

<module>
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
→˓prefix:bmp-dispatcher-impl</type>
<name>global-bmp-dispatcher</name>
<bmp-extensions>
<type xmlns:bmp-spi="urn:opendaylight:params:xml:ns:yang:controller:bmp:spi">bmp-

→˓spi:extensions</type>
<name>global-bmp-extensions</name>
</bmp-extensions>
<boss-group>
<type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">

→˓netty:netty-threadgroup</type>
<name>global-boss-group</name>
</boss-group>
<worker-group>
<type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">

→˓netty:netty-threadgroup</type>
<name>global-worker-group</name>

</worker-group>
</module>

For user configuration of BMP, check User Guide.

Parser

The base BMP parser includes messages and attributes from https://tools.ietf.org/html/draft-ietf-grow-bmp-15

Registration

All parsers and serializers need to be registered into Extension provider. This Extension provider is configured in
initial configuration of the parser (32-bmp.xml).

<module>
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bmp:spi">
→˓prefix:bmp-extensions-impl</type>
<name>global-bmp-extensions</name>
<extension>
<type xmlns:bmp-spi="urn:opendaylight:params:xml:ns:yang:controller:bmp:spi">bmp-

→˓spi:extension</type>
<name>bmp-parser-base</name>

</extension>
</module>

• bmp-parser-base - will register parsers and serializers implemented in bmp-impl module

1228 Chapter 2. Content for OpenDaylight Developers

https://tools.ietf.org/html/draft-ietf-grow-bmp-15

OpenDaylight Documentation Documentation, Release Carbon

Parsing

Parsing of BMP elements is mostly done equally to BGP. Some of the BMP messages includes wrapped BGP mes-
sages.

BMP Monitoring Station

The BMP application (Monitoring Station) serves as message processor incoming from monitored routers. The pro-
cessed message is transformed and relevant information is stored. Route information is stored in a BGP RIB data
structure.

BMP data is displayed only through one URL that is accessible from the base BMP URL:

‘http://<controllerIP>:8181/restconf/operational/bmp-monitor:bmp-monitor <http://<controllerIP>:8181/restconf/operational/bmp-
monitor:bmp-monitor>‘__

Each Monitor station will be displayed and it may contains multiple monitored routers and peers within:

<bmp-monitor xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor">
<monitor>
<monitor-id>example-bmp-monitor</monitor-id>
<router>
<router-id>127.0.0.11</router-id>
<status>up</status>
<peer>
<peer-id>20.20.20.20</peer-id>
<as>72</as>
<type>global</type>
<peer-session>
<remote-port>5000</remote-port>
<timestamp-sec>5</timestamp-sec>
<status>up</status>
<local-address>10.10.10.10</local-address>
<local-port>220</local-port>

</peer-session>
<pre-policy-rib>
<tables>
<afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-

→˓family</afi>
<safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-

→˓subsequent-address-family</safi>
<ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
<ipv4-route>
<prefix>10.10.10.0/24</prefix>
<attributes>
...

</attributes>
</ipv4-route>

</ipv4-routes>
<attributes>
<uptodate>true</uptodate>

</attributes>
</tables>

</pre-policy-rib>
<address>10.10.10.10</address>
<post-policy-rib>
...

2.1. Developer Guide 1229

OpenDaylight Documentation Documentation, Release Carbon

</post-policy-rib>
<bgp-id>20.20.20.20</bgp-id>
<stats>
<timestamp-sec>5</timestamp-sec>
<invalidated-cluster-list-loop>53</invalidated-cluster-list-loop>
<duplicate-prefix-advertisements>16</duplicate-prefix-advertisements>
<loc-rib-routes>100</loc-rib-routes>
<duplicate-withdraws>11</duplicate-withdraws>
<invalidated-as-confed-loop>55</invalidated-as-confed-loop>
<adj-ribs-in-routes>10</adj-ribs-in-routes>
<invalidated-as-path-loop>66</invalidated-as-path-loop>
<invalidated-originator-id>70</invalidated-originator-id>
<rejected-prefixes>8</rejected-prefixes>

</stats>
</peer>
<name>name</name>
<description>description</description>
<info>some info;</info>
</router>

</monitor>
</bmp-monitor>
</source>

API Reference Documentation

Javadocs are generated while creating mvn:site and they are located in target/ directory in each module.

BIER Developer Guide

BIER Architecture

• Channel

– Channel (multicast flow) configuration and deploying information management.

• Common

– Common YANG models collection.

• Drivers

– South-bound NETCONF interface for BIER, it has implemented standard interface (ietf-bier). If your
BFR’s NETCONF interface is Non-standard, you should add your own interface for driver.

• Sbi-Adapter

– Adapter for different BIER south-bound NETCONF interfaces.

• Service

– Major processor function for BIER.

• Topomanager

– BIER topology management.

1230 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

BIER Feature

• odl-bier-all

– This feature contains all other features/bundles of BIER project. If you install it, it provides all functions
that the BIER project can support.

• odl-bier-models

– This feature contains all models of BIER project, such as ietf-bier, ietf-multicast-information and so on.

• odl-bier-topomanager

– This feature generates BIER’s topology from network topology which discovered via OpenFlow Plugin.

• odl-bier-topomanager-api

– This feature provides all APIs about BIER topology.

• odl-bier-topomanager-rest

– This feature provides function of BIER topology management, such as configure BIER domain, sub-
domain, nodes, and user can invoke these RPCs via RESTCONF.

• odl-bier-topomanager-ui

– This feature can display bier-topo-manager’s APIs on UIs (odl-mdsal-apidocs and odl-dluxapps-yangui).

• odl-bier-topomanager-cli

– This feature provides Karaf commands for BIER topo-manager debugging, which is useful for trou-
bleshooting.

• odl-bier-channel

– This feature provides function about multicast flow information configuration and deployment in BIER
domain.

• odl-bier-channel-api

– This feature provides all APIs about multicast flow configuration and deployment.

• odl-bier-channel-rest

– This feature provides function of BIER multicast information management, such as configure multicast,
deploying BFIR and BFER in BIER domain, and user can invoke these RPCs via RESTCONF.

• odl-bier-channel-ui

– This feature can display bier-channel’s APIs on UIs (odl-mdsal-apidocs and odl-dluxapps-yangui).

• odl-bier-channel-cli

– This feature provides Karaf commands for bier-channel debugging, which is useful for troubleshooting.

• odl-bier-service

– This feature provides function which processing the result of BIER topo-mamager and BIER channel-
mamager, and invoking south-bound-interface for driver.

• odl-bier-service-cli

– This feature provides Karaf commands for bier-service debugging, which is useful for troubleshooting.

• odl-bier-adapter

– This feature provides adapter for different BIER south-bound NETCONF interfaces, so all BFRs in BIER
domain with different NETCONF configuration interfaces and they can operate normally together.

2.1. Developer Guide 1231

OpenDaylight Documentation Documentation, Release Carbon

• odl-bier-driver

– This feature is south-bound NETCONF interface for BIER, it has implemented standard interface (ietf-
bier). If your BFR’s NETCONF interface is Non-standard, you should add your own interface for driver.

APIs in BIER

The sections below give details about the configuration settings for the components that can be configured.

Topology Manager

API Description

• bier/topomanager/api/src/main/yang/bier-topology-api.yang

– load-topology

* Load BIER topology, and list all topo-name in all BIER topologies.

– configure-domain

* Configure domain in given BIER topology.

– configure-subdomain

* Configure sub-domain in given BIER domain and topology.

– configure-node

* Configure node information in given topology, which defined in ietf-bier, such as domains, sub-
domains, bitstringlength, bfr-id, encapsulation-type, etc.

– delete-domain

* Delete given domain in given topology.

– delete-subdomain

* Delete given sub-domain in given domain and topology.

– delete-node

* Delete given node which be assigned to given sub-domain and domain in given topology.

– query-topology

* Query given topology in BIER topology, and then display this topology’s detail, such as information
of node and link.

– query-node

* Query given nodes in given topology, and then display these nodes’ detail, such as information of
node-name, router-id, termination-point list, BIER domain and sub-domain list, etc.

– query-link

* Query given link in given topology, and then display this link’s detail.

– query-domain

* Query domain in given BIER topology, and then display the domain-id list.

– query-subdomain

1232 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

* Query sub-domain in given domain and given topology, and then display the sub-domain-id list.

– query-subdomain-node

* Query nodes which have been assigned to given sub-domain and domain in given topology, and then
display these nodes’ details.

– query-subdomain-link

* Query links which have been assigned to given sub-domain and domain in given topology, and then
display these links’ details.

Parameters Description

• topology-id

– BIER topology identifier.

• node-id

– Node identifier in network topology.

• latitude

– Node’s latitude, default value is 0.

• longitude

– Node’s longitude, default value is 0.

• tp-id

– Termination point identifier.

• domain-id

– BIER domain identifier.

• encapsulation-type

– Base identity for BIER encapsulation. Default value is “bier-encapsulation-mpls”.

• bitstringlength

– The bitstringlength type for imposition mode. It’s value can be chosen from 64, 128, 256, 512, 1024, 2048,
and 4096.

– The BitStringLength (“Imposition BitStringLength”) and sub-domain (“Imposition sub-domain”) to use
when it imposes (as a BFIR) a BIER encapsulation on a particular set of packets.

• bfr-id

– BIER bfr identifier. BFR-id is a number in the range [1, 65535].

– Bfr-id is unique within the sub-domain. A BFR-id is a small unstructured positive integer. For instance,
if a particular BIER sub-domain contains 1, 374 BFRs, each one could be given a BFR-id in the range
1-1374.

– If a given BFR belongs to more than one sub-domain, it may (though it need not) have a different BFR-id
for each sub-domain.

• ipv4-bfr-prefix

– BIER BFR IPv4 prefix.

2.1. Developer Guide 1233

OpenDaylight Documentation Documentation, Release Carbon

– A BFR’s BFR-Prefix MUST be an IP address (either IPv4 or IPv6) of the BFR, and MUST be unique and
routable within the BIER domain. It is RECOMMENDED that the BFR-prefix be a loopback address of
the BFR. Two BFRs in the same BIER domain MUST NOT be assigned the same BFR-Prefix. Note that
a BFR in a given BIER domain has the same BFR-prefix in all the sub-domains of that BIER domain.

• ipv6-bfr-prefix

– BIER BFR IPv6 prefix.

• sub-domain-id

– Sub-domain identifier. Each sub-domain is identified by a sub-domain-id in the range [0, 255].

– A BIER domain may contain one or more sub-domains. Each BIER domain MUST contain at least one
sub-domain, the “default sub-domain” (also denoted “sub-domain zero”). If a BIER domain contains more
than one sub-domain, each BFR in the domain MUST be provisioned to know the set of sub-domains to
which it belongs.

• igp-type

– The IGP type. Enum type contains OSPF and ISIS.

• mt-id

– Multi-topology associated with BIER sub-domain.

• bitstringlength

– Disposition bitstringlength.

– The BitStringLengths (“Disposition BitStringLengths”) that it will process when (as a BFR or BFER) it
receives packets from a particular sub-domain.

• bier-mpls-label-base

– BIER mpls-label, range in [0, 1048575].

• bier-mpls-label-range-size

– BIER mpls-label range size.

• link-id

– The identifier of a link in the topology.

– A link is specific to a topology to which it belongs.

• source-node

– Source node identifier, must be in same topology.

• source-tp

– Termination point within source node that terminates the link.

• dest-node

– Destination node identifier and must be in same topology.

• dest-tp

– Termination point within destination node that terminates the link.

• delay

– The link delay, default value is 0.

• loss

1234 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

– The number of packet loss on the link and default value is 0.

Channel Manager

API Description

• bier/channel/api/src/main/yang/bier-channel-api.yang

– get-channel

* Display all channel’s names in given BIER topology.

– query-channel

* Query specific channel in given topology and display this channel’s information (multicast flow infor-
mation and related BFIR,BFER information).

– add-channel

* Create channel with multicast information in given BIER topology.

– modify-channel

* Modify the channel’s information which created above.

– remove-channel

* Remove given channel in given topology.

– deploy-channel

* Deploy channel, and configure BFIR and BFERs about this multicast flow in given topology.

Parameters Description

• topology-id

– BIER topology identifier.

• channel-name

– BIER channel (multicast flow information) name.

• src-ip

– The IPv4 of multicast source. The value set to zero means that the receiver interests in all source that
relevant to one group.

• dst-group

– The IPv4 of multicast group.

• domain-id

– BIER domain identifier.

• sub-domain-id

– BIER sub-domain identifier.

• source-wildcard

– The wildcard information of source, in the range [1, 32].

• group-wildcard

2.1. Developer Guide 1235

OpenDaylight Documentation Documentation, Release Carbon

– The wildcard information of multi-cast group, in the range [1, 32].

• ingress-node

– BFIR (Bit-Forwarding Ingress Router).

• ingress-bfr-id

– The bfr-id of BRIR.

• egress-node

– BFER (Bit-Forwarding Egress Router).

• egress-bfr-id

– The bfr-id of BRER.

Note: For more information about BIER terminology, see YANG Data Model for BIER Protocol.

Sample Configurations

1. Configure Domain And Sub-domain

1.1. Configure Domain

REST API : POST /restconf/operations/bier-topology-api:configure-domain

Sample JSON Data

{
"input": {

"topo-id": " flow:1" ,
"domain ":[

{
"domain-id": " 1",

},
{
"domain-id": " 2",

}
]

}
}

1.2. Configure Sub-domain

REST API : POST /restconf/operations/bier-topology-api:configure-subdomain

Sample JSON Data

{
"input": {

"topo-id": " flow:1" ,
"domain-id":" 1",
"sub-domain":[

{

1236 Chapter 2. Content for OpenDaylight Developers

https://datatracker.ietf.org/doc/draft-ietf-bier-bier-yang/?include_text=1

OpenDaylight Documentation Documentation, Release Carbon

"sub-domain-id":" 0",
},
{

"sub-domain-id":"1",
}

]
}

}

2. Configure BIER Node

REST API : POST /restconf/operations/bier-topology-api:configure-node

Sample JSON Data

{
"input": {

"topology-id": "flow:1",
"node-id": "openflow:3",
"domain": [

{
"domain-id": "2",
"bier-global": {

"sub-domain": [
{

"sub-domain-id": "0",
"igp-type": "ISIS",
"mt-id": "1",
"bfr-id": "3",
"bitstringlength": "64-bit",
"af": {

"ipv4": [
{

"bitstringlength": "64",
"bier-mpls-label-base": "56",
"bier-mpls-label-range-size": "100"

}
]

}
}

],
"encapsulation-type": "bier-encapsulation-mpls",
"bitstringlength": "64-bit",
"bfr-id": "33",
"ipv4-bfr-prefix": "192.168.1.1/24",
"ipv6-bfr-prefix": "1030:0:0:0:C9B4:FF12:48AA:1A2B/60"

}
}

]
}

}

2.1. Developer Guide 1237

OpenDaylight Documentation Documentation, Release Carbon

3. Query BIER Topology Information

3.1. Load Topology

REST API : POST /restconf/operations/bier-topology-api:load-topology

no request body.

3.2. Query Topology

REST API : POST /restconf/operations/bier-topology-api:query-topology

Sample JSON Data

{
"input": {

"topo-id": " flow:1"
}

}

3.3. Query BIER Node

REST API : POST /restconf/operations/bier-topology-api:query-node

Sample JSON Data

{
"input": {

"topo-id": " flow:1",
"node-id": "openflow:3"

}
}

3.4. Query BIER Link

REST API : POST /restconf/operations/bier-topology-api:query-link

Sample JSON Data

{
"input": {

"topo-id": " flow:1",
"node-id": "openflow:3"

}
}

3.5. Query Domain

REST API : POST /restconf/operations/bier-topology-api:query-domain

Sample JSON Data

1238 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

{
"input": {

"topo-id": " flow:1"
}

}

3.6. Query Sub-domain

REST API : POST /restconf/operations/bier-topology-api:query-subdomain

Sample JSON Data

{
"input": {

"topo-id": " flow:1",
"domain-id": "1"

}
}

3.7. Query Sub-domain Node

REST API : POST /restconf/operations/bier-topology-api:query-subdomain-node

Sample JSON Data

{
"input": {

"topology-id": "flow:1",
"domain-id": "1",
"sub-domain-id": "0"

}
}

3.8. Query Sub-domain Link

REST API : POST /restconf/operations/bier-topology-api:query-subdomain-link

Sample JSON Data

{
"input": {

"topology-id": "flow:1",
"domain-id": "1",
"sub-domain-id": "0"

}
}

4. BIER Channel Configuration

4.1. Configure Channel

REST API : POST /restconf/operations/bier-channel-api:add-channel

2.1. Developer Guide 1239

OpenDaylight Documentation Documentation, Release Carbon

Sample JSON Data

{
"input": {

"topology-id": "flow:1",
"name": "channel-1",
"src-ip": "1.1.1.1",
"dst-group": "224.1.1.1",
"domain-id": "1",
"sub-domain-id": "11",
"source-wildcard": "24",
"group-wildcard": "30"

}
}

4.2. Modify Channel

REST API : POST /restconf/operations/bier-channel-api:modify-channel

Sample JSON Data

{
"input": {

"topology-id": "flow:1",
"name": "channel-1",
"src-ip": "2.2.2.2",
"dst-group": "225.1.1.1",
"domain-id": "1",
"sub-domain-id": "11",
"source-wildcard": "24",
"group-wildcard": "30"

}
}

5. Deploy Channel

REST API : POST /restconf/operations/bier-channel-api:deploy-channel

Sample JSON Data

{
"input": {

"topology-id": "flow:1",
"channel-name": "channel-1",
"ingress-node": "node1",
"egress-node": [

{
"node-id": "node2"

},
{

"node-id": "node3"
}

]
}

}

1240 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

6. Query Channel Information

6.1. Get Channel

REST API : POST /restconf/operations/bier-channel-api:get-channel

Sample JSON Data

{
"input": {

"topology-id": "flow:1"
}

}

6.2. Query Channel

REST API : POST /restconf/operations/bier-channel-api:query-channel

Sample JSON Data

{
"input": {

"topology-id": "flow:1",
"channel-name": [

"channel-1",
"channel-2"

]
}

}

7. Remove Channel

REST API : POST /restconf/operations/bier-channel-api:remove-channel

Sample JSON Data

{
"input": {

"topology-id": "flow:1",
"channel-name": "channel-1"

}
}

8. Delete BIER Topology Configuration

8.1. Delete BIER Node

REST API : POST /restconf/operations/bier-topology-api:delete-node

Sample JSON Data

2.1. Developer Guide 1241

OpenDaylight Documentation Documentation, Release Carbon

{
"input": {

"topo-id": "flow:1",
"node-id": " openflow:3",
"domain-id": "1",
"subdomain-id": "0"

}
}

8.2. Delete Sub-domain

REST API : POST /restconf/operations/bier-topology-api:delete-subdomian

Sample JSON Data

{
"input": {

"topo-id": "flow:1",
"domain-id": "1",
"subdomain-id": "0"

}
}

8.3. Delete Domain

REST API : POST /restconf/operations/bier-topology-api:delete-domian

Sample JSON Data

{
"input": {

"topo-id": "flow:1",
"domain-id": "1"

}
}

CAPWAP Developer Guide

Overview

The Control And Provisioning of Wireless Access Points (CAPWAP) plugin project aims to provide new southbound
interface for controller to be able to monitor and manage CAPWAP compliant wireless termination point (WTP)
network devices. The CAPWAP feature will provide REST based northbound APIs.

CAPWAP Architecture

The CAPWAP feature is implemented as an MD-SAL based provider module, which helps discover WTP devices and
update their states in the MD-SAL operational datastore.

1242 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

CAPWAP APIs and Interfaces

This section describes the APIs for interacting with the CAPWAP plugin.

Discovered WTPs

The CAPWAP project maintains list of discovered CAPWAP WTPs that is YANG-based in MD-SAL. These models
are available via RESTCONF.

• Name: Discovered-WTPs

• URL: http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operational/capwap-impl:capwap-ac-root/

• Description: Displays list of discovered WTPs and their basic attributes

API Reference Documentation

Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/explorer/
index.html, sign in, and expand the capwap-impl panel. From there, users can execute various API calls to test
their CAPWAP deployment.

Cardinal: OpenDaylight Monitoring as a Service

Overview

Cardinal (OpenDaylight Monitoring as a Service) enables OpenDaylight and the underlying software defined network
to be remotely monitored by deployed Network Management Systems (NMS) or Analytics suite. In the Boron release,
Cardinal adds:

1. OpenDaylight MIB.

2. Enable ODL diagnostics/monitoring to be exposed across SNMP (v2c, v3) and REST north-bound.

3. Extend ODL System health, Karaf parameter and feature info, ODL plugin scalability and network parameters.

4. Support autonomous notifications (SNMP Traps).

Cardinal Architecture

The Cardinal architecture can be found at the below link:

https://wiki.opendaylight.org/images/8/89/Cardinal-ODL_Monitoring_as_a_Service_V2.pdf

Key APIs and Interfaces

There are 6 main APIs for requesting snmpget request of the Karaf info, System info, Openflow devices and Netconf
Devices. To expose these APIs, it assumes that you already have the odl-cardinal and odl-restconf features
installed. You can do that by entering the following at the Karaf console:

2.1. Developer Guide 1243

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operational/capwap-impl:capwap-ac-root/
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operational/capwap-impl:capwap-ac-root/
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
https://wiki.opendaylight.org/images/8/89/Cardinal-ODL_Monitoring_as_a_Service_V2.pdf

OpenDaylight Documentation Documentation, Release Carbon

feature:install odl-cardinal
feature:install odl-restconf-all
feature:install odl-l2switch-switch
feature:install odl-netconf-all
feature:install odl-netconf-connector-all
feature:install odl-netconf-mdsal

System Info APIs

Open the REST interface and using the basic authentication, execute REST APIs for system info as:

http://localhost:8181/restconf/operational/cardinal:CardinalSystemInfo/

You should get the response code of the same as 200 OK with the following output as:

{
"CardinalSystemInfo": {
"odlSystemMemUsage": " 9",
"odlSystemSysInfo": " OpenDaylight Node Information",
"odlSystemOdlUptime": " 00:29",
"odlSystemCpuUsage": " 271",
"odlSystemHostAddress": " Address of the Host should come up"

}
}

Karaf Info APIs

Open the REST interface and using the basic authentication, execute REST APIs for system info as:

http://localhost:8181/restconf/operational/cardinal-karaf:CardinalKarafInfo/

You should get the response code of the same as 200 OK with the following output as:

{
"CardinalKarafInfo": {
"odlKarafBundleListActive1": " org.ops4j.pax.url.mvn_2.4.5 [1]",
"odlKarafBundleListActive2": " org.ops4j.pax.url.wrap_2.4.5 [2]",
"odlKarafBundleListActive3": " org.ops4j.pax.logging.pax-logging-api_1.8.4 [3]",
"odlKarafBundleListActive4": " org.ops4j.pax.logging.pax-logging-service_1.8.4 [4]

→˓",
"odlKarafBundleListActive5": " org.apache.karaf.service.guard_3.0.6 [5]",
"odlKarafBundleListActive6": " org.apache.felix.configadmin_1.8.4 [6]",
"odlKarafBundleListActive7": " org.apache.felix.fileinstall_3.5.2 [7]",
"odlKarafBundleListActive8": " org.objectweb.asm.all_5.0.3 [8]",
"odlKarafBundleListActive9": " org.apache.aries.util_1.1.1 [9]",
"odlKarafBundleListActive10": " org.apache.aries.proxy.api_1.0.1 [10]",
"odlKarafBundleListInstalled1": " org.ops4j.pax.url.mvn_2.4.5 [1]",
"odlKarafBundleListInstalled2": " org.ops4j.pax.url.wrap_2.4.5 [2]",
"odlKarafBundleListInstalled3": " org.ops4j.pax.logging.pax-logging-api_1.8.4 [3]

→˓",
"odlKarafBundleListInstalled4": " org.ops4j.pax.logging.pax-logging-service_1.8.4

→˓[4]",
"odlKarafBundleListInstalled5": " org.apache.karaf.service.guard_3.0.6 [5]",
"odlKarafFeatureListInstalled1": " config",

1244 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

"odlKarafFeatureListInstalled2": " region",
"odlKarafFeatureListInstalled3": " package",
"odlKarafFeatureListInstalled4": " http",
"odlKarafFeatureListInstalled5": " war",
"odlKarafFeatureListInstalled6": " kar",
"odlKarafFeatureListInstalled7": " ssh",
"odlKarafFeatureListInstalled8": " management",
"odlKarafFeatureListInstalled9": " odl-netty",
"odlKarafFeatureListInstalled10": " odl-lmax",
"odlKarafBundleListResolved1": " org.ops4j.pax.url.mvn_2.4.5 [1]",
"odlKarafBundleListResolved2": " org.ops4j.pax.url.wrap_2.4.5 [2]",
"odlKarafBundleListResolved3": " org.ops4j.pax.logging.pax-logging-api_1.8.4 [3]",
"odlKarafBundleListResolved4": " org.ops4j.pax.logging.pax-logging-service_1.8.4

→˓[4]",
"odlKarafBundleListResolved5": " org.apache.karaf.service.guard_3.0.6 [5]",
"odlKarafFeatureListUnInstalled1": " aries-annotation",
"odlKarafFeatureListUnInstalled2": " wrapper",
"odlKarafFeatureListUnInstalled3": " service-wrapper",
"odlKarafFeatureListUnInstalled4": " obr",
"odlKarafFeatureListUnInstalled5": " http-whiteboard",
"odlKarafFeatureListUnInstalled6": " jetty",
"odlKarafFeatureListUnInstalled7": " webconsole",
"odlKarafFeatureListUnInstalled8": " scheduler",
"odlKarafFeatureListUnInstalled9": " eventadmin",
"odlKarafFeatureListUnInstalled10": " jasypt-encryption"

}
}

OpenFlowInfo Apis

Open the REST interface and using the basic authentication, execute REST APIs for system info as:

http://localhost:8181/restconf/operational/cardinal-openflow:Devices

You should get the response code of the same as 200 OK with the following output as:

{
"Devices": {

"openflow": [
{

"macAddress": "6a:80:ef:06:d3:46",
"status": "Connected",
"flowStats": " ",
"interface": "s1",
"manufacturer": "Nicira, Inc.",
"nodeName": "openflow:1:LOCAL",
"meterStats": " "

},
{

"macAddress": "32:56:c7:41:5d:9a",
"status": "Connected",
"flowStats": " ",
"interface": "s2-eth2",
"manufacturer": "Nicira, Inc.",
"nodeName": "openflow:2:2",
"meterStats": " "

},

2.1. Developer Guide 1245

http://localhost:8181/restconf/operational/cardinal-openflow:Devices

OpenDaylight Documentation Documentation, Release Carbon

{
"macAddress": "36:a8:3b:fe:e2:21",
"status": "Connected",
"flowStats": " ",
"interface": "s3-eth1",
"manufacturer": "Nicira, Inc.",
"nodeName": "openflow:3:1",
"meterStats": " "

}
]

}
}

Configuration for Netconf Devices:-

1. To configure or update a netconf-connector via topology you need to send following request to Restconf:

Method: PUT
URI: http://localhost:8181/restconf/config/network-topology:network-topology/topology/
→˓topology-netconf/node/new-netconf-device
Headers:
Accept: application/xml
Content-Type: application/xml

Payload:

<node xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<node-id>new-netconf-device</node-id>
<host xmlns="urn:opendaylight:netconf-node-topology">127.0.0.1</host>
<port xmlns="urn:opendaylight:netconf-node-topology">17830</port>
<username xmlns="urn:opendaylight:netconf-node-topology">admin</username>
<password xmlns="urn:opendaylight:netconf-node-topology">admin</password>
<tcp-only xmlns="urn:opendaylight:netconf-node-topology">false</tcp-only>
<keepalive-delay xmlns="urn:opendaylight:netconf-node-topology">0</keepalive-delay>

</node>

2. To delete a netconf connector issue a DELETE request to the following url:
URI:http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-
netconf-device

NetConf Info Apis Open the REST interface and using the basic authentication, execute REST APIs for system info
as:

http://localhost:8181/restconf/operational/cardinal-netconf:Devices

You should get the response code of the same as 200 OK with the following output as:

{
"Devices": {

"netconf": [
{

"status": "connecting",
"host": "127.0.0.1",
"nodeId": "new-netconf-device1",
"port": "17830"

},
{

"status": "connecting",
"host": "127.0.0.1",

1246 Chapter 2. Content for OpenDaylight Developers

http://localhost:8181/restconf/operational/cardinal-netconf:Devices

OpenDaylight Documentation Documentation, Release Carbon

"nodeId": "new-netconf-device",
"port": "17830"

},
{

"status": "connecting",
"host": "127.0.0.1",
"nodeId": "controller-config",
"port": "1830"

}
]

}
}

Controller

Overview

OpenDaylight Controller is Java-based, model-driven controller using YANG as its modeling language for various
aspects of the system and applications and with its components serves as a base platform for other OpenDaylight
applications.

The OpenDaylight Controller relies on the following technologies:

• OSGI - This framework is the back-end of OpenDaylight as it allows dynamically loading of bundles and
packages JAR files, and binding bundles together for exchanging information.

• Karaf - Application container built on top of OSGI, which simplifies operational aspects of packaging and
installing applications.

• YANG - a data modeling language used to model configuration and state data manipulated by the applications,
remote procedure calls, and notifications.

The OpenDaylight Controller provides following model-driven subsystems as a foundation for Java applications:

• Config Subsystem - an activation, dependency-injection and configuration framework, which allows two-phase
commits of configuration and dependency-injection, and allows for run-time rewiring.

• MD-SAL - messaging and data storage functionality for data, notifications and RPCs modeled by application
developers. MD-SAL uses YANG as the modeling for both interface and data definitions, and provides a mes-
saging and data-centric runtime for such services based on YANG modeling.

• MD-SAL Clustering - enables cluster support for core MD-SAL functionality and provides location-transparent
accesss to YANG-modeled data.

The OpenDaylight Controller supports external access to applications and data using following model-driven proto-
cols:

• NETCONF - XML-based RPC protocol, which provides abilities for client to invoke YANG-modeled RPCs,
receive notifications and to read, modify and manipulate YANG modeled data.

• RESTCONF - HTTP-based protocol, which provides REST-like APIs to manipulate YANG modeled data and
invoke YANG modeled RPCs, using XML or JSON as payload format.

MD-SAL Overview

The Model-Driven Service Adaptation Layer (MD-SAL) is message-bus inspired extensible middleware component
that provides messaging and data storage functionality based on data and interface models defined by application

2.1. Developer Guide 1247

OpenDaylight Documentation Documentation, Release Carbon

developers (i.e. user-defined models).

The MD-SAL:

• Defines a common-layer, concepts, data model building blocks and messaging patterns and provides infras-
tructure / framework for applications and inter-application communication.

• Provide common support for user-defined transport and payload formats, including payload serialization and
adaptation (e.g. binary, XML or JSON).

The MD-SAL uses YANG as the modeling language for both interface and data definitions, and provides a messaging
and data-centric runtime for such services based on YANG modeling.

The MD-SAL provides two different API types (flavours):

• MD-SAL Binding: MD-SAL APIs which extensively uses APIs and classes generated from YANG models,
which provides compile-time safety.

• MD-SAL DOM: (Document Object Model) APIs which uses DOM-like representation of data, which makes
them more powerful, but provides less compile-time safety.

Note: Model-driven nature of the MD-SAL and DOM-based APIs allows for behind-the-scene API and payload
type mediation and transformation to facilitate seamless communication between applications - this enables for other
components and applications to provide connectors / expose different set of APIs and derive most of its functional-
ity purely from models, which all existing code can benefit from without modification. For example RESTCONF
Connector is an application built on top of MD-SAL and exposes YANG-modeled application APIs transparently via
HTTP and adds support for XML and JSON payload type.

Basic concepts

Basic concepts are building blocks which are used by applications, and from which MD-SAL uses to define messaging
patterns and to provide services and behavior based on developer-supplied YANG models.

Data Tree All state-related data are modeled and represented as data tree, with possibility to address any element /
subtree

• Operational Data Tree - Reported state of the system, published by the providers using MD-SAL. Rep-
resents a feedback loop for applications to observe state of the network / system.

• Configuration Data Tree - Intended state of the system or network, populated by consumers, which
expresses their intention.

Instance Identifier Unique identifier of node / subtree in data tree, which provides unambiguous information, how to
reference and retrieve node / subtree from conceptual data trees.

Notification Asynchronous transient event which may be consumed by subscribers and they may act upon it

RPC asynchronous request-reply message pair, when request is triggered by consumer, send to the provider, which
in future replies with reply message.

Note: In MD-SAL terminology, the term RPC is used to define the input and output for a procedure (function)
that is to be provided by a provider, and mediated by the MD-SAL, that means it may not result in remote call.

1248 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Messaging Patterns

MD-SAL provides several messaging patterns using broker derived from basic concepts, which are intended to transfer
YANG modeled data between applications to provide data-centric integration between applications instead of API-
centric integration.

• Unicast communication

– Remote Procedure Calls - unicast between consumer and provider, where consumer sends request mes-
sage to provider, which asynchronously responds with reply message

• Publish / Subscribe

– Notifications - multicast transient message which is published by provider and is delivered to subscribers

– Data Change Events - multicast asynchronous event, which is sent by data broker if there is change in
conceptual data tree, and is delivered to subscribers

• Transactional access to Data Tree

– Transactional reads from conceptual data tree - read-only transactions with isolation from other running
transactions.

– Transactional modification to conceptual data tree - write transactions with isolation from other running
transactions.

– Transaction chaining

MD-SAL Data Transactions

MD-SAL Data Broker provides transactional access to conceptual data trees representing configuration and opera-
tional state.

Note: Data tree usually represents state of the modeled data, usually this is state of controller, applications and also
external systems (network devices).

Transactions provide stable and isolated view from other currently running transactions. The state of running trans-
action and underlying data tree is not affected by other concurrently running transactions.

Write-Only Transaction provides only modification capabilities, but does not provide read capabilities. Write-only
transaction is allocated using newWriteOnlyTransaction().

Note: This allows less state tracking for write-only transactions and allows MD-SAL Clustering to optimize
internal representation of transaction in cluster.

Read-Write Transaction provides both read and write capabilities. It is allocated using
newReadWriteTransaction().

Read-Only Transaction provides stable read-only view based on current data tree. Read-only view is not affected by
any subsequent write transactions. Read-only transaction is allocated using newReadOnlyTransaction().

Note: If an application needs to observe changes itself in data tree, it should use data tree listeners instead of
read-only transactions and polling data tree.

2.1. Developer Guide 1249

OpenDaylight Documentation Documentation, Release Carbon

Transactions may be allocated using the data broker itself or using transaction chain. In the case of transaction
chain, the new allocated transaction is not based on current state of data tree, but rather on state introduced by previous
transaction from the same chain, even if the commit for previous transaction has not yet occurred (but transaction was
submitted).

Write-Only & Read-Write Transaction

Write-Only and Read-Write transactions provide modification capabilities for the conceptual data trees.

1. application allocates new transactions using newWriteOnlyTransaction() or
newReadWriteTransaction().

2. application modifies data tree using put, merge and/or delete.

3. application finishes transaction using submit(), which seals transaction and submits it to be processed.

4. application observes the result of the transaction commit using either blocking or asynchronous calls.

The initial state of the write transaction is a stable snapshot of the current data tree state captured when transaction
was created and it’s state and underlying data tree are not affected by other concurrently running transactions.

Write transactions are isolated from other concurrent write transactions. All writes are local to the transaction and rep-
resents only a proposal of state change for data tree and are not visible to any other concurrently running transactions
(including read-only transactions).

The transaction commit may fail due to failing verification of data or concurrent transaction modifying and affected
data in an incompatible way.

Modification of Data Tree

Write-only and read-write transaction provides following methods to modify data tree:

put

<T> void put(LogicalDatastoreType store, InstanceIdentifier<T> path, T data);

Stores a piece of data at a specified path. This acts as an add / replace operation, which is to say that whole
subtree will be replaced by the specified data.

merge

<T> void merge(LogicalDatastoreType store, InstanceIdentifier<T> path, T data);

Merges a piece of data with the existing data at a specified path. Any pre-existing data which are not explicitly
overwritten will be preserved. This means that if you store a container, its child subtrees will be merged.

delete

void delete(LogicalDatastoreType store, InstanceIdentifier<?> path);

Removes a whole subtree from a specified path.

Submitting transaction

Transaction is submitted to be processed and committed using following method:

1250 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

CheckedFuture<Void,TransactionCommitFailedException> submit();

Applications publish the changes proposed in the transaction by calling submit() on the transaction. This seals the
transaction (preventing any further writes using this transaction) and submits it to be processed and applied to global
conceptual data tree. The submit() method does not block, but rather returns ListenableFuture, which will
complete successfully once processing of transaction is finished and changes are applied to data tree. If commit of
data failed, the future will fail with TransactionFailedException.

Application may listen on commit state asynchronously using ListenableFuture.

Futures.addCallback(writeTx.submit(), new FutureCallback<Void>() {
public void onSuccess(Void result) {

LOG.debug("Transaction committed successfully.");
}

public void onFailure(Throwable t) {
LOG.error("Commit failed.",e);

}
});

• Submits writeTx and registers application provided FutureCallback on returned future.

• Invoked when future completed successfully - transaction writeTx was successfully committed to data tree.

• Invoked when future failed - commit of transaction writeTx failed. Supplied exception provides additional
details and cause of failure.

If application need to block till commit is finished it may use checkedGet() to wait till commit is finished.

try {
writeTx.submit().checkedGet();

} catch (TransactionCommitFailedException e) {
LOG.error("Commit failed.",e);

}

• Submits writeTx and blocks till commit of writeTx is finished. If commit fails
TransactionCommitFailedException will be thrown.

• Catches TransactionCommitFailedException and logs it.

Transaction local state

Read-Write transactions maintain transaction-local state, which renders all modifications as if they happened, but this
is only local to transaction.

Reads from the transaction returns data as if the previous modifications in transaction already happened.

Let assume initial state of data tree for PATH is A.

ReadWriteTransaction rwTx = broker.newReadWriteTransaction();

rwRx.read(OPERATIONAL,PATH).get();
rwRx.put(OPERATIONAL,PATH,B);
rwRx.read(OPERATIONAL,PATH).get();
rwRx.put(OPERATIONAL,PATH,C);
rwRx.read(OPERATIONAL,PATH).get();

• Allocates new ReadWriteTransaction.

2.1. Developer Guide 1251

OpenDaylight Documentation Documentation, Release Carbon

• Read from rwTx will return value A for PATH.

• Writes value B to PATH using rwTx.

• Read will return value B for PATH, since previous write occurred in same transaction.

• Writes value C to PATH using rwTx.

• Read will return value C for PATH, since previous write occurred in same transaction.

Transaction isolation

Running (not submitted) transactions are isolated from each other and changes done in one transaction are not observ-
able in other currently running transaction.

Lets assume initial state of data tree for PATH is A.

ReadOnlyTransaction txRead = broker.newReadOnlyTransaction();
ReadWriteTransaction txWrite = broker.newReadWriteTransaction();

txRead.read(OPERATIONAL,PATH).get();
txWrite.put(OPERATIONAL,PATH,B);
txWrite.read(OPERATIONAL,PATH).get();
txWrite.submit().get();
txRead.read(OPERATIONAL,PATH).get();
txAfterCommit = broker.newReadOnlyTransaction();
txAfterCommit.read(OPERATIONAL,PATH).get();

• Allocates read only transaction, which is based on data tree which contains value A for PATH.

• Allocates read write transaction, which is based on data tree which contains value A for PATH.

• Read from read-only transaction returns value A for PATH.

• Data tree is updated using read-write transaction, PATH contains B. Change is not public and only local to
transaction.

• Read from read-write transaction returns value B for PATH.

• Submits changes in read-write transaction to be committed to data tree. Once commit will finish, changes will
be published and PATH will be updated for value B. Previously allocated transactions are not affected by this
change.

• Read from previously allocated read-only transaction still returns value A for PATH, since it provides stable and
isolated view.

• Allocates new read-only transaction, which is based on data tree, which contains value B for PATH.

• Read from new read-only transaction return value B for PATH since read-write transaction was committed.

Note: Examples contain blocking calls on future only to illustrate that action happened after other asynchronous
action. The use of the blocking call ListenableFuture#get() is discouraged for most use-cases and you
should use Futures#addCallback(ListenableFuture, FutureCallback) to listen asynchronously
for result.

Commit failure scenarios

A transaction commit may fail because of following reasons:

1252 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Optimistic Lock Failure Another transaction finished earlier and modified the same node in a non-compatible
way. The commit (and the returned future) will fail with an OptimisticLockFailedException.

It is the responsibility of the caller to create a new transaction and submit the same modification again in order
to update data tree.

Warning: OptimisticLockFailedException usually exposes multiple writers to the same data
subtree, which may conflict on same resources.

In most cases, retrying may result in a probability of success.

There are scenarios, albeit unusual, where any number of retries will not succeed. Therefore it is strongly
recommended to limit the number of retries (2 or 3) to avoid an endless loop.

Data Validation The data change introduced by this transaction did not pass validation by commit handlers or data
was incorrectly structured. The returned future will fail with a DataValidationFailedException. User
should not retry to create new transaction with same data, since it probably will fail again.

Example conflict of two transactions

This example illustrates two concurrent transactions, which derived from same initial state of data tree and proposes
conflicting modifications.

WriteTransaction txA = broker.newWriteTransaction();
WriteTransaction txB = broker.newWriteTransaction();

txA.put(CONFIGURATION, PATH, A);
txB.put(CONFIGURATION, PATH, B);

CheckedFuture<?,?> futureA = txA.submit();
CheckedFuture<?,?> futureB = txB.submit();

• Updates PATH to value A using txA

• Updates PATH to value B using txB

• Seals & submits txA. The commit will be processed asynchronously and data tree will be updated to contain
value A for PATH. The returned ‘ListenableFuture’ will complete successfully once state is applied to data tree.

• Seals & submits txB. Commit of txB will fail, because previous transaction also modified path in a concurrent
way. The state introduced by txB will not be applied. The returned ListenableFuture will fail with
OptimisticLockFailedException exception, which indicates that concurrent transaction prevented the
submitted transaction from being applied.

Example asynchronous retry-loop

private void doWrite(final int tries) {
WriteTransaction writeTx = dataBroker.newWriteOnlyTransaction();

MyDataObject data = ...;
InstanceIdentifier<MyDataObject> path = ...;
writeTx.put(LogicalDatastoreType.OPERATIONAL, path, data);

Futures.addCallback(writeTx.submit(), new FutureCallback<Void>() {
public void onSuccess(Void result) {

2.1. Developer Guide 1253

OpenDaylight Documentation Documentation, Release Carbon

// succeeded
}

public void onFailure(Throwable t) {
if(t instanceof OptimisticLockFailedException && ((tries - 1) > 0)) {

doWrite(tries - 1);
}

}
});

}
...
doWrite(2);

Concurrent change compatibility

There are several sets of changes which could be considered incompatible between two transactions which are derived
from same initial state. Rules for conflict detection applies recursively for each subtree level.

Following table shows state changes and failures between two concurrent transactions, which are based on same initial
state, tx1 is submitted before tx2.

INFO: Following tables stores numeric values and shows data using toString() to simplify examples.

Initial state tx1 tx2 Observable Result
Empty put(A,1) put(A,2) tx2 will fail, value of A is 1
Empty put(A,1) merge(A,2) value of A is 2
Empty merge(A,1) put(A,2) tx2 will fail, value of A is 1
Empty merge(A,1) merge(A,2) A is 2
A=0 put(A,1) put(A,2) tx2 will fail, A is 1
A=0 put(A,1) merge(A,2) A is 2
A=0 merge(A,1) put(A,2) tx2 will fail, value of A is 1
A=0 merge(A,1) merge(A,2) A is 2
A=0 delete(A) put(A,2) tx2 will fail, A does not exists
A=0 delete(A) merge(A,2) A is 2

Table: Concurrent change resolution for leaves and leaf-list items

1254 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Initial state tx1 tx2 Result
Empty put(TOP,[]) put(TOP,[]) tx2 will fail, state is TOP=[]
Empty put(TOP,[]) merge(TOP,[]) TOP=[]
Empty put(TOP,[FOO=1]) put(TOP,[BAR=1]) tx2 will fail, state is TOP=[FOO=1]
Empty put(TOP,[FOO=1]) merge(TOP,[BAR=1]) TOP=[FOO=1,BAR=1]
Empty merge(TOP,[FOO=1]) put(TOP,[BAR=1]) tx2 will fail, state is TOP=[FOO=1]
Empty merge(TOP,[FOO=1]) merge(TOP,[BAR=1]) TOP=[FOO=1,BAR=1]
TOP=[] put(TOP,[FOO=1]) put(TOP,[BAR=1]) tx2 will fail, state is TOP=[FOO=1]
TOP=[] put(TOP,[FOO=1]) merge(TOP,[BAR=1]) state is TOP=[FOO=1,BAR=1]
TOP=[] merge(TOP,[FOO=1]) put(TOP,[BAR=1]) tx2 will fail, state is TOP=[FOO=1]
TOP=[] merge(TOP,[FOO=1]) merge(TOP,[BAR=1]) state is TOP=[FOO=1,BAR=1]
TOP=[] delete(TOP) put(TOP,[BAR=1]) tx2 will fail, state is empty store
TOP=[] delete(TOP) merge(TOP,[BAR=1]) state is TOP=[BAR=1]
TOP=[] put(TOP/FOO,1) put(TOP/BAR,1]) state is TOP=[FOO=1,BAR=1]
TOP=[] put(TOP/FOO,1) merge(TOP/BAR,1) state is TOP=[FOO=1,BAR=1]
TOP=[] merge(TOP/FOO,1) put(TOP/BAR,1) state is TOP=[FOO=1,BAR=1]
TOP=[] merge(TOP/FOO,1) merge(TOP/BAR,1) state is TOP=[FOO=1,BAR=1]
TOP=[] delete(TOP) put(TOP/BAR,1) tx2 will fail, state is empty store
TOP=[] delete(TOP) merge(TOP/BAR,1] tx2 will fail, state is empty store
TOP=[FOO=1] put(TOP/FOO,2) put(TOP/BAR,1) state is TOP=[FOO=2,BAR=1]
TOP=[FOO=1] put(TOP/FOO,2) merge(TOP/BAR,1) state is TOP=[FOO=2,BAR=1]
TOP=[FOO=1] merge(TOP/FOO,2) put(TOP/BAR,1) state is TOP=[FOO=2,BAR=1]
TOP=[FOO=1] merge(TOP/FOO,2) merge(TOP/BAR,1) state is TOP=[FOO=2,BAR=1]
TOP=[FOO=1] delete(TOP/FOO) put(TOP/BAR,1) state is TOP=[BAR=1]
TOP=[FOO=1] delete(TOP/FOO) merge(TOP/BAR,1] state is TOP=[BAR=1]

Table: Concurrent change resolution for containers, lists, list items

MD-SAL RPC routing

The MD-SAL provides a way to deliver Remote Procedure Calls (RPCs) to a particular implementation based on
content in the input as it is modeled in YANG. This part of the the RPC input is referred to as a context reference.

The MD-SAL does not dictate the name of the leaf which is used for this RPC routing, but provides necessary func-
tionality for YANG model author to define their context reference in their model of RPCs.

MD-SAL routing behavior is modeled using following terminology and its application to YANG models:

Context Type Logical type of RPC routing. Context type is modeled as YANG identity and is referenced in
model to provide scoping information.

Context Instance Conceptual location in data tree, which represents context in which RPC could be executed. Con-
text instance usually represent logical point to which RPC execution is attached.

Context Reference Field of RPC input payload which contains Instance Identifier referencing context instance in
which the RPC should be executed.

Modeling a routed RPC

In order to define routed RPCs, the YANG model author needs to declare (or reuse) a context type, set of possible
context instances and finally RPCs which will contain context reference on which they will be routed.

2.1. Developer Guide 1255

OpenDaylight Documentation Documentation, Release Carbon

Declaring a routing context type

This declares an identity named node-context, which is used as marker for node-based routing and is used in other
places to reference that routing type.

Declaring possible context instances

In order to define possible values of context instances for routed RPCs, we need to model that set accordingly using
context-instance extension from the yang-ext model.

The statement ext:context-instance "node-context"; marks any element of the list node as a pos-
sible valid context instance in node-context based routing.

Note: The existence of a context instance node in operational or config data tree is not strongly tied to existence of
RPC implementation.

For most routed RPC models, there is relationship between the data present in operational data tree and RPC imple-
mentation availability, but this is not enforced by MD-SAL. This provides some flexibility for YANG model writers
to better specify their routing model and requirements for implementations. Details when RPC implementations are
available should be documented in YANG model.

If user invokes RPC with a context instance that has no registered implementation, the RPC invocation will fail with
the exception DOMRpcImplementationNotAvailableException.

Declaring a routed RPC

To declare RPC to be routed based on node-context we need to add leaf of instance-identifier type (or
type derived from instance-identifier) to the RPC and mark it as context reference.

This is achieved using YANG extension context-reference from yang-ext model on leaf, which will be used
for RPC routing.

The statement ext:context-reference "node-context" marks leaf node as context reference of
type node-context. The value of this leaf, will be used by the MD-SAL to select the particular RPC imple-
mentation that registered itself as the implementation of the RPC for particular context instance.

Using routed RPCs

From a user perspective (e.g. invoking RPCs) there is no difference between routed and non-routed RPCs. Routing
information is just an additional leaf in RPC which must be populated.

Implementing a routed RPC

Implementation

Registering implementations

Implementations of a routed RPC (e.g., southbound plugins) will specify an instance-identifier for the context ref-
erence (in this case a node) for which they want to provide an implementation during registration. Consumers, e.g.,

1256 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

those calling the RPC are required to specify that instance-identifier (in this case the identifier of a node) when invoking
RPC.

Simple code which showcases that for add-flow via Binding-Aware APIs (RoutedServiceTest.java):

61 @Override
62 public void onSessionInitiated(ProviderContext session) {
63 assertNotNull(session);
64 firstReg = session.addRoutedRpcImplementation(SalFlowService.class,
→˓salFlowService1);
65 }

Line 64: We are registering salFlowService1 as implementation of SalFlowService RPC

107 NodeRef nodeOne = createNodeRef("foo:node:1");
109 /**
110 * Provider 1 registers path of node 1
111 */
112 firstReg.registerPath(NodeContext.class, nodeOne);

Line 107: We are creating NodeRef (encapsulation of InstanceIdentifier) for “foo:node:1”.

Line 112: We register salFlowService1 as implementation for nodeOne.

The salFlowService1 will be executed only for RPCs which contains Instance Identifier for foo:node:1.

RPCs and cluster

In case there is is only a single provider of an RPC in the cluster the RPC registration is propagated to other nodes via
Gossip protocol and the RPC calls from other nodes are correctly routed to the provider. Since the registrations are not
expected to change rapidly there is a latency of about 1 second until the registration is reflected on the remote nodes.

OpenDaylight Controller MD-SAL: RESTCONF

RESTCONF operations overview

RESTCONF allows access to datastores in the controller.
There are two datastores:

• Config: Contains data inserted via controller

• Operational: Contains other data

Note:

Each request must start with the URI /restconf.
RESTCONF listens on port 8080 for HTTP requests.

RESTCONF supports OPTIONS, GET, PUT, POST, and DELETE operations. Request and response data can either
be in the XML or JSON format. XML structures according to yang are defined at: XML-YANG. JSON structures are
defined at: JSON-YANG. Data in the request must have a correctly set Content-Type field in the http header with
the allowed value of the media type. The media type of the requested data has to be set in the Accept field. Get the
media types for each resource by calling the OPTIONS operation. Most of the paths of the pathsRestconf endpoints
use Instance Identifier. <identifier> is used in the explanation of the operations.

2.1. Developer Guide 1257

https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/md-sal/sal-binding-it/src/test/java/org/opendaylight/controller/test/sal/binding/it/RoutedServiceTest.java;h=d49d6f0e25e271e43c8550feb5eef63d96301184;hb=HEAD
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/draft-lhotka-netmod-yang-json-02
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Concepts#Instance_Identifier

OpenDaylight Documentation Documentation, Release Carbon

<identifier>

• It must start with <moduleName>:<nodeName> where <moduleName> is a name of the module and <node-
Name> is the name of a node in the module. It is sufficient to just use <nodeName> after <module-
Name>:<nodeName>. Each <nodeName> has to be separated by /.

• <nodeName> can represent a data node which is a list or container yang built-in type. If the data
node is a list, there must be defined keys of the list behind the data node name for example, <node-
Name>/<valueOfKey1>/<valueOfKey2>.

• The format <moduleName>:<nodeName> has to be used in this case as well:
Module A has node A1. Module B augments node A1 by adding node X. Module C augments node A1 by
adding node X. For clarity, it has to be known which node is X (for example: C:X). For more details about
encoding, see: RESTCONF 02 - Encoding YANG Instance Identifiers in the Request URI.

Mount point

A Node can be behind a mount point. In this case, the URI has to be in format
<identifier>/yang-ext:mount/<identifier>. The first <identifier> is the path to a mount point and the second
<identifier> is the path to a node behind the mount point. A URI can end in a mount point itself by using
<identifier>/yang-ext:mount.
More information on how to actually use mountpoints is available at: OpenDaylight
Controller:Config:Examples:Netconf.

HTTP methods

OPTIONS /restconf

• Returns the XML description of the resources with the required request and response media types in Web
Application Description Language (WADL)

GET /restconf/config/<identifier>

• Returns a data node from the Config datastore.

• <identifier> points to a data node which must be retrieved.

GET /restconf/operational/<identifier>

• Returns the value of the data node from the Operational datastore.

• <identifier> points to a data node which must be retrieved.

PUT /restconf/config/<identifier>

• Updates or creates data in the Config datastore and returns the state about success.

• <identifier> points to a data node which must be stored.

1258 Chapter 2. Content for OpenDaylight Developers

http://tools.ietf.org/html/draft-bierman-netconf-restconf-02#section-5.3.1
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf

OpenDaylight Documentation Documentation, Release Carbon

Example:

PUT http://<controllerIP>:8080/restconf/config/module1:foo/bar
Content-Type: applicaton/xml
<bar>

...
</bar>

Example with mount point:

PUT http://<controllerIP>:8080/restconf/config/module1:foo1/foo2/yang-ext:mount/
→˓module2:foo/bar
Content-Type: applicaton/xml
<bar>

...
</bar>

POST /restconf/config

• Creates the data if it does not exist

For example:

POST URL: http://localhost:8080/restconf/config/
content-type: application/yang.data+json
JSON payload:

{
"toaster:toaster" :
{

"toaster:toasterManufacturer" : "General Electric",
"toaster:toasterModelNumber" : "123",
"toaster:toasterStatus" : "up"

}
}

POST /restconf/config/<identifier>

• Creates the data if it does not exist in the Config datastore, and returns the state about success.

• <identifier> points to a data node where data must be stored.

• The root element of data must have the namespace (data are in XML) or module name (data are in JSON.)

Example:

2.1. Developer Guide 1259

OpenDaylight Documentation Documentation, Release Carbon

POST http://<controllerIP>:8080/restconf/config/module1:foo
Content-Type: applicaton/xml/
<bar xmlns=“module1namespace”>

...
</bar>

Example with mount point:

http://<controllerIP>:8080/restconf/config/module1:foo1/foo2/yang-ext:mount/
→˓module2:foo
Content-Type: applicaton/xml
<bar xmlns=“module2namespace”>

...
</bar>

POST /restconf/operations/<moduleName>:<rpcName>

• Invokes RPC.

• <moduleName>:<rpcName> - <moduleName> is the name of the module and <rpcName> is the name of the
RPC in this module.

• The Root element of the data sent to RPC must have the name “input”.

• The result can be the status code or the retrieved data having the root element “output”.

Example:

POST http://<controllerIP>:8080/restconf/operations/module1:fooRpc
Content-Type: applicaton/xml
Accept: applicaton/xml
<input>

...
</input>

The answer from the server could be:
<output>

...
</output>

An example using a JSON payload:

POST http://localhost:8080/restconf/operations/toaster:make-toast
Content-Type: application/yang.data+json
{

"input" :
{

"toaster:toasterDoneness" : "10",
"toaster:toasterToastType":"wheat-bread"

}
}

1260 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Note: Even though this is a default for the toasterToastType value in the yang, you still need to define it.

DELETE /restconf/config/<identifier>

• Removes the data node in the Config datastore and returns the state about success.

• <identifier> points to a data node which must be removed.

More information is available in the RESTCONF RFC.

How RESTCONF works

RESTCONF uses these base classes:

InstanceIdentifier Represents the path in the data tree

ConsumerSession Used for invoking RPCs

DataBrokerService Offers manipulation with transactions and reading data from the datastores

SchemaContext Holds information about yang modules

MountService Returns MountInstance based on the InstanceIdentifier pointing to a mount point

MountInstace Contains the SchemaContext behind the mount point

DataSchemaNode Provides information about the schema node

SimpleNode Possesses the same name as the schema node, and contains the value representing the data node value

CompositeNode Can contain CompositeNode-s and SimpleNode-s

GET in action

Figure 1 shows the GET operation with URI restconf/config/M:N where M is the module name, and N is the node
name.

Fig. 2.17: Get

2.1. Developer Guide 1261

http://tools.ietf.org/html/draft-bierman-netconf-restconf-02

OpenDaylight Documentation Documentation, Release Carbon

1. The requested URI is translated into the InstanceIdentifier which points to the data node. During this translation,
the DataSchemaNode that conforms to the data node is obtained. If the data node is behind the mount point, the
MountInstance is obtained as well.

2. RESTCONF asks for the value of the data node from DataBrokerService based on InstanceIdentifier.

3. DataBrokerService returns CompositeNode as data.

4. StructuredDataToXmlProvider or StructuredDataToJsonProvider is called based on the Accept field from the
http request. These two providers can transform CompositeNode regarding DataSchemaNode to an XML or
JSON document.

5. XML or JSON is returned as the answer on the request from the client.

PUT in action

Figure 2 shows the PUT operation with the URI restconf/config/M:N where M is the module name, and N is the node
name. Data is sent in the request either in the XML or JSON format.

Fig. 2.18: Put

1. Input data is sent to JsonToCompositeNodeProvider or XmlToCompositeNodeProvider. The correct provider is
selected based on the Content-Type field from the http request. These two providers can transform input data to
CompositeNode. However, this CompositeNode does not contain enough information for transactions.

2. The requested URI is translated into InstanceIdentifier which points to the data node. DataSchemaNode con-
forming to the data node is obtained during this translation. If the data node is behind the mount point, the
MountInstance is obtained as well.

3. CompositeNode can be normalized by adding additional information from DataSchemaNode.

4. RESTCONF begins the transaction, and puts CompositeNode with InstanceIdentifier into it. The response on
the request from the client is the status code which depends on the result from the transaction.

Something practical

1. Create a new flow on the switch openflow:1 in table 2.

HTTP request

1262 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Operation: POST
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/
→˓openflow:1/table/2
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow

xmlns="urn:opendaylight:flow:inventory">
<strict>false</strict>
<instructions>

<instruction>
<order>1</order>
<apply-actions>

<action>
<order>1</order>
<flood-all-action/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>111</id>
<cookie_mask>10</cookie_mask>
<out_port>10</out_port>
<installHw>false</installHw>
<out_group>2</out_group>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

</ethernet-match>
<ipv4-destination>10.0.0.1/24</ipv4-destination>

</match>
<hard-timeout>0</hard-timeout>
<cookie>10</cookie>
<idle-timeout>0</idle-timeout>
<flow-name>FooXf22</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

HTTP response

Status: 204 No Content

1. Change strict to true in the previous flow.

HTTP request

2.1. Developer Guide 1263

OpenDaylight Documentation Documentation, Release Carbon

Operation: PUT
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/
→˓openflow:1/table/2/flow/111
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow

xmlns="urn:opendaylight:flow:inventory">
<strict>true</strict>
<instructions>

<instruction>
<order>1</order>
<apply-actions>

<action>
<order>1</order>
<flood-all-action/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>111</id>
<cookie_mask>10</cookie_mask>
<out_port>10</out_port>
<installHw>false</installHw>
<out_group>2</out_group>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

</ethernet-match>
<ipv4-destination>10.0.0.1/24</ipv4-destination>

</match>
<hard-timeout>0</hard-timeout>
<cookie>10</cookie>
<idle-timeout>0</idle-timeout>
<flow-name>FooXf22</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

HTTP response

Status: 200 OK

1. Show flow: check that strict is true.

HTTP request

1264 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Operation: GET
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/
→˓openflow:1/table/2/flow/111
Accept: application/xml

HTTP response

Status: 200 OK

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow

xmlns="urn:opendaylight:flow:inventory">
<strict>true</strict>
<instructions>

<instruction>
<order>1</order>
<apply-actions>

<action>
<order>1</order>
<flood-all-action/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>111</id>
<cookie_mask>10</cookie_mask>
<out_port>10</out_port>
<installHw>false</installHw>
<out_group>2</out_group>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

</ethernet-match>
<ipv4-destination>10.0.0.1/24</ipv4-destination>

</match>
<hard-timeout>0</hard-timeout>
<cookie>10</cookie>
<idle-timeout>0</idle-timeout>
<flow-name>FooXf22</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

1. Delete the flow created.

HTTP request

2.1. Developer Guide 1265

OpenDaylight Documentation Documentation, Release Carbon

Operation: DELETE
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/
→˓openflow:1/table/2/flow/111

HTTP response

Status: 200 OK

Websocket change event notification subscription tutorial

Subscribing to data change notifications makes it possible to obtain notifications about data manipulation (insert,
change, delete) which are done on any specified path of any specified datastore with specific scope. In following
examples {odlAddress} is address of server where ODL is running and {odlPort} is port on which OpenDaylight is
running.

Websocket notifications subscription process

In this section we will learn what steps need to be taken in order to successfully subscribe to data change event
notifications.

Create stream

In order to use event notifications you first need to call RPC that creates notification stream that you can later listen to.
You need to provide three parameters to this RPC:

• path: data store path that you plan to listen to. You can register listener on containers, lists and leaves.

• datastore: data store type. OPERATIONAL or CONFIGURATION.

• scope: Represents scope of data change. Possible options are:

– BASE: only changes directly to the data tree node specified in the path will be reported

– ONE: changes to the node and to direct child nodes will be reported

– SUBTREE: changes anywhere in the subtree starting at the node will be reported

The RPC to create the stream can be invoked via RESTCONF like this:

• URI: http://{odlAddress}:{odlPort}/restconf/operations/sal-remote:create-data-change-event-subscription

• HEADER: Content-Type=application/json

• OPERATION: POST

• DATA:

{
"input": {

"path": "/toaster:toaster/toaster:toasterStatus",
"sal-remote-augment:datastore": "OPERATIONAL",
"sal-remote-augment:scope": "ONE"

}
}

1266 Chapter 2. Content for OpenDaylight Developers

http:/

OpenDaylight Documentation Documentation, Release Carbon

The response should look something like this:

{
"output": {

"stream-name": "data-change-event-subscription/toaster:toaster/
→˓toaster:toasterStatus/datastore=CONFIGURATION/scope=SUBTREE"

}
}

stream-name is important because you will need to use it when you subscribe to the stream in the next step.

Note: Internally, this will create a new listener for stream-name if it did not already exist.

Subscribe to stream

In order to subscribe to stream and obtain WebSocket location you need to call GET on your stream path. The URI
should generally be http://{odlAddress}:{odlPort}/restconf/streams/stream/{streamName}, where {streamName} is
the stream-name parameter contained in response from create-data-change-event-subscription RPC from the previous
step.

• URI: http://{odlAddress}:{odlPort}/restconf/streams/stream/data-change-event-
subscription/toaster:toaster/datastore=CONFIGURATION/scope=SUBTREE

• OPERATION: GET

The subscription call may be modified with the following query parameters defined in the RESTCONF RFC:

• filter

• start-time

• end-time

In addition, the following ODL extension query parameter is supported:

odl-leaf-nodes-only If this parameter is set to “true”, create and update notifications will only contain
the leaf nodes modified instead of the entire subscription subtree. This can help in reducing the size
of the notifications.

The expected response status is 200 OK and response body should be empty. You will get your WebSocket location
from Location header of response. For example in our particular toaster example location header would have this
value: ws://{odlAddress}:8185/toaster:toaster/datastore=CONFIGURATION/scope=SUBTREE

Note: During this phase there is an internal check for to see if a listener for the stream-name from the URI exists. If
not, new a new listener is registered with the DOM data broker.

Receive notifications

You should now have a data change notification stream created and have location of a WebSocket. You can use this
WebSocket to listen to data change notifications. To listen to notifications you can use a JavaScript client or if you are
using chrome browser you can use the Simple WebSocket Client.

2.1. Developer Guide 1267

http:/
http:/
https://tools.ietf.org/html/draft-ietf-netconf-restconf-05#section-4.8.6
https://tools.ietf.org/html/draft-ietf-netconf-restconf-05#section-4.8.7
https://tools.ietf.org/html/draft-ietf-netconf-restconf-05#section-4.8.8
https://chrome.google.com/webstore/detail/simple-websocket-client/pfdhoblngboilpfeibdedpjgfnlcodoo

OpenDaylight Documentation Documentation, Release Carbon

Also, for testing purposes, there is simple Java application named WebSocketClient. The application is placed in the
-sal-rest-connector-classes.class project. It accepts a WebSocket URI as and input parameter. After starting the utility
(WebSocketClient class directly in Eclipse/InteliJ Idea) received notifications should be displayed in console.

Notifications are always in XML format and look like this:

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2014-09-11T09:58:23+02:00</eventTime>
<data-changed-notification xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:remote">
<data-change-event>

<path xmlns:meae="http://netconfcentral.org/ns/toaster">/meae:toaster</
→˓path>

<operation>updated</operation>
<data>

<!-- updated data -->
</data>

</data-change-event>
</data-changed-notification>

</notification>

Example use case

The typical use case is listening to data change events to update web page data in real-time. In this tutorial we will be
using toaster as the base.

When you call make-toast RPC, it sets toasterStatus to “down” to reflect that the toaster is busy making toast. When
it finishes, toasterStatus is set to “up” again. We will listen to this toaster status changes in data store and will reflect
it on our web page in real-time thanks to WebSocket data change notification.

Simple javascript client implementation

We will create simple JavaScript web application that will listen updates on toasterStatus leaf and update some element
of our web page according to new toaster status state.

Create stream

First you need to create stream that you are planing to subscribe to. This can be achieved by invoking “create-data-
change-event-subscription” RPC on RESTCONF via AJAX request. You need to provide data store path that you
plan to listen on, data store type and scope. If the request is successful you can extract the stream-name from the
response and use that to subscribe to the newly created stream. The {username} and {password} fields represent your
credentials that you use to connect to OpenDaylight via RESTCONF:

Note: The default user name and password are “admin”.

function createStream() {
$.ajax(

{
url: 'http://{odlAddress}:{odlPort}/restconf/operations/sal-remote:create-

→˓data-change-event-subscription',
type: 'POST',
headers: {

1268 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

'Authorization': 'Basic ' + btoa('{username}:{password}'),
'Content-Type': 'application/json'

},
data: JSON.stringify(

{
'input': {

'path': '/toaster:toaster/toaster:toasterStatus',
'sal-remote-augment:datastore': 'OPERATIONAL',
'sal-remote-augment:scope': 'ONE'

}
}

)
}).done(function (data) {

// this function will be called when ajax call is executed successfully
subscribeToStream(data.output['stream-name']);

}).fail(function (data) {
// this function will be called when ajax call fails
console.log("Create stream call unsuccessful");

})
}

Subscribe to stream

The Next step is to subscribe to the stream. To subscribe to the stream you need to call GET on
http://{odlAddress}:{odlPort}/restconf/streams/stream/{stream-name}. If the call is successful, you get WebSocket
address for this stream in Location parameter inside response header. You can get response header by calling getRe-
sponseHeader(*Location)* on HttpRequest object inside done() function call:

function subscribeToStream(streamName) {
$.ajax(

{
url: 'http://{odlAddress}:{odlPort}/restconf/streams/stream/' +

→˓streamName;
type: 'GET',
headers: {
'Authorization': 'Basic ' + btoa('{username}:{password}'),

}
}

).done(function (data, textStatus, httpReq) {
// we need function that has http request object parameter in order to access

→˓response headers.
listenToNotifications(httpReq.getResponseHeader('Location'));

}).fail(function (data) {
console.log("Subscribe to stream call unsuccessful");

});
}

Receive notifications

Once you got WebSocket server location you can now connect to it and start receiving data change events. You need
to define functions that will handle events on WebSocket. In order to process incoming events from OpenDaylight you
need to provide a function that will handle onmessage events. The function must have one parameter that represents
the received event object. The event data will be stored in event.data. The data will be in an XML format that you can
then easily parse using jQuery.

2.1. Developer Guide 1269

OpenDaylight Documentation Documentation, Release Carbon

function listenToNotifications(socketLocation) {
try {

var notificatinSocket = new WebSocket(socketLocation);

notificatinSocket.onmessage = function (event) {
// we process our received event here
console.log('Received toaster data change event.');
$($.parseXML(event.data)).find('data-change-event').each(

function (index) {
var operation = $(this).find('operation').text();
if (operation == 'updated') {

// toaster status was updated so we call function that gets
→˓the value of toasterStatus leaf

updateToasterStatus();
return false;

}
}

);
}
notificatinSocket.onerror = function (error) {

console.log("Socket error: " + error);
}
notificatinSocket.onopen = function (event) {

console.log("Socket connection opened.");
}
notificatinSocket.onclose = function (event) {

console.log("Socket connection closed.");
}
// if there is a problem on socket creation we get exception (i.e. when

→˓socket address is incorrect)
} catch(e) {

alert("Error when creating WebSocket" + e);
}

}

The updateToasterStatus() function represents function that calls GET on the path that was modified and sets toaster
status in some web page element according to received data. After the WebSocket connection has been established
you can test events by calling make-toast RPC via RESTCONF.

Note: for more information about WebSockets in JavaScript visit Writing WebSocket client applications

Config Subsystem

Overview

The Controller configuration operation has three stages:

• First, a Proposed configuration is created. Its target is to replace the old configuration.

• Second, the Proposed configuration is validated, and then committed. If it passes validation successfully, the
Proposed configuration state will be changed to Validated.

• Finally, a Validated configuration can be Committed, and the affected modules can be reconfigured.

In fact, each configuration operation is wrapped in a transaction. Once a transaction is created, it can be configured,

1270 Chapter 2. Content for OpenDaylight Developers

https://developer.mozilla.org/en-US/docs/WebSockets/Writing_WebSocket_client_applications

OpenDaylight Documentation Documentation, Release Carbon

that is to say, a user can abort the transaction during this stage. After the transaction configuration is done, it is
committed to the validation stage. In this stage, the validation procedures are invoked. If one or more validations fail,
the transaction can be reconfigured. Upon success, the second phase commit is invoked. If this commit is successful,
the transaction enters the last stage, committed. After that, the desired modules are reconfigured. If the second phase
commit fails, it means that the transaction is unhealthy - basically, a new configuration instance creation failed, and
the application can be in an inconsistent state.

Fig. 2.19: Configuration states

Validation

To secure the consistency and safety of the new configuration and to avoid conflicts, the configuration validation
process is necessary. Usually, validation checks the input parameters of a new configuration, and mostly verifies
module-specific relationships. The validation procedure results in a decision on whether the proposed configuration is
healthy.

Dependency resolver

Since there can be dependencies between modules, a change in a module configuration can affect the state of other
modules. Therefore, we need to verify whether dependencies on other modules can be resolved. The Dependency
Resolver acts in a manner similar to dependency injectors. Basically, a dependency tree is built.

2.1. Developer Guide 1271

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.20: Transaction states

1272 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

APIs and SPIs

This section describes configuration system APIs and SPIs.

SPIs

Module org.opendaylight.controller.config.spi. Module is the common interface for all modules: every module must
implement it. The module is designated to hold configuration attributes, validate them, and create instances of service
based on the attributes. This instance must implement the AutoCloseable interface, owing to resources clean up. If
the module was created from an already running instance, it contains an old instance of the module. A module can
implement multiple services. If the module depends on other modules, setters need to be annotated with @RequireIn-
terface.

Module creation

1. The module needs to be configured, set with all required attributes.

2. The module is then moved to the commit stage for validation. If the validation fails, the module attributes can be
reconfigured. Otherwise, a new instance is either created, or an old instance is reconfigured. A module instance
is identified by ModuleIdentifier, consisting of the factory name and instance name.

ModuleFactory org.opendaylight.controller.config.spi. The ModuleFactory interface must be implemented by each
module factory.
A module factory can create a new module instance in two ways:

• From an existing module instance

• An entirely new instance
ModuleFactory can also return default modules, useful for populating registry with already existing
configurations. A module factory implementation must have a globally unique name.

APIs

ConfigRegistry Represents functionality provided by a configuration transaction (create, destroy
module, validate, or abort transaction).

ConfigTransactionController Represents functionality for manipulating with configuration transactions (begin,
commit config).

RuntimeBeanRegistra-
torAwareConfiBean

The module implementing this interface will receive RuntimeBeanRegistrator
before getInstance is invoked.

Runtime APIs

RuntimeBean Common interface for all runtime beans
RootRuntimeBeanRegistra-
tor

Represents functionality for root runtime bean registration, which subsequently
allows hierarchical registrations

HierarchicalRuntimeBean-
Registration

Represents functionality for runtime bean registration and unreregistration from
hierarchy

2.1. Developer Guide 1273

OpenDaylight Documentation Documentation, Release Carbon

JMX APIs

JMX API is purposed as a transition between the Client API and the JMX platform.

ConfigTransaction-
ControllerMXBean

Extends ConfigTransactionController, executed by Jolokia clients on configuration
transaction.

ConfigReg-
istryMXBean

Represents entry point of configuration management for MXBeans.

Object names Object Name is the pattern used in JMX to locate JMX beans. It consists of domain and
key properties (at least one key-value pair). Domain is defined as
“org.opendaylight.controller”. The only mandatory property is “type”.

Use case scenarios

A few samples of successful and unsuccessful transaction scenarios follow:

Successful commit scenario

1. The user creates a transaction calling creteTransaction() method on ConfigRegistry.

2. ConfigRegisty creates a transaction controller, and registers the transaction as a new bean.

3. Runtime configurations are copied to the transaction. The user can create modules and set their attributes.

4. The configuration transaction is to be committed.

5. The validation process is performed.

6. After successful validation, the second phase commit begins.

7. Modules proposed to be destroyed are destroyed, and their service instances are closed.

8. Runtime beans are set to registrator.

9. The transaction controller invokes the method getInstance on each module.

10. The transaction is committed, and resources are either closed or released.

Validation failure scenario
The transaction is the same as the previous case until the validation process.

1. If validation fails, (that is to day, illegal input attributes values or dependency resolver failure), the validationEx-
ception is thrown and exposed to the user.

2. The user can decide to reconfigure the transaction and commit again, or abort the current transaction.

3. On aborted transactions, TransactionController and JMXRegistrator are properly closed.

4. Unregistration event is sent to ConfigRegistry.

1274 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Default module instances

The configuration subsystem provides a way for modules to create default instances. A default instance is an instance
of a module, that is created at the module bundle start-up (module becomes visible for configuration subsystem, for
example, its bundle is activated in the OSGi environment). By default, no default instances are produced.

The default instance does not differ from instances created later in the module life-cycle. The only difference is that the
configuration for the default instance cannot be provided by the configuration subsystem. The module has to acquire
the configuration for these instances on its own. It can be acquired from, for example, environment variables. After
the creation of a default instance, it acts as a regular instance and fully participates in the configuration subsystem (It
can be reconfigured or deleted in following transactions.).

DIDM Developer Guide

Overview

The Device Identification and Driver Management (DIDM) project addresses the need to provide device-specific
functionality. Device-specific functionality is code that performs a feature, and the code is knowledgeable of the
capability and limitations of the device. For example, configuring VLANs and adjusting FlowMods are features, and
there may be different implementations for different device types. Device-specific functionality is implemented as
Device Drivers. Device Drivers need to be associated with the devices they can be used with. To determine this
association requires the ability to identify the device type.

DIDM Architecture

The DIDM project creates the infrastructure to support the following functions:

• Discovery - Determination that a device exists in the controller management domain and connectivity to the
device can be established. For devices that support the OpenFlow protocol, the existing discovery mechanism in
OpenDaylight suffices. Devices that do not support OpenFlow will be discovered through manual means such
as the operator entering device information via GUI or REST API.

• Identification – Determination of the device type.

• Driver Registration – Registration of Device Drivers as routed RPCs.

• Synchronization – Collection of device information, device configuration, and link (connection) information.

• Data Models for Common Features – Data models will be defined to perform common features such as VLAN
configuration. For example, applications can configure a VLAN by writing the VLAN data to the data store as
specified by the common data model.

• RPCs for Common Features – Configuring VLANs and adjusting FlowMods are example of features. RPCs
will be defined that specify the APIs for these features. Drivers implement features for specific devices and
support the APIs defined by the RPCs. There may be different Driver implementations for different device
types.

Key APIs and Interfaces

FlowObjective API

Following are the list of the APIs to create the flow objectives to install the flow rule in OpenFlow switch in pipeline
agnostic way. Currently these APIs are getting consumed by Atrium project.

2.1. Developer Guide 1275

OpenDaylight Documentation Documentation, Release Carbon

Install the Forwarding Objective:

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:forward

Install the Filter Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:filter

Install the Next Objective:

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:next

Flow mod driver API

This release includes a flow mod driver for the HP 3800. This driver adjusts the flows and push the same to the device.
This API takes the flow to be adjusted as input and displays the adjusted flow as output in the REST output container.
Here is the REST API to adjust and push flows to HP 3800 device:

http://<CONTROLLER-IP:8181>/restconf/operations/openflow-feature:adjust-flow

Here is an example of an ARP flow and how it gets adjusted and pushed to device HP3800:

adjust-flow input.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<input xmlns="urn:opendaylight:params:xml:ns:yang:didm:drivers:openflow"
→˓xmlns:opendaylight-inventory="urn:opendaylight:inventory">
<node>/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-

→˓inventory:id='openflow:673249119553088']</node>
<flow>

<match>
<ethernet-match>

<ethernet-type>
<type>2054</type>

</ethernet-type>
</ethernet-match>

</match>
<flags>SEND_FLOW_REM</flags>
<priority>0</priority>
<flow-name>ARP_FLOW</flow-name>
<instructions>

<instruction>
<order>0</order>
<apply-actions>

<action>
<order>0</order>
<output-action>

<output-node-connector>CONTROLLER</output-node-connector>
<max-length>65535</max-length>

</output-action>
</action>
<action>

<order>1</order>
<output-action>

<output-node-connector>NORMAL</output-node-connector>
<max-length>65535</max-length>

</output-action>
</action>

</apply-actions>

1276 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

</instruction>
</instructions>
<idle-timeout>180</idle-timeout>
<hard-timeout>1800</hard-timeout>
<cookie>10</cookie>

</flow>
</input>

In the output, you can see that the table ID has been identified for the given flow and two flow mods are created as a
result of adjustment. The first one is to catch ARP packets in Hardware table 100 with an action to goto table 200.
The second flow mod is in table 200 with actions: output normal and output controller.

adjust-flow output.

{
"output": {
"flow": [

{
"idle-timeout": 180,
"instructions": {
"instruction": [

{
"order": 0,
"apply-actions": {
"action": [
{
"order": 1,
"output-action": {
"output-node-connector": "NORMAL",
"max-length": 65535

}
},
{
"order": 0,
"output-action": {
"output-node-connector": "CONTROLLER",
"max-length": 65535

}
}

]
}

}
]

},
"strict": false,
"table_id": 200,
"flags": "SEND_FLOW_REM",
"cookie": 10,
"hard-timeout": 1800,
"match": {
"ethernet-match": {

"ethernet-type": {
"type": 2054

}
}

},
"flow-name": "ARP_FLOW",
"priority": 0

2.1. Developer Guide 1277

OpenDaylight Documentation Documentation, Release Carbon

},
{

"idle-timeout": 180,
"instructions": {
"instruction": [
{
"order": 0,
"go-to-table": {
"table_id": 200

}
}

]
},
"strict": false,
"table_id": 100,
"flags": "SEND_FLOW_REM",
"cookie": 10,
"hard-timeout": 1800,
"match": {},
"flow-name": "ARP_FLOW",
"priority": 0

}
]

}
}

API Reference Documentation

Go to http://${controller-ip}:8181/apidoc/explorer/index.html, and look under DIDM section to see all the available
REST calls and tables

Distribution Version reporting

Overview

This section provides an overview of odl-distribution-version feature.

A remote user of OpenDaylight usually has access to RESTCONF and NETCONF northbound interfaces, but does
not have access to the system OpenDaylight is running on. OpenDaylight has released multiple versions including
Service Releases, and there are incompatible changes between them. In order to know which YANG modules to use,
which bugs to expect and which workarounds to apply, such user would need to know the exact version of at least one
OpenDaylight component.

There are indirect ways to deduce such version, but the direct way is enabled by odl-distribution-version feature.
Administrator can specify version strings, which would be available to users via NETCONF, or via RESTCONF if
OpenDaylight is configured to initiate NETCONF connection to its config subsystem northbound interface.

By default, users have write access to config subsystem, so they can add, modify or delete any version strings present
there. Admins can only influence whether the feature is installed, and initial values.

Config subsystem is local only, not cluster aware, so each member reports versions independently. This is suitable for
heterogeneous clusters. On homogeneous clusters, make sure you set and check every member.

1278 Chapter 2. Content for OpenDaylight Developers

http:/

OpenDaylight Documentation Documentation, Release Carbon

Key APIs and Interfaces

Current implementation relies heavily on config-parent parent POM file from Controller project.

YANG model for config subsystem

Throughout this chapter, model denotes YANG module, and module denotes item in config subsystem module list.

Version functionality relies on config subsystem and its config YANG model. The YANG model
odl-distribution-version adds an identity odl-version and augments /config:modules/
module/configuration adding new case for odl-version type. This case contains single leaf version,
which would hold the version string.

Config subsystem can hold multiple modules, the version string should contain version of OpenDaylight component
corresponding to the module name. As this is pure metadata with no consequence on OpenDaylight behavior, there is
no prescribed scheme for chosing config module names. But see the default configuration file for examples.

Java API

Each config module needs to come with java classes which override customValidation() and
createInstance(). Version related modules have no impact on OpenDaylight internal behavior, so the meth-
ods return void and dummy closeable respectively, without any side effect.

Default config file

Initial version values are set via config file odl-version.xml which is created in $KARAF_HOME/etc/
opendaylight/karaf/ upon installation of odl-distribution-version feature. If admin wants to use
different content, the file with desired content has to be created there before feature installation happens.

By default, the config file defines two config modules, named odl-distribution-version and
odl-odlparent-version.

Currently the default version values are set to Maven property strings (as opposed to valid values), as the needed new
functionality did not make it into Controller project in Boron. See Bug number 6003.

Karaf Feature

The odl-distribution-version feature is currently the only feature defined in feature repository of artifactId
features-distribution, which is available (transitively) in OpenDaylight Karaf distribution.

RESTCONF usage

Opendaylight config subsystem NETCONF northbound is not made available just by installing
odl-distribution-version, but most other feature installations would enable it. RESTCONF inter-
faces are enabled by installing odl-restconf feature, but that do not allow access to config subsystem by
itself.

On single node deployments, installation of odl-netconf-connector-ssh is recommended, which would con-
figure controller-config device and its MD-SAL mount point. See documentation for clustering on how to
create similar devices for member modes, as controller-config name is not unique in that context.

2.1. Developer Guide 1279

OpenDaylight Documentation Documentation, Release Carbon

Assuming single node deployment and user located on the same system, here is an example curl command accessing
odl-odlparent-version config module:

curl 127.0.0.1:8181/restconf/config/network-topology:network-topology/topology/
→˓topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-
→˓distribution-version:odl-version/odl-odlparent-version

DLUX

Setup and Run

Required Technology Stack

• AngularJS (JavaScript client-side framework, http://www.angularjs.org)

Run DLUX

To turn on the DLUX UI, install DLUX core feature via running following command on the Karaf console -

feature:install odl-dlux-core

The above command will install odl-restconf and DLUX topology application internally, along with core DLUX
components. Once this feature is successfully installed, access the UI at http://localhost:8181/index.html. The default
credentials for login are admin/admin.

All the applications in DLUX are Karaf features. A user can install other dlux applications such as node and yang-ui
from Karaf console using commands such as -

$ feature:install odl-dluxapps-nodes

$ feature:install odl-dluxapps-yangui

DLUX Modules

DLUX modules are the individual features such as nodes and topology. Each module has a defined structure and you
can find all existing modules at https://github.com/opendaylight/dlux/tree/stable/boron/modules.

Module Structure

• module_folder

– <module_name>.module.js

– <module_name>.controller.js

– <module_name>.services.js

– <module_name>.directives.js

– <module_name>.filter.js

– index.tpl.html

– <a_stylesheet>.css

1280 Chapter 2. Content for OpenDaylight Developers

http://www.angularjs.org
http://localhost:8181/index.html
https://github.com/opendaylight/dlux/tree/stable/boron/modules

OpenDaylight Documentation Documentation, Release Carbon

Create New Module

Define the module

1. Create an empty maven project and create your module folder under src/main/resources.

2. Create an empty file with pattern <module_name>.module.js.

3. Next, you need to surround the angular module with a define function. This allows RequireJs to see our mod-
ule.js files. The first argument is an array which contains all the module’s dependencies. The second argument
is a callback function, whose body contain the AngularJS code base. The function parameters correspond with
the order of dependencies. Each dependency is injected into a parameter, if it is provided.

4. Finally, you will return the angular module to be able to inject it as a parameter in others modules.

For each new module, you must have at least these two dependencies :

• angularAMD : It’s a wrapper around AngularJS to provide an AMD (Asynchronous Module Definition) support,
which is used by RequireJs. For more information see the AMD documentation.

• app/core/core.services : This one is mandatory, if you want to add content in the navigation menu, the left bar
or the top bar.

The following are not mandatory, but very often used.

• angular-ui-router : A library to provide URL routing.

• routingConfig : To set the level access to a page.

Your module.js file might look like this:

define(['angularAMD','app/routingConfig', 'angular-ui-router','app/core/core.services
→˓'], function(ng) {

var module = angular.module('app.a_module', ['ui.router.state', 'app.core']);
// module configuration
module.config(function() {

[...]
});
return module;

});

Set the register function

AngularJS allows lazy registration of a module’s components such as controller, factory etc. Once you will install
your application, DLUX will load your module javascript, but not your angular component during bootstrap phase.
You have to register your angular components to make sure they are available at the runtime.

Here is how to register your module’s component for lazy initialization -

module.config(function($compileProvider, $controllerProvider, $provide) {
module.register = {

controller : $controllerProvider.register,
directive : $compileProvider.directive,
factory : $provide.factory,
service : $provide.service

};
});

2.1. Developer Guide 1281

https://github.com/amdjs/amdjs-api/blob/master/AMD.md

OpenDaylight Documentation Documentation, Release Carbon

Set the route

The next step is to set up the route for your module. This part is also done in the configuration method of the module.
We have to add $stateProvider as a parameter.

module.config(function($stateProvider) {
var access = routingConfig.accessLevels;
$stateProvider.state('main.module', {

url: 'module',
views : {

'content' : {
templateUrl: 'src/app/module/module.tpl.html',
controller: 'ModuleCtrl'

}
}

});
});

Adding element to the navigation menu

To be able to add item to the navigation menu, the module requires the NavHelperProvider parameter in the config-
uration method. addToMenu method in NavMenuHelper helper allows an item addition to the menu.

var module = angular.module('app.a_module', ['app.core']);
module.config(function(NavMenuHelper) {

NavMenuHelper.addToMenu('myFirstModule', {
"link" : "#/module/index",
"active" : "module",
"title" : "My First Module",
"icon" : "icon-sitemap",
"page" : {

"title" : "My First Module",
"description" : "My first module"

}
});

});

The first parameter is an ID that refers to the level of your menu and the second is a object. For now, The ID parameter
supports two levels of depth. If your ID looks like rootNode.childNode, the helper will look for a node named rootNode
and it will append the childNode to it. If the root node doesn’t exist, it will create it.

Link the AngularJS module’s controller file

To include the module’s controller file, you can use the NavHelperProvider. It contains a method that will load the
given file.

[...]
NavHelperProvider.addControllerUrl('<path_to_module_folder>/<module_name>.

→˓controller');

This completes your module.js file.

1282 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Create the controller, factory, directive, etc

Creating the controller and other components is similar to the module.

• First, add the define method.

• Second, add the relative path to the module definition.

• Last, create your methods as you usually do it with AngularJS.

For example -

define(['<relative_path_to_module>/<module_name>.module'], function(module) {
module.register.controller('ModuleCtrl', function($rootScope, $scope) {
});

});

Add new application using DLUX modularity

DLUX works as a Karaf based UI platform, where you can create a new Karaf feature of your UI component and
install that UI applications in DLUX using blueprint. This page will help you to create and load a new application for
DLUX. You don’t have to add new module in DLUX repository.

Add a new OSGi blueprint bundle

The OSGi Blueprint Container specification allows us to use dependency injection in our OSGi environment. Each
DLUX application module registers itself via blueprint configuration. Each application will have its own blueprint.xml
to place its configuration.

1. Create a maven project to place blueprint configuration. For reference, take a look at topology bundle, present
at https://github.com/opendaylight/dlux/tree/stable/boron/bundles/topology. All the existing DLUX modules’
configurations are available under bundles directory of DLUX code.

2. In pom.xml, you have to add a maven plugin to unpack your module code under generated-resources of this
project. For reference, you can check pom.xml of dlux/bundles/topology at https://github.com/opendaylight/
dlux/tree/stable/boron/bundles/topology. Your bundle will eventually get deployed in Karaf as feature, so your
bundle should contain all your module code. If you want to combine module and bundle project, that should not
be an issue either.

3. Create a blueprint.xml configuration file under src/main/resources/OSGI-INF/blueprint. Below is the con-
tent of the blueprint.xml taken from topology bundles’s blueprint.xml. Any new application should create a
blueprint.xml in following format -

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<reference id="httpService" availability="mandatory" activation="eager" interface=

→˓"org.osgi.service.http.HttpService"/>
<reference id="loader" availability="mandatory" activation="eager" interface="org.

→˓opendaylight.dlux.loader.DluxModuleLoader"/>

<bean id="bundle" init-method="initialize" destroy-method="clean" class="org.
→˓opendaylight.dlux.loader.DluxModule">

<property name="httpService" ref="httpService"/>
<property name="loader" ref="loader"/>
<property name="moduleName" value="topology "/>
<property name="url" value="/src/app/topology"/>
<property name="directory" value="/topology"/>

2.1. Developer Guide 1283

https://github.com/opendaylight/dlux/tree/stable/boron/bundles/topology
https://github.com/opendaylight/dlux/tree/stable/boron/bundles/topology
https://github.com/opendaylight/dlux/tree/stable/boron/bundles/topology

OpenDaylight Documentation Documentation, Release Carbon

<property name="requireJs" value="app/topology/topology.module"/>
<property name="angularJs" value="app.topology"/>
<property name="cssDependencies">

<list>
<value>http://yui.yahooapis.com/3.18.1/build/cssreset/cssreset-min.css</

→˓value>
<value>src/app/topology/topology-custom.css</value>

</list>
</property>

</bean>
</blueprint>

In above configuration, there are two references with id httpService and loader. These two beans will already be
initialized by dlux-core, so any new application can use them. Without these two bean references, a new application
will not be able to register.

Next is the initialization of your application bean, which will be an instance of class
org.opendaylight.dlux.loader.DluxModule. There are 5 properties that you should provide in this bean besides
the references of httpService and loader. Lets talk about those bean properties in little more detail.

moduleName : Name of your module. This name should be unique in DLUX.

url: This is the url via which RequireJS in DLUX will try to load your module JS/HTML files. Also, this is the url
that browser will use to load the static HTML, JS or CSS files. RequireJS in DLUX has a base path of src, so all the
url should start with /src so RequireJS and the browser can correctly find the files.

directory: In your bundle’s pom.xml, you unpack your module code. This is the directory where your actual static
files will reside. The above mentioned url is registered with httpService, so when browser makes a call to that url,
it will be redirected to the directory mentioned here. In the above example, all the topology files are present under
/topology directory and the browser/RequireJS can access those files with uri /src/app/topology.

requireJS: This is the path to your RequireJS module. If you notice closely, you will see the initial path of RequireJS
app/topology in the above example matches with the last part of url. This path will be be used by RequireJS. As
mentioned above, we have kept src as base path in RequireJS, that is the exact reason that url start with /src.

angularJS: name of your AngularJS module.

cssDependencies: If the application has any external/internal css dependencies, then those can be added here. If you
create your own css files, just point to those css files here. Use the url path that you mentioned above, so the browser
can find your css file.

OSGi understands blueprint.xml, once you will deploy your bundle in karaf (or you can create a new feature for your
application), karaf will read your blueprint.xml and it will try to register your application with dlux. Once successful,
if you refresh your dlux UI, you will see your application in left hand navigation bar of dlux.

Yang Utils

Yang Utils are used by UI to perform all CRUD operations. All of these utilities are present in yangutils.services.js
file. It has following AngularJS factories -

• arrayUtils – defines functions for working with arrays.

• pathUtils – defines functions for working with xpath (paths to APIs and subAPIs). It divides xpath string to
array of elements, so this array can be later used for search functions.

• syncFact – provides synchronization between requests to and from OpenDaylight when it’s needed.

• custFunct – it is linked with apiConnector.createCustomFunctionalityApis in yangui controller in yan-
gui.controller.js. That function makes it possible to create some custom function called by the click on button in

1284 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

index.tpl.html. All custom functions are stored in array and linked to specific subAPI. When particular subAPI
is expanded and clicked, its inputs (linked root node with its child nodes) are displayed in the bottom part of the
page and its buttons with custom functionality are displayed also.

• reqBuilder – Builds object in JSON format from input fields of the UI page. Show Preview button on Yang UI
use this builder. This request is sent to OpenDaylight when button PUT or POST is clicked.

• yinParser – factory for reading .xml files of yang models and creating object hierarchy. Every statement from
yang is represented by a node.

• nodeWrapper – adds functions to objects in tree hierarchy created with yinParser. These functions provide
functionality for every type of node.

• apiConnector – the main functionality is filling the main structures and linking them. Structure of APIs and
subAPIs which is two level array - first level is filled by main APIs, second level is filled by others sub APIs.
Second main structure is array of root nodes, which are objects including root node and its children nodes.
Linking these two structures is creating links between every subAPI (second level of APIs array) and its root
node, which must be displayed like inputs when subAPI is expanded.

• yangUtils – some top level functions which are used by yangui controller for creating the main structures.

eman Developer Guide

Overview

The OpenDaylight Energy Management (eman) plugin implements an abstract Information Model that describes en-
ergy measurement and control features that may be supported by a variety of device types. The eman plugin may
support a number of southbound interfaces to accommodate a set of protocols, including but not limited to SNMP,
NETCONF, IPDR. The plugin presents a northbound REST API. This framework enables any number of applications
to interoperate with any number of devices in order to measure and optimize energy usage. The Information Model
will be inherited from the SCTE 216 standard – Adaptive Power Systems Interface Specification (APSIS), which in
turn inherits definitions within the IETF eman document set.

This documentation is directed to developers who may use the eman features to build other OpenDaylight features or
applications.

eman is composed of 3 Karaf features:

• eman incudes the YANG model and its implementation

• eman-api adds support for REST

• eman-ui adds support for DLUX.

Developers will typically interface with eman-api.

eman Architecture

eman defines a YANG model that represents the IETF energy management Information Model, and includes RPCs.
The implementation of the model currently supports an SNMP ‘binding’ via interfacing with the OpenDaylight SNMP
module. In the future, other Southbound protocols may be supported.

Developers my use the eman-api feature to read and write energy related data and commands to devices that support
the IETF eman MIBS.

2.1. Developer Guide 1285

http://www.scte.org/SCTEDocs/Standards/ANSI_SCTE%20216%202015.pdf
https://datatracker.ietf.org/wg/eman/documents/

OpenDaylight Documentation Documentation, Release Carbon

Key APIs and Interfaces

The eman API currently supports a subset of the IETF eman Information Model, including the EnergyObjectPower-
Measurement table. Users of the API may get individual attributes or the entire table. When querying the table, the
results are written into the MD-SAL, for subsequent access. For example, a developer may periodically poll a device
for its powerMeasurements, and fetch a collection of measurements to discover a history of measurements.

Operational API

Via MD-SAL, the following endpoint provides access to previously captured power measurements.

Note: “eo” indicates “energy object” as per the IETF Information Model

operational:

eman:eoDevices/eoDevice{id}/eoPowerMeasurement{id}

id indicates an index into a collection

EoDevices may contain a collection of individual eoDevice objects, which in turn may contain a collection of eoPow-
erMeasurement objects

Operations API

A set of RPCs enable interactions with devices.

get-eoAttribute enables query on an individual attribute of a energy object:

get-eoAttribute

deviceIP indicates IP address of target device
attribute indicates name of requested attribute

Note: Future releases will provide a enumeration of allowed names.

The supported name are:

• eoPower

• eoPowerNameplate

• eoPowerUnitMultiplier

• eoPowerAccuracy

• eoPowerMeasurementCaliber

• eoPowerCurrentType

• eoPowerMeasurementLocal

• eoPowerAdminState

• eoPowerOperState

• eoPowerStateEnterReason

1286 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

set-eoAttribute enables sending a command to an energy object:

set-eoAttribute

deviceIP. IP address of target device
attribute. string indicating name of attribute. Currently, no attributes

get-eoDevicePowerMeasures reads an eoPowerMEasurements table from a device and stores the result in MD-SAL,
making it available vie the operational API:

get-eoDevicePowerMeasures

deviceIP. IP address of target device

API Reference Documentation

See eman project page for additional information: https://wiki.opendaylight.org/view/eman:Main

Fabric As A Service

FaaS (Fabric As A service) has two layers of APIs. We describe the top level API in the user guide. This docu-
ment focuses on the Fabric level API and describes each API’s semantics and example implementation. The second
layer defines an abstraction layer called ‘’Fabric‘’ API. The idea is to abstract network into a topology formed by a
collections of fabric objects other than varies of physical devices.Each Fabric object provides a collection of unified
services.The top level API enables application developers or users to write applications to map high level model such
as GBP, Intent etc. . . into a logical network model, while the lower level gives the application more control to indi-
vidual fabric object level. More importantly the Fabric API is more like SP (Service Provider API) a fabric provider
or vendor can implement the SPI based on its own Fabric technique such as TRILL, SPB etc . . .

For how to use first level API operation, please refer to user guide for more details.

FaaS Architecture

FaaS Architecture is an 3 layered architecture, on the top is the FaaS Application layer, in the middle is the Fabric
manager and at the bottom are different types of fabric objects. From bottom up, it is

Fabric and its controller (Fabric Controller) The Fabric object provides an abstraction of a homogeneous network
or portion of the network and also has a built in Fabric controller which provides management plane and control
plane for the fabric. The fabric controller implements the services required in Fabric Service and monitor and
control the fabric operation.

Fabric Manager Fabric Manager manages all the fabric objects. also Fabric manager acts as a Unified Fabric Con-
troller which provides inter-connect fabric control and configuration Also Fabric Manager is FaaS API service
via Which FaaS user level logical network API (the top level API as mentioned previously) exposed and imple-
mented.

FaaS renderer for GBP (Group Based Policy) FaaS renderer for GBP is an application of FaaS and provides the
rendering service between GBP model and logical network model provided by Fabric Manager.

Fabric APIs and Interfaces

FaaS APIs have 4 groups as defined below

2.1. Developer Guide 1287

https://wiki.opendaylight.org/view/eman:Main

OpenDaylight Documentation Documentation, Release Carbon

Fabric Provisioning API This set of APIs is used to create and remove Fabric Abstractions, in other words, those
APIs is to provision the underlay networks and prepare to create overlay network(the logical network) on top of
it.

Fabric Service API This set of APIs is used to create logical network over the Fabrics.

EndPoint API EndPoint API is used to bind a physical port which is the location of the attachment of an EndPoint
happens or will happen.

OAM API Those APIs are for Operations, Administration and Maintenance purpose and In current release, OAM
API is not implemented yet.

Fabric Provisioning API

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric:compose-fabric

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric:decompose-fabric

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric:get-all-fabrics

Fabric Service API

• RESTCONF for creating Logical port, switch, router, routing entries and link. Among them, both switches and
routers have ports. links connect ports.these 5 logical elements are basic building blocks of a logical network.

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:create-logical-switch

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:rm-logical-switch

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:create-logical-router

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:rm-logical-router

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:add-static-route

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:create-logic-port

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:rm-logic-port

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:create-gateway

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:rm-gateway

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:port-binding-logical-to-fabric

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:port-binding-logical-to-device

1288 Chapter 2. Content for OpenDaylight Developers

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric:compose-fabric
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric:compose-fabric
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric:decompose-fabric
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric:decompose-fabric
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric:get-all-fabrics
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric:get-all-fabrics
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:create-logical-switch
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:create-logical-switch
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:rm-logical-switch
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:rm-logical-switch
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:create-logical-router
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:create-logical-router
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:rm-logical-router
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:rm-logical-router
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:add-static-route
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:add-static-route
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:create-logic-port
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:create-logic-port
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:rm-logic-port
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:rm-logic-port
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:create-gateway
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:create-gateway
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:rm-gateway
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:rm-gateway
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:port-binding-logical-to-fabric
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:port-binding-logical-to-fabric
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:port-binding-logical-to-device
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:port-binding-logical-to-device

OpenDaylight Documentation Documentation, Release Carbon

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:add-port-function

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:add-acl

– http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-service:del-acl

EndPoint API

The following APIs is to bind the physical ports to the logical ports on the logical switches:

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-endpoint:register-endpoint

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-endpoint:unregister-endpoint

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-endpoint:locate-endpoint

Others API

• http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/fabric-resource:create-fabric-port

API Reference Documentation

Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/apidoc/
index.html and expand on ‘’FaaS‘’ related panel for more APIs.

Infrautils

Overview

Infrautils offer various utilities and infrastructures for other projects to use:

Counters Infrastructure

Create, update and output counters is a basic tool for debugging and generating statistics in any system. We have
developed a counter infrastructure integrated into ODL which has already been successfully used with multiple prod-
ucts, and more recently in debugging and fixing the OpenFlow plugin/Java and LACP modules. Getting started with
Counters

Async Infrastructure

The decision to split a service into one or more threads with asynchronous interactions between them is frequently
dependent on constraints learned late in the development and even the deployment cycle. In order to allow flexibility
in making these decisions we have developed an infrastructure which is configuration driven allowing agnostic code to

2.1. Developer Guide 1289

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:add-port-function
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:add-port-function
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:add-acl
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:add-acl
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:del-acl
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-service:del-acl
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-endpoint:register-endpoint
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-endpoint:register-endpoint
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-endpoint:unregister-endpoint
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-endpoint:unregister-endpoint
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-endpoint:locate-endpoint
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-endpoint:locate-endpoint
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-resource:create-fabric-port
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/fabric-resource:create-fabric-port
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/apidoc/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/apidoc/index.html
https://wiki.opendaylight.org/view/Getting_started_with_Counters
https://wiki.opendaylight.org/view/Getting_started_with_Counters

OpenDaylight Documentation Documentation, Release Carbon

be written under generic constrains which can then later be customized according to the required constraints. Getting
started with Async

IoTDM Developer Guide

Overview

The Internet of Things Data Management (IoTDM) on OpenDaylight project is about developing a data-centric mid-
dleware that will act as a oneM2M compliant IoT Data Broker and enable authorized applications to retrieve IoT data
uploaded by any device. The OpenDaylight platform is used to implement the oneM2M data store which models a
hierarchical containment tree, where each node in the tree represents an oneM2M resource. Typically, IoT devices
and applications interact with the resource tree over standard protocols such as CoAP, MQTT, and HTTP. Initially,
the oneM2M resource tree is used by applications to retrieve data. Possible applications are inventory or device
management systems or big data analytic systems designed to make sense of the collected data. But, at some point,
applications will need to configure the devices. Features and tools will have to be provided to enable configuration
of the devices based on applications responding to user input, network conditions, or some set of programmable rules
or policies possibly triggered by the receipt of data collected from the devices. The OpenDaylight platform, with its
rich unique cross-section of SDN capabilities, NFV, and now IoT device and application management, can be bundled
with a targeted set of features and deployed anywhere in the network to give the network service provider ultimate
control. Depending on the use case, the OpenDaylight IoT platform can be configured with only IoT data collection
capabilities where it is deployed near the IoT devices and its footprint needs to be small, or it can be configured to run
as a highly scaled up and out distributed cluster with IoT, SDN and NFV functions enabled and deployed in a high
traffic data center.

oneM2M Architecture

The architecture provides a framework that enables the support of the oneM2M resource containment tree. The
onem2m-core implements the MDSAL RPCs defined in the onem2m-api YANG files. These RPCs enable oneM2M
resources to be created, read, updated, and deleted (CRUD), and also enables the management of subscriptions. When
resources are CRUDed, the onem2m-notifier issues oneM2M notification events to interested subscribers. TS0001:
oneM2M Functional Architecture and TS0004: oneM2M Service Layer Protocol are great reference documents to
learn details of oneM2M resource types, message flow, formats, and CRUD/N semantics. Both of these specifications
can be found at http://onem2m.org/technical/published-documents

The oneM2M resource tree is modeled in YANG and essentially is a meta-model for the tree. The oneM2M wire
protocols allow the resource tree to be constructed via HTTP or CoAP messages that populate nodes in the tree with
resource specific attributes. Each oneM2M resource type has semantic behaviour associated with it. For example:
a container resource has attributes which control quotas on how many and how big the collection of data or content
instance objects that can exist below it in the tree. Depending on the resource type, the oneM2M core software
implements and enforces the resource type specific rules to ensure a well-behaved resource tree.

The resource tree can be simultaneously accessed by many concurrent applications wishing to manage or access the
tree, and also many devices can be reporting in new data or sensor readings into their appropriate place in the tree.

Key APIs and Interfaces

The API’s to access the oneM2M datastore are well documented in TS0004 (referred above) found on onem2m.org

RESTCONF is available too but generally HTTP and CoAP are used to access the oneM2M data tree.

1290 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit/gitweb?p=infrautils.git;a=tree;f=samples/sample-async;h=dedd664da4a1bcfbe62261df73d19044d334f0b9;hb=refs/heads/master
https://git.opendaylight.org/gerrit/gitweb?p=infrautils.git;a=tree;f=samples/sample-async;h=dedd664da4a1bcfbe62261df73d19044d334f0b9;hb=refs/heads/master
http://onem2m.org/technical/published-documents

OpenDaylight Documentation Documentation, Release Carbon

L2Switch Developer Guide

Overview

The L2Switch project provides Layer2 switch functionality.

L2Switch Architecture

• Packet Handler

– Decodes the packets coming to the controller and dispatches them appropriately

• Loop Remover

– Removes loops in the network

• Arp Handler

– Handles the decoded ARP packets

• Address Tracker

– Learns the Addresses (MAC and IP) of entities in the network

• Host Tracker

– Tracks the locations of hosts in the network

• L2Switch Main

– Installs flows on each switch based on network traffic

Key APIs and Interfaces

• Packet Handler

• Loop Remover

• Arp Handler

• Address Tracker

• Host Tracker

• L2Switch Main

Packet Dispatcher

Classes

• AbstractPacketDecoder

– Defines the methods that all decoders must implement

• EthernetDecoder

– The base decoder which decodes the packet into an Ethernet packet

• ArpDecoder, Ipv4Decoder, Ipv6Decoder

– Decodes Ethernet packets into the either an ARP or IPv4 or IPv6 packet

2.1. Developer Guide 1291

OpenDaylight Documentation Documentation, Release Carbon

Further development

There is a need for more decoders. A developer can write

• A decoder for another EtherType, i.e. LLDP.

• A higher layer decoder for the body of the IPv4 packet or IPv6 packet, i.e. TCP and UDP.

How to write a new decoder

• extends AbstractDecoder<A, B>

– A refers to the notification that the new decoder consumes

– B refers to the notification that the new decoder produces

• implements xPacketListener

– The new decoder must specify which notification it is listening to

• canDecode method

– This method should examine the consumed notification to see whether the new decoder can decode the
contents of the packet

• decode method

– This method does the actual decoding of the packet

Loop Remover

Classes

• LoopRemoverModule

– Reads config subsystem value for is-install-lldp-flow

* If is-install-lldp-flow is true, then an InitialFlowWriter is created

– Creates and initializes the other LoopRemover classes

• InitialFlowWriter

– Only created when is-install-lldp-flow is true

– Installs a flow, which forwards all LLDP packets to the controller, on each switch

• TopologyLinkDataChangeHandler

– Listens to data change events on the Topology tree

– When these changes occur, it waits graph-refresh-delay seconds and then tells NetworkGraphImpl to
update

– Writes an STP (Spanning Tree Protocol) status of “forwarding” or “discarding” to each link in the Topol-
ogy data tree

* Forwarding links can forward packets.

* Discarding links cannot forward packets.

• NetworkGraphImpl

– Creates a loop-free graph of the network

1292 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Configuration

• graph-refresh-delay

– Used in TopologyLinkDataChangeHandler

– A higher value has the advantage of doing less graph updates, at the potential cost of losing some packets
because the graph didn’t update immediately.

– A lower value has the advantage of handling network topology changes quicker, at the cost of doing more
computation.

• is-install-lldp-flow

– Used in LoopRemoverModule

– “true” means a flow that sends all LLDP packets to the controller will be installed on each switch

– “false” means this flow will not be installed

• lldp-flow-table-id

– The LLDP flow will be installed on the specified flow table of each switch

• lldp-flow-priority

– The LLDP flow will be installed with the specified priority

• lldp-flow-idle-timeout

– The LLDP flow will timeout (removed from the switch) if the flow doesn’t forward a packet for x seconds

• lldp-flow-hard-timeout

– The LLDP flow will timeout (removed from the switch) after x seconds, regardless of how many packets
it is forwarding

Further development

No suggestions at the moment.

Validating changes to Loop Remover

STP Status information is added to the Inventory data tree.

• A status of “forwarding” means the link is active and packets are flowing on it.

• A status of “discarding” means the link is inactive and packets are not sent over it.

The STP status of a link can be checked through a browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/
→˓openflow:1/node-connector/openflow:1:2

The STP status should still be there after changes are made.

2.1. Developer Guide 1293

OpenDaylight Documentation Documentation, Release Carbon

Arp Handler

Classes

• ArpHandlerModule

– Reads config subsystem value for is-proactive-flood-mode

* If is-proactive-flood-mode is true, then a ProactiveFloodFlowWriter is created

* If is-proactive-flood-mode is false, then an InitialFlowWriter is created

• ProactiveFloodFlowWriter

– Only created when is-proactive-flood-mode is true

– Installs a flood flow on each switch. With this flood flow, a packet that doesn’t match any other flows will
be flooded/broadcast from that switch.

• InitialFlowWriter

– Only created when is-proactive-flood-mode is false

– Installs a flow, which sends all ARP packets to the controller, on each switch

• ArpPacketHandler

– Only created when is-proactive-flood-mode is false

– Handles and processes the controller’s incoming ARP packets

– Uses PacketDispatcher to send the ARP packet back into the network

• PacketDispatcher

– Only created when is-proactive-flood-mode is false

– Sends packets out to the network

– Uses InventoryReader to determine which node-connector to a send a packet on

• InventoryReader

– Only created when is-proactive-flood-mode is false

– Maintains a list of each switch’s node-connectors

Configuration

• is-proactive-flood-mode

– “true” means that flood flows will be installed on each switch. With this flood flow, each switch will flood
a packet that doesn’t match any other flows.

* Advantage: Fewer packets are sent to the controller because those packets are flooded to the network.

* Disadvantage: A lot of network traffic is generated.

– “false” means the previously mentioned flood flows will not be installed. Instead an ARP flow will be
installed on each switch that sends all ARP packets to the controller.

* Advantage: Less network traffic is generated.

* Disadvantage: The controller handles more packets (ARP requests & replies) and the ARP process
takes longer than if there were flood flows.

1294 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

• flood-flow-table-id

– The flood flow will be installed on the specified flow table of each switch

• flood-flow-priority

– The flood flow will be installed with the specified priority

• flood-flow-idle-timeout

– The flood flow will timeout (removed from the switch) if the flow doesn’t forward a packet for x seconds

• flood-flow-hard-timeout

– The flood flow will timeout (removed from the switch) after x seconds, regardless of how many packets it
is forwarding

• arp-flow-table-id

– The ARP flow will be installed on the specified flow table of each switch

• arp-flow-priority

– The ARP flow will be installed with the specified priority

• arp-flow-idle-timeout

– The ARP flow will timeout (removed from the switch) if the flow doesn’t forward a packet for x seconds

• arp-flow-hard-timeout

– The ARP flow will timeout (removed from the switch) after arp-flow-hard-timeout seconds, regardless of
how many packets it is forwarding

Further development

The ProactiveFloodFlowWriter needs to be improved. It does have the advantage of having less traffic come to the
controller; however, it generates too much network traffic.

Address Tracker

Classes

• AddressTrackerModule

– Reads config subsystem value for observe-addresses-from

– If observe-addresses-from contains “arp”, then an AddressObserverUsingArp is created

– If observe-addresses-from contains “ipv4”, then an AddressObserverUsingIpv4 is created

– If observe-addresses-from contains “ipv6”, then an AddressObserverUsingIpv6 is created

• AddressObserverUsingArp

– Registers for ARP packet notifications

– Uses AddressObservationWriter to write address observations from ARP packets

• AddressObserverUsingIpv4

– Registers for IPv4 packet notifications

– Uses AddressObservationWriter to write address observations from IPv4 packets

2.1. Developer Guide 1295

OpenDaylight Documentation Documentation, Release Carbon

• AddressObserverUsingIpv6

– Registers for IPv6 packet notifications

– Uses AddressObservationWriter to write address observations from IPv6 packets

• AddressObservationWriter

– Writes new Address Observations to the Inventory data tree

– Updates existing Address Observations with updated “last seen” timestamps

* Uses the timestamp-update-intervval configuration variable to determine whether or not to update

Configuration

• timestamp-update-interval

– A last-seen timestamp is associated with each address. This last-seen timestamp will only be updated after
timestamp-update-interval milliseconds.

– A higher value has the advantage of performing less writes to the database.

– A lower value has the advantage of knowing how fresh an address is.

• observe-addresses-from

– IP and MAC addresses can be observed/learned from ARP, IPv4, and IPv6 packets. Set which packets to
make these observations from.

Further development

Further improvements can be made to the AddressObservationWriter so that it (1) doesn’t make any unnecessary
writes to the DB and (2) is optimized for multi-threaded environments.

Validating changes to Address Tracker

Address Observations are added to the Inventory data tree.

The Address Observations on a Node Connector can be checked through a browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/
→˓openflow:1/node-connector/openflow:1:1

The Address Observations should still be there after changes.

Developer’s Guide for Host Tracker

Validationg changes to Host Tracker

Host information is added to the Topology data tree.

• Host address

• Attachment point (link) to a node/switch

This host information and attachment point information can be checked through a browser or a REST Client.

1296 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

http://10.194.126.91:8080/restconf/operational/network-topology:network-topology/
→˓topology/flow:1/

Host information should still be there after changes.

L2Switch Main

Classes

• L2SwitchMainModule

– Reads config subsystem value for is-install-dropall-flow

* If is-install-dropall-flow is true, then an InitialFlowWriter is created

– Reads config subsystem value for is-learning-only-mode

* If is-learning-only-mode is false, then a ReactiveFlowWriter is created

• InitialFlowWriter

– Only created when is-install-dropall-flow is true

– Installs a flow, which drops all packets, on each switch. This flow has low priority and means that packets
that don’t match any higher-priority flows will simply be dropped.

• ReactiveFlowWriter

– Reacts to network traffic and installs MAC-to-MAC flows on switches. These flows have matches based
on MAC source and MAC destination.

– Uses FlowWriterServiceImpl to write these flows to the switches

• FlowWriterService / FlowWriterServiceImpl

– Writes flows to switches

Configuration

• is-install-dropall-flow

– “true” means a drop-all flow will be installed on each switch, so the default action will be to drop a packet
instead of sending it to the controller

– “false” means this flow will not be installed

• dropall-flow-table-id

– The dropall flow will be installed on the specified flow table of each switch

– This field is only relevant when “is-install-dropall-flow” is set to “true”

• dropall-flow-priority

– The dropall flow will be installed with the specified priority

– This field is only relevant when “is-install-dropall-flow” is set to “true”

• dropall-flow-idle-timeout

– The dropall flow will timeout (removed from the switch) if the flow doesn’t forward a packet for x seconds

– This field is only relevant when “is-install-dropall-flow” is set to “true”

2.1. Developer Guide 1297

OpenDaylight Documentation Documentation, Release Carbon

• dropall-flow-hard-timeout

– The dropall flow will timeout (removed from the switch) after x seconds, regardless of how many packets
it is forwarding

– This field is only relevant when “is-install-dropall-flow” is set to “true”

• is-learning-only-mode

– “true” means that the L2Switch will only be learning addresses. No additional flows to optimize network
traffic will be installed.

– “false” means that the L2Switch will react to network traffic and install flows on the switches to optimize
traffic. Currently, MAC-to-MAC flows are installed.

• reactive-flow-table-id

– The reactive flow will be installed on the specified flow table of each switch

– This field is only relevant when “is-learning-only-mode” is set to “false”

• reactive-flow-priority

– The reactive flow will be installed with the specified priority

– This field is only relevant when “is-learning-only-mode” is set to “false”

• reactive-flow-idle-timeout

– The reactive flow will timeout (removed from the switch) if the flow doesn’t forward a packet for x seconds

– This field is only relevant when “is-learning-only-mode” is set to “false”

• reactive-flow-hard-timeout

– The reactive flow will timeout (removed from the switch) after x seconds, regardless of how many packets
it is forwarding

– This field is only relevant when “is-learning-only-mode” is set to “false”

Further development

The ReactiveFlowWriter needs to be improved to install the MAC-to-MAC flows faster. For the first ping, the ARP
request and reply are successful. However, then the ping packets are sent out. The first ping packet is dropped
sometimes because the MAC-to-MAC flow isn’t installed quickly enough. The second, third, and following ping
packets are successful though.

API Reference Documentation

Further documentation can be found by checking out the L2Switch project.

Checking out the L2Switch project

git clone https://git.opendaylight.org/gerrit/p/l2switch.git

The above command will create a directory called “l2switch” with the project.

1298 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Testing your changes to the L2Switch project

Running the L2Switch project

To run the base distribution, you can use the following command

./distribution/base/target/distributions-l2switch-base-0.1.0-SNAPSHOT-osgipackage/
→˓opendaylight/run.sh

If you need additional resources, you can use these command line arguments:

-Xms1024m -Xmx2048m -XX:PermSize=512m -XX:MaxPermSize=1024m'

To run the karaf distribution, you can use the following command:

./distribution/karaf/target/assembly/bin/karaf

Create a network using mininet

sudo mn --controller=remote,ip=<Controller IP> --topo=linear,3 --switch ovsk,
→˓protocols=OpenFlow13
sudo mn --controller=remote,ip=127.0.0.1 --topo=linear,3 --switch ovsk,
→˓protocols=OpenFlow13

The above command will create a virtual network consisting of 3 switches. Each switch will connect to the controller
located at the specified IP, i.e. 127.0.0.1

sudo mn --controller=remote,ip=127.0.0.1 --mac --topo=linear,3 --switch ovsk,
→˓protocols=OpenFlow13

The above command has the “mac” option, which makes it easier to distinguish between Host MAC addresses and
Switch MAC addresses.

Generating network traffic using mininet

h1 ping h2

The above command will cause host1 (h1) to ping host2 (h2)

pingall

pingall will cause each host to ping every other host.

Miscellaneous mininet commands

link s1 s2 down

This will bring the link between switch1 (s1) and switch2 (s2) down

link s1 s2 up

2.1. Developer Guide 1299

OpenDaylight Documentation Documentation, Release Carbon

This will bring the link between switch1 (s1) and switch2 (s2) up

link s1 h1 down

This will bring the link between switch1 (s1) and host1 (h1) down

LACP Developer Guide

LACP Overview

The OpenDaylight LACP (Link Aggregation Control Protocol) project can be used to aggregate multiple links between
OpenDaylight controlled network switches and LACP enabled legacy switches or hosts operating in active LACP
mode.

OpenDaylight LACP passively negotiates automatic bundling of multiple links to form a single LAG (Link Aggrega-
tion Group). LAGs are realised in the OpenDaylight controlled switches using OpenFlow 1.3+ group table function-
ality.

LACP Architecture

• inventory

– Maintains list of OpenDaylight controlled switches and port information

– List of LAGs created and physical ports that are part of the LAG

– Interacts with MD-SAL to update LACP related information

• inventorylistener

– This module interacts with MD-SAL for receiving node/node-connector notifications

• flow

– Programs the switch to punt LACP PDU (Protocol Data Unit) to controller

• packethandler

– Receives and transmits LACP PDUs to the LACP enabled endpoint

– Provides infrastructure services for group table programming

• core

– Performs LACP state machine processing

How LAG programming is implemented

The LAG representing the aggregated multiple physical ports are realized in the OpenDaylight controlled switches by
creating a group table entry (Group table supported from OpenFlow 1.3 onwards). The group table entry has a group
type Select and action referring to the aggregated physical ports. Any data traffic to be sent out through the LAG can
be sent through the group entry available for the LAG.

Suppose there are ports P1-P8 in a node. When LACP project is installed, a group table entry for handling broadcast
traffic is automatically created on all the switches that have registered to the controller.

GroupID GroupType EgressPorts
<B’castgID> ALL P1,P2,. . . P8

1300 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Now, assume P1 & P2 are now part of LAG1. The group table would be programmed as follows:

GroupID GroupType EgressPorts
<B’castgID> ALL P3,P4,. . . P8
<LAG1> SELECT P1,P2

When a second LAG, LAG2, is formed with ports P3 and P4,

GroupID GroupType EgressPorts
<B’castgID> ALL P5,P6,. . . P8
<LAG1> SELECT P1,P2
<LAG2> SELECT P3,P4

How applications can program OpenFlow flows using LACP-created LAG groups

OpenDaylight controller modules can get the information of LAG by listening/querying the LACP Aggregator datas-
tore.

When any application receives packets, it can check, if the ingress port is part of a LAG by verifying the LAG
Aggregator reference (lacp-agg-ref) for the source nodeConnector that OpenFlow plugin provides.

When applications want to add flows to egress out of the LAG, they must use the group entry corresponding to the
LAG.

From the above example, for a flow to egress out of LAG1,

add-flow eth_type=<xxxx>,ip_dst=<x.x.x.x>,actions=output:<LAG1>

Similarly, when applications want traffic to be broadcasted, they should use the group table entries
<B’castgID>,<LAG1>,<LAG2> in output action.

For all applications, the group table information is accessible from LACP Aggregator datastore.

NEtwork MOdeling (NEMO)

Overview

The NEMO engine provides REST APIs to express intent, and manage it. With this northbound API, user could query
what intents have been handled successfully, and what types have been predefined.

NEMO Architecture

In NEMO project, it provides three features facing developer.

• odl-nemo-engine: it is a whole model to handle intent.

• odl-nemo-openflow-renderer: it is a southbound render to translate intent to flow table in devices
supporting for OpenFlow protocol.

• odl-nemo-cli-render: it is also a southbound render to translate intent into forwarding table in devices
supporting for traditional protocol.

Key APIs and Interfaces

NEMO projects provide four basic REST methods for user to use.

2.1. Developer Guide 1301

OpenDaylight Documentation Documentation, Release Carbon

• PUT: store the information expressed in NEMO model directly without handled by NEMO engine.

• POST: the information expressed in NEMO model will be handled by NEMO engine, and will be translated into
southbound configuration.

• GET: obtain the data stored in data store.

• DELETE: delete the data in data store.

NEMO Intent API

NEMO provides several RPCs to handle user’s intent. All RPCs use POST method.

• http://{controller-ip}:8181/restconf/operations/nemo-intent:register-user:
a REST API to register a new user. It is the first and necessary step to express intent.

• http://{controller-ip}:8181/restconf/operations/nemo-intent:transaction-begin:
a REST type to start a transaction. The intent exist in the transaction will be handled together.

• http://{controller-ip}:8181/restconf/operations/nemo-intent:transaction-end:
a REST API to end a transaction. The intent exist in the transaction will be handled together.

• http://{controller-ip}:8181/restconf/operations/nemo-intent:structure-style-nemo-update:
a REST API to create, import or update intent in a structure style, that is, user could express the structure of
intent in json body.

• http://{controller-ip}:8181/restconf/operations/nemo-intent:structure-style-nemo-delete:
a REST API to delete intent in a structure style.

• http://{controller-ip}:8181/restconf/operations/nemo-intent:language-style-nemo-request:
a REST API to create, import, update and delete intent in a language style, that is, user could express intent
with NEMO script. On the other hand, with this interface, user could query which intent have been handled
successfully.

API Reference Documentation

Go to http://${IPADDRESS}:8181/apidoc/explorer/index.html. User could see many useful APIs
to deploy or query intent.

NETCONF Developer Guide

Note: Reading the NETCONF section in the User Guide is likely useful as it contains an overview of NETCONF in
OpenDaylight and a how-to for spawning and configuring NETCONF connectors.

This chapter is recommended for application developers who want to interact with mounted NETCONF devices from
their application code. It tries to demonstrate all the use cases from user guide with RESTCONF but now from the code
level. One important difference would be the demonstration of NETCONF notifications and notification listeners. The
notifications were not shown using RESTCONF because RESTCONF does not support notifications from mounted
NETCONF devices.

Note: It may also be useful to read the generic OpenDaylight MD-SAL app development tutorial before diving into
this chapter. This guide assumes awareness of basic OpenDaylight application development.

1302 Chapter 2. Content for OpenDaylight Developers

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:MD-SAL_App_Tutorial

OpenDaylight Documentation Documentation, Release Carbon

Sample app overview

All the examples presented here are implemented by a sample OpenDaylight application called ncmount in the
coretutorials OpenDaylight project. It can be found on the github mirror of OpenDaylight’s repositories:

• https://github.com/opendaylight/coretutorials/tree/stable/boron/ncmount

or checked out from the official OpenDaylight repository:

• https://git.opendaylight.org/gerrit/#/admin/projects/coretutorials

The application was built using the project startup maven archetype and demonstrates how to:

• preconfigure connectors to NETCONF devices

• retrieve MountPointService (registry of available mount points)

• listen and react to changing connection state of netconf-connector

• add custom device YANG models to the app and work with them

• read data from device in binding aware format (generated java APIs from provided YANG models)

• write data into device in binding aware format

• trigger and listen to NETCONF notifications in binding aware format

Detailed information about the structure of the application can be found at: https://wiki.opendaylight.org/view/
Controller_Core_Functionality_Tutorials:Tutorials:Netconf_Mount

Note: The code in ncmount is fully binding aware (works with generated java APIs from provided YANG models).
However it is also possible to perform the same operations in binding independent manner.

NcmountProvider

The NcmountProvider class (found in NcmountProvider.java) is the central point of the ncmount application and all
the application logic is contained there. The following sections will detail its most interesting pieces.

Retrieve MountPointService

The MountPointService is a central registry of all available mount points in OpenDaylight. It is just another MD-SAL
service and is available from the session attribute passed by onSessionInitiated callback:

@Override
public void onSessionInitiated(ProviderContext session) {

LOG.info("NcmountProvider Session Initiated");

// Get references to the data broker and mount service
this.mountService = session.getSALService(MountPointService.class);

...

}
}

2.1. Developer Guide 1303

https://github.com/opendaylight/coretutorials/tree/stable/boron/ncmount
https://git.opendaylight.org/gerrit/#/admin/projects/coretutorials
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype
https://wiki.opendaylight.org/view/Controller_Core_Functionality_Tutorials:Tutorials:Netconf_Mount
https://wiki.opendaylight.org/view/Controller_Core_Functionality_Tutorials:Tutorials:Netconf_Mount

OpenDaylight Documentation Documentation, Release Carbon

Listen for connection state changes

It is important to know when a mount point appears, when it is fully connected and when it is disconnected or removed.
The exact states of a mount point are:

• Connected

• Connecting

• Unable to connect

To receive this kind of information, an application has to register itself as a notification listener for the preconfigured
netconf-topology subtree in MD-SAL’s datastore. This can be performed in the onSessionInitiated callback
as well:

@Override
public void onSessionInitiated(ProviderContext session) {

...

this.dataBroker = session.getSALService(DataBroker.class);

// Register ourselves as the REST API RPC implementation
this.rpcReg = session.addRpcImplementation(NcmountService.class, this);

// Register ourselves as data change listener for changes on Netconf
// nodes. Netconf nodes are accessed via "Netconf Topology" - a special
// topology that is created by the system infrastructure. It contains
// all Netconf nodes the Netconf connector knows about. NETCONF_TOPO_IID
// is equivalent to the following URL:
// .../restconf/operational/network-topology:network-topology/topology/topology-

→˓netconf
if (dataBroker != null) {

this.dclReg = dataBroker.registerDataChangeListener(LogicalDatastoreType.
→˓OPERATIONAL,

NETCONF_TOPO_IID.child(Node.class),
this,
DataChangeScope.SUBTREE);

}
}

The implementation of the callback from MD-SAL when the data change can be found in the
onDataChanged(AsyncDataChangeEvent<InstanceIdentifier<?>, DataObject> change)
callback of NcmountProvider class.

Reading data from the device

The first step when trying to interact with the device is to get the exact mount point instance (identified by an instance
identifier) from the MountPointService:

@Override
public Future<RpcResult<ShowNodeOutput>> showNode(ShowNodeInput input) {

LOG.info("showNode called, input {}", input);

// Get the mount point for the specified node
// Equivalent to '.../restconf/<config | operational>/opendaylight-

→˓inventory:nodes/node/<node-name>/yang-ext:mount/'
// Note that we can read both config and operational data from the same

1304 Chapter 2. Content for OpenDaylight Developers

https://github.com/opendaylight/coretutorials/blob/stable/boron/ncmount/impl/src/main/java/ncmount/impl/NcmountProvider.java

OpenDaylight Documentation Documentation, Release Carbon

// mount point
final Optional<MountPoint> xrNodeOptional = mountService.getMountPoint(NETCONF_

→˓TOPO_IID
.child(Node.class, new NodeKey(new NodeId(input.getNodeName()))));

Preconditions.checkArgument(xrNodeOptional.isPresent(),
"Unable to locate mountpoint: %s, not mounted yet or not configured",
input.getNodeName());

final MountPoint xrNode = xrNodeOptional.get();

....
}

Note: The triggering method in this case is called showNode. It is a YANG-defined RPC and NcmountProvider
serves as an MD-SAL RPC implementation among other things. This means that showNode an be triggered using
RESTCONF.

The next step is to retrieve an instance of the DataBroker API from the mount point and start a read transaction:

@Override
public Future<RpcResult<ShowNodeOutput>> showNode(ShowNodeInput input) {

...

// Get the DataBroker for the mounted node
final DataBroker xrNodeBroker = xrNode.getService(DataBroker.class).get();
// Start a new read only transaction that we will use to read data
// from the device
final ReadOnlyTransaction xrNodeReadTx = xrNodeBroker.newReadOnlyTransaction();

...
}

Finally, it is possible to perform the read operation:

@Override
public Future<RpcResult<ShowNodeOutput>> showNode(ShowNodeInput input) {

...

InstanceIdentifier<InterfaceConfigurations> iid =
InstanceIdentifier.create(InterfaceConfigurations.class);

Optional<InterfaceConfigurations> ifConfig;
try {

// Read from a transaction is asynchronous, but a simple
// get/checkedGet makes the call synchronous
ifConfig = xrNodeReadTx.read(LogicalDatastoreType.CONFIGURATION, iid).

→˓checkedGet();
} catch (ReadFailedException e) {

throw new IllegalStateException("Unexpected error reading data from " + input.
→˓getNodeName(), e);

}

...
}

2.1. Developer Guide 1305

OpenDaylight Documentation Documentation, Release Carbon

The instance identifier is used here again to specify a subtree to read from the device. At this point application can
process the data as it sees fit. The ncmount app transforms the data into its own format and returns it from showNode.

Note: More information can be found in the source code of ncmount sample app + on wiki: https://wiki.opendaylight.
org/view/Controller_Core_Functionality_Tutorials:Tutorials:Netconf_Mount

Network Intent Composition (NIC) Developer Guide

Overview

The Network Intent Composition (NIC) provides four features:

• odl-nic-core-hazelcast: Provides a distributed intent mapping service, implemented using hazelcast, that stores
metadata needed by odl-nic-core feature.

• odl-nic-core-mdsal: Provides an intent rest API to external applications for CRUD operations on intents, conflict
resolution and event handling. Uses MD-SAL as backend.

• odl-nic-console: Provides a karaf CLI extension for intent CRUD operations and mapping service operations.

• odl-nic-renderer-of - Generic OpenFlow Renderer.

• odl-nic-renderer-vtn - a feature that transforms an intent to a network modification using the VTN project

• odl-nic-renderer-gbp - a feature that transforms an intent to a network modification using the Group Policy
project

• odl-nic-renderer-nemo - a feature that transforms an intent to a network modification using the NEMO project

• odl-nic-listeners - adds support for event listening. (depends on: odl-nic-renderer-of)

• odl-nic-neutron-integration - allow integration with openstack neutron to allow coexistence between existing
neutron security rules and intents pushed by ODL applications.

Only a single renderer feature should be installed at a time for the Boron release.

odl-nic-core-mdsal XOR odl-nic-core-hazelcast

This feature supplies the base models for the Network Intent Composition (NIC) capability. This includes the definition
of intent as well as the configuration and operational data trees.

This feature only provides an information model. The interface for NIC is to modify the information model via the
configuraiton data tree, which will trigger the renderer to make the appropriate changes in the controlled network.

Installation

First you need to install one of the core installations:

feature:install odl-nic-core-service-mdsal odl-nic-console

OR

feature:install odl-nic-core-service-hazelcast odl-nic-console

1306 Chapter 2. Content for OpenDaylight Developers

https://wiki.opendaylight.org/view/Controller_Core_Functionality_Tutorials:Tutorials:Netconf_Mount
https://wiki.opendaylight.org/view/Controller_Core_Functionality_Tutorials:Tutorials:Netconf_Mount

OpenDaylight Documentation Documentation, Release Carbon

Then pick a renderer:

feature:install odl-nic-listeners (will install odl-nic-renderer-of)

OR

feature:install odl-nic-renderer-vtn

OR

feature:install odl-nic-renderer-gbp

OR

feature:install odl-nic-renderer-nemo

REST Supported operations

POST / PUT (configuration)

This operations create instances of an intent in the configuration data tree and trigger the creation or modification of
an intent.

GET (configuration / operational)

This operation lists all or fetches a single intent from the data tree.

DELETE (configuration)

This operation will cause an intent to be removed from the system and trigger any configuration changes on the
network rendered from this intent to be removed.

odl-nic-cli user guide

This feature provides karaf console CLI command to manipulate the intent data model. The CLI essentailly invokes
the equivalent data operations.

intent:add

Creates a new intent in the configuration data tree

DESCRIPTION
intent:add

Adds an intent to the controller.

Examples: --actions [ALLOW] --from <subject> --to <subject>
--actions [BLOCK] --from <subject>

2.1. Developer Guide 1307

OpenDaylight Documentation Documentation, Release Carbon

SYNTAX
intent:add [options]

OPTIONS
-a, --actions

Action to be performed.
-a / --actions BLOCK/ALLOW
(defaults to [BLOCK])

--help
Display this help message

-t, --to
Second Subject.
-t / --to <subject>
(defaults to any)

-f, --from
First subject.
-f / --from <subject>
(defaults to any)

intent:delete

Removes an existing intent from the system

DESCRIPTION
intent:remove

Removes an intent from the controller.

SYNTAX
intent:remove id

ARGUMENTS
id Intent Id

intent:list

Lists all the intents in the system

DESCRIPTION
intent:list

Lists all intents in the controller.

SYNTAX
intent:list [options]

OPTIONS
-c, --config

List Configuration Data (optional).
-c / --config <ENTER>

--help
Display this help message

1308 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

intent:show

Displays the details of a single intent

DESCRIPTION
intent:show

Shows detailed information about an intent.

SYNTAX
intent:show id

ARGUMENTS
id Intent Id

intent:map

List/Add/Delete current state from/to the mapping service.

DESCRIPTION
intent:map

List/Add/Delete current state from/to the mapping service.

SYNTAX
intent:map [options]

Examples: --list, -l [ENTER], to retrieve all keys.
--add-key <key> [ENTER], to add a new key with empty contents.
--del-key <key> [ENTER], to remove a key with it's values."
--add-key <key> --value [<value 1>, <value 2>, ...] [ENTER],
to add a new key with some values (json format).

OPTIONS
--help

Display this help message
-l, --list

List values associated with a particular key.
-l / --filter <regular expression> [ENTER]
--add-key

Adds a new key to the mapping service.
--add-key <key name> [ENTER]
--value

Specifies which value should be added/delete from the mapping service.
--value "key=>value"... --value "key=>value" [ENTER]

(defaults to [])
--del-key

Deletes a key from the mapping service.
--del-key <key name> [ENTER]

2.1. Developer Guide 1309

OpenDaylight Documentation Documentation, Release Carbon

Sample Use case: MPLS

Description

The scope of this use-case is to add MPLS intents between two MPLS endpoints. The use-case tries to address the
real-world scenario illustrated in the diagram below:

Fig. 2.21: MPLS VPN Service Diagram

where PE (Provider Edge) and P (Provider) switches are managed by OpenDaylight. In NIC’s terminology the end-
points are the PE switches. There could be many P switches between the PEs.

In order for NIC to recognize endpoints as MPLS endpoints, the user is expected to add mapping information about
the PE switches to NIC’s mapping service to include the below properties:

1. MPLS Label to identify a PE

2. IPv4 Prefix for the customer site that are connected to a PE

3. Switch-Port: Ingress (or Egress) for source (or Destination) endpoint of the source (or Destination) PE

An intent:add between two MPLS endpoints renders OpenFlow rules for: 1. push/pop labels to the MPLS endpoint
nodes after an IPv4 Prefix match. 2. forward to port rule after MPLS label match to all the switches that form the
shortest path between the endpoints (calculated using Dijkstra algorithm).

Additionally, we have also added constraints to Intent model for protection and failover mechanism to ensure end-to-
end connectivity between endpoints. By specifying these constraints to intent:add the use-case aims to reduces the risk
of connectivity failure due to a single link or port down event on a forwarding device.

• Protection constraint: Constraint that requires an end-to-end connectivity to be protected by providing redundant
paths.

• Failover constraint: Constraint that specifies the type of failover implementation. slow-reroute: Uses disjoint
path calculation algorithms like Suurballe to provide alternate end-to-end routes. fast-reroute: Uses failure de-
tection feature in hardware forwarding device through OF group table features (Future plans) When no constraint
is requested by the user we default to offering a since end-to-end route using Dijkstra shortest path.

1310 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

How to use it?

1. Start Karaf and install related features:

feature:install odl-nic-core-service-mdsal odl-nic-core odl-nic-console odl-nic-
→˓listeners
feature:install odl-dlux-core odl-dluxapps-applications

2. Start mininet topology and verify in DLUX Topology page for the nodes and link.

mn --controller=remote,ip=$CONTROLLER_IP --custom ~/shortest_path.py --topo
→˓shortest_path --switch ovsk,protocols=OpenFlow13

cat shortest.py -->
from mininet.topo import Topo
from mininet.cli import CLI
from mininet.net import Mininet
from mininet.link import TCLink
from mininet.util import irange,dumpNodeConnections
from mininet.log import setLogLevel

class Fast_Failover_Demo_Topo(Topo):

def __init__(self):
Initialize topology and default options
Topo.__init__(self)

s1 = self.addSwitch('s1',dpid='0000000000000001')
s2a = self.addSwitch('s2a',dpid='000000000000002a')
s2b = self.addSwitch('s2b',dpid='000000000000002b')
s2c = self.addSwitch('s2c',dpid='000000000000002c')
s3 = self.addSwitch('s3',dpid='0000000000000003')
self.addLink(s1, s2a)
self.addLink(s1, s2b)
self.addLink(s2b, s2c)
self.addLink(s3, s2a)
self.addLink(s3, s2c)
host_1 = self.addHost('h1',ip='10.0.0.1',mac='10:00:00:00:00:01')
host_2 = self.addHost('h2',ip='10.0.0.2',mac='10:00:00:00:00:02')
self.addLink(host_1, s1)
self.addLink(host_2, s3)

topos = { 'shortest_path': (lambda: Demo_Topo()) }

3. Update the mapping service with required information

Sample payload:

{
"mappings": {

"outer-map": [
{
"id": "uva",
"inner-map": [
{
"inner-key": "ip_prefix",

2.1. Developer Guide 1311

OpenDaylight Documentation Documentation, Release Carbon

"value": "10.0.0.1/32"
},
{
"inner-key": "mpls_label",
"value": "15"

},
{
"inner-key": "switch_port",
"value": "openflow:1:1"

}
]

},
{
"id": "eur",
"inner-map": [
{
"inner-key": "ip_prefix",
"value": "10.0.0.2/32"

},
{
"inner-key": "mpls_label",
"value": "16"

},
{
"inner-key": "switch_port",
"value": "openflow:3:1"

}
]

}
]

}
}

4. Create bidirectional Intents using Karaf command line or RestCONF:

Example:

intent:add -f uva -t eur -a ALLOW
intent:add -f eur -t uva -a ALLOW

5. Verify by running ovs-ofctl command on mininet if the flows were pushed correctly to the nodes that form the
shortest path.

Example:

ovs-ofctl -O OpenFlow13 dump-flows s1

NetIDE Developer Guide

Overview

The NetIDE Network Engine enables portability and cooperation inside a single network by using a client/server multi-
controller SDN architecture. Separate “Client SDN Controllers” host the various SDN Applications with their access
to the actual physical network abstracted and coordinated through a single “Server SDN Controller”, in this instance
OpenDaylight. This allows applications written for Ryu/Floodlight/Pyretic to execute on OpenDaylight managed
infrastructure.

1312 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

The “Network Engine” is modular by design:

• An OpenDaylight plugin, “shim”, sends/receives messages to/from subscribed SDN Client Controllers. This
consumes the ODL OpenFlow Plugin

• An initial suite of SDN Client Controller “Backends”: Floodlight, Ryu, Pyretic. Further controllers may be
added over time as the engine is extensible.

The Network Engine provides a compatibility layer capable of translating calls of the network applications running
on top of the client controllers, into calls for the server controller framework. The communication between the client
and the server layers is achieved through the NetIDE intermediate protocol, which is an application-layer protocol
on top of TCP that transmits the network control/management messages from the client to the server controller and
vice-versa. Between client and server controller sits the Core Layer which also “speaks” the intermediate protocol.
The core layer implements three main functions:

1. interfacing with the client backends and server shim, controlling the lifecycle of controllers as well as modules
in them,

2. orchestrating the execution of individual modules (in one client controller) or complete applications (possibly
spread across multiple client controllers),

3. interfacing with the tools.

Fig. 2.22: NetIDE Network Engine Architecture

NetIDE Intermediate Protocol

The Intermediate Protocol serves several needs, it has to:

2.1. Developer Guide 1313

OpenDaylight Documentation Documentation, Release Carbon

1. carry control messages between core and shim/backend, e.g., to start up/take down a particular module, provid-
ing unique identifiers for modules,

2. carry event and action messages between shim, core, and backend, properly demultiplexing such messages to
the right module based on identifiers,

3. encapsulate messages specific to a particular SBI protocol version (e.g., OpenFlow 1.X, NETCONF, etc.) to-
wards the client controllers with proper information to recognize these messages as such.

The NetIDE packages can be added as dependencies in Maven projects by putting the following code in the pom.xml
file.

<dependency>
<groupId>org.opendaylight.netide</groupId>
<artifactId>api</artifactId>
<version>${NETIDE_VERSION}</version>

</dependency>

The current stable version for NetIDE is 0.2.0-Boron.

Protocol specification

Messages of the NetIDE protocol contain two basic elements: the NetIDE header and the data (or payload). The
NetIDE header, described below, is placed before the payload and serves as the communication and control link
between the different components of the Network Engine. The payload can contain management messages, used by
the components of the Network Engine to exchange relevant information, or control/configuration messages (such as
OpenFlow, NETCONF, etc.) crossing the Network Engine generated by either network application modules or by the
network elements.

The NetIDE header is defined as follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| netide_ver | type | length |
+-+
| xid |
+-+
| module_id |
+-+
| |
+ datapath_id +
| |
+-+

where each tick mark represents one bit position. Alternatively, in a C-style coding format, the NetIDE header can be
represented with the following structure:

struct netide_header {
uint8_t netide_ver ;
uint8_t type ;
uint16_t length ;
uint32_t xid
uint32_t module_id
uint64_t datapath_id

};

1314 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

• netide_ver is the version of the NetIDE protocol (the current version is v1.2, which is identified with value
0x03).

• length is the total length of the payload in bytes.

• type contains a code that indicates the type of the message according with the following values:

enum type {
NETIDE_HELLO = 0x01 ,
NETIDE_ERROR = 0x02 ,
NETIDE_MGMT = 0x03 ,
MODULE_ANNOUNCEMENT = 0x04 ,
MODULE_ACKNOWLEDGE = 0x05 ,
NETIDE_HEARTBEAT = 0x06 ,
NETIDE_OPENFLOW = 0x11 ,
NETIDE_NETCONF = 0x12 ,
NETIDE_OPFLEX = 0x13

};

• datapath_id is a 64-bit field that uniquely identifies the network elements.

• module_id is a 32-bits field that uniquely identifies Backends and application modules running on top of each
client controller. The composition mechanism in the core layer leverages on this field to implement the correct
execution flow of these modules.

• xid is the transaction identifier associated to the each message. Replies must use the same value to facilitate
the pairing.

Module announcement

The first operation performed by a Backend is registering itself and the modules that it is running to the Core. This
is done by using the MODULE_ANNOUNCEMENT and MODULE_ACKNOWLEDGE message types. As a result of this
process, each Backend and application module can be recognized by the Core through an identifier (the module_id)
placed in the NetIDE header. First, a Backend registers itself by using the following schema: backend-<platform
name>-<pid>.

For example,odule a Ryu Backend will register by using the following name in the message backend-ryu-12345 where
12345 is the process ID of the registering instance of the Ryu platform. The format of the message is the following:

struct NetIDE_message {
netide_ver = 0x03
type = MODULE_ANNOUNCEMENT
length = len(" backend -< platform_name >-<pid >")
xid = 0
module_id = 0
datapath_id = 0
data = " backend -< platform_name >-<pid >"

}

The answer generated by the Core will include a module_id number and the Backend name in the payload (the
same indicated in the MODULE_ANNOUNCEMENT message):

struct NetIDE_message {
netide_ver = 0x03
type = MODULE_ACKNOWLEDGE
length = len(" backend -< platform_name >-<pid >")
xid = 0
module_id = MODULE_ID

2.1. Developer Guide 1315

OpenDaylight Documentation Documentation, Release Carbon

datapath_id = 0
data = " backend -< platform_name >-<pid >"

}

Once a Backend has successfully registered itself, it can start registering its modules with the same procedure described
above by indicating the name of the module in the data (e.g. data=”Firewall”). From this point on, the Backend will
insert its own module_id in the header of the messages it generates (e.g. heartbeat, hello messages, OpenFlow echo
messages from the client controllers, etc.). Otherwise, it will encapsulate the control/configuration messages (e.g.
FlowMod, PacketOut, FeatureRequest, NETCONF request, etc.) generated by network application modules with the
specific +module_id+s.

Heartbeat

The heartbeat mechanism has been introduced after the adoption of the ZeroMQ messaging queuing library to transmit
the NetIDE messages. Unfortunately, the ZeroMQ library does not offer any mechanism to find out about disrupted
connections (and also completely unresponsive peers). This limitation of the ZeroMQ library can be an issue for the
Core’s composition mechanism and for the tools connected to the Network Engine, as they cannot understand when
an client controller disconnects or crashes. As a consequence, Backends must periodically send (let’s say every 5
seconds) a “heartbeat” message to the Core. If the Core does not receive at least one “heartbeat” message from the
Backend within a certain timeframe, the Core considers it disconnected, removes all the related data from its memory
structures and informs the relevant tools. The format of the message is the following:

struct NetIDE_message {
netide_ver = 0x03
type = NETIDE_HEARTBEAT
length = 0
xid = 0
module_id = backend -id
datapath_id = 0
data = 0

}

Handshake

Upon a successful connection with the Core, the client controller must immediately send a hello message with the list
of the control and/or management protocols needed by the applications deployed on top of it.

struct NetIDE_message {
struct netide_header header ;
uint8 data [0]

};

The header contains the following values:

• netide ver=0x03

• type=NETIDE_HELLO

• length=2*NR_PROTOCOLS

• data contains one 2-byte word (in big endian order) for each protocol, with the first byte containing the code
of the protocol according to the above enum, while the second byte in- dictates the version of the protocol
(e.g. according to the ONF specification, 0x01 for OpenFlow v1.0, 0x02 for OpenFlow v1.1, etc.). NETCONF
version is marked with 0x01 that refers to the specification in the RFC6241, while OpFlex version is marked
with 0x00 since this protocol is still in work-in-progress stage.

1316 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

The Core relays hello messages to the server controller which responds with another hello message containing the
following:

• netide ver=0x03

• type=NETIDE_HELLO

• length=2*NR_PROTOCOLS

If at least one of the protocols requested by the client is supported. In particular, data contains the codes of the
protocols that match the client’s request (2-bytes words, big endian order). If the hand- shake fails because none of
the requested protocols is supported by the server controller, the header of the answer is as follows:

• netide ver=0x03

• type=NETIDE_ERROR

• length=2*NR_PROTOCOLS

• data contains the codes of all the protocols supported by the server controller (2-bytes words, big endian
order). In this case, the TCP session is terminated by the server controller just after the answer is received by
the client. ‘

NetVirt Developer Guide

Neutron Service Developer Guide

Overview

This Karaf feature (odl-neutron-service) provides integration support for OpenStack Neutron via the Open-
Daylight ML2 mechanism driver. The Neutron Service is only one of the components necessary for OpenStack
integration. It defines YANG models for OpenStack Neutron data models and northbound API via REST API and
YANG model RESTCONF.

Those developers who want to add new provider for new OpenStack Neutron extensions/services (Neutron constantly
adds new extensions/services and OpenDaylight will keep up with those new things) need to communicate with this
Neutron Service or add models to Neutron Service. If you want to add new extensions/services themselves to the
Neutron Service, new YANG data models need to be added, but that is out of scope of this document because this
guide is for a developer who will be using the feature to build something separate, but not somebody who will be
developing code for this feature itself.

Neutron Service Architecture

The Neutron Service defines YANG models for OpenStack Neutron integration. When OpenStack admins/users re-
quest changes (creation/update/deletion) of Neutron resources, e.g., Neutron network, Neutron subnet, Neutron port,
the corresponding YANG model within OpenDaylight will be modified. The OpenDaylight OpenStack will subscribe
the changes on those models and will be notified those modification through MD-SAL when changes are made. Then
the provider will do the necessary tasks to realize OpenStack integration. How to realize it (or even not realize it) is
up to each provider. The Neutron Service itself does not take care of it.

How to Write a SB Neutron Consumer

In Boron, there is only one options for SB Neutron Consumers:

• Listening for changes via the Neutron YANG model

2.1. Developer Guide 1317

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.23: Neutron Service Architecture

1318 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Until Beryllium there was another way with the legacy I*Aware interface. From Boron, the interface was eliminated.
So all the SB Neutron Consumers have to use Neutron YANG model.

Neutron YANG models

Neutron service defines YANG models for Neutron. The details can be found at

• https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=tree;f=model/src/main/yang;hb=refs/heads/stable/
boron

Basically those models are based on OpenStack Neutron API definitions. For exact definitions, OpenStack Neutron
source code needs to be referred as the above documentation doesn’t always cover the necessary details. There is
nothing special to utilize those Neutron YANG models. The basic procedure will be:

1. subscribe for changes made to the the model

2. respond on the data change notification for each models

Note: Currently there is no way to refuse the request configuration at this point. That is left to future work.

public class NeutronNetworkChangeListener implements DataChangeListener,
→˓AutoCloseable {

private ListenerRegistration<DataChangeListener> registration;
private DataBroker db;

public NeutronNetworkChangeListener(DataBroker db){
this.db = db;
// create identity path to register on service startup
InstanceIdentifier<Network> path = InstanceIdentifier

.create(Neutron.class)

.child(Networks.class)

.child(Network.class);
LOG.debug("Register listener for Neutron Network model data changes");
// register for Data Change Notification
registration =

this.db.registerDataChangeListener(LogicalDatastoreType.CONFIGURATION,
→˓ path, this, DataChangeScope.ONE);

}

@Override
public void onDataChanged(

AsyncDataChangeEvent<InstanceIdentifier<?>, DataObject> changes) {
LOG.trace("Data changes : {}",changes);

// handle data change notification
Object[] subscribers = NeutronIAwareUtil.getInstances(INeutronNetworkAware.

→˓class, this);
createNetwork(changes, subscribers);
updateNetwork(changes, subscribers);
deleteNetwork(changes, subscribers);

}
}

2.1. Developer Guide 1319

https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=tree;f=model/src/main/yang;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=tree;f=model/src/main/yang;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

Neutron configuration

From Boron, new models of configuration for OpenDaylight to tell OpenStack neutron/networking-odl its configura-
tion/capability.

hostconfig

This is for OpenDaylight to tell per-node configuration to Neutron. Especially this is used by pseudo agent port binding
heavily.

The model definition can be found at

• https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=model/src/main/yang/neutron-hostconfig.
yang;hb=refs/heads/stable/boron

How to populate this for pseudo agent port binding is documented at

• http://git.openstack.org/cgit/openstack/networking-odl/tree/doc/source/devref/hostconfig.rst

Neutron extension config

In Boron this is experimental. The model definition can be found at

• https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=model/src/main/yang/neutron-extensions.
yang;hb=refs/heads/stable/boron

Each Neutron Service provider has its own feature set. Some support the full features of OpenStack, but others support
only a subset. With same supported Neutron API, some functionality may or may not be supported. So there is a
need for a way that OpenDaylight can tell networking-odl its capability. Thus networking-odl can initialize Neutron
properly based on reported capability.

Neutorn Logger

There is another small Karaf feature, odl-neutron-logger, which logs changes of Neutron YANG models.
which can be used for debug/audit.

It would also help to understand how to listen the change.

• https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=neutron-logger/src/main/java/org/
opendaylight/neutron/logger/NeutronLogger.java;hb=refs/heads/stable/boron

API Reference Documentation

The OpenStack Neutron API references

• http://developer.openstack.org/api-ref-networking-v2.html

• http://developer.openstack.org/api-ref-networking-v2-ext.html

1320 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=model/src/main/yang/neutron-hostconfig.yang;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=model/src/main/yang/neutron-hostconfig.yang;hb=refs/heads/stable/boron
http://git.openstack.org/cgit/openstack/networking-odl/tree/doc/source/devref/hostconfig.rst
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=model/src/main/yang/neutron-extensions.yang;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=model/src/main/yang/neutron-extensions.yang;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=neutron-logger/src/main/java/org/opendaylight/neutron/logger/NeutronLogger.java;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=neutron-logger/src/main/java/org/opendaylight/neutron/logger/NeutronLogger.java;hb=refs/heads/stable/boron
http://developer.openstack.org/api-ref-networking-v2.html
http://developer.openstack.org/api-ref-networking-v2-ext.html

OpenDaylight Documentation Documentation, Release Carbon

Neutron Northbound

How to add new API support

OpenStack Neutron is a moving target. It is continuously adding new features as new rest APIs. Here is a basic step
to add new API support:

In the Neutron Northbound project:

• Add new YANG model for it under neutron/model/src/main/yang and update neutron.yang

• Add northbound API for it, and neutron-spi

– Implement Neutron<New API>Request.java and Neutron<New API>Norhtbound.java
under neutron/northbound-api/src/main/java/org/opendaylight/neutron/
northbound/api/

– Implement INeutron<New API>CRUD.java and new data structure if any under neutron/
neutron-spi/src/main/java/org/opendaylight/neutron/spi/

– update neutron/neutron-spi/src/main/java/org/opendaylight/neutron/spi/
NeutronCRUDInterfaces.java to wire new CRUD interface

– Add unit tests, Neutron<New structure>JAXBTest.java under neutron/neutron-spi/
src/test/java/org/opendaylight/neutron/spi/

• update neutron/northbound-api/src/main/java/org/opendaylight/neutron/
northbound/api/NeutronNorthboundRSApplication.java to wire new northbound api to
RSApplication

• Add transcriber, Neutron<New API>Interface.java under transcriber/src/main/java/
org/opendaylight/neutron/transcriber/

• update transcriber/src/main/java/org/opendaylight/neutron/transcriber/
NeutronTranscriberProvider.java to wire a new transcriber

– Add integration tests Neutron<New API>Tests.java under integration/test/src/test/
java/org/opendaylight/neutron/e2etest/

– update integration/test/src/test/java/org/opendaylight/neutron/e2etest/
ITNeutronE2E.java to run a newly added tests.

In OpenStack networking-odl

• Add new driver (or plugin) for new API with tests.

In a southbound Neutron Provider

• implement actual backend to realize those new API by listening related YANG models.

How to write transcriber

For each Neutron data object, there is an Neutron*Interface defined within the transcriber artifact that will write
that object to the MD-SAL configuration datastore.

All Neutron*Interface extend AbstractNeutronInterface, in which two methods are defined:

• one takes the Neutron object as input, and will create a data object from it.

• one takes an uuid as input, and will create a data object containing the uuid.

2.1. Developer Guide 1321

OpenDaylight Documentation Documentation, Release Carbon

protected abstract T toMd(S neutronObject);
protected abstract T toMd(String uuid);

In addition the AbstractNeutronInterface class provides several other helper methods (addMd, updateMd,
removeMd), which handle the actual writing to the configuration datastore.

The semantics of the toMD() methods

Each of the Neutron YANG models defines structures containing data. Further each YANG-modeled structure has it
own builder. A particular toMD() method instantiates an instance of the correct builder, fills in the properties of the
builder from the corresponding values of the Neutron object and then creates the YANG-modeled structures via the
build() method.

As an example, one of the toMD code for Neutron Networks is presented below:

protected Network toMd(NeutronNetwork network) {
NetworkBuilder networkBuilder = new NetworkBuilder();
networkBuilder.setAdminStateUp(network.getAdminStateUp());
if (network.getNetworkName() != null) {

networkBuilder.setName(network.getNetworkName());
}
if (network.getShared() != null) {

networkBuilder.setShared(network.getShared());
}
if (network.getStatus() != null) {

networkBuilder.setStatus(network.getStatus());
}
if (network.getSubnets() != null) {

List<Uuid> subnets = new ArrayList<Uuid>();
for(String subnet : network.getSubnets()) {

subnets.add(toUuid(subnet));
}
networkBuilder.setSubnets(subnets);

}
if (network.getTenantID() != null) {

networkBuilder.setTenantId(toUuid(network.getTenantID()));
}
if (network.getNetworkUUID() != null) {

networkBuilder.setUuid(toUuid(network.getNetworkUUID()));
} else {

logger.warn("Attempting to write neutron network without UUID");
}
return networkBuilder.build();

}

ODL Parent Developer Guide

Parent POMs

Overview

The ODL Parent component for OpenDaylight provides a number of Maven parent POMs which allow Maven projects
to be easily integrated in the OpenDaylight ecosystem. Technically, the aim of projects in OpenDaylight is to produce
Karaf features, and these parent projects provide common support for the different types of projects involved.

1322 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

These parent projects are:

• odlparent-lite— the basic parent POM for Maven modules which don’t produce artifacts (e.g. aggregator
POMs)

• odlparent — the common parent POM for Maven modules containing Java code

• bundle-parent — the parent POM for Maven modules producing OSGi bundles

The following parent projects are deprecated, but still used in Carbon:

• feature-parent — the parent POM for Maven modules producing Karaf 3 feature repositories

• karaf-parent — the parent POM for Maven modules producing Karaf 3 distributions

The following parent projects are new in Carbon, for Karaf 4 support (which won’t be complete until Nitrogen):

• single-feature-parent — the parent POM for Maven modules producing a single Karaf 4 feature

• feature-repo-parent — the parent POM for Maven modules producing Karaf 4 feature repositories

• karaf4-parent — the parent POM for Maven modules producing Karaf 4 distributions

odlparent-lite

This is the base parent for all OpenDaylight Maven projects and modules. It provides the following, notably to allow
publishing artifacts to Maven Central:

• license information;

• organization information;

• issue management information (a link to our Bugzilla);

• continuous integration information (a link to our Jenkins setup);

• default Maven plugins (maven-clean-plugin, maven-deploy-plugin,
maven-install-plugin, maven-javadoc-plugin with HelpMojo support,
maven-project-info-reports-plugin, maven-site-plugin with Asciidoc support,
jdepend-maven-plugin);

• distribution management information.

It also defines two profiles which help during development:

• q (-Pq), the quick profile, which disables tests, code coverage, Javadoc generation, code analysis, etc. —
anything which isn’t necessary to build the bundles and features (see this blog post for details);

• addInstallRepositoryPath (-DaddInstallRepositoryPath=.../karaf/system) which
can be used to drop a bundle in the appropriate Karaf location, to enable hot-reloading of bundles during devel-
opment (see this blog post for details).

For modules which don’t produce any useful artifacts (e.g. aggregator POMs), you should add the following to avoid
processing artifacts:

<build>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-deploy-plugin</artifactId>
<configuration>

<skip>true</skip>
</configuration>

</plugin>

2.1. Developer Guide 1323

http://blog2.vorburger.ch/2016/06/improve-maven-build-speed-with-q.html
http://blog2.vorburger.ch/2016/06/maven-install-into-additional.html

OpenDaylight Documentation Documentation, Release Carbon

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-install-plugin</artifactId>
<configuration>

<skip>true</skip>
</configuration>

</plugin>
</plugins>

</build>

odlparent

This inherits from odlparent-lite and mainly provides dependency and plugin management for OpenDaylight
projects.

If you use any of the following libraries, you should rely on odlparent to provide the appropriate versions:

• Akka (and Scala)

• Apache Commons:

– commons-codec

– commons-fileupload

– commons-io

– commons-lang

– commons-lang3

– commons-net

• Apache Shiro

• Guava

• JAX-RS with Jersey

• JSON processing:

– GSON

– Jackson

• Logging:

– Logback

– SLF4J

• Netty

• OSGi:

– Apache Felix

– core OSGi dependencies (core, compendium. . .)

• Testing:

– Hamcrest

– JSON assert

– JUnit

1324 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

– Mockito

– Pax Exam

– PowerMock

• XML/XSL:

– Xerces

– XML APIs

Note: This list isn’t exhaustive. It’s also not cast in stone; if you’d like to add a new dependency (or migrate a
dependency), please contact the mailing list.

odlparent also enforces some Checkstyle verification rules. In particular, it enforces the common license header
used in all OpenDaylight code:

/*
* Copyright © ${year} ${holder} and others. All rights reserved.

*
* This program and the accompanying materials are made available under the

* terms of the Eclipse Public License v1.0 which accompanies this distribution,

* and is available at http://www.eclipse.org/legal/epl-v10.html

*/

where “${year}” is initially the first year of publication, then (after a year has passed) the first and latest years of
publication, separated by commas (e.g. “2014, 2016”), and “${holder}” is the initial copyright holder (typically,
the first author’s employer). “All rights reserved” is optional.

If you need to disable this license check, e.g. for files imported under another license (EPL-compatible of
course), you can override the maven-checkstyle-plugin configuration. features-test does this for its
CustomBundleUrlStreamHandlerFactory class, which is ASL-licensed:

<plugin>
<artifactId>maven-checkstyle-plugin</artifactId>
<executions>

<execution>
<id>check-license</id>
<goals>

<goal>check</goal>
</goals>
<phase>process-sources</phase>
<configuration>

<configLocation>check-license.xml</configLocation>
<headerLocation>EPL-LICENSE.regexp.txt</headerLocation>
<includeResources>false</includeResources>
<includeTestResources>false</includeTestResources>
<sourceDirectory>${project.build.sourceDirectory}</sourceDirectory>
<excludes>

<!-- Skip Apache Licensed files -->
org/opendaylight/odlparent/featuretest/

→˓CustomBundleUrlStreamHandlerFactory.java
</excludes>
<failsOnError>false</failsOnError>
<consoleOutput>true</consoleOutput>

</configuration>
</execution>

2.1. Developer Guide 1325

https://lists.opendaylight.org/mailman/listinfo/odlparent-dev

OpenDaylight Documentation Documentation, Release Carbon

</executions>
</plugin>

bundle-parent

This inherits from odlparent and enables functionality useful for OSGi bundles:

• maven-javadoc-plugin is activated, to build the Javadoc JAR;

• maven-source-plugin is activated, to build the source JAR;

• maven-bundle-plugin is activated (including extensions), to build OSGi bundles (using the “bundle”
packaging).

In addition to this, JUnit is included as a default dependency in “test” scope.

features-parent

This inherits from odlparent and enables functionality useful for Karaf features:

• karaf-maven-plugin is activated, to build Karaf features — but for OpenDaylight, projects need to use
“jar” packaging (not “feature” or “kar”);

• features.xml files are processed from templates stored in src/main/features/features.xml;

• Karaf features are tested after build to ensure they can be activated in a Karaf container.

The features.xml processing allows versions to be ommitted from certain feature dependencies, and replaced
with “{{version}}”. For example:

<features name="odl-mdsal-${project.version}" xmlns="http://karaf.apache.org/xmlns/
→˓features/v1.2.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://karaf.apache.org/xmlns/features/v1.2.0 http://karaf.

→˓apache.org/xmlns/features/v1.2.0">

<repository>mvn:org.opendaylight.odlparent/features-odlparent/{{VERSION}}/xml/
→˓features</repository>

[...]
<feature name='odl-mdsal-broker-local' version='${project.version}' description=

→˓"OpenDaylight :: MDSAL :: Broker">
<feature version='${yangtools.version}'>odl-yangtools-common</feature>
<feature version='${mdsal.version}'>odl-mdsal-binding-dom-adapter</feature>
<feature version='${mdsal.model.version}'>odl-mdsal-models</feature>
<feature version='${project.version}'>odl-mdsal-common</feature>
<feature version='${config.version}'>odl-config-startup</feature>
<feature version='${config.version}'>odl-config-netty</feature>
<feature version='[3.3.0,4.0.0)'>odl-lmax</feature>
[...]
<bundle>mvn:org.opendaylight.controller/sal-dom-broker-config/{{VERSION}}</

→˓bundle>
<bundle start-level="40">mvn:org.opendaylight.controller/blueprint/{{VERSION}}

→˓</bundle>
<configfile finalname="${config.configfile.directory}/${config.mdsal.

→˓configfile}">mvn:org.opendaylight.controller/md-sal-config/{{VERSION}}/xml/config</
→˓configfile>

1326 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

</feature>

As illustrated, versions can be ommitted in this way for repository dependencies, bundle dependencies and configura-
tion files. They must be specified traditionally (either hard-coded, or using Maven properties) for feature dependencies.

karaf-parent

This allows building a Karaf 3 distribution, typically for local testing purposes. Any runtime-scoped feature depen-
dencies will be included in the distribution, and the karaf.localFeature property can be used to specify the
boot feature (in addition to standard).

single-feature-parent

This inherits from odlparent and enables functionality useful for Karaf 4 features:

• karaf-maven-plugin is activated, to build Karaf features, typically with “feature” packaging (“kar” is also
supported);

• feature.xml files are generated based on the compile-scope dependencies defined in the POM, optionally
initialised from a stub in src/main/feature/feature.xml.

• Karaf features are tested after build to ensure they can be activated in a Karaf container.

The feature.xml processing adds transitive dependencies by default, which allows features to be defined using
only the most significant dependencies (those that define the feature); other requirements are determined automatically
as long as they exist as Maven dependencies.

“configfiles” need to be defined both as Maven dependencies (with the appropriate type and classifier) and as
<configfile> elements in the feature.xml stub.

Other features which a feature depends on need to be defined as Maven dependencies with type “xml” and classifier
“features” (note the plural here).

feature-repo-parent

This inherits from odlparent and enables functionality useful for Karaf 4 feature repositories. It follows the same
principles as single-feature-parent, but is designed specifically for repositories and should be used only for
this type of artifacts.

It builds a feature repository referencing all the (feature) dependencies listed in the POM.

karaf4-parent

This allows building a Karaf 4 distribution, typically for local testing purposes. Any runtime-scoped feature depen-
dencies will be included in the distribution, and the karaf.localFeature property can be used to specify the
boot feature (in addition to standard).

Features (for Karaf 3)

The ODL Parent component for OpenDaylight provides a number of Karaf 3 features which can be used by other
Karaf 3 features to use certain third-party upstream dependencies.

These features are:

2.1. Developer Guide 1327

OpenDaylight Documentation Documentation, Release Carbon

• Akka features (in the features-akka repository):

– odl-akka-all — all Akka bundles;

– odl-akka-scala-2.11 — Scala runtime for OpenDaylight;

– odl-akka-system-2.4 — Akka actor framework bundles;

– odl-akka-clustering-2.4 — Akka clustering bundles and dependencies;

– odl-akka-leveldb-0.7 — LevelDB;

– odl-akka-persistence-2.4 — Akka persistence;

• general third-party features (in the features-odlparent repository):

– odl-netty-4 — all Netty bundles;

– odl-guava-18 — Guava 18;

– odl-guava-21 — Guava 21 (not indended for use in Carbon);

– odl-lmax-3 — LMAX Disruptor;

– odl-triemap-0.2 — Concurrent Trie HashMap.

To use these, you need to declare a dependency on the appropriate repository in your features.xml file:

<repository>mvn:org.opendaylight.odlparent/features-odlparent/{{VERSION}}/xml/features
→˓</repository>

and then include the feature, e.g.:

<feature name='odl-mdsal-broker-local' version='${project.version}' description=
→˓"OpenDaylight :: MDSAL :: Broker">

[...]
<feature version='[3.3.0,4.0.0)'>odl-lmax</feature>
[...]

</feature>

You also need to depend on the features repository in your POM:

<dependency>
<groupId>org.opendaylight.odlparent</groupId>
<artifactId>features-odlparent</artifactId>
<classifier>features</classifier>
<type>xml</type>

</dependency>

assuming the appropriate dependency management:

<dependencyManagement>
<dependencies>

<dependency>
<groupId>org.opendaylight.odlparent</groupId>
<artifactId>odlparent-artifacts</artifactId>
<version>1.8.0-SNAPSHOT</version>
<scope>import</scope>
<type>pom</type>

</dependency>
</dependencies>

</dependencyManagement>

1328 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

(the version number there is appropriate for Carbon). For the time being you also need to depend separately on the
individual JARs as compile-time dependencies to build your dependent code; the relevant dependencies are managed
in odlparent‘s dependency management.

The suggested version ranges are as follows:

• odl-netty: [4.0.37,4.1.0) or [4.0.37,5.0.0);

• odl-guava: [18,19) (if your code is ready for it, [19,20) is also available, but the current default version
of Guava in OpenDaylight is 18);

• odl-lmax: [3.3.4,4.0.0)

Features (for Karaf 4)

There are equivalent features to all the Karaf 3 features, for Karaf 4. The repositories use “features4” instead of
“features”, and the features use “odl4” instead of “odl”.

The following new features are specific to Karaf 4:

• Karaf wrapper features (also in the features4-odlparent repository) — these can be used to pull in a
Karaf feature using a Maven dependency in a POM:

– odl-karaf-feat-feature — the Karaf feature feature;

– odl-karaf-feat-jdbc — the Karaf jdbc feature;

– odl-karaf-feat-jetty — the Karaf jetty feature;

– odl-karaf-feat-war — the Karaf war feature.

To use these, all you need to do now is add the appropriate dependency in your feature POM; for example:

<dependency>
<groupId>org.opendaylight.odlparent</groupId>
<artifactId>odl4-guava-18</artifactId>
<classifier>features</classifier>
<type>xml</type>

</dependency>

assuming the appropriate dependency management:

<dependencyManagement>
<dependencies>

<dependency>
<groupId>org.opendaylight.odlparent</groupId>
<artifactId>odlparent-artifacts</artifactId>
<version>1.8.0-SNAPSHOT</version>
<scope>import</scope>
<type>pom</type>

</dependency>
</dependencies>

</dependencyManagement>

(the version number there is appropriate for Carbon). We no longer use version ranges, the feature dependencies all
use the odlparent version (but you should rely on the artifacts POM).

2.1. Developer Guide 1329

OpenDaylight Documentation Documentation, Release Carbon

OCP Plugin Developer Guide

This document is intended for both OCP (ORI [Open Radio Interface] C&M [Control and Management] Protocol)
agent developers and OpenDaylight service/application developers. It describes essential information needed to im-
plement an OCP agent that is capable of interoperating with the OCP plugin running in OpenDaylight, including the
OCP connection establishment and state machines used on both ends of the connection. It also provides a detailed de-
scription of the northbound/southbound APIs that the OCP plugin exposes to allow automation and programmability.

Overview

OCP is an ETSI standard protocol for control and management of Remote Radio Head (RRH) equipment. The OCP
Project addresses the need for a southbound plugin that allows applications and controller services to interact with
RRHs using OCP. The OCP southbound plugin will allow applications acting as a Radio Equipment Control (REC) to
interact with RRHs that support an OCP agent.

Fig. 2.24: OCP southbound plugin

Architecture

OCP is a vendor-neutral standard communications interface defined to enable control and management between RE
and REC of an ORI architecture. The OCP Plugin supports the implementation of the OCP specification; it is based
on the Model Driven Service Abstraction Layer (MD-SAL) architecture.

The OCP Plugin project consists of three main components: OCP southbound plugin, OCP protocol library and OCP
service. For details on each of them, refer to the OCP Plugin User Guide.

1330 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.25: Overall architecture

Connection Establishment

The OCP layer is transported over a TCP/IP connection established between the RE and the REC. OCP provides the
following functions:

• Control & Management of the RE by the REC

• Transport of AISG/3GPP Iuant Layer 7 messages and alarms between REC and RE

Hello Message

Hello message is used by the OCP agent during connection setup. It is used for version negotiation. When the
connection is established, the OCP agent immediately sends a Hello message with the version field set to highest OCP
version supported by itself, along with the verdor ID and serial number of the radio head it is running on.

The combinaiton of the verdor ID and serial number will be used by the OCP plugin to uniquely identify a managed
radio head. When not receiving reply from the OCP plugin, the OCP agent can resend Hello message with pre-defined
Hello timeout (THLO) and Hello resend times (NHLO).

According to ORI spec, the default value of TCP Link Monitoring Timer (TTLM) is 50 seconds. The RE shall trigger
an OCP layer restart while TTLM expires in RE or the RE detects a TCP link failure. So we may define NHLO *
THLO = 50 seconds (e.g. NHLO = 10, THLO = 5 seconds).

By nature the Hello message is a new type of indication, and it contains supported OCP version, vendor ID and serial
number as shown below.

Hello message.

<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns="http://uri.etsi.org/ori/002-2/v4.1.1">

<header>
<msgType>IND</msgType>

2.1. Developer Guide 1331

OpenDaylight Documentation Documentation, Release Carbon

<msgUID>0</msgUID>
</header>
<body>
<helloInd>

<version>4.1.1</version>
<vendorId>XYZ</vendorId>
<serialNumber>ABC123</serialNumber>

</helloInd>
</body>

</msg>

Ack Message

Hello from the OCP agent will always make the OCP plugin respond with ACK. In case everything is OK, it will be
ACK(OK). In case something is wrong, it will be ACK(FAIL).

If the OCP agent receives ACK(OK), it goes to Established state. If the OCP agent receives ACK(FAIL), it goes to
Maintenance state. The failure code and reason of ACK(FAIL) are defined as below:

• FAIL_OCP_VERSION (OCP version not supported)

• FAIL_NO_MORE_CAPACITY (OCP plugin cannot control any more radio heads)

The result inside Ack message indicates OK or FAIL with different reasons.

Ack message.

<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns="http://uri.etsi.org/ori/002-2/v4.1.1">

<header>
<msgType>ACK</msgType>
<msgUID>0</msgUID>

</header>
<body>
<helloAck>

<result>FAIL_OCP_VERSION</result>
</helloAck>

</body>
</msg>

State Machines

The following figures illustrate the Finite State Machine (FSM) of the OCP agent and OCP plugin for new connection
procedure.

Northbound APIs

There are ten exposed northbound APIs: health-check, set-time, re-reset, get-param, modify-param, create-obj, delete-
obj, get-state, modify-state and get-fault

health-check

The Health Check procedure allows the application to verify that the OCP layer is functioning correctly at the RE.

1332 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.26: OCP agent state machine

Fig. 2.27: OCP plugin state machine

2.1. Developer Guide 1333

OpenDaylight Documentation Documentation, Release Carbon

Default URL: http://localhost:8181/restconf/operations/ocp-service:health-check-nb

POST Input

Field Name Type Description Example Required
?

nodeId String Inventory node reference for OCP radio
head

ocp:MTI-101-
200

Yes

tcpLinkMonTime-
out

unsigned
Short

TCP Link Monitoring Timeout (unit:
seconds)

50 Yes

Example.

{
"health-check-nb": {

"input": {
"nodeId": "ocp:MTI-101-200",
"tcpLinkMonTimeout": "50"

}
}

}

POST Output

Field Name Type Description
result String, enumerated Common default result codes

Example.

{
"output": {

"result": "SUCCESS"
}

}

set-time

The Set Time procedure allows the application to set/update the absolute time reference that shall be used by the RE.

Default URL: http://localhost:8181/restconf/operations/ocp-service:set-time-nb

POST Input

Field
Name

Type Description Example Re-
quired?

nodeId String Inventory node reference for OCP radio
head

ocp:MTI-101-200 Yes

newTime date-
Time

New datetime setting for radio head 2016-04-26T10:23:00-
05:00

Yes

Example.

1334 Chapter 2. Content for OpenDaylight Developers

http://localhost:8181/restconf/operations/ocp-service:health-check-nb
http://localhost:8181/restconf/operations/ocp-service:set-time-nb

OpenDaylight Documentation Documentation, Release Carbon

{
"set-time-nb": {

"input": {
"nodeId": "ocp:MTI-101-200",
"newTime": "2016-04-26T10:23:00-05:00"

}
}

}

POST Output

Field Name Type Description
result String, enumerated Common default result codes + FAIL_INVALID_TIMEDATA

Example.

{
"output": {

"result": "SUCCESS"
}

}

re-reset

The RE Reset procedure allows the application to reset a specific RE.

Default URL: http://localhost:8181/restconf/operations/ocp-service:re-reset-nb

POST Input

Field Name Type Description Example Required?
nodeId String Inventory node reference for OCP radio head ocp:MTI-101-200 Yes

Example.

{
"re-reset-nb": {

"input": {
"nodeId": "ocp:MTI-101-200"

}
}

}

POST Output

Field Name Type Description
result String, enumerated Common default result codes

Example.

2.1. Developer Guide 1335

http://localhost:8181/restconf/operations/ocp-service:re-reset-nb

OpenDaylight Documentation Documentation, Release Carbon

{
"output": {

"result": "SUCCESS"
}

}

get-param

The Object Parameter Reporting procedure allows the application to retrieve the following information:

1. the defined object types and instances within the Resource Model of the RE

2. the values of the parameters of the objects

Default URL: http://localhost:8181/restconf/operations/ocp-service:get-param-nb

POST Input

Field Name Type Description Example Required?
nodeId String Inventory node reference for OCP radio head ocp:MTI-101-200 Yes
objId String Object ID RxSigPath_5G:1 Yes
paramName String Parameter name dataLink Yes

Example.

{
"get-param-nb": {

"input": {
"nodeId": "ocp:MTI-101-200",
"objId": "RxSigPath_5G:1",
"paramName": "dataLink"

}
}

}

POST Output

Field
Name

Type Description

id String Object ID
name String Object parameter name
value String Object parameter value
result String,

enumerated
Common default result codes + “FAIL_UNKNOWN_OBJECT”,
“FAIL_UNKNOWN_PARAM”

Example.

{
"output": {

"obj": [
{

"id": "RxSigPath_5G:1",
"param": [

1336 Chapter 2. Content for OpenDaylight Developers

http://localhost:8181/restconf/operations/ocp-service:get-param-nb

OpenDaylight Documentation Documentation, Release Carbon

{
"name": "dataLink",
"value": "dataLink:1"

}
]

}
],
"result": "SUCCESS"

}
}

modify-param

The Object Parameter Modification procedure allows the application to configure the values of the parameters of the
objects identified by the Resource Model.

Default URL: http://localhost:8181/restconf/operations/ocp-service:modify-param-nb

POST Input

Field Name Type Description Example Required?
nodeId String Inventory node reference for OCP radio head ocp:MTI-101-200 Yes
objId String Object ID RxSigPath_5G:1 Yes
name String Object parameter name dataLink Yes
value String Object parameter value dataLink:1 Yes

Example.

{
"modify-param-nb": {

"input": {
"nodeId": "ocp:MTI-101-200",
"objId": "RxSigPath_5G:1",
"param": [

{
"name": "dataLink",
"value": "dataLink:1"

}
]

}
}

}

2.1. Developer Guide 1337

http://localhost:8181/restconf/operations/ocp-service:modify-param-nb

OpenDaylight Documentation Documentation, Release Carbon

POST Output

Field
Name

Type Description

objId String Object ID
glo-
bRe-
sult

String,
enumer-
ated

Common default result codes + “FAIL_UNKNOWN_OBJECT”,
“FAIL_PARAMETER_FAIL”, “FAIL_NOSUCH_RESOURCE”

name String Object parameter name
result String,

enumer-
ated

“SUCCESS”, “FAIL_UNKNOWN_PARAM”, “FAIL_PARAM_READONLY”,
“FAIL_PARAM_LOCKREQUIRED”, “FAIL_VALUE_OUTOF_RANGE”,
“FAIL_VALUE_TYPE_ERROR”

Example.

{
"output": {

"objId": "RxSigPath_5G:1",
"globResult": "SUCCESS",
"param": [

{
"name": "dataLink",
"result": "SUCCESS"

}
]

}
}

create-obj

The Object Creation procedure allows the application to create and initialize a new instance of the given object type
on the RE.

Default URL: http://localhost:8181/restconf/operations/ocp-service:create-obj-nb

POST Input

Field Name Type Description Example Required?
nodeId String Inventory node reference for OCP radio head ocp:MTI-101-200 Yes
objType String Object type RxSigPath_5G Yes
name String Object parameter name dataLink No
value String Object parameter value dataLink:1 No

Example.

{
"create-obj-nb": {

"input": {
"nodeId": "ocp:MTI-101-200",
"objType": "RxSigPath_5G",
"param": [

{
"name": "dataLink",
"value": "dataLink:1"

1338 Chapter 2. Content for OpenDaylight Developers

http://localhost:8181/restconf/operations/ocp-service:create-obj-nb

OpenDaylight Documentation Documentation, Release Carbon

}
]

}
}

}

POST Output

Field
Name

Type Description

objId String Object ID
glo-
bRe-
sult

String,
enumer-
ated

Common default result codes + “FAIL_UNKNOWN_OBJTYPE”,
“FAIL_STATIC_OBJTYPE”, “FAIL_UNKNOWN_OBJECT”,
“FAIL_CHILD_NOTALLOWED”, “FAIL_OUTOF_RESOURCES”
“FAIL_PARAMETER_FAIL”, “FAIL_NOSUCH_RESOURCE”

name String Object parameter name
result String,

enumer-
ated

“SUCCESS”, “FAIL_UNKNOWN_PARAM”, “FAIL_PARAM_READONLY”,
“FAIL_PARAM_LOCKREQUIRED”, “FAIL_VALUE_OUTOF_RANGE”,
“FAIL_VALUE_TYPE_ERROR”

Example.

{
"output": {

"objId": "RxSigPath_5G:0",
"globResult": "SUCCESS",
"param": [

{
"name": "dataLink",
"result": "SUCCESS"

}
]

}
}

delete-obj

The Object Deletion procedure allows the application to delete a given object instance and recursively its entire child
objects on the RE.

Default URL: http://localhost:8181/restconf/operations/ocp-service:delete-obj-nb

POST Input

Field Name Type Description Example Required?
nodeId String Inventory node reference for OCP radio head ocp:MTI-101-200 Yes
objId String Object ID RxSigPath_5G:1 Yes

Example.

{
"delete-obj-nb": {

2.1. Developer Guide 1339

http://localhost:8181/restconf/operations/ocp-service:delete-obj-nb

OpenDaylight Documentation Documentation, Release Carbon

"input": {
"nodeId": "ocp:MTI-101-200",
"obj-id": "RxSigPath_5G:0"

}
}

}

POST Output

Field
Name

Type Description

result String,
enumerated

Common default result codes + “FAIL_UNKNOWN_OBJECT”,
“FAIL_STATIC_OBJTYPE”, “FAIL_LOCKREQUIRED”

Example.

{
"output": {

"result": "SUCCESS"
}

}

get-state

The Object State Reporting procedure allows the application to acquire the current state (for the requested state type)
of one or more objects of the RE resource model, and additionally configure event-triggered reporting of the detected
state changes for all state types of the indicated objects.

Default URL: http://localhost:8181/restconf/operations/ocp-service:get-state-nb

POST Input

Field Name Type Description Example Required
?

nodeId String Inventory node reference for OCP
radio head

ocp:MTI-101-
200

Yes

objId String Object ID RxSig-
Path_5G:1

Yes

stateType String, enumerat
ed

Valid values: “AST”, “FST”, “ALL” ALL Yes

eventDrivenReporti
ng

Boolean Event-triggered reporting of state
change

true Yes

Example.

{
"get-state-nb": {

"input": {
"nodeId": "ocp:MTI-101-200",
"objId": "antPort:0",
"stateType": "ALL",
"eventDrivenReporting": "true"

1340 Chapter 2. Content for OpenDaylight Developers

http://localhost:8181/restconf/operations/ocp-service:get-state-nb

OpenDaylight Documentation Documentation, Release Carbon

}
}

}

POST Output

Field
Name

Type Description

id String Object ID
type String,

enumer-
ated

State type. Valid values: “AST”, “FST

value String,
enumer-
ated

State value. Valid values: For state type = “AST”: “LOCKED”, “UNLOCKED”. For state
type = “FST”: “PRE_OPERATIONAL”, “OPERATIONAL”, “DEGRADED”, “FAILED”,
“NOT_OPERATIONAL”, “DISABLED”

result String,
enumer-
ated

Common default result codes + “FAIL_UNKNOWN_OBJECT”,
“FAIL_UNKNOWN_STATETYPE”, “FAIL_VALUE_OUTOF_RANGE”

Example.

{
"output": {

"obj": [
{

"id": "antPort:0",
"state": [

{
"type": "FST",
"value": "DISABLED"

},
{

"type": "AST",
"value": "LOCKED"

}
]

}
],
"result": "SUCCESS"

}
}

modify-state

The Object State Modification procedure allows the application to trigger a change in the state of an object of the RE
Resource Model.

Default URL: http://localhost:8181/restconf/operations/ocp-service:modify-state-nb

2.1. Developer Guide 1341

http://localhost:8181/restconf/operations/ocp-service:modify-state-nb

OpenDaylight Documentation Documentation, Release Carbon

POST Input

Field
Name

Type Description Exam-
ple

Re-
quired?

nodeId String Inventory node reference for OCP radio head ocp:MTI-
101-
200

Yes

objId String Object ID RxSig-
Path_5G:1

Yes

state-
Type

String,
enumer-
ated

Valid values: “AST”, “FST”, “ALL” AST Yes

state-
Value

String,
enumer-
ated

Valid values: For state type = “AST”: “LOCKED”, “UNLOCKED”. For
state type = “FST”: “PRE_OPERATIONAL”, “OPERATIONAL”,
“DEGRADED”, “FAILED”, “NOT_OPERATIONAL”, “DISABLED”

LOCKED Yes

Example.

{
"modify-state-nb": {

"input": {
"nodeId": "ocp:MTI-101-200",
"objId": "RxSigPath_5G:1",
"stateType": "AST",
"stateValue": "LOCKED"

}
}

}

POST Output

Field
Name

Type Description

objId String Object ID
state-
Type

String,
enumer-
ated

State type. Valid values: “AST”, “FST

state-
Value

String,
enumer-
ated

State value. Valid values: For state type = “AST”: “LOCKED”, “UNLOCKED”. For state
type = “FST”: “PRE_OPERATIONAL”, “OPERATIONAL”, “DEGRADED”, “FAILED”,
“NOT_OPERATIONAL”, “DISABLED”

result String,
enumer-
ated

Common default result codes + “FAIL_UNKNOWN_OBJECT”,
“FAIL_UNKNOWN_STATETYPE”, “FAIL_UNKNOWN_STATEVALUE”,
“FAIL_STATE_READONLY”, “FAIL_RESOURCE_UNAVAILABLE”,
“FAIL_RESOURCE_INUSE”, “FAIL_PARENT_CHILD_CONFLICT”,
“FAIL_PRECONDITION_NOTMET

Example.

{
"output": {

"objId": "RxSigPath_5G:1",
"stateType": "AST",
"stateValue": "LOCKED",
"result": "SUCCESS",

1342 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

}
}

get-fault

The Fault Reporting procedure allows the application to acquire information about all current active faults associated
with a primary object, as well as configure the RE to report when the fault status changes for any of faults associated
with the indicated primary object.

Default URL: http://localhost:8181/restconf/operations/ocp-service:get-fault-nb

POST Input

Field Name Type Description Example Re-
quired?

nodeId String Inventory node reference for OCP radio
head

ocp:MTI-101-
200

Yes

objId String Object ID RE:0 Yes
eventDrive
nReporting

Boolean Event-triggered reporting of fault true Yes

Example.

{
"get-fault-nb": {

"input": {
"nodeId": "ocp:MTI-101-200",
"objId": "RE:0",
"eventDrivenReporting": "true"

}
}

}

POST Output

Field
Name

Type Description

result String,
enumerated

Common default result codes + “FAIL_UNKNOWN_OBJECT”,
“FAIL_VALUE_OUTOF_RANGE”

id (obj) String Object ID
id (fault) String Fault ID
severity String Fault severity
times-
tamp

dateTime Time stamp

descr String Text description
affecte-
dObj

String Affected object

Example.

2.1. Developer Guide 1343

http://localhost:8181/restconf/operations/ocp-service:get-fault-nb

OpenDaylight Documentation Documentation, Release Carbon

{
"output": {

"result": "SUCCESS",
"obj": [

{
"id": "RE:0",
"fault": [

{
"id": "FAULT_OVERTEMP",
"severity": "DEGRADED",
"timestamp": "2012-02-12T16:35:00",
"descr": "PA temp too high; Pout reduced",
"affectedObj": [

"TxSigPath_EUTRA:0",
"TxSigPath_EUTRA:1"

]
},
{

"id": "FAULT_VSWR_OUTOF_RANGE",
"severity": "WARNING",
"timestamp": "2012-02-12T16:01:05",

}
]

}
],

}
}

Note: The northbound APIs described above wrap the southbound APIs to make them accessible to external appli-
cations via RESTCONF, as well as take care of synchronizing the RE resource model between radio heads and the
controller’s datastore. See applications/ocp-service/src/main/yang/ocp-resourcemodel.yang for the yang representa-
tion of the RE resource model.

Java Interfaces (Southbound APIs)

The southbound APIs provide concrete implementation of the following OCP elementary functions: health-check,
set-time, re-reset, get-param, modify-param, create-obj, delete-obj, get-state, modify-state and get-fault. Any Open-
Daylight services/applications (of course, including OCP service) wanting to speak OCP to radio heads will need to
use them.

SalDeviceMgmtService

Interface SalDeviceMgmtService defines three methods corresponding to health-check, set-time and re-reset.

SalDeviceMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.device.mgmt.rev150811;

public interface SalDeviceMgmtService
extends
RpcService

{

1344 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Future<RpcResult<HealthCheckOutput>> healthCheck(HealthCheckInput input);

Future<RpcResult<SetTimeOutput>> setTime(SetTimeInput input);

Future<RpcResult<ReResetOutput>> reReset(ReResetInput input);

}

SalConfigMgmtService

Interface SalConfigMgmtService defines two methods corresponding to get-param and modify-param.

SalConfigMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.config.mgmt.rev150811;

public interface SalConfigMgmtService
extends
RpcService

{

Future<RpcResult<GetParamOutput>> getParam(GetParamInput input);

Future<RpcResult<ModifyParamOutput>> modifyParam(ModifyParamInput input);

}

SalObjectLifecycleService

Interface SalObjectLifecycleService defines two methods corresponding to create-obj and delete-obj.

SalObjectLifecycleService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.object.lifecycle.rev150811;

public interface SalObjectLifecycleService
extends
RpcService

{

Future<RpcResult<CreateObjOutput>> createObj(CreateObjInput input);

Future<RpcResult<DeleteObjOutput>> deleteObj(DeleteObjInput input);

}

SalObjectStateMgmtService

Interface SalObjectStateMgmtService defines two methods corresponding to get-state and modify-state.

SalObjectStateMgmtService.java.

2.1. Developer Guide 1345

OpenDaylight Documentation Documentation, Release Carbon

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.object.state.mgmt.rev150811;

public interface SalObjectStateMgmtService
extends
RpcService

{

Future<RpcResult<GetStateOutput>> getState(GetStateInput input);

Future<RpcResult<ModifyStateOutput>> modifyState(ModifyStateInput input);

}

SalFaultMgmtService

Interface SalFaultMgmtService defines only one method corresponding to get-fault.

SalFaultMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.fault.mgmt.rev150811;

public interface SalFaultMgmtService
extends
RpcService

{

Future<RpcResult<GetFaultOutput>> getFault(GetFaultInput input);

}

Notifications

In addition to indication messages, the OCP southbound plugin will translate specific events (e.g., connect, disconnect)
coming up from the OCP protocol library into MD-SAL Notification objects and then publish them to the MD-SAL.
Also, the OCP service will notify the completion of certain operation via Notification as well.

SalDeviceMgmtListener

An onDeviceConnected Notification will be published to the MD-SAL as soon as a radio head is connected to the con-
troller, and when that radio head is disconnected the OCP southbound plugin will publish an onDeviceDisconnected
Notification in response to the disconnect event propagated from the OCP protocol library.

SalDeviceMgmtListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.device.mgmt.rev150811;

public interface SalDeviceMgmtListener
extends
NotificationListener

{

void onDeviceConnected(DeviceConnected notification);

1346 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

void onDeviceDisconnected(DeviceDisconnected notification);

}

OcpServiceListener

The OCP service will publish an onAlignmentCompleted Notification to the MD-SAL once it has completed the OCP
alignment procedure with the radio head.

OcpServiceListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.ocp.
→˓applications.ocp.service.rev150811;

public interface OcpServiceListener
extends
NotificationListener

{

void onAlignmentCompleted(AlignmentCompleted notification);

}

SalObjectStateMgmtListener

When receiving a state change indication message, the OCP southbound plugin will propagate the indication message
to upper layer services/applications by publishing a corresponding onStateChangeInd Notification to the MD-SAL.

SalObjectStateMgmtListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.object.state.mgmt.rev150811;

public interface SalObjectStateMgmtListener
extends
NotificationListener

{

void onStateChangeInd(StateChangeInd notification);

}

SalFaultMgmtListener

When receiving a fault indication message, the OCP southbound plugin will propagate the indication message to upper
layer services/applications by publishing a corresponding onFaultInd Notification to the MD-SAL.

SalFaultMgmtListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.fault.mgmt.rev150811;

public interface SalFaultMgmtListener
extends
NotificationListener

2.1. Developer Guide 1347

OpenDaylight Documentation Documentation, Release Carbon

{

void onFaultInd(FaultInd notification);

}

ODL-SDNi Developer Guide

Overview

This project aims at enabling inter-SDN controller communication by developing SDNi (Software Defined Networking
interface) as an application (ODL-SDNi App).

ODL-SDNi Architecture

• SDNi Aggregator: Northbound SDNi plugin acts as an aggregator for collecting network information such as
topology, stats, host etc. This plugin can be evolving as per needs of network data requested to be shared across
federated SDN controllers.

• SDNi API: API view autogenerated and accessible through RESTCONF to fetch the aggregated information
from the northbound plugin – SDNi aggregator.The RESTCONF protocol operates on a conceptual datastore
defined with the YANG data modeling language.

• SDNi Wrapper: SDNi BGP Wrapper will be responsible for the sharing and collecting information to/from
federated controllers.

• SDNi UI:This component displays the SDN controllers connected to each other.

SDNi Aggregator

• SDNiAggregator connects with the Base Network Service Functions of the controller. Currently it is querying
network topology through MD-SAL for creating SDNi network capability.

• SDNiAggregator is customized to retrieve the host controller’s details, while running the controller in cluster
mode. Rest of the northbound APIs of controller will retrieve the entire topology information of all the connected
controllers.

• The SDNiAggregator creates a topology structure.This structure is populated by the various network funtions.

SDNi API

Topology and QoS data is fetched from SDNiAggregator through RESTCONF.

http://\protect\T1\textdollar\protect\T1\textbraceleftcontrolleripaddress\protect\T1\textbraceright:8181/apidoc/
explorer/index.html

http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/operations/
opendaylight-sdni-topology-msg:getAllPeerTopology

Peer Topology Data: Controller IP Address, Links, Nodes, Link Bandwidths, MAC Address of switches, Latency,
Host IP address.

http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/operations/
opendaylight-sdni-qos-msg:get-all-node-connectors-statistics

1348 Chapter 2. Content for OpenDaylight Developers

http://\protect \T1\textdollar \protect \T1\textbraceleft controlleripaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft controlleripaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/opendaylight-sdni-topology-msg:getAllPeerTopology
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/opendaylight-sdni-topology-msg:getAllPeerTopology
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/opendaylight-sdni-qos-msg:get-all-node-connectors-statistics
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/opendaylight-sdni-qos-msg:get-all-node-connectors-statistics

OpenDaylight Documentation Documentation, Release Carbon

QOS Data: Node, Port, Transmit Packets, Receive Packets, Collision Count, Receive Frame Error, Receive Over Run
Error, Receive Crc Error

http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/operations/
opendaylight-sdni-qos-msg:get-all-peer-node-connectors-statistics

Peer QOS Data: Node, Port, Transmit Packets, Receive Packets, Collision Count, Receive Frame Error, Receive Over
Run Error, Receive Crc Error

SDNi Wrapper

Fig. 2.28: SDNiWrapper

• SDNiWrapper is an extension of ODL-BGPCEP where SDNi topology data is exchange along with the Update
NLRI message. Refer http://tools.ietf.org/html/draft-ietf-idr-ls-distribution-04 for more information on NLRI.

• SDNiWrapper gets the controller’s network capabilities through SDNi Aggregator and serialize it in Update
NLRI message. This NLRI message will get exchange between the clustered controllers through BGP-UPDATE
message. Similarly peer controller’s UPDATE message is received and unpacked then format to SDNi Network
capability data, which will be stored for further purpose.

SDNi UI

This component displays the SDN controllers connected to each other.

http://localhost:8181/index.html#/sdniUI/sdnController

API Reference Documentation

Go to http://\protect\T1\textdollar\protect\T1\textbraceleftcontrolleripaddress\protect\T1\textbraceright:8181/apidoc/
explorer/index.html, sign in, and expand the opendaylight-sdni panel. From there, users can execute various API
calls to test their SDNi deployment.

2.1. Developer Guide 1349

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/opendaylight-sdni-qos-msg:get-all-peer-node-connectors-statistics
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/opendaylight-sdni-qos-msg:get-all-peer-node-connectors-statistics
http://tools.ietf.org/html/draft-ietf-idr-ls-distribution-04
http://localhost:8181/index.html#/sdniUI/sdnController
http://\protect \T1\textdollar \protect \T1\textbraceleft controlleripaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft controlleripaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

OF-CONFIG Developer Guide

Overview

OF-CONFIG defines an OpenFlow switch as an abstraction called an OpenFlow Logical Switch. The OF-CONFIG
protocol enables configuration of essential artifacts of an OpenFlow Logical Switch so that an OpenFlow controller
can communicate and control the OpenFlow Logical switch via the OpenFlow protocol. OF-CONFIG introduces an
operating context for one or more OpenFlow data paths called an OpenFlow Capable Switch for one or more switches.
An OpenFlow Capable Switch is intended to be equivalent to an actual physical or virtual network element (e.g.
an Ethernet switch) which is hosting one or more OpenFlow data paths by partitioning a set of OpenFlow related
resources such as ports and queues among the hosted OpenFlow data paths. The OF-CONFIG protocol enables
dynamic association of the OpenFlow related resources of an OpenFlow Capable Switch with specific OpenFlow
Logical Switches which are being hosted on the OpenFlow Capable Switch. OF-CONFIG does not specify or report
how the partitioning of resources on an OpenFlow Capable Switch is achieved. OF-CONFIG assumes that resources
such as ports and queues are partitioned amongst multiple OpenFlow Logical Switches such that each OpenFlow
Logical Switch can assume full control over the resources that is assigned to it.

How to start

• start OF-CONFIG feature as below:

feature:install odl-of-config-all

Compatible with NETCONF

• Config OpenFlow Capable Switch via OpenFlow Configuration Points

Method: POST

URI: http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/
node/controller-config/yang-ext:mount/config:modules

Headers: Content-Type” and “Accept” header attributes set to application/xml

Payload:

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
→˓prefix:sal-netconf-connector</type>
<name>testtool</name>
<address xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">10.74.
→˓151.67</address>
<port xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">830</
→˓port>
<username xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
→˓mininet</username>
<password xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
→˓mininet</password>
<tcp-only xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">false
→˓</tcp-only>

1350 Chapter 2. Content for OpenDaylight Developers

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules

OpenDaylight Documentation Documentation, Release Carbon

<event-executor xmlns=
→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">

<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:netty">
→˓prefix:netty-event-executor</type>

<name>global-event-executor</name>
</event-executor>
<binding-registry xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-
→˓broker-osgi-registry</type>

<name>binding-osgi-broker</name>
</binding-registry>
<dom-registry xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom

→˓">prefix:dom-broker-osgi-registry</type>
<name>dom-broker</name>

</dom-registry>
<client-dispatcher xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:controller:config:netconf">prefix:netconf-
→˓client-dispatcher</type>

<name>global-netconf-dispatcher</name>
</client-dispatcher>
<processing-executor xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool

→˓">prefix:threadpool</type>
<name>global-netconf-processing-executor</name>

</processing-executor>
</module>

• NETCONF establishes the connections with OpenFlow Capable Switches using the parameters in the previous
step. NETCONF also gets the information of whether the OpenFlow Switch supports NETCONF during the
signal handshaking. The information will be stored in the NETCONF topology as prosperity of a node.

• OF-CONFIG can be aware of the switches accessing and leaving by monitoring the data changes in the NET-
CONF topology. For the detailed information it can be refered to the implementation.

The establishment of OF-CONFIG topology

Firstly, OF-CONFIG will check whether the newly accessed switch supports OF-CONFIG by querying the NETCONF
interface.

1. During the NETCONF connection’s establishment, the NETCONF and the switches will exchange the their
capabilities via the “hello” message.

2. OF-CONFIG gets the connection information between the NETCONF and switches by monitoring the data
changes via the interface of DataChangeListener.

3. After the NETCONF connection established, the OF-CONFIG module will check whether OF-CONFIG capa-
bility is in the switch’s capabilities list which is got in step 1.

4. If the result of step 3 is yes, the OF-CONFIG will call the following processing steps to create the topology
database.

2.1. Developer Guide 1351

https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob_plain;f=southbound/southbound-impl/src/main/java/org/opendaylight/ofconfig/southbound/impl/OdlOfconfigApiServiceImpl.java;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

For the detailed information it can be referred to the implementation.

Secondly, the capable switch node and logical switch node are added in the OF-CONFIG topology if the switch
supports OF-CONFIG.

OF-CONFIG’s topology compromise: Capable Switch topology (underlay) and logical Switch topology (overlay).
Both of them are enhanced (augment) on

/topo:network-topology/topo:topology/topo:node

The NETCONF will add the nodes in the Topology via the path of “/topo:network-topology/topo:topology/topo:node”
if it gets the configuration information of the switches.

For the detailed information it can be referred to the implementation.

OpenFlow Protocol Library Developer Guide

Introduction

OpenFlow Protocol Library is component in OpenDaylight, that mediates communication between OpenDaylight
controller and hardware devices supporting OpenFlow protocol. Primary goal is to provide user (or upper layers of
OpenDaylight) communication channel, that can be used for managing network hardware devices.

Features Overview

There are three features inside openflowjava:

• odl-openflowjava-protocol provides all openflowjava bundles, that are needed for communication with open-
flow devices. It ensures message translation and handles network connections. It also provides openflow proto-
col specific model.

• odl-openflowjava-all currently contains only odl-openflowjava-protocol feature.

• odl-openflowjava-stats provides mechanism for message counting and reporting. Can be used for performance
analysis.

odl-openflowjava-protocol Architecture

Basic bundles contained in this feature are openflow-protocol-api, openflow-protocol-impl, openflow-protocol-spi and
util.

• openflow-protocol-api - contains openflow model, constants and keys used for (de)serializer registration.

• openflow-protocol-impl - contains message factories, that translate binary messages into DataObjects and vice
versa. Bundle also contains network connection handlers - servers, netty pipeline handlers, . . .

• openflow-protocol-spi - entry point for openflowjava configuration, startup and close. Basically starts imple-
mentation.

• util - utility classes for binary-Java conversions and to ease experimenter key creation

odl-openflowjava-stats Feature

Runs over odl-openflowjava-protocol. It counts various message types / events and reports counts in specified time
periods. Statistics collection can be configured in openflowjava-config/src/main/resources/45-openflowjava-stats.xml

1352 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob_plain;f=southbound/southbound-impl/src/main/java/org/opendaylight/ofconfig/southbound/impl/listener/OfconfigListenerHelper.java;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob;f=southbound/southbound-api/src/main/yang/odl-ofconfig-topology.yang;h=dbdaec46ee59da3791386011f571d7434dd1e416;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

Key APIs and Interfaces

Basic API / SPI classes are ConnectionAdapter (Rpc/notifications) and SwitchConnectionProcider (configure, start,
shutdown)

Installation

Pull the code and import project into your IDE.

git clone ssh://<username>@git.opendaylight.org:29418/openflowjava.git

Configuration

Current implementation allows to configure:

• listening port (mandatory)

• transfer protocol (mandatory)

• switch idle timeout (mandatory)

• TLS configuration (optional)

• thread count (optional)

You can find exemplary Openflow Protocol Library instance configuration below:

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
<!-- default OF-switch-connection-provider (port 6633) -->
<module>

<type xmlns:prefix=
→˓"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">
→˓prefix:openflow-switch-connection-provider-impl</type>

<name>openflow-switch-connection-provider-default-impl</name>
<port>6633</port>

<!-- Possible transport-protocol options: TCP, TLS, UDP -->
<transport-protocol>TCP</transport-protocol>
<switch-idle-timeout>15000</switch-idle-timeout>

<!-- Exemplary TLS configuration:
- uncomment the <tls> tag
- copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and

→˓exemplary-cacert.pem
files into your virtual machine

- set VM encryption options to use copied keys
- start communication

Please visit OpenflowPlugin or Openflow Protocol Library#Documentation
→˓wiki pages

for detailed information regarding TLS -->
<!-- <tls>

<keystore>/exemplary-ctlKeystore</keystore>
<keystore-type>JKS</keystore-type>
<keystore-path-type>CLASSPATH</keystore-path-type>
<keystore-password>opendaylight</keystore-password>
<truststore>/exemplary-ctlTrustStore</truststore>
<truststore-type>JKS</truststore-type>
<truststore-path-type>CLASSPATH</truststore-path-type>

2.1. Developer Guide 1353

OpenDaylight Documentation Documentation, Release Carbon

<truststore-password>opendaylight</truststore-password>
<certificate-password>opendaylight</certificate-password>

</tls> -->
<!-- Exemplary thread model configuration. Uncomment <threads> tag below to
→˓adjust default thread model -->
<!-- <threads>

<boss-threads>2</boss-threads>
<worker-threads>8</worker-threads>

</threads> -->
</module>

<!-- default OF-switch-connection-provider (port 6653) -->
<module>

<type xmlns:prefix=
→˓"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">
→˓prefix:openflow-switch-connection-provider-impl</type>

<name>openflow-switch-connection-provider-legacy-impl</name>
<port>6653</port>

<!-- Possible transport-protocol options: TCP, TLS, UDP -->
<transport-protocol>TCP</transport-protocol>
<switch-idle-timeout>15000</switch-idle-timeout>

<!-- Exemplary TLS configuration:
- uncomment the <tls> tag
- copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and

→˓exemplary-cacert.pem
files into your virtual machine

- set VM encryption options to use copied keys
- start communication

Please visit OpenflowPlugin or Openflow Protocol Library#Documentation
→˓wiki pages

for detailed information regarding TLS -->
<!-- <tls>

<keystore>/exemplary-ctlKeystore</keystore>
<keystore-type>JKS</keystore-type>
<keystore-path-type>CLASSPATH</keystore-path-type>
<keystore-password>opendaylight</keystore-password>
<truststore>/exemplary-ctlTrustStore</truststore>
<truststore-type>JKS</truststore-type>
<truststore-path-type>CLASSPATH</truststore-path-type>
<truststore-password>opendaylight</truststore-password>
<certificate-password>opendaylight</certificate-password>

</tls> -->
<!-- Exemplary thread model configuration. Uncomment <threads> tag below to
→˓adjust default thread model -->
<!-- <threads>

<boss-threads>2</boss-threads>
<worker-threads>8</worker-threads>

</threads> -->
</module>

<module>
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl">prefix:openflow-
→˓provider-impl</type>

<name>openflow-provider-impl</name>
<openflow-switch-connection-provider>

<type xmlns:ofSwitch=
→˓"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">
→˓ofSwitch:openflow-switch-connection-provider</type>

1354 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

<name>openflow-switch-connection-provider-default</name>
</openflow-switch-connection-provider>
<openflow-switch-connection-provider>

<type xmlns:ofSwitch=
→˓"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">
→˓ofSwitch:openflow-switch-connection-provider</type>

<name>openflow-switch-connection-provider-legacy</name>
</openflow-switch-connection-provider>
<binding-aware-broker>

<type xmlns:binding=
→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
→˓broker-osgi-registry</type>

<name>binding-osgi-broker</name>
</binding-aware-broker>

</module>
</modules>

Possible transport-protocol options:

• TCP

• TLS

• UDP

Switch-idle timeout specifies time needed to detect idle state of switch. When no message is received from switch
within this time, upper layers are notified on switch idleness. To be able to use this exemplary TLS configuration:

• uncomment the <tls> tag

• copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and exemplary-cacert.pem files into your vir-
tual machine

• set VM encryption options to use copied keys (please visit TLS support wiki page for detailed information
regarding TLS)

• start communication

Thread model configuration specifies how many threads are desired to perform Netty’s I/O operations.

• boss-threads specifies the number of threads that register incoming connections

• worker-threads specifies the number of threads performing read / write (+ serialization / deserialization) opera-
tions.

Architecture

Public API (openflow-protocol-api)

Set of interfaces and builders for immutable data transfer objects representing Openflow Protocol structures.

Transfer objects and service APIs are infered from several YANG models using code generator to reduce verbosity of
definition and repeatibility of code.

The following YANG modules are defined:

• openflow-types - defines common Openflow specific types

• openflow-instruction - defines base Openflow instructions

• openflow-action - defines base Openflow actions

2.1. Developer Guide 1355

OpenDaylight Documentation Documentation, Release Carbon

• openflow-augments - defines object augmentations

• openflow-extensible-match - defines Openflow OXM match

• openflow-protocol - defines Openflow Protocol messages

• system-notifications - defines system notification objects

• openflow-configuration - defines structures used in ConfigSubsystem

This modules also reuse types from following YANG modules:

• ietf-inet-types - IP adresses, IP prefixes, IP-protocol related types

• ietf-yang-types - Mac Address, etc.

The use of predefined types is to make APIs contracts more safe, better readable and documented (e.g using MacAd-
dress instead of byte array. . .)

TCP Channel pipeline (openflow-protocol-impl)

Creates channel processing pipeline based on configuration and support.

TCP Channel pipeline.

imageopenflowjava/500px-TCPChannelPipeline.png[width=500]

Switch Connection Provider.

Implementation of connection point for other projects. Library exposes its functionality through this class. Library
can be configured, started and shutdowned here. There are also methods for custom (de)serializer registration.

Tcp Connection Initializer.

In order to initialize TCP connection to a device (switch), OF Plugin calls method initiateConnection()
in SwitchConnectionProvider. This method in turn initializes (Bootstrap) server side channel towards the
device.

TCP Handler.

Represents single server that is handling incoming connections over TCP / TLS protocol. TCP Handler creates a single
instance of TCP Channel Initializer that will initialize channels. After that it binds to configured InetAddress and port.
When a new device connects, TCP Handler registers its channel and passes control to TCP Channel Initializer.

TCP Channel Initializer.

This class is used for channel initialization / rejection and passing arguments. After a new channel has been registered it
calls Switch Connection Handler’s (OF Plugin) accept method to decide if the library should keep the newly registered
channel or if the channel should be closed. If the channel has been accepted, TCP Channel Initializer creates the whole
pipeline with needed handlers and also with ConnectionAdapter instance. After the channel pipeline is ready, Switch
Connection Handler is notified with onConnectionReady notification. OpenFlow Plugin can now start sending
messages downstream.

Idle Handler.

If there are no messages received for more than time specified, this handler triggers idle state notification. The switch
idle timeout is received as a parameter from ConnectionConfiguration settings. Idle State Handler is inactive while
there are messages received within the switch idle timeout. If there are no messages received for more than timeout
specified, handler creates SwitchIdleEvent message and sends it upstream.

TLS Handler.

1356 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

It encrypts and decrypts messages over TLS protocol. Engaging TLS Handler into pipeline is matter of configura-
tion (<tls> tag). TLS communication is either unsupported or required. TLS Handler is represented as a Netty’s
SslHandler.

OF Frame Decoder.

Parses input stream into correct length message frames for further processing. Framing is based on Openflow header
length. If received message is shorter than minimal length of OpenFlow message (8 bytes), OF Frame Decoder waits
for more data. After receiving at least 8 bytes the decoder checks length in OpenFlow header. If there are still some
bytes missing, the decoder waits for them. Else the OF Frame Decoder sends correct length message to next handler
in the channel pipeline.

OF Version Detector.

Detects version of used OpenFlow Protocol and discards unsupported version messages. If the detected version is
supported, OF Version Detector creates VersionMessageWrapper object containing the detected version and
byte message and sends this object upstream.

OF Decoder.

Chooses correct deserilization factory (based on message type) and deserializes messages into generated
DTOs (Data Transfer Object). OF Decoder receives VersionMessageWrapper object and passes it
to DeserializationFactory which will return translated DTO. DeserializationFactory creates
MessageCodeKey object with version and type of received message and Class of object that will be the received
message deserialized into. This object is used as key when searching for appropriate decoder in DecoderTable.
DecoderTable is basically a map storing decoders. Found decoder translates received message into DTO. If there
was no decoder found, null is returned. After returning translated DTO back to OF Decoder, the decoder checks if it is
null or not. When the DTO is null, the decoder logs this state and throws an Exception. Else it passes the DTO further
upstream. Finally, the OF Decoder releases ByteBuf containing received and decoded byte message.

OF Encoder.

Chooses correct serialization factory (based on type of DTO) and serializes DTOs into byte messages. OF Encoder
does the opposite than the OF Decoder using the same principle. OF Encoder receives DTO, passes it for translation
and if the result is not null, it sends translated DTO downstream as a ByteBuf. Searching for appropriate encoder is
done via MessageTypeKey, based on version and class of received DTO.

Delegating Inbound Handler.

Delegates received DTOs to Connection Adapter. It also reacts on channelInactive and channelUnregistered events.
Upon one of these events is triggered, DelegatingInboundHandler creates DisconnectEvent message and sends it up-
stream, notifying upper layers about switch disconnection.

Channel Outbound Queue.

Message flushing handler. Stores outgoing messages (DTOs) and flushes them. Flush is performed based on time
expired and on the number of messages enqueued.

Connection Adapter.

Provides a facade on top of pipeline, which hides netty.io specifics. Provides a set of methods to register for incoming
messages and to send messages to particular channel / session. ConnectionAdapterImpl basically implements three
interfaces (unified in one superinterface ConnectionFacade):

• ConnectionAdapter

• MessageConsumer

• OpenflowProtocolService

ConnectionAdapter interface has methods for setting up listeners (message, system and connection ready listener),
method to check if all listeners are set, checking if the channel is alive and disconnect method. Disconnect method
clears responseCache and disables consuming of new messages.

2.1. Developer Guide 1357

OpenDaylight Documentation Documentation, Release Carbon

MessageConsumer interface holds only one method: consume(). Consume() method is called from Delegating-
InboundHandler. This method processes received DTO’s based on their type. There are three types of received objects:

• System notifications - invoke system notifications in OpenFlow Plugin (systemListener set). In case of
DisconnectEvent message, the Connection Adapter clears response cache and disables consume() method
processing,

• OpenFlow asynchronous messages (from switch) - invoke corresponding notifications in OpenFlow Plugin,

• OpenFlow symmetric messages (replies to requests) - create RpcResponseKey with XID and DTO’s class
set. This RpcResponseKey is then used to find corresponding future object in responseCache. Future object
is set with success flag, received message and errors (if any occurred). In case no corresponding future was
found in responseCache, Connection Adapter logs warning and discards the message. Connection Adapter also
logs warning when an unknown DTO is received.

OpenflowProtocolService interface contains all rpc-methods for sending messages from upper layers (OpenFlow
Plugin) downstream and responding. Request messages return Future filled with expected reply message, otherwise
the expected Future is of type Void.

NOTE: MultipartRequest message is the only exception. Basically it is request - reply Message type, but it wouldn’t
be able to process more following MultipartReply messages if this was implemented as rpc (only one Future). This is
why MultipartReply is implemented as notification. OpenFlow Plugin takes care of correct message processing.

UDP Channel pipeline (openflow-protocol-impl)

Creates UDP channel processing pipeline based on configuration and support. Switch Connection Provider, Channel
Outbound Queue and Connection Adapter fulfill the same role as in case of TCP connection / channel pipeline
(please see above).

Fig. 2.29: UDP Channel pipeline

1358 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

UDP Handler.

Represents single server that is handling incoming connections over UDP (DTLS) protocol. UDP Handler creates
a single instance of UDP Channel Initializer that will initialize channels. After that it binds to configured InetAd-
dress and port. When a new device connects, UDP Handler registers its channel and passes control to UDP Channel
Initializer.

UDP Channel Initializer.

This class is used for channel initialization and passing arguments. After a new channel has been registered (for UDP
there is always only one channel) UDP Channel Initializer creates whole pipeline with needed handlers.

DTLS Handler.

Haven’t been implemented yet. Will take care of secure DTLS connections.

OF Datagram Packet Handler.

Combines functionality of OF Frame Decoder and OF Version Detector. Extracts messages from received data-
gram packets and checks if message version is supported. If there is a message received from yet unknown sender,
OF Datagram Packet Handler creates Connection Adapter for this sender and stores it under sender’s address in
UdpConnectionMap. This map is also used for sending the messages and for correct Connection Adapter lookup -
to delegate messages from one channel to multiple sessions.

OF Datagram Packet Decoder.

Chooses correct deserilization factory (based on message type) and deserializes messages into generated DTOs. OF
Decoder receives VersionMessageUdpWrapper object and passes it to DeserializationFactory which
will return translated DTO. DeserializationFactory creates MessageCodeKey object with version and
type of received message and Class of object that will be the received message deserialized into. This object is
used as key when searching for appropriate decoder in DecoderTable. DecoderTable is basically a map stor-
ing decoders. Found decoder translates received message into DTO (DataTransferObject). If there was no decoder
found, null is returned. After returning translated DTO back to OF Datagram Packet Decoder, the decoder checks
if it is null or not. When the DTO is null, the decoder logs this state. Else it looks up appropriate Connection
Adapter in UdpConnectionMap and passes the DTO to found Connection Adapter. Finally, the OF Decoder re-
leases ByteBuf containing received and decoded byte message.

OF Datagram Packet Encoder.

Chooses correct serialization factory (based on type of DTO) and serializes DTOs into byte messages. OF Datagram
Packet Encoder does the opposite than the OF Datagram Packet Decoder using the same principle. OF Encoder
receives DTO, passes it for translation and if the result is not null, it sends translated DTO downstream as a datagram
packet. Searching for appropriate encoder is done via MessageTypeKey, based on version and class of received DTO.

SPI (openflow-protocol-spi)

Defines interface for library’s connection point for other projects. Library exposes its functionality through this inter-
face.

Integration test (openflow-protocol-it)

Testing communication with simple client.

Simple client(simple-client)

Lightweight switch simulator - programmable with desired scenarios.

2.1. Developer Guide 1359

OpenDaylight Documentation Documentation, Release Carbon

Utility (util)

Contains utility classes, mainly for work with ByteBuf.

Library’s lifecycle

Steps (after the library’s bundle is started):

• [1] Library is configured by ConfigSubsystem (adress, ports, encryption, . . .)

• [2] Plugin injects its SwitchConnectionHandler into the Library

• [3] Plugin starts the Library

• [4] Library creates configured protocol handler (e.g. TCP Handler)

• [5] Protocol Handler creates Channel Initializer

• [6] Channel Initializer asks plugin whether to accept incoming connection on each new switch connection

• [7] Plugin responds:

– true - continue building pipeline

– false - reject connection / disconnect channel

• [8] Library notifies Plugin with onSwitchConnected(ConnectionAdapter) notification, passing reference to Con-
nectionAdapter, that will handle the connection

• [9] Plugin registers its system and message listeners

• [10] FireConnectionReadyNotification() is triggered, announcing that pipeline handlers needed for communica-
tion have been created and Plugin can start communication

• [11] Plugin shutdowns the Library when desired

Statistics collection

Introduction

Statistics collection collects message statistics. Current collected statistics (DS - downstream, US - upstream):

• DS_ENTERED_OFJAVA - all messages that entered openflowjava (picked up from openflowplugin)

• DS_ENCODE_SUCCESS - successfully encoded messages

• DS_ENCODE_FAIL - messages that failed during encoding (serialization) process

• DS_FLOW_MODS_ENTERED - all flow-mod messages that entered openflowjava

• DS_FLOW_MODS_SENT - all flow-mod messages that were successfully sent

• US_RECEIVED_IN_OFJAVA - messages received from switch

• US_DECODE_SUCCESS - successfully decoded messages

• US_DECODE_FAIL - messages that failed during decoding (deserialization) process

• US_MESSAGE_PASS - messages handed over to openflowplugin

1360 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.30: Library lifecycle

2.1. Developer Guide 1361

OpenDaylight Documentation Documentation, Release Carbon

Karaf

In orded to start statistics, it is needed to feature:install odl-openflowjava-stats. To see the logs one should use log:set
DEBUG org.opendaylight.openflowjava.statistics and than probably log:display (you can log:list to see if the logging
has been set). To adjust collection settings it is enough to modify 45-openflowjava-stats.xml.

JConsole

JConsole provides two commands for the statistics collection:

• printing current statistics

• resetting statistic counters

After attaching JConsole to correct process, one only needs to go into MBeans tab → org.
opendaylight.controller → RuntimeBean → statistics-collection-service-impl
→ statistics-collection-service-impl → Operations to be able to use this commands.

TLS Support

Note: see OpenFlow Plugin Developper Guide

Extensibility

Introduction

Entry point for the extensibility is SwitchConnectionProvider. SwitchConnectionProvider contains
methods for (de)serializer registration. To register deserializer it is needed to use .register*Deserializer(key, impl). To
register serializer one must use .register*Serializer(key, impl). Registration can occur either during configuration or at
runtime.

NOTE: In case when experimenter message is received and no (de)serializer was registered, the library will throw
IllegalArgumentException.

Basic Principle

In order to use extensions it is needed to augment existing model and register new (de)serializers.

Augmenting the model: 1. Create new augmentation

Register (de)serializers: 1. Create your (de)serializer 2. Let it implement OFDeserializer<> /
OFSerializer<> - in case the structure you are (de)serializing needs to be used in Multipart TableFeatures mes-
sages, let it implement HeaderDeserializer<> / HeaderSerializer 3. Implement prescribed methods
4. Register your deserializer under appropriate key (in our case ExperimenterActionDeserializerKey) 5.
Register your serializer under appropriate key (in our case ExperimenterActionSerializerKey) 6. Done,
test your implementation

NOTE: If you don’t know what key should be used with your (de)serializer implementation, please visit Registration
keys page.

1362 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Example

Let’s say we have vendor / experimenter action represented by this structure:

struct foo_action {
uint16_t type;
uint16_t length;
uint32_t experimenter;
uint16_t first;
uint16_t second;
uint8_t pad[4];

}

First, we have to augment existing model. We create new module, which imports “openflow-types.yang” (don’t
forget to update your pom.xml with api dependency). Now we create foo action identity:

import openflow-types {prefix oft;}
identity foo {

description "Foo action description";
base oft:action-base;

}

This will be used as type in our structure. Now we must augment existing action structure, so that we will have the
desired fields first and second. In order to create new augmentation, our module has to import “openflow-action.
yang”. The augment should look like this:

import openflow-action {prefix ofaction;}
augment "/ofaction:actions-container/ofaction:action" {

ext:augment-identifier "foo-action";
leaf first {

type uint16;
}
leaf second {

type uint16;
}

}

We are finished with model changes. Run mvn clean compile to generate sources. After generation is done, we need
to implement our (de)serializer.

Deserializer:

public class FooActionDeserializer extends OFDeserializer<Action> {
@Override
public Action deserialize(ByteBuf input) {

ActionBuilder builder = new ActionBuilder();
input.skipBytes(SIZE_OF_SHORT_IN_BYTES); *// we know the type of action*
builder.setType(Foo.class);
input.skipBytes(SIZE_OF_SHORT_IN_BYTES); *// we don't need length*
*// now create experimenterIdAugmentation - so that openflowplugin can
differentiate correct vendor codec*
ExperimenterIdActionBuilder expIdBuilder = new ExperimenterIdActionBuilder();
expIdBuilder.setExperimenter(new ExperimenterId(input.readUnsignedInt()));
builder.addAugmentation(ExperimenterIdAction.class, expIdBuilder.build());
FooActionBuilder fooBuilder = new FooActionBuilder();
fooBuilder.setFirst(input.readUnsignedShort());
fooBuilder.setSecond(input.readUnsignedShort());
builder.addAugmentation(FooAction.class, fooBuilder.build());

2.1. Developer Guide 1363

OpenDaylight Documentation Documentation, Release Carbon

input.skipBytes(4); *// padding*
return builder.build();

}
}

Serializer:

public class FooActionSerializer extends OFSerializer<Action> {
@Override
public void serialize(Action action, ByteBuf outBuffer) {

outBuffer.writeShort(FOO_CODE);
outBuffer.writeShort(16);

*// we don't have to check for ExperimenterIdAction augmentation - our
serializer*
*// was called based on the vendor / experimenter ID, so we simply write
it to buffer*
outBuffer.writeInt(VENDOR / EXPERIMENTER ID);
FooAction foo = action.getAugmentation(FooAction.class);
outBuffer.writeShort(foo.getFirst());
outBuffer.writeShort(foo.getSecond());
outBuffer.writeZero(4); //write padding

}
}

Register both deserializer and serializer: SwitchConnectionProvider.registerDeserializer(new
ExperimenterActionDeserializerKey(0x04, VENDOR / EXPERIMENTER ID), new
FooActionDeserializer()); SwitchConnectionProvider.registerSerializer(new
ExperimenterActionSerializerKey(0x04, VENDOR / EXPERIMENTER ID), new
FooActionSerializer());

We are ready to test our implementation.

NOTE: Vendor / Experimenter structures define only vendor / experimenter ID as common distinguisher (besides
action type). Vendor / Experimenter ID is unique for all vendor messages - that’s why vendor is able to register only
one class under ExperimenterAction(De)SerializerKey. And that’s why vendor has to switch / choose between his
subclasses / subtypes on his own.

Detailed walkthrough: Deserialization extensibility

External interface & class description.

OFGeneralDeserializer:

• OFDeserializer<E extends DataObject>

– deserialize(ByteBuf) - deserializes given ByteBuf

• HeaderDeserializer<E extends DataObject>

– deserializeHeaders(ByteBuf) - deserializes only E headers (used in Multipart TableFeatures messages)

DeserializerRegistryInjector

• injectDeserializerRegistry(DeserializerRegistry) - injects deserializer registry into dese-
rializer. Useful when custom deserializer needs access to other deserializers.

NOTE: DeserializerRegistryInjector is not OFGeneralDeserializer descendand. It is a standalone interface.

1364 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

MessageCodeKey and its descendants These keys are used as for deserializer lookup in DeserializerRegistry. Mes-
sageCodeKey should is used in general, while its descendants are used in more special cases. For Example ActionDe-
serializerKey is used for Action deserializer lookup and (de)registration. Vendor is provided with special keys, which
contain only the most necessary fields. These keys usually start with “Experimenter” prefix (MatchEntryDeserializ-
erKey is an exception).

MessageCodeKey has these fields:

• short version - Openflow wire version number

• int value - value read from byte message

• Class<?> clazz - class of object being creating

• [1] The scenario starts in a custom bundle which wants to extend library’s functionality. The custom bun-
dle creates deserializers which implement exposed OFDeserializer / HeaderDeserializer interfaces
(wrapped under OFGeneralDeserializer unifying super interface).

• [2] Created deserializers are paired with corresponding ExperimenterKeys, which are used for deserializer
lookup. If you don’t know what key should be used with your (de)serializer implementation, please visit Regis-
tration keys page.

• [3] Paired deserializers are passed to the OF Library via SwitchConnection-
Provider.registerCustomDeserializer(key, impl). Library registers the deserializer.

– While registering, Library checks if the deserializer is an instance of DeserializerRegistryInjector inter-
face. If yes, the DeserializerRegistry (which stores all deserializer references) is injected into the deserial-
izer.

This is particularly useful when the deserializer needs access to other deserializers. For example
IntructionsDeserializer needs access to ActionsDeserializer in order to be able to process OF-
PIT_WRITE_ACTIONS/OFPIT_APPLY_ACTIONS instructions.

Fig. 2.31: Deserialization scenario walkthrough

Detailed walkthrough: Serialization extensibility

External interface & class description.

OFGeneralSerializer:

• OFSerializer<E extends DataObject>

2.1. Developer Guide 1365

OpenDaylight Documentation Documentation, Release Carbon

– serialize(E,ByteBuf) - serializes E into given ByteBuf

• HeaderSerializer<E extends DataObject>

– serializeHeaders(E,ByteBuf) - serializes E headers (used in Multipart TableFeatures messages)

SerializerRegistryInjector * injectSerializerRegistry(SerializerRegistry) - injects serializer
registry into serializer. Useful when custom serializer needs access to other serializers.

NOTE: SerializerRegistryInjector is not OFGeneralSerializer descendand.

MessageTypeKey and its descendants These keys are used as for serializer lookup in SerializerRegistry. Mes-
sageTypeKey should is used in general, while its descendants are used in more special cases. For Example Action-
SerializerKey is used for Action serializer lookup and (de)registration. Vendor is provided with special keys, which
contain only the most necessary fields. These keys usually start with “Experimenter” prefix (MatchEntrySerializerKey
is an exception).

MessageTypeKey has these fields:

• short version - Openflow wire version number

• Class<E> msgType - DTO class

Scenario walkthrough

• [1] Serialization extensbility principles are similar to the deserialization principles. The scenario starts in a
custom bundle. The custom bundle creates serializers which implement exposed OFSerializer / HeaderSerializer
interfaces (wrapped under OFGeneralSerializer unifying super interface).

• [2] Created serializers are paired with their ExperimenterKeys, which are used for serializer lookup. If you don’t
know what key should be used with your serializer implementation, please visit Registration keys page.

• [3] Paired serializers are passed to the OF Library via SwitchConnection-
Provider.registerCustomSerializer(key, impl). Library registers the serializer.

• While registering, Library checks if the serializer is an instance of SerializerRegistryInjector interface. If yes,
the SerializerRegistry (which stores all serializer references) is injected into the serializer.

This is particularly useful when the serializer needs access to other deserializers. For exam-
ple IntructionsSerializer needs access to ActionsSerializer in order to be able to process OF-
PIT_WRITE_ACTIONS/OFPIT_APPLY_ACTIONS instructions.

Fig. 2.32: Serialization scenario walkthrough

1366 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Internal description

SwitchConnectionProvider SwitchConnectionProvider constructs and initializes both deserializer and
serializer registries with default (de)serializers. It also injects the DeserializerRegistry into the
DeserializationFactory, the SerializerRegistry into the SerializationFactory. When call
to register custom (de)serializer is made, SwitchConnectionProvider calls register method on appropriate
registry.

DeserializerRegistry / SerializerRegistry Both registries contain init() method to initialize default (de)serializers.
Registration checks if key or (de)serializer implementation are not null. If at least one of the is
null, NullPointerException is thrown. Else the (de)serializer implementation is checked if it is
(De)SerializerRegistryInjector instance. If it is an instance of this interface, the registry is injected
into this (de)serializer implementation.

GetSerializer(key) or GetDeserializer(key) performs registry lookup. Because there are two separate
interfaces that might be put into the registry, the registry uses their unifying super interface. Get(De)Serializer(key)
method casts the super interface to desired type. There is also a null check for the (de)serializer received from the
registry. If the deserializer wasn’t found, NullPointerException with key description is thrown.

Registration keys

Deserialization.

Possible openflow extensions and their keys

There are three vendor specific extensions in Openflow v1.0 and eight in Openflow v1.3. These extensions are regis-
tered under registration keys, that are shown in table below:

2.1. Developer Guide 1367

OpenDaylight Documentation Documentation, Release Carbon

Extension type Open-
Flo
w

Registration key Utility class

Vendor message 1.0 ExperimenterIdDeserializerKe y(1, experimenterId,
ExperimenterMessage.class)

ExperimenterDeseriali
zerKeyFactory

Action 1.0 ExperimenterActionDeserializ erKey(1, experimenter
ID)

.

Stats message 1.0 ExperimenterMultipartReplyMe
ssageDeserializerKey(1, experimenter ID)

ExperimenterDeseriali
zerKeyFactory

Experimenter
message

1.3 ExperimenterIdDeserializerKe y(4, experimenterId,
ExperimenterMessage.class)

ExperimenterDeseriali
zerKeyFactory

Match entry 1.3 MatchEntryDeserializerKey(4, (number) ${oxm_class},
(number) ${oxm_field});

.

key.setExperimenterId(experi menter ID); .
Action 1.3 ExperimenterActionDeserializ erKey(4, experimenter

ID)
.

Instruction 1.3 ExperimenterInstructionDeser ializerKey(4,
experimenter ID)

.

Multipart 1.3 ExperimenterIdDeserializerKe y(4, experimenterId,
MultipartReplyMessage.class)

ExperimenterDeseriali
zerKeyFactory

Multipart -
Table features

1.3 ExperimenterIdDeserializerKe y(4, experimenterId,
TableFeatureProperties.class)

ExperimenterDeseriali
zerKeyFactory

Error 1.3 ExperimenterIdDeserializerKe y(4, experimenterId,
ErrorMessage.class)

ExperimenterDeseriali
zerKeyFactory

Queue property 1.3 ExperimenterIdDeserializerKe y(4, experimenterId,
QueueProperty.class)

ExperimenterDeseriali
zerKeyFactory

Meter band type 1.3 ExperimenterIdDeserializerKe y(4, experimenterId,
MeterBandExperimenterCase.cl ass)

ExperimenterDeseriali
zerKeyFactory

Table: Deserialization

Serialization.

Possible openflow extensions and their keys

There are three vendor specific extensions in Openflow v1.0 and seven Openflow v1.3. These extensions are registered
under registration keys, that are shown in table below:

1368 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Extension
type

Open-
Flo
w

Registration key Utility class

Vendor
message

1.0 ExperimenterIdSerializerKey< >(1, experimenterId,
ExperimenterInput.class)

ExperimenterSerial-
ize
rKeyFactory

Action 1.0 ExperimenterActionSerializer Key(1, experimenterId,
sub-type)

.

Stats message 1.0 ExperimenterMultipartRequest SerializerKey(1,
experimenter ID)

ExperimenterSerial-
ize
rKeyFactory

Experimenter
message

1.3 ExperimenterIdSerializerKey< >(4, experimenterId,
ExperimenterInput.class)

ExperimenterSerial-
ize
rKeyFactory

Match entry 1.3 MatchEntrySerializerKey<>(4, (class) ${oxm_class},
(class) ${oxm_field});

.

key.setExperimenterId(experi menter ID) .
Action 1.3 ExperimenterActionSerializer Key(4, experimenterId,

sub-type)
.

Instruction 1.3 ExperimenterInstructionSeria lizerKey(4, experimenter ID) .
Multipart 1.3 ExperimenterIdSerializerKey< >(4, experimenterId,

MultipartRequestExperimenter Case.class)
ExperimenterSerial-
ize
rKeyFactory

Multipart -
Table features

1.3 ExperimenterIdSerializerKey< >(4, experimenterId,
TableFeatureProperties.class)

ExperimenterSerial-
ize
rKeyFactory

Meter band
type

1.3 ExperimenterIdSerializerKey< >(4, experimenterId,
MeterBandExperimenterCase.cl ass)

ExperimenterSerial-
ize
rKeyFactory

Table: Serialization

OpenFlow Plugin Project Developer Guide

This section covers topics which are developer specific and which have not been covered in the user guide. Please see
the OpenFlow plugin user guide first.

It can be found on the OpenDaylight software download page.

Event Sequences

Session Establishment

The OpenFlow Protocol Library provides interface SwitchConnectionHandler which contains method onSwitch-
Connected (step 1). This event is raised in the OpenFlow Protocol Library when an OpenFlow device connects to
OpenDaylight and caught in the ConnectionManagerImpl class in the OpenFlow plugin.

There the plugin creates a new instance of the ConnectionContextImpl class (step 1.1) and also instances of
HandshakeManagerImpl (which uses HandshakeListenerImpl) and ConnectionReadyListenerImpl. Connec-
tionReadyListenerImpl contains method onConnectionReady() which is called when connection is prepared. This
method starts the handshake with the OpenFlow device (switch) from the OpenFlow plugin side. Then handshake can
be also started from device side. In this case method shake() from HandshakeManagerImpl is called (steps 1.1.1 and
2).

2.1. Developer Guide 1369

https://www.opendaylight.org/downloads

OpenDaylight Documentation Documentation, Release Carbon

The handshake consists of an exchange of HELLO messages in addition to an exchange of device features (steps
2.1. and 3). The handshake is completed by HandshakeManagerImpl. After receiving device features, the Hand-
shakeListenerImpl is notifed via the onHanshakeSuccessfull() method. After this, the device features, node id and
connection state are stored in a ConnectionContext and the method deviceConnected() of DeviceManagerImpl is
called.

When deviceConnected() is called, it does the following:

1. creates a new transaction chain (step 4.1)

2. creates a new instance of DeviceContext (step 4.2.2)

3. initializes the device context: the static context of device is populated by calling createDeviceFeaturesFo-
rOF<version>() to populate table, group, meter features and port descriptions (step 4.2.1 and 4.2.1.1)

4. creates an instance of RequestContext for each type of feature

When the OpenFlow device responds to these requests (step 4.2.1.1) with multipart replies (step 5) they are processed
and stored to MD-SAL operational datastore. The createDeviceFeaturesForOF<version>() method returns a Future
which is processed in the callback (step 5.1) (part of initializeDeviceContext() in the deviceConnected() method) by
calling the method onDeviceCtxLevelUp() from StatisticsManager (step 5.1.1).

The call to createDeviceFeaturesForOF<version>(): . creates a new instance of StatisticsContextImpl (step 5.1.1.1).

1. calls gatherDynamicStatistics() on that instance which returns a Future which will produce a value when done

(a) this method calls methods to get dynamic data (flows, tables, groups) from the device (step 5.1.1.2,
5.1.1.2.1, 5.1.1.2.1.1)

(b) if everything works, this data is also stored in the MD-SAL operational datastore

If the Future is successful, it is processed (step 6.1.1) in a callback in StatisticsManagerImpl which:

1. schedules the next time to poll the device for statistics

2. sets the device state to synchronized (step 6.1.1.2)

3. calls onDeviceContextLevelUp() in RpcManagerImpl

The onDeviceContextLevelUp() call:

1. creates a new instance of RequestContextImpl

2. registers implementation for supported services

3. calls onDeviceContextLevelUp() in DeviceManagerImpl (step 6.1.1.2.1.2) which causes the information about
the new device be be written to the MD-SAL operational datastore (step 6.1.1.2.2)

Handshake

The first thing that happens when an OpenFlow device connects to OpenDaylight is that the OpenFlow plugin gathers
basic information about the device and establishes agreement on key facts like the version of OpenFlow which will be
used. This process is called the handshake.

The handshake starts with HELLO message which can be sent either by the OpenFlow device or the OpenFlow plugin.
After this, there are several scenarios which can happen:

1. if the first HELLO message contains a version bitmap, it is possible to determine if there is a common version
of OpenFlow or not:

(a) if there is a single common version use it and the VERSION IS SETTLED

(b) if there are more than one common versions, use the highest (newest) protocol and the VERSION IS
SETTLED

1370 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.33: Session establishment

2.1. Developer Guide 1371

OpenDaylight Documentation Documentation, Release Carbon

(c) if there are no common versions, the device is DISCONNECTED

2. if the first HELLO message does not contain a version bitmap, then STEB-BY-STEP negotiation is used

3. if second (or more) HELLO message is received, then STEP-BY-STEP negotiation is used

STEP-BY-STEP negotiation:

• if last version proposed by the OpenFlow plugin is the same as the version received from the OpenFlow device,
then the VERSION IS SETTLED

• if the version received in the current HELLO message from the device is the same as from previous then nego-
tiation has failed and the device is DISCONNECTED

• if the last version from the device is greater than the last version proposed from the plugin, wait for the next
HELLO message in the hope that it will advertise support for a lower version

• if the last version from the device is is less than the last version proposed from the plugin:

– propose the highest version the plugin supports that is less than or equal to the version received from the
device and wait for the next HELLO message

– if if the plugin doesn’t support a lower version, the device is DISCONNECTED

After selecting of version we can say that the VERSION IS SETTLED and the OpenFlow plugin can ask device for
its features. At this point handshake ends.

Adding a Flow

There are two ways to add a flow in in the OpenFlow plugin: adding it to the MD-SAL config datastore or calling
an RPC. Both of these can either be done using the native MD-SAL interfaces or using RESTCONF. This discussion
focuses on calling the RPC.

If user send flow via REST interface (step 1) it will cause that invokeRpc() is called on RpcBroker. The RpcBroker
then looks for an appropriate implementation of the interface. In the case of the OpenFlow plugin, this is the addFlow()
method of SalFlowServiceImpl (step 1.1). The same thing happens if the RPC is called directly from the native MD-
SAL interfaces.

The addFlow() method then

1. calls the commitEntry() method (step 2) from the OpenFlow Protocol Library which is responsible for sending
the flow to the device

2. creates a new RequestContext by calling createRequestContext() (step 3)

3. creates a callback to handle any events that happen because of sending the flow to the device

The callback method is triggered when a barrier reply message (step 2.1) is received from the device indicating that
the flow was either installed or an appropriate error message was sent. If the flow was successfully sent to the device,
the RPC result is set to success (step 5). // SalFlowService contains inside method addFlow() other callback which
caught notification from callback for barrier message.

At this point, no information pertaining to the flow has been added to the MD-SAL operational datastore. That is
accomplished by the periodic gathering of statistics from OpenFlow devices.

The StatisticsContext for each given OpenFlow device periodically polls it using gatherStatistics() of StatisticsGath-
eringUtil which issues an OpenFlow OFPT_MULTIPART_REQUEST - OFPMP_FLOW. The response to this request
(step 7) is processed in StatisticsGatheringUtil class where flow data is written to the MD-SAL operational datastore
via the writeToTransaction() method of DeviceContext.

1372 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.34: Handshake process
2.1. Developer Guide 1373

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.35: Add flow

Description of OpenFlow Plugin Modules

The OpenFlow plugin project contains a variety of OpenDaylight modules, which are loaded using the configuration
subsystem. This section describes the YANG files used to model each module.

General model (interfaces) - openflow-plugin-cfg.yang.

• the provided module is defined (identity openflow-provider)

• and target implementation is assigned (...OpenflowPluginProvider)

Implementation model - openflow-plugin-cfg-impl.yang

• the implementation of module is defined (identity openflow-provider-impl)

– class name of generated implementation is defined (ConfigurableOpenFlowProvider)

• via augmentation the configuration of module is defined:

– this module requires instance of binding-aware-broker (container binding-aware-broker)

– and list of openflow-switch-connection-provider (those are provided by openflowjava, one plugin instance
will orchestrate multiple openflowjava modules)

Generating config and sal classes out of yangs

In order to involve suitable code generators, this is needed in pom:

<build> ...
<plugins>
<plugin>

<groupId>org.opendaylight.yangtools</groupId>
<artifactId>yang-maven-plugin</artifactId>
<executions>

<execution>
<goals>

<goal>generate-sources</goal>
</goals>
<configuration>

<codeGenerators>

1374 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

<generator>
<codeGeneratorClass>
org.opendaylight.controller.config.yangjmxgenerator.plugin.

→˓JMXGenerator
</codeGeneratorClass>
<outputBaseDir>${project.build.directory}/generated-sources/config</

→˓outputBaseDir>
<additionalConfiguration>
<namespaceToPackage1>
urn:opendaylight:params:xml:ns:yang:controller==org.opendaylight.

→˓controller.config.yang
</namespaceToPackage1>

</additionalConfiguration>
</generator>
<generator>
<codeGeneratorClass>
org.opendaylight.yangtools.maven.sal.api.gen.plugin.

→˓CodeGeneratorImpl
</codeGeneratorClass>
<outputBaseDir>${project.build.directory}/generated-sources/sal</

→˓outputBaseDir>
</generator>
<generator>
<codeGeneratorClass>org.opendaylight.yangtools.yang.unified.doc.

→˓generator.maven.DocumentationGeneratorImpl</codeGeneratorClass>
<outputBaseDir>${project.build.directory}/site/models</outputBaseDir>

</generator>
</codeGenerators>
<inspectDependencies>true</inspectDependencies>

</configuration>
</execution>

</executions>
<dependencies>

<dependency>
<groupId>org.opendaylight.controller</groupId>
<artifactId>yang-jmx-generator-plugin</artifactId>
<version>0.2.5-SNAPSHOT</version>

</dependency>
<dependency>
<groupId>org.opendaylight.yangtools</groupId>
<artifactId>maven-sal-api-gen-plugin</artifactId>
<version>${yangtools.version}</version>
<type>jar</type>

</dependency>
</dependencies>

</plugin>
...

• JMX generator (target/generated-sources/config)

• sal CodeGeneratorImpl (target/generated-sources/sal)

Altering generated files

Those files were generated under src/main/java in package as referred in yangs (if exist, generator will not overwrite
them):

2.1. Developer Guide 1375

OpenDaylight Documentation Documentation, Release Carbon

• ConfigurableOpenFlowProviderModuleFactory

here the instantiateModule methods are extended in order to capture and inject osgi BundleContext
into module, so it can be injected into final implementation - OpenflowPluginProvider + module.
setBundleContext(bundleContext);

• ConfigurableOpenFlowProviderModule

here the createInstance method is extended in order to inject osgi BundleContext into module im-
plementation + pluginProvider.setContext(bundleContext);

Configuration xml file

Configuration file contains

• required capabilities

– modules definitions from openflowjava

– modules definitions from openflowplugin

• modules definition

– openflow:switch:connection:provider:impl (listening on port 6633, name=openflow-switch-connection-
provider-legacy-impl)

– openflow:switch:connection:provider:impl (listening on port 6653, name=openflow-switch-connection-
provider-default-impl)

– openflow:common:config:impl (having 2 services (wrapping those 2 previous modules) and binding-
broker-osgi-registry injected)

• provided services

– openflow-switch-connection-provider-default

– openflow-switch-connection-provider-legacy

– openflow-provider

<snapshot>
<required-capabilities>
<capability>

→˓urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl?
→˓module=openflow-switch-connection-provider-impl&revision=2014-03-28</capability>

<capability>
→˓urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider?
→˓module=openflow-switch-connection-provider&revision=2014-03-28</capability>

<capability>urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl?
→˓module=openflow-provider-impl&revision=2014-03-26</capability>

<capability>urn:opendaylight:params:xml:ns:yang:openflow:common:config?
→˓module=openflow-provider&revision=2014-03-26</capability>
</required-capabilities>

<configuration>

<modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
<module>
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">
→˓prefix:openflow-switch-connection-provider-impl</type>

1376 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

<name>openflow-switch-connection-provider-default-impl</name>
<port>6633</port>
<switch-idle-timeout>15000</switch-idle-timeout>

</module>
<module>
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">
→˓prefix:openflow-switch-connection-provider-impl</type>

<name>openflow-switch-connection-provider-legacy-impl</name>
<port>6653</port>
<switch-idle-timeout>15000</switch-idle-timeout>

</module>

<module>
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl">prefix:openflow-
→˓provider-impl</type>

<name>openflow-provider-impl</name>

<openflow-switch-connection-provider>
<type xmlns:ofSwitch=

→˓"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">
→˓ofSwitch:openflow-switch-connection-provider</type>

<name>openflow-switch-connection-provider-default</name>
</openflow-switch-connection-provider>
<openflow-switch-connection-provider>

<type xmlns:ofSwitch=
→˓"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">
→˓ofSwitch:openflow-switch-connection-provider</type>

<name>openflow-switch-connection-provider-legacy</name>
</openflow-switch-connection-provider>

<binding-aware-broker>
<type xmlns:binding=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
→˓broker-osgi-registry</type>

<name>binding-osgi-broker</name>
</binding-aware-broker>

</module>
</modules>

<services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
<service>
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">
→˓prefix:openflow-switch-connection-provider</type>

<instance>
<name>openflow-switch-connection-provider-default</name>
<provider>/modules/module[type='openflow-switch-connection-provider-impl

→˓'][name='openflow-switch-connection-provider-default-impl']</provider>
</instance>
<instance>
<name>openflow-switch-connection-provider-legacy</name>
<provider>/modules/module[type='openflow-switch-connection-provider-impl

→˓'][name='openflow-switch-connection-provider-legacy-impl']</provider>
</instance>

2.1. Developer Guide 1377

OpenDaylight Documentation Documentation, Release Carbon

</service>

<service>
<type xmlns:prefix=

→˓"urn:opendaylight:params:xml:ns:yang:openflow:common:config">prefix:openflow-
→˓provider</type>

<instance>
<name>openflow-provider</name>
<provider>/modules/module[type='openflow-provider-impl'][name='openflow-

→˓provider-impl']</provider>
</instance>

</service>
</services>

</configuration>
</snapshot>

API changes

In order to provide multiple instances of modules from openflowjava there is an API change. Previously OFPlu-
gin got access to SwitchConnectionProvider exposed by OFJava and injected collection of configurations so that for
each configuration new instance of tcp listening server was created. Now those configurations are provided by con-
figSubsystem and configured modules (wrapping the original SwitchConnectionProvider) are injected into OFPlugin
(wrapping SwitchConnectionHandler).

Providing config file (IT, local distribution/base, integration/distributions/base)

openflowplugin-it

Here the whole configuration is contained in one file (controller.xml). Required entries needed in order to startup and
wire OEPlugin + OFJava are simply added there.

OFPlugin/distribution/base

Here new config file has been added (src/main/resources/configuration/initial/42-openflow-protocol-impl.xml) and is
being copied to config/initial subfolder of build.

integration/distributions/build

In order to push the actual config into config/initial subfolder of distributions/base in integration project there was
a new artifact in OFPlugin created - openflowplugin-controller-config, containing only the config xml file under
src/main/resources. Another change was committed into integration project. During build this config xml is being
extracted and copied to the final folder in order to be accessible during controller run.

Internal message statistics API

To aid in testing and diagnosis, the OpenFlow plugin provides information about the number and rate of different
internal events.

1378 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

The implementation does two things: collects event counts and exposes counts. Event counts are grouped by message
type, e.g., PacketInMessage, and checkpoint, e.g., TO_SWITCH_ENQUEUED_SUCCESS. Once gathered, the results
are logged as well as being exposed using OSGi command line (deprecated) and JMX.

Collect

Each message is counted as it passes through various processing checkpoints. The following checkpoints are defined
as a Java enum and tracked:

/**
* statistic groups overall in OFPlugin

*/
enum STATISTIC_GROUP {

/** message from switch, enqueued for processing */
FROM_SWITCH_ENQUEUED,
/** message from switch translated successfully - source */
FROM_SWITCH_TRANSLATE_IN_SUCCESS,
/** message from switch translated successfully - target */
FROM_SWITCH_TRANSLATE_OUT_SUCCESS,
/** message from switch where translation failed - source */
FROM_SWITCH_TRANSLATE_SRC_FAILURE,
/** message from switch finally published into MD-SAL */
FROM_SWITCH_PUBLISHED_SUCCESS,
/** message from switch - publishing into MD-SAL failed */
FROM_SWITCH_PUBLISHED_FAILURE,

/** message from MD-SAL to switch via RPC enqueued */
TO_SWITCH_ENQUEUED_SUCCESS,
/** message from MD-SAL to switch via RPC NOT enqueued */
TO_SWITCH_ENQUEUED_FAILED,
/** message from MD-SAL to switch - sent to OFJava successfully */
TO_SWITCH_SUBMITTED_SUCCESS,
/** message from MD-SAL to switch - sent to OFJava but failed*/
TO_SWITCH_SUBMITTED_FAILURE

}

When a message passes through any of those checkpoints then counter assigned to corresponding checkpoint and
message is incremented by 1.

Expose statistics

As described above, there are three ways to access the statistics:

• OSGi command line (this is considered deprecated)

osgi> dumpMsgCount

• OpenDaylight logging console (statistics are logged here every 10 seconds)

required logback settings : <logger name="org.opendaylight.openflowplugin.
openflow.md.queue.MessageSpyCounterImpl" level="DEBUG"\/>

• JMX (via JConsole)

start OpenFlow plugin with the -jmx parameter

start JConsole by running jconsole

2.1. Developer Guide 1379

OpenDaylight Documentation Documentation, Release Carbon

the JConsole MBeans tab should contain org.opendaylight.controller

RuntimeBean has a msg-spy-service-impl

Operations provides makeMsgStatistics report functionality

Example results

Fig. 2.36: OFplugin Debug stats.png

DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[PortStatusMessage] ->
→˓+0 | 1
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED:
→˓MSG[MultipartReplyMessage] -> +24 | 81
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[PacketInMessage] ->
→˓+8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS:
→˓MSG[PortStatusMessage] -> +0 | 1
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS:
→˓MSG[MultipartReplyMessage] -> +24 | 81
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS:
→˓MSG[PacketInMessage] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[QueueStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[NodeUpdated] -> +0 | 3

1380 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[NodeConnectorStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[GroupDescStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[FlowsStatisticsUpdate] -> +3 | 19
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[PacketReceived] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[MeterFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[GroupStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[GroupFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[MeterConfigStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[MeterStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[NodeConnectorUpdated] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
→˓MSG[FlowTableStatisticsUpdate] -> +3 | 8
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_SRC_FAILURE: no activity
→˓detected
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[QueueStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[NodeUpdated]
→˓-> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[NodeConnectorStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[GroupDescStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[FlowsStatisticsUpdate] -> +3 | 19
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[PacketReceived] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[MeterFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[GroupStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[GroupFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[MeterConfigStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[MeterStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[NodeConnectorUpdated] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
→˓MSG[FlowTableStatisticsUpdate] -> +3 | 8
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_FAILURE: no activity
→˓detected
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_ENQUEUED_SUCCESS: MSG[AddFlowInput] ->
→˓ +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_ENQUEUED_FAILED: no activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_SUBMITTED_SUCCESS: MSG[AddFlowInput] -
→˓> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_SUBMITTED_FAILURE: no activity
→˓detected

2.1. Developer Guide 1381

OpenDaylight Documentation Documentation, Release Carbon

Application: Forwarding Rules Synchronizer

Basics

Description

Forwarding Rules Synchronizer (FRS) is a newer version of Forwarding Rules Manager (FRM). It was created to solve
most shortcomings of FRM. FRS solving errors with retry mechanism. Sending barrier if needed. Using one service
for flows, groups and meters. And it has less changes requests send to device since calculating difference and using
compression queue.

It is located in the Java package:

package org.opendaylight.openflowplugin.applications.frsync;

Listeners

• 1x config - FlowCapableNode

• 1x operational - Node

System of work

• one listener in config datastore waiting for changes

– update cache

– skip event if operational not present for node

– send syncup entry to reactor for synchronization

* node added: after part of modification and whole operational snapshot

* node updated: after and before part of modification

* node deleted: null and before part of modification

• one listener in operational datastore waiting for changes

– update cache

– on device connected

* register for cluster services

– on device disconnected remove from cache

* remove from cache

* unregister for cluster services

– if registered for reconciliation

* do reconciliation through syncup (only when config present)

• reactor (provides syncup w/decorators assembled in this order)

1382 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

– Cluster decorator - skip action if not master for device

– FutureZip decorator (FutureZip extends Future decorator)

* Future - run delegate syncup in future - submit task to executor service

* FutureZip - provides state compression - compress optimized config delta if waiting for execution
with new one

– Guard decorator - per device level locking

– Retry decorator - register for reconciliation if syncup failed

– Reactor impl - calculate diff from after/before parts of syncup entry and execute

Strategy

In the old FRM uses an incremental strategy with all changes made one by one, where FRS uses a flat batch system
with changes made in bulk. It uses one service SalFlatBatchService instead of three (flow, group, meter).

Boron release

FRS is used in Boron as separate feature and it is not loaded by any other feature. It has to be run separately.

odl-openflowplugin-app-forwardingrules-sync

FRS additions

Retry mechanism

• is started when change request to device return as failed (register for reconcile)

• wait for next consistent operational and do reconciliation with actual config (not only diff)

ZipQueue

• only the diff (before/after) between last config changes is sent to device

• when there are more config changes for device in a row waiting to be processed they are compressed into one
entry (after is still replaced with the latest)

Cluster-aware

• FRS is cluster aware using ClusteringSingletonServiceProvider from the MD-SAL

• on mastership change reconciliation is done (register for reconcile)

SalFlatBatchService

FRS uses service with implemented barrier waiting logic between dependent objects

2.1. Developer Guide 1383

OpenDaylight Documentation Documentation, Release Carbon

Service: SalFlatBatchService

Basics

SalFlatBatchService was created along forwardingrules-sync application as the service that should application used by
default. This service uses only one input with bag of flow/group/meter objects and their common add/update/remove
action. So you practically send only one input (of specific bags) to this service.

• interface: org.opendaylight.yang.gen.v1.urn.opendaylight.flat.batch.service.rev160321.SalFlatBatchService

• implementation: org.opendaylight.openflowplugin.impl.services.SalFlatBatchServiceImpl

• method: processFlatBatch(input)

• input: org.opendaylight.yang.gen.v1.urn.opendaylight.flat.batch.service.rev160321.ProcessFlatBatchInput

Usage benefits

• possibility to use only one input bag with particular failure analysis preserved

• automatic barrier decision (chain+wait)

• less RPC routing in cluster environment (since one call encapsulates all others)

ProcessFlatBatchInput

Input for SalFlatBatchService (ProcessFlatBatchInput object) consists of:

• node - NodeRef

• batch steps - List<Batch> - defined action + bag of objects + order for failures analysis

– BatchChoice - yang-modeled action choice (e.g. FlatBatchAddFlowCase) containing batch bag of objects
(e.g. flows to be added)

– BatchOrder - (integer) order of batch step (should be incremented by single action)

• exitOnFirstError - boolean flag

Workflow

1. prepare list of steps based on input

2. mark barriers in steps where needed

3. prepare particular F/G/M-batch service calls from Flat-batch steps

• F/G/M-batch services encapsulate bulk of single service calls

• they actually chain barrier after processing all single calls if actual step is marked as barrier-needed

4. chain futures and start executing

• start all actions that can be run simultaneously (chain all on one starting point)

• in case there is a step marked as barrier-needed

– wait for all fired jobs up to one with barrier

– merge rpc results (status, errors, batch failures) into single one

1384 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

– the latest job with barrier is new starting point for chaining

Services encapsulation

• SalFlatBatchService

– SalFlowBatchService

* SalFlowService

– SalGroupBatchService

* SalGroupService

– SalMeterBatchService

* SalMeterService

Barrier decision

• decide on actual step and all previous steps since the latest barrier

• if condition in table below is satisfied the latest step before actual is marked as barrier-needed

actual step previous steps contain
FLOW_ADD or
FLOW_UPDATE

GROUP_ADD or METER_ADD

GROUP_ADD GROUP_ADD or GROUP_UPDATE
GROUP_REMOVE FLOW_UPDATE or FLOW_REMOVE or GROUP_UPDATE or

GROUP_REMOVE
METER_REMOVE FLOW_UPDATE or FLOW_REMOVE

Error handling

There is flag in ProcessFlatBatchInput to stop process on the first error.

• true - if partial step is not successful stop whole processing

• false (default) - try to process all steps regardless partial results

If error occurs in any of partial steps upper FlatBatchService call will return as unsuccessful in both cases. How-
ever every partial error is attached to general flat batch result along with BatchFailure (contains BatchOrder and
BatchItemIdChoice to identify failed step).

Cluster singleton approach in plugin

Basics

Description

The existing OpenDaylight service deployment model assumes symmetric clusters, where all services are activated
on all nodes in the cluster. However, many services require that there is a single active service instance per cluster.
We call such services singleton services. The Entity Ownership Service (EOS) represents the base Leadership choice
for one Entity instance. Every Cluster Singleton service type must have its own Entity and every Cluster Singleton
service instance must have its own Entity Candidate. Every registered Entity Candidate should be notified about

2.1. Developer Guide 1385

OpenDaylight Documentation Documentation, Release Carbon

its actual role. All this “work” is done by MD-SAL so the Openflowplugin need “only” to register as service in
SingletonClusteringServiceProvider given by MD-SAL.

Change against using EOS service listener

In this new clustering singleton approach plugin uses API from the MD-SAL project: SingletonClusteringService
which comes with three methods.

instantiateServiceInstance()
closeServiceInstance()
getIdentifier()

This service has to be registered to a SingletonClusteringServiceProvider from MD-SAL which take care if mastership
is changed in cluster environment.

First method in SingletonClusteringService is being called when the cluster node becomes a MASTER. Second is
being called when status changes to SLAVE or device is disconnected from cluster. Last method plugins returns
NodeId as ServiceGroupIdentifier Startup after device is connected

On the start up the plugin we need to initialize first four managers for each working area providing information and
services

• Device manager

• RPC manager

• Role manager

• Statistics manager

After connection the device the listener Device manager get the event and start up to creating the context for this
connection. Startup after device connection

Services are managed by SinlgetonClusteringServiceProvider from MD-SAL project. So in startup we simply create
a instance of LifecycleService and register all contexts into it.

Role change

Plugin is no longer registered as Entity Ownership Service (EOS) listener therefore does not need to and cannot
respond on EOS ownership changes.

Service start

Services start asynchronously but the start is managed by LifecycleService. If something goes wrong LifecycleService
stop starting services in context and this speeds up the reconnect process. But the services haven’t changed and plugin
need to start all this:

• Activating transaction chain manager

• Initial gathering of device statistics

• Initial submit to DS

• Sending role MASTER to device

• RPC services registration

• Statistics gathering start

1386 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Service stop

If closeServiceInstance occurred plugin just simply try to store all unsubmitted transactions and close the transaction
chain manager, stop RPC services, stop Statistics gathering and after that all unregister txEntity from EOS.

Yang models and API

Model
Openflow basic types
opendaylight-table-types.yang
opendaylight-action-types.yang
opendaylight-flow-types.yang
opendaylight-meter-types.yang
opendaylight-group-types.yang
opendaylight-match-types.yang
opendaylight-port-types.yang
opendaylight-queue-types.yang
Openflow services
sal-table.yang
sal-group.yang
sal-queue.yang
flow-errors.yang
flow-capable-transaction.yang
sal-flow.yang
sal-meter.yang
flow-topology-discovery.yang
node-errors.yang
node-config.yang
sal-echo.yang
sal-port.yang
packet-processing.yang
flow-node-inventory.yang
Openflow statistics
opendaylight-queue-statistics.yang
opendaylight-flow-table-statistics.yang
opendaylight-port-statistics.yang
opendaylight-statistics-types.yang
opendaylight-group-statistics.yang
opendaylight-flow-statistics.yang
opendaylight-meter-statistics.yang

Karaf feature tree

Short HOWTO create such a tree.

2.1. Developer Guide 1387

https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-table-types.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-action-types.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-flow-types.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-meter-types.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-group-types.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-match-types.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-port-types.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-queue-types.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-table.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-group.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-queue.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-errors.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-capable-transaction.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-flow.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-meter.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-topology-discovery.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/node-errors.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/node-config.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-echo.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-port.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/packet-processing.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-node-inventory.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-queue-statistics.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-flow-table-statistics.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-port-statistics.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-statistics-types.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-group-statistics.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-flow-statistics.yang;a=blob;hb=refs/heads/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-meter-statistics.yang;a=blob;hb=refs/heads/stable/boron
https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:FeatureTreeHowto

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.37: Openflow plugin karaf feature tree

Wiring up notifications

Introduction

We need to translate OpenFlow messages coming up from the OpenFlow Protocol Library into MD-SAL Notification
objects and then publish them to the MD-SAL.

Mechanics

1. Create a Translator class

2. Register the Translator

3. Register the notificationPopListener to handle your Notification Objects

Create a Translator class

You can see an example in PacketInTranslator.java.

First, simply create the class

public class PacketInTranslator implements IMDMessageTranslator<OfHeader, List
→˓<DataObject>> {

Then implement the translate function:

public class PacketInTranslator implements IMDMessageTranslator<OfHeader, List
→˓<DataObject>> {

protected static final Logger LOG = LoggerFactory
.getLogger(PacketInTranslator.class);

@Override
public PacketReceived translate(SwitchConnectionDistinguisher cookie,

SessionContext sc, OfHeader msg) {
...

}

Make sure to check that you are dealing with the expected type and cast it:

if(msg instanceof PacketInMessage) {
PacketInMessage message = (PacketInMessage)msg;
List<DataObject> list = new CopyOnWriteArrayList<DataObject>();

1388 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/translator/PacketInTranslator.java;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

Do your transation work and return

PacketReceived pktInEvent = pktInBuilder.build();
list.add(pktInEvent);
return list;

Register your Translator Class

Next you need to go to MDController.java and in init() add register your Translator:

public void init() {
LOG.debug("Initializing!");
messageTranslators = new ConcurrentHashMap<>();
popListeners = new ConcurrentHashMap<>();
//TODO: move registration to factory
addMessageTranslator(ErrorMessage.class, OF10, new ErrorTranslator());
addMessageTranslator(ErrorMessage.class, OF13, new ErrorTranslator());
addMessageTranslator(PacketInMessage.class,OF10, new PacketInTranslator());
addMessageTranslator(PacketInMessage.class,OF13, new PacketInTranslator());

Notice that there is a separate registration for each of OpenFlow 1.0 and OpenFlow 1.3. Basically, you indicate the
type of OpenFlow Protocol Library message you wish to translate for, the OpenFlow version, and an instance of your
Translator.

Register your MD-SAL Message for Notification to the MD-SAL

Now, also in MDController.init() register to have the notificationPopListener handle your MD-SAL Message:

addMessagePopListener(PacketReceived.class, new NotificationPopListener<DataObject>
→˓());

You are done

That’s all there is to it. Now when a message comes up from the OpenFlow Protocol Library, it will be translated and
published to the MD-SAL.

Message Order Preservation

While the Helium release of OpenFlow Plugin relied on queues to ensure messages were delivered in order, subsequent
releases instead ensure that all the messages from a given device are delivered using the same thread and thus message
order is guaranteed without queues. The OpenFlow plugin allocates a number of threads equal to twice the number of
processor cores on machine it is run, e.g., 8 threads if the machine has 4 cores.

Note: While each device is assigned to one thread, multiple devices can be assigned to the same thread.

2.1. Developer Guide 1389

https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/MDController.java;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

OpFlex agent-ovs Developer Guide

Overview

agent-ovs is a policy agent that works with OVS to enforce a group-based policy networking model with locally
attached virtual machines or containers. The policy agent is designed to work well with orchestration tools like
OpenStack.

agent-ovs Architecture

agent-ovs uses libopflex to communicate with an OpFlex-based policy repository to enforce policy on network end-
points attached to OVS by an orchestration system.

The key components are:

• Agent - coordinates startup and configuration

• Renderers - Renderers are responsible for rendering policy. This is a very general mechanism but the currently-
implemented renderer is the stitched-mode renderer that can work along with with hardware fabrics such as ACI
that support policy enforcement.

• EndpointManager - Keep track of network endpoints and declare them to the endpoint repository

• PolicyManager - Keep track of and index policies

• IntFlowManager - render policies to OVS integration bridge

• AccessFlowManager - render policies to OVS access bridge

API Reference Documentation

Internal API documentation can be found by in doc/html/index.html in any build.

OpFlex genie Developer Guide

Overview

Genie is a tool for code generation from a model. It supports generating C++ and Java code. C++ can be generated
suitable for use with libopflex. C++ and Java can be generated as a plain set of objects.

Group-based Policy Model

The group-based policy model is included with the genie tool and can be found under the MODEL directory. By
running mvn exec:java, libmodelgbp will be generated as a library project that, when built and installed, will work
with libopflex. This model is used by the OVS agent.

API Reference Documentation

Complete API documentation for the generated libmodelgbp can be found in doc/html/index.html in any build

1390 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

OpFlex libopflex Developer Guide

Overview

The OpFlex framework allows you to develop agents that can communicate using the OpFlex protocol and act as a
policy element in an OpFlex-based distributed control system. The OpFlex architecture provides a distributed control
system based on a declarative policy information model. The policies are defined at a logically centralized policy
repository and enforced within a set of distributed policy elements. The policy repository communicates with the
subordinate policy elements using the OpFlex control protocol. This protocol allows for bidirectional communication
of policy, events, statistics, and faults.

Rather than simply providing access to the OpFlex protocol, this framework allows you to directly manipulate a man-
agement information tree containing a hierarchy of managed objects. This tree is kept in sync as needed with other
policy elements in the system, and you are automatically notified when important changes to the model occur. Addi-
tionally, we can ensure that only those managed objects that are important to the local policy element are synchronized
locally.

Object Model

Interactions with the OpFlex framework happen through the management information tree. This is a tree of managed
objects defined by an object model specific to your application. There are a few important major category of objects
that can appear in the model.

• First, there is the policy object. A policy object represents some data related to a policy that describes a user
intent for how the system should behave. A policy object is stored in the policy repository which is the source
of “truth” for this object.

• Second, there is an endpoint object. A endpoint represents an entity in the system to which we want to apply
policy, which could be a network interface, a storage array, or other relevent policy endpoint. Endpoints are
discovered and reported by policy elements locally, and are synchronized into the endpoint repository. The
originating policy element is the source of truth for the endpoints it discovers. Policy elements can retrieve
information about endpoints discovered by other policy elements by resolving endpoints from the endpoint
repository.

• Third, there is the observable object. An observable object represents some state related to the operational status
or health of the policy element. Observable objects will be reported to the observer.

• Finally, there is the local-only object. This is the simplest object because it exists only local to a particular policy
element. These objects can be used to store state specific to that policy element, or as helpers to resolve other
objects. Read on to learn more.

You can use the genie tool that is included with the framework to produce your application model along with a set
of generated accessor classes that can work with this framework library. You should refer to the documentation that
accompanies the genie tool for information on how to use to to generate your object model. Later in this guide, we’ll
go through examples of how to use the generated managed object accessor classes.

Programming by Side Effect

When developing software on the OpFlex framework, you’ll need to think in a slightly different way. Rather than
calling an API function that would perform some specific action, you’ll need to write a managed object to the managed
object database. Writing that object to the store will trigger the side effect of performing the action that you want.

For example, a policy element will need to have a component responsible for discovering policy endpoints. When it
discovers a policy endpoint, it would write an endpoint object into the managed object database. That endpoint object
will contain a reference to policy that is relevant to the endpoint object. This will trigger a whole cascade of events.

2.1. Developer Guide 1391

OpenDaylight Documentation Documentation, Release Carbon

First, the framework will notice that an endpoint object has been created and it will write it to the endpoint repository.
Second, the framework to will attempt to resolve the unresolved reference to the relevent policy object. There might
be a whole chain of policy resolutions that will be automatically performed to download all the relevent policy until
there are no longer any dangling references.

As long as there is a locally-created object in the system with a reference to that policy, the framework will continually
ensure that the policy and any transitive policies are kept up to date. The policy element can subscribe to updates to
these policy classes that will be invoked either the first time the policy is resolved or any time the policy changes.

A consequence of this design is that the managed object database can be temporarily in an inconsistent state with
unresolved dangling references. Eventually, however, the inconsistency will be fully resolved. The policy element
must be able to cleanly handle partially-resolved or inconsistent state and eventually reach the correct state as it
receives these update notifications. Note that, in the OpFlex architecture, when there is no policy that specifically
allows a particular action, that action must be prevented.

Let’s cover one slightly more complex example. If a policy element needs to discover information about an endpoint
that is not local to that policy element, it will need to retrieve that information from the endpoint repository. However,
just as there is no API call to retrieve a policy object from the policy repository, there is no API call to retrieve an
endpoint from the endpoint repository.

To get this information, the policy element needs to create a local-only object that references the endpoint. Once it
creates this local-only object, if the endpoint is not already resolved, the framework will notice the dangling reference
and automatically resolve the endpoint from the endpoint respository. When the endpoint resolution completes, the
framework deliver an update notification to the policy element. The policy element will continue to receive any updates
related to that endpoint until the policy element remove the local-only reference to the object. Once this occurs, the
framework can garbage-collect any unreferenced objects.

Threading and Ownership

The OpFlex framework uses a somewhat unique threading model. Each managed object in the system belongs to a
particular owner. An owner would typically be a single thread that is reponsible for all updates to objects with that
owner. Though anything can read the state of a managed object, only the owner of a managed object is permitted to
write to it. Though this is not strictly required for correctness, the performance of the system wil be best if you ensure
that only one thread at a time is writing to objects with a particular owner.

Change notifications are delivered in a serialized fashion by a single thread. Blocking this thread from a notification
callback will stall delivery of all notifications. It is therefore best practice to ensure that you do not block or perform
long-running operations from a notification callback.

Key APIs and Interfaces

Basic Usage and Initialization

The primary interface point into the framework is opflex::ofcore::OFFramework. You can choose to instantiate your
own copy of the framework, or you can use the static default instance.

Before you can use the framework, you must initialize it by installing your model metadata. The model metadata is
accessible through the generated model library. In this case, it assumes your model is called “mymodel”:

#include <opflex/ofcore/OFFramework.h>
#include <mymodel/metadata/metadata.hpp>
// ...
using opflex::ofcore::OFFramework;
OFFramework::defaultInstance().setModel(mymodel::getMetadata());

1392 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

The other critical piece of information required for initialization is the OpFlex identity information. The identity
information is required in order to successfully connect to OpFlex peers. In OpFlex, each component has a unique
name within its policy domain, and each policy domain is identified by a globally unique domain name. You can set
this identity information by calling:

OFFramework::defaultInstance()
.setOpflexIdentity("[component name]", "[unique domain]");

You can then start the framework simply by calling:

OFFramework::defaultInstance().start();

Finally, you can add peers after the framework is started by calling the
opflex::ofcore::OFFramework::addPeer method:

OFFramework::defaultInstance().addPeer("192.168.1.5", 1234);

When connecting to the peer, that peer may provide an additional list of peers to connect to, which will be automatically
added as peers. If the peer does not include itself in the list, then the framework will disconnect from that peer and
add the peers in the list. In this way, it is possible to automatically bootstrap the correct set of peers using a known
hostname or IP address or a known, fixed anycast IP address.

To cleanly shut down, you can call:

OFFramework::defaultInstance().stop();

Working with Data in the Tree

Reading from the Tree

You can access data in the managed tree using the generated accessor classes. The details of exactly which classes
you’ll use will depend on the model you’re using, but let’s assume that we have a simple model called “simple” with
the following classes:

• root - The root node. The URI for the root node is “/”

• foo - A policy object, and a child of root, with a scalar string property called “bar”, and a unsigned 64-bit
integer property called baz. The bar property is the naming property for foo. The URI for a foo object would be
“/foo/[value of bar]/”

• fooref - A local-only child of root, with a reference to a foo, and a scalar string property called “bar”. The bar
property is the naming property for foo. The URI for a fooref object would be “/fooref/[value of bar]/”

In this example, we’ll have a generated class for each of the objects. There are two main ways to get access to an
object in the tree.

First, we can get instantiate an accessor class to any node in the tree by calling one of its static resolve functions. The
resolve functions can take either an already-built URI that represents the object, or you can call the version that will
locate the object by its naming properties.

Second, we can access the object also from its parent object using the appropriate child resolver member functions.

However we read it, the object we get back is an immutable view into the object it references. The properties set
locally on that object will not change even though the underlying object may have been updated in the store. Note,
however, that its children can change between when you first retrieve the object and when you resolve any children.

2.1. Developer Guide 1393

OpenDaylight Documentation Documentation, Release Carbon

Another thing that is critical to note again is that when you attempt to resolve an object, you can get back nothing,
even if the object actually does exist on another OpFlex node. You must ensure that some object in the managed object
database references the remote managed object you want before it will be visible to you.

To get access to the root node using the default framework instance, we can simply call:

using boost::shared_ptr;
using boost::optional;
optional<shared_ptr<simple::root> > r(simple::root::resolve());

Note that whenever we can a resolve function, we get back our data in the form of an optional shared pointer to the
object instance. If the node does not exist, then the optional will be set to boost::none. Note that if you dereference an
optional that has not been set, you’ll trigger an assert, so you must check the return as follows:

if (!r) {
// handle missing object

}

Now let’s get a child node of the root in three different ways:

// Get foo1 by constructing its URI from the root
optional<shared_ptr<simple::foo> > foo1(simple::foo::resolve("test"));
// get foo1 by constructing its URI relative to its parent
foo1 = r.get()->resolveFoo("test");
// get foo1 by manually building its URI
foo1 = simple::foo::resolve(opflex::modb::URIBuilder()

.addElement("foo")

.addElement("test")

.build());

All three of these calls will give us the same object, which is the “foo” object located at “/foo/test/”.

The foo class has a single string property called “bar”. We can easily access it as follows:

const std::string& barv = foo1.getBar();

Writing to the Tree

Writing to the tree is nearly as easy as reading from it. The key concept to understand is the mutator object. If you want
to make changes to the tree, you must allocate a mutator object. The mutator will register itself in some thread-local
storage in the framework instance you’re using. The mutator is specific to a single “owner” for the data, so you can
only make changes to data associated with that owner.

Whenever you modify one of the accessor classes, the change is actually forwarded to the currently-active mutator.
You won’t see any of the changes you make until you call the commit member function on the mutator. When you do
that, all the changes you made are written into the store.

Once the changes are written into the store, you will need to call the appropriate resolve function again to see the
changes.

Allocating a mutator is simple. To create a mutator for the default framework instance associated with the owner
“owner1”, just allocate the mutator on the stack. Be sure to call commit() before it goes out of scope or you’ll lose
your changes.

{
opflex::modb::Mutator mutator("owner1");
// make changes here

1394 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

mutator.commit();
}

Note that if an exception is thrown while making changes but before committing, the mutator will go out of scope and
the changes will be discarded.

To create a new node, you must call the appropriate add[Child] member function on its parent. This function takes
parameters for each of the naming properties for the object:

shared_ptr<simple::foo> newfoo(root->addFoo("test"));

This will return a shared pointer to a new foo object that has been registered in the active mutator but not yet committed.
The “bar” naming property will be set automatically, but if you want to set the “baz” property now, you can do so by
calling:

newfoo->setBaz(42);

Note that creating the root node requires a call to the special static class method createRootElement:

shared_ptr<simple::root> newroot(simple::root::createRootElement());

Here’s a complete example that ties this all together:

{
opflex::modb::Mutator mutator("owner1");
shared_ptr<simple::root> newroot(simple::root::createRootElement());
shared_ptr<simple::root> newfoo(newroot->addFoo("test"));
newfoo->setBaz(42);

mutator.commit();
}

Update Notifications

When using the OpFlex framework, you’re likely to find that most of your time is spend responding to changes in the
managed object database. To get these notifications, you’re going to need to register some number of listeners.

You can register an object listener to see all changes related to a particular class by calling a static function for that
class. You’ll then get notifications whenever any object in that class is added, updated, or deleted. The listener
should queue a task to read the new state and perform appropriate processing. If this function blocks or peforms a
long-running operation, then the dispatching of update notifications will be stalled, but there will not be any other
deleterious effects.

If multiple changes happen to the same URI, then at least one notification will be delivered but some events may be
consolidated.

The update you get will tell you the URI and the Class ID of the changed object. The class ID is a unique ID for each
class. When you get the update, you’ll need to call the appropriate resolve function to retrieve the new value.

You’ll need to create your own object listener derived from opflex::modb::ObjectListener:

class MyListener : public ObjectListener {
public:

MyListener() { }
virtual void objectUpdated(class_id_t class_id, const URI& uri) {

// Your handler here

2.1. Developer Guide 1395

OpenDaylight Documentation Documentation, Release Carbon

}
};

To register your listener with the default framework instance, just call the appropriate class static method:

MyListener listener;
simple::foo::registerListener(&listener);
// main loop
simple::foo::unregisterListener(&listener);

The listener will now recieve notifications whenever any foo or any children of any foo object changes.

Note that you must ensure that you unregister your listeners before deallocating them.

API Reference Documentation

Complete API documentation can be found by in doc/html/index.html in any build.

OVSDB Developer Guide

OVSDB Integration

The Open vSwitch database (OVSDB) Southbound Plugin component for OpenDaylight implements the OVSDB RFC
7047 management protocol that allows the southbound configuration of switches that support OVSDB. The component
comprises a library and a plugin. The OVSDB protocol uses JSON-RPC calls to manipulate a physical or virtual switch
that supports OVSDB. Many vendors support OVSDB on various hardware platforms. The OpenDaylight controller
uses the library project to interact with an OVS instance.

Note: Read the OVSDB User Guide before you begin development.

OpenDaylight OVSDB southbound plugin architecture and design

OpenVSwitch (OVS) is generally accepted as the unofficial standard for Virtual Switching in the Open hypervisor
based solutions. Every other Virtual Switch implementation, properietery or otherwise, uses OVS in some form. For
information on OVS, see Open vSwitch.

In Software Defined Networking (SDN), controllers and applications interact using two channels: OpenFlow and
OVSDB. OpenFlow addresses the forwarding-side of the OVS functionality. OVSDB, on the other hand, addresses
the management-plane. A simple and concise overview of Open Virtual Switch Database(OVSDB) is available at:
http://networkstatic.net/getting-started-ovsdb/

Overview of OpenDaylight Controller architecture

The OpenDaylight controller platform is designed as a highly modular and plugin based middleware that serves various
network applications in a variety of use-cases. The modularity is achieved through the Java OSGi framework. The
controller consists of many Java OSGi bundles that work together to provide the required controller functionalities.

The bundles can be placed in the following broad categories:

1396 Chapter 2. Content for OpenDaylight Developers

https://tools.ietf.org/html/rfc7047
https://tools.ietf.org/html/rfc7047
http://openvswitch.org/
http://networkstatic.net/getting-started-ovsdb/

OpenDaylight Documentation Documentation, Release Carbon

• Network Service Functional Modules (Examples: Topology Manager, Inventory Manager, Forwarding Rules
Manager,and others)

• NorthBound API Modules (Examples: Topology APIs, Bridge Domain APIs, Neutron APIs, Connection Man-
ager APIs, and others)

• Service Abstraction Layer(SAL)- (Inventory Services, DataPath Services, Topology Services, Network Config,
and others)

• SouthBound Plugins (OpenFlow Plugin, OVSDB Plugin, OpenDove Plugin, and others)

• Application Modules (Simple Forwarding, Load Balancer)

Each layer of the Controller architecture performs specified tasks, and hence aids in modularity. While the Northbound
API layer addresses all the REST-Based application needs, the SAL layer takes care of abstracting the SouthBound
plugin protocol specifics from the Network Service functions.

Each of the SouthBound Plugins serves a different purpose, with some overlapping. For example, the OpenFlow
plugin might serve the Data-Plane needs of an OVS element, while the OVSDB plugin can serve the management
plane needs of the same OVS element. As the OpenFlow Plugin talks OpenFlow protocol with the OVS element, the
OVSDB plugin will use OVSDB schema over JSON-RPC transport.

OVSDB southbound plugin

The Open vSwitch Database Management Protocol-draft-02 and Open vSwitch Manual provide theoretical
information about OVSDB. The OVSDB protocol draft is generic enough to lay the groundwork on Wire Protocol
and Database Operations, and the OVS Manual currently covers 13 tables leaving space for future OVS expansion,
and vendor expansions on proprietary implementations. The OVSDB Protocol is a database records transport
protocol using JSON RPC1.0. For information on the protocol structure, see Getting Started with OVSDB. The
OpenDaylight OVSDB southbound plugin consists of one or more OSGi bundles addressing the following services or
functionalities:

• Connection Service - Based on Netty

• Network Configuration Service

• Bidirectional JSON-RPC Library

• OVSDB Schema definitions and Object mappers

• Overlay Tunnel management

• OVSDB to OpenFlow plugin mapping service

• Inventory Service

Connection service

One of the primary services that most southbound plugins provide in OpenDaylight a Connection Service. The
service provides protocol specific connectivity to network elements, and supports the connectivity management
services as specified by the OpenDaylight Connection Manager. The connectivity services include:

• Connection to a specified element given IP-address, L4-port, and other connectivity options (such as authenti-
cation,. . .)

• Disconnection from an element

• Handling Cluster Mode change notifications to support the OpenDaylight Clustering/High-Availability feature

2.1. Developer Guide 1397

http://tools.ietf.org/html/draft-pfaff-ovsdb-proto-02
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf
http://networkstatic.net/getting-started-ovsdb/

OpenDaylight Documentation Documentation, Release Carbon

Network Configuration Service

The goal of the OpenDaylight Network Configuration services is to provide complete management plane solutions
needed to successfully install, configure, and deploy the various SDN based network services. These are generic
services which can be implemented in part or full by any south-bound protocol plugin. The south-bound plugins can
be either of the following:

• The new network virtualization protocol plugins such as OVSDB JSON-RPC

• The traditional management protocols such as SNMP or any others in the middle.

The above definition, and more information on Network Configuration Services, is available at : https://wiki.
opendaylight.org/view/OpenDaylight_Controller:NetworkConfigurationServices

Bidirectional JSON-RPC library

The OVSDB plugin implements a Bidirectional JSON-RPC library. It is easy to design the library as a module that
manages the Netty connection towards the Element.

The main responsibilities of this Library are:

• Demarshal and marshal JSON Strings to JSON objects

• Demarshal and marshal JSON Strings from and to the Network Element.

OVSDB Schema definitions and Object mappers

The OVSDB Schema definitions and Object Mapping layer sits above the JSON-RPC library. It maps the generic
JSON objects to OVSDB schema POJOs (Plain Old Java Object) and vice-versa. This layer mostly provides the Java
Object definition for the corresponding OVSDB schema (13 of them) and also will provide much more friendly API
abstractions on top of these object data. This helps in hiding the JSON semantics from the functional modules such as
Configuration Service and Tunnel management.

On the demarshaling side the mapping logic differentiates the Request and Response messages as follows :

• Request messages are mapped by its “method”

• Response messages are mapped by their IDs which were originally populated by the Request message. The
JSON semantics of these OVSDB schema is quite complex. The following figures summarize two of the
end-to-end scenarios:

Overlay tunnel management

Network Virtualization using OVS is achieved through Overlay Tunnels. The actual Type of the Tunnel may be GRE,
VXLAN, or STT. The differences in the encapsulation and configuration decide the tunnel types. Establishing a tunnel
using configuration service requires just the sending of OVSDB messages towards the ovsdb-server. However, the
scaling issues that would arise on the state management at the data-plane (using OpenFlow) can get challenging. Also,
this module can assist in various optimizations in the presence of Gateways. It can also help in providing Service
guarantees for the VMs using these overlays with the help of underlay orchestration.

1398 Chapter 2. Content for OpenDaylight Developers

https://wiki.opendaylight.org/view/OpenDaylight_Controller:NetworkConfigurationServices
https://wiki.opendaylight.org/view/OpenDaylight_Controller:NetworkConfigurationServices

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.38: End-to-end handling of a Create Bridge request

2.1. Developer Guide 1399

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.39: End-to-end handling of a monitor response

1400 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

OVSDB to OpenFlow plugin mapping service

The connect() of the ConnectionService would result in a Node that represents an ovsdb-server. The
CreateBridgeDomain() Configuration on the above Node would result in creating an OVS bridge. This OVS Bridge is
an OpenFlow Agent for the OpenDaylight OpenFlow plugin with its own Node represented as (example)
OF|xxxx.yyyy.zzzz. Without any help from the OVSDB plugin, the Node Mapping Service of the Controller platform
would not be able to map the following:

{OVSDB_NODE + BRIDGE_IDENTFIER} <---> {OF_NODE}.

Without such mapping, it would be extremely difficult for the applications to manage and maintain such nodes. This
Mapping Service provided by the OVSDB plugin would essentially help in providing more value added services to the
orchestration layers that sit atop the Northbound APIs (such as OpenStack).

OVSDB: New features

Schema independent library

The OVS connection is a node which can have multiple databases. Each database is represented by a schema. A
single connection can have multiple schemas. OSVDB supports multiple schemas. Currently, these are two schemas
available in the OVSDB, but there is no restriction on the number of schemas. Owing to the Northbound v3 API, no
code changes in ODL are needed for supporting additional schemas.

Schemas:

• openvswitch : Schema wrapper that represents http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

• hardwarevtep: Schema wrapper that represents http://openvswitch.org/docs/vtep.5.pdf

OVSDB Library Developer Guide

Overview

The OVSDB library manages the Netty connections to network nodes and handles bidirectional JSON-RPC messages.
It not only provides OVSDB protocol functionality to OpenDaylight OVSDB plugin but also can be used as standalone
JAVA library for OVSDB protocol.

The main responsibilities of OVSDB library include:

• Manage connections to peers

• Marshal and unmarshal JSON Strings to JSON objects.

• Marshal and unmarshal JSON Strings from and to the Network Element.

Connection Service

The OVSDB library provides connection management through the OvsdbConnection interface. The OvsdbConnection
interface provides OVSDB connection management APIs which include both active and passive connections. From the
library perspective, active OVSDB connections are initiated from the controller to OVS nodes while passive OVSDB

2.1. Developer Guide 1401

http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf
http://openvswitch.org/docs/vtep.5.pdf

OpenDaylight Documentation Documentation, Release Carbon

connections are initiated from OVS nodes to the controller. In the active connection scenario an application needs to
provide the IP address and listening port of OVS nodes to the library management API. On the other hand, the library
management API only requires the info of the controller listening port in the passive connection scenario.

For a passive connection scenario, the library also provides a connection event listener through the OvsdbConnection-
Listener interface. The listener interface has connected() and disconnected() methods to notify an application when a
new passive connection is established or an existing connection is terminated.

SSL Connection

In addition to a regular TCP connection, the OvsdbConnection interface also provides a connection management
API for an SSL connection. To start an OVSDB connection with SSL, an application will need to provide a Java
SSLContext object to the management API. There are different ways to create a Java SSLContext, but in most cases
a Java KeyStore with certificate and private key provided by the application is required. Detailed steps about how to
create a Java SSLContext is out of the scope of this document and can be found in the Java documentation for JAVA
Class SSlContext.

In the active connection scenario, the library uses the given SSLContext to create a Java SSLEngine and configures the
SSL engine with the client mode for SSL handshaking. Normally clients are not required to authenticate themselves.

In the passive connection scenario, the library uses the given SSLContext to create a Java SSLEngine which will
operate in server mode for SSL handshaking. For security reasons, the SSLv3 protocol and some cipher suites are
disabled. Currently the OVSDB server only supports the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite and
the following protocols: SSLv2Hello, TLSv1, TLSv1.1, TLSv1.2.

The SSL engine is also configured to operate on two-way authentication mode for passive connection scenarios, i.e.,
the OVSDB server (controller) will authenticate clients (OVS nodes) and clients (OVS nodes) are also required to
authenticate the server (controller). In the two-way authentication mode, an application should keep a trust man-
ager to store the certificates of trusted clients and initialize a Java SSLContext with this trust manager. Thus dur-
ing the SSL handshaking process the OVSDB server (controller) can use the trust manager to verify clients and
only accept connection requests from trusted clients. On the other hand, users should also configure OVS nodes
to authenticate the controller. Open vSwitch already supports this functionality in the ovsdb-server command with
option --ca-cert=cacert.pem and --bootstrap-ca-cert=cacert.pem. On the OVS node, a user
can use the option --ca-cert=cacert.pem to specify a controller certificate directly and the node will only
allow connections to the controller with the specified certificate. If the OVS node runs ovsdb-server with option
--bootstrap-ca-cert=cacert.pem, it will authenticate the controller with the specified certificate cac-
ert.pem. If the certificate file doesn’t exist, it will attempt to obtain a certificate from the peer (controller) on its
first SSL connection and save it to the named PEM file cacert.pem. Here is an example of ovsdb-server with
--bootstrap-ca-cert=cacert.pem option:

ovsdb-server --pidfile --detach --log-file --remote punix:/var/run/
openvswitch/db.sock --remote=db:hardware_vtep,Global,managers --private-key=/
etc/openvswitch/ovsclient-privkey.pem -- certificate=/etc/openvswitch/
ovsclient-cert.pem --bootstrap-ca-cert=/etc/openvswitch/vswitchd.cacert

OVSDB protocol transactions

The OVSDB protocol defines the RPC transaction methods in RFC 7047. The following RPC methods are supported
in OVSDB protocol:

• List databases

• Get schema

• Transact

1402 Chapter 2. Content for OpenDaylight Developers

http://goo.gl/5svszT
http://goo.gl/5svszT

OpenDaylight Documentation Documentation, Release Carbon

• Cancel

• Monitor

• Update notification

• Monitor cancellation

• Lock operations

• Locked notification

• Stolen notification

• Echo

According to RFC 7047, an OVSDB server must implement all methods, and an OVSDB client is only required
to implement the “Echo” method and otherwise free to implement whichever methods suit its needs. However, the
OVSDB library currently doesn’t support all RPC methods. For the “Echo” method, the library can handle “Echo”
messages from a peer and send a JSON response message back, but the library doesn’t support actively sending an
“Echo” JSON request to a peer. Other unsupported RPC methods are listed below:

• Cancel

• Lock operations

• Locked notification

• Stolen notification

In the OVSDB library the RPC methods are defined in the Java interface OvsdbRPC. The library also provides a high-
level interface OvsdbClient as the main interface to interact with peers through the OVSDB protocol. In the passive
connection scenario, each connection will have a corresponding OvsdbClient object, and the application can obtain
the OvsdbClient object through connection listener callback methods. In other words, if the application implements
the OvsdbConnectionListener interface, it will get notifications of connection status changes with the corresponding
OvsdbClient object of that connection.

OVSDB database operations

RFC 7047 also defines database operations, such as insert, delete, and update, to be performed as part of a “transact”
RPC request. The OVSDB library defines the data operations in Operations.java and provides the TransactionBuilder
class to help build “transact” RPC requests. To build a JSON-RPC transact request message, the application can obtain
the TransactionBuilder object through a transactBuilder() method in the OvsdbClient interface.

The TransactionBuilder class provides the following methods to help build transactions:

• getOperations(): Get the list of operations in this transaction.

• add(): Add data operation to this transaction.

• build(): Return the list of operations in this transaction. This is the same as the getOperations() method.

• execute(): Send the JSON RPC transaction to peer.

• getDatabaseSchema(): Get the database schema of this transaction.

If the application wants to build and send a “transact” RPC request to modify OVSDB tables on a peer, it can take the
following steps:

1. Statically import parameter “op” in Operations.java

import static org.opendaylight.ovsdb.lib.operations.Operations.op;

2.1. Developer Guide 1403

OpenDaylight Documentation Documentation, Release Carbon

2. Obtain transaction builder through transacBuilder() method in OvsdbClient:

TransactionBuilder transactionBuilder = ovsdbClient.transactionBuilder(dbSchema);

3. Add operations to transaction builder:

transactionBuilder.add(op.insert(schema, row));

4. Send transaction to peer and get JSON RPC response:

operationResults = transactionBuilder.execute().get();

Note: Although the “select” operation is supported in the OVSDB library, the library implementation is a little
different from RFC 7047. In RFC 7047, section 5.2.2 describes the “select” operation as follows:

“The “rows” member of the result is an array of objects. Each object corresponds to a matching row, with
each column specified in “columns” as a member, the column’s name as the member name, and its value as
the member value. If “columns” is not specified, all the table’s columns are included (including the internally
generated “_uuid” and “_version” columns).”

The OVSDB library implementation always requires the column’s name in the “columns” field of a JSON
message. If the “columns” field is not specified, none of the table’s columns are included. If the application
wants to get the table entry with all columns, it needs to specify all the columns’ names in the “columns” field.

Reference Documentation

RFC 7047 The Open vSwitch Databse Management Protocol https://tools.ietf.org/html/rfc7047

OVSDB MD-SAL Southbound Plugin Developer Guide

Overview

The Open vSwitch Database (OVSDB) Model Driven Service Abstraction Layer (MD-SAL) Southbound Plugin pro-
vides an MD-SAL based interface to Open vSwitch systems. This is done by augmenting the MD-SAL topology node
with a YANG model which replicates some (but not all) of the Open vSwitch schema.

OVSDB MD-SAL Southbound Plugin Architecture and Operation

The architecture and operation of the OVSDB MD-SAL Southbound plugin is illustrated in the following set of
diagrams.

Connecting to an OVSDB Node

An OVSDB node is a system which is running the OVS software and is capable of being managed by an OVSDB
manager. The OVSDB MD-SAL Southbound plugin in OpenDaylight is capable of operating as an OVSDB manager.
Depending on the configuration of the OVSDB node, the connection of the OVSDB manager can be active or passive.

1404 Chapter 2. Content for OpenDaylight Developers

https://tools.ietf.org/html/rfc7047

OpenDaylight Documentation Documentation, Release Carbon

Active OVSDB Node Manager Workflow

An active OVSDB node manager connection is made when OpenDaylight initiates the connection to the OVSDB
node. In order for this to work, you must configure the OVSDB node to listen on a TCP port for the connection (i.e.
OpenDaylight is active and the OVSDB node is passive). This option can be configured on the OVSDB node using
the following command:

ovs-vsctl set-manager ptcp:6640

The following diagram illustrates the sequence of events which occur when OpenDaylight initiates an active OVSDB
manager connection to an OVSDB node.

Step 1 Create an OVSDB node by using RESTCONF or an OpenDaylight plugin. The OVSDB node is listed under
the OVSDB topology node.

Step 2 Add the OVSDB node to the OVSDB MD-SAL southbound configuration datastore. The OVSDB southbound
provider is registered to listen for data change events on the portion of the MD-SAL topology data store which
contains the OVSDB southbound topology node augmentations. The addition of an OVSDB node causes an
event which is received by the OVSDB Southbound provider.

Step 3 The OVSDB Southbound provider initiates a connection to the OVSDB node using the connection information
provided in the configuration OVSDB node (i.e. IP address and TCP port number).

Step 4 The OVSDB Southbound provider adds the OVSDB node to the OVSDB MD-SAL operational data store. The
operational data store contains OVSDB node objects which represent active connections to OVSDB nodes.

Step 5 The OVSDB Southbound provider requests the schema and databases which are supported by the OVSDB
node.

Step 6 The OVSDB Southbound provider uses the database and schema information to construct a monitor request
which causes the OVSDB node to send the controller any updates made to the OVSDB databases on the OVSDB
node.

Passive OVSDB Node Manager Workflow

A passive OVSDB node connection to OpenDaylight is made when the OVSDB node initiates the connection to
OpenDaylight. In order for this to work, you must configure the OVSDB node to connect to the IP address and
OVSDB port on which OpenDaylight is listening. This option can be configured on the OVSDB node using the
following command:

ovs-vsctl set-manager tcp:<IP address>:6640

The following diagram illustrates the sequence of events which occur when an OVSDB node connects to OpenDay-
light.

Step 1 The OVSDB node initiates a connection to OpenDaylight.

Step 2 The OVSDB Southbound provider adds the OVSDB node to the OVSDB MD-SAL operational data store. The
operational data store contains OVSDB node objects which represent active connections to OVSDB nodes.

Step 3 The OVSDB Southbound provider requests the schema and databases which are supported by the OVSDB
node.

Step 4 The OVSDB Southbound provider uses the database and schema information to construct a monitor request
which causes the OVSDB node to send back any updates which have been made to the OVSDB databases on
the OVSDB node.

2.1. Developer Guide 1405

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.40: Active OVSDB Manager Connection

1406 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.41: Passive OVSDB Manager Connection

2.1. Developer Guide 1407

OpenDaylight Documentation Documentation, Release Carbon

OVSDB Node ID in the Southbound Operational MD-SAL

When OpenDaylight initiates an active connection to an OVSDB node, it writes an external-id to the Open_vSwitch
table on the OVSDB node. The external-id is an OpenDaylight instance identifier which identifies the OVSDB topol-
ogy node which has just been created. Here is an example showing the value of the opendaylight-iid entry in the
external-ids column of the Open_vSwitch table where the node-id of the OVSDB node is ovsdb:HOST1.

$ ovs-vsctl list open_vswitch
...
external_ids : {opendaylight-iid="/network-topology:network-topology/network-
→˓topology:topology[network-topology:topology-id='ovsdb:1']/network-
→˓topology:node[network-topology:node-id='ovsdb:HOST1']"}
...

The opendaylight-iid entry in the external-ids column of the Open_vSwitch table causes the OVSDB node to have
same node-id in the operational MD-SAL datastore as in the configuration MD-SAL datastore. This holds true if the
OVSDB node manager settings are subsequently changed so that a passive OVSDB manager connection is made.

If there is no opendaylight-iid entry in the external-ids column and a passive OVSDB manager connection is made,
then the node-id of the OVSDB node in the operational MD-SAL datastore will be constructed using the UUID of the
Open_vSwitch table as follows.

"node-id": "ovsdb://uuid/b8dc0bfb-d22b-4938-a2e8-b0084d7bd8c1"

The opendaylight-iid entry can be removed from the Open_vSwitch table using the following command.

$ sudo ovs-vsctl remove open_vswitch . external-id "opendaylight-iid"

OVSDB Changes by using OVSDB Southbound Config MD-SAL

After the connection has been made to an OVSDB node, you can make changes to the OVSDB node by using the
OVSDB Southbound Config MD-SAL. You can make CRUD operations by using the RESTCONF interface or by a
plugin using the MD-SAL APIs. The following diagram illustrates the high-level flow of events.

Step 1 A change to the OVSDB Southbound Config MD-SAL is made. Changes include adding or deleting bridges
and ports, or setting attributes of OVSDB nodes, bridges or ports.

Step 2 The OVSDB Southbound provider receives notification of the changes made to the OVSDB Southbound Con-
fig MD-SAL data store.

Step 3 As appropriate, OVSDB transactions are constructed and transmitted to the OVSDB node to update the
OVSDB database on the OVSDB node.

Step 4 The OVSDB node sends update messages to the OVSDB Southbound provider to indicate the changes made
to the OVSDB nodes database.

Step 5 The OVSDB Southbound provider maps the changes received from the OVSDB node into corresponding
changes made to the OVSDB Southbound Operational MD-SAL data store.

Detecting changes in OVSDB coming from outside OpenDaylight

Changes to the OVSDB nodes database may also occur independently of OpenDaylight. OpenDaylight also receives
notifications for these events and updates the Southbound operational MD-SAL. The following diagram illustrates the
sequence of events.

Step 1 Changes are made to the OVSDB node outside of OpenDaylight (e.g. ovs-vsctl).

1408 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.42: OVSDB Changes by using the Southbound Config MD-SAL

2.1. Developer Guide 1409

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.43: OVSDB Changes made directly on the OVSDB node

1410 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Step 2 The OVSDB node constructs update messages to inform OpenDaylight of the changes made to its databases.

Step 3 The OVSDB Southbound provider maps the OVSDB database changes to corresponding changes in the
OVSDB Southbound operational MD-SAL data store.

OVSDB Model

The OVSDB Southbound MD-SAL operates using a YANG model which is based on the abstract topology node model
found in the network topology model.

The augmentations for the OVSDB Southbound MD-SAL are defined in the ovsdb.yang file.

There are three augmentations:

ovsdb-node-augmentation This augments the topology node and maps primarily to the Open_vSwitch table of the
OVSDB schema. It contains the following attributes.

• connection-info - holds the local and remote IP address and TCP port numbers for the OpenDaylight to
OVSDB node connections

• db-version - version of the OVSDB database

• ovs-version - version of OVS

• list managed-node-entry - a list of references to ovsdb-bridge-augmentation nodes, which are the OVS
bridges managed by this OVSDB node

• list datapath-type-entry - a list of the datapath types supported by the OVSDB node (e.g. system, netdev)
- depends on newer OVS versions

• list interface-type-entry - a list of the interface types supported by the OVSDB node (e.g. internal, vxlan,
gre, dpdk, etc.) - depends on newer OVS verions

• list openvswitch-external-ids - a list of the key/value pairs in the Open_vSwitch table external_ids column

• list openvswitch-other-config - a list of the key/value pairs in the Open_vSwitch table other_config col-
umn

ovsdb-bridge-augmentation This augments the topology node and maps to an specific bridge in the OVSDB bridge
table of the associated OVSDB node. It contains the following attributes.

• bridge-uuid - UUID of the OVSDB bridge

• bridge-name - name of the OVSDB bridge

• bridge-openflow-node-ref - a reference (instance-identifier) of the OpenFlow node associated with this
bridge

• list protocol-entry - the version of OpenFlow protocol to use with the OpenFlow controller

• list controller-entry - a list of controller-uuid and is-connected status of the OpenFlow controllers associ-
ated with this bridge

• datapath-id - the datapath ID associated with this bridge on the OVSDB node

• datapath-type - the datapath type of this bridge

• fail-mode - the OVSDB fail mode setting of this bridge

• flow-node - a reference to the flow node corresponding to this bridge

• managed-by - a reference to the ovsdb-node-augmentation (OVSDB node) that is managing this bridge

• list bridge-external-ids - a list of the key/value pairs in the bridge table external_ids column for this bridge

2.1. Developer Guide 1411

https://github.com/opendaylight/yangtools/blob/stable/boron/model/ietf/ietf-topology/src/main/yang/network-topology%402013-10-21.yang
https://github.com/opendaylight/ovsdb/blob/stable/boron/southbound/southbound-api/src/main/yang/ovsdb.yang

OpenDaylight Documentation Documentation, Release Carbon

• list bridge-other-configs - a list of the key/value pairs in the bridge table other_config column for this
bridge

ovsdb-termination-point-augmentation This augments the topology termination point model. The OVSDB South-
bound MD-SAL uses this model to represent both the OVSDB port and OVSDB interface for a given
port/interface in the OVSDB schema. It contains the following attributes.

• port-uuid - UUID of an OVSDB port row

• interface-uuid - UUID of an OVSDB interface row

• name - name of the port

• interface-type - the interface type

• list options - a list of port options

• ofport - the OpenFlow port number of the interface

• ofport_request - the requested OpenFlow port number for the interface

• vlan-tag - the VLAN tag value

• list trunks - list of VLAN tag values for trunk mode

• vlan-mode - the VLAN mode (e.g. access, native-tagged, native-untagged, trunk)

• list port-external-ids - a list of the key/value pairs in the port table external_ids column for this port

• list interface-external-ids - a list of the key/value pairs in the interface table external_ids interface for this
interface

• list port-other-configs - a list of the key/value pairs in the port table other_config column for this port

• list interface-other-configs - a list of the key/value pairs in the interface table other_config column for
this interface

Examples of OVSDB Southbound MD-SAL API

Connect to an OVSDB Node

This example RESTCONF command adds an OVSDB node object to the OVSDB Southbound configuration data store
and attempts to connect to the OVSDB host located at the IP address 10.11.12.1 on TCP port 6640.

POST http://<host>:8181/restconf/config/network-topology:network-topology/topology/
→˓ovsdb:1/
Content-Type: application/json
{

"node": [
{

"node-id": "ovsdb:HOST1",
"connection-info": {
"ovsdb:remote-ip": "10.11.12.1",
"ovsdb:remote-port": 6640

}
}

]
}

1412 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Query the OVSDB Southbound Configuration MD-SAL

Following on from the previous example, if the OVSDB Southbound configuration MD-SAL is queried, the REST-
CONF command and the resulting reply is similar to the following example.

GET http://<host>:8080/restconf/config/network-topology:network-topology/topology/
→˓ovsdb:1/
Application/json data in the reply
{

"topology": [
{

"topology-id": "ovsdb:1",
"node": [

{
"node-id": "ovsdb:HOST1",
"ovsdb:connection-info": {

"remote-port": 6640,
"remote-ip": "10.11.12.1"

}
}

]
}

]
}

Reference Documentation

Openvswitch schema

OVSDB Hardware VTEP Developer Guide

Overview

TBD

OVSDB Hardware VTEP Architecture

TBD

PCEP Developer Guide

Overview

This section provides an overview of feature odl-bgpcep-pcep-all . This feature will install everything needed for
PCEP (Path Computation Element Protocol) including establishing the connection, storing information about LSPs
(Label Switched Paths) and displaying data in network-topology overview.

2.1. Developer Guide 1413

http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

OpenDaylight Documentation Documentation, Release Carbon

PCEP Architecture

Each feature represents a module in the BGPCEP codebase. The following diagram illustrates how the features are
related.

Fig. 2.44: PCEP Dependency Tree

Key APIs and Interfaces

PCEP

Session handling

32-pcep.xml defines only pcep-dispatcher the parser should be using (global-pcep-extensions), factory for creating
session proposals (you can create different proposals for different PCCs (Path Computation Clients)).

<module>
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:impl">
→˓prefix:pcep-dispatcher-impl</type>
<name>global-pcep-dispatcher</name>
<pcep-extensions>
<type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">

→˓pcepspi:extensions</type>
<name>global-pcep-extensions</name>

</pcep-extensions>
<pcep-session-proposal-factory>

1414 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

<type xmlns:pcep="urn:opendaylight:params:xml:ns:yang:controller:pcep">pcep:pcep-
→˓session-proposal-factory</type>
<name>global-pcep-session-proposal-factory</name>

</pcep-session-proposal-factory>
<boss-group>
<type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">

→˓netty:netty-threadgroup</type>
<name>global-boss-group</name>

</boss-group>
<worker-group>
<type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">

→˓netty:netty-threadgroup</type>
<name>global-worker-group</name>

</worker-group>
</module>

For user configuration of PCEP, check User Guide.

Parser

The base PCEP parser includes messages and attributes from RFC5441, RFC5541, RFC5455, RFC5557 and RFC5521.

Registration

All parsers and serializers need to be registered into Extension provider. This Extension provider is configured in
initial configuration of the parser-spi module (32-pcep.xml).

<module>
<type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
→˓prefix:pcep-extensions-impl</type>
<name>global-pcep-extensions</name>
<extension>
<type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">

→˓pcepspi:extension</type>
<name>pcep-parser-base</name>

</extension>
<extension>
<type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">

→˓pcepspi:extension</type>
<name>pcep-parser-ietf-stateful07</name>

</extension>
<extension>
<type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">

→˓pcepspi:extension</type>
<name>pcep-parser-ietf-initiated00</name>

</extension>
<extension>
<type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">

→˓pcepspi:extension</type>
<name>pcep-parser-sync-optimizations</name>

</extension>
</module>

• pcep-parser-base - will register parsers and serializers implemented in pcep-impl module

2.1. Developer Guide 1415

http://tools.ietf.org/html/rfc5441
http://tools.ietf.org/html/rfc5541
http://tools.ietf.org/html/rfc5455
http://tools.ietf.org/html/rfc5557
http://tools.ietf.org/html/rfc5521

OpenDaylight Documentation Documentation, Release Carbon

• pcep-parser-ietf-stateful07 - will register parsers and serializers of draft-ietf-pce-stateful-pce-07 implementation

• pcep-parser-ietf-initiated00 - will register parser and serializer of draft-ietf-pce-pce-initiated-lsp-00 implemen-
tation

• pcep-parser-sync-optimizations - will register parser and serializers of draft-ietf-pce-stateful-sync-
optimizations-03 implementation

Stateful07 module is a good example of a PCEP parser extension.

Configuration of PCEP parsers specifies one implementation of Extension provider that will take care of registering
mentioned parser extensions: SimplePCEPExtensionProviderContext. All registries are implemented in package pcep-
spi.

Parsing

Parsing of PCEP elements is mostly done equally to BGP, the only exception is message parsing, that is described
here.

In BGP messages, parsing of first-level elements (path-attributes) can be validated in a simple way, as the attributes
should be ordered chronologically. PCEP, on the other hand, has a strict object order policy, that is described in RBNF
(Routing Backus-Naur Form) in each RFC. Therefore the algorithm for parsing here is to parse all objects in order as
they appear in the message. The result of parsing is a list of PCEPObjects, that is put through validation. validate()
methods are present in each message parser. Depending on the complexity of the message, it can contain either a
simple condition (checking the presence of a mandatory object) or a full state machine.

In addition to that, PCEP requires sending error message for each documented parsing error. This is handled by
creating an empty list of messages errors which is then passed as argument throughout whole parsing process. If some
parser encounters PCEPDocumentedException, it has the duty to create appropriate PCEP error message and add it to
this list. In the end, when the parsing is finished, this list is examined and all messages are sent to peer.

Better understanding provides this sequence diagram:

Fig. 2.45: Parsing

PCEP IETF stateful

This section summarizes module pcep-ietf-stateful07. The term stateful refers to draft-ietf-pce-stateful-pce and draft-
ietf-pce-pce-initiated-lsp in versions draft-ietf-pce-stateful-pce-07 with draft-ietf-pce-pce-initiated-lsp-00.

We will upgrade our implementation, when the stateful draft gets promoted to RFC.

The stateful module is implemented as extensions to pcep-base-parser. The stateful draft declared new elements as
well as additional fields or TLVs (type,length,value) to known objects. All new elements are defined in yang models,

1416 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/spi/src/main/java/org/opendaylight/protocol/pcep/spi/pojo/SimplePCEPExtensionProviderContext.java;hb=refs/for/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=tree;f=pcep/spi/src/main/java/org/opendaylight/protocol/pcep/spi/pojo;hb=refs/for/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=tree;f=pcep/spi/src/main/java/org/opendaylight/protocol/pcep/spi/pojo;hb=refs/for/stable/boron
http://tools.ietf.org/html/draft-ietf-pce-stateful-pce
http://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp
http://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp

OpenDaylight Documentation Documentation, Release Carbon

that contain augmentations to elements defined in pcep-types.yang. In the case of extending known elements, the
Parser class merely extends the base class and overrides necessary methods as shown in following diagram:

Fig. 2.46: Extending existing parsers

All parsers (including those for newly defined PCEP elements) have to be registered via the Activator class. This class
is present in both modules.

In addition to parsers, the stateful module also introduces additional session proposal. This proposal includes new
fields defined in stateful drafts for Open object.

PCEP segment routing (SR)

PCEP Segment Routing is an extension of base PCEP and pcep-ietf-stateful-07 extension. The pcep-segment-routing
module implements draft-ietf-pce-segment-routing-01.

The extension brings new SR-ERO (Explicit Route Object) and SR-RRO (Reported Route Object) subobject composed
of SID (Segment Identifier) and/or NAI (Node or Adjacency Identifier). The segment Routing path is carried in the

2.1. Developer Guide 1417

https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/api/src/main/yang/pcep-types.yang;hb=refs/for/stable/boron
http://tools.ietf.org/html/draft-ietf-pce-segment-routing-01

OpenDaylight Documentation Documentation, Release Carbon

ERO and RRO object, as a list of SR-ERO/SR-RRO subobjects in an order specified by the user. The draft defines new
TLV - SR-PCE-CAPABILITY TLV, carried in PCEP Open object, used to negotiate Segment Routing ability.

The yang models of subobject, SR-PCE-CAPABILITY TLV and appropriate augmentations are defined in
odl-pcep-segment-routing.yang.
The pcep-segment-routing module includes parsers/serializers for new subobject (SrEroSubobjectParser) and TLV
(SrPceCapabilityTlvParser).

The pcep-segment-routing module implements draft-ietf-pce-lsp-setup-type-01, too. The draft defines new TLV - Path
Setup Type TLV, which value indicate path setup signaling technique. The TLV may be included in RP(Request Pa-
rameters)/SRP(Stateful PCE Request Parameters) object. For the default RSVP-TE (Resource Reservation Protocol),
the TLV is omitted. For Segment Routing, PST = 1 is defined.

The Path Setup Type TLV is modeled with yang in module pcep-types.yang. A parser/serializer is implemented in
PathSetupTypeTlvParser and it is overriden in segment-routing module to provide the aditional PST.

PCEP Synchronization Procedures Optimization

Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE draft-ietf-pce-stateful-
sync-optimizations-03 specifies following optimizations for state synchronization and the corresponding PCEP proce-
dures and extensions:

• State Synchronization Avoidance: To skip state synchronization if the state has survived and not changed
during session restart.

• Incremental State Synchronization: To do incremental (delta) state synchronization when possible.

• PCE-triggered Initial Synchronization: To let PCE control the timing of the initial state synchronization. The
capability can be applied to both full and incremental state synchronization.

• PCE-triggered Re-synchronization: To let PCE re-synchronize the state for sanity check.

PCEP Topology

PCEP data is displayed only through one URL that is accessible from the base network-topology URL:

http://localhost:8181/restconf/operational/network-topology:network-topology/topology/pcep-topology

Each PCC will be displayed as a node:

<node>
<path-computation-client>
<ip-address>42.42.42.42</ip-address>
<state-sync>synchronized</state-sync>
<stateful-tlv>
<stateful>
<initiation>true</initiation>
<lsp-update-capability>true</lsp-update-capability>

</stateful>
</stateful-tlv>

</path-computation-client>
<node-id>pcc://42.42.42.42</node-id>

</node>
</source>

1418 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/segment-routing/src/main/yang/odl-pcep-segment-routing.yang;hb=refs/for/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/segment-routing/src/main/java/org/opendaylight/protocol/pcep/segment/routing/SrEroSubobjectParser.java;hb=refs/for/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/segment-routing/src/main/java/org/opendaylight/protocol/pcep/segment/routing/SrPceCapabilityTlvParser.java;hb=refs/for/stable/boron
http://tools.ietf.org/html/draft-ietf-pce-lsp-setup-type-01
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/api/src/main/yang/pcep-types.yang;hb=refs/for/stable/boron
https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/impl/src/main/java/org/opendaylight/protocol/pcep/impl/tlv/PathSetupTypeTlvParser.java;hb=refs/for/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

If some tunnels are configured on the network, they would be displayed on the same page, within a node that initiated
the tunnel:

<node>
<path-computation-client>
<state-sync>synchronized</state-sync>
<stateful-tlv>
<stateful>
<initiation>true</initiation>
<lsp-update-capability>true</lsp-update-capability>

</stateful>
</stateful-tlv>
<reported-lsp>
<name>foo</name>
<lsp>
<operational>down</operational>
<sync>false</sync>
<ignore>false</ignore>
<plsp-id>1</plsp-id>
<create>false</create>
<administrative>true</administrative>
<remove>false</remove>
<delegate>true</delegate>
<processing-rule>false</processing-rule>
<tlvs>
<lsp-identifiers>

<ipv4>
<ipv4-tunnel-sender-address>43.43.43.43</ipv4-tunnel-sender-address>
<ipv4-tunnel-endpoint-address>0.0.0.0</ipv4-tunnel-endpoint-address>
<ipv4-extended-tunnel-id>0.0.0.0</ipv4-extended-tunnel-id>

</ipv4>
<tunnel-id>0</tunnel-id>
<lsp-id>0</lsp-id>

</lsp-identifiers>
<symbolic-path-name>
<path-name>Zm9v</path-name>

</symbolic-path-name>
</tlvs>

</lsp>
</reported-lsp>
<ip-address>43.43.43.43</ip-address>

</path-computation-client>
<node-id>pcc://43.43.43.43</node-id>

</node>

Note that, the <path-name> tag displays tunnel name in Base64 encoding.

API Reference Documentation

Javadocs are generated while creating mvn:site and they are located in target/ directory in each module.

PacketCable Developer Guide

PCMM Specification

PacketCable™ Multimedia Specification

2.1. Developer Guide 1419

http://www.cablelabs.com/specification/packetcable-multimedia-specification

OpenDaylight Documentation Documentation, Release Carbon

System Overview

These components introduce a DOCSIS QoS Service Flow management using the PCMM protocol. The driver com-
ponent is responsible for the PCMM/COPS/PDP functionality required to service requests from PacketCable Provider
and FlowManager. Requests are transposed into PCMM Gate Control messages and transmitted via COPS to the
CCAP/CMTS. This plugin adheres to the PCMM/COPS/PDP functionality defined in the CableLabs specification.
PacketCable solution is an MDSAL compliant component.

PacketCable Components

The packetcable maven project is comprised of several modules.

Bundle Description
packetcable-driver A common module that containts the COPS stack and manages all connections to

CCAPS/CMTSes.
packetcable-emulator A basic CCAP emulator to facilitate testing the the plugin when no physical CCAP is

avaible.
packetcable-policy-
karaf

Generates a Karaf distribution with a config that loads all the packetcable features at
runtime.

packetcable-policy-
model

Contains the YANG information model.

packetcable-policy-
server

Provider hosts the model processing, RESTCONF, and API implementation.

Setting Logging Levels

From the Karaf console

log:set <LEVEL> (<PACKAGE>|<BUNDLE>)
Example
log:set DEBUG org.opendaylight.packetcable.packetcable-policy-server

Tools for Testing

Postman REST client for Chrome

Install the Chrome extension

Download and import sample packetcable collection

View Rest API

1. Install the odl-mdsal-apidocs feature from the karaf console.

2. Open http://localhost:8181/apidoc/explorer/index.html default dev build user/pass is admin/admin

3. Navigate to the PacketCable section.

1420 Chapter 2. Content for OpenDaylight Developers

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en
https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-policy-server/doc/restconf-samples
http://localhost:8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

Yang-IDE

Editing yang can be done in any text editor but Yang-IDE will help prevent mistakes.

Setup and Build Yang-IDE for Eclipse

Using Wireshark to Trace PCMM

1. To start wireshark with privileges issue the following command:

sudo wireshark &

2. Select the interface to monitor.

3. Use the Filter to only display COPS messages by applying “cops” in the filter field.

Fig. 2.47: Wireshark looking for COPS messages.

Debugging and Verifying DQoS Gate (Flows) on the CCAP/CMTS

Below are some of the most useful CCAP/CMTS commands to verify flows have been enabled on the CMTS.

2.1. Developer Guide 1421

https://github.com/xored/yang-ide/wiki/Setup-and-build

OpenDaylight Documentation Documentation, Release Carbon

Cisco

Cisco CMTS Cable Command Reference

Find the Cable Modem

10k2-DSG#show cable modem
D

MAC Address IP Address I/F MAC Prim RxPwr Timing Num I
State Sid (dBmv) Offset CPE P

0010.188a.faf6 0.0.0.0 C8/0/0/U0 offline 1 0.00 1482 0 N
74ae.7600.01f3 10.32.115.150 C8/0/10/U0 online 1 -0.50 1431 0 Y
0010.188a.fad8 10.32.115.142 C8/0/10/UB w-online 2 -0.50 1507 1 Y
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 1.00 1677 0 Y
e86d.5271.304f 10.32.115.168 C8/0/10/UB w-online 6 -0.50 1419 1 Y

Show PCMM Plugin Connection

10k2-DSG#show packetcabl ?
cms Gate Controllers connected to this PacketCable client
event Event message server information
gate PacketCable gate information
global PacketCable global information

10k2-DSG#show packetcable cms
GC-Addr GC-Port Client-Addr COPS-handle Version PSID Key PDD-Cfg

10k2-DSG#show packetcable cms
GC-Addr GC-Port Client-Addr COPS-handle Version PSID Key PDD-Cfg
10.32.0.240 54238 10.32.15.3 0x4B9C8150/1 4.0 0 0 0

Show COPS Messages

debug cops details

Use CM Mac Address to List Service Flows

10k2-DSG#show cable modem
D

MAC Address IP Address I/F MAC Prim RxPwr Timing Num I
State Sid (dBmv) Offset CPE P

0010.188a.faf6 --- C8/0/0/UB w-online 1 0.50 1480 1 N
74ae.7600.01f3 10.32.115.150 C8/0/10/U0 online 1 -0.50 1431 0 Y
0010.188a.fad8 10.32.115.142 C8/0/10/UB w-online 2 -0.50 1507 1 Y
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 0.00 1677 0 Y
e86d.5271.304f 10.32.115.168 C8/0/10/UB w-online 6 -0.50 1419 1 Y

10k2-DSG#show cable modem 000e.0900.00dd service-flow

1422 Chapter 2. Content for OpenDaylight Developers

http://www.cisco.com/c/en/us/td/docs/cable/cmts/cmd_ref/b_cmts_cable_cmd_ref.pdf

OpenDaylight Documentation Documentation, Release Carbon

SUMMARY:
MAC Address IP Address Host MAC Prim Num Primary DS

Interface State Sid CPE Downstream RfId
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 0 Mo8/0/2:1 2353

Sfid Dir Curr Sid Sched Prio MaxSusRate MaxBrst MinRsvRate Throughput
State Type

23 US act 3 BE 0 0 3044 0 39
30 US act 16 BE 0 500000 3044 0 0
24 DS act N/A N/A 0 0 3044 0 17

UPSTREAM SERVICE FLOW DETAIL:

SFID SID Requests Polls Grants Delayed Dropped Packets
Grants Grants

23 3 784 0 784 0 0 784
30 16 0 0 0 0 0 0

DOWNSTREAM SERVICE FLOW DETAIL:

SFID RP_SFID QID Flg Policer Scheduler FrwdIF
Xmits Drops Xmits Drops

24 33019 131550 0 0 777 0 Wi8/0/2:2

Flags Legend:
$: Low Latency Queue (aggregated)
~: CIR Queue

Deleting a PCMM Gate Message from the CMTS

10k2-DSG#test cable dsd 000e.0900.00dd 30

Find service flows

All gate controllers currently connected to the PacketCable client are displayed

show cable modem 00:11:22:33:44:55 service flow ????
show cable modem

Debug and display PCMM Gate messages

debug packetcable gate control
debug packetcable gate events
show packetcable gate summary
show packetcable global
show packetcable cms

2.1. Developer Guide 1423

OpenDaylight Documentation Documentation, Release Carbon

Debug COPS messages

debug cops detail
debug packetcable cops
debug cable dynamic_qos trace

Integration Verification

Checkout the integration project and perform regression tests.

git clone ssh://${ODL_USERNAME}@git.opendaylight.org:29418/integration.git
git clone https:/git.opendaylight.org/gerrit/integration.git

1. Check and edit the integration/features/src/main/resources/features.xml and follow the directions there.

2. Check and edit the integration/features/pom.xml and add a dependency for your feature file

3. Build integration/features and debug

mvn clean install

Test your feature in the integration/distributions/extra/karaf/ distribution

cd integration/distributions/extra/karaf/
mvn clean install
cd target/assembly/bin
./karaf

service-wrapper

Install http://karaf.apache.org/manual/latest/users-guide/wrapper.html

opendaylight-user@root>feature:install service-wrapper
opendaylight-user@root>wrapper:install --help
DESCRIPTION

wrapper:install

Install the container as a system service in the OS.

SYNTAX
wrapper:install [options]

OPTIONS
-d, --display

The display name of the service.
(defaults to karaf)

--help
Display this help message

-s, --start-type
Mode in which the service is installed. AUTO_START or DEMAND_START

→˓(Default: AUTO_START)
(defaults to AUTO_START)

-n, --name
The service name that will be used when installing the service.

→˓(Default: karaf)
(defaults to karaf)

1424 Chapter 2. Content for OpenDaylight Developers

http://karaf.apache.org/manual/latest/users-guide/wrapper.html

OpenDaylight Documentation Documentation, Release Carbon

-D, --description
The description of the service.
(defaults to)

opendaylight-user@root> wrapper:install
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/bin/karaf-wrapper
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/bin/karaf-service
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/etc/karaf-wrapper.conf
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/lib/libwrapper.so
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/lib/karaf-wrapper.jar
Creating file: /home/user/odl/distribution-karaf-0.5.0-Boron/lib/karaf-wrapper-main.
→˓jar

Setup complete. You may wish to tweak the JVM properties in the wrapper
→˓configuration file:
/home/user/odl/distribution-karaf-0.5.0-Boron/etc/karaf-wrapper.conf
before installing and starting the service.

Ubuntu/Debian Linux system detected:
To install the service:
$ ln -s /home/user/odl/distribution-karaf-0.5.0-Boron/bin/karaf-service /etc/init.

→˓d/

To start the service when the machine is rebooted:
$ update-rc.d karaf-service defaults

To disable starting the service when the machine is rebooted:
$ update-rc.d -f karaf-service remove

To start the service:
$ /etc/init.d/karaf-service start

To stop the service:
$ /etc/init.d/karaf-service stop

To uninstall the service :
$ rm /etc/init.d/karaf-service

Service Function Chaining

OpenDaylight Service Function Chaining (SFC) Overview

OpenDaylight Service Function Chaining (SFC) provides the ability to define an ordered list of a network services
(e.g. firewalls, load balancers). These service are then “stitched” together in the network to create a service chain.
This project provides the infrastructure (chaining logic, APIs) needed for ODL to provision a service chain in the
network and an end-user application for defining such chains.

• ACE - Access Control Entry

• ACL - Access Control List

• SCF - Service Classifier Function

• SF - Service Function

• SFC - Service Function Chain

2.1. Developer Guide 1425

OpenDaylight Documentation Documentation, Release Carbon

• SFF - Service Function Forwarder

• SFG - Service Function Group

• SFP - Service Function Path

• RSP - Rendered Service Path

• NSH - Network Service Header

SFC Classifier Control and Date plane Developer guide

Overview

Description of classifier can be found in: https://datatracker.ietf.org/doc/draft-ietf-sfc-architecture/

Classifier manages everything from starting the packet listener to creation (and removal) of appropriate ip(6)tables
rules and marking received packets accordingly. Its functionality is available only on Linux as it leverages Netfil-
terQueue, which provides access to packets matched by an iptables rule. Classifier requires root privileges to be able
to operate.

So far it is capable of processing ACL for MAC addresses, ports, IPv4 and IPv6. Supported protocols are TCP and
UDP.

Classifier Architecture

Python code located in the project repository sfc-py/common/classifier.py.

Note: classifier assumes that Rendered Service Path (RSP) already exists in ODL when an ACL referencing it is
obtained

1. sfc_agent receives an ACL and passes it for processing to the classifier

2. the RSP (its SFF locator) referenced by ACL is requested from ODL

3. if the RSP exists in the ODL then ACL based iptables rules for it are applied

After this process is over, every packet successfully matched to an iptables rule (i.e. successfully classified) will be
NSH encapsulated and forwarded to a related SFF, which knows how to traverse the RSP.

Rules are created using appropriate iptables command. If the Access Control Entry (ACE) rule is MAC address related
both iptables and IPv6 tables rules are issued. If ACE rule is IPv4 address related, only iptables rules are issued, same
for IPv6.

Note: iptables raw table contains all created rules

Information regarding already registered RSP(s) are stored in an internal data-store, which is represented as a dictio-
nary:

{rsp_id: {'name': <rsp_name>,
'chains': {'chain_name': (<ipv>,),

...
},

'sff': {'ip': <ip>,
'port': <port>,

1426 Chapter 2. Content for OpenDaylight Developers

https://datatracker.ietf.org/doc/draft-ietf-sfc-architecture/

OpenDaylight Documentation Documentation, Release Carbon

'starting-index': <starting-index>,
'transport-type': <transport-type>
},

},
...
}

• name: name of the RSP

• chains: dictionary of iptables chains related to the RSP with information about IP version for which the chain
exists

• SFF: SFF forwarding parameters

– ip: SFF IP address

– port: SFF port

– starting-index: index given to packet at first RSP hop

– transport-type: encapsulation protocol

Key APIs and Interfaces

This features exposes API to configure classifier (corresponds to service-function-classifier.yang)

API Reference Documentation

See: sfc-model/src/main/yang/service-function-classifier.yang

SFC-OVS Plug-in

Overview

SFC-OVS provides integration of SFC with Open vSwitch (OVS) devices. Integration is realized through mapping
of SFC objects (like SF, SFF, Classifier, etc.) to OVS objects (like Bridge, TerminationPoint=Port/Interface). The
mapping takes care of automatic instantiation (setup) of corresponding object whenever its counterpart is created. For
example, when a new SFF is created, the SFC-OVS plug-in will create a new OVS bridge and when a new OVS Bridge
is created, the SFC-OVS plug-in will create a new SFF.

SFC-OVS Architecture

SFC-OVS uses the OVSDB MD-SAL Southbound API for getting/writing information from/to OVS devices. The core
functionality consists of two types of mapping:

1. mapping from OVS to SFC

• OVS Bridge is mapped to SFF

• OVS TerminationPoints are mapped to SFF DataPlane locators

2. mapping from SFC to OVS

• SFF is mapped to OVS Bridge

• SFF DataPlane locators are mapped to OVS TerminationPoints

2.1. Developer Guide 1427

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.48: SFC <—> OVS mapping flow diagram

1428 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Key APIs and Interfaces

• SFF to OVS mapping API (methods to convert SFF object to OVS Bridge and OVS TerminationPoints)

• OVS to SFF mapping API (methods to convert OVS Bridge and OVS TerminationPoints to SFF object)

SFC Southbound REST Plug-in

Overview

The Southbound REST Plug-in is used to send configuration from datastore down to network devices supporting a
REST API (i.e. they have a configured REST URI). It supports POST/PUT/DELETE operations, which are triggered
accordingly by changes in the SFC data stores.

• Access Control List (ACL)

• Service Classifier Function (SCF)

• Service Function (SF)

• Service Function Group (SFG)

• Service Function Schedule Type (SFST)

• Service Function Forwarder (SFF)

• Rendered Service Path (RSP)

Southbound REST Plug-in Architecture

1. listeners - used to listen on changes in the SFC data stores

2. JSON exporters - used to export JSON-encoded data from binding-aware data store objects

3. tasks - used to collect REST URIs of network devices and to send JSON-encoded data down to these devices

Fig. 2.49: Southbound REST Plug-in Architecture diagram

2.1. Developer Guide 1429

OpenDaylight Documentation Documentation, Release Carbon

Key APIs and Interfaces

The plug-in provides Southbound REST API designated to listening REST devices. It supports POST/PUT/DELETE
operations. The operation (with corresponding JSON-encoded data) is sent to unique REST URL belonging to certain
data type.

• Access Control List (ACL): http://<host>:<port>/config/ietf-acl:access-lists/
access-list/

• Service Function (SF): http://<host>:<port>/config/service-function:service-functions/
service-function/

• Service Function Group (SFG): http://<host>:<port>/config/
service-function:service-function-groups/service-function-group/

• Service Function Schedule Type (SFST): http://<host>:<port>/config/
service-function-scheduler-type:service-function-scheduler-types/
service-function-scheduler-type/

• Service Function Forwarder (SFF): http://<host>:<port>/config/
service-function-forwarder:service-function-forwarders/
service-function-forwarder/

• Rendered Service Path (RSP): http://<host>:<port>/operational/
rendered-service-path:rendered-service-paths/rendered-service-path/

Therefore, network devices willing to receive REST messages must listen on these REST URLs.

Note: Service Classifier Function (SCF) URL does not exist, because SCF is considered as one of the
network devices willing to receive REST messages. However, there is a listener hooked on the SCF data
store, which is triggering POST/PUT/DELETE operations of ACL object, because ACL is referenced in
service-function-classifier.yang

Service Function Load Balancing Developer Guide

Overview

SFC Load-Balancing feature implements load balancing of Service Functions, rather than a one-to-one mapping be-
tween Service Function Forwarder and Service Function.

Load Balancing Architecture

Service Function Groups (SFG) can replace Service Functions (SF) in the Rendered Path model. A Service Path can
only be defined using SFGs or SFs, but not a combination of both.

Relevant objects in the YANG model are as follows:

1. Service-Function-Group-Algorithm:

Service-Function-Group-Algorithms {
Service-Function-Group-Algorithm {

String name
String type

}
}

1430 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Available types: ALL, SELECT, INDIRECT, FAST_FAILURE

2. Service-Function-Group:

Service-Function-Groups {
Service-Function-Group {

String name
String serviceFunctionGroupAlgorithmName
String type
String groupId
Service-Function-Group-Element {

String service-function-name
int index

}
}

}

3. ServiceFunctionHop: holds a reference to a name of SFG (or SF)

Key APIs and Interfaces

This feature enhances the existing SFC API.

REST API commands include: * For Service Function Group (SFG): read existing SFG, write new SFG, delete
existing SFG, add Service Function (SF) to SFG, and delete SF from SFG * For Service Function Group Algorithm
(SFG-Alg): read, write, delete

Bundle providing the REST API: sfc-sb-rest * Service Function Groups and Algorithms are defined in: sfc-sfg and
sfc-sfg-alg * Relevant JAVA API: SfcProviderServiceFunctionGroupAPI, SfcProviderServiceFunctionGroupAlgAPI

Service Function Scheduling Algorithms

Overview

When creating the Rendered Service Path (RSP), the earlier release of SFC chose the first available service function
from a list of service function names. Now a new API is introduced to allow developers to develop their own schedule
algorithms when creating the RSP. There are four scheduling algorithms (Random, Round Robin, Load Balance and
Shortest Path) are provided as examples for the API definition. This guide gives a simple introduction of how to
develop service function scheduling algorithms based on the current extensible framework.

Architecture

The following figure illustrates the service function selection framework and algorithms.

The YANG Model defines the Service Function Scheduling Algorithm type identities and how they are stored in the
MD-SAL data store for the scheduling algorithms.

The MD-SAL data store stores all informations for the scheduling algorithms, including their types, names, and status.

The API provides some basic APIs to manage the informations stored in the MD-SAL data store, like putting new
items into it, getting all scheduling algorithms, etc.

The RESTCONF API provides APIs to manage the informations stored in the MD-SAL data store through RESTful
calls.

2.1. Developer Guide 1431

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.50: SF Scheduling Algorithm framework Architecture

1432 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

The Service Function Chain Renderer gets the enabled scheduling algorithm type, and schedules the service functions
with scheduling algorithm implementation.

Key APIs and Interfaces

While developing a new Service Function Scheduling Algorithm, a new class should be added and it should extend
the base schedule class SfcServiceFunctionSchedulerAPI. And the new class should implement the abstract function:

public List<String> scheduleServiceFuntions(ServiceFunctionChain chain, int
serviceIndex).

• ‘‘ServiceFunctionChain chain‘‘: the chain which will be rendered

• ‘‘int serviceIndex‘‘: the initial service index for this rendered service path

• ‘‘List<String>‘‘: a list of service function names which scheduled by the Service Function Scheduling Algo-
rithm.

API Reference Documentation

Please refer the API docs generated in the mdsal-apidocs.

SFC Proof of Transit Developer Guide

Overview

SFC Proof of Transit implements the in-situ OAM (iOAM) Proof of Transit verification for SFCs and other paths. The
implementation is broadly divided into the North-bound (NB) and the South-bound (SB) side of the application. The
NB side is primarily charged with augmenting the RSP with user-inputs for enabling the PoT on the RSP, while the
SB side is dedicated to auto-generated SFC PoT parameters, periodic refresh of these parameters and delivering the
parameters to the NETCONF and iOAM capable nodes (eg. VPP instances).

Architecture

The following diagram gives the high level overview of the different parts.

The Proof of Transit feature is enabled by two sub-features:

1. ODL SFC PoT: feature:install odl-sfc-pot

2. ODL SFC PoT NETCONF Renderer: feature:install odl-sfc-pot-netconf-renderer

Details

The following classes and handlers are involved.

1. The class (SfcPotRpc) sets up RPC handlers for enabling the feature.

2. There are new RPC handlers for two new RPCs (EnableSfcIoamPotRenderedPath and DisableSfcIoamPotRen-
deredPath) and effected via SfcPotRspProcessor class.

3. When a user configures via a POST RPC call to enable Proof of Transit on a particular SFC (via the Rendered
Service Path), the configuration drives the creation of necessary augmentations to the RSP (to modify the RSP)
to effect the Proof of Transit configurations.

2.1. Developer Guide 1433

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.51: SFC Proof of Transit Internal Architecture

4. The augmentation meta-data added to the RSP are defined in the sfc-ioam-nb-pot.yang file.

Note: There are no auto generated configuration parameters added to the RSP to avoid RSP bloat.

5. Adding SFC Proof of Transit meta-data to the RSP is done in the SfcPotRspProcessor class.

6. Once the RSP is updated, the RSP data listeners in the SB renderer modules (odl-sfc-pot-netconf-renderer) will
listen to the RSP changes and send out configurations to the necessary network nodes that are part of the SFC.

7. The configurations are handled mainly in the SfcPotAPI, SfcPotConfigGenerator, SfcPotPolyAPI, SfcPotPoly-
Class and SfcPotPolyClassAPI classes.

8. There is a sfc-ioam-sb-pot.yang file that shows the format of the iOAM PoT configuration data sent to each node
of the SFC.

9. A timer is started based on the “ioam-pot-refresh-period” value in the SB renderer module that handles config-
uration refresh periodically.

10. The SB and timer handling are done in the odl-sfc-pot-netconf-renderer module. Note: This is NOT done in the
NB odl-sfc-pot module to avoid periodic updates to the RSP itself.

11. ODL creates a new profile of a set of keys and secrets at a constant rate and updates an internal data store with
the configuration. The controller labels the configurations per RSP as “even” or “odd” – and the controller cycles
between “even” and “odd” labeled profiles. The rate at which these profiles are communicated to the nodes is
configurable and in future, could be automatic based on profile usage. Once the profile has been successfully
communicated to all nodes (all Netconf transactions completed), the controller sends an “enable pot-profile”
request to the ingress node.

12. The nodes are to maintain two profiles (an even and an odd pot-profile). One profile is currently active and in
use, and one profile is about to get used. A flag in the packet is indicating whether the odd or even pot-profile
is to be used by a node. This is to ensure that during profile change we’re not disrupting the service. I.e. if the
“odd” profile is active, the controller can communicate the “even” profile to all nodes and only if all the nodes

1434 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

have received it, the controller will tell the ingress node to switch to the “even” profile. Given that the indicator
travels within the packet, all nodes will switch to the “even” profile. The “even” profile gets active on all nodes
– and nodes are ready to receive a new “odd” profile.

13. HashedTimerWheel implementation is used to support the periodic configuration refresh. The default refresh is
5 seconds to start with.

14. Depending on the last updated profile, the odd or the even profile is updated in the fresh timer pop and the
configurations are sent down appropriately.

15. SfcPotTimerQueue, SfcPotTimerWheel, SfcPotTimerTask, SfcPotTimerData and SfcPotTimerThread are the
classes that handle the Proof of Transit protocol profile refresh implementation.

16. The RSP data store is NOT being changed periodically and the timer and configuration refresh modules are
present in the SB renderer module handler and hence there are are no scale or RSP churn issues affecting the
design.

The following diagram gives the overall sequence diagram of the interactions between the different classes.

Fig. 2.52: SFC Proof of Transit Sequence Diagram

Logical Service Function Forwarder

Overview

Rationale

When the current SFC is deployed in a cloud environment, it is assumed that each switch connected to a Service
Function is configured as a Service Function Forwarder and each Service Function is connected to its Service Function

2.1. Developer Guide 1435

OpenDaylight Documentation Documentation, Release Carbon

Forwarder depending on the Compute Node where the Virtual Machine is located. This solution allows the basic cloud
use cases to be fulfilled, as for example, the ones required in OPNFV Brahmaputra, however, some advanced use cases,
like the transparent migration of VMs can not be implemented. The Logical Service Function Forwarder enables the
following advanced use cases:

1. Service Function mobility without service disruption

2. Service Functions load balancing and failover

As shown in the picture below, the Logical Service Function Forwarder concept extends the current SFC northbound
API to provide an abstraction of the underlying Data Center infrastructure. The Data Center underlaying network can
be abstracted by a single SFF. This single SFF uses the logical port UUID as data plane locator to connect SFs globally
and in a location-transparent manner. SFC makes use of Genius project to track the location of the SF’s logical ports.

The SFC internally distributes the necessary flow state over the relevant switches based on the internal Data Center
topology and the deployment of SFs.

Changes in data model

The Logical Service Function Forwarder concept extends the current SFC northbound API to provide an abstraction
of the underlying Data Center infrastructure.

The Logical SFF simplifies the configuration of the current SFC data model by reducing the number of parameters
to be be configured in every SFF, since the controller will discover those parameters by interacting with the services
offered by the Genius project.

The following picture shows the Logical SFF data model. The model gets simplified as most of the configuration
parameters of the current SFC data model are discovered in runtime. The complete YANG model can be found here
logical SFF model.

There are other minor changes in the data model; the SFC encapsulation type has been added or moved in the following
files:

• RSP data model

• SFP data model

• Service Locator data model

Interaction with Genius

Feature sfc-genius functionally enables SFC integration with Genius. This allows configuring a Logical SFF and SFs
attached to this Logical SFF via logical interfaces (i.e. neutron ports) that are registered with Genius.

As shown in the following picture, SFC will interact with Genius project’s services to provide the Logical SFF func-
tionality.

1436 Chapter 2. Content for OpenDaylight Developers

https://github.com/opendaylight/sfc/blob/master/sfc-model/src/main/yang/service-function-forwarder-logical.yang
https://github.com/opendaylight/sfc/blob/master/sfc-model/src/main/yang/rendered-service-path.yang
https://github.com/opendaylight/sfc/blob/master/sfc-model/src/main/yang/service-function-path.yang
https://github.com/opendaylight/sfc/blob/master/sfc-model/src/main/yang/service-locator.yang

OpenDaylight Documentation Documentation, Release Carbon

2.1. Developer Guide 1437

OpenDaylight Documentation Documentation, Release Carbon

The following are the main Genius’ services used by SFC:

1. Interaction with Interface Tunnel Manager (ITM)

2. Interaction with the Interface Manager

3. Interaction with Resource Manager

SFC Service registration with Genius

Genius handles the coexistence of different network services. As such, SFC service is registered with Genius perform-
ing the following actions:

SFC Service Binding As soon as a Service Function associated to the Logical SFF is involved in a Rendered Service
Path, SFC service is bound to its logical interface via Genius Interface Manager. This has the effect of forwarding
every incoming packet from the Service Function to the SFC pipeline of the attached switch, as long as it is not
consumed by a different bound service with higher priority.

SFC Service Terminating Action As soon as SFC service is bound to the interface of a Service Function for the first
time on a specific switch, a terminating service action is configured on that switch via Genius Interface Tunnel
Manager. This has the effect of forwarding every incoming packet from a different switch to the SFC pipeline
as long as the traffic is VXLAN encapsulated on VNI 0.

The following sequence diagrams depict how the overall process takes place:

For more information on how Genius allows different services to coexist, see the Genius User Guide.

1438 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.53: SFC genius module interaction with Genius at RSP creation.

Fig. 2.54: SFC genius module interaction with Genius at RSP removal.

2.1. Developer Guide 1439

OpenDaylight Documentation Documentation, Release Carbon

Path Rendering

During path rendering, Genius is queried to obtain needed information, such as:

• Location of a logical interface on the data-plane.

• Tunnel interface for a specific pair of source and destination switches.

• Egress OpenFlow actions to output packets to a specific interface.

See RSP Rendering section for more information.

VM migration

Upon VM migration, it’s logical interface is first unregistered and then registered with Genius, possibly at a new
physical location. sfc-genius reacts to this by re-rendering all the RSPs on which the associated SF participates, if any.

The following picture illustrates the process:

Fig. 2.55: SFC genius module at VM migration.

RSP Rendering changes for paths using the Logical SFF

1. Construction of the auxiliary rendering graph

When starting the rendering of a RSP, the SFC renderer builds an auxiliary graph with information about the
required hops for traffic traversing the path. RSP processing is achieved by iteratively evaluating each of the
entries in the graph, writing the required flows in the proper switch for each hop.

It is important to note that the graph includes both traffic ingress (i.e. traffic entering into the first SF) and traffic
egress (i.e. traffic leaving the chain from the last SF) as hops. Therefore, the number of entries in the graph
equals the number of SFs in the chain plus one.

1440 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

The process of rendering a chain when the switches involved are part of the Logical SFF also starts with the
construction of the hop graph. The difference is that when the SFs used in the chain are using a logical interface,
the SFC renderer will also retrieve from Genius the DPIDs for the switches, storing them in the graph. In this
context, those switches are the ones in the compute nodes each SF is hosted on at the time the chain is rendered.

2. New transport processor

Transport processors are classes which calculate and write the correct flows for a chain. Each transport processor
specializes on writing the flows for a given combination of transport type and SFC encapsulation.

A specific transport processor has been created for paths using a Logical SFF. A particularity of this transport
processor is that its use is not only determined by the transport / SFC encapsulation combination, but also
because the chain is using a Logical SFF. The actual condition evaluated for selecting the Logical SFF transport
processor is that the SFs in the chain are using logical interface locators, and that the DPIDs for those locators
can be successfully retrieved from Genius.

The main differences between the Logical SFF transport processor and other processors are the following:

• Instead of srcSff, dstSff fields in the hops graph (which are all equal in a path using a Logical SFF), the
Logical SFF transport processor uses previously stored srcDpnId, dstDpnId fields in order to know whether
an actual hop between compute nodes must be performed or not (it is possible that two consecutive SFs
are collocated in the same compute node).

• When a hop between switches really has to be performed, it relies on Genius for getting the actions to
perform that hop. The retrieval of those actions involve two steps:

– First, Genius’ Overlay Tunnel Manager module is used in order to retrieve the target interface for a
jump between the source and the destination DPIDs.

– Then, egress instructions for that interface are retrieved from Genius’s Interface Manager.

• There are no next hop rules between compute nodes, only egress instructions (the transport zone tunnels
have all the required routing information).

2.1. Developer Guide 1441

OpenDaylight Documentation Documentation, Release Carbon

• Next hop information towards SFs uses mac adresses which are also retrieved from the Genius datastore.

• The Logical SFF transport processor performs NSH decapsulation in the last switch of the chain.

3. Post-rendering update of the operational data model

When the rendering of a chain finishes successfully, the Logical SFF Transport Processor perform two oper-
ational datastore modifications in order to provide some relevant runtime information about the chain. The
exposed information is the following:

• Rendered Service Path state: when the chain uses a Logical SFF, DPIDs for the switches in the compute
nodes on which the SFs participating in the chain are hosted are added to the hop information.

• SFF state: A new list of all RSPs which use each DPID is has been added. It is updated on each RSP
addition / deletion.

Classifier impacts

This section explains the changes made to the SFC classifier, enabling it to be attached to Logical SFFs.

Refer to the following image to better understand the concept, and the required steps to implement the feature.

As stated in the SFC User Guide, the classifier needs to be provisioned using logical interfaces as attachment points.

When that happens, MDSAL will trigger an event in the odl-sfc-scf-openflow feature (i.e. the sfc-classifier), which is
responsible for installing the classifier flows in the classifier switches.

The first step of the process, is to bind the interfaces to classify in Genius, in order for the desired traffic (originating
from the VMs having the provisioned attachment-points) to enter the SFC pipeline. This will make traffic reach table
82 (SFC classifier table), coming from table 0 (table managed by Genius, shared by all applications).

The next step, is deciding which flows to install in the SFC classifier table. A table-miss flow will be installed, having
a MatchAny clause, whose action is to jump to Genius’s egress dispatcher table. This enables traffic intended for other
applications to still be processed.

The flow that allows the SFC pipeline to continue is added next, having higher match priority than the table-miss flow.
This flow has two responsabilities:

1. Push the NSH header, along with its metadata (required within the SFC pipeline)

1442 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.56: SFC classifier integration with Genius.

2.1. Developer Guide 1443

OpenDaylight Documentation Documentation, Release Carbon

Features the specified ACL matches as match criteria, and push NSH along with its metadata into the Action
list.

2. Advance the SFC pipeline

Forward the traffic to the first Service Function in the RSP. This steers packets into the SFC domain, and how it
is done depends on whether the classifier is co-located with the first service function in the specified RSP.

Should the classifier be co-located (i.e. in the same compute node), a new instruction is appended to the flow,
telling all matches to jump to the transport ingress table.

If not, Genius’s tunnel manager service is queried to get the tunnel interface connecting the classifier node with
the compute node where the first Service Function is located, and finally, Genius’s interface manager service is
queried asking for instructions on how to reach that tunnel interface.

These actions are then appended to the Action list already containing push NSH and push NSH metadata Ac-
tions, and written in an Apply-Actions Instruction into the datastore.

SNMP4SDN Developer Guide

Overview

We propose a southbound plugin that can control the off-the-shelf commodity Ethernet switches for the purpose of
building SDN using Ethernet switches. For Ethernet switches, forwarding table, VLAN table, and ACL are where
one can install flow configuration on, and this is done via SNMP and CLI in the proposed plugin. In addition, some
settings required for Ethernet switches in SDN, e.g., disabling STP and flooding, are proposed.

Fig. 2.57: SNMP4SDN as an OpenDaylight southbound plugin

Architecture

The modules in the plugin are depicted as the following figure.

• AclService: add/remove ACL profile and rule on the switches.

• FdbService: add/modify/remove FDB table entry on the switches.

• VlanService: add/modify/remove VLAN table entry on the switches.

• TopologyService: query and acquire the subnet topology.

1444 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.58: Modules in the SNMP4SDN Plugin

2.1. Developer Guide 1445

OpenDaylight Documentation Documentation, Release Carbon

• InventoryService: acquire the switches and their ports.

• DiscoveryService: probe and resolve the underlying switches as well as the port pairs connecting the switches.
The probing is realized by SNMP queries. The updates from discovery will also be reflected to the Topology-
Service.

• MiscConfigService: do kinds of settings on switches

– Supported STP and ARP settings such as enable/disable STP, get port’s STP state, get ARP table, set ARP
entry, and others

• VendorSpecificHandler: to assist the flow configuration services to call the switch-talking modules with correct
parameters value and order.

• Switch-talking modules

– For the services above, when they need to read or configure the underlying switches via SNMP or CLI,
these queries are dealt with the modules SNMPHandler and CLIHandler which directly talk with the
switches. The SNMPListener is to listen to snmp trap such as link up/down event or switch on/off event.

Design

In terms of the architecture of the SNMP4SDN Plugin’s features, the features include flow configuration, topology
discovery, and multi-vendor support. Their architectures please refer to Wiki (Developer Guide - Design).

Installation and Configuration Guide

• Please refer to the Getting Started Guide in https://www.opendaylight.org/downloads, find the SNMP4SDN
section.

• For the latest full guide, please refer to Wiki (Installation Guide, User Guide - Configuration).

Tutorial

• For the latest full guide, please refer to Wiki (User Guide - Tutorial).

Programmatic Interface(s)

SNMP4SDN Plugin exposes APIs via MD-SAL with YANG model. The methods (RPC call) and data structures for
them are listed below.

TopologyService

• RPC call

– get-edge-list

– get-node-list

– get-node-connector-list

– set-discovery-interval (given interval time in seconds)

– rediscover

1446 Chapter 2. Content for OpenDaylight Developers

https://wiki.opendaylight.org/view/SNMP4SDN:Developer_Guide#Design
https://www.opendaylight.org/downloads
https://wiki.opendaylight.org/view/SNMP4SDN:Installation_Guide
https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Configuration
https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Tutorial_.2F_How-To

OpenDaylight Documentation Documentation, Release Carbon

• Data structure

– node: composed of node-id, node-type

– node-connector: composed of node-connector-id, node-connector-type, node

– topo-edge: composed of head-node-connector-id, head-node-connector-type, head-node-id, head-node-
type, tail-node-connector-id, tail-node-connector-type, tail-node-id, tail-node-type

VlanService

• RPC call

– add-vlan (given node ID, VLAN ID, VLAN name)

– add-vlan-and-set-ports (given node ID, VLAN ID, VLAN name, tagged ports, untagged ports)

– set-vlan-ports (given node ID, VLAN ID, tagged ports, untagged ports)

– delete-vlan (given node ID, VLAN ID)

– get-vlan-table (given node ID)

AclService

• RPC call

– create-acl-profile (given node ID, acl-profile-index, acl-profile)

– del-acl-profile (given node ID, acl-profile-index)

– set-acl-rule (given node ID, acl-index, acl-rule)

– del-acl-rule (given node ID, acl-index)

– clear-acl-table (given node ID)

• Data structure

– acl-profile-index: composed of profile-id, profile name

– acl-profile: composed of acl-layer, vlan-mask, src-ip-mask, dst-ip-mask

– acl-layer: IP or ETHERNET

– acl-index: composed of acl-profile-index, acl-rule-index

– acl-rule-index: composed of rule-id, rule-name

– acl-rule: composed of port-list, acl-layer, acl-field, acl-action

– acl-field: composed of vlan-id, src-ip, dst-ip

– acl-action: PERMIT or DENY

FdbService

• RPC call

– set-fdb-entry (given fdb-entry)

– del-fdb-entry (given node-id, vlan-id, dest-mac-adddr)

2.1. Developer Guide 1447

OpenDaylight Documentation Documentation, Release Carbon

– get-fdb-entry (given node-id, vlan-id, dest-mac-adddr)

– get-fdb-table (given node-id)

• Data structure

– fdb-entry: composed of node-id, vlan-id, dest-mac-addr, port, fdb-entry-type

– fdb-entry-type: OTHER/INVALID/LEARNED/SELF/MGMT

MiscConfigService

• RPC call

– set-stp-port-state (given node-id, port, is_nable)

– get-stp-port-state (given node-id, port)

– get-stp-port-root (given node-id, port)

– enable-stp (given node-id)

– disable-stp (given node-id)

– delete-arp-entry (given node-id, ip-address)

– set-arp-entry (given node-id, arp-entry)

– get-arp-entry (given node-id, ip-address)

– get-arp-table (given node-id)

• Data structure

– stp-port-state: DISABLE/BLOCKING/LISTENING/LEARNING/FORWARDING/BROKEN

– arp-entry: composed of ip-address and mac-address

SwitchDbService

• RPC call

– reload-db (The following 4 RPC implemention is TBD)

– add-switch-entry

– delete-switch-entry

– clear-db

– update-db

• Data structure

– switch-info: compose of node-ip, node-mac, community, cli-user-name, cli-password, model

Help

• SNMP4SDN Wiki

• SNMP4SDN Mailing List (user, developer)

• Latest troubleshooting in Wiki

1448 Chapter 2. Content for OpenDaylight Developers

https://wiki.opendaylight.org/view/SNMP4SDN:Main
https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-users
https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-dev
https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Troubleshooting

OpenDaylight Documentation Documentation, Release Carbon

SXP Developer Guide

Overview

SXP (Scalable-Group Tag eXchange Protocol) project is an effort to enhance OpenDaylight platform with IP-SGT (IP
Address to Source Group Tag) bindings that can be learned from connected SXP-aware network nodes. The current
implementation supports SXP protocol version 4 according to the Smith, Kandula - SXP IETF draft and grouping of
peers and creating filters based on ACL/Prefix-list syntax for filtering outbound and inbound IP-SGT bindings. All
protocol legacy versions 1-3 are supported as well. Additionally, version 4 adds bidirectional connection type as an
extension of a unidirectional one.

SXP Architecture

The SXP Server manages all connected clients in separate threads and a common SXP protocol agreement is used
between connected peers. Each SXP network peer is modelled with its pertaining class, e.g., SXP Server represents
the SXP Speaker, SXP Listener the Client. The server program creates the ServerSocket object on a specified port and
waits until a client starts up and requests connect on the IP address and port of the server. The client program opens a
Socket that is connected to the server running on the specified host IP address and port.

The SXP Listener maintains connection with its speaker peer. From an opened channel pipeline, all incoming SXP
messages are processed by various handlers. Message must be decoded, parsed and validated.

The SXP Speaker is a counterpart to the SXP Listener. It maintains a connection with its listener peer and sends
composed messages.

The SXP Binding Handler extracts the IP-SGT binding from a message and pulls it into the SXP-Database. If an error
is detected during the IP-SGT extraction, an appropriate error code and sub-code is selected and an error message
is sent back to the connected peer. All transitive messages are routed directly to the output queue of SXP Binding
Dispatcher.

The SXP Binding Dispatcher represents a selector that will decides how many data from the SXP-database will be
sent and when. It is responsible for message content composition based on maximum message length.

The SXP Binding Filters handles filtering of outgoing and incoming IP-SGT bindings according to BGP filtering using
ACL and Prefix List syntax for specifying filter or based on Peer-sequence length.

The SXP Domains feature provides isolation of SXP peers and bindings learned between them, also exchange of
Bindings is possible across SXP-Domains by ACL, Prefix List or Peer-Sequence filters

Key APIs and Interfaces

As this project is fairly small, it provides only few features that install and provide all APIs and implementations for
this project.

• sxp-route

• sxp-controller

• sxp-api

• spx-core

sxp-route

Performs managing of SXP devices in cluster environment

2.1. Developer Guide 1449

https://tools.ietf.org/html/draft-smith-kandula-sxp-05

OpenDaylight Documentation Documentation, Release Carbon

sxp-controller

RPC request handling

sxp-api

Contains data holders and entities

spx-core

Main logic and core features

API Reference Documentation

RESTCONF Interface and Dynamic Tree Specification and Architecture

Topology Processing Framework Developer Guide

Overview

The Topology Processing Framework allows developers to aggregate and filter topologies according to defined cor-
relations. It also provides functionality, which you can use to make your own topology model by automating the
translation from one model to another. For example to translate from the opendaylight-inventory model to only using
the network-topology model.

Architecture

Chapter Overview

In this chapter we describe the architecture of the Topology Processing Framework. In the first part, we provide
information about available features and basic class relationships. In the second part, we describe our model specific
approach, which is used to provide support for different models.

Basic Architecture

The Topology Processing Framework consists of several Karaf features:

• odl-topoprocessing-framework

• odl-topoprocessing-inventory

• odl-topoprocessing-network-topology

• odl-topoprocessing-i2rs

• odl-topoprocessing-inventory-rendering

The feature odl-topoprocessing-framework contains the topoprocessing-api, topoprocessing-spi and topoprocessing-
impl bundles. This feature is the core of the Topology Processing Framework and is required by all others features.

• topoprocessing-api - contains correlation definitions and definitions required for rendering

1450 Chapter 2. Content for OpenDaylight Developers

https://wiki.opendaylight.org/images/9/91/SXP_Restconf_Interface_and_Dynamic_Tree.pdf
https://wiki.opendaylight.org/images/4/44/SXP_Specification_and_Architecture_v05.pdf

OpenDaylight Documentation Documentation, Release Carbon

• topoprocessing-spi - entry point for topoprocessing service (start and close)

• topoprocessing-impl - contains base implementations of handlers, listeners, aggregators and filtrators

TopoProcessingProvider is the entry point for Topology Processing Framework. It requires a DataBroker instance. The
DataBroker is needed for listener registration. There is also the TopologyRequestListener which listens on aggregated
topology requests (placed into the configuration datastore) and UnderlayTopologyListeners which listen on underlay
topology data changes (made in operational datastore). The TopologyRequestHandler saves toporequest data and
provides a method for translating a path to the specified leaf. When a change in the topology occurs, the registered
UnderlayTopologyListener processes this information for further aggregation and/or filtration. Finally, after an overlay
topology is created, it is passed to the TopologyWriter, which writes this topology into operational datastore.

Fig. 2.59: Class relationship

[1] TopologyRequestHandler instantiates TopologyWriter and TopologyManager. Then, according to the request,
initializes either TopologyAggregator, TopologyFiltrator or LinkCalculator.

[2] It creates as many instances of UnderlayTopologyListener as there are underlay topologies.

[3] PhysicalNodes are created for relevant incoming nodes (those having node ID).

[4a] It performs aggregation and creates logical nodes.

[4b] It performs filtration and creates logical nodes.

[4c] It performs link computation and creates links between logical nodes.

[5] Logical nodes are put into wrapper.

[6] The wrapper is translated into the appropriate format and written into datastore.

Model Specific Approach

The Topology Processing Framework consists of several modules and Karaf features, which provide support for dif-
ferent input models. Currently we support the network-topology, opendaylight-inventory and i2rs models. For each of
these input models, the Topology Processing Framework has one module and one Karaf feature.

2.1. Developer Guide 1451

OpenDaylight Documentation Documentation, Release Carbon

How it works

User point of view:

When you start the odl-topoprocessing-framework feature, the Topology Processing Framework starts without knowl-
edge how to work with any input models. In order to allow the Topology Processing Framework to process some
kind of input model, you must install one (or more) model specific features. Installing these features will also start
odl-topoprocessing-framework feature if it is not already running. These features inject appropriate logic into the odl-
topoprocessing-framework feature. From that point, the Topology Processing Framework is able to process different
kinds of input models, specifically those that you install features for.

Developer point of view:

The topoprocessing-impl module contains (among other things) classes and interfaces, which are common for every
model specific topoprocessing module. These classes and interfaces are implemented and extended by classes in
particular model specific modules. Model specific modules also depend on the TopoProcessingProvider class in the
topoprocessing-spi module. This dependency is injected during installation of model specific features in Karaf. When a
model specific feature is started, it calls the registerAdapters(adapters) method of the injected TopoProcessingProvider
object. After this step, the Topology Processing Framework is able to use registered model adapters to work with input
models.

To achieve the described functionality we created a ModelAdapter interface. It represents installed feature and provides
methods for creating crucial structures specific to each model.

Fig. 2.60: ModelAdapter interface

Model Specific Features

• odl-topoprocessing-network-topology - this feature contains logic to work with network-topology model

• odl-topoprocessing-inventory - this feature contains logic to work with opendaylight-inventory model

• odl-topoprocessing-i2rs - this feature contains logic to work with i2rs model

1452 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Inventory Model Support

The opendaylight-inventory model contains only nodes, termination points, information regarding these structures.
This model co-operates with network-topology model, where other topology related information is stored. This means
that we have to handle two input models at once. To support the inventory model, InventoryListener and Notification-
InterConnector classes were introduced. Please see the flow diagrams below.

Fig. 2.61: Network topology model

Here we can see the InventoryListener and NotificationInterConnector classes. InventoryListener listens on data
changes in the inventory model and passes these changes wrapped as an UnderlayItem for further processing to Noti-
ficationInterConnector. It doesn’t contain node information - it contains a leafNode (node based on which aggregation
occurs) instead. The node information is stored in the topology model, where UnderlayTopologyListener is registered
as usual. This listener delivers the missing information.

Then the NotificationInterConnector combines the two notifications into a complete UnderlayItem (no null values)
and delivers this UnderlayItem for further processing (to next TopologyOperator).

Aggregation and Filtration

Chapter Overview

The Topology Processing Framework allows the creation of aggregated topologies and filtered views over exist-
ing topologies. Currently, aggregation and filtration is supported for topologies that follow network-topology,
opendaylight-inventory or i2rs model. When a request to create an aggregated or filtered topology is received, the
framework creates one listener per underlay topology. Whenever any specified underlay topology is changed, the ap-
propriate listener is triggered with the change and the change is processed. Two types of correlations (functionalities)
are currently supported:

• Aggregation

– Unification

– Equality

• Filtration

2.1. Developer Guide 1453

https://github.com/opendaylight/yangtools/blob/master/model/ietf/ietf-topology/src/main/yang/network-topology%402013-10-21.yang

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.62: Inventory model

Terminology

We use the term underlay item (physical node) for items (nodes, links, termination-points) from underlay and over-
lay item (logical node) for items from overlay topologies regardless of whether those are actually physical network
elements.

Aggregation

Aggregation is an operation which creates an aggregated item from two or more items in the underlay topology if the
aggregation condition is fulfilled. Requests for aggregated topologies must specify a list of underlay topologies over
which the overlay (aggregated) topology will be created and a target field in the underlay item that the framework will
check for equality.

Create Overlay Node

First, each new underlay item is inserted into the proper topology store. Once the item is stored, the framework
compares it (using the target field value) with all stored underlay items from underlay topologies. If there is a target-
field match, a new overlay item is created containing pointers to all equal underlay items. The newly created overlay
item is also given new references to its supporting underlay items.

Equality case:

If an item doesn’t fulfill the equality condition with any other items, processing finishes after adding the item into
topology store. It will stay there for future use, ready to create an aggregated item with a new underlay item, with
which it would satisfy the equality condition.

Unification case:

1454 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

An overlay item is created for all underlay items, even those which don’t fulfill the equality condition with any other
items. This means that an overlay item is created for every underlay item, but for items which satisfy the equality
condition, an aggregated item is created.

Update Node

Processing of updated underlay items depends on whether the target field has been modified. If yes, then:

• if the underlay item belonged to some overlay item, it is removed from that item. Next, if the aggregation
condition on the target field is satisfied, the item is inserted into another overlay item. If the condition isn’t met
then:

– in equality case - the item will not be present in overlay topology.

– in unification case - the item will create an overlay item with a single underlay item and this will be written
into overlay topology.

• if the item didn’t belong to some overlay item, it is checked again for aggregation with other underlay items.

Remove Node

The underlay item is removed from the corresponding topology store, from it’s overlay item (if it belongs to one) and
this way it is also removed from overlay topology.

Equality case:

If there is only one underlay item left in the overlay item, the overlay item is removed.

Unification case:

The overlay item is removed once it refers to no underlay item.

Filtration

Filtration is an operation which results in creation of overlay topology containing only items fulfilling conditions set
in the topoprocessing request.

Create Underlay Item

If a newly created underlay item passes all filtrators and their conditions, then it is stored in topology store and a
creation notification is delivered into topology manager. No operation otherwise.

Update Underlay Item

First, the updated item is checked for presence in topology store:

• if it is present in topology store:

– if it meets the filtering conditions, then processUpdatedData notification is triggered

– else processRemovedData notification is triggered

• if item isn’t present in topology store

– if item meets filtering conditions, then processCreatedData notification is triggered

2.1. Developer Guide 1455

OpenDaylight Documentation Documentation, Release Carbon

– else it is ignored

Remove Underlay Item

If an underlay node is supporting some overlay node, the overlay node is simply removed.

Default Filtrator Types

There are seven types of default filtrators defined in the framework:

• IPv4-address filtrator - checks if specified field meets IPv4 address + mask criteria

• IPv6-address filtrator - checks if specified field meets IPv6 address + mask criteria

• Specific number filtrator - checks for specific number

• Specific string filtrator - checks for specific string

• Range number filtrator - checks if specified field is higher than provided minimum (inclusive) and lower than
provided maximum (inclusive)

• Range string filtrator - checks if specified field is alphabetically greater than provided minimum (inclusive) and
alphabetically lower than provided maximum (inclusive)

• Script filtrator - allows a user or application to implement their own filtrator

Register Custom Filtrator

There might be some use case that cannot be achieved with the default filtrators. In these cases, the framework offers
the possibility for a user or application to register a custom filtrator.

Pre-Filtration / Filtration & Aggregation

This feature was introduced in order to lower memory and performance demands. It is a combination of the filtration
and aggregation operations. First, uninteresting items are filtered out and then aggregation is performed only on items
that passed filtration. This way the framework saves on compute time. The PreAggregationFiltrator and TopologyAg-
gregator share the same TopoStoreProvider (and thus topology store) which results in lower memory demands (as
underlay items are stored only in one topology store - they aren’t stored twice).

Link Computation

Chapter Overview

While processing the topology request, we create overlay nodes with lists of supporting underlay nodes. Because these
overlay nodes have completely new identifiers, we lose link information. To regain this link information, we provide
Link Computation functionality. Its main purpose is to create new overlay links based on the links from the underlay
topologies and underlay items from overlay items. The required information for Link Computation is provided via the
Link Computation model in (topology-link-computation.yang).

1456 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=topoprocessing-api/src/main/yang/topology-link-computation.yang;hb=refs/heads/stable/boron

OpenDaylight Documentation Documentation, Release Carbon

Link Computation Functionality

Let us consider two topologies with following components:

Topology 1:

• Node: node:1:1

• Node: node:1:2

• Node: node:1:3

• Link: link:1:1 (from node:1:1 to node:1:2)

• Link: link:1:2 (from node:1:3 to node:1:2)

Topology 2:

• Node: node:2:1

• Node: node:2:2

• Node: node:2:3

• Link: link:2:1 (from node:2:1 to node:2:3)

Now let’s say that we applied some operations over these topologies that results into aggregating together

• node:1:1 and node:2:3 (node:1)

• node:1:2 and node:2:2 (node:2)

• node:1:3 and node:2:1 (node:3)

At this point we can no longer use available links in new topology because of the node ID change, so we must create
new overlay links with source and destination node set to new nodes IDs. It means that link:1:1 from topology
1 will create new link link:1. Since original source (node:1:1) is already aggregated under node:1, it will
become source node for link:1. Using same method the destination will be node:2. And the final output will be
three links:

• link:1, from node:1 to node:2

• link:2, from node:3 to node:2

• link:3, from node:3 to node:1

In-Depth Look

The main logic behind Link Computation is executed in the LinkCalculator operator. The required information is
passed to LinkCalculator through the LinkComputation section of the topology request. This section is defined in
the topology-link-computation.yang file. The main logic also covers cases when some underlay nodes may not pass
through other topology operators.

Link Computation Model

There are three essential pieces of information for link computations. All of them are provided within the LinkCom-
putation section. These pieces are:

• output model

• overlay topology with new nodes

• underlay topologies with original links

2.1. Developer Guide 1457

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.63: Overlay topology with computed links

This whole section is augmented into network-topology:topology. By placing this section out of correlations
section, it allows us to send link computation request separately from topology operations request.

Main Logic

Taking into consideration that some of the underlay nodes may not transform into overlay nodes (e.g. they are filtered
out), we created two possible states for links:

• matched - a link is considered as matched when both original source and destination node were transformed to
overlay nodes

• waiting - a link is considered as waiting if original source, destination or both nodes are missing from the overlay
topology

All links in waiting the state are stored in waitingLinks list, already matched links are stored in matchedLinks list and
overlay nodes are stored in the storedOverlayNodes list. All processing is based only on information in these lists.
Processing created, updated and removed underlay items is slightly different and described in next sections separately.

Processing Created Items

Created items can be either nodes or links, depending on the type of listener from which they came. In the case of a link,
it is immediately added to waitingLinks and calculation for possible overlay link creations (calculatePossibleLink) is
started. The flow diagram for this process is shown in the following picture:

Searching for the source and destination nodes in the calculatePossibleLink method runs over each node in storedOver-
layNodes and the IDs of each supporting node is compared against IDs from the underlay link’s source and destination
nodes. If there are any nodes missing, the link remains in the waiting state. If both the source and destination nodes
are found, the corresponding overlay nodes is recorded as the new source and destination. The link is then removed
from waitingLinks and a new CalculatedLink is added to the matched links. At the end, the new link (if it exists) is
written into the datastore.

1458 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.64: Flow diagram of processing created items

2.1. Developer Guide 1459

OpenDaylight Documentation Documentation, Release Carbon

If the created item is an overlayNode, this is added to storedOverlayNodes and we call calculatePossibleLink for every
link in waitingLinks.

Processing Updated Items

The difference from processing created items is that we have three possible types of updated items: overlay nodes,
waiting underlay links, and matched underlay links.

• In the case of a change in a matched link, this must be recalculated and based on the result it will either be
matched with new source and destination or will be returned to waiting links. If the link is moved back to a
waiting state, it must also be removed from the datastore.

• In the case of change in a waiting link, it is passed to the calculation process and based on the result will either
remain in waiting state or be promoted to the matched state.

• In the case of a change in an overlay node, storedOverlayNodes must be updated properly and all links must be
recalculated in case of changes.

Processing Removed items

Same as for processing updated item. There can be three types of removed items:

• In case of waiting link removal, the link is just removed from waitingLinks

• In case of matched link removal, the link is removed from matchingLinks and datastore

• In case of overlay node removal, the node must be removed form storedOverlayNodes and all matching links
must be recalculated

Wrapper, RPC Republishing, Writing Mechanism

Chapter Overview

During the process of aggregation and filtration, overlay items (so called logical nodes) were created from underlay
items (physical nodes). In the topology manager, overlay items are put into a wrapper. A wrapper is identified with
unique ID and contains list of logical nodes. Wrappers are used to deal with transitivity of underlay items - which
permits grouping of overlay items (into wrappers).

Fig. 2.65: Wrapper

PN1, PN2, PN3 = physical nodes

LN1, LN2 = logical nodes

1460 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

RPC Republishing

All RPCs registered to handle underlay items are re-registered under their corresponding wrapper ID. RPCs of underlay
items (belonging to an overlay item) are gathered, and registered under ID of their wrapper.

RPC Call

When RPC is called on overlay item, this call is delegated to it’s underlay items, this means that the RPC is called on
all underlay items of this overlay item.

Writing Mechanism

When a wrapper (containing overlay item(s) with it’s underlay item(s)) is ready to be written into data store, it has to
be converted into DOM format. After this translation is done, the result is written into datastore. Physical nodes are
stored as supporting-nodes. In order to use resources responsibly, writing operation is divided into two steps. First, a
set of threads registers prepared operations (deletes and puts) and one thread makes actual write operation in batch.

Topology Rendering Guide - Inventory Rendering

Chapter Overview

In the most recent OpenDaylight release, the opendaylight-inventory model is marked as deprecated. To facilitate
migration from it to the network-topology model, there were requests to render (translate) data from inventory model
(whether augmented or not) to another model for further processing. The Topology Processing Framework was ex-
tended to provide this functionality by implementing several rendering-specific classes. This chapter is a step-by-step
guide on how to implement your own topology rendering using our inventory rendering as an example.

Use case

For the purpose of this guide we are going to render the following augmented fields from the OpenFlow model:

• from inventory node:

– manufacturer

– hardware

– software

– serial-number

– description

– ip-address

• from inventory node-connector:

– name

– hardware-address

– current-speed

– maximum-speed

2.1. Developer Guide 1461

OpenDaylight Documentation Documentation, Release Carbon

We also want to preserve the node ID and termination-point ID from opendaylight-topology-inventory model, which
is network-topology part of the inventory model.

Implementation

There are two ways to implement support for your specific topology rendering:

• add a module to your project that depends on the Topology Processing Framework

• add a module to the Topology Processing Framework itself

Regardless, a successful implementation must complete all of the following steps.

Step1 - Target Model Creation

Because the network-topology node does not have fields to store all desired data, it is necessary to create new model
to render this extra data in to. For this guide we created the inventory-rendering model. The picture below shows how
data will be rendered and stored.

Fig. 2.66: Rendering to the inventory-rendering model

Important: When implementing your version of the topology-rendering model in the Topology Processing Frame-
work, the source file of the model (.yang) must be saved in /topoprocessing-api/src/main/yang folder so corresponding
structures can be generated during build and can be accessed from every module through dependencies.

When the target model is created you have to add an identifier through which you can set your new model as output
model. To do that you have to add another identity item to topology-correlation.yang file. For our inventory-rendering
model identity looks like this:

After that you will be able to set inventory-rendering-model as output model in XML.

1462 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Step2 - Module and Feature Creation

Important: This and following steps are based on the model specific approach in the Topology Processing Frame-
work. We highly recommend that you familiarize yourself with this approach in advance.

To create a base module and add it as a feature to Karaf in the Topology Processing Framework we made the changes
in following commit. Changes in other projects will likely be similar.

File Changes
pom.xml add new module to topoprocessing
features.xml add feature to topoprocessing
features/pom.xml add dependencies needed by features
topoprocessing-artifacts/pom.xml add artifact
topoprocessing-config/pom.xml add configuration file
81-topoprocessing-inventory-
renderin
g-config.xml

configuration file for new module

topoprocessing-inventory-
rendering/p
om.xml

main pom for new module

TopoProcessingProviderIR.java contains startup method which register new model adapter
TopoProcessingProviderIRMod-
ule.java

generated class which contains createInstance method. You should call
your startup method from here.

TopoProcessingProviderIRModule-
Factor
y.java

generated class. You will probably not need to edit this file

log4j.xml configuration file for logger topoprocessing-inventory-rendering-p
rovider-impl.yang

Step3 - Module Adapters Creation

There are seven mandatory interfaces or abstract classes that needs to be implemented in each module. They are:

• TopoProcessingProvider - provides module registration

• ModelAdapter - provides model specific instances

• TopologyRequestListener - listens on changes in the configuration datastore

• TopologyRequestHandler - processes configuration datastore changes

• UnderlayTopologyListener - listens for changes in the specific model

• LinkTransaltor and NodeTranslator - used by OverlayItemTranslator to create NormalizedNodes from Over-
layItems

The name convention we used was to add an abbreviation for the specific model to the beginning of implementing class
name (e.g. the IRModelAdapter refers to class which implements ModelAdapter in module Inventory Rendering). In
the case of the provider class, we put the abbreviation at the end.

Important:

• In the next sections, we use the terms TopologyRequestListener, TopologyRequestHandler, etc. without a
prepended or appended abbreviation because the steps apply regardless of which specific model you are tar-
geting.

2.1. Developer Guide 1463

https://git.opendaylight.org/gerrit/#/c/26223/

OpenDaylight Documentation Documentation, Release Carbon

• If you want to implement rendering from inventory to network-topology, you can just copy-paste our module
and additional changes will be required only in the output part.

Provider part

This part is the starting point of the whole module. It is responsible for creating and registering TopologyRequestLis-
teners. It is necessary to create three classes which will import:

• TopoProcessingProviderModule - is a generated class from topoprocessing-inventory-rendering-provider-
impl.yang (created in previous step, file will appear after first build). Its method createInstance() is
called at the feature start and must be modified to create an instance of TopoProcessingProvider and call its
startup(TopoProcessingProvider topoProvider) function.

• TopoProcessingProvider - in startup(TopoProcessingProvider topoProvider) function pro-
vides ModelAdapter registration to TopoProcessingProviderImpl.

• ModelAdapter - provides creation of corresponding module specific classes.

Input part

This includes the creation of the classes responsible for input data processing. In this case, we had to create five classes
implementing:

• TopologyRequestListener and TopologyRequestHandler - when notified about a change in the configuration
datastore, verify if the change contains a topology request (has correlations in it) and creates UnderlayTopol-
ogyListeners if needed. The implementation of these classes will differ according to the model in which are
correlations saved (network-topology or i2rs). In the case of using network-topology, as the input model, you
can use our classes IRTopologyRequestListener and IRTopologyRequestHandler.

• UnderlayTopologyListener - registers underlay listeners according to input model. In our case (listening in
the inventory model), we created listeners for the network-topology model and inventory model, and set the
NotificationInterConnector as the first operator and set the IRRenderingOperator as the second operator (af-
ter NotificationInterConnector). Same as for TopologyRequestListener/Handler, if you are rendering from the
inventory model, you can use our class IRUnderlayTopologyListener.

• InventoryListener - a new implementation of this class is required only for inventory input model. This is
because the InventoryListener from topoprocessing-impl requires pathIdentifier which is absent in the case of
rendering.

• TopologyOperator - replaces classic topoprocessing operator. While the classic operator provides specific
operations on topology, the rendering operator just wraps each received UnderlayItem to OverlayItem and sends
them to write.

Important: For purposes of topology rendering from inventory to network-topology, there are misused fields in
UnderlayItem as follows:

• item - contains node from network-topology part of inventory

• leafItem - contains node from inventory

In case of implementing UnderlayTopologyListener or InventoryListener you have to carefully adjust UnderlayItem
creation to these terms.

Output part

The output part of topology rendering is responsible for translating received overlay items to normalized nodes. In the
case of inventory rendering, this is where node information from inventory are combined with node information from
network-topology. This combined information is stored in our inventory-rendering model normalized node and passed
to the writer.

1464 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

The output part consists of two translators implementing the NodeTranslator and LinkTranslator interfaces.

NodeTranslator implementation - The NodeTranslator interface has one translate(OverlayItemWrapper
wrapper) method. For our purposes, there is one important thing in wrapper - the list of OverlayItems which
have one or more common UnderlayItems. Regardless of this list, in the case of rendering it will always contains
only one OverlayItem. This item has list of UnderlayItems, but again in case of rendering there will be only one
UnderlayItem item in this list. In NodeTranslator, the OverlayItem and corresponding UnderlayItem represent nodes
from the translating model.

The UnderlayItem has several attributes. How you will use these attributes in your rendering is up to you, as you
create this item in your topology operator. For example, as mentioned above, in our inventory rendering example is
an inventory node normalized node stored in the UnderlayItem leafNode attribute, and we also store node-id from
network-topology model in UnderlayItem itemId attribute. You can now use these attributes to build a normalized
node for your new model. How to read and create normalized nodes is out of scope of this document.

LinkTranslator implementation - The LinkTranslator interface also has one
translate(OverlayItemWrapper wrapper) method. In our inventory rendering this method returns
null, because the inventory model doesn’t have links. But if you also need links, this is the place where you
should translate it into a normalized node for your model. In LinkTranslator, the OverlayItem and corresponding
UnderlayItem represent links from the translating model. As in NodeTranslator, there will be only one OverlayItem
and one UnderlayItem in the corresponding lists.

Testing

If you want to test topoprocessing with some manually created underlay topologies (like in this guide), than you have
to tell Topoprocessing to listen for underlay topologies on Configuration datastore instead of Operational.

You can do this in this config file
<topoprocessing_directory>/topoprocessing-config/src/main/resources/
80-topoprocessing-config.xml.
Here you have to change
<datastore-type>OPERATIONAL</datastore-type>

to
<datastore-type>CONFIGURATION</datastore-type>.

Also you have to add dependency required to test “inventory” topologies.

In <topoprocessing_directory>/features/pom.xml
add <openflowplugin.version>latest_snapshot</openflowplugin.version> to properties
section
and add this dependency to dependencies section

<dependency>
<groupId>org.opendaylight.openflowplugin</groupId>
<artifactId>features-openflowplugin</artifactId>
<version>${openflowplugin.version}</version>
<classifier>features</classifier><type>xml</type>

</dependency>

latest_snapshot in <openflowplugin.version> replace with latest snapshot, which can be found here.

2.1. Developer Guide 1465

https://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/org/opendaylight/openflowplugin/openflowplugin/

OpenDaylight Documentation Documentation, Release Carbon

And in <topoprocessing_directory>/features/src/main/resources/features.xml
add <repository>mvn:org.opendaylight.openflowplugin/features-openflowplugin/
${openflowplugin.version}/xml/features</repository> to repositories
section.

Now after you rebuild project and start Karaf, you can install necessary features.

You can install all with one command:
feature:install odl-restconf-noauth odl-topoprocessing-inventory-rendering
odl-openflowplugin-southbound odl-openflowplugin-nsf-model

Now you can send messages to REST from any REST client (e.g. Postman in Chrome). Messages have to have
following headers:

Header Value
Content-Type: application/xml
Accept: application/xml
username: admin
password: admin

Firstly send topology request to http://localhost:8181/restconf/config/network-topology:network-topology/topology/
render:1 with method PUT. Example of simple rendering request:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<topology-id>render:1</topology-id>
<correlations xmlns="urn:opendaylight:topology:correlation" >

<output-model>inventory-rendering-model</output-model>
<correlation>

<correlation-id>1</correlation-id>
<type>rendering-only</type>
<correlation-item>node</correlation-item>
<rendering>
<underlay-topology>und-topo:1</underlay-topology>

</rendering>
</correlation>

</correlations>
</topology>

This request says that we want create topology with name render:1 and this topology should be stored in the inventory-
rendering-model and it should be created from topology flow:1 by node rendering.

Next we send the network-topology part of topology flow:1. So to the URL
http://localhost:8181/restconf/config/network-topology:network-topology/topology/und-topo:1 we PUT:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology"
xmlns:it="urn:opendaylight:model:topology:inventory"
xmlns:i="urn:opendaylight:inventory">

<topology-id>und-topo:1</topology-id>
<node>

<node-id>openflow:1</node-id>
<it:inventory-node-ref>

/i:nodes/i:node[i:id="openflow:1"]
</it:inventory-node-ref>
<termination-point>

1466 Chapter 2. Content for OpenDaylight Developers

http://localhost:8181/restconf/config/network-topology:network-topology/topology/render:1
http://localhost:8181/restconf/config/network-topology:network-topology/topology/render:1

OpenDaylight Documentation Documentation, Release Carbon

<tp-id>tp:1</tp-id>
<it:inventory-node-connector-ref>

/i:nodes/i:node[i:id="openflow:1"]/i:node-connector[i:id="openflow:1:1
→˓"]

</it:inventory-node-connector-ref>
</termination-point>

</node>
</topology>

And the last input will be inventory part of topology. To the URL http://localhost:8181/restconf/config/
opendaylight-inventory:nodes we PUT:

<nodes
xmlns="urn:opendaylight:inventory">
<node>

<id>openflow:1</id>
<node-connector>

<id>openflow:1:1</id>
<port-number

xmlns="urn:opendaylight:flow:inventory">1
</port-number>
<current-speed

xmlns="urn:opendaylight:flow:inventory">10000000
</current-speed>
<name

xmlns="urn:opendaylight:flow:inventory">s1-eth1
</name>
<supported

xmlns="urn:opendaylight:flow:inventory">
</supported>
<current-feature

xmlns="urn:opendaylight:flow:inventory">copper ten-gb-fd
</current-feature>
<configuration

xmlns="urn:opendaylight:flow:inventory">
</configuration>
<peer-features

xmlns="urn:opendaylight:flow:inventory">
</peer-features>
<maximum-speed

xmlns="urn:opendaylight:flow:inventory">0
</maximum-speed>
<advertised-features

xmlns="urn:opendaylight:flow:inventory">
</advertised-features>
<hardware-address

xmlns="urn:opendaylight:flow:inventory">0E:DC:8C:63:EC:D1
</hardware-address>
<state

xmlns="urn:opendaylight:flow:inventory">
<link-down>false</link-down>
<blocked>false</blocked>
<live>false</live>

</state>
<flow-capable-node-connector-statistics

xmlns="urn:opendaylight:port:statistics">
<receive-errors>0</receive-errors>
<receive-frame-error>0</receive-frame-error>

2.1. Developer Guide 1467

http://localhost:8181/restconf/config/opendaylight-inventory:nodes
http://localhost:8181/restconf/config/opendaylight-inventory:nodes

OpenDaylight Documentation Documentation, Release Carbon

<receive-over-run-error>0</receive-over-run-error>
<receive-crc-error>0</receive-crc-error>
<bytes>

<transmitted>595</transmitted>
<received>378</received>

</bytes>
<receive-drops>0</receive-drops>
<duration>

<second>28</second>
<nanosecond>410000000</nanosecond>

</duration>
<transmit-errors>0</transmit-errors>
<collision-count>0</collision-count>
<packets>

<transmitted>7</transmitted>
<received>5</received>

</packets>
<transmit-drops>0</transmit-drops>

</flow-capable-node-connector-statistics>
</node-connector>
<node-connector>

<id>openflow:1:LOCAL</id>
<port-number

xmlns="urn:opendaylight:flow:inventory">4294967294
</port-number>
<current-speed

xmlns="urn:opendaylight:flow:inventory">0
</current-speed>
<name

xmlns="urn:opendaylight:flow:inventory">s1
</name>
<supported

xmlns="urn:opendaylight:flow:inventory">
</supported>
<current-feature

xmlns="urn:opendaylight:flow:inventory">
</current-feature>
<configuration

xmlns="urn:opendaylight:flow:inventory">
</configuration>
<peer-features

xmlns="urn:opendaylight:flow:inventory">
</peer-features>
<maximum-speed

xmlns="urn:opendaylight:flow:inventory">0
</maximum-speed>
<advertised-features

xmlns="urn:opendaylight:flow:inventory">
</advertised-features>
<hardware-address

xmlns="urn:opendaylight:flow:inventory">BA:63:87:0C:76:41
</hardware-address>
<state

xmlns="urn:opendaylight:flow:inventory">
<link-down>false</link-down>
<blocked>false</blocked>
<live>false</live>

</state>

1468 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

<flow-capable-node-connector-statistics
xmlns="urn:opendaylight:port:statistics">
<receive-errors>0</receive-errors>
<receive-frame-error>0</receive-frame-error>
<receive-over-run-error>0</receive-over-run-error>
<receive-crc-error>0</receive-crc-error>
<bytes>

<transmitted>576</transmitted>
<received>468</received>

</bytes>
<receive-drops>0</receive-drops>
<duration>

<second>28</second>
<nanosecond>426000000</nanosecond>

</duration>
<transmit-errors>0</transmit-errors>
<collision-count>0</collision-count>
<packets>

<transmitted>6</transmitted>
<received>6</received>

</packets>
<transmit-drops>0</transmit-drops>

</flow-capable-node-connector-statistics>
</node-connector>
<serial-number

xmlns="urn:opendaylight:flow:inventory">None
</serial-number>
<manufacturer

xmlns="urn:opendaylight:flow:inventory">Nicira, Inc.
</manufacturer>
<hardware

xmlns="urn:opendaylight:flow:inventory">Open vSwitch
</hardware>
<software

xmlns="urn:opendaylight:flow:inventory">2.1.3
</software>
<description

xmlns="urn:opendaylight:flow:inventory">None
</description>
<ip-address

xmlns="urn:opendaylight:flow:inventory">10.20.30.40
</ip-address>

<meter-features
xmlns="urn:opendaylight:meter:statistics">
<max_bands>0</max_bands>
<max_color>0</max_color>
<max_meter>0</max_meter>

</meter-features>
<group-features

xmlns="urn:opendaylight:group:statistics">
<group-capabilities-supported

xmlns:x="urn:opendaylight:group:types">x:chaining
</group-capabilities-supported>
<group-capabilities-supported

xmlns:x="urn:opendaylight:group:types">x:select-weight
</group-capabilities-supported>
<group-capabilities-supported

xmlns:x="urn:opendaylight:group:types">x:select-liveness

2.1. Developer Guide 1469

OpenDaylight Documentation Documentation, Release Carbon

</group-capabilities-supported>
<max-groups>4294967040</max-groups>
<actions>67082241</actions>
<actions>0</actions>

</group-features>
</node>

</nodes>

After this, the expected result from a GET request to http://127.0.0.1:8181/restconf/operational/network-topology:
network-topology is:

<network-topology
xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<topology>

<topology-id>render:1</topology-id>
<node>

<node-id>openflow:1</node-id>
<node-augmentation

xmlns="urn:opendaylight:topology:inventory:rendering">
<ip-address>10.20.30.40</ip-address>
<serial-number>None</serial-number>
<manufacturer>Nicira, Inc.</manufacturer>
<description>None</description>
<hardware>Open vSwitch</hardware>
<software>2.1.3</software>

</node-augmentation>
<termination-point>

<tp-id>openflow:1:1</tp-id>
<tp-augmentation

xmlns="urn:opendaylight:topology:inventory:rendering">
<hardware-address>0E:DC:8C:63:EC:D1</hardware-address>
<current-speed>10000000</current-speed>
<maximum-speed>0</maximum-speed>
<name>s1-eth1</name>

</tp-augmentation>
</termination-point>
<termination-point>

<tp-id>openflow:1:LOCAL</tp-id>
<tp-augmentation

xmlns="urn:opendaylight:topology:inventory:rendering">
<hardware-address>BA:63:87:0C:76:41</hardware-address>
<current-speed>0</current-speed>
<maximum-speed>0</maximum-speed>
<name>s1</name>

</tp-augmentation>
</termination-point>

</node>
</topology>

</network-topology>

Use Cases

You can find use case examples on this wiki page.

1470 Chapter 2. Content for OpenDaylight Developers

http://127.0.0.1:8181/restconf/operational/network-topology:network-topology
http://127.0.0.1:8181/restconf/operational/network-topology:network-topology
https://wiki.opendaylight.org/view/Topology_Processing_Framework:Developer_Guide:Use_Case_Tutorial

OpenDaylight Documentation Documentation, Release Carbon

Key APIs and Interfaces

The basic provider class is TopoProcessingProvider which provides startup and shutdown methods. Otherwise, the
framework communicates via requests and outputs stored in the MD-SAL datastores.

API Reference Documentation

You can find API examples on this wiki page.

TTP Model Developer Guide

Overview

Table Type Patterns are a specification developed by the Open Networking Foundation to enable the description and
negotiation of subsets of the OpenFlow protocol. This is particularly useful for hardware switches that support Open-
Flow as it enables the to describe what features they do (and thus also what features they do not) support. More details
can be found in the full specification listed on the OpenFlow specifications page.

TTP Model Architecture

The TTP Model provides a YANG-modeled type for a TTP and allows them to be associated with a master list of
known TTPs, as well as active and supported TTPs with nodes in the MD-SAL inventory model.

Key APIs and Interfaces

The key API provided by the TTP Model feature is the ability to store a set of TTPs in the MD-SAL as well as associate
zero or one active TTPs and zero or more supported TTPs along with a given node in the MD-SAL inventory model.

API Reference Documentation

RESTCONF

See the generated RESTCONF API documentation at: http://localhost:8181/apidoc/explorer/index.html

Look for the onf-ttp module to expand and see the various RESTCONF APIs.

Java Bindings

As stated above there are 3 locations where a Table Type Pattern can be placed into the MD-SAL Data Store. They
correspond to 3 different REST API URIs:

1. restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/

2. restconf/config/opendaylight-inventory:nodes/node/{id}/
ttp-inventory-node:active_ttp/

3. restconf/config/opendaylight-inventory:nodes/node/{id}/
ttp-inventory-node:supported_ttps/

2.1. Developer Guide 1471

https://wiki.opendaylight.org/view/Topology_Processing_Framework:Developer_Guide:REST_API_Specification
https://www.opennetworking.org/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
http://localhost:8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

Note: Typically, these URIs are running on the machine the controller is on at port 8181. If you are on the same
machine they can thus be accessed at http://localhost:8181/<uri>

Using the TTP Model RESTCONF APIs

Setting REST HTTP Headers

Authentication

The REST API calls require authentication by default. The default method is to use basic auth with a user name and
password of ‘admin’.

Content-Type and Accept

RESTCONF supports both xml and json. This example focuses on JSON, but xml can be used just as easily. When
doing a PUT or POST be sure to specify the appropriate Conetnt-Type header: either application/json or
application/xml.

When doing a GET be sure to specify the appropriate Accept header: again, either application/json or
application/xml.

Content

The contents of a PUT or POST should be a OpenDaylight Table Type Pattern. An example of one is provided below.
The example can also be found at parser/sample-TTP-from-tests.ttp in the TTP git repository.

Sample Table Type Pattern (json).

{
"table-type-patterns": {

"table-type-pattern": [
{

"security": {
"doc": [

"This TTP is not published for use by ONF. It is an example
→˓and for",

"illustrative purposes only.",
"If this TTP were published for use it would include",
"guidance as to any security considerations in this doc

→˓member."
]

},
"NDM_metadata": {

"authority": "org.opennetworking.fawg",
"OF_protocol_version": "1.3.3",
"version": "1.0.0",
"type": "TTPv1",
"doc": [

"Example of a TTP supporting L2 (unicast, multicast,
→˓flooding), L3 (unicast only),",

"and an ACL table."

1472 Chapter 2. Content for OpenDaylight Developers

https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=parser/sample-TTP-from-tests.ttp;h=45130949b25c6f86b750959d27d04ec2208935fb;hb=HEAD

OpenDaylight Documentation Documentation, Release Carbon

],
"name": "L2-L3-ACLs"

},
"identifiers": [

{
"doc": [

"The VLAN ID of a locally attached L2 subnet on a Router."
],
"var": "<subnet_VID>"

},
{

"doc": [
"An OpenFlow group identifier (integer) identifying a

→˓group table entry",
"of the type indicated by the variable name"

],
"var": "<<group_entry_types/name>>"

}
],
"features": [

{
"doc": [

"Flow entry notification Extension - notification of
→˓changes in flow entries"

],
"feature": "ext187"

},
{

"doc": [
"Group notifications Extension - notification of changes

→˓in group or meter entries"
],
"feature": "ext235"

}
],
"meter_table": {

"meter_types": [
{

"name": "ControllerMeterType",
"bands": [

{
"type": "DROP",
"rate": "1000..10000",
"burst": "50..200"

}
]

},
{

"name": "TrafficMeter",
"bands": [

{
"type": "DSCP_REMARK",
"rate": "10000..500000",
"burst": "50..500"

},
{

"type": "DROP",
"rate": "10000..500000",

2.1. Developer Guide 1473

OpenDaylight Documentation Documentation, Release Carbon

"burst": "50..500"
}

]
}

],
"built_in_meters": [

{
"name": "ControllerMeter",
"meter_id": 1,
"type": "ControllerMeterType",
"bands": [

{
"rate": 2000,
"burst": 75

}
]

},
{

"name": "AllArpMeter",
"meter_id": 2,
"type": "ControllerMeterType",
"bands": [

{
"rate": 1000,
"burst": 50

}
]

}
]

},
"table_map": [

{
"name": "ControlFrame",
"number": 0

},
{

"name": "IngressVLAN",
"number": 10

},
{

"name": "MacLearning",
"number": 20

},
{

"name": "ACL",
"number": 30

},
{

"name": "L2",
"number": 40

},
{

"name": "ProtoFilter",
"number": 50

},
{

"name": "IPv4",
"number": 60

1474 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

},
{

"name": "IPv6",
"number": 80

}
],
"parameters": [

{
"doc": [

"documentation"
],
"name": "Showing-curt-how-this-works",
"type": "type1"

}
],
"flow_tables": [

{
"doc": [

"Filters L2 control reserved destination addresses and",
"may forward control packets to the controller.",
"Directs all other packets to the Ingress VLAN table."

],
"name": "ControlFrame",
"flow_mod_types": [

{
"doc": [

"This match/action pair allows for flow_mods that
→˓match on either",

"ETH_TYPE or ETH_DST (or both) and send the
→˓packet to the",

"controller, subject to metering."
],
"name": "Frame-To-Controller",
"match_set": [

{
"field": "ETH_TYPE",
"match_type": "all_or_exact"

},
{

"field": "ETH_DST",
"match_type": "exact"

}
],
"instruction_set": [

{
"doc": [

"This meter may be used to limit the rate
→˓of PACKET_IN frames",

"sent to the controller"
],
"instruction": "METER",
"meter_name": "ControllerMeter"

},
{

"instruction": "APPLY_ACTIONS",
"actions": [

{
"action": "OUTPUT",

2.1. Developer Guide 1475

OpenDaylight Documentation Documentation, Release Carbon

"port": "CONTROLLER"
}

]
}

]
}

],
"built_in_flow_mods": [

{
"doc": [

"Mandatory filtering of control frames with C-
→˓VLAN Bridge reserved DA."

],
"name": "Control-Frame-Filter",
"priority": "1",
"match_set": [

{
"field": "ETH_DST",
"mask": "0xfffffffffff0",
"value": "0x0180C2000000"

}
]

},
{

"doc": [
"Mandatory miss flow_mod, sends packets to

→˓IngressVLAN table."
],
"name": "Non-Control-Frame",
"priority": "0",
"instruction_set": [

{
"instruction": "GOTO_TABLE",
"table": "IngressVLAN"

}
]

}
]

}
],
"group_entry_types": [

{
"doc": [

"Output to a port, removing VLAN tag if needed.",
"Entry per port, plus entry per untagged VID per port."

],
"name": "EgressPort",
"group_type": "INDIRECT",
"bucket_types": [

{
"name": "OutputTagged",
"action_set": [

{
"action": "OUTPUT",
"port": "<port_no>"

}
]

},

1476 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

{
"name": "OutputUntagged",
"action_set": [

{
"action": "POP_VLAN"

},
{

"action": "OUTPUT",
"port": "<port_no>"

}
]

},
{

"opt_tag": "VID-X",
"name": "OutputVIDTranslate",
"action_set": [

{
"action": "SET_FIELD",
"field": "VLAN_VID",
"value": "<local_vid>"

},
{

"action": "OUTPUT",
"port": "<port_no>"

}
]

}
]

}
],
"flow_paths": [

{
"doc": [

"This object contains just a few examples of flow paths,
→˓it is not",

"a comprehensive list of the flow paths required for this
→˓TTP. It is",

"intended that the flow paths array could include either
→˓a list of",

"required flow paths or a list of specific flow paths
→˓that are not",

"required (whichever is more concise or more useful."
],
"name": "L2-2",
"path": [

"Non-Control-Frame",
"IV-pass",
"Known-MAC",
"ACLskip",
"L2-Unicast",
"EgressPort"

]
},
{

"name": "L2-3",
"path": [

"Non-Control-Frame",
"IV-pass",

2.1. Developer Guide 1477

OpenDaylight Documentation Documentation, Release Carbon

"Known-MAC",
"ACLskip",
"L2-Multicast",
"L2Mcast",
"[EgressPort]"

]
},
{

"name": "L2-4",
"path": [

"Non-Control-Frame",
"IV-pass",
"Known-MAC",
"ACL-skip",
"VID-flood",
"VIDflood",
"[EgressPort]"

]
},
{

"name": "L2-5",
"path": [

"Non-Control-Frame",
"IV-pass",
"Known-MAC",
"ACLskip",
"L2-Drop"

]
},
{

"name": "v4-1",
"path": [

"Non-Control-Frame",
"IV-pass",
"Known-MAC",
"ACLskip",
"L2-Router-MAC",
"IPv4",
"v4-Unicast",
"NextHop",
"EgressPort"

]
},
{

"name": "v4-2",
"path": [

"Non-Control-Frame",
"IV-pass",
"Known-MAC",
"ACLskip",
"L2-Router-MAC",
"IPv4",
"v4-Unicast-ECMP",
"L3ECMP",
"NextHop",
"EgressPort"

]
}

1478 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

]
}

]
}

}

Making a REST Call

In this example we’ll do a PUT to install the sample TTP from above into OpenDaylight and then retrieve it both as
json and as xml. We’ll use the Postman - REST Client for Chrome in the examples, but any method of accessing REST
should work.

First, we’ll fill in the basic information:

Fig. 2.67: Filling in URL, content, Content-Type and basic auth

1. Set the URL to http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/
onf-ttp:table-type-patterns/

2. Set the action to PUT

3. Click Headers and

4. Set a header for Content-Type to application/json

5. Make sure the content is set to raw and

6. Copy the sample TTP from above into the content

2.1. Developer Guide 1479

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm

OpenDaylight Documentation Documentation, Release Carbon

7. Click the Basic Auth tab and

8. Set the username and password to admin

9. Click Refresh headers

Fig. 2.68: Refreshing basic auth headers

After clicking Refresh headers, we can see that a new header (Authorization) has been created and this will allow
us to authenticate to make the REST call.

At this point, clicking send should result in a Status response of 200 OK indicating we’ve successfully PUT the TTP
into OpenDaylight.

We can now retrieve the TTP by:

1. Changing the action to GET

2. Setting an Accept header to application/json and

3. Pressing send

The same process can retrieve the content as xml by setting the Accept header to application/xml.

TTP CLI Tools Developer Guide

Overview

Table Type Patterns are a specification developed by the Open Networking Foundation to enable the description and
negotiation of subsets of the OpenFlow protocol. This is particularly useful for hardware switches that support Open-

1480 Chapter 2. Content for OpenDaylight Developers

https://www.opennetworking.org/

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.69: PUTting a TTP

2.1. Developer Guide 1481

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.70: Retrieving the TTP as json via a GET

1482 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.71: Retrieving the TTP as xml via a GET

2.1. Developer Guide 1483

OpenDaylight Documentation Documentation, Release Carbon

Flow as it enables the to describe what features they do (and thus also what features they do not) support. More details
can be found in the full specification listed on the OpenFlow specifications page.

The TTP CLI Tools provide a way for people interested in TTPs to read in, validate, output, and manipulate TTPs as
a self-contained, executable jar file.

TTP CLI Tools Architecture

The TTP CLI Tools use the TTP Model and the YANG Tools/RESTCONF codecs to translate between the Data
Transfer Objects (DTOs) and JSON/XML.

Command Line Options

This will cover the various options for the CLI Tools. For now, there are no options and it merely outputs fixed data
using the codecs.

User Network Interface Manager Plug-in (Unimgr) Developer Guide

Overview

The User Network Interface (UNI) Manager project within OpenDaylight provides data models and APIs that enable
software applications and service orchestrators to configure and provision connectivity services; in particular, Carrier
Ethernet services as defined by MEF Forum, in physical and virtual network elements.

Unimgr Architecture

Unimgr provides support for both service orchestration, via the Legato API, and network resource provisioning, via
the Presto API. These APIs, and the interfaces they provide, are defined by YANG models developed within MEF
in collaboration with ONF and IETF. An application/user can interact with Unimgr at either layer. For the Carbon
release, the YANG models are as follows:

Key APIs and Interfaces

Legato YANG models: https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=legato-api/src/main/yang;
hb=refs/heads/stable/carbon

Presto YANG models: https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=presto-api/src/main/yang;hb=
refs/heads/stable/carbon

Legato API Tree

module: mef-services

+--rw mef-services
+--rw mef-service* [svc-id]

+--rw evc
| +--rw unis
| | +--rw uni* [uni-id]
| | +--rw evc-uni-ce-vlans

1484 Chapter 2. Content for OpenDaylight Developers

https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=legato-api/src/main/yang;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=legato-api/src/main/yang;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=presto-api/src/main/yang;hb=refs/heads/stable/carbon
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=presto-api/src/main/yang;hb=refs/heads/stable/carbon

OpenDaylight Documentation Documentation, Release Carbon

| | | +--rw evc-uni-ce-vlan* [vid]
| | | +--rw vid -> /mef-interfaces:mef-interfaces/unis/uni[mef-

→˓interfaces:uni-id = current()/../../../uni-id]/ce-vlans/ce-vlan/vid
| | +--rw ingress-bwp-flows-per-cos!
| | | +--rw coupling-enabled? boolean
| | | +--rw bwp-flow-per-cos* [cos-name]
| | | +--rw cos-name -> /mef-global:mef-global/profiles/cos-names/

→˓cos-name/name
| | | +--rw bw-profile -> /mef-interfaces:mef-interfaces/unis/

→˓uni[mef-interfaces:uni-id = current()/../../../uni-id]/ingress-envelopes/envelope/
→˓env-id

| | +--rw egress-bwp-flows-per-eec!
| | | +--rw coupling-enabled? boolean
| | | +--rw bwp-flow-per-eec* [eec-name]
| | | +--rw eec-name -> /mef-global:mef-global/profiles/eec-names/

→˓eec-name/name
| | | +--rw bw-profile -> /mef-interfaces:mef-interfaces/unis/

→˓uni[mef-interfaces:uni-id = current()/../../../uni-id]/egress-envelopes/envelope/
→˓env-id

| | +--rw status
| | | +--ro oper-state-enabled? boolean
| | | +--ro available-status? mef-types:svc-endpoint-availability-type
| | +--rw uni-id -> /mef-interfaces:mef-interfaces/

→˓unis/uni/uni-id
| | +--rw role mef-types:evc-uni-role-type
| | +--rw admin-state-enabled? boolean
| | +--rw color-id? mef-types:cos-color-identifier-

→˓type
| | +--rw data-svc-frm-cos? -> /mef-global:mef-global/

→˓profiles/cos/cos-profile/id
| | +--rw l2cp-svc-frm-cos? -> /mef-global:mef-global/

→˓profiles/l2cp-cos/l2cp-profile/id
| | +--rw soam-svc-frm-cos? -> /mef-global:mef-global/

→˓profiles/cos/cos-profile/id
| | +--rw data-svc-frm-eec? -> /mef-global:mef-global/

→˓profiles/eec/eec-profile/id
| | +--rw l2cp-svc-frm-eec? -> /mef-global:mef-global/

→˓profiles/l2cp-eec/l2cp-profile/id
| | +--rw soam-svc-frm-eec? -> /mef-global:mef-global/

→˓profiles/eec/eec-profile/id
| | +--rw ingress-bw-profile-per-evc? -> /mef-interfaces:mef-interfaces/

→˓unis/uni[mef-interfaces:uni-id = current()/../uni-id]/ingress-envelopes/envelope/
→˓env-id

| | +--rw egress-bw-profile-per-evc? -> /mef-interfaces:mef-interfaces/
→˓unis/uni[mef-interfaces:uni-id = current()/../uni-id]/egress-envelopes/envelope/env-
→˓id

| | +--rw src-mac-addr-limit-enabled? boolean
| | +--rw src-mac-addr-limit? uint32
| | +--rw src-mac-addr-limit-interval? yang:timeticks
| | +--rw test-meg-enabled? boolean
| | +--rw test-meg? mef-types:identifier45
| | +--rw subscriber-meg-mip-enabled? boolean
| | +--rw subscriber-meg-mip? mef-types:identifier45
| +--rw status
| | +--ro oper-state-enabled? boolean
| | +--ro available-status? mef-types:virt-cx-availability-type
| +--rw sls-inclusions-by-cos
| | +--rw sls-inclusion-by-cos* [cos-name]

2.1. Developer Guide 1485

OpenDaylight Documentation Documentation, Release Carbon

| | +--rw cos-name -> /mef-global:mef-global/profiles/cos-names/cos-
→˓name/name

| +--rw sls-uni-inclusions!
| | +--rw sls-uni-inclusion-set* [pm-type pm-id uni-id1 uni-id2]
| | +--rw pm-type -> /mef-global:mef-global/slss/sls[mef-global:sls-id

→˓= current()/../../../evc-performance-sls]/perf-objs/perf-obj/pm-type
| | +--rw pm-id -> /mef-global:mef-global/slss/sls[mef-global:sls-id

→˓= current()/../../../evc-performance-sls]/perf-objs/perf-obj[mef-global:pm-type =
→˓current()/../pm-type]/pm-id

| | +--rw uni-id1 -> ../../../unis/uni/uni-id
| | +--rw uni-id2 -> ../../../unis/uni/uni-id
| +--rw sls-uni-exclusions!
| | +--rw sls-uni-exclusion-set* [pm-type pm-id uni-id1 uni-id2]
| | +--rw pm-type -> /mef-global:mef-global/slss/sls[mef-global:sls-id

→˓= current()/../../../evc-performance-sls]/perf-objs/perf-obj/pm-type
| | +--rw pm-id -> /mef-global:mef-global/slss/sls[mef-global:sls-id

→˓= current()/../../../evc-performance-sls]/perf-objs/perf-obj[mef-global:pm-type =
→˓current()/../pm-type]/pm-id

| | +--rw uni-id1 -> ../../../unis/uni/uni-id
| | +--rw uni-id2 -> ../../../unis/uni/uni-id
| +--rw evc-id mef-types:evc-id-type
| +--ro evc-status? mef-types:evc-status-type
| +--rw evc-type mef-types:evc-type
| +--rw admin-state-enabled? boolean
| +--rw elastic-enabled? boolean
| +--rw elastic-service? mef-types:identifier45
| +--rw max-uni-count? uint32
| +--rw preserve-ce-vlan-id? boolean
| +--rw cos-preserve-ce-vlan-id? boolean
| +--rw evc-performance-sls? -> /mef-global:mef-global/slss/sls/sls-id
| +--rw unicast-svc-frm-delivery? mef-types:data-svc-frame-delivery-type
| +--rw multicast-svc-frm-delivery? mef-types:data-svc-frame-delivery-type
| +--rw broadcast-svc-frm-delivery? mef-types:data-svc-frame-delivery-type
| +--rw evc-meg-id? mef-types:identifier45
| +--rw max-svc-frame-size? mef-types:max-svc-frame-size-type
+--rw svc-id mef-types:retail-svc-id-type
+--rw sp-id? -> /mef-global:mef-global/svc-providers/svc-provider/sp-id
+--rw svc-type? mef-types:mef-service-type
+--rw user-label? mef-types:identifier45
+--rw svc-entity? mef-types:service-entity-type

module: mef-global

+--rw mef-global
+--rw svc-providers!
| +--rw svc-provider* [sp-id]
| +--rw sp-id mef-types:svc-provider-type
+--rw cens!
| +--rw cen* [cen-id]
| +--rw cen-id mef-types:cen-type
| +--rw sp-id? -> /mef-global/svc-providers/svc-provider/sp-id
+--rw slss!
| +--rw sls* [sls-id]
| +--rw perf-objs
| | +--rw pm-time-interval uint64
| | +--rw pm-time-interval-increment uint64
| | +--rw unavail-flr-threshold-pp mef-types:simple-percent
| | +--rw consecutive-small-time-intervals uint64

1486 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

| | +--rw perf-obj* [pm-type pm-id]
| | +--rw pm-type mef-types:performance-

→˓metric-type
| | +--rw pm-id mef-types:identifier45
| | +--rw cos-name -> /mef-global/profiles/

→˓cos-names/cos-name/name
| | +--rw fd-pp mef-types:simple-percent
| | +--rw fd-range-pp mef-types:simple-percent
| | +--rw fd-perf-obj uint64
| | +--rw fd-range-perf-obj uint64
| | +--rw fd-mean-perf-obj uint64
| | +--rw ifdv-pp mef-types:simple-percent
| | +--rw ifdv-pair-interval mef-types:simple-percent
| | +--rw ifdv-perf-obj uint64
| | +--rw flr-perf-obj uint64
| | +--rw avail-pp mef-types:simple-percent
| | +--rw hli-perf-obj uint64
| | +--rw chli-consecutive-small-time-intervals uint64
| | +--rw chli-perf-obj uint64
| | +--rw min-uni-pairs-avail uint64
| | +--rw gp-avail-pp mef-types:simple-percent
| +--rw sls-id mef-types:cen-type
| +--rw sp-id? -> /mef-global/svc-providers/svc-provider/sp-id
+--rw subscribers!
| +--rw subscriber* [sub-id]
| +--rw sub-id mef-types:subscriber-type
| +--rw sp-id? -> /mef-global/svc-providers/svc-provider/sp-id
| +--rw cen-id? -> /mef-global/cens/cen/cen-id
+--rw profiles!

+--rw cos-names
| +--rw cos-name* [name]
| +--rw name mef-types:identifier45
+--rw eec-names
| +--rw eec-name* [name]
| +--rw name mef-types:identifier45
+--rw ingress-bwp-flows
| +--rw bwp-flow* [bw-profile]
| +--rw bw-profile mef-types:identifier45
| +--rw user-label? mef-types:identifier45
| +--rw cir? mef-types:bwp-cir-type
| +--rw cir-max? mef-types:bwp-cir-type
| +--rw cbs? mef-types:bwp-cbs-type
| +--rw eir? mef-types:bwp-eir-type
| +--rw eir-max? mef-types:bwp-eir-type
| +--rw ebs? mef-types:bwp-ebs-type
| +--rw coupling-enabled? boolean
| +--rw color-mode? mef-types:bwp-color-mode-type
| +--rw coupling-flag? mef-types:bwp-coupling-flag-type
+--rw egress-bwp-flows
| +--rw bwp-flow* [bw-profile]
| +--rw bw-profile mef-types:identifier45
| +--rw user-label? mef-types:identifier45
| +--rw cir? mef-types:bwp-cir-type
| +--rw cir-max? mef-types:bwp-cir-type
| +--rw cbs? mef-types:bwp-cbs-type
| +--rw eir? mef-types:bwp-eir-type
| +--rw eir-max? mef-types:bwp-eir-type
| +--rw ebs? mef-types:bwp-ebs-type

2.1. Developer Guide 1487

OpenDaylight Documentation Documentation, Release Carbon

| +--rw coupling-enabled? boolean
| +--rw color-mode? mef-types:bwp-color-mode-type
| +--rw coupling-flag? mef-types:bwp-coupling-flag-type
+--rw l2cp-cos
| +--rw l2cp-profile* [id]
| +--rw l2cps
| | +--rw l2cp* [dest-mac-addr peering-proto-name]
| | +--rw dest-mac-addr yang:mac-address
| | +--rw peering-proto-name mef-types:identifier45
| | +--rw protocol? mef-types:l2cp-peering-protocol-type
| | +--rw protocol-id? yang:hex-string
| | +--rw cos-name? -> /mef-global/profiles/cos-names/cos-

→˓name/name
| | +--rw handling? mef-types:l2cp-handling-type
| | +--rw subtype* yang:hex-string
| +--rw id mef-types:identifier45
| +--rw user-label? mef-types:identifier45
+--rw l2cp-eec
| +--rw l2cp-profile* [id]
| +--rw l2cps
| | +--rw l2cp* [dest-mac-addr peering-proto-name]
| | +--rw dest-mac-addr yang:mac-address
| | +--rw peering-proto-name mef-types:identifier45
| | +--rw protocol? mef-types:l2cp-peering-protocol-type
| | +--rw protocol-id? yang:hex-string
| | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-

→˓name/name
| | +--rw handling? mef-types:l2cp-handling-type
| | +--rw subtype* yang:hex-string
| +--rw id mef-types:identifier45
| +--rw user-label? mef-types:identifier45
+--rw l2cp-peering
| +--rw l2cp-profile* [id]
| +--rw l2cps
| | +--rw l2cp* [dest-mac-addr peering-proto-name]
| | +--rw dest-mac-addr yang:mac-address
| | +--rw peering-proto-name mef-types:identifier45
| | +--rw protocol? mef-types:l2cp-peering-protocol-type
| | +--rw protocol-id? yang:hex-string
| | +--rw subtype* yang:hex-string
| +--rw id mef-types:identifier45
| +--rw user-label? mef-types:identifier45
+--rw elmi
| +--rw elmi-profile* [id]
| +--rw id mef-types:identifier45
| +--rw user-label? mef-types:identifier45
| +--rw polling-counter? mef-types:elmi-polling-counter-type
| +--rw status-error-threshold? mef-types:elmi-status-error-threshold-

→˓type
| +--rw polling-timer? mef-types:elmi-polling-timer-type
| +--rw polling-verification-timer? mef-types:elmi-polling-verification-

→˓timer-type
+--rw eec
| +--rw eec-profile* [id]
| +--rw id mef-types:identifier45
| +--rw (eec-id)?
| +--:(pcp)
| | +--rw eec-pcp!

1488 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

| | +--rw default-pcp-eec-name? -> /mef-global/profiles/eec-names/
→˓eec-name/name

| | +--rw default-pcp-color? mef-types:cos-color-type
| | +--rw pcp* [pcp-value]
| | +--rw pcp-value mef-types:ieee8021p-priority-type
| | +--rw discard-value? boolean
| | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-

→˓name/name
| | +--rw color? mef-types:cos-color-type
| +--:(dscp)
| +--rw eec-dscp!
| +--rw default-ipv4-eec-name? -> /mef-global/profiles/eec-names/

→˓eec-name/name
| +--rw default-ipv4-color? mef-types:cos-color-type
| +--rw default-ipv6-eec-name? -> /mef-global/profiles/eec-names/

→˓eec-name/name
| +--rw default-ipv6-color? mef-types:cos-color-type
| +--rw ipv4-dscp* [dscp-value]
| | +--rw dscp-value inet:dscp
| | +--rw discard-value? boolean
| | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-

→˓name/name
| | +--rw color? mef-types:cos-color-type
| +--rw ipv6-dscp* [dscp-value]
| +--rw dscp-value inet:dscp
| +--rw discard-value? boolean
| +--rw eec-name? -> /mef-global/profiles/eec-names/eec-

→˓name/name
| +--rw color? mef-types:cos-color-type
+--rw cos

+--rw cos-profile* [id]
+--rw id mef-types:identifier45
+--rw (cos-id)?

+--:(evc)
| +--rw cos-evc!
| +--rw default-evc-cos-name? -> /mef-global/profiles/cos-names/

→˓cos-name/name
| +--rw default-evc-color? mef-types:cos-color-type
+--:(pcp)
| +--rw cos-pcp!
| +--rw default-pcp-cos-name? -> /mef-global/profiles/cos-names/

→˓cos-name/name
| +--rw default-pcp-color? mef-types:cos-color-type
| +--rw pcp* [pcp-value]
| +--rw pcp-value mef-types:ieee8021p-priority-type
| +--rw discard-value? boolean
| +--rw cos-name? -> /mef-global/profiles/cos-names/cos-

→˓name/name
| +--rw color? mef-types:cos-color-type
+--:(dscp)

+--rw cos-dscp!
+--rw default-ipv4-cos-name? -> /mef-global/profiles/cos-names/

→˓cos-name/name
+--rw default-ipv4-color? mef-types:cos-color-type
+--rw default-ipv6-cos-name? -> /mef-global/profiles/cos-names/

→˓cos-name/name
+--rw default-ipv6-color? mef-types:cos-color-type
+--rw ipv4-dscp* [dscp-value]

2.1. Developer Guide 1489

OpenDaylight Documentation Documentation, Release Carbon

| +--rw dscp-value inet:dscp
| +--rw discard-value? boolean
| +--rw cos-name? -> /mef-global/profiles/cos-names/cos-

→˓name/name
| +--rw color? mef-types:cos-color-type
+--rw ipv6-dscp* [dscp-value]

+--rw dscp-value inet:dscp
+--rw discard-value? boolean
+--rw cos-name? -> /mef-global/profiles/cos-names/cos-

→˓name/name
+--rw color? mef-types:cos-color-type

Presto API Tree

module: onf-core-network-module

+--rw forwarding-constructs
+--rw forwarding-construct* [uuid]

+--rw uuid string
+--rw layerProtocolName? onf-cnt:LayerProtocolName
+--rw lowerLevelFc* -> /forwarding-constructs/forwarding-construct/uuid
+--rw fcRoute* [uuid]
| +--rw uuid string
| +--rw fc* -> /forwarding-constructs/forwarding-construct/uuid
+--rw fcPort* [topology node tp]
| +--rw topology nt:topology-ref
| +--rw node nt:node-ref
| +--rw tp nt:tp-ref
| +--rw role? onf-cnt:PortRole
| +--rw fcPortDirection? onf-cnt:PortDirection
+--rw fcSpec
| +--rw uuid? string
| +--rw fcPortSpec* [uuid]
| | +--rw uuid string
| | +--rw ingressFcPortSet* [topology node tp]
| | | +--rw topology nt:topology-ref
| | | +--rw node nt:node-ref
| | | +--rw tp nt:tp-ref
| | +--rw egressFcPortSet* [topology node tp]
| | | +--rw topology nt:topology-ref
| | | +--rw node nt:node-ref
| | | +--rw tp nt:tp-ref
| | +--rw role? string
| +--rw nrp:nrp-ce-fcspec-attrs
| +--rw nrp:connectionType? nrp-types:NRP_ConnectionType
| +--rw nrp:unicastFrameDelivery? nrp-types:NRP_ServiceFrameDelivery
| +--rw nrp:multicastFrameDelivery? nrp-types:NRP_ServiceFrameDelivery
| +--rw nrp:broadcastFrameDelivery? nrp-types:NRP_ServiceFrameDelivery
| +--rw nrp:vcMaxServiceFrame? nrp-types:NRP_PositiveInteger
| +--rw nrp:vcId? nrp-types:NRP_PositiveInteger
+--rw forwardingDirection? onf-cnt:ForwardingDirection

augment /nt:network-topology/nt:topology/nt:node/nt:termination-point:

+--rw ltp-attrs
+--rw lpList* [uuid]

1490 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

| +--rw uuid string
| +--rw layerProtocolName? onf-cnt:LayerProtocolName
| +--rw lpSpec
| | +--rw adapterSpec
| | | +--rw nrp:nrp-conn-adapt-spec-attrs
| | | | +--rw nrp:sourceMacAddressLimit
| | | | | +--rw nrp:enabled? boolean
| | | | | +--rw nrp:limit? NRP_NaturalNumber
| | | | | +--rw nrp:timeInterval? NRP_NaturalNumber
| | | | +--rw nrp:CeExternalInterface
| | | | | +--rw nrp:physicalLayer? nrp-types:NRP_PhysicalLayer
| | | | | +--rw nrp:syncMode* [linkId]
| | | | | | +--rw nrp:linkId string
| | | | | | +--rw nrp:syncModeEnabled? boolean
| | | | | +--rw nrp:numberOfLinks? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:resiliency? nrp-types:NRP_

→˓InterfaceResiliency
| | | | | +--rw nrp:portConvsIdToAggLinkMap
| | | | | | +--rw nrp:conversationId? NRP_NaturalNumber
| | | | | | +--rw nrp:linkId? NRP_NaturalNumber
| | | | | +--rw nrp:maxFrameSize? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:linkOamEnabled? boolean
| | | | | +--rw nrp:tokenShareEnabled? boolean
| | | | | +--rw nrp:serviceProviderUniId? string
| | | | +--rw nrp:coloridentifier
| | | | | +--rw (identifier)?
| | | | | +--:(sap-color-id)
| | | | | | +--rw nrp:serviceAccessPointColorId
| | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
| | | | | +--:(pcp-color-id)
| | | | | | +--rw nrp:pcpColorId
| | | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
| | | | | | +--rw nrp:pcpValue* nrp-types:NRP_NaturalNumber
| | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
| | | | | +--:(dei-color-id)
| | | | | | +--rw nrp:deiColorId
| | | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
| | | | | | +--rw nrp:deiValue* nrp-types:NRP_NaturalNumber
| | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
| | | | | +--:(desp-color-id)
| | | | | +--rw nrp:despColorId
| | | | | +--rw nrp:ipVersion? nrp-types:NRP_IpVersion
| | | | | +--rw nrp:dscpValue* nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
| | | | +--rw nrp:ingressBwpFlow
| | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
| | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
| | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
| | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:egressBwpFlow
| | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger

2.1. Developer Guide 1491

OpenDaylight Documentation Documentation, Release Carbon

| | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
| | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
| | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:l2cpAddressSet? nrp-types:NRP_L2cpAddressSet
| | | | +--rw nrp:l2cpPeering* [linkId]
| | | | +--rw nrp:destinationMacAddress? string
| | | | +--rw nrp:protocolType? NRP_ProtocolFrameType
| | | | +--rw nrp:linkId string
| | | | +--rw nrp:protocolId? string
| | | +--rw nrp:nrp-ivc-endpoint-conn-adapt-spec-attrs
| | | | +--rw nrp:ivcEndPointId? string
| | | | +--rw nrp:testMegEnabled? boolean
| | | | +--rw nrp:ivcEndPointRole? nrp-types:NRP_EndPointRole
| | | | +--rw nrp:ivcEndPointMap* [vlanId]
| | | | | +--rw nrp:vlanId nrp-types:NRP_PositiveInteger
| | | | | +--rw (endpoint-map-form)?
| | | | | +--:(map-form-e)
| | | | | | +--rw nrp:enni-svid* [vid]
| | | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
| | | | | +--:(map-form-t)
| | | | | | +--rw nrp:root-svid? nrp-types:NRP_PositiveInteger
| | | | | | +--rw nrp:leaf-svid? nrp-types:NRP_PositiveInteger
| | | | | +--:(map-form-v)
| | | | | | +--rw nrp:vuni-vid? nrp-types:NRP_PositiveInteger
| | | | | | +--rw nrp:enni-cevid* [vid]
| | | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
| | | | | +--:(map-form-u)
| | | | | +--rw nrp:cvid* [vid]
| | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
| | | | +--rw nrp:subscriberMegMipEnabled? boolean
| | | +--rw nrp:nrp-evc-endpoint-conn-adapt-spec-attrs
| | | +--rw nrp:sourceMacAddressLimit
| | | | +--rw nrp:enabled? boolean
| | | | +--rw nrp:limit? NRP_NaturalNumber
| | | | +--rw nrp:timeInterval? NRP_NaturalNumber
| | | +--rw nrp:CeExternalInterface
| | | | +--rw nrp:physicalLayer? nrp-types:NRP_PhysicalLayer
| | | | +--rw nrp:syncMode* [linkId]
| | | | | +--rw nrp:linkId string
| | | | | +--rw nrp:syncModeEnabled? boolean
| | | | +--rw nrp:numberOfLinks? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:resiliency? nrp-types:NRP_

→˓InterfaceResiliency
| | | | +--rw nrp:portConvsIdToAggLinkMap
| | | | | +--rw nrp:conversationId? NRP_NaturalNumber
| | | | | +--rw nrp:linkId? NRP_NaturalNumber
| | | | +--rw nrp:maxFrameSize? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:linkOamEnabled? boolean
| | | | +--rw nrp:tokenShareEnabled? boolean
| | | | +--rw nrp:serviceProviderUniId? string
| | | +--rw nrp:coloridentifier

1492 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

| | | | +--rw (identifier)?
| | | | +--:(sap-color-id)
| | | | | +--rw nrp:serviceAccessPointColorId
| | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
| | | | +--:(pcp-color-id)
| | | | | +--rw nrp:pcpColorId
| | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
| | | | | +--rw nrp:pcpValue* nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
| | | | +--:(dei-color-id)
| | | | | +--rw nrp:deiColorId
| | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
| | | | | +--rw nrp:deiValue* nrp-types:NRP_NaturalNumber
| | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
| | | | +--:(desp-color-id)
| | | | +--rw nrp:despColorId
| | | | +--rw nrp:ipVersion? nrp-types:NRP_IpVersion
| | | | +--rw nrp:dscpValue* nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:color? nrp-types:NRP_FrameColor
| | | +--rw nrp:ingressBwpFlow
| | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
| | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
| | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
| | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
| | | +--rw nrp:egressBwpFlow
| | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
| | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
| | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
| | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
| | | +--rw nrp:l2cpAddressSet? nrp-types:NRP_L2cpAddressSet
| | | +--rw nrp:l2cpPeering* [linkId]
| | | | +--rw nrp:destinationMacAddress? string
| | | | +--rw nrp:protocolType? NRP_ProtocolFrameType
| | | | +--rw nrp:linkId string
| | | | +--rw nrp:protocolId? string
| | | +--rw nrp:evcEndPointId? nrp-types:NRP_PositiveInteger
| | | +--rw nrp:testMegEnabled? boolean
| | | +--rw nrp:evcEndPointRole? nrp-types:NRP_EvcEndPointRole
| | | +--rw nrp:evcEndPointMap* [vid]
| | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
| | | +--rw nrp:subscriberMegMipEbabled? boolean
| | +--rw terminationSpec
| | | +--rw nrp:nrp-termination-spec-attrs
| | | | +--rw nrp:physicalLayer? nrp-types:NRP_PhysicalLayer

2.1. Developer Guide 1493

OpenDaylight Documentation Documentation, Release Carbon

| | | | +--rw nrp:syncMode* [linkId]
| | | | | +--rw nrp:linkId string
| | | | | +--rw nrp:syncModeEnabled? boolean
| | | | +--rw nrp:numberOfLinks? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:resiliency? nrp-types:NRP_InterfaceResiliency
| | | | +--rw nrp:portConvsIdToAggLinkMap
| | | | | +--rw nrp:conversationId? NRP_NaturalNumber
| | | | | +--rw nrp:linkId? NRP_NaturalNumber
| | | | +--rw nrp:maxFrameSize? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:linkOamEnabled? boolean
| | | | +--rw nrp:tokenShareEnabled? boolean
| | | | +--rw nrp:serviceProviderUniId? string
| | | +--rw nrp:nrp-uni-termination-attrs
| | | +--rw nrp:defaultCeVlanId? nrp-types:NRP_PositiveInteger
| | | +--rw nrp:uniMegEnabled? boolean
| | | +--rw nrp:elmiEnabled? boolean
| | | +--rw nrp:serviceprovideruniprofile? string
| | | +--rw nrp:operatoruniprofile? string
| | | +--rw nrp:ingressBwpUni
| | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
| | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
| | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
| | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
| | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
| | | +--rw nrp:egressBwpUni
| | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
| | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
| | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
| | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
| | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
| | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
| | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
| | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
| | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
| | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
| | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
| | +--rw adapterPropertySpecList* [uuid]
| | | +--rw uuid string
| | +--rw providerViewSpec
| | +--rw serverSpecList* [uuid]
| | +--rw uuid string
| +--rw configuredClientCapacity? string
| +--rw lpDirection? onf-cnt:TerminationDirection
| +--rw terminationState? string
+--rw ltpSpec
+--rw ltpDirection? onf-cnt:TerminationDirection

1494 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Unified Secure Channel

Overview

The Unified Secure Channel (USC) feature provides REST API, manager, and plugin for unified secure channels. The
REST API provides a northbound api. The manager monitors, maintains, and provides channel related services. The
plugin handles the lifecycle of channels.

USC Channel Architecture

• USC Agent

– The USC Agent provides proxy and agent functionality on top of all standard protocols supported by the
device. It initiates call-home with the controller, maintains live connections with with the controller, acts
as a demuxer/muxer for packets with the USC header, and authenticates the controller.

• USC Plugin

– The USC Plugin is responsible for communication between the controller and the USC agent . It responds
to call-home with the controller, maintains live connections with the devices, acts as a muxer/demuxer for
packets with the USC header, and provides support for TLS/DTLS.

• USC Manager

– The USC Manager handles configurations, high availability, security, monitoring, and clustering support
for USC.

• USC UI

– The USC UI is responsible for displaying a graphical user interface representing the state of USC in the
OpenDaylight DLUX UI.

USC Channel APIs and Interfaces

This section describes the APIs for interacting with the unified secure channels.

USC Channel Topology API

The USC project maintains a topology that is YANG-based in MD-SAL. These models are available via RESTCONF.

• Name: view-channel

• URL: http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/restconf/
operations/usc-channel:view-channel

• Description: Views the current state of the USC environment.

API Reference Documentation

Go to http://\protect\T1\textdollar\protect\T1\textbraceleftipaddress\protect\T1\textbraceright:8181/apidoc/explorer/
index.html, sign in, and expand the usc-channel panel. From there, users can execute various API calls to test their
USC deployment.

2.1. Developer Guide 1495

http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/usc-channel:view-channel
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/restconf/operations/usc-channel:view-channel
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html
http://\protect \T1\textdollar \protect \T1\textbraceleft ipaddress\protect \T1\textbraceright :8181/apidoc/explorer/index.html

OpenDaylight Documentation Documentation, Release Carbon

Virtual Tenant Network (VTN)

OpenDaylight Virtual Tenant Network (VTN) Overview

OpenDaylight Virtual Tenant Network (VTN) is an application that provides multi-tenant virtual network on an SDN
controller.

Conventionally, huge investment in the network systems and operating expenses are needed because the network is
configured as a silo for each department and system. Therefore various network appliances must be installed for each
tenant and those boxes cannot be shared with others. It is a heavy work to design, implement and operate the entire
complex network.

The uniqueness of VTN is a logical abstraction plane. This enables the complete separation of logical plane from
physical plane. Users can design and deploy any desired network without knowing the physical network topology or
bandwidth restrictions.

VTN allows the users to define the network with a look and feel of conventional L2/L3 network. Once the network
is designed on VTN, it will automatically be mapped into underlying physical network, and then configured on the
individual switch leverage SDN control protocol. The definition of logical plane makes it possible not only to hide the
complexity of the underlying network but also to better manage network resources. It achieves reducing reconfigu-
ration time of network services and minimizing network configuration errors. OpenDaylight Virtual Tenant Network
(VTN) is an application that provides multi-tenant virtual network on an SDN controller. It provides API for creating
a common virtual network irrespective of the physical network.

It is implemented as two major components

• VTN Manager

• VTN Coordinator

VTN Manager

An OpenDaylight Plugin that interacts with other modules to implement the components of the VTN model. It also
provides a REST interface to configure VTN components in OpenDaylight. VTN Manager is implemented as one
plugin to the OpenDaylight. This provides a REST interface to create/update/delete VTN components. The user
command in VTN Coordinator is translated as REST API to VTN Manager by the OpenDaylight Driver component.
In addition to the above mentioned role, it also provides an implementation to the OpenStack L2 Network Functions
API.

Function Outline

The table identifies the functions and the interface used by VTN Components:

Compo-
nent

Interface Purpose

VTN
Manager

RESTful API Configure VTN Virtualization model components in OpenDaylight

VTN
Manager

Neutron API
implementa-
tion

Handle Networks API from OpenStack (Neutron Interface)

VTN
Coordi-
nator

RESTful API (1) Uses the RESTful interface of VTN Manager and configures VTN Virtualization
model components in OpenDaylight. (2) Handles multiple OpenDaylight
orchestration. (3) Provides API to read the physical network details. See samples for
usage.

1496 Chapter 2. Content for OpenDaylight Developers

https://wiki.OpenDaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:L2_Network_Example_Using_VTN_Virtualization

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.72: VTN Architecture

2.1. Developer Guide 1497

OpenDaylight Documentation Documentation, Release Carbon

Feature Overview

There are three features

• odl-vtn-manager provides VTN Manager’s JAVA API.

• odl-vtn-manager-rest provides VTN Manager’s REST API.

• odl-vtn-manager-neutron provides the integration with Neutron interface.

REST Conf documentation for VTN Manager, please refer to: https://nexus.opendaylight.org/content/sites/site/org.
opendaylight.vtn/boron/manager.model/apidocs/index.html

For VTN Java API documentation, please refer to: https://nexus.opendaylight.org/content/sites/site/org.opendaylight.
vtn/boron/apidocs/index.html

Once the Karaf distribution is up, install dlux and apidocs.

feature:install odl-dlux-core odl-dluxapps-applications odl-mdsal-apidocs

Logging In

To Log in to DLUX, after installing the application:

• Open a browser and enter the login URL as http://<OpenDaylight-IP>:8181/index.html

Note: Replace “<OpenDaylight-IP>” with the IP address of OpenDaylight based on your environment.

• Login to the application with user ID and password credentials as admin.

Note: admin is the only default user available for DLUX in this release.

• In the right hand side frame, click “Yang UI”.

YANG documentation for VTN Manager, please refer to: https://nexus.opendaylight.org/content/sites/site/org.
opendaylight.vtn/boron/manager.model/apidocs/index.html

VTN Coordinator

The VTN Coordinator is an external application that provides a REST interface for an user to use OpenDaylight VTN
Virtualization. It interacts with the VTN Manager plugin to implement the user configuration. It is also capable of
multiple OpenDaylight orchestration. It realizes VTN provisioning in OpenDaylight instances. In the OpenDaylight
architecture VTN Coordinator is part of the network application, orchestration and services layer. VTN Coordinator
will use the REST interface exposed by the VTN Manger to realize the virtual network using OpenDaylight. It uses
OpenDaylight APIs (REST) to construct the virtual network in OpenDaylight instances. It provides REST APIs for
northbound VTN applications and supports virtual networks spanning across multiple OpenDaylight by coordinating
across OpenDaylight.

VTN Coordinator Components:

• Transaction Coordinator

• Unified Provider Physical Layer (UPPL)

• Unified Provider Logical LAyer (UPLL)

1498 Chapter 2. Content for OpenDaylight Developers

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/apidocs/index.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/apidocs/index.html
http:/
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html

OpenDaylight Documentation Documentation, Release Carbon

• OpenDaylight Controller Diver (ODC Driver)

OpenDaylight Virtual Tenant Network (VTN) API Overview

The VTN API module is a sub component of the VTN Coordinator and provides the northbound REST API interface
for VTN applications. It consists of two subcomponents:

• Web Server

• VTN service Java API Library

Fig. 2.73: VTN-Coordinator_api-architechture

Web Server

The Web Server module handles the REST APIs received from the VTN applications. It translates the REST APIs to
the appropriate Java APIs.

The main functions of this module are:

• Starts via the startup script catalina.sh.

• VTN Application sends HTTP request to Web server in XML or JSON format.

• Creates a session and acquire a read/write lock.

• Invokes the VTN Service Java API Library corresponding to the specified URI.

• Returns the response to the VTN Application.

WebServer Class Details

The list below shows the classes available for Web Server module and their descriptions:

Init Manager It is a singleton class for executing the acquisition of configuration information from properties file, log
initialization, initialization of VTN Service Java API Library. Executed by init() of VtnServiceWebAPIServlet.

Configuration Manager Maintains the configuration information acquired from properties file.

VtnServiceCommonUtil Utility class

VtnServiceWebUtil Utility class

2.1. Developer Guide 1499

OpenDaylight Documentation Documentation, Release Carbon

VtnServiceWebAPIServlet Receives HTTP request from VTN Application and calls the method of corresponding
VtnServiceWebAPIHandler. herits class HttpServlet, and overrides doGet(), doPut(), doDelete(), doPost().

VtnServiceWebAPIHandler Creates JsonObject(com.google.gson) from HTTP request, and calls method of corre-
sponding VtnServiceWebAPIController.

VtnServiceWebAPIController Creates RestResource() class and calls UPLL API/UPPL API through Java API. the
time of calling UPLL API/UPPL API, performs the creation/deletion of session, acquisition/release of configu-
ration mode, acquisition/release of read lock by TC API through Java API.

Data Converter Converts HTTP request to JsonObject and JsonXML to JSON.

VTN Service Java API Library

It provides the Java API library to communicate with the lower layer modules in the VTN Coordinator. The main
functions of this library are:

• Creates an IPC client session to the lower layer.

• Converts the request to IPC framework format.

• Invokes the lower layer API (i.e. UPPL API, UPLL API, TC API).

• Returns the response from the lower layer to the web server

• VTN Service Java API Library Class Details

Feature Overview

VTN Coordinator doesn’t have Karaf features.

For VTN Coordinator REST API, please refer to: https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_
Network_%28VTN%29:VTN_Coordinator:RestApi

Usage Examples

• L2 Network using Single Controller

YANG Tools Developer Guide

Overview

YANG Tools is set of libraries and tooling providing support for use YANG for Java (or other JVM-based language)
projects and applications.

YANG Tools provides following features in OpenDaylight:

• parsing of YANG sources and semantic inference of relationship across YANG models as defined in RFC6020

• representation of YANG-modeled data in Java

– Normalized Node representation - DOM-like tree model, which uses conceptual meta-model more tai-
lored to YANG and OpenDaylight use-cases than a standard XML DOM model allows for.

• serialization / deserialization of YANG-modeled data driven by YANG models

– XML - as defined in RFC6020

1500 Chapter 2. Content for OpenDaylight Developers

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:VTN_Coordinator:RestApi
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:VTN_Coordinator:RestApi
https://wiki.OpenDaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:How_to_configure_L2_Network_with_Single_Controller
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc6020

OpenDaylight Documentation Documentation, Release Carbon

– JSON - as defined in draft-lhotka-netmod-yang-json-01

– support for third-party generators processing YANG models.

Architecture

YANG Tools project consists of following logical subsystems:

• Commons - Set of general purpose code, which is not specific to YANG, but is also useful outside YANG Tools
implementation.

• YANG Model and Parser - YANG semantic model and lexical and semantic parser of YANG models, which
creates in-memory cross-referenced represenation of YANG models, which is used by other components to
determine their behaviour based on the model.

• YANG Data - Definition of Normalized Node APIs and Data Tree APIs, reference implementation of these
APIs and implementation of XML and JSON codecs for Normalized Nodes.

• YANG Maven Plugin - Maven plugin which integrates YANG parser into Maven build lifecycle and provides
code-generation framework for components, which wants to generate code or other artefacts based on YANG
model.

Concepts

Project defines base concepts and helper classes which are project-agnostic and could be used outside of YANG Tools
project scope.

Components

• yang-common

• yang-data-api

• yang-data-codec-gson

• yang-data-codec-xml

• yang-data-impl

• yang-data-jaxen

• yang-data-transform

• yang-data-util

• yang-maven-plugin

• yang-maven-plugin-it

• yang-maven-plugin-spi

• yang-model-api

• yang-model-export

• yang-model-util

• yang-parser-api

• yang-parser-impl

2.1. Developer Guide 1501

https://tools.ietf.org/html/rfc6020

OpenDaylight Documentation Documentation, Release Carbon

YANG Model API

Class diagram of yang model API

Fig. 2.74: YANG Model API

YANG Parser

Yang Statement Parser works on the idea of statement concepts as defined in RFC6020, section 6.3. We come up
here with basic ModelStatement and StatementDefinition, following RFC6020 idea of having sequence of statements,
where every statement contains keyword and zero or one argument. ModelStatement is extended by DeclaredStatement
(as it comes from source, e.g. YANG source) and EffectiveStatement, which contains other substatements and tends to
represent result of semantic processing of other statements (uses, augment for YANG). IdentifierNamespace represents
common superclass for YANG model namespaces.

Input of the Yang Statement Parser is a collection of StatementStreamSource objects. StatementStreamSource interface
is used for inference of effective model and is required to emit its statements using supplied StatementWriter. Each
source (e.g. YANG source) has to be processed in three steps in order to emit different statements for each step.
This package provides support for various namespaces used across statement parser in order to map relations during
declaration phase process.

Currently, there are two implementations of StatementStreamSource in Yangtools:

• YangStatementSourceImpl - intended for yang sources

• YinStatementSourceImpl - intended for yin sources

YANG Data API

Class diagram of yang data API

YANG Data Codecs

Codecs which enable serialization of NormalizedNodes into YANG-modeled data in XML or JSON format and dese-
rialization of YANG-modeled data in XML or JSON format into NormalizedNodes.

1502 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

Fig. 2.75: YANG Data API

YANG Maven Plugin

Maven plugin which integrates YANG parser into Maven build lifecycle and provides code-generation framework for
components, which wants to generate code or other artefacts based on YANG model.

How to / Tutorials

Working with YANG Model

First thing you need to do if you want to work with YANG models is to instantiate a SchemaContext object. This
object type describes one or more parsed YANG modules.

In order to create it you need to utilize YANG statement parser which takes one or more StatementStreamSource
objects as input and then produces the SchemaContext object.

StatementStreamSource object contains the source file information. It has two implementations, one for YANG sources
- YangStatementSourceImpl, and one for YIN sources - YinStatementSourceImpl.

Here is an example of creating StatementStreamSource objects for YANG files, providing them to the YANG statement
parser and building the SchemaContext:

StatementStreamSource yangModuleSource == new YangStatementSourceImpl("/example.yang",
→˓ false);
StatementStreamSource yangModuleSource2 == new YangStatementSourceImpl("/example2.yang
→˓", false);

CrossSourceStatementReactor.BuildAction reactor == YangInferencePipeline.RFC6020_
→˓REACTOR.newBuild();
reactor.addSources(yangModuleSource, yangModuleSource2);

SchemaContext schemaContext == reactor.buildEffective();

First, StatementStreamSource objects with two constructor arguments should be instantiated: path to the yang source
file (which is a regular String object) and a boolean which determines if the path is absolute or relative.

2.1. Developer Guide 1503

OpenDaylight Documentation Documentation, Release Carbon

Next comes the initiation of new yang parsing cycle - which is represented by CrossSourceStatementReac-
tor.BuildAction object. You can get it by calling method newBuild() on CrossSourceStatementReactor object
(RFC6020_REACTOR) in YangInferencePipeline class.

Then you should feed yang sources to it by calling method addSources() that takes one or more StatementStreamSource
objects as arguments.

Finally you call the method buildEffective() on the reactor object which returns EffectiveSchemaContext (that is a
concrete implementation of SchemaContext). Now you are ready to work with contents of the added yang sources.

Let us explain how to work with models contained in the newly created SchemaContext. If you want to get all the
modules in the schemaContext, you have to call method getModules() which returns a Set of modules. If you want to
get all the data definitions in schemaContext, you need to call method getDataDefinitions, etc.

Set<Module> modules == schemaContext.getModules();
Set<DataSchemaNodes> dataSchemaNodes == schemaContext.getDataDefinitions();

Usually you want to access specific modules. Getting a concrete module from SchemaContext is a matter of calling
one of these methods:

• findModuleByName(),

• findModuleByNamespace(),

• findModuleByNamespaceAndRevision().

In the first case, you need to provide module name as it is defined in the yang source file and module revision date if
it specified in the yang source file (if it is not defined, you can just pass a null value). In order to provide the revision
date in proper format, you can use a utility class named SimpleDateFormatUtil.

Module exampleModule == schemaContext.findModuleByName("example-module", null);
// or
Date revisionDate == SimpleDateFormatUtil.getRevisionFormat().parse("2015-09-02");
Module exampleModule == schemaContext.findModuleByName("example-module",
→˓revisionDate);

In the second case, you have to provide module namespace in form of an URI object.

Module exampleModule == schema.findModuleByNamespace(new URI("opendaylight.org/
→˓example-module"));

In the third case, you provide both module namespace and revision date as arguments.

Once you have a Module object, you can access its contents as they are defined in YANG Model API. One way to do
this is to use method like getIdentities() or getRpcs() which will give you a Set of objects. Otherwise you can access a
DataSchemaNode directly via the method getDataChildByName() which takes a QName object as its only argument.
Here are a few examples.

Set<AugmentationSchema> augmentationSchemas == exampleModule.getAugmentations();
Set<ModuleImport> moduleImports == exampleModule.getImports();

ChoiceSchemaNode choiceSchemaNode == (ChoiceSchemaNode) exampleModule.
→˓getDataChildByName(QName.create(exampleModule.getQNameModule(), "example-choice"));

ContainerSchemaNode containerSchemaNode == (ContainerSchemaNode) exampleModule.
→˓getDataChildByName(QName.create(exampleModule.getQNameModule(), "example-container
→˓"));

The YANG statement parser can work in three modes:

• default mode

1504 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

• mode with active resolution of if-feature statements

• mode with active semantic version processing

The default mode is active when you initialize the parsing cycle as usual by calling the method newBuild() without
passing any arguments to it. The second and third mode can be activated by invoking the newBuild() with a special
argument. You can either activate just one of them or both by passing proper arguments. Let us explain how these
modes work.

Mode with active resolution of if-features makes yang statements containing an if-feature statement conditional based
on the supported features. These features are provided in the form of a QName-based java.util.Set object. In the
example below, only two features are supported: example-feature-1 and example-feature-2. The Set which contains
this information is passed to the method newBuild() and the mode is activated.

Set<QName> supportedFeatures = ImmutableSet.of(
QName.create("example-namespace", "2016-08-31", "example-feature-1"),
QName.create("example-namespace", "2016-08-31", "example-feature-2"));

CrossSourceStatementReactor.BuildAction reactor = YangInferencePipeline.RFC6020_
→˓REACTOR.newBuild(supportedFeatures);

In case when no features should be supported, you should provide an empty Set<QName> object.

Set<QName> supportedFeatures = ImmutableSet.of();

CrossSourceStatementReactor.BuildAction reactor = YangInferencePipeline.RFC6020_
→˓REACTOR.newBuild(supportedFeatures);

When this mode is not activated, all features in the processed YANG sources are supported.

Mode with active semantic version processing changes the way how YANG import statements work - each module
import is processed based on the specified semantic version statement and the revision-date statement is ignored. In
order to activate this mode, you have to provide StatementParserMode.SEMVER_MODE enum constant as argument
to the method newBuild().

CrossSourceStatementReactor.BuildAction reactor == YangInferencePipeline.RFC6020_
→˓REACTOR.newBuild(StatementParserMode.SEMVER_MODE);

Before you use a semantic version statement in a YANG module, you need to define an extension for it so that the
YANG statement parser can recognize it.

In the example above, you see a YANG module which defines semantic version as an extension. This extension can
be imported to other modules in which we want to utilize the semantic versioning concept.

Below is a simple example of the semantic versioning usage. With semantic version processing mode being active, the
foo module imports the bar module based on its semantic version. Notice how both modules import the module with
the semantic-version extension.

Every semantic version must have the following form: x.y.z. The x corresponds to a major version, the y corresponds
to a minor version and the z corresponds to a patch version. If no semantic version is specified in a module or an
import statement, then the default one is used - 0.0.0.

A major version number of 0 indicates that the model is still in development and is subject to change.

Following a release of major version 1, all modules will increment major version number when backwards incompat-
ible changes to the model are made.

The minor version is changed when features are added to the model that do not impact current clients use of the model.

The patch version is incremented when non-feature changes (such as bugfixes or clarifications of human-readable
descriptions that do not impact model functionality) are made that maintain backwards compatibility.

2.1. Developer Guide 1505

OpenDaylight Documentation Documentation, Release Carbon

When importing a module with activated semantic version processing mode, only the module with the newest (highest)
compatible semantic version is imported. Two semantic versions are compatible when all of the following conditions
are met:

• the major version in the import statement and major version in the imported module are equal. For instance,
1.5.3 is compatible with 1.5.3, 1.5.4, 1.7.2, etc., but it is not compatible with 0.5.2 or 2.4.8, etc.

• the combination of minor version and patch version in the import statement is not higher than the one in the
imported module. For instance, 1.5.2 is compatible with 1.5.2, 1.5.4, 1.6.8 etc. In fact, 1.5.2 is also compatible
with versions like 1.5.1, 1.4.9 or 1.3.7 as they have equal major version. However, they will not be imported
because their minor and patch version are lower (older).

If the import statement does not specify a semantic version, then the default one is chosen - 0.0.0. Thus, the module is
imported only if it has a semantic version compatible with the default one, for example 0.0.0, 0.1.3, 0.3.5 and so on.

Working with YANG Data

If you want to work with YANG Data you are going to need NormalizedNode objects that are specified in the YANG
Data API. NormalizedNode is an interface at the top of the YANG Data hierarchy. It is extended through sub-interfaces
which define the behaviour of specific NormalizedNode types like AnyXmlNode, ChoiceNode, LeafNode, Contain-
erNode, etc. Concrete implemenations of these interfaces are defined in yang-data-impl module. Once you have one
or more NormalizedNode instances, you can perform CRUD operations on YANG data tree which is an in-memory
database designed to store normalized nodes in a tree-like structure.

In some cases it is clear which NormalizedNode type belongs to which yang statement (e.g. AnyXmlNode, ChoiceN-
ode, LeafNode). However, there are some normalized nodes which are named differently from their yang counterparts.
They are listed below:

• LeafSetNode - leaf-list

• OrderedLeafSetNode - leaf-list that is ordered-by user

• LeafSetEntryNode - concrete entry in a leaf-list

• MapNode - keyed list

• OrderedMapNode - keyed list that is ordered-by user

• MapEntryNode - concrete entry in a keyed list

• UnkeyedListNode - unkeyed list

• UnkeyedListEntryNode - concrete entry in an unkeyed list

In order to create a concrete NormalizedNode object you can use the utility class Builders or ImmutableNodes. These
classes can be found in yang-data-impl module and they provide methods for building each type of normalized node.
Here is a simple example of building a normalized node:

\\ example 1
ContainerNode containerNode == Builders.containerBuilder().withNodeIdentifier(new
→˓YangInstanceIdentifier.NodeIdentifier(QName.create(moduleQName, "example-container
→˓")).build();

\\ example 2
ContainerNode containerNode2 == Builders.containerBuilder(containerSchemaNode).
→˓build();

Both examples produce the same result. NodeIdentifier is one of the four types of YangInstanceIdentifier (these types
are described in the javadoc of YangInstanceIdentifier). The purpose of YangInstanceIdentifier is to uniquely identify

1506 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

a particular node in the data tree. In the first example, you have to add NodeIdentifier before building the resulting
node. In the second example it is also added using the provided ContainerSchemaNode object.

ImmutableNodes class offers similar builder methods and also adds an overloaded method called fromInstanceId()
which allows you to create a NormalizedNode object based on YangInstanceIdentifier and SchemaContext. Below is
an example which shows the use of this method.

YangInstanceIdentifier.NodeIdentifier contId == new YangInstanceIdentifier.
→˓NodeIdentifier(QName.create(moduleQName, "example-container");

NormalizedNode<?, ?> contNode == ImmutableNodes.fromInstanceId(schemaContext,
→˓YangInstanceIdentifier.create(contId));

Let us show a more complex example of creating a NormalizedNode. First, consider the following YANG module:

In the following example, two normalized nodes based on the module above are written to and read from the data tree.

TipProducingDataTree inMemoryDataTree == InMemoryDataTreeFactory.getInstance().
→˓create(TreeType.OPERATIONAL);
inMemoryDataTree.setSchemaContext(schemaContext);

// first data tree modification
MapEntryNode parentOrderedListEntryNode == Builders.mapEntryBuilder().
→˓withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifierWithPredicates(
parentOrderedListQName, parentKeyLeafQName, "pkval1"))
.withChild(Builders.leafBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(parentOrdinaryLeafQName))
.withValue("plfval1").build()).build();

OrderedMapNode parentOrderedListNode == Builders.orderedMapBuilder().
→˓withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(parentOrderedListQName))
.withChild(parentOrderedListEntryNode).build();

ContainerNode parentContainerNode == Builders.containerBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(parentContainerQName))
.withChild(Builders.containerBuilder().withNodeIdentifier(
new NodeIdentifier(childContainerQName)).withChild(parentOrderedListNode).build()).
→˓build();

YangInstanceIdentifier path1 == YangInstanceIdentifier.of(parentContainerQName);

DataTreeModification treeModification == inMemoryDataTree.takeSnapshot().
→˓newModification();
treeModification.write(path1, parentContainerNode);

// second data tree modification
MapEntryNode childOrderedListEntryNode == Builders.mapEntryBuilder().
→˓withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifierWithPredicates(
childOrderedListQName, childKeyLeafQName, "chkval1"))
.withChild(Builders.leafBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(childOrdinaryLeafQName))
.withValue("chlfval1").build()).build();

OrderedMapNode childOrderedListNode == Builders.orderedMapBuilder().
→˓withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(childOrderedListQName))

2.1. Developer Guide 1507

OpenDaylight Documentation Documentation, Release Carbon

.withChild(childOrderedListEntryNode).build();

ImmutableMap.Builder<QName, Object> builder == ImmutableMap.builder();
ImmutableMap<QName, Object> keys == builder.put(parentKeyLeafQName, "pkval1").build();

YangInstanceIdentifier path2 == YangInstanceIdentifier.of(parentContainerQName).
→˓node(childContainerQName)
.node(parentOrderedListQName).node(new
→˓NodeIdentifierWithPredicates(parentOrderedListQName, keys)).
→˓node(childOrderedListQName);

treeModification.write(path2, childOrderedListNode);
treeModification.ready();
inMemoryDataTree.validate(treeModification);
inMemoryDataTree.commit(inMemoryDataTree.prepare(treeModification));

DataTreeSnapshot snapshotAfterCommits == inMemoryDataTree.takeSnapshot();
Optional<NormalizedNode<?, ?>> readNode == snapshotAfterCommits.readNode(path1);
Optional<NormalizedNode<?, ?>> readNode2 == snapshotAfterCommits.readNode(path2);

First comes the creation of in-memory data tree instance. The schema context (containing the model mentioned
above) of this tree is set. After that, two normalized nodes are built. The first one consists of a parent container, a child
container and a parent ordered list which contains a key leaf and an ordinary leaf. The second normalized node is a
child ordered list that also contains a key leaf and an ordinary leaf.

In order to add a child node to a node, method withChild() is used. It takes a NormalizedNode as argument. When
creating a list entry, YangInstanceIdentifier.NodeIdentifierWithPredicates should be used as its identifier. Its arguments
are the QName of the list, QName of the list key and the value of the key. Method withValue() specifies a value for
the ordinary leaf in the list.

Before writing a node to the data tree, a path (YangInstanceIdentifier) which determines its place in the data tree needs
to be defined. The path of the first normalized node starts at the parent container. The path of the second normalized
node points to the child ordered list contained in the parent ordered list entry specified by the key value “pkval1”.

Write operation is performed with both normalized nodes mentioned earlier. It consist of several steps. The first
step is to instantiate a DataTreeModification object based on a DataTreeSnapshot. DataTreeSnapshot gives you the
current state of the data tree. Then comes the write operation which writes a normalized node at the provided path in
the data tree. After doing both write operations, method ready() has to be called, marking the modification as ready
for application to the data tree. No further operations within the modification are allowed. The modification is then
validated - checked whether it can be applied to the data tree. Finally we commit it to the data tree.

Now you can access the written nodes. In order to do this, you have to create a new DataTreeSnapshot instance and
call the method readNode() with path argument pointing to a particular node in the tree.

Serialization / deserialization of YANG Data

If you want to deserialize YANG-modeled data which have the form of an XML document, you can use the XML
parser found in the module yang-data-codec-xml. The parser walks through the XML document containing YANG-
modeled data based on the provided SchemaContext and emits node events into a NormalizedNodeStreamWriter. The
parser disallows multiple instances of the same element except for leaf-list and list entries. The parser also expects
that the YANG-modeled data in the XML source are wrapped in a root element. Otherwise it will not work correctly.

Here is an example of using the XML parser.

InputStream resourceAsStream == ExampleClass.class.getResourceAsStream("/example-
→˓module.yang");

1508 Chapter 2. Content for OpenDaylight Developers

OpenDaylight Documentation Documentation, Release Carbon

XMLInputFactory factory == XMLInputFactory.newInstance();
XMLStreamReader reader == factory.createXMLStreamReader(resourceAsStream);

NormalizedNodeResult result == new NormalizedNodeResult();
NormalizedNodeStreamWriter streamWriter == ImmutableNormalizedNodeStreamWriter.
→˓from(result);

XmlParserStream xmlParser == XmlParserStream.create(streamWriter, schemaContext);
xmlParser.parse(reader);

NormalizedNode<?, ?> transformedInput == result.getResult();

The XML parser utilizes the javax.xml.stream.XMLStreamReader for parsing an XML document. First, you should
create an instance of this reader using XMLInputFactory and then load an XML document (in the form of InputStream
object) into it.

In order to emit node events while parsing the data you need to instantiate a NormalizedNodeStreamWriter. This
writer is actually an interface and therefore you need to use a concrete implementation of it. In this example it is the
ImmutableNormalizedNodeStreamWriter, which constructs immutable instances of NormalizedNodes.

There are two ways how to create an instance of this writer using the static overloaded method from(). One version
of this method takes a NormalizedNodeResult as argument. This object type is a result holder in which the resulting
NormalizedNode will be stored. The other version takes a NormalizedNodeContainerBuilder as argument. All created
nodes will be written to this builder.

Next step is to create an instance of the XML parser. The parser itself is represented by a class named XmlParser-
Stream. You can use one of two versions of the static overloaded method create() to construct this object. One version
accepts a NormalizedNodeStreamWriter and a SchemaContext as arguments, the other version takes the same argu-
ments plus a SchemaNode. Node events are emitted to the writer. The SchemaContext is used to check if the YANG
data in the XML source comply with the provided YANG model(s). The last argument, a SchemaNode object, de-
scribes the node that is the parent of nodes defined in the XML data. If you do not provide this argument, the parser
sets the SchemaContext as the parent node.

The parser is now ready to walk through the XML. Parsing is initiated by calling the method parse() on the XmlParser-
Stream object with XMLStreamReader as its argument.

Finally you can access the result of parsing - a tree of NormalizedNodes containg the data as they are defined in the
parsed XML document - by calling the method getResult() on the NormalizedNodeResult object.

Introducing schema source repositories

Writing YANG driven generators

Introducing specific extension support for YANG parser

Diagnostics

2.2 Java API Documentation

• bgpcep

• controller

• genius

2.2. Java API Documentation 1509

https://javadocs.opendaylight.org/bgpcep/carbon
https://javadocs.opendaylight.org/controller/carbon
https://javadocs.opendaylight.org/genius/carbon

OpenDaylight Documentation Documentation, Release Carbon

• infrautils

• lispflowmapping

• mdsal

• netvirt

• odlparent

• openflowplugin

• ovsdb

• sfc

• yangtools

1510 Chapter 2. Content for OpenDaylight Developers

https://javadocs.opendaylight.org/infrautils/carbon
https://javadocs.opendaylight.org/lispflowmapping/carbon
https://javadocs.opendaylight.org/mdsal/carbon
https://javadocs.opendaylight.org/netvirt/carbon
https://javadocs.opendaylight.org/odlparent/carbon
https://javadocs.opendaylight.org/openflowplugin/carbon
https://javadocs.opendaylight.org/ovsdb/carbon
https://javadocs.opendaylight.org/sfc/carbon
https://javadocs.opendaylight.org/yangtools/carbon

CHAPTER 3

Content for OpenDaylight Contributors

The following content is intended for developers who either currently participate in the development of OpenDaylight
or would like to start.

3.1 Gerrit Guide

3.1.1 How to push to Gerrit

It is highly recommended to use ssh to push to Gerrit to push code to Gerrit. In the event that you cannot use ssh such
as corporate firewall blocking you then falling back to pushing via https should work.

Using ssh to push to Gerrit

TODO

Using https to push to Gerrit

Gerrit does not allow you to use your regular account credentials when pushing via https. Instead it requires you to
first generate a http password via the Web U and use that as the password when pushing via https.

To do this:

1. navigate to https://git.opendaylight.org/gerrit/#/settings/http-password (Steps 1, 2 and 3 in the image above.)

2. click the Generate Password button.

Gerrit will then generate a random password which you will need to use as your password when using git to push code
to Gerrit via https.

1511

https://git.opendaylight.org/gerrit/#/settings/http-password

OpenDaylight Documentation Documentation, Release Carbon

Fig. 3.1: Setting up an https password to push using https instead of ssh.

1512 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

3.1.2 Signing Gerrit Commits

1. Generate your GPG key.

The following instructions work on a Mac, but the general approach should be the same on other OSes.

brew install gpg2 # If you don't have homebrew, get that here: http://brew.sh/
gpg2 --gen-key
pick 1 for "RSA and RSA"
enter 4096 to creat a 4096-bit key
enter an expiration time, I picked 2y for 2 years
enter y to accept the expiration time
pick O or Q to accept your name/email/comment
enter a pass phrase twice. it seems like backspace doesn't work, so type
→˓carefully
gpg2 --fingerprint
you'll get something like this:
spectre:~ ckd$ gpg2 --fingerprint
/Users/ckd/.gnupg/pubring.gpg

pub 4096R/F566C9B1 2015-04-06 [expires: 2017-04-05]
Key fingerprint = 7C37 02AC D651 1FA7 9209 48D3 5DD5 0C4B F566 C9B1
uid [ultimate] Colin Dixon <colin at colindixon.com>
sub 4096R/DC1497E1 2015-04-06 [expires: 2017-04-05]
you're looking for the part after 4096R, which is your key ID
gpg2 --send-keys $KEY_ID
in the above example, the $KEY_ID would be F566C9B1
you should see output like this:
gpg: sending key F566C9B1 to hkp server keys.gnupg.net

If you’re trying to participate in an OpenDaylight keysigning, then send the output of gpg2 --fingerprint
$KEY_ID to keysigning@opendaylight.org

gpg2 --fingerprint $KEY_ID
in the above example, the $KEY_ID would be F566C9B1
in my case, the output was:
pub 4096R/F566C9B1 2015-04-06 [expires: 2017-04-05]
Key fingerprint = 7C37 02AC D651 1FA7 9209 48D3 5DD5 0C4B F566 C9B1
uid [ultimate] Colin Dixon <colin at colindixon.com>
sub 4096R/DC1497E1 2015-04-06 [expires: 2017-04-05]

2. Install gpg, instead of or addition to gpg2. It appears as though gpg2 has annoying things that it does when
asking for your passphrase, which I haven’t debugged yet.

Note: you can tell git to use gpg by doing: git config --global gpg.program gpg2 but that then
will seem to struggle asking for your passphrase unless you have your gpg-agent set up right.

3. Add you GPG to Gerrit

(a) Run the following at the CLI:

gpg --export -a $FINGER_PRINT
e.g., gpg --export -a F566C9B1
in my case the output looked like:
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2
#

3.1. Gerrit Guide 1513

mailto:keysigning@opendaylight.org

OpenDaylight Documentation Documentation, Release Carbon

mQINBFUisGABEAC/DkcjNUhxQkRLdfbfdlq9NlfDusWri0cXLVz4YN1cTUTF5HiW
...
gJT+FwDvCGgaE+JGlmXgjv0WSd4f9cNXkgYqfb6mpji0F3TF2HXXiVPqbwJ1V3I2
NA+l+/koCW0aMReK
=A/ql
-----END PGP PUBLIC KEY BLOCK-----

(b) Browse to https://git.opendaylight.org/gerrit/#/settings/gpg-keys

(c) Click Add Key...

(d) Copy the output from the above command, paste it into the box, and click Add

4. Set up your git to sign commits and push signatures

git config commit.gpgsign true
git config push.gpgsign true
git config user.signingkey $FINGER_PRINT
e.g., git config user.signingkey F566C9B1

Note: you can do this instead with git commit -S You can use git commit -S and git push
--signed on the CLI instead of configuring it in config if you want to control which commits use your
signature.

5. Commit and push a change

(a) change a file

(b) git commit -asm "test commit"

Note: this should result in git asking you for your passphrase

(c) git review

Note: this should result in git asking you for your passphrase

Note: annoyingly, the presence of a gpgp signature or pushing of a gpg signature isn’t recognized as a
“change” by Gerrit, so if you forget to do either, you need to change something about the commit to get
Gerrit to accept the patch again. Slightly tweaking the commit message is a good way.

Note: this assumes you have git review set up and push.gpgsign set to true. Otherwise:

git push --signed gerrit HEAD:refs/for/master

Note: this assumes you have your gerrit remote set up, if not it’s something like: ssh://ckd@git.
opendaylight.org:29418/<repo>.git where repo is something like docs or controller

6. Verify that your commit is signed by going to the change in Gerrit and checking for a green check (instead of a
blue ?) next to your name.

1514 Chapter 3. Content for OpenDaylight Contributors

https://git.opendaylight.org/gerrit/#/settings/gpg-keys

OpenDaylight Documentation Documentation, Release Carbon

Setting up gpg-agent on a Mac

1. Install gpg-agent and pinentry-mac using brew:

brew install gpg-agent pinentry-mac

2. Edit your ~/.gnupg/gpg.conf contain the line:

use-agent

3. Edit your ~/.gnupg/gpg-agent.conf to something like:

use-standard-socket
enable-ssh-support
default-cache-ttl 600
max-cache-ttl 7200
pinentry-program /usr/local/bin/pinentry-mac

4. Edit your .bash_profile or equivalent file to contain the following:

[-f ~/.gpg-agent-info] && source ~/.gpg-agent-info
if [-S "${GPG_AGENT_INFO%%:*}"]; then
export GPG_AGENT_INFO

else
eval $(gpg-agent --daemon --write-env-file ~/.gpg-agent-info)

fi

5. Kill any stray gpg-agent daemons running:

sudo killall gpg-agent

6. Restart your terminal (or log in and out) to reload the your .bash_profile or equivalent file

7. The next time a git operation makes a call to gpg, it should use your gpg-agent to run a GUI window to ask for
your passphrase and give you an option to save your passphrase in the keychain.

3.1. Gerrit Guide 1515

OpenDaylight Documentation Documentation, Release Carbon

3.2 Infrastructure Guide

This guide provides details into OpenDaylight Infrastructure and services.

Contents:

3.2.1 Jenkins

The Release Engineering Project consolidates the Jenkins jobs from project-specific VMs to a single Jenkins server.
Each OpenDaylight project has a tab for their jobs on the jenkins-master. The system utilizes Jenkins Job Builder for
the creation and management of the Jenkins jobs.

Sections:

• New Project Quick Start

• Jenkins Master

• Build Minions

– Adding New Components to the Minions

– Flavors

– Pool: ODLVEX

– Pool: ODLVEX - HOT (Heat Orchestration Templates)

• Creating Jenkins Jobs

• Getting Jenkins Job Builder

• Installing Jenkins Job Builder

• Virtual Environments

• Installing JJB using pip

– Updating releng/builder repo or global-jjb

• Installing JJB Manually

• Jenkins Job Templates

• Maven Properties

• Jenkins Sandbox

– Notes Regarding the Sandbox

– Configuration

– Manual Method

– Testing Jobs

– Pushing Jobs

– Running Jobs

1516 Chapter 3. Content for OpenDaylight Contributors

https://wiki.opendaylight.org/view/RelEng:Main
https://jenkins.opendaylight.org/releng
http://ci.openstack.org/jenkins-job-builder/

OpenDaylight Documentation Documentation, Release Carbon

New Project Quick Start

This section attempts to provide details on how to get going as a new project quickly with minimal steps. The rest of
the guide should be read and understood by those who need to create and contribute new job types that is not already
covered by the existing job templates provided by OpenDaylight’s JJB repo.

As a new project you will be mainly interested in getting your jobs to appear in the jenkins-master silo and this can be
achieved by simply creating a <project>.yaml in the releng/builder project’s jjb directory.

git clone --recursive https://git.opendaylight.org/gerrit/releng/builder
cd builder
mkdir jjb/<new-project>

Where <new-project> should be the same name as your project’s git repo in Gerrit. If your project is called “aaa” then
create a new jjb/aaa directory.

Next we will create <new-project>.yaml as follows:

- project:

name: <NEW_PROJECT>-carbon
jobs:

- '{project-name}-clm-{stream}'
- '{project-name}-integration-{stream}'
- '{project-name}-merge-{stream}'
- '{project-name}-verify-{stream}-{maven}-{jdks}'

project: '<NEW_PROJECT>'
project-name: '<NEW_PROJECT>'
stream: carbon
branch: 'master'
jdk: openjdk8
jdks:

- openjdk8
maven:

- mvn33:
mvn-version: 'mvn33'

mvn-settings: '<NEW_PROJECT>-settings'
mvn-goals: 'clean install -Dmaven.repo.local=/tmp/r -Dorg.ops4j.pax.url.mvn.

→˓localRepository=/tmp/r'
mvn-opts: '-Xmx1024m -XX:MaxPermSize=256m'
dependencies: 'odlparent-merge-{stream},yangtools-merge-{stream},controller-merge-

→˓{stream}'
email-upstream: '[<NEW_PROJECT>] [odlparent] [yangtools] [controller]'
archive-artifacts: ''

- project:
name: <NEW_PROJECT>-sonar
jobs:

- '{project-name}-sonar'

project: '<NEW_PROJECT>'
project-name: '<NEW_PROJECT>'
branch: 'master'
mvn-settings: '<NEW_PROJECT>-settings'
mvn-goals: 'clean install -Dmaven.repo.local=/tmp/r -Dorg.ops4j.pax.url.mvn.

→˓localRepository=/tmp/r'
mvn-opts: '-Xmx1024m -XX:MaxPermSize=256m'

3.2. Infrastructure Guide 1517

https://jenkins.opendaylight.org/releng

OpenDaylight Documentation Documentation, Release Carbon

Replace all instances of <new-project> with the name of your project. This will create the jobs with the default job
types we recommend for Java projects. If your project is participating in the simultanious-release and ultimately will
be included in the final distribution, it is required to add the following job types into the job list for the release you are
participating.

- '{project-name}-distribution-check-{stream}'
- '{project-name}-validate-autorelease-{stream}'

If you’d like to explore the additional tweaking options available please refer to the Jenkins Job Templates section.

Finally we need to push these files to Gerrit for review by the releng/builder team to push your jobs to Jenkins.

git add jjb/<new-project>
git commit -sm "Add <new-project> jobs to Jenkins"
git review

This will push the jobs to Gerrit and your jobs will appear in Jenkins once the releng/builder team has reviewed and
merged your patch.

Jenkins Master

The jenkins-master is the home for all project’s Jenkins jobs. All maintenance and configuration of these jobs must be
done via JJB through the releng-builder-repo. Project contributors can no longer edit the Jenkins jobs directly on the
server.

Build Minions

The Jenkins jobs are run on build minions (executors) which are created on an as-needed basis. If no idle build minions
are available a new VM is brought up. This process can take up to 2 minutes. Once the build minion has finished a
job, it will be destroyed.

Our Jenkins master supports many types of dynamic build minions. If you are creating custom jobs then you will need
to have an idea of what type of minions are available. The following are the current minion types and descriptions.
Minion Template Names are needed for jobs that take advantage of multiple minions as they must be specifically called
out by template name instead of label.

Adding New Components to the Minions

If your project needs something added to one of the minions, you can help us get things added faster by doing one of
the following:

• Submit a patch to RelEng/Builder for the appropriate jenkins-scripts definition which configure software during
minion boot up.

• Submit a patch to RelEng/Builder for the packer/provision scripts that configures software during minion in-
stance imaging.

• Submit a patch to RelEng/Builder for the Packer’s templates in the packer/templates directory that configures a
new instance definition along with changes in packer/provision.

Going the first route will be faster in the short term as we can inspect the changes and make test modifications in the
sandbox to verify that it works.

Note: The first route may add additional setup time considering this is run every time the minion is booted.

1518 Chapter 3. Content for OpenDaylight Contributors

https://jenkins.opendaylight.org/releng
https://git.opendaylight.org/gerrit/gitweb?p=releng%2Fbuilder.git;a=summary

OpenDaylight Documentation Documentation, Release Carbon

The second and third routes, however, is better for the community as a whole as it will allow others to utilize our
Packer setups to replicate our systems more closely. It is, however, more time consuming as an image snapshot needs
to be created based on the updated Packer definitions before it can be attached to the Jenkins configuration on sandbox
for validation testing.

In either case, the changes must be validated in the sandbox with tests to make sure that we don’t break current jobs and
that the new software features are operating as intended. Once this is done the changes will be merged and the updates
applied to the RelEng Jenkins production silo. Any changes to files under releng/builder/packer will be validated and
images would be built triggered by verify-packer and merge-packer jobs.

Please note that the combination of a Packer definitions from vars, templates and the provision scripts is what defines
a given minion. For instance, a minion may be defined as centos7-builder which is a combination of Packer OS
image definitions from vars/centos.json, Packer template definitions from templates/builder.json and spinup scripts
from provision/builder.sh. This combination provides the full definition of the realized minion.

Jenkins starts a minion using the latest image which is built and linked into the Jenkins configuration. Once the
base instance is online Jenkins checks out the RelEng/Builder repo on it and executes two scripts. The first is provi-
sion/baseline.sh, which is a baseline for all of the minions.

The second is the specialized script, which handles any system updates, new software installs or extra environment
tweaks that don’t make sense in a snapshot. Examples could include installing new package or setting up a virtual
environment. Its imperative to ensure modifications to these spinup scripts have considered time taken to install the
packages, as this could increase the build time for every job which runs on the image. After all of these scripts have
executed Jenkins will finally attach the minion as an actual minion and start handling jobs on it.

Flavors

Performance flavors come with dedicated CPUs and are not shared with other accounts in the cloud so should ensure
consistent performance.

Table 3.1: Flavors

Instance Type CPUs Memory
odl-standard-1 1 4
odl-standard-2 2 8
odl-standard-4 4 16
odl-standard-8 8 32
odl-standard-16 16 64
odl-highcpu-2 2 2
odl-highcpu-4 4 4
odl-highcpu-8 8 8

Pool: ODLVEX

Pool: ODLVEX - HOT (Heat Orchestration Templates)

HOT integration enables to spin up integration labs servers for CSIT jobs using heat, rathar than using
jclouds (deprecated). Image names are updated on the project specific job templates using the variable
{odl,docker,openstack,tools}_system_image followed by image name in the format <platform> - <template> - <date-
stamp>.

Following are the list of published images available to be used with Jenkins jobs.

• ZZCI - CentOS 7 - autorelease - 20180125-2240

3.2. Infrastructure Guide 1519

OpenDaylight Documentation Documentation, Release Carbon

• ZZCI - CentOS 7 - builder - 20180109-0417

• ZZCI - CentOS 7 - builder - 20180110-1659

• ZZCI - CentOS 7 - builder - 20180201-2139

• ZZCI - CentOS 7 - devstack - 20171208-1648

• ZZCI - CentOS 7 - devstack-ocata - 20171208-1649

• ZZCI - CentOS 7 - devstack-pike - 20171208-1649

• ZZCI - CentOS 7 - docker - 20171209-0317

• ZZCI - CentOS 7 - docker - 20180109-0346

• ZZCI - CentOS 7 - docker - 20180110-1659

• ZZCI - CentOS 7 - docker - 20180417-0311

• ZZCI - CentOS 7 - java-builder - 20171206-1842

• ZZCI - CentOS 7 - java-builder - 20171209-0032

• ZZCI - CentOS 7 - robot - 20171207-1911

• ZZCI - Ubuntu 14.04 - gbp - 20171208-2336

• ZZCI - Ubuntu 16.04 - gbp - 20171213-2018

• ZZCI - Ubuntu 16.04 - mininet-ovs-25 - 20171208-1847

• ZZCI - Ubuntu 16.04 - mininet-ovs-26 - 20171208-1847

• ZZCI - Ubuntu 16.04 - mininet-ovs-28 - 20180301-1041

Creating Jenkins Jobs

Jenkins Job Builder takes simple descriptions of Jenkins jobs in YAML format and uses them to configure Jenkins.

• Jenkins Job Builder (JJB) documentation

• RelEng/Builder Gerrit

• RelEng/Builder Git repository

Getting Jenkins Job Builder

OpenDaylight uses Jenkins Job Builder to translate our in-repo YAML job configuration into job descriptions suitable
for consumption by Jenkins. When testing new Jenkins Jobs in the Jenkins Sandbox, you’ll need to use the jenkins-jobs
executable to translate a set of jobs into their XML descriptions and upload them to the sandbox Jenkins server.

We document installing jenkins-jobs below.

Installing Jenkins Job Builder

We recommend using pip to assist with JJB installs, but we also document installing from a git repository manually.
For both, we recommend using Python Virtual Environments to isolate JJB and its dependencies.

The builder/jjb/requirements.txt file contains the currently recommended JJB version. Because JJB is fairly unstable,
it may be necessary to debug things by installing different versions. This is documented for both pip-assisted and
manual installs.

1520 Chapter 3. Content for OpenDaylight Contributors

http://ci.openstack.org/jenkins-job-builder/
https://git.opendaylight.org/gerrit/#/admin/projects/releng/builder
https://git.opendaylight.org/gerrit/gitweb?p=releng%2Fbuilder.git;a=summary
https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=blob;f=jjb/requirements.txt

OpenDaylight Documentation Documentation, Release Carbon

Virtual Environments

For both pip-assisted and manual JJB installs, we recommend using Python Virtual Environments to manage JJB and
its Python dependencies. The python-virtualenvwrapper tool can help you do so.

Documentation is available for installing python-virtualenvwrapper. On Linux systems with pip (typical), they amount
to:

sudo pip install virtualenvwrapper

A virtual environment is simply a directory that you install Python programs into and then append to the front of your
path, causing those copies to be found before any system-wide versions.

Create a new virtual environment for JJB.

Virtaulenvwrapper uses this dir for virtual environments
$ echo $WORKON_HOME
/home/daniel/.virtualenvs
Make a new virtual environment
$ mkvirtualenv jjb
A new venv dir was created
(jjb)$ ls -rc $WORKON_HOME | tail -n 1
jjb
The new venv was added to the front of this shell's path
(jjb)$ echo $PATH
/home/daniel/.virtualenvs/jjb/bin:<my normal path>
Software installed to venv, like pip, is found before system-wide copies
(jjb)$ command -v pip
/home/daniel/.virtualenvs/jjb/bin/pip

With your virtual environment active, you should install JJB. Your install will be isolated to that virtual environment’s
directory and only visible when the virtual environment is active.

You can easily leave and return to your venv. Make sure you activate it before each use of JJB.

(jjb)$ deactivate
$ command -v jenkins-jobs
No jenkins-jobs executable found
$ workon jjb
(jjb)$ command -v jenkins-jobs
$WORKON_HOME/jjb/bin/jenkins-jobs

Installing JJB using pip

The recommended way to install JJB is via pip.

First, clone the latest version of the releng-builder-repo.

$ git clone --recursive https://git.opendaylight.org/gerrit/p/releng/builder.git

Before actually installing JJB and its dependencies, make sure you’ve created and activated a virtual environment for
JJB.

$ mkvirtualenv jjb

The recommended version of JJB to install is the version specified in the builder/jjb/requirements.txt file.

3.2. Infrastructure Guide 1521

https://virtualenv.readthedocs.org/en/latest/
https://virtualenvwrapper.readthedocs.org/en/latest/
https://virtualenvwrapper.readthedocs.org/en/latest/
https://git.opendaylight.org/gerrit/gitweb?p=releng%2Fbuilder.git;a=summary
https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=blob;f=jjb/requirements.txt

OpenDaylight Documentation Documentation, Release Carbon

From the root of the releng/builder repo
(jjb)$ pip install -r jjb/requirements.txt

To validate that JJB was successfully installed you can run this command:

(jjb)$ jenkins-jobs --version

TODO: Explain that only the currently merged jjb/requirements.txt is supported, other options described below are for
troubleshooting only.

To change the version of JJB specified by builder/jjb/requirements.txt to install from the latest commit to the master
branch of JJB’s git repository:

$ cat jjb/requirements.txt
-e git+https://git.openstack.org/openstack-infra/jenkins-job-builder#egg=jenkins-job-
→˓builder

To install from a tag, like 1.4.0:

$ cat jjb/requirements.txt
-e git+https://git.openstack.org/openstack-infra/jenkins-job-builder@1.4.0
→˓#egg=jenkins-job-builder

Updating releng/builder repo or global-jjb

Follow these steps to update the releng/builder repo. The repo uses a submodule from a global-jjb repo so that common
source can be shared across different projects. This requires updating the releng/builder repo periodically to pick up
the changes. New versions of jjb could also require updating the releng/builder repo. Follow the previous steps
earlier for updating jenkins-jobs using the builder/jjb/requirements.txt file. Ensure that the version listed in the file
is the currently supported version, otherwise install a different version or simply upgrade using pip install –upgrade
jenkins-job-builder.

The example below assumes the user has cloned releng/builder to ~/git/releng/builder. Update the repo, update the
submodules and then submit a test to verify it works.

cd ~/git/releng/builder
git checkout master
git pull
git submodule update --init --recursive
jenkins-jobs --conf jenkins.ini test jjb/ netvirt-csit-1node-openstack-queens-
→˓upstream-stateful-fluorine

Installing JJB Manually

This section documents installing JJB from its manually cloned repository.

Note that installing via pip is typically simpler.

Checkout the version of JJB’s source you’d like to build.

For example, using master:

$ git clone https://git.openstack.org/openstack-infra/jenkins-job-builder

Using a tag, like 1.4.0:

1522 Chapter 3. Content for OpenDaylight Contributors

https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=blob;f=jjb/requirements.txt
https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=blob;f=jjb/requirements.txt

OpenDaylight Documentation Documentation, Release Carbon

$ git clone https://git.openstack.org/openstack-infra/jenkins-job-builder
$ cd jenkins-job-builder
$ git checkout tags/1.4.0

Before actually installing JJB and its dependencies, make sure you’ve created and activated a virtual environment for
JJB.

$ mkvirtualenv jjb

You can then use JJB’s requirements.txt file to install its dependencies. Note that we’re not using sudo to install as
root, since we want to make use of the venv we’ve configured for our current user.

In the cloned JJB repo, with the desired version of the code checked out
(jjb)$ pip install -r requirements.txt

Then install JJB from the repo with:

(jjb)$ pip install .

To validate that JJB was successfully installed you can run this command:

(jjb)$ jenkins-jobs --version

Jenkins Job Templates

The OpenDaylight RelEng/Builder project provides jjb-templates that can be used to define basic jobs.

The Gerrit Trigger listed in the jobs are keywords that can be used to trigger the job to run manually by simply leaving
a comment in Gerrit for the patch you wish to trigger against.

All jobs have a default build-timeout value of 360 minutes (6 hrs) but can be overrided via the opendaylight-infra-
wrappers’ build-timeout property.

TODO: Group jobs into categories: every-patch, after-merge, on-demand, etc. TODO: Reiterate that “remerge” trig-
gers all every-patch jobs at once, because when only a subset of jobs is triggered, Gerrit forgets valid -1 from jobs
outside the subset. TODO: Document that only drafts and commit-message-only edits do not trigger every-patch jobs.
TODO: Document test-{project}-{feature} and test-{project}-all.

Maven Properties

We provide a properties which your job can take advantage of if you want to do something different depending on the
job type that is run. If you create a profile that activates on a property listed blow. The JJB templated jobs will be able
to activate the profile during the build to run any custom code you wish to run in your project.

-Dmerge : This flag is passed in our Merge job and is equivalent to the
Maven property
<merge>true</merge>.

-Dsonar : This flag is passed in our Sonar job and is equivalent to the
Maven property
<sonar>true</sonar>.

3.2. Infrastructure Guide 1523

https://github.com/openstack-infra/jenkins-job-builder/blob/master/requirements.txt
https://wiki.opendaylight.org/view/RelEng/Builder
https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=tree;f=jjb

OpenDaylight Documentation Documentation, Release Carbon

Jenkins Sandbox

The jenkins-sandbox instance’s purpose is to allow projects to test their JJB setups before merging their code over to
the RelEng master silo. It is configured similarly to the master instance, although it cannot publish artifacts or vote in
Gerrit.

If your project requires access to the sandbox please open an OpenDaylight Helpdesk ticket
(<helpdesk@opendaylight.org>) and provide your ODL ID.

Notes Regarding the Sandbox

• Jobs are automatically deleted every Saturday at 08:00 UTC

• Committers can login and configure Jenkins jobs in the sandbox directly (unlike with the master silo)

• Sandbox configuration mirrors the master silo when possible

• Sandbox jobs can NOT upload artifacts to Nexus

• Sandbox jobs can NOT vote on Gerrit

Configuration

Make sure you have Jenkins Job Builder [properly installed](#jjb_install).

If you do not already have access, open an OpenDaylight Helpdesk ticket (<helpdesk@opendaylight.org>) to request
access to ODL’s sandbox instance. Integration/Test (integration-test-wiki) committers have access by default.

JJB reads user-specific configuration from a jenkins.ini. An example is provided by releng/builder at example-
jenkins.ini.

If you don't have RelEng/Builder's repo, clone it
$ git clone --recursive https://git.opendaylight.org/gerrit/p/releng/builder.git
Make a copy of the example JJB config file (in the builder/ directory)
$ cp jenkins.ini.example jenkins.ini
Edit jenkins.ini with your username, API token and ODL's sandbox URL
$ cat jenkins.ini
<snip>
[jenkins]
user=<your ODL username>
password=<your ODL Jenkins sandbox API token>
url=https://jenkins.opendaylight.org/sandbox
<snip>

To get your API token, login to the Jenkins **sandbox** instance (not the main master Jenkins instance, different
tokens), go to your user page (by clicking on your username, for example), click “Configure” and then “Show API
Token”.

Manual Method

If you installed JJB locally into a virtual environment, you should now activate that virtual environment to access the
jenkins-jobs executable.

$ workon jjb
(jjb)$

1524 Chapter 3. Content for OpenDaylight Contributors

https://jenkins.opendaylight.org/sandbox
mailto:helpdesk@opendaylight.org
mailto:helpdesk@opendaylight.org
https://wiki.opendaylight.org/view/Integration/Test
http://docs.openstack.org/infra/jenkins-job-builder/execution.html#configuration-file
https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=blob;f=jenkins.ini.example
https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=blob;f=jenkins.ini.example
https://jenkins.opendaylight.org/sandbox/login

OpenDaylight Documentation Documentation, Release Carbon

You’ll want to work from the root of the RelEng/Builder repo, and you should have your jenkins.ini file [properly
configured](#sandbox_config).

Testing Jobs

It’s good practice to use the test command to validate your JJB files before pushing them.

jenkins-jobs --conf jenkins.ini test jjb/ <job-name>

If the job you’d like to test is a template with variables in its name, it must be manually expanded before use. For
example, the commonly used template {project}-csit-verify-1node-{functionality} might expand to ovsdb-csit-verify-
1node-netvirt.

jenkins-jobs --conf jenkins.ini test jjb/ ovsdb-csit-verify-1node-netvirt

Successful tests output the XML description of the Jenkins job described by the specified JJB job name.

Pushing Jobs

Once you’ve configured your ‘jenkins.ini‘ and verified your JJB jobs produce valid XML descriptions of Jenkins jobs
you can push them to the Jenkins sandbox.

Important: When pushing with jenkins-jobs, a log message with the number of jobs you’re pushing will be issued,
typically to stdout. If the number is greater than 1 (or the number of jobs you passed to the command to push) then
you are pushing too many jobs and should ‘ctrl+c‘ to cancel the upload. Else you will flood the system with jobs.

INFO:jenkins_jobs.builder:Number of jobs generated: 1

Failing to provide the final ‘<job-name>‘ param will push all jobs!

Don't push all jobs by omitting the final param! (ctrl+c to abort)
jenkins-jobs --conf jenkins.ini update jjb/ <job-name>

Alternatively, you can push a job to the Jenkins sandbox with a special comment in a releng/builder gerrit patch. The
job will be based off of the code your patch is based upon. Meaning, if your patch is changing something related to
the job you are pushing, those changes will exist in the sandbox job. The format of the comment is:

jjb-deploy <job name>

Note: Also note that wildcards can be used in <job name> which will expand all jobs that exist for the pattern.

Running Jobs

Once you have your Jenkins job configuration pushed to the Sandbox you can trigger it to run.

Find your newly-pushed job on the Sandbox’s web UI. Click on its name to see the job’s details.

Make sure you’re logged in to the Sandbox.

Click “Build with Parameters” and then “Build”.

3.2. Infrastructure Guide 1525

https://jenkins.opendaylight.org/sandbox
https://jenkins.opendaylight.org/sandbox/login

OpenDaylight Documentation Documentation, Release Carbon

Wait for your job to be scheduled and run. Click on the job number to see details, including console output.

Make changes to your JJB configuration, re-test, re-push and re-run until your job is ready.

3.2.2 Release Workflow

This page documents the workflow for releasing for projects that are not built and released via the Autorelease project.

Sections:

• Workflow

• Release Job

Workflow

OpenDaylight uses Nexus as it’s artifact repository for releasing artifacts to the world. The workflow involves using
Nexus to produce a staging repository which can be tested and reviewed before being approved to copy to the final
destination opendaylight.release repo. The workflow in general is as follows:

1. Project create release tag and push to Gerrit

2. Project will contact helpdesk@opendaylight.org with project name and build tag to produce a release candidate
/ staging repo

3. Helpdesk will run a build and notify project of staging repo location

4. Project tests staging repo and notifies Helpdesk with go ahead to release

5. Helpdesk clicks Release repo button in Nexus

6. (optional) Helpdesk runs Jenkins job to push update-site.zip to p2repos sites repo

Step 6 is only necessary for Eclipse projects that need to additionally deploy an update site to a webserver.

Release Job

There is a JJB template release job which should be used for a project if the project needs to produce a staging repo
for release. The supported Job types are listed below, use the one relevant to your project.

Maven|Java {name}-release-java – this job type will produce a staging repo in Nexus for Maven projects.

P2 Publisher {name}-publish-p2repo – this job type is useful for projects that produce a p2 repo that needs to be
published to a special URL.

3.3 Integration Testing Guide

The Integration Testing Guide provides details on how to contribute test code to OpenDaylight.

Contents:

1526 Chapter 3. Content for OpenDaylight Contributors

mailto:helpdesk@opendaylight.org

OpenDaylight Documentation Documentation, Release Carbon

3.3.1 System Test Guide

Introduction

This step by step guide aims to help projects with the task of creating a System Test job that runs in Continuous
Integration.

A System Test job will normally install a controller distribution in one or more VMs and will run a functionality test
using some test tool (e.g. mininet). This job will run periodically, tipically once or twice a day.

All projects defining top-level features (essential functionality) and that have decided to use the OpenDaylight CI for
system test must create system test jobs.

System test jobs rely on Robot Framework, this is because Robot FW provides:

• Structure for test creation and execution (e.g. test suites, test cases that PASS/FAIL).

• Easy test debug (real time logs, etc...).

• Test reports in Jenkins.

For those projects creating system test, Integration group will provide:

• Robot Framework support and assistance.

• Review of system test code. The code will be pushed to integration/test git (csit/suites/$project/).

• JJB templates to install controller and execute a robot test to verify a project functionality (releng/builder git,
jjb/integration/).

Create basic system test

Download Integration/Test Repository:

git clone ssh://${USERNAME}@git.opendaylight.org:29418/integration/test.git
cd test

Follow the instructions in pulling-and-pushing-the-code to know more about pulling and pushing code.

Create a folder for your project robot test:

mkdir test/csit/suites/$project
cd test/csit/suites/$project

Replace $project with your project name.

Move your robot suites (test folders) into the project folder:

If you do not have any robot test yet, copy integration basic folder suite into your folder. You can later improve this
suite or replace it by your own suites:

cp -R test/csit/suites/integration/basic basic

This suite will verify Restconf is operational.

Create a test plan

A test plan is a text file indicating which robot test suites (including integration repo path) will be executed to test a
project functionality:

3.3. Integration Testing Guide 1527

http://docs.opendaylight.org/en/stable-boron/developer-guide/pulling-and-pushing-the-code-from-the-cli.html

OpenDaylight Documentation Documentation, Release Carbon

vim test/csit/testplans/$project-$functionality.txt

Replace $project with your project name and $functionality with the functionality you want to test.

If you took the basic test from integration, the test plan file should look like this:

Place the suites in run order:
integration/test/csit/suites/$project/basic

Save the changes and exit editor.

Optional: Version specific test plan

Integration/Test is not part of the simultaneous release, so the same suites are used for testing all supported ODL ver-
sions. There may be API changes between different releases of ODL, which may require different logic in your Robot
tests. If the difference is small, it is recommended to act upon value of ODL_STREAM variable (e.g. “beryllium”,
“boron”, “carbon”, etc).

If the difference is big, you may want to use different list of suites in testplan. One way is to define separate jobs with
different functionality names. But the more convenient way is to define stream-specific testplan. For example:

vim test/csit/testplans/$project-$functionality-boron.txt

would contain a list of suites for testing Boron, while $project-$functionality.txt would still contain the default list
(used for streams without stream specific testplans).

Optional: Create a script or config plan

Sometimes the environment prepared by scripts in releng/builder is not suitable as is, and there are changes to be done
before controller is installed (script plan) or before it is started (config plan). You may create as many bash scripts as
you need in test/csit/scripts/ and then list them in the scriplans or configplans folder:

vim test/csit/scriptplans/$project-$functionality.txt

Save and push Test changes

Add the changes and push them in the integration/test repo:

git add -A
git commit -s
git push

Create system test job

Download RelEng Builder repository:

git clone ssh://${USERNAME}@git.opendaylight.org:29418/releng/builder
cd builder

Follow the instructions in pulling-and-pushing-the-code to know more about pulling and pushing code.

Create a new file and modify the values according to your project:

1528 Chapter 3. Content for OpenDaylight Contributors

http://docs.opendaylight.org/en/stable-boron/developer-guide/pulling-and-pushing-the-code-from-the-cli.html

OpenDaylight Documentation Documentation, Release Carbon

vim jjb/$project/$project-csit-$functionality.yaml

For a Managed project it should look like this:

- project:

name: openflowplugin-csit-flow-services
jobs:

- inttest-csit-1node

The project name
project: 'openflowplugin'

The functionality under test
functionality:

- flow-services
- gate-flow-services

Project branches
stream:

- fluorine:
branch: 'master'

- oxygen:
branch: 'stable/oxygen'

- nitrogen:
branch: 'stable/nitrogen'

- carbon:
branch: 'stable/carbon'
karaf-version: 'karaf3'

install:
- all:

scope: 'all'

Features to install
install-features: >

odl-openflowplugin-flow-services-rest,
odl-openflowplugin-app-table-miss-enforcer,
odl-openflowplugin-nxm-extensions

Robot custom options
robot-options: ''

Explanation:

• name: give some name like $project-csit-$functionality.

• jobs: replace 1node by 3node if your test is develop for 3node cluster.

• project: set your your project name here (e.g. openflowplugin).

• functionality: set the functionality you want to test (e.g. flow-services). Note this has also to match the robot
test plan name you defined in the earlier section create a test plan (e.g. openflowplugin-flow-services.txt)

• stream: list the project branches you are going to generate system test. Only last branch if the project is new.

• install: this specifies controller installation, ‘only’ means only features in install-features will be installed, ‘all’
means all compatible features will be installed on top (multi-project features test).

• install-features: list of features you want to install in controller separated by comma.

3.3. Integration Testing Guide 1529

OpenDaylight Documentation Documentation, Release Carbon

• robot-options: robot option you want to pass to the test separated by space.

For Self-Managed project, we need 2 extra parameters:

• trigger-jobs: Self-Managed CSIT will run after succesful project merge, so just fill with ‘{project}-merge-
{stream}’.

• repo-url: Self-Managed project feature repository maven URL (see example below).

So in this case it should look like this:

- project:

name: usc-csit-channel
jobs:

- inttest-csit-1node

The project name
project: 'usc'

The functionality under test
functionality: 'channel'

Project branches
stream:

- fluorine:
branch: 'master'
trigger-jobs: '{project}-merge-{stream}'
yamllint disable-line rule:line-length
repo-url: 'mvn:org.opendaylight.usc/usc-features/1.6.0-SNAPSHOT/xml/features

→˓'

install:
- all:

scope: 'all'

Features to install
install-features: 'odl-restconf,odl-mdsal-apidocs,odl-usc-channel-ui'

Robot custom options
robot-options: ''

Save the changes and exit editor.

Optional: Change default tools image

By default a system test spins a tools VM that can be used to run some test tool like mininet, netconf tool, BGP
simulator, etc. The default values are listed below and you only need to specify them if you are changing something,
for example “tools_system_count: 0” will skip the tools VM if you do not need it. For a list of available images see
images-list:

- project:

name: openflowplugin-csit-flow-services
jobs:

- inttest-csit-1node

The project name

1530 Chapter 3. Content for OpenDaylight Contributors

http://docs.opendaylight.org/en/stable-boron/submodules/releng/builder/docs/jenkins.html#pool-odlpub-hot-heat-orchestration-templates

OpenDaylight Documentation Documentation, Release Carbon

project: 'openflowplugin'

The functionality under test
functionality:

- flow-services
- gate-flow-services

Project branches
stream:

- fluorine:
branch: 'master'

- oxygen:
branch: 'stable/oxygen'

- nitrogen:
branch: 'stable/nitrogen'

- carbon:
branch: 'stable/carbon'
karaf-version: 'karaf3'

install:
- all:

scope: 'all'

Job images
tools_system_image: 'ZZCI - Ubuntu 16.04 - mininet-ovs-28 - 20180301-1041'

Features to install
install-features: >

odl-openflowplugin-flow-services-rest,
odl-openflowplugin-app-table-miss-enforcer,
odl-openflowplugin-nxm-extensions

Robot custom options
robot-options: ''

Optional: Plot a graph from your job

Scalability and peformance tests not only PASS/FAIL but most important they provide a number or value we want to
plot in a graph and track over different builds.

For that you can add the plot configuration like in this example below:

- project:

name: openflowplugin-csit-cbench
jobs:

- inttest-csit-1node

The project name
project: 'openflowplugin'

The functionality under test
functionality: 'cbench'

Project branches
stream:

3.3. Integration Testing Guide 1531

OpenDaylight Documentation Documentation, Release Carbon

- fluorine:
branch: 'master'

- oxygen:
branch: 'stable/oxygen'

- nitrogen:
branch: 'stable/nitrogen'

- carbon:
branch: 'stable/carbon'
karaf-version: 'karaf3'

install:
- only:

scope: 'only'

Job images
tools_system_image: 'ZZCI - Ubuntu 16.04 - mininet-ovs-28 - 20180301-1041'

Features to install
install-features: 'odl-openflowplugin-flow-services-rest,odl-openflowplugin-drop-

→˓test'

Robot custom options
robot-options: '-v duration_in_secs:60 -v throughput_threshold:20000 -v latency_

→˓threshold:5000'

Plot Info
01-plot-title: 'Throughput Mode'
01-plot-yaxis: 'flow_mods/sec'
01-plot-group: 'Cbench Performance'
01-plot-data-file: 'throughput.csv'
02-plot-title: 'Latency Mode'
02-plot-yaxis: 'flow_mods/sec'
02-plot-group: 'Cbench Performance'
02-plot-data-file: 'latency.csv'

Explanation:

• There are up to 10 plots per job and every plot can track different values, for example max, min, average recorded
in a csv file. In the example above you can skip the 02-* lines if you do not use second plot.

• plot-title: title for your plot.

• plot-yaxis: your measurement (xaxis is build # so no need to fill).

• plot-group: just a label, use the same in case you have 2 plots.

• plot-data-file: this is the csv file generated by robot framework and contains the values to plot. Examples can be
found in openflow-performance.

Optional: Add Patch Test Job to verify project patches

With the steps above your new csit job will run daily on latest generated distribution. There is one more extra and
optional step if you also want to run your system test to verify patches in your project.

The patch test is triggered in gerrit using the keyword:

test-$project-$feature

The job will:

1532 Chapter 3. Content for OpenDaylight Contributors

https://git.opendaylight.org/gerrit/gitweb?p=integration/test.git;a=blob;f=csit/suites/openflowplugin/Performance/010_Cbench.robot

OpenDaylight Documentation Documentation, Release Carbon

• Build the gerrit patch.

• Create a distribution containing the patch.

• Trigger some system test (csit) that already exists and you specify with the $feature definition below.

Create $project-patch-test.yaml file in your jjb folder:

vim jjb/$project/$project-patch-test-jobs.yaml

Fill the information as below:

- project:

name: openflowplugin-patch-test
jobs:

- inttest-patch-test

The project name
project: 'openflowplugin'

Project branches
stream:

- fluorine:
branch: 'master'
os-branch: 'queens'

- oxygen:
branch: 'stable/oxygen'
os-branch: 'queens'

- nitrogen:
branch: 'stable/nitrogen'
os-branch: 'pike'

- carbon:
branch: 'stable/carbon'
os-branch: 'ocata'
karaf-version: 'karaf3'

jdk: 'openjdk8'

feature:
- core:

csit-list: >
openflowplugin-csit-1node-gate-flow-services-all-{stream},
openflowplugin-csit-1node-gate-scale-only-{stream},
openflowplugin-csit-1node-gate-perf-stats-collection-only-{stream},
openflowplugin-csit-1node-gate-perf-bulkomatic-only-{stream},
openflowplugin-csit-3node-gate-clustering-only-{stream},
openflowplugin-csit-3node-gate-clustering-bulkomatic-only-{stream},
openflowplugin-csit-3node-gate-clustering-perf-bulkomatic-only-{stream}

- netvirt:
csit-list: >

netvirt-csit-1node-openstack-{os-branch}-gate-stateful-{stream}

- cluster-netvirt:
csit-list: >

netvirt-csit-3node-openstack-{os-branch}-gate-stateful-{stream}

Explanation:

3.3. Integration Testing Guide 1533

OpenDaylight Documentation Documentation, Release Carbon

• name: give some name like $project-patch-test.

• project: set your your project name here (e.g. openflowplugin).

• stream: list the project branches you are going to generate system test. Only last branch if the project is new.

• feature: you can group system tests in features. Note there is a predefined feature -all- that triggers all features
together.

• Fill the csit-list with all the system test jobs you want to run to verify a feature.

Debug System Test

Before pushing your system test job into jenkins-releng, it is recommended to debug the job as well as the you system
test code in the sandbox. To do that:

• Set up sandbox access using jenkins-sandbox-install instruction.

• Push your new csit job to sandbox:

Method 1:

you can write a comment in a releng/builder gerrit patch to have the job automatically created in the sandbox.
The format of the comment is:

jjb-deploy <job name>

Method 2:

jenkins-jobs --conf jenkins.ini update jjb/ $project-csit-1node-$functionality-
→˓only-$branch

• Open your job in jenkins-sandbox and start a build replacing the PATCHREFSPEC parameter by your int/test
patch REFSPEC (e.g. refs/changes/85/23185/1). you can find this info in gerrit top right corner ‘Download’
button.

• Update the PATCHREFSPEC parameter every time you push a new patchset in the int/test repository.

Optional: Debug VM issues in sandbox

In case of problems with the test VMs, you can easily debug these issues in the sandbox by adding the following lines
in a Jenkins shell window:

cat > ${WORKSPACE}/debug-script.sh <<EOF

<<put your debug shell script here>>

EOF
scp ${WORKSPACE}/debug-script.sh ${TOOLS_SYSTEM_IP}:/tmp
ssh ${TOOLS_SYSTEM_IP} 'sudo bash /tmp/debug-script.sh'

Note this will run a self-made debug script with sudo access in a VM of your choice. In the example above you debug
on the tools VM (TOOLS_SYSTEM_IP), use ODL_SYSTEM_IP to debug in controller VM.

Save and push JJB changes

Once you are happy with your system test, save the changes and push them in the releng builder repo:

1534 Chapter 3. Content for OpenDaylight Contributors

https://jenkins.opendaylight.org/releng/
http://docs.opendaylight.org/en/stable-boron/submodules/releng/builder/docs/jenkins.html#jenkins-sandbox
https://jenkins.opendaylight.org/sandbox/

OpenDaylight Documentation Documentation, Release Carbon

git add -A
git commit -s
git push

Important: If this is your first system test job, it is recommended to add the int/test patch (gerrit link) in the commit
message so that committers can merge both the int/test and the releng/builder patches at the same time.

Check system test jobs in Jenkins

Once your patches are merged your system test can be browsed in jenkins-releng:

• $project-csit-1node-$functionality-only-$branch -> The single-feature test.

• $project-csit-1node-$functionality-all-$branch -> The multi-project test.

• $yourproject-patch-test-$feature-$branch -> Patch test job.

Note that jobs in jenkins-releng cannot be reconfigured, only jobs in jenkins-sandbox can, that is why it is so important
for testers to get access to sandbox.

Support

Integration people are happy to support with questions and recommendations:

• Integration IRC: OpenDaylight channel ‘opendaylight-integration

• Integration Mail: OpenDaylight list ‘integration-dev@lists.opendaylight.org‘

3.3.2 Cluster testing

Contents:

Carbon cluster testing

Contents:

Description of test scenarios

This is a test plan written around M1 of Carbon cycle.

During the cycle several limitations were found, which resulted in tests which implement the scenarios is ways different
from what is described here.

For list of limitations and differences, see caveats page. For more detailed descriptions of test cases as implemented,
see test description page.

3.3. Integration Testing Guide 1535

https://jenkins.opendaylight.org/releng/
https://jenkins.opendaylight.org/releng/
https://jenkins.opendaylight.org/sandbox/
mailto:'integration-dev@lists.opendaylight.org
caveats.html
tests.html

OpenDaylight Documentation Documentation, Release Carbon

Controller Cluster Service Functional Tests

The purpose of functional tests is to establish a known baseline behavior for basic services exposed to application
plugins when the cluster member nodes encounter problems.

Isolation Mechanics Three-node scenarios executed in tests below need to be repeated for three distinct modes of
isolation:

1. JVM freeze, initiated by ‘kill -STOP <pid>’ on the JVM process, followed by a ‘kill -CONT <pid>’ after
three minutes. This simulates a long-running garbage collection cycle, VM suspension or similar, after
which the JVM recovers without losing state and scheduled timers going off simultaneously.

2. Network-level isolation via firewalling. Simulates a connectivity issue between member nodes, while all
nodes continue to work as usual. This should be done by firewalling all traffic to and from the target node.

3. JVM restart. This simulates a hard error, such as JVM error, VM reboot, and similar. The JVM loses
its state and the scenario tests whether the failed node is able to result its operations as a member of the
cluster.

Leader Shutdown The Shard implementation allows a leader to be shut down at run time, which is expected to
perform a clean hand over to a new leader, elected from the remaining shard members.

DOMDataBroker

Also known as ‘the datastore’, provides MVCC transaction and data change notifications.

Leader Stability

The goal is to ensure that a single-established shard does not flap, i.e. does not trigger leader movement by causing
crashes or timeouts. This is performed by having the BGP load generator run injection of 1 million prefixes, followed
by their removal.

This test is executed in three scenarios:

• Single node

• Three-node, with shard leader being local

• Three-node, with shard leader being remote

Success criteria are:

• Both injection and removal succeed

• No transaction errors reported to the generator

• No leader movement on the backend

Clean Leader Shutdown

The goal is to ensure that applications do not observe disruption when a shard leader is shut down cleanly. This
is performed by having a steady-stream producer execute operations against the shard and then initiate leader shard
shutdown, then the producer is shut down cleanly.

This test is executed in two scenarios:

• Three-node, with shard leader being local

• Three-node, with shard leader being remote

1536 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Success criteria are:

• No transaction errors occur

• Producer shuts down cleanly (i.e. all transactions complete successfully)

Test tool: test-transaction-producer, running at 1K tps

• Steady, configurable producer started with:

• A transaction chain

• Single transactions (note: these cannot overlap)

• Configurable transaction rate (i.e. transactions-per-second)

• Single-operation transactions

• Random mix across 1M entries

Explicit Leader Movement

The goal is to ensure that applications do not observe disruption when a shard leader is moved as the result of explicit
application request. This is performed by having a steady-stream producer execute operations against the shard and
then initiate shard leader shutdown, then the producer is shut down cleanly.

This test is executed in three scenarios:

• Three-node, with shard leader being local and becoming remote

• Three-node, with shard leader being remote and remaining remote

• Three-node, with shard leader being remote and becoming local

Success criteria are:

• No transaction errors occur

• Producer shuts down cleanly (i.e. all transactions complete successfully)

Test tool: test-transaction-producer, running at 1K tps Test tool: test-leader-mover

• Uses cds-dom-api to request shard movement

Leader Isolation

The goal is to ensure the datastore succeeds in basic isolation/rejoin scenario, simulating either a network partition, or
a prolonged GC pause.

This test is executed in the following two scenarios:

• Three-node, partition heals within TRANSACTION_TIMEOUT

• Three-node, partition heals after 2*TRANSACTION_TIMEOUT

Using following steps:

1. Start test-transaction producer, running at 1K tps, non-overlapping, from all nodes to a single shard

2. Isolate leader

3. Wait for followers to initiate election

4. Un-isolate leader

3.3. Integration Testing Guide 1537

OpenDaylight Documentation Documentation, Release Carbon

5. Wait for partition to heal

6. Restart failed producer

Success criteria:

• Followers win election in 3

• No transaction failures occur if the partition is healed within TRANSACTION_TIMEOUT

• Producer on old leader works normally after step 6)

Test tool: test-transaction-producer

Client Isolation

The purpose of this test is to ascertain that the failure modes of cds-access-client work as expected. This is performed
by having a steady stream of transactions flowing from the frontend and isolating the node hosting the frontend from
the rest of the cluster.

This test is executed in one scenario:

• Three node, test-transaction-producer running on a non-leader

• Three node, test-transaction-producer running on the leader

Success criteria:

• After TRANSACTION_TIMEOUT failures occur

• After HARD_TIMEOUT client aborts

Test tool: test-transaction-producer

Listener Isolation

The goal is to ensure listeners do no observe disruption when the leader moves. This is performed by having a steady
stream of transactions being observed by the listeners and having the leader move.

This test is executed in two scenarios:

• Three node, test-transaction-listener running on the leader

• Three node, test-transaction-listener running on a non-leader

Using these steps:

• Start the listener on target node

• Start test-transaction-producer on each node, with 1K tps, non-overlapping data

• Trigger shard movement by shutting down shard leader

• Stop producers without erasing data

• Stop listener

Success criteria:

• Listener-internal data tree has to match data stored in the data tree

Test tool: test-transaction-listener

• Subscribes a DTCL to multiple subtrees (as specified)

1538 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

• DTCL applies reported changes to an internal DataTree

DOMRpcBroker

Responsible for routing RPC requests to their implementations and routing responses back to the caller.

RPC Provider Precedence

The aim is to establish that remote RPC implementations have lower priority than local ones, which is to say that any
movement of RPCs on remote nodes does not affect routing as long as a local implementation is available.

Test is executed only in a three-node scenario, using the following steps:

1. Register an RPC implementation on each node

2. Invoke RPC on each node

3. Unregister implementation on one node

4. Invoke RPC on that node

5. Re-register implementation on than node

6. Invoke RPC on that node

Success criteria:

• Invocation in steps 2) and 6) results in a response from local node

• Invocation in step 4) results in a response from one of the other two nodes

RPC Provider Partition and Heal

This tests establishes that the RPC service operates correctly when faced with node failures.

Test is executed only in a three-node scenario, using the following steps:

1. Register an RPC implementation on two nodes

2. Invoke RPC on each node

3. Isolate one of the nodes where RPC is registered

4. Invoke RPC on each node

5. Un-isolate the node

6. Invoke RPC on all nodes

Success criteria:

• Step 2) routes the RPC the node nearest node (local or remote)

• Step 4) works, routing the RPC request to the implementation in the same partition

• Step 6) routes the RPC the node nearest node (local or remote)

3.3. Integration Testing Guide 1539

OpenDaylight Documentation Documentation, Release Carbon

Action Provider Precedence

The aim is to establish that remote action implementations have lower priority than local ones, which is to say that any
movement of actions on remote nodes does not affect routing as long as a local implementation is available.

Test is executed only in a three-node scenario, using the following steps:

1. Register an action implementation on each node

2. Invoke action on each node

3. Unregister implementation on one node

4. Invoke action on that node

5. Re-register implementation on than node

6. Invoke action on that node

Success criteria:

• Invocation in steps 2) and 6) results in a response from local node

• Invocation in step 4) results in a response from one of the other two nodes

Action Provider Partition and Heal

This tests establishes that the RPC service for actions operates correctly when faced with node failures.

Test is executed only in a three-node scenario, using the following steps:

1. Register an action implementation on two nodes

2. Invoke action on each node

3. Isolate one of the nodes where RPC is registered

4. Invoke action on each node

5. Un-isolate the node

6. Invoke action on all nodes

Success criteria:

• Step 2) routes the action request the node nearest node (local or remote)

• Step 4) works, routing the action request to the implementation in the same partition

• Step 6) routes the RPC the node nearest node (local or remote)

DOMNotificationBroker

Provides routing of YANG notifications from publishers to subscribers.

No-loss rate

The purpose of this test is to determine the broker can forward messages without loss. We do this on a single-node
setup by incrementally adding publishers and subscribers.

This test is executed in one scenario:

1540 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

• Single-node

Steps:

• Start test-notification-subscriber

• Start test-notification-publisher at 5K notifications/sec

• Run for 5 minutes, verify no notifications lost

• Add another pair of publisher/subscriber, repeat for rate of 60K notifications/sec

Success criteria:

• No notifications lost at rate of 60K notifications/sec

Test tool: test-notification-publisher

• Publishes notifications containing instance id and sequence number

• Configurable rate (i.e. notifications-per-second)

Test tool: test-notification-subscriber

• Subscribes to specified notifications from publisher

• Verifies notification sequence numbers

• Records total number of notifications received and number of sequence errors

Cluster Singleton

Cluster Singleton service is designed to ensure that only one instance of an application is registered globally in the
cluster.

Master Stability

The goal is to establish the service operates correctly in face of application registration changing without moving the
active instance.

The test is performed in a three-node cluster using following steps:

1. Register candidate on each node

2. Wait for master activation

3. Remove non-master candidate,

4. Wait one minute

5. Restore the removed candidate

Success criteria:

• After step 2) there is exactly one master in the cluster

• The master does not move to a different node for the duration of the test

3.3. Integration Testing Guide 1541

OpenDaylight Documentation Documentation, Release Carbon

Partition and Heal

The goal is to establish the service operates correctly in face of node failures.

The test is performed in a three-node cluster using following steps:

1. Register candidate on each node

2. Wait for master activation

3. Isolate master node

4. Wait two minutes

5. Un-isolate (former) master node

6. Wait one minute

Success criteria:

• After step 3), master instance is brought down on isolated node

• During step 4) majority partition elects a new master

• Until 5) occurs, old master remains deactivated

• After 6) old master remains deactivated

Chasing the Leader

This test aims to establish the service operates correctly when faced with rapid application transitions without having
a stabilized application.

This test is performed in a three-node setup using the following steps:

1. Register a candidate on each node

2. Wait for master activation

3. Newly activated master unregisters itself

4. Repeat 2

Success criteria:

• No failures occur for 5 minutes

• Transition speed is at least 100 movements per second

Controller Cluster Services Longevity Tests

1. Run No-Loss Rate test for 24 hours. No message loss, instability or memory leaks may occur.

2. Repeat Leader Stability test for 24 hours. No transaction failures, instability, leader movement or memory leaks
may occur.

3. Repeat Explicit Leader Movement test for 24 hours. No transaction failures, instability, leader movement or
memory leaks may occur.

4. Repeat RPC Provider Precedence test for 24 hours. No failures or memory leaks may occur.

5. Repeat RPC partition and Heal test for 24 hours. No failures or memory leaks may occur.

6. Repeat Chasing the Leader test for 24 hours. No memory leaks or failures may occur.

1542 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

7. Repeat Partition and Heal test for 24 hours. No memory leaks or failures may occur.

NETCONF System Tests

Netconf is an MD-SAL application, which listens to config datastore changes, registers a singleton for every configured
device, instantiated singleton is updating device connection data in operational datastore, maintaining a mount point
and handling access to the mounted device.

Basic configuration and mount point access

No disruptions, ordinary netconf operation with restconf calls to different cluster members.

Test is executed in a three-node scenario, using the following steps:

1. Configure connection to test device on member-1.

2. Create, update and delete data on the device using calls to member-2.

3. Each state change confirmed by reading device data on member-3.

4. De-configure the device connection.

Success criteria:

• All reads confirm data operations are applied correctly.

Device owner killed

Killing current device owner leads to electing new owner. Operations are still applied.

The test is performed in a three-node cluster using following steps:

1. Configure connection to test device on member-1.

2. Create data on the device using a call to member-2.

3. Locate and kill the device owner member.

4. Wait for a new owner to get elected.

5. Update data on the device using a call to one of the surviving members.

6. Restart the killed member.

7. Update the data again using a call to the restarted member.

Success criteria:

• Each operation (including restart) is confirmed by reads on all members currently up.

Rolling restarts

Each member is restarted (start is waiting for cluster sync) in succession, this is to guarantee each Leader is affected.

The test is performed in a three-node cluster using following steps:

1. Configure connection to test device on member-1.

2. Kill member-1.

3.3. Integration Testing Guide 1543

OpenDaylight Documentation Documentation, Release Carbon

3. Create data on the device using a call to member-2.

4. Start member-1.

5. Kill member-2.

6. Update data on the device using a call to member-3.

7. Start member-2.

8. Kill member-3.

9. Delete data on the device using a call to member-1.

10. Start member-3.

Success criteria:

• After every operation, reads on both living members confirm it was applied.

• After every start, a read on the started node confirms it sees the device data from the previous operation.

Caveats

This sub-page describes ways the test implementation (or results) differs from the original specification and which
information motivates the difference.

Jenkins job structure

• Information

At the start of test implementation, all the Controller 3node test cases were added into an existing Jenkins job.

During test development it was become clear, that adding all possible tests would make the job to run too long.

Dividing the job into several smaller ones is possible, but most likely the history would be lost, unless Linux Founda-
tion admins figure out a way to create multiple job clones with history copied.

• Testing consequence

Even with number of test cases reduced (see below), the job duration is around three and half hours.

• How to fix

After Carbon SR2 release, the jobs can be split, as there will be enough time to generate new history till Carbon SR3.

Akka bugs

These are bugs which need either a fix in Akka codebase, or a workaround which would be too time-consuming to
implement in ODL.

Both bugs manifest as UnreachableMember event (without intentional isolation).

Slow heartbeats

• Information

1544 Chapter 3. Content for OpenDaylight Contributors

scenarios.html

OpenDaylight Documentation Documentation, Release Carbon

Akka sends periodic heartbeats in order to detect when the other member is being unresponsive.

The heartbeats are being serialized into the same TCP channel as ordinary data, which means if ODL is processing big
amount of data, the heartbeats can spend a long time in TCP (or other) buffers before being processed. When this time
exceeds a specific value (currently 6 seconds), the peer memeber is declared unreachable, generally leading to leader
movement.

This affects BGP test results on 3node setup, as ODL is processing BGP data as quickly as possible, but the current
BGP implementation does not handle rib owner movement gracefully (and leader movement is explicitly checked by
the test, as the scenario dictates it should not happen). This does not affect other data broker tests, 1000 transactions
per second do not generate critical throughput.

• Testing consequence

Three test cases are failing due to Bug 8318.

• How to fix

Possibly, a different akka configuration could be applied to separate akka cluster status messages into a different TCP
stream than ordinary data stream.

Otherwise, a contribution to Akka project would be needed.

Reachability gossip

• Information

Akka uses a gossip protocol to advertize one member’s reachability to other members. There is a logic which allows
for faster detection of unreachable members, when a member can declare its peer unreachable if it got information
from another peer which is considered more up-to-date.

Ocassionally, this logic results in undesired behavior. This is when the supposedly up-to-date peer has been isolated
and now it is rejoining. Depending on timing, this can introduce additional leader movement, or a very brief moment
when a member “forgets” RPC registrations from other member.

This is causing bugs 8420 and 8430.

• Testing consequence

This affects “partition and heal” scenarios in singleton testing. In functional tests, the failures are infrequent enough
to consider the test mostly stable overall, but the corresponding longevity jobs are failing consistently.

The tests for “partition and heal” scenarios in RPC testing have been changed to tolerate wrong RPC results for 10
seconds to work around this Akka bug.

• How to fix

This does not seem fixable on ODL level, contribution to Akka project is needed.

Missing features

Cluster yang notifications

• Information

Yang notifications are not delivered to peer members. Bug 2139 is only fixed for data change notifications, not Yang
notifications.

Bug 2140 tracks adding this missing functionality.

• Testing consequence

3.3. Integration Testing Guide 1545

https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://bugs.opendaylight.org/show_bug.cgi?id=8420
https://bugs.opendaylight.org/show_bug.cgi?id=8430
https://bugs.opendaylight.org/show_bug.cgi?id=2139
https://bugs.opendaylight.org/show_bug.cgi?id=2140

OpenDaylight Documentation Documentation, Release Carbon

Notification suites are running on 1-node setup only.

• How to fix

After the funtionality is added, it will be straightforward to add 3node tests.

New features

Tell-based protocol

• Information

Tell-based protocol is an alternative to ask-based protocol from Boron. Which protocol to use is decided by a line in a
configuration file (org.opendaylight.controller.cluster.datastore.cfg).

Some scenarios are expected to fail due to known limitations of ask-based protocol. More specifically, if a shard leader
moves while a transaction is open in ask-based protocol, the transaction will fail (AskTimeoutException).

This affects only data broker tests, not RPC calls.

• Testing consequence

In principle, this doubles the number of configurations to be tested, but see below.

• How to fix

It is planned for tell-based protocol to become the default setting after Carbon SR2. After that, tests for ask-based
protocol can be converted or removed.

Prefix-based shards

• Information

Tell-based shards are an alternative to module-based shards from Boron. Tell-based shards can be only created dy-
namically (as opposed to being read from a configuration file at startup). It is possible to use both types of shards, but
data writes and reads use different API, so any Mdsal application needs to know which API to use.

The implementation of prefix-based shards is hardwired to tell-based protocol (even if ask-based protocol is configured
as the default).

• Testing consequence

This doubles the number of configurations to be tested, for tests related to data droker (RPCs are unaffected).

• How to fix

ODL contains great many applications which use APIs for module-based shards. It is expected that multiple releases
would still need both types of tests cases. Module-based shards will be deprecated and removed eventually.

Producer options

• Information

Data producers for module-based shards can produce either chained transactions or standalone transactions. Data pro-
ducers for prefix-based shards can produce either non-isolated transactions (change notifications can combine several
transactions together) or isolated transactions.

• Testing consequence

In principle, this results in multiple Robot test cases for the same documented scenario case, but see below.

1546 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

• How to fix

All test cases will be needed in forseeable future. Instead, more negative test cases may need be added to verify
different options lead to different behavior.

Initial leader placement

• Information

Some scenarios do not specify initial locations of relevant shard leaders. Test results can depend on it in presence of
bugs.

This is mostly relevant to BGP test, which has three relevant members: Rib owner, default operation shard leader and
topology operational shard leader.

• Testing consequence

Two test cases are tested. The two shard leaders are always together, rib owner is either co-located or not. This is done
by suite moving shard leaders after detecting rib owner location.

• How to fix

Even more placements can be tested when job duration stops being the limiting factor.

Reduced BGP scaling

• Information

Rib owner maintains de-duplicated data structures. Other members get serialized copies and they do not de-duplicate.

Even single node strugless to fit into 6GB heap with tell-based protocol, see Bug 8649.

• Testing consequence

Scale from reported tests reduced from 1 million prefixes to 300 thousand prefixes.

• How to fix

Other members should be able to perform de-duplication, but developing that takes effort.

In the meantime, Linux Foundation could be convinced to allow for bigger VMs, currently limited by infrastructure
available.

Increased timeouts

RequestTimeoutException

• Information

With tell-based protocol, restconf requests might stay open up to 120 seconds before returning an error. Even shard
state reads using Jolokia can take long time if the shard actor is busy processing other messages.

• Testing consequence

This increases duration for tests which need to verify transaction errors do happen after sufficiently long isolation.
Also, duration is increased if a test fails on a read which is otherwise quick.

• How to fix

3.3. Integration Testing Guide 1547

https://bugs.opendaylight.org/show_bug.cgi?id=8649

OpenDaylight Documentation Documentation, Release Carbon

This involves a trade-off between stability and responsiveness. As MD-SAL applications rarely tolerate transaction
failures, users would prefer stability. That means relatively longer timeouts are there to stay, which means test case
duration will stay high in negative (or failing positive) tests.

Client abort timeout

• Information

Client abort timeout is currently set to 15 minutes. The operational consequence is just an inability to start another
data producer on a member isolated for that long. This test has too long duration compared to its usefulness.

• Testing consequence

This test case has never been implemented.

Instead a test with isolation shorter than 120 seconds is implemented, the test verifies the data producer continues its
operation without RequestTimeoutException.

• How to fix

It is straighforward to add the missing test cases when job duration stops being a limiting factor.

No shard shutdown

• Common information.

There are multiple RPCs offering different “severity” of shard shutdown. For technical details see comments on change
58580.

If tests perform rigorous teardown, the shard replica should be re-activated, which is an operation not every RPC
supports.

Listener stability suite

• Information

Current implementation of data listeners relies on a shard replica to be active on a member which is to receive the
notification. Until that is imroved, Bug 8629 prevents this scenario from being tested as described.

• Testing consequence

The suite uses become-leader RPC instead. This has an added benefit of test case being able to pick which member is
to become the new leader (adding one more test case when the old leader was not co-located with the listener).

Also, no teardown step is needed, the final cluster state is not missing any shard replica.

• How to fix

The original test can be implemented when listener implementation changes. But the test which uses become-leader
might be better overall.

Clean leader shutdown suite

• Information

1548 Chapter 3. Content for OpenDaylight Contributors

https://git.opendaylight.org/gerrit/58580
https://git.opendaylight.org/gerrit/58580
https://bugs.opendaylight.org/show_bug.cgi?id=8629

OpenDaylight Documentation Documentation, Release Carbon

Some implementations of shutdown RPCs have a side effect of also shutting down shard state notifier. For details see
Bug 8794.

The remove-shard-replica RPC does not have this downside, but it changes shard configuration, which was not in-
tended by the original scenario definition.

• Testing consequence

Test cases for this scenario were switched to use remove-shard-replica.

• How to fix

There is an open debate on whether “shard shutdown” RPC with less operations (compared to remove-shard-replica)
is something user wants and should be given access to.

If yes, tests can be switched to such an RPC, assuming the shard notifier issue is also fixed.

Hard reboots between test cases

• Information

Timing errors in Robot code lead to Robot being unable to restore original state without restarts.

During development, we started without any hard reboots, and that was finding bugs in teardown steps of scenarios.
But test independence was more important at that time, so current tests are less sensitive to teardown failures.

• Testing consequence

Around 115 second per ODL reboot, this time is added to every test case running time. Together with increased
timeouts, this motivates leaving out some test cases to allow faster change verification.

• How to fix

Ideally, we would want both jobs with hard resets and jobs without them. The jobs without resets can be added
gradually after splitting the current single job.

Isolation mechanics

• Information

During development, it was found that freeze and kill mechanics affect the co-located java test driver without exposing
any new bugs.

Turns out AAA functionality attempts to read from datastore, so isolated member returns http status code 401.

• Testing consequence

Only iptables filtering is used in order to reduce test job duration.

Isolated members are never queried directly. A leader member is considered isolated when other members elect a lew
leader. A member is considered rejoined when it responds reporting itself as a follower.

• How to fix

It is straightforward to add test cases for kill and freeze where appropriate, but once again this can be done gradually
when job duration is not a limiting factor.

3.3. Integration Testing Guide 1549

https://bugs.opendaylight.org/show_bug.cgi?id=8794

OpenDaylight Documentation Documentation, Release Carbon

Reduced number of combinations

• Information

Prefix-based shards always use tell-based protocol, so suites which test them with ask-based protocol configuration
can be skipped.

Ask-based protocol is known to fail on AskTimeoutException on leader movement, so suites which produce transac-
tions constantly can be skipped.

Most test cases are not sensitive to data producer options.

• Testing consequence

BGP tests and singleton tests use module-based shards only, both protocols. Other suites related to data broker are
testing only tell-based protocol, both shard types. Netconf tests and RPC tests use module-based shards with ask-based
protocol only. Only client isolaton suite tests different producer options.

• How to fix

More ests can be added gradually (see above).

Possibly, not every combination is worth the duration it takes, but that could be alleviated if Linux Foundation infras-
tructure grows in size significantly.

Reduced performance

• Information

In order to reduce test job duration, suites wait for minimal functionality (jolokia reporting shards are in sync) after
restarting ODL. That means unrelated karaf features might still being installed whet test is in progress. This should
not affect functional tests, but it can reduce performance observed.

The only suite observing strong enough performance inpact is chasing the leader.

• Testing consequence

Functional tests for chasing the leader suite tolerate frequencies higher than 50 un-registrations per second. Longevity
suite still requires full 100 unregistrations per second.

• How to fix

Suite can wait for better symptom of ODL being ready, for example by requiring CPU usage to become less that a
chosen threshold.

Missing logs

• Information

Robot VM has only 2GB of RAM and longevity jobs tend to produce large output.xml files.

Ocasionally, a job can create karaf.log files so large they fail to download, in extreme cases filling ODL VM disk and
causing failures.

This affects mostly longevity jobs (and runs with verbose logging) if they pass.

• Testing consequence

Robot data stored is reduced to avoid this issue, sometimes leading to less details available. This issue is still not fully
resolved, so ocassionally Robot log or karaf log is still missing if the job in question fails in an unexpected way.

• How to fix

1550 Chapter 3. Content for OpenDaylight Contributors

scenarios.html#chasing-the-leader
scenarios.html#chasing-the-leader

OpenDaylight Documentation Documentation, Release Carbon

It is possible for Robot test to put additional data into separate files. Unnecessarily verbose logs could be fixed where
needed.

As this limitation only hurts in newly occuring bugs, it is not really possible to entirely avoid this.

Weekend outages

• Information

Linux foundation ifrastructure teem occasionally needs to perform changes which affect running jobs. To reduce this
impact, such changes are usually done over weekend.

Cluster testing currently contains seve longevity jobs which block resources for 23 hours. As that is a significant
portion of available resources, the longevity jobs are only run on weekend where the impact on frequency of other job
is less critical.

• Testing consequence

Sometimes, the longevity jobs are affected by infrastructure team activities, leading to lost results or spurious failures.
One such symptom is tracked as Bug 8959.

• How to fix

It might be possible to spread longevity jobs over work days. As distributing jobs manually is not a scalable option, a
considerable work would be needed to create an automatic way.

Infrastructure changes are not very frequent, and having jobs run at the same predictable time is convenient from
reporting point of view, so perhaps it is okay to keep the current setup.

List of test cases

Each test case has a shorter code, tables with results use that code. In result tables, the code is a link to this document,
due to coala ReST requirements, the codes are (self-pointing) links also in this document.

Other links point to scenario definitions ao caveat items.

• DOMDataBroker: Producers make 1000 transactions per second, except BGP which works full speed.

• Leader stability: BGP inject benchmark (thus module shards only), 300k prefixes, 1 Python peer.
Progress tracked by counting prefixes in example-ipv4-topology.

• Ask-based protocol:

• Single member: bgp-1n-300k-a

• Tell-based protocol:

• Single member: bgp-1n-300k-t

• Three members:

• Leaders local: bgp-3n-300k-ll-t

• Leaders remote: bgp-3n-300k-lr-t

• Longevity: bgp-3n-300k-t-long

• Clean leader shutdown, Tell-based protocol:

• Module-based shards:

• Shard leader local to producer: ddb-cls-ms-ll-t

3.3. Integration Testing Guide 1551

https://bugs.opendaylight.org/show_bug.cgi?id=8959
scenarios.html#domdatabroker
scenarios.html#leader-stability
caveats.html#reduced-bgp-scaling
caveats.html#tell-based-protocol
caveats.html#initial-leader-placement
scenarios.html#controller-cluster-services-longevity-tests
scenarios.html#clean-leader-shutdown
caveats.html#tell-based-protocol

OpenDaylight Documentation Documentation, Release Carbon

• Shard leader remote to producer: ddb-cls-ms-lr-t

• Prefix-based shards:

• Shard leader local to producer: ddb-cls-ps-ll-t

• Shard leader remote to producer: ddb-cls-ps-lr-t

• Explicit leader movement, Tell-based protocol:

• Module-based shards:

• Local leader to remote: ddb-elm-ms-lr-t

• Remote leader to other remote: ddb-elm-ms-rr-t

• Remote leader to local: ddb-elm-ms-rl-t

• Longevity (randomized direction): ddb-elm-mc-t-long

• Prefix-based shards:

• Local leader to remote: ddb-elm-ps-lr-t

• Remote leader to other remote: ddb-elm-ps-rr-t

• Remote leader to local: ddb-elm-ps-rl-t

• Leader isolation (network partition only), Tell-based protocol:

• Module-based shards:

• Heal within transaction timeout: ddb-li-ms-st-t

• Heal after transaction timeout: ddb-li-ms-dt-t

• Prefix-based shards:

• Heal within transaction timeout: ddb-li-ps-st-t

• Heal after transaction timeout: ddb-li-ps-dt-t

• Client isolation, Tell-based protocol:

• Module-based shards:

• Leader local:

• Simple transactions: ddb-ci-ms-ll-st-t

• Transaction chain: ddb-ci-ms-ll-ct-t

• Leader remote:

• Simple transactions: ddb-ci-ms-lr-st-t

• Transaction chain: ddb-ci-ms-lr-ct-t

• Prefix-based shards:

• Leader local:

• Isolated transactions: ddb-ci-ps-ll-it-t

• Non-isolated transactions: ddb-ci-ps-ll-nt-t

• Leader remote:

• Isolated transactions: ddb-ci-ps-lr-it-t

• Non-isolated transactions: ddb-ci-ps-lr-nt-t

1552 Chapter 3. Content for OpenDaylight Contributors

caveats.html#prefix-based-shards
scenarios.html#explicit-leader-movement
caveats.html#tell-based-protocol
caveats.html#prefix-based-shards
scenarios.html#leader-isolation
caveats.html#isolation-mechanics
caveats.html#tell-based-protocol
caveats.html#prefix-based-shards
scenarios.html#client-isolation
caveats.html#tell-based-protocol
caveats.html#producer-options
caveats.html#prefix-based-shards

OpenDaylight Documentation Documentation, Release Carbon

• Listener stablity, Tell-based protocol:

• Module-based shards:

• Local to remote: ddb-ls-ms-lr-t

• Remote to remote: ddb-ls-ms-rr-t

• Remote to local: ddb-ls-ms-rl-t

• Prefix-based shards:

• Local to remote: ddb-ls-ps-lr-t

• Remote to remote: ddb-ls-ps-rr-t

• Remote to local: ddb-ls-ps-rl-t

• DOMRpcBroker, ask-based protocol:

• RPC Provider Precedence:

• Functional: drb-rpp-ms-a

• Longevity: drb-rpp-ms-a-long

• RPC Provider Partition and Heal:

• Functional: drb-rph-ms-a

• Longevity: drb-rph-ms-a-long

• Action Provider Precedence: drb-app-ms-a

• Action Provider Partition and Heal: drb-aph-ms-a

• DOMNotificationBroker: Only for 1 member, ask-based protocol.

• No-loss rate: Publisher-subscriber pairs, 5k nps per pair.

• Functional (5 minute tests for 1, 4 and 12 pairs): dnb-1n-60k-a

• Longevity (12 pairs): dnb-1n-60k-a-long

• Cluster Singleton:

• Ask-based protocol:

• Master Stability: ss-ms-ms-a

• Partition and Heal:

• Functional: ss-ph-ms-a

• Longevity: ss-ph-ms-a-long

• Chasing the Leader:

• Functional: ss-cl-ms-a

• Longevity: ss-cl-ms-a-long

• Tell-based protocol:

• Master Stability: ss-ms-ms-t

• Partition and Heal: ss-ph-ms-t

• Chasing the Leader: ss-cl-ms-t

• Netconf system tests (ask-based protocol, module-based shards):

3.3. Integration Testing Guide 1553

scenarios.html#listener-isolation
caveats.html#tell-based-protocol
caveats.html#prefix-based-shards
scenarios.html#domrpcbroker
scenarios.html#rpc-provider-precedence
scenarios.html#rpc-provider-partition-and-heal
scenarios.html#action-provider-precedence
scenarios.html#action-provider-partition-and-heal
scenarios.html#domnotificationbroker
scenarios.html#no-loss-rate
scenarios.html#cluster-singleton
scenarios.html#master-stability
scenarios.html#partition-and-heal
scenarios.html#chasing-the-leader
caveats.html#tell-based-protocol
scenarios.html#master-stability
scenarios.html#partition-and-heal
scenarios.html#chasing-the-leader
scenarios.html#netconf-system-tests

OpenDaylight Documentation Documentation, Release Carbon

• Basic access: netconf-ba-ms-a

• Owner killed: netconf-ok-ms-a

• Rolling restarts: netconf-rr-ms-a

Permanent draft, inaccessible: Sandbox test report

Test Case Summary

RelEng stability summary.

• tba: Recent failures to be analyzed yet: 0.

• test: Recent failures caused by wrong assumptions in test: 0.

• akka: Recent failures related to pure UnreachableMember: 4.

• tell: Recent failures not clearly caused by UnreachableMember: 6.

• few: Tests passing unless low frequency failure happens: 2 (1 without duplication). (Low frequency means
UnreachableMemeber or similar, related to Akka where Controller code has not real control.)

• pass: Tests passing consistently: 41 (39 without duplication).

• Total: 53 (50 without duplication).

• Total minus akka: 49 (46 without duplication).

• Total minus akka passing always or mostly: 43 (40 without duplication).

• Acceptance rate: 43/49=87.75% (40/46=86.95% without duplication).

Table

S017 instead of 2017 means Sandbox run (includes changes not merged to stable/carbon yet).

Last fail is date of last failure not caused by infra (or by a typo in test or by netconf/bgp failing to initialize properly).

“S 17” or “2 17” in Last run means the documented run was superseded by a newer one, but not analyzed yet.

“no sr3” means this test was not run on Sandbox, SR2 result is reported instead. “few” status from SR2 is not inherited
(such tests are marked as “pass”). “long ago” means the last real test failue happened somewhere before SR2 release
(or never).

TODO: Copy formatting from sr2 page.

Table 3.2: Releng stability results (pre-SR2)

Scenario name Type Last fail Last run Bugs Robot link
bgp-1n-1m-a pass no sr3 no sr3 no sr3
bgp-1n-300k-t pass no sr3 no sr3 no sr3
bgp-3n-300k-ll-t akka no sr3 no sr3 8318 no sr3
bgp-3n-300k-lr-t akka no sr3 no sr3 8318 no sr3
ddb-cls-ms-ll-t pass long ago S017-08-24 no fail this week
ddb-cls-ms-lr-t pass long ago S017-08-24 no fail this week
ddb-cls-ps-ll-t pass long ago S017-08-24 no fail this week
ddb-cls-ps-lr-t pass long ago S017-08-24 no fail this week

Continued on next page

1554 Chapter 3. Content for OpenDaylight Contributors

scenarios.html#basic-configuration-and-mount-point-access
scenarios.html#device-owner-killed
scenarios.html#rolling-restarts
https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://bugs.opendaylight.org/show_bug.cgi?id=8318

OpenDaylight Documentation Documentation, Release Carbon

Table 3.2 – continued from previous page
Scenario name Type Last fail Last run Bugs Robot link
ddb-elm-ms-lr-t pass long ago S017-08-24 no fail this week
ddb-elm-ms-rr-t pass long ago S017-08-24 no fail this week
ddb-elm-ms-rl-t pass long ago S017-08-24 no fail this week
ddb-elm-ps-lr-t pass long ago S017-08-24 no fail this week
ddb-elm-ps-rr-t pass long ago S017-08-24 no fail this week
ddb-elm-ps-rl-t pass long ago S017-08-24 no fail this week
ddb-li-ms-st-t pass long ago S017-08-24 no fail this week
ddb-li-ms-dt-t pass long ago S017-08-24 no fail this week
ddb-li-ps-st-t pass long ago S017-08-24 no fail this week
ddb-li-ps-dt-t tell S017-08-24 S017-08-24 8845 link
ddb-ci-ms-ll-ct-t pass long ago S017-08-24 no fail this week
ddb-ci-ms-ll-st-t pass long ago S017-08-24 no fail this week
ddb-ci-ms-lr-ct-t pass long ago S017-08-24 no fail this week
ddb-ci-ms-lr-st-t pass long ago S017-08-24 no fail this week
ddb-ci-ps-ll-ct-t pass long ago S017-08-24 no fail this week
ddb-ci-ps-ll-st-t pass long ago S017-08-24 no fail this week
ddb-ci-ps-lr-ct-t pass long ago S017-08-24 no fail this week
ddb-ci-ps-lr-st-t pass long ago S017-08-24 no fail this week
ddb-ls-ms-lr-t pass long ago S017-08-24 no fail this week
ddb-ls-ms-rr-t pass long ago S017-08-24 no fail this week
ddb-ls-ms-rl-t pass long ago S017-08-24 no fail this week
ddb-ls-ps-lr-t tell S017-08-24 S017-08-24 8733 link
ddb-ls-ps-rr-t tell S017-08-24 S017-08-24 8733 link
ddb-ls-ps-rl-t pass long ago S017-08-24 no fail this week
drb-rpp-ms-a pass long ago S017-08-24 no fail this week
drb-rph-ms-a pass long ago S017-08-24 no fail this week
drb-app-ms-a pass long ago S017-08-24 no fail this week
drb-aph-ms-a pass long ago S017-08-24 no fail this week
dnb-1n-60k-a pass no sr3 no sr3 no sr3
ss-ms-ms-a pass long ago S017-08-24 no fail this week
ss-ph-ms-a few S017-08-24 S017-08-24 8420 link
ss-cl-ms-a pass long ago S017-08-24 no fail this week
ss-ms-ms-t pass long ago S017-08-24 no fail this week
ss-ph-ms-t few S017-08-24 S017-08-24 8420 link
ss-cl-ms-t pass long ago S017-08-24 no fail this week
netconf-ba-ms-a pass no sr3 no sr3 no fail this week
netconf-ok-ms-a tell no sr3 no sr3 9027 no fail this week
netconf-rr-ms-a tell no sr3 no sr3 9027 no fail this week
bgp-3n-300k-t-long akka no sr3 no sr3 8318 no sr3
ddb-elm-mc-t-long pass no sr3 no sr3 no sr3
drb-rpp-ms-a-long pass no sr3 no sr3 no sr3
drb-rph-ms-a-long pass no sr3 no sr3 8430 no sr3
dnb-1n-60k-a-long pass no sr3 no sr3 no sr3
ss-ph-ms-a-long akka no sr3 no sr3 8420 no sr3
ss-cl-ms-a-long tell S017-08-23 S017-08-23 9054 link

For descriptions of test cases, see description page. Note that the link contains current description, the details might
have been implemented differently at SR1 release.

3.3. Integration Testing Guide 1555

https://bugs.opendaylight.org/show_bug.cgi?id=8845
https://logs.opendaylight.org/sandbox/jenkins091/controller-csit-3node-clustering-only-carbon/2/log.html.gz#s1-s30-t3-k2-k25-k1-k8
https://bugs.opendaylight.org/show_bug.cgi?id=8733
https://logs.opendaylight.org/sandbox/jenkins091/controller-csit-3node-clustering-only-carbon/2/log.html.gz#s1-s38-t1-k2-k14-k2-k1-k4-k7-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8733
https://logs.opendaylight.org/sandbox/jenkins091/controller-csit-3node-clustering-only-carbon/2/log.html.gz#s1-s38-t3-k2-k14-k2-k1-k4-k7-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8420
https://logs.opendaylight.org/sandbox/jenkins091/controller-csit-3node-clustering-only-carbon/2/log.html.gz#s1-s10-t5-k2-k1-k1-k4
https://bugs.opendaylight.org/show_bug.cgi?id=8420
https://logs.opendaylight.org/sandbox/jenkins091/controller-csit-3node-clustering-only-carbon/2/log.html.gz#s1-s40-t5-k2-k1-k1-k4
https://bugs.opendaylight.org/show_bug.cgi?id=9027
https://bugs.opendaylight.org/show_bug.cgi?id=9027
https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://bugs.opendaylight.org/show_bug.cgi?id=8430
https://bugs.opendaylight.org/show_bug.cgi?id=8420
https://bugs.opendaylight.org/show_bug.cgi?id=9054
https://logs.opendaylight.org/sandbox/jenkins091/controller-csit-3node-cs-chasing-leader-longevity-only-carbon/14/log.html.gz#s1-s2-t3-k3-k2-k1-k1-k2-k1-k4-k6-k1
tests.html

OpenDaylight Documentation Documentation, Release Carbon

Draft, outdated: Carbon release test report

Table

Table 3.3: Test results (pre-release)

Scenario name Run date Bug numbers Result
bgp-1n-1m-a 2017-05-23 PASS
bgp-1n-1m-t 2017-05-23 PASS
bgp-3n-300k-ll-t 2017-05-23 8318 FAIL
bgp-3n-300k-lr-t 2017-05-23 8318 FAIL
ddb-cls-ms-ll-t 2017-05-23 8403 FAIL
ddb-cls-ms-lr-t 2017-05-23 PASS
ddb-cls-ps-ll-t 2017-05-23 8403 FAIL
ddb-cls-ps-lr-t 2017-05-23 PASS
ddb-elm-ms-lr-t 2017-05-23 8403 FAIL
ddb-elm-ms-rr-t 2017-05-23 PASS
ddb-elm-ms-rl-t 2017-05-23 8403 FAIL
ddb-elm-ps-lr-t 2017-05-23 PASS
ddb-elm-ps-rr-t 2017-05-23 PASS
ddb-elm-ps-rl-t 2017-05-23 8403 FAIL
ddb-li-ms-st-t 2017-05-23 8445 FAIL
ddb-li-ms-dt-t 2017-05-23 8494 FAIL
ddb-li-ps-st-t 2017-05-23 8371 FAIL
ddb-li-ps-dt-t 2017-05-23 8371 FAIL
ddb-ci-ms-ll-ct-t 2017-05-23 8494 FAIL
ddb-ci-ms-ll-st-t 2017-05-23 8494 FAIL
ddb-ci-ms-lr-ct-t 2017-05-23 PASS
ddb-ci-ms-lr-st-t 2017-05-23 PASS
ddb-ci-ps-ll-ct-t 2017-05-23 8494 FAIL
ddb-ci-ps-ll-st-t 2017-05-23 8494 FAIL
ddb-ci-ps-lr-ct-t 2017-05-23 PASS
ddb-ci-ps-lr-st-t 2017-05-23 PASS
ddb-ls-ms-ll-t 2017-05-23 8524 FAIL
ddb-ls-ms-lr-t 2017-05-23 8534 FAIL
ddb-ls-ps-ll-t 2017-05-23 8524 FAIL
ddb-ls-ps-lr-t 2017-05-23 8524 FAIL
drb-rpp-ms-a 2017-05-23 PASS
drb-rph-ms-a 2017-05-23 PASS
drb-app-ms-a 2017-05-23 PASS
drb-aph-ms-a 2017-05-23 PASS
dnb-1n-60k-a 2017-05-23 PASS
ss-ms-ms-a 2017-05-23 PASS
ss-ph-ms-a 2017-05-23 PASS
ss-cl-ms-a 2017-05-23 PASS
ss-ms-ms-t 2017-05-23 PASS
ss-ph-ms-t 2017-05-23 PASS
ss-cl-ms-t 2017-05-23 PASS
netconf-ba-ms-a 2017-05-23 PASS
netconf-ok-ms-a 2017-05-23 PASS

Continued on next page

1556 Chapter 3. Content for OpenDaylight Contributors

https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-1node-periodic-bgp-ingest-only-carbon/290/archives/log.html.gz#s1-s2
https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-1node-periodic-bgp-ingest-only-carbon/290/archives/log.html.gz#s1-s9
https://bugs.opendaylight.org/show_bug.cgi?id=8318#c10
https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-3node-periodic-bgpclustering-only-carbon/290/archives/log.html.gz#s1-s2-t8-k2-k3-k7-k4-k1-k6-k1-k1-k1-k1-k1-k2-k1-k3-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-3node-periodic-bgpclustering-only-carbon/290/archives/log.html.gz#s1-s4-t8-k2-k3-k7-k8-k1-k6-k1-k1-k1-k1-k1-k2-k1-k4
https://bugs.opendaylight.org/show_bug.cgi?id=8403#c9
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s20-t1-k2-k9
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s20-t3
https://bugs.opendaylight.org/show_bug.cgi?id=8403#c9
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s22-t1-k2-k9
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s22-t3
https://bugs.opendaylight.org/show_bug.cgi?id=8403#c6
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s24-t1-k2-k10
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s24-t3
https://bugs.opendaylight.org/show_bug.cgi?id=8403#c6
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s24-t5-k2-k10
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s26-t1
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s26-t3
https://bugs.opendaylight.org/show_bug.cgi?id=8403#c6
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s26-t5-k2-k9
https://bugs.opendaylight.org/show_bug.cgi?id=8445#c3
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s28-t1-k2-k26-k1-k2-k3-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8494#c2
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s28-t3-k2-k26-k1-k3
https://bugs.opendaylight.org/show_bug.cgi?id=8371#c6
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s30-t1-k2-k26-k1-k2-k1-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8371#c6
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s30-t3-k2-k26-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8494#c3
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s32-t1-k2-k19-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8494#c3
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s32-t3-k2-k19-k1-k1
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s32-t5
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s32-t7
https://bugs.opendaylight.org/show_bug.cgi?id=8494#c4
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s34-t1-k2-k19-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8494#c4
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s34-t3-k2-k19-k1-k1
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s34-t5
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s34-t7
https://bugs.opendaylight.org/show_bug.cgi?id=8524#c1
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s36-t1-k2-k12-k1-k3-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8534
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s36-t3-k2-k13-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8524#c1
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s38-t1-k2-k13-k1-k3-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8524#c2
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s38-t3-k2-k12-k1-k3-k1
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s2
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s4
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s6
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s8
https://logs.opendaylight.org/releng/jenkins092/controller-csit-1node-rest-cars-perf-only-carbon/605/archives/log.html.gz#s1-s2
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s10
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s12
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s14
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s40
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s42
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/720/archives/log.html.gz#s1-s44
https://logs.opendaylight.org/releng/jenkins092/netconf-csit-3node-clustering-only-carbon/554/archives/log.html.gz#s1-s2
https://logs.opendaylight.org/releng/jenkins092/netconf-csit-3node-clustering-only-carbon/554/archives/log.html.gz#s1-s5

OpenDaylight Documentation Documentation, Release Carbon

Table 3.3 – continued from previous page
Scenario name Run date Bug numbers Result
netconf-rr-ms-a 2017-05-23 PASS
bgp-3n-300k-t-long 2017-05-14 8443 FAIL
ddb-elm-mc-a-long 2017-05-14 8434 FAIL
drb-rpp-ms-a-long 2017-05-14 PASS
drb-rph-ms-a-long 2017-05-14 PASS
dnb-1n-60k-a-long 2017-05-14 PASS
ss-ph-ms-a-long 2017-05-14 8420 FAIL
ss-cl-ms-a-long 2017-05-14 PASS

For descriptions of test cases, see description page. Note that the link contains current description, the details might
have been implemented differently at SR1 release.

Draft, outdated: Carbon SR1 test report

Test Case Summary

RelEng stability summary.

• tba: Recent failures to be analyzed yet: 0.

• test: Recent failures caused by wrong assumptions in test: 0.

• akka: Recent failures related to pure UnreachableMember: 5.

• tell: Recent failures not clearly caused by UnreachableMember: 9.

• few: Tests passing unless low frequency failure happens: 22 (21 without duplication). (Low frequency means
UnreachableMemeber or “Message was not delivered, dead letters encountered”, both are related to Akka where
Controller code has not real control.)

• pass: Tests passing consistently: 17 (15 without duplication).

• Total: 53 (50 without duplication).

• Total minus akka: 48 (45 without duplication).

• Total minus akka passing always or mostly: 39 (36 without duplication).

• Acceptance rate: 39/48=81.25% (36/45=80.00% without duplication).

Table

S017 instead of 2017 means Sandbox run (includes changes not merged to stable/carbon yet).

Last fail is date of last failure not caused by infra (or by a typo in test or by netconf/bgp failing to initialize properly).

“S 17” or “2 17” in Last run means the documented run was superseded by a newer one, but not analyzed yet.

“long ago” means the last real test failue happened before around 2017-05-19, or never.

Table 3.4: Releng stability results (pre-SR1)

Scenario name Type Last fail Last run Bugs Robot link
bgp-1n-1m-a pass long ago 2017-07-14 link

Continued on next page

3.3. Integration Testing Guide 1557

https://logs.opendaylight.org/releng/jenkins092/netconf-csit-3node-clustering-only-carbon/554/archives/log.html.gz#s1-s7
https://bugs.opendaylight.org/show_bug.cgi?id=8443
https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-3node-bgpclustering-longevity-only-carbon/3/archives/log.html.gz#s1-s2-t1-k3-k1-k3-k1-k1-k1-k1-k1-k2-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8434
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-ddb-expl-lead-movement-longevity-only-carbon/4/archives/log.html.gz#s1-t1-k2-k1-k1-k1-k1-k1-k1-k2-k1-k1-k2-k6-k1-k1-k1-k6-k2-k1-k2-k1-k1-k3-k3-k1
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-drb-precedence-longevity-only-carbon/6/console
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-drb-partnheal-longevity-only-carbon/9/console
https://logs.opendaylight.org/releng/jenkins092/controller-csit-1node-notifications-longevity-only-carbon/11/console.log.gz
https://bugs.opendaylight.org/show_bug.cgi?id=8420#c5
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-cs-partnheal-longevity-only-carbon/5/archives/log.html.gz#s1-t1-k3-k1-k1-k1-k1-k1-k1-k2-k1-k1-k5-k3-k1-k2
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-cs-chasing-leader-longevity-only-carbon/4/archives/log.html.gz#s1
tests.html
https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-periodic-bgp-ingest-only-carbon/lastSuccessfulBuild/robot/bgpcep-bgp-ingest.txt/Singlepeer%20Prefixcount/

OpenDaylight Documentation Documentation, Release Carbon

Table 3.4 – continued from previous page
Scenario name Type Last fail Last run Bugs Robot link
bgp-1n-300k-t pass long ago 2017-07-14 link
bgp-3n-300k-ll-t akka 2017-07-14 2017-07-14 8318 link
bgp-3n-300k-lr-t akka 2017-07-13 2017-07-14 8318 link
ddb-cls-ms-ll-t few 2017-07-04 2017-07-15 8794 link
ddb-cls-ms-lr-t few 2017-07-08 2017-07-15 8618 link
ddb-cls-ps-ll-t few 2017-07-09 2017-07-15 8794 link
ddb-cls-ps-lr-t pass long ago 2017-07-15 link
ddb-elm-ms-lr-t few 2017-06-13 2017-07-15 8618 link
ddb-elm-ms-rr-t few 2017-06-10 2017-07-15 8618 link
ddb-elm-ms-rl-t few 2017-06-27 2017-07-15 8749 link
ddb-elm-ps-lr-t few 2017-06-11 2017-07-15 8664 link
ddb-elm-ps-rr-t pass long ago 2017-07-15 link
ddb-elm-ps-rl-t few 2017-06-07 2017-07-15 8403 link
ddb-li-ms-st-t tell 2017-07-15 2017-07-15 8792 link
ddb-li-ms-dt-t tell 2017-07-15 2017-07-15 8619 link
ddb-li-ps-st-t few 2017-06-08 2017-07-15 8371 link
ddb-li-ps-dt-t tell 2017-07-15 2017-07-15 8845 link
ddb-ci-ms-ll-ct-t few 2017-06-07 2017-07-15 8494 link
ddb-ci-ms-ll-st-t tell 2017-07-15 2017-07-15 8494 link
ddb-ci-ms-lr-ct-t few 2017-06-08 2017-07-15 8636 link
ddb-ci-ms-lr-st-t tell 2017-07-15 2017-07-15 8494 link
ddb-ci-ps-ll-ct-t few 2017-06-28 2017-07-15 8494 link
ddb-ci-ps-ll-st-t few 2017-06-28 2017-07-15 8494 link
ddb-ci-ps-lr-ct-t few 2017-06-28 2017-07-15 8494 link
ddb-ci-ps-lr-st-t few 2017-06-28 2017-07-15 8494 link
ddb-ls-ms-lr-t tell 2017-07-15 2017-07-15 8792 link
ddb-ls-ms-rr-t tell 2017-07-14 2017-07-15 8792 link
ddb-ls-ms-rl-t tell 2017-07-12 2017-07-15 8792 link
ddb-ls-ps-lr-t pass long ago 2017-07-15 link
ddb-ls-ps-rr-t few 2017-06-26 2017-07-15 8733 link
ddb-ls-ps-rl-t pass long ago 2017-07-15 link
drb-rpp-ms-a pass long ago 2017-07-15 link
drb-rph-ms-a few 2017-06-28 2017-07-15 8430 link
drb-app-ms-a pass long ago 2017-07-15 link
drb-aph-ms-a few 2017-07-02 2017-07-15 8430 link
dnb-1n-60k-a pass long ago 2017-07-15 link
ss-ms-ms-a pass long ago 2017-07-15 link
ss-ph-ms-a few 2017-06-29 2017-07-15 8420 link
ss-cl-ms-a pass long ago 2017-07-15 link
ss-ms-ms-t pass long ago 2017-07-15 link
ss-ph-ms-t few 2017-07-15 2017-07-15 8420 link
ss-cl-ms-t pass long ago 2017-07-15 link
netconf-ba-ms-a pass long ago 2017-07-14 link
netconf-ok-ms-a few 2017-06-18 2017-07-14 8596 link
netconf-rr-ms-a pass long ago 2017-07-14 link
bgp-3n-300k-t-long akka 2017-07-08 2017-07-08 8318 link
ddb-elm-mc-t-long tell 2017-07-08 2017-07-08 8618 link
drb-rpp-ms-a-long few 2017-05-07 2017-07-08 8430 link
drb-rph-ms-a-long akka 2017-07-08 2017-07-08 8430 link

Continued on next page

1558 Chapter 3. Content for OpenDaylight Contributors

https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-periodic-bgp-ingest-only-carbon/lastSuccessfulBuild/robot/bgpcep-bgp-ingest.txt/Singlepeer%20Pc%20Shm%20300Kroutes_1/
https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-3node-periodic-bgpclustering-only-carbon/343/log.html.gz#s1-s2-t8-k2-k3-k7-k5-k1-k6-k1-k1-k1-k1-k1-k2-k1-k4
https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-3node-periodic-bgpclustering-only-carbon/343/log.html.gz#s1-s4-t8-k2-k3-k7-k7-k1-k6-k1-k1-k1-k1-k1-k2-k1-k2-k4
https://bugs.opendaylight.org/show_bug.cgi?id=8794
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/771/log.html.gz#s1-s20-t1-k2-k8
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/776/log.html.gz#s1-s20-t3-k2-k8
https://bugs.opendaylight.org/show_bug.cgi?id=8794
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/777/log.html.gz#s1-s22-t1-k2-k8
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-only-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Clean%20Leader%20Shutdown%20Prefbasedshard/Remote_Leader_Shutdown/
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://logs.opendaylight.org/sandbox/jenkins091/controller-csit-3node-clustering-only-carbon/31/log.html.gz#s1-s24-t1-k2-k10
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/738/log.html.gz#s1-s24-t3-k2-k10
https://bugs.opendaylight.org/show_bug.cgi?id=8749
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/763/log.html.gz#s1-s24-t5-k2-k10
https://bugs.opendaylight.org/show_bug.cgi?id=8664
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/736/log.html.gz#s1-s26-t1-k2-k6-k3-k1-k4-k7-k1
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/lastSuccessfulBuild/log.html.gz#s1-s26-t3
https://bugs.opendaylight.org/show_bug.cgi?id=8403
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/735/log.html.gz#s1-s26-t5-k2-k9
https://bugs.opendaylight.org/show_bug.cgi?id=8792
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/783/log.html.gz#s1-s28-t1-k2-k25-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8619
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/783/log.html.gz#s1-s28-t3-k2-k25-k1-k8
https://bugs.opendaylight.org/show_bug.cgi?id=8371
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/736/log.html.gz#s1-s30-t1-k2-k25-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8845
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/783/log.html.gz#s1-s30-t3-k2-k25-k1-k8
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/735/log.html.gz#s1-s32-t1-k2-k16-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/783/log.html.gz#s1-s32-t3-k2-k16-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8636
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/736/log.html.gz#s1-s32-t5-k2-k15-k1-k1-k1-k1-k1-k1-k2-k1-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/783/log.html.gz#s1-s32-t7-k2-k16-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/764/log.html.gz#s1-s34-t1-k2-k16-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/764/log.html.gz#s1-s34-t3-k2-k16-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/764/log.html.gz#s1-s34-t5-k2-k16-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8494
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/764/log.html.gz#s1-s34-t7-k2-k16-k1-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8792
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/783/log.html.gz#s1-s36-t1-k2-k12
https://bugs.opendaylight.org/show_bug.cgi?id=8792
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/782/log.html.gz#s1-s36-t3-k2-k12
https://bugs.opendaylight.org/show_bug.cgi?id=8792
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/779/log.html.gz#s1-s36-t5-k2-k12
https://jenkins.opendaylight.org/releng/job/controller-csit-3node-clustering-only-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Listener%20Stability%20Prefbasedshard/Move_Leader_From_Listener_Local_To_Remote/
https://bugs.opendaylight.org/show_bug.cgi?id=8733
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/762/log.html.gz#s1-s38-t3-k2-k14-k2-k1-k4-k7-k1
https://jenkins.opendaylight.org/releng/job/controller-csit-3node-clustering-only-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Listener%20Stability%20Prefbasedshard/Move_Leader_From_Listener_Remote_To_Local/
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-only-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Rpc%20Provider%20Precedence/
https://bugs.opendaylight.org/show_bug.cgi?id=8430
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/764/log.html.gz#s1-s4-t6-k2-k1-k1-k1-k1-k1-k1-k2-k1-k1-k1-k3-k1-k1-k1-k2-k1-k4-k7-k1
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-only-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Action%20Provider%20Precedence/
https://bugs.opendaylight.org/show_bug.cgi?id=8430
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/769/log.html.gz#s1-s8-t6-k2-k1-k1-k1-k1-k1-k1-k1-k1-k1-k1-k3-k1-k1-k1-k3-k1-k4-k7-k1
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-1node-rest-cars-perf-only-carbon/lastSuccessfulBuild/robot/controller-rest-cars-perf.txt/Noloss%20Rate%201Node/
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-only-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Master%20Stability/
https://bugs.opendaylight.org/show_bug.cgi?id=8420
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/765/log.html.gz#s1-s12-t5-k2-k3-k1-k2
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/lastSuccessfulBuild/log.html.gz#s1-s14
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/lastSuccessfulBuild/log.html.gz#s1-s40
https://bugs.opendaylight.org/show_bug.cgi?id=8420
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/783/log.html.gz#s1-s42-t5-k2-k3-k1-k2
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-only-carbon/lastSuccessfulBuild/log.html.gz#s1-s44
https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-3node-clustering-only-carbon/lastSuccessfulBuild/robot/netconf-clustering.txt/CRUD
https://bugs.opendaylight.org/show_bug.cgi?id=8596
https://logs.opendaylight.org/releng/jenkins092/netconf-csit-3node-clustering-only-carbon/568/log.html.gz#s1-s5-t17-k2-k3-k2-k2-k1
https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-3node-clustering-only-carbon/lastSuccessfulBuild/robot/netconf-clustering.txt/Outages
https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-3node-bgpclustering-longevity-only-carbon/11/log.html.gz#s1-s2-t1-k10-k1-k1-k1-k1-k1-k1-k1-k1-k1-k2-k1-k3-k7-k5-k1-k6-k1-k1-k1-k1-k1-k2-k1-k1-k2-k2-k2-k1-k6-k2-k2-k1
https://bugs.opendaylight.org/show_bug.cgi?id=8618
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-ddb-expl-lead-movement-longevity-only-carbon/14/log.html.gz#s1-s2-t1-k2-k1-k1-k1-k1-k1-k1-k2-k1-k1-k2-k10
https://bugs.opendaylight.org/show_bug.cgi?id=8430
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-drb-partnheal-longevity-only-carbon/13/console.log.gz
https://bugs.opendaylight.org/show_bug.cgi?id=8430
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-drb-partnheal-longevity-only-carbon/18/log.html.gz#s1-t1-k3-k1-k1-k1-k1-k1-k1-k2-k1-k1-k6-k1-k1-k1-k1-k1-k1-k2-k1-k1-k1-k3-k1-k1-k1-k2-k1-k4-k7-k1

OpenDaylight Documentation Documentation, Release Carbon

Table 3.4 – continued from previous page
Scenario name Type Last fail Last run Bugs Robot link
dnb-1n-60k-a-long pass long ago 2017-07-08 link
ss-ph-ms-a-long akka 2017-07-08 2017-07-08 8420 link
ss-cl-ms-a-long pass long ago 2017-07-08 link

For descriptions of test cases, see description page. Note that the link contains current description, the details might
have been implemented differently at SR1 release.

Carbon SR2 test report

Test Case Summary

RelEng stability summary.

• tba: Recent failures to be analyzed yet: 0.

• test: Recent failures caused by wrong assumptions in test: 0.

• akka: Recent failures related to pure UnreachableMember: 4.

• tell: Recent failures not clearly caused by UnreachableMember: 4.

• few: Tests passing unless low frequency failure happens: 7 (6 without duplication). (Low frequency means infra
issues or UnreachableMemeber, related to Akka where Controller code has not real control.)

• pass: Tests passing consistently: 38 (36 without duplication).

• Total: 53 (50 without duplication).

• Total minus akka: 49 (46 without duplication).

• Total minus akka, passing always or mostly: 45 (42 without duplication).

• Acceptance rate: 45/49=91.83% (42/46=91.30% without duplication).

Table

S017 instead of 2017 means Sandbox run (includes changes not merged to stable/carbon yet).

Last fail is date of last failure not caused by infra (or by a typo in test or by netconf/bgp failing to initialize properly).

“S 17” or “2 17” in Last run means the documented run was superseded by a newer one, but not analyzed yet.

“few” status from SR1 is not inherited (such tests are marked as “pass”). “long ago” means the last real test failue
happened somewhere around SR1 release (or before that, or never).

If status is a link, it points to the latest relevant robot failure, or a history to see the stability. In case of failure, Bugs
field gives the reason of that failure.

Table 3.5: Releng stability results (post SR1, pre SR2)

Test case Last fail Last run Bugs Status
bgp-1n-300k-a long ago 2017-09-18 PASS
bgp-1n-300k-t long ago 2017-09-18 PASS
bgp-3n-300k-ll-t 2017-09-16 2017-09-18 8318 AKKA
bgp-3n-300k-lr-t 2017-09-16 2017-09-18 8318 AKKA

Continued on next page

3.3. Integration Testing Guide 1559

https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-1node-rest-cars-perf-only-carbon/620/robot/controller-rest-cars-perf.txt/Noloss%20Rate%201Node/
https://bugs.opendaylight.org/show_bug.cgi?id=8420
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-cs-partnheal-longevity-only-carbon/15/log.html.gz#s1-s2-t1-k3-k1-k1-k1-k1-k1-k1-k1-k1-k1-k7-k3-k1-k2
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-1node-rest-cars-perf-only-carbon/620/robot/controller-rest-cars-perf.txt/Noloss%20Rate%201Node/
tests.html
tests.html#bgp-1n-300k-a
https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-periodic-bgp-ingest-all-carbon/lastSuccessfulBuild/robot/bgpcep-bgp-ingest.txt/Singlepeer%20Pc%20Shm%20300Kroutes/
tests.html#bgp-1n-300k-t
https://jenkins.opendaylight.org/releng/view/bgpcep/job/bgpcep-csit-1node-periodic-bgp-ingest-all-carbon/lastSuccessfulBuild/robot/bgpcep-bgp-ingest.txt/Singlepeer%20Pc%20Shm%20300Kroutes_1/
tests.html#bgp-3n-300k-ll-t
https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-3node-periodic-bgpclustering-all-carbon/401/log.html.gz#s1-s2-t11-k2-k2
tests.html#bgp-3n-300k-lr-t
https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-3node-periodic-bgpclustering-all-carbon/401/log.html.gz#s1-s4-t8-k2-k3-k7-k4-k1-k6-k1-k1-k1-k1-k1-k2-k1-k4

OpenDaylight Documentation Documentation, Release Carbon

Table 3.5 – continued from previous page
Test case Last fail Last run Bugs Status
ddb-cls-ms-ll-t 2017-08-24 2017-09-18 PASS
ddb-cls-ms-lr-t long ago 2017-09-18 PASS
ddb-cls-ps-ll-t long ago 2017-09-18 PASS
ddb-cls-ps-lr-t long ago 2017-09-18 PASS
ddb-elm-ms-lr-t long ago 2017-09-18 PASS
ddb-elm-ms-rr-t long ago 2017-09-18 PASS
ddb-elm-ms-rl-t long ago 2017-09-18 PASS
ddb-elm-ps-lr-t long ago 2017-09-18 PASS
ddb-elm-ps-rr-t long ago 2017-09-18 PASS
ddb-elm-ps-rl-t long ago 2017-09-18 PASS
ddb-li-ms-st-t 2017-08-18 2017-09-18 PASS
ddb-li-ms-dt-t 2017-08-21 2017-09-18 PASS
ddb-li-ps-st-t 2017-09-01 2017-09-18 PASS
ddb-li-ps-dt-t 2017-09-18 2017-09-18 8845 TELL
ddb-ci-ms-ll-ct-t long ago 2017-09-18 PASS
ddb-ci-ms-ll-st-t long ago 2017-09-18 PASS
ddb-ci-ms-lr-ct-t long ago 2017-09-18 PASS
ddb-ci-ms-lr-st-t long ago 2017-09-18 PASS
ddb-ci-ps-ll-it-t long ago 2017-09-18 PASS
ddb-ci-ps-ll-nt-t long ago 2017-09-18 PASS
ddb-ci-ps-lr-it-t long ago 2017-09-18 PASS
ddb-ci-ps-lr-nt-t long ago 2017-09-18 PASS
ddb-ls-ms-lr-t long ago 2017-09-18 PASS
ddb-ls-ms-rr-t long ago 2017-09-18 PASS
ddb-ls-ms-rl-t long ago 2017-09-18 PASS
ddb-ls-ps-lr-t 2017-09-18 2017-09-18 8733 TELL
ddb-ls-ps-rr-t 2017-09-18 2017-09-18 8733 TELL
ddb-ls-ps-rl-t 2017-09-18 2017-09-18 8733 FEW
drb-rpp-ms-a long ago 2017-09-18 PASS
drb-rph-ms-a long ago 2017-09-18 PASS
drb-app-ms-a long ago 2017-09-18 PASS
drb-aph-ms-a long ago 2017-09-18 PASS
dnb-1n-60k-a long ago 2017-09-18 PASS
ss-ms-ms-a long ago 2017-09-18 PASS
ss-ph-ms-a 2017-09-01 2017-09-18 8420 FEW
ss-cl-ms-a long ago 2017-09-18 PASS
ss-ms-ms-t long ago 2017-09-18 PASS
ss-ph-ms-t 2017-09-17 2017-09-18 9177 FEW
ss-cl-ms-t long ago 2017-09-18 PASS
netconf-ba-ms-a long ago 2017-09-18 PASS
netconf-ok-ms-a long ago 2017-09-18 PASS
netconf-rr-ms-a 2017-09-06 2017-09-18 9006 TELL
bgp-3n-300k-t-long 2017-09-16 2017-09-16 8318 AKKA
ddb-elm-mc-t-long 2017-08-06 2017-09-16 FEW
drb-rpp-ms-a-long long ago 2017-09-16 FEW
drb-rph-ms-a-long 2017-08-12 2017-09-16 PASS
dnb-1n-60k-a-long long ago 2017-09-16 FEW
ss-ph-ms-a-long 2017-09-16 2017-09-16 8420 AKKA
ss-cl-ms-a-long 2017-08-06 2017-09-16 PASS

1560 Chapter 3. Content for OpenDaylight Contributors

tests.html#ddb-cls-ms-ll-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Clean%20Leader%20Shutdown/Local_Leader_Shutdown
tests.html#ddb-cls-ms-lr-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Clean%20Leader%20Shutdown/Remote_Leader_Shutdown
tests.html#ddb-cls-ps-ll-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Clean%20Leader%20Shutdown%20Prefbasedshard/Local_Leader_Shutdown
tests.html#ddb-cls-ps-lr-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Clean%20Leader%20Shutdown%20Prefbasedshard/Remote_Leader_Shutdown
tests.html#ddb-elm-ms-lr-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Explicit%20Leader%20Movement/Local_To_Remote_Movement
tests.html#ddb-elm-ms-rr-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Explicit%20Leader%20Movement/Remote_To_Remote_Movement
tests.html#ddb-elm-ms-rl-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Explicit%20Leader%20Movement/Remote_To_Local_Movement
tests.html#ddb-elm-ps-lr-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Explicit%20Leader%20Movement%20Prefbasedshard/Local_To_Remote_Movement
tests.html#ddb-elm-ps-rr-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Explicit%20Leader%20Movement%20Prefbasedshard/Remote_To_Remote_Movement
tests.html#ddb-elm-ps-rl-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Explicit%20Leader%20Movement%20Prefbasedshard/Remote_To_Local_Movement
tests.html#ddb-li-ms-st-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Leader%20Isolation/Healing_Within_Request_Timeout
tests.html#ddb-li-ms-dt-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Leader%20Isolation/Healing_After_Request_Timeout
tests.html#ddb-li-ps-st-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Leader%20Isolation%20Prefbasedshard/Healing_Within_Request_Timeout
tests.html#ddb-li-ps-dt-t
https://bugs.opendaylight.org/show_bug.cgi?id=8845
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-all-carbon/445/log.html.gz#s1-s30-t3-k2-k25-k1-k8
tests.html#ddb-ci-ms-ll-ct-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Client%20Isolation/Producer_On_Shard_Leader_Node_ChainedTx
tests.html#ddb-ci-ms-ll-st-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Client%20Isolation/Producer_On_Shard_Leader_Node_SimpleTx
tests.html#ddb-ci-ms-lr-ct-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Client%20Isolation/Producer_On_Shard_Non_Leader_Node_ChainedTx
tests.html#ddb-ci-ms-lr-st-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Client%20Isolation/Producer_On_Shard_Non_Leader_Node_SimpleTx
tests.html#ddb-ci-ps-ll-it-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Client%20Isolation%20Prefbasedshard/Producer_On_Shard_Leader_Node_Isolated_Transactions
tests.html#ddb-ci-ps-ll-nt-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Client%20Isolation%20Prefbasedshard/Producer_On_Shard_Leader_Node_Nonisolated_Transactions
tests.html#ddb-ci-ps-lr-it-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Client%20Isolation%20Prefbasedshard/Producer_On_Shard_Non_Leader_Node_Isolated_Transactions
tests.html#ddb-ci-ps-lr-nt-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Client%20Isolation%20Prefbasedshard/Producer_On_Shard_Non_Leader_Node_Nonisolated_Transactions
tests.html#ddb-ls-ms-lr-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Listener%20Stability/Move_Leader_From_Listener_Local_To_Remote
tests.html#ddb-ls-ms-rr-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Listener%20Stability/Move_Leader_From_Listener_Remote_To_Other_Remote
tests.html#ddb-ls-ms-rl-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Listener%20Stability/Move_Leader_From_Listener_Remote_To_Local
tests.html#ddb-ls-ps-lr-t
https://bugs.opendaylight.org/show_bug.cgi?id=8733
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-all-carbon/445/log.html.gz#s1-s38-t1-k2-k14-k2-k1-k4-k7-k1
tests.html#ddb-ls-ps-rr-t
https://bugs.opendaylight.org/show_bug.cgi?id=8733
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-all-carbon/445/log.html.gz#s1-s38-t3-k2-k14-k2-k1-k4-k7-k1
tests.html#ddb-ls-ps-rl-t
https://bugs.opendaylight.org/show_bug.cgi?id=8733
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Listener%20Stability%20Prefbasedshard/Move_Leader_From_Listener_Remote_To_Local/
tests.html#drb-rpp-ms-a
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Rpc%20Provider%20Precedence
tests.html#drb-rph-ms-a
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Rpc%20Provider%20Partition%20And%20Heal
tests.html#drb-app-ms-a
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Action%20Provider%20Precedence
tests.html#drb-aph-ms-a
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Action%20Provider%20Partition%20And%20Heal
tests.html#dnb-1n-60k-a
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-1node-rest-cars-perf-all-carbon/lastSuccessfulBuild/robot/controller-rest-cars-perf.txt/Noloss%20Rate%201Node/
tests.html#ss-ms-ms-a
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Master%20Stability
tests.html#ss-ph-ms-a
https://bugs.opendaylight.org/show_bug.cgi?id=8420
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-all-carbon/427/log.html.gz#s1-s12-t5-k2-k3-k1-k2
tests.html#ss-cl-ms-a
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Chasing%20The%20Leader
tests.html#ss-ms-ms-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Master%20Stability_1
tests.html#ss-ph-ms-t
https://bugs.opendaylight.org/show_bug.cgi?id=9177
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-clustering-all-carbon/444/log.html.gz#s1-s42-t5-k2-k2-k1-k2-k1-k2-k1-k6-k1-k2-k1
tests.html#ss-cl-ms-t
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/controller-clustering.txt/Chasing%20The%20Leader_1
tests.html#netconf-ba-ms-a
https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-3node-clustering-all-carbon/615/robot/netconf-clustering.txt/CRUD
tests.html#netconf-ok-ms-a
https://jenkins.opendaylight.org/releng/view/netconf/job/netconf-csit-3node-clustering-all-carbon/lastSuccessfulBuild/robot/netconf-clustering.txt/Entity/
tests.html#netconf-rr-ms-a
https://bugs.opendaylight.org/show_bug.cgi?id=9027
https://logs.opendaylight.org/releng/jenkins092/netconf-csit-3node-clustering-all-carbon/394/log.html.gz#s1-s9-t9-k2-k2-k8-k1-k2-k1-k1-k2-k1-k4-k1
tests.html#bgp-3n-300k-t-long
https://bugs.opendaylight.org/show_bug.cgi?id=8318
https://logs.opendaylight.org/releng/jenkins092/bgpcep-csit-3node-bgpclustering-longevity-only-carbon/21/log.html.gz#s1-s2-t1-k10-k1-k1-k1-k1-k1-k1-k1-k1-k1-k2-k2-k3-k7-k1-k1-k6-k1-k1-k1-k1-k1-k2-k1-k1-k2-k2-k2-k1-k6-k3-k1-k1-k5-k1-k3-k1
tests.html#ddb-elm-mc-t-long
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-ddb-expl-lead-movement-longevity-only-carbon/lastSuccessfulBuild/robot/controller-ddb-expl-lead-movement-longevity.txt/Explicit%20Leader%20Movement%20Longevity/
tests.html#drb-rpp-ms-a-long
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-drb-precedence-longevity-only-carbon/lastSuccessfulBuild/robot/controller-drb-precedence-longevity.txt/Rpc_Provider_Precedence_Longevity/
tests.html#drb-rph-ms-a-long
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-drb-partnheal-longevity-only-carbon/lastSuccessfulBuild/robot/controller-drb-partnheal-longevity.txt/Rpc_Provider_Precedence_Longevity/
tests.html#dnb-1n-60k-a-long
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-1node-notifications-longevity-only-carbon/lastSuccessfulBuild/robot/controller-notifications-longevity.txt/Notifications_longevity/
tests.html#ss-ph-ms-a-long
https://bugs.opendaylight.org/show_bug.cgi?id=8420
https://logs.opendaylight.org/releng/jenkins092/controller-csit-3node-cs-partnheal-longevity-only-carbon/26/log.html.gz#s1-s2-t1-k3-k1-k1-k4
tests.html#ss-cl-ms-a-long
https://jenkins.opendaylight.org/releng/view/controller/job/controller-csit-3node-cs-chasing-leader-longevity-only-carbon/lastSuccessfulBuild/robot/controller-cs-chasing-leader-longevity.txt/Chasing%20The%20Leader%20Longevity/

OpenDaylight Documentation Documentation, Release Carbon

Note that release, sr1 and sandbox pages contain data from before test implementation and documentation structure
were finalized, so there may be inconsistencies.

TODO: Re-test Carbon release and SR1 images (with retrofitted tests where needed) so users can see authoritative test
results.

External resources:

• Infrastructure Guide

• Running System Tests

• Test Code Guidelines

• Test Case Expectations

• Robot API docs

3.4 Documentation Guide

This guide provides details on how to contribute to the OpenDaylight documentation. OpenDaylight currently uses
reStructuredText for documentation and Sphinx to build it as it is widely-used to provide both HTML and pdf docu-
mentation that can be easily versioned alongside the code. It also offers similar syntax to Markdown which is familiar
to large numbers of people.

Contents

• Style Guide

– Formatting Preferences

– Key terms

– Common writing style mistakes

• reStructuredText-based Documentation

– Directory Structure

– Documentation Layout and Style

– Troubleshooting

• Project Documentation Requirements

– Submitting Documentation Outlines (M3)

– Expected Output From Documentation Project

– Boron Project Documentation Requirements

3.4.1 Style Guide

This section serves two purposes:

1. A guide for those writing documentation to follow.

2. A guide for those reviewing documentation.

3.4. Documentation Guide 1561

release.html
sr1.html
sandbox.html
https://wiki.opendaylight.org/view/Integration/Test/Running_System_Tests
https://wiki.opendaylight.org/view/Integration/Test/Test_Code_Guidelines
https://wiki.opendaylight.org/view/Integration/Test/Test_Case_Expectations
_static/integration/robot/index.html
http://www.sphinx-doc.org/en/stable/rest.html
http://www.sphinx-doc.org/en/stable/

OpenDaylight Documentation Documentation, Release Carbon

That being said, assuming that the content is usable, the bias should be toward merging it rather than blocking on
relatively minor edits.

Formatting Preferences

In general, the documentation team has focused on trying to make sure that the instructions are comprehensible, but
not being overly pedantic about these things. Along those lines, while we would prefer the following, generally they
aren’t a reason to -1 in and of themselves:

• No trailing whitespace

• Line wrapping at something reasonable, i.e., 72–100 characters

Key terms

• Functionality: something useful a project provides abstractly

• Feature: a Karaf feature that somebody could install

• Project: a project within OpenDaylight, projects ship features to provide functionality

• OpenDaylight: this refers to the software we release, use this in place of OpenDaylight controller, the Open-
Daylight controller, not ODL, not ODC

– Since there is a controller project within OpenDaylight, using other terms is hard.

Common writing style mistakes

• In per-project user documentation, you should never say git clone, but should assume people have downloaded
and installed the controller per the getting started guide and start with feautre:install <something>

• Avoid statements which are true about part of OpenDaylight, but not generally true.

– For example: “OpenDaylight is a NETCONF controller.” It is, but that is not all it is.

• In general, developer documentation should target external developers to your project so should talk about what
APIs you have and how they could use them. It should not document how to contribute to your project.

Grammar Preferences

• Avoid contractions: use cannot instead of can’t, it is instead of it’s, and the like.

Things to get right with spacing and capitalization

Note that all of these apply when using them in text. If they are used as part of URL, class name, or something similar,
use the actual capitalization and spacing.

• ACL: not Acl or acl

• API: not api

• ARP: not Arp or arp

• datastore: not data store, Data Store, or DataStore (unless it’s a class/object name)

• IPsec, not IPSEC or ipsec

1562 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

• IPv4 or IPv6: not Ipv4, Ipv6, ipv4, ipv6, IPV4, or IPV6

• Karaf: not karaf

• Linux: not LINUX or linux

• NETCONF: not Netconf or netconf

• Neutron: not neutron

• OSGi: not osgi or OSGI

• Open vSwitch: not OpenvSwitch, OpenVSwitch, or Open V Switch, etc.

• OpenDaylight: not Opendaylight, Open Daylight, or OpenDayLight, etc.

– also avoid abbreviations like ODL and ODC

• OpenFlow: not Openflow, Open Flow, openflow, etc.

• OpenStack: not Open Stack or Openstack

• QoS: not Qos, QOS, or qos

• RESTCONF: not Restconf or restconf

• RPC not Rpc or rpc

• URL not Url or url

• VM: not Vm or vm

• YANG: not Yang or yang

3.4.2 reStructuredText-based Documentation

When using reStructuredText, we try to follow the python documentation style guide. See: https://docs.python.org/
devguide/documenting.html

The best reference for reStrucutedText syntax seems to be the Sphinx Primer on reStructuredText.

To build and review the reStructuredText documentation locally you must have installed locally:

• python

• python-tox

Which both should be available in most distribution’s package managers.

Then simply run tox and open the html produced via your favorite web browser as follows:

git clone https://git.opendaylight.org/gerrit/docs
cd docs
git submodule update --init
tox -edocs
firefox docs/_build/html/index.html

Note: Make sure to run tox -edocs and not just tox. See Make sure you run tox -edocs

3.4. Documentation Guide 1563

https://docs.python.org/devguide/documenting.html
https://docs.python.org/devguide/documenting.html
http://www.sphinx-doc.org/en/stable/rest.html

OpenDaylight Documentation Documentation, Release Carbon

Directory Structure

The directory structure for the reStructuredText documentation is rooted in the docs directory inside the docs git
repository.

Below that there are guides hosted directly in the docs git repository and there are guides hosted in remote git
repositories. Usually those are for project-specific information.

For example here is the directory layout on June, 28th 2016:

$ tree -L 2
.
- Makefile
- conf.py
- documentation.rst
- getting-started-guide
| - api.rst
| - concepts_and_tools.rst
| - experimental_features.rst
| - index.rst
| - installing_opendaylight.rst
| - introduction.rst
| - karaf_features.rst
| - other_features.rst
| - overview.rst
| - who_should_use.rst
- index.rst
- make.bat
- opendaylight-with-openstack
| - images
| - index.rst
| - openstack-with-gbp.rst
| - openstack-with-ovsdb.rst
| - openstack-with-vtn.rst
- submodules

- releng
- builder

The getting-started-guide and opendaylight-with-openstack directories correspond to two guides
hosted in the docs repository, while the submodules/releng/builder directory houses documentation for the
RelEng/Builder project.

Inside each guide there is usually an index.rst file which then includes other files using a toctree directive. For
example:

.. toctree::
:maxdepth: 1

getting-started-guide/index
opendaylight-with-openstack/index
submodules/releng/builder/docs/index

This creates a table of contents on that page where each heading of the table of contents is the root of the files that are
included.

Note: When including rst files using toctree omit the .rst at the end of the file name.

1564 Chapter 3. Content for OpenDaylight Contributors

https://wiki.opendaylight.org/view/RelEng/Builder

OpenDaylight Documentation Documentation, Release Carbon

Adding a submodule

If you want to import a project underneath the documentation project so that the docs can be kept in the separate repo,
you can do it using the git submodule add command as follows:

git submodule add -b master ../integration/packaging docs/submodules/integration/
→˓packaging
git commit -s

Note: Most projects will not want to use -b master, but instead use the branch ., which will make track whatever
branch of the documentation project you happen to be on.

Unfortunately, -b . doesn’t work, so you have to manually edit the .gitmodules file to add branch = . and
then commit it. Something like:

<edit the .gitmodules file>
git add .gitmodules
git commit --amend

When you’re done you should have a git commit something like:

$ git show
commit 7943ce2cb41cd9d36ce93ee9003510ce3edd7fa9
Author: Daniel Farrell <dfarrell@redhat.com>
Date: Fri Dec 23 14:45:44 2016 -0500

Add Int/Pack to git submodules for RTD generation

Change-Id: I64cd36ca044b8303cb7fc465b2d91470819a9fe6
Signed-off-by: Daniel Farrell <dfarrell@redhat.com>

diff --git a/.gitmodules b/.gitmodules
index 91201bf6..b56e11c8 100644
--- a/.gitmodules
+++ b/.gitmodules
@@ -38,3 +38,7 @@

path = docs/submodules/ovsdb
url = ../ovsdb
branch = .

+[submodule "docs/submodules/integration/packaging"]
+ path = docs/submodules/integration/packaging
+ url = ../integration/packaging
+ branch = master
diff --git a/docs/submodules/integration/packaging b/docs/submodules/integration/
→˓packaging
new file mode 160000
index 00000000..fd5a8185
--- /dev/null
+++ b/docs/submodules/integration/packaging
@@ -0,0 +1 @@
+Subproject commit fd5a81853e71d45945471d0f91bbdac1a1444386

As usual, you can push it to Gerrit with git review.

Important: It’s critical that the Gerrit patch be merged before the git commit hash of the submodule changes.

3.4. Documentation Guide 1565

OpenDaylight Documentation Documentation, Release Carbon

Otherwise, Gerrit won’t be able to automatically keep it up-to-date for you.

Documentation Layout and Style

As mentioned previously we try to follow the python documentation style guide which defines a few types of sections:

with overline, for parts

* with overline, for chapters
=, for sections
-, for subsections
^, for subsubsections
", for paragraphs

We try to follow the following structure based on that recommendation:

docs/index.rst -> entry point
docs/____-guide/index.rst -> part
docs/____-guide/<chapter>.rst -> chapter

In the ____-guide/index.rst we use the # with overline at the very top of the file to determine that it is a part and
then within each chapter file we start the document with a section using * with overline to denote that it’s the chapter
heading and then everything in the rest of the chapter should use:

=, for sections
-, for subsections
^, for subsubsections
", for paragraphs

Referencing Sections

It’s pretty common to want to reference another location in the OpenDaylight documentation and it’s pretty easy to do
with reStructuredText. This is a quick primer, more information is in the Sphinx section on Cross-referencing arbitrary
locations.

Within a single document, you can reference another section simply by:

This is a reference to `The title of a section`_

Assuming that somewhere else in the same file there a is a section title something like:

The title of a section
^^^^^^^^^^^^^^^^^^^^^^

It’s typically better to use :ref: syntax and labels to provide links as they work across files and are resilient to
sections being renamed. First, you need to create a label something like:

.. _a-label:

The title of a section
^^^^^^^^^^^^^^^^^^^^^^

Note: The underscore (_) before the label is required.

1566 Chapter 3. Content for OpenDaylight Contributors

http://www.sphinx-doc.org/en/stable/markup/inline.html#ref-role
http://www.sphinx-doc.org/en/stable/markup/inline.html#ref-role

OpenDaylight Documentation Documentation, Release Carbon

Then you can reference the section anywhere by simply doing:

This is a reference to :ref:`a-label`

or:

This is a reference to :ref:`a section I really liked <a-label>`

Note: When using :ref:-style links, you don’t need a trailing underscore (_).

Because the labels have to be unique, it usually makes sense to prefix the labels with the project name to help share
the label space, e.g., sfc-user-guide instead of just user-guide.

Troubleshooting

Nested formatting doesn’t work

As stated in the reStructuredText guide, inline markup for bold, italic, and fixed-width can’t be nested. Further, it can’t
be mixed with hyperlinks, so you can’t have bold text link somewhere.

This is tracked in a Docutils FAQ question, but there is no clear current plan to fix this.

Make sure you’ve cloned submodules

If you see an error like this:

./build-integration-robot-libdoc.sh: line 6: cd: submodules/integration/test/csit/
→˓libraries: No such file or directory
Resource file '*.robot' does not exist.

It means that you haven’t pulled down the git submodule for the integration/test project. The fastest way to do that is:

git submodule update --init

In some cases, you might wind up with submodules which are somehow out-of-sync and in that case, the easiest way
to fix it is delete the submodules directory and then re-clone the submodules:

rm -rf docs/submodules/
git submodule update --init

Warning: This will delete any local changes or information you made in the submodules. This should only be
the case if you manually edited files in that directory.

Make sure you run tox -edocs

If you see an error like:

3.4. Documentation Guide 1567

http://www.sphinx-doc.org/en/stable/rest.html
http://docutils.sourceforge.net/FAQ.html#is-nested-inline-markup-possible

OpenDaylight Documentation Documentation, Release Carbon

ERROR: docs: could not install deps [-rrequirements.txt]; v = InvocationError('/
→˓Users/ckd/git-reps/docs/.tox/docs/bin/pip install -rrequirements.txt (see /Users/
→˓ckd/git-reps/docs/.tox/docs/log/docs-1.log)', 1)
ERROR: docs-linkcheck: could not install deps [-rrequirements.txt]; v =
→˓InvocationError('/Users/ckd/git-reps/docs/.tox/docs-linkcheck/bin/pip install -
→˓rrequirements.txt (see /Users/ckd/git-reps/docs/.tox/docs-linkcheck/log/docs-
→˓linkcheck-1.log)', 1)

It usually means you ran tox and not tox -edocs, which will result in running jobs inside submodules which aren’t
supported by the environment defined by the requirements.txt file in the documentation tox setup. Just run tox -edocs
and it should be fine.

Clear your tox directory and try again

Sometimes, tox will not detect when your requirements.txt file has changed and so will try to run things without
the correct dependencies. This usually manifests as No module named X errors or an ExtensionError and
can be fixed by deleting the .tox directory and building again:

rm -rf .tox
tox -edocs

Builds on Read the Docs

It appears as though the Read the Docs builds don’t automatically clear the file structure between builds and clones.
The result is that you may have to clean up the state of old runs of the build script.

As an example, this patch: https://git.opendaylight.org/gerrit/41679

Finally fixed the fact that our builds for failing because they were taking too long by removing directories of generated
javadoc that were present from previous runs.

3.4.3 Project Documentation Requirements

Submitting Documentation Outlines (M3)

1. Determine the features your project will have and which ones will be ‘’user-facing’‘.

• In general, a feature is user-facing if it creates functionality that a user would direction interact with.

• For example, odl-openflowplugin-flow-services-ui is likely user-facing since it installs
user-facing OpenFlow features, while odl-openflowplugin-flow-services is not because it
provides only developer-facing features.

2. Determine pieces of documentation you need provide based on the features your project will have and which
ones will be user-facing.

• The kinds of required documentation can be found below in the Requirements for projects section.

• Note that you might need to create multiple different documents for the same kind of documentation. For
example, the controller project will likely want to have a developer section for the config subsystem as
well as a for the MD-SAL.

3. Clone the docs repo: git clone https://git.opendaylight.org/gerrit/docs

4. For each piece of documentation find the corresponding template in the docs repo.

1568 Chapter 3. Content for OpenDaylight Contributors

https://git.opendaylight.org/gerrit/41679

OpenDaylight Documentation Documentation, Release Carbon

• For user documentation: docs.git/docs/templates/template-user-guide.rst

• For developer documentation: ddocs/templates/template-developer-guide.rst

• For installation documentation (if any): docs/templates/template-install-guide.rst

Note: You can find the rendered templates here:

<Feature> User Guide

Refer to this template to identify the required sections and information that you should provide for a User Guide.
The user guide should contain configuration, administration, management, using, and troubleshooting sections
for the feature.

Overview

Provide an overview of the feature and the use case. Also include the audience who will use the feature. For ex-
ample, audience can be the network administrator, cloud administrator, network engineer, system administrators,
and so on.

<Feature> Architecture

Provide information about feature components and how they work together. Also include information about
how the feature integrates with OpenDaylight. An architecture diagram could help.

Note: Please do not include detailed internals that somebody using the feature wouldn’t care about. For
example, the fact that there are four layers of APIs between a user command and a message being sent to a
device is probably not useful to know unless they have some way to influence how those layers work and a
reason to do so.

Configuring <feature>

Describe how to configure the feature or the project after installation. Configuration information could include
day-one activities for a project such as configuring users, configuring clients/servers and so on.

Administering or Managing <feature>

Include related command reference or operations that you could perform using the feature. For example viewing
network statistics, monitoring the network, generating reports, and so on.

For example:

To configure L2switch components perform the following steps.

(a) Step 1:

(b) Step 2:

(c) Step 3:

3.4. Documentation Guide 1569

OpenDaylight Documentation Documentation, Release Carbon

Tutorials

optional

If there is only one tutorial, you skip the “Tutorials” section and instead just lead with the single tutorial’s name.
If you do, also increase the header level by one, i.e., replace the carets (^^^) with dashes (- - -) and the dashes
with equals signs (===).

<Tutorial Name>

Ensure that the title starts with a gerund. For example using, monitoring, creating, and so on.

Overview

An overview of the use case.

Prerequisites

Provide any prerequisite information, assumed knowledge, or environment required to execute the use case.

Target Environment

Include any topology requirement for the use case. Ideally, provide visual (abstract) layout of network diagrams
and any other useful visual aides.

Instructions

Use case could be a set of configuration procedures. Including screenshots to help demonstrate what is happen-
ing is especially useful. Ensure that you specify them separately. For example:

Setting up the VM

To set up a VM perform the following steps.

(a) Step 1

(b) Step 2

(c) Step 3

Installing the feature

To install the feature perform the following steps.

(a) Step 1

(b) Step 2

(c) Step 3

1570 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Configuring the environment

To configure the system perform the following steps.

(a) Step 1

(b) Step 2

(c) Step 3

<Feature> Developer Guide

Overview

Provide an overview of the feature, what it logical functionality it provides and why you might use it as a
developer. To be clear the target audience for this guide is a developer who will be using the feature to build
something separate, but not somebody who will be developing code for this feature itself.

Note: More so than with user guides, the guide may cover more than one feature. If that is the case, be sure to
list all of the features this covers.

<Feature> Architecture

Provide information about feature components and how they work together. Also include information about
how the feature integrates with OpenDaylight. An architecture diagram could help. This may be the same as the
diagram used in the user guide, but it should likely be less abstract and provide more information that would be
applicable to a developer.

Key APIs and Interfaces

Document the key things a user would want to use. For some features, there will only be one logical grouping
of APIs. For others there may be more than one grouping.

Assuming the API is MD-SAL- and YANG-based, the APIs will be available both via RESTCONF and via Java
APIs. Giving a few examples using each is likely a good idea.

API Group 1

Provide a description of what the API does and some examples of how to use it.

API Group 2

Provide a description of what the API does and some examples of how to use it.

API Reference Documentation

Provide links to JavaDoc, REST API documentation, etc.

3.4. Documentation Guide 1571

OpenDaylight Documentation Documentation, Release Carbon

<Feature> Installation Guide

Note: Only use this template if installation is more complicated than simply installing a feature in the Karaf
distribution. Otherwise simply provide the names of all user-facing features in your M3 readout.

This is a template for installing a feature or a project developed in the ODL project. The feature could be
interfaces, protocol plug-ins, or applications.

Overview

Add overview of the feature. Include Architecture diagram and the positioning of this feature in overall con-
troller architecture. Highlighting the feature in a different color within the overall architecture must help. Include
information to describe if the project is within ODL installation package or to be installed separately.

Pre Requisites for Installing <Feature>

• Hardware Requirements

• Software Requirements

Preparing for Installation

Include any pre configuration, database, or other software downloads required to install <feature>.

Installing <Feature>

Include if you have separate procedures for Windows and Linux

Verifying your Installation

Describe how to verify the installation.

Troubleshooting

optional

Text goes here.

Post Installation Configuration

Post Installation Configuration section must include some basic (must-do) procedures if any, to get started.

Mandatory instructions to get started with the product.

• Logging in

• Getting Started

1572 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

• Integration points with controller

Upgrading From a Previous Release

Text goes here.

Uninstalling <Feature>

Text goes here.

5. Copy the template into the appropriate directory for your project.

• For user documentation: docs.git/docs/user-guide/${feature-name}-user-guide.
rst

• For developer documentation: docs.git/docs/developer-guide/
${feature-name}-developer-guide.rst

• For installation documentation (if any): docs.git/docs/getting-started-guide/
project-specific-guides/${project-name}.rst

Note: These naming conventions aren’t set in stone, but do help. If you think there’s a better name, use it and
we’ll give feedback on the gerrit patch.

6. Edit the template to fill in the outline of what you will provide using the suggestions in the template. If you feel
like a section isn’t needed, feel free to omit it.

7. Link the template into the appropriate core rst file

• For user documentation: docs.git/docs/user-guide/index.rst

• For developer documentation: docs.git/docs/developer-guide/index.rst

• For installation documentation (if any): docs.git/docs/getting-started-guide/
project-specific-guides/index.rst

• In each file, it should be pretty clear what line you need to add. In general if you have an rst file
project-name.rst, you include it by adding a new line project-name without the .rst at the
end.

8. Make sure the documentation project still builds.

• Run tox -edocs from the root of the cloned docs repo.

– After that, you should be able to find the HTML version of the docs at docs.git/docs/_build/
html/index.html.

– See reStructuredText-based Documentation for more details about building the docs.

• The reStructuredText Troubleshooting section provides common errors and solutions.

• If you still have problems e-mail the documentation group at documentation@lists.opendaylight.org

9. Commit and submit the patch

(a) Commit using:

git add --all && git commit -sm "Documentation outline for ${project-
→˓shortname}"

3.4. Documentation Guide 1573

mailto:documentation@lists.opendaylight.org

OpenDaylight Documentation Documentation, Release Carbon

(b) Submit using:

git review

See the Git-review Workflow page if you don’t have git-review installed.

10. Wait for the patch to be merged or to get feedback

• If you get feedback, make the requested changes and resubmit the patch.

• When you resubmit the patch, it’s helpful if you also post a +0 reply to the gerrit saying what patch set you
just submitted and what you fixed in the patch set.

• The documentation team will also be creating (or asking projects to create) small groups of 2-4 projects
that will peer review each other’s documentation. Patches which have seen a few cycles of peer review
will be prioritized for review and merge by the documentation team.

Expected Output From Documentation Project

The expected output is (at least) 3 PDFs and equivalent web-based documentation:

• User/Operator Guide

• Developer Guide

• Installation Guide

These guides will consist of “front matter” produced by the documentation group and the per-project/per-feature
documentation provided by the projects. Note that this is intended to be who is responsible for the documentation
and should not be interpreted as preventing people not normally in the documentation group from helping with “front
matter” nor preventing people from the documentation group from helping with per-project/per-feature documentation.

Boron Project Documentation Requirements

Kinds of Documentation

These are the expected kinds of documentation and target audiences for each kind.

• User/Operator: for people looking to use the feature w/o writing code

– Should include an overview of the project/feature

– Should include description of availbe configuration options and what they do

• Developer: for people looking to use the feature in code w/o modifying it

– Should include API documentation, e.g., enunciate for REST, Javadoc for Java, ??? for REST-
CONF/models

• Contributor: for people looking to extend or modify the feature’s source code

• Installation: for people looking for instructions to install the feature after they have downloaded the ODL
release

– For most projects, this will be just a list of top-level features and options

* As an example, l2switch-switch as the top-level feature with the -rest and -ui options

* We’d also like them to note if the options should be checkboxes (i.e., they can each be turned on/off
independently) or a drop down (i.e., at most one can be selected)

1574 Chapter 3. Content for OpenDaylight Contributors

https://wiki.opendaylight.org/view/Git-review_Workflow

OpenDaylight Documentation Documentation, Release Carbon

* What other top-level features in the release are incompatible with each feature

* This will likely be presented as a table in the documentation and the data will likely also be consumed
by automated installers/configurators/downloaders

– For some projects, there is extra installation instructions (for external components) and/or configuration

* In that case, there will be a (sub)section in the documentation describing this process.

• HowTo/Tutorial: walk throughs and examples that are not general-purpose documentation

– Generally, these should be done as a (sub)section of either user/operator or developer documentation.

– If they are especially long or complex, they may belong on their own

• Release Notes:

– Release notes are required as part of each project’s release review. They must also be translated into
reStructuredText for inclusion in the formal documentation.

Requirements for projects

Projects MUST do the following

• Provide reStructuredText documentation including

– Developer documentation for every feature

* Most projects will want to logically nest the documentation for individual features under a single
project-wide chapter or section

* This can be provided as a single .rst file or multiple .rst files if the features fall into different groups

* This should start with ~300 word overview of the project and include references to any automatically-
generated API documentation as well as more general developer information (see Kinds of Documen-
tation).

– User/Operator documentation for every every user-facing feature (if any)

* ‘’Note: This should be per-feature, not per-project. User’s shouldn’t have to know which project a
feature came from.’‘

* Intimately related features, e.g., l2switch-switch, l2switch-switch-rest, and l2switch-switch-ui, can be
documented as one noting the differences

* This can be provided as a single .rst file or multiple .rst files if the features fall into different groups

– Installation documentation

* Most projects will simply provide a list of user-facing features and options. See Kinds of Documen-
tation above.

– Release Notes (both on the wiki and reStructuredText) as part of the release review.

• This documentation will be contributed to the docs repo (or possibly imported from the project’s own repo with
tooling that is under development)

– Projects MAY be ENCOURGAGED to instead provide this from their own repository if the tooling is
developed

– Projects choosing to meet the requirement this way MUST provide a patch to docs repo to import the
project’s documentation

• Projects MUST cooperate with the documentation group on edits and enhancements to documentation

3.4. Documentation Guide 1575

OpenDaylight Documentation Documentation, Release Carbon

– Note that the documentation team will also be creating (or asking projects to create) small groups of 2-4
projects that will peer review each other’s documentation. Patches which have seen a few cycles of peer
review will be prioritized for review and merge by the documentation team.

Timeline for Deliverables from Projects

• M3: Documentation Started

– Identified the kinds of documentation that will be provided and for what features

* Release Notes are not required until release reviews at RC2

– Created the appropriate .rst files in the docs repository (or their own repository if the tooling is available)

– Have an outline for the expected documentation in those .rst files including the relevant (sub)sections and
a sentence or two explaining what will go there

* Obviusly, providing actual documentation in the (sub)sections is encouraged and meets this require-
ment

– Milestone readout should include

1. the list of kinds of documentation

2. the list of corresponding .rst files and their location, e.g., repo and path

3. the list of commits creating those .rst files

4. the current word counts of those .rst files

• M4: Documentation Continues

– The readout at M4 should include the word counts of all .rst files with links to commits

– The goal is to have draft documentation complete so that the documentation group can comment on it.

• M5: Documentation Complete

– All (sub)sections in all .rst files have complete, readable, usable content.

– Ideally, there should have been some interaction with the documentation group about any suggested edits
and enhancements

• RC2: Release notes

– Projects must provide release notes as .rst pushed to integration (or locally in the project’s repository if the
tooling is developed)

3.5 OpenDaylight Release Process Guide

3.5.1 Overview

This guide provides details on various processes related to OpenDaylight’s release process and attempts to document
the steps used by OpenDaylight Release Engineers to perform release operations.

1576 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

3.5.2 Processes

Autorelease

The Release Engineering - Autorelease project is targeted at building the artifacts that are used in the release candidates
and final full release.

• Open Gerrit Patches

• Jenkins Jobs

Cloning Autorelease

To clone all the autorelease repo including it’s submodules simply run the clone command with the ‘’‘–recursive’‘’
parameter.

git clone --recursive https://git.opendaylight.org/gerrit/releng/autorelease

If you forgot to add the –recursive parameter to your git clone you can pull the submodules after with the following
commands.

git submodule init
git submodule update

Creating Autorelease - Release and RC build

An autorelease release build comes from the autorelease-release-<branch> job which can be found on the autorelease
tab in the releng master:

• https://jenkins.opendaylight.org/releng/view/autorelease/

For example to create a Boron release candidate build launch a build from the autorelease-release-boron job by clicking
the ‘’‘Build with Parameters’‘’ button on the left hand menu:

• https://jenkins.opendaylight.org/releng/view/autorelease/job/autorelease-release-boron/

Note: The only field that needs to be filled in is the ‘’‘RELEASE_TAG’‘’, leave all other fields to their default setting.
Set this to Boron, Boron-RC0, Boron-RC1, etc... depending on the build you’d like to create.

Adding Autorelease staging repo to settings.xml

If you are building or testing this release in such a way that requires pulling some of the artifacts from the Nexus repo
you may need to modify your settings.xml to include the staging repo URL as this URL is not part of ODL Nexus’
public or snapshot groups. If you’ve already cloned the recommended settings.xml for building ODL you will need to
add an additional profile and activate it by adding these sections to the “<profiles>” and “<activeProfiles>” sections
(please adjust accordingly).

Note:

• This is an example and you need to “Add” these example sections to your settings.xml do not delete your
existing sections.

3.5. OpenDaylight Release Process Guide 1577

https://wiki.opendaylight.org/view/RelEng/Autorelease
https://git.opendaylight.org/gerrit/#/q/project:releng/autorelease+status:open
https://jenkins.opendaylight.org/releng/view/autorelease/
https://jenkins.opendaylight.org/releng/view/autorelease/
https://jenkins.opendaylight.org/releng/view/autorelease/job/autorelease-release-boron/

OpenDaylight Documentation Documentation, Release Carbon

• The URLs in the <repository> and <pluginRepository> sections will also need to be updated with the staging
repo you want to test.

<profiles>
<profile>
<id>opendaylight-staging</id>
<repositories>

<repository>
<id>opendaylight-staging</id>
<name>opendaylight-staging</name>
<url>https://nexus.opendaylight.org/content/repositories/

→˓automatedweeklyreleases-1062</url>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>

</releases>
<snapshots>
<enabled>false</enabled>

</snapshots>
</repository>

</repositories>
<pluginRepositories>

<pluginRepository>
<id>opendaylight-staging</id>
<name>opendaylight-staging</name>
<url>https://nexus.opendaylight.org/content/repositories/

→˓automatedweeklyreleases-1062</url>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>

</releases>
<snapshots>
<enabled>false</enabled>

</snapshots>
</pluginRepository>

</pluginRepositories>
</profile>

</profiles>

<activeProfiles>
<activeProfile>opendaylight-staging</activeProfile>

</activeProfiles>

Project lifecycle

This page documents the current rules to follow when adding and removing a particular project to Simultaneous
Release (SR).

List of states

The state names are short negative phrases describing what is missing to progress to the following state.

• non-existent The project is not recognized by Technical Steering Committee (TSC) to be part of OpenDaylight
(ODL).

1578 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

• non-participating The project is recognized byt TSC to be an ODL project, but the project has not confirmed
participation in SR for given release cycle.

• non-building The recognized project is willing to participate, but its current codebase is not passing its own
merge job, or the project artifacts are otherwise unavailable in Nexus.

• not-in-autorelease Project merge job passes, but the project is not added to autorelease (git submodule, maven
module, validate-autorelease job passes).

• repo-not-in-integration Project is added do autorelease, but integration/distribution:features-index is not listing
all its public feature repositories.

• distribution-check-not-passing Project is in autorelease, but its distribution-check job is either not running, or
it is failing for any reason.

• feature-not-in-integration Feature repositories are referenced, distribution-check job is passing, but some user-
facing features are absent from integration/distribution:features-test

• feature-is-experimental All user-facing features are in features-test, but at least one of the corresponding func-
tional CSIT jobs does not meet integration/test requirements.

• ready

Note: A project may change its state in both directions, this list is to make sure a project is not left in an invalid state,
for example distribution referencing feature repositories, but without passing distribution-check job.

Namespaces

Project namespaces in OpenDaylight are used to ensure projects do not have name collisions in code and packages.
OpenDaylight enforces namespaces in Nexus using the following patterns:

• ^/org.opendaylight.PROJECT/.*

• ^/org/opendaylight/PROJECT/.*

Where PROJECT is the name of an OpenDaylight project.

In cases where a project has a sub-project we recommend adding an additional level to the path for example
org.opendaylight.integration.test however no strong enforcement is currently enforced and some projects do this al-
ready internally.

This restriction applies to all site repositories in Nexus as well in the event that a project wishes to push a static web
site into their allocated site path.

Maven / Java

Maven has a built in namespace routing using <groupId> field in pom files. For example:

<project>
<groupId>org.opendaylight.odlparent</groupId>
<artifactId>odlparent-lite</artifactId>
<version>1.8.0-SNAPSHOT</version>

</project>

3.5. OpenDaylight Release Process Guide 1579

OpenDaylight Documentation Documentation, Release Carbon

Python

Python projects typically publish to artifacts to PyPi and use their shortname for modules rather than a full path like
Java projects do.

setup.py:

setup(
name='spectrometer',

)

The structure of a Python project typically determines it’s package routing. So a project package spectrome-
ter.reporttool might have a layout like this inside their project root.

./ # This is the root of the repository

./setup.py

./spectrometer

./spectrometer/__init__.py

./spectrometer/reporttool

./spectrometer/reporttool/__init__.py

Branch Cutting

This page documents the current branch cutting tasks that are needed to be performed at various milestones and which
team has the necessary permissions in order to perform the necessary task in Parentheses.

M5 Offset 2

JJB

• Export ${NEXT_RELEASE} and ${CURR_RELEASE} with new and current release names. (releng/builder
committers)

export NEXT_RELEASE="Nitrogen"
export CURR_RELEASE="Carbon"

• Change JJB yaml files from stream:carbon branch pointer from master -> stable/${CURR_RELEASE„} and
create new stream: ${NEXT_RELEASE„} branch pointer to branch master. This requires handling two different
file formats interspersed with in autorelease projects. (releng/builder committers)

stream:
- Nitrogen:

branch: master
- Carbon:

branch: stable/carbon

- project:
name: aaa-carbon
jobs:
- '{project-name}-verify-{stream}-{maven}-{jdks}'

stream: nitrogen
branch: master

1580 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

– The above manual process of updating individual files is automated with the script. (releng/builder com-
mitters)

cd builder/scripts/branch_cut
./branch_cutter.sh -n $NEXT_RELEASE -c $CURR_RELEASE

• Review and submit the changes to releng/builder project. (releng/builder committers)

Autorelease

• Block submit permissions for registered users and elevate RE’s committer rights on gerrit. (Helpdesk)

Note: Enable Exclusive checkbox for the submit button to override any existing persmissions.

• Setup releng/autorelease repository. (Release Engineering Team)

git review -s
git submodule foreach 'git review -s'
git checkout master
git submodule foreach 'git checkout master'
git pull --rebase
git submodule foreach 'git pull --rebase'

• Create stable/${CURR_RELEASE} branches based on HEAD master. (Release Engineering Team)

git submodule foreach 'git checkout -b stable/${CURR_RELEASE,,} origin/master'
git push gerrit stable/${CURR_RELEASE,,}
git submodule foreach 'git push gerrit stable/${CURR_RELEASE,,}'

• Enable create reference permissions on gerrit for RE’s to submit .gitreview patches. (Helpdesk)

3.5. OpenDaylight Release Process Guide 1581

OpenDaylight Documentation Documentation, Release Carbon

Note: Enable Exclusive checkbox override any existing persmissions.

• Contribute .gitreview updates to stable/${CURR_RELEASE„}. (Release Engineering Team)

git submodule foreach sed -i -e "s#defaultbranch=master#defaultbranch=stable/$
→˓{CURR_RELEASE,,}#" .gitreview
git submodule foreach git commit -asm "Update .gitreview to stable/${CURR_RELEASE,
→˓,}"
git submodule foreach 'git review -t ${CURR_RELEASE,,}-branch-cut'
sed -i -e "s#defaultbranch=master#defaultbranch=stable/${CURR_RELEASE,,}#" .
→˓gitreview
git add .gitreview
git commit -s -v -m "Update .gitreview to stable/${CURR_RELEASE,,}"
git review -t ${CURR_RELEASE,,}-branch-cut

• Merge all .gitreview patches submitted in the above step. (Release Engineering Team)

• Remove create reference permissions set on gerrit for RE’s. (Helpdesk)

• Version bump master by x.(y+1).z. (Release Engineering Team)

git checkout master
git submodule foreach 'git checkout master'
pip install lftools
lftools version bump ${CURR_RELEASE}

• Exclude version bump changes to release notes. (Release Engineering Team)

git checkout pom.xml scripts/

• Push version bump master changes to gerrit. (Release Engineering Team)

git submodule foreach 'git commit -asm "Bump versions by x.(y+1).z for next dev
→˓cycle"'
git submodule foreach 'git review -t nitrogen-br-cut'

• Merge all version bump patches in the order of dependencies. (Release Engineering Team)

• Re-enable submit permissions for registered users and disable elevated RE committer rights on gerrit.
(Helpdesk)

• Notify release list on branch cutting work completion. (Release Engineering Team)

Simultaneous Release

This page explains how the OpenDaylight release process works once the TSC has approved a release.

Preparations

After release candidate is built gpg sign artifacts using the lftools sign command.

STAGING_REPO=autorelease-1903
STAGING_PROFILE_ID=abc123def456 # This Profile ID is listed in Nexus > Staging
→˓Profiles
lftools sign deploy-nexus https://nexus.opendaylight.org $STAGING_REPO $STAGING_
→˓PROFILE_ID

1582 Chapter 3. Content for OpenDaylight Contributors

https://lf-releng-tools.readthedocs.io/en/latest/commands/sign.html

OpenDaylight Documentation Documentation, Release Carbon

Verify the distribution-karaf file with the signature.

gpg2 --verify distribution-karaf-x.y.z-${RELEASE}.tar.gz.asc distribution-karaf-x.y.z-
→˓${RELEASE}.tar.gz

Releasing OpenDaylight

• Block submit permissions for registered users and elevate RE’s committer rights on Gerrit. (Helpdesk)

Note: Enable Exclusive checkbox for the submit button to override any existing persmissions. Code-Review
and Verify permissions are only needed during version bumping. DO NOT enable it during code freeze.

• Nexus: click release for staging repo (Helpdesk)

• Nexus: click release for gpgsign repo (created above in Preparations) (Helpdesk)

• Pull latest autorelease repository (Release Engineering Team)

Note: If you already cloned autorelease the clone line can be skipped below.

export RELEASE=Nitrogen-SR1
export STREAM=${RELEASE//-*}
export BRANCH=origin/stable/${STREAM,,}

git clone --recursive https://git.opendaylight.org/gerrit/releng/autorelease
cd autorelease
git fetch origin

Ensure we are on the right branch. Note that we are wiping out all
modifications in the repo so backup unsaved changes before doing this.
git checkout -f
git checkout ${BRANCH,,}
git clean -xdff
git submodule update --init

Ensure git review is setup

3.5. OpenDaylight Release Process Guide 1583

OpenDaylight Documentation Documentation, Release Carbon

git review -s
git submodule foreach 'git review -s'

• Make sure the latest lftools is installed (Release Engineering Team)

Note: If you already created an lftools virtualenv you can skip the mkvirtualenv step below.

mkvirtualenv lftools
workon lftools
pip install --upgrade lftools

• Publish release tags (Release Engineering Team)

export BUILD_NUM=55
export PATCH_URL="https://logs.opendaylight.org/releng/vex-yul-odl-jenkins-1/
→˓autorelease-release-${STREAM,,}/${BUILD_NUM}/patches.tar.gz"
./scripts/release-tags.sh "${RELEASE}" /tmp/patches "$PATCH_URL"

• Run autorelease-version-bump-${STREAM} job (Release Engineering Team)

• Send email to Helpdesk with binary URL to update website (Helpdesk)

• Send email to TSC and Release mailing lists announcing release binaries location (Release Engineering Team)

• Merge all patches generated by the job (Release Engineering Team)

• Re-enable submit permissions for registered users and disable elevated RE committer rights on gerrit (Helpdesk)

• Send email to release/tsc/dev notifying tagging and version bump complete (Release Engineering Team)

• Run autorelease-generate-release-notes-${STREAM} job (Release Engineering Team)

Trigger this job by leaving a Gerrit comment generate-release-notes Carbon-SR2

Important: This job can only be used to generate service releases.

For major releases the notes come from the projects themselves in the docs repo via the docs/releaset-
notes/projects directory.

Release notes can also be manually generated with the script:

git checkout stable/${BRANCH,,}
./scripts/release-notes-generator.sh ${RELEASE}

A release-notes.rst will be generated in the working directory.

Milestone Readouts

M0: Declare Intent

(Project Name)

1. A statement to the effect: “The <Project Name> project formally joins the OpenDaylight Carbon Simultaneous
Release and agrees to the activities and timeline documented on the Carbon Release Plan Page: https://wiki.
opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan“

1584 Chapter 3. Content for OpenDaylight Contributors

https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan
https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

2. Project Offset: (Offset 0/Offset 1/Offset 2)

3. Project Category: (Kernel/Protocol/Services/Application/Support)

4. Project Labels: (List keywords and tags and fit the description of your project comma separated)

5. Project PTL: (name/email/IRC)

6. Do you confirm that the list of Project Committers is updated and accurate? (Yes/No)

[1] https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan#M0:_Declare_Intent

M1: Draft Plan

(Project Name)

1. Project Lead Contact: (name/email/IRC)

2. Review PTL Requirements [1].

3. Project Contact: (name/email/IRC)

4. Test Contact: (name/email/IRC)

5. Documentation Contact (name/email/IRC)

6. Draft Release Plan: (wiki link)

** FOR NEW PROJECTS ONLY **

7. Project Main Page: (wiki link) Use Project Facts Template [2].

[1] Be sure to read the responsibilities of being a project lead under Leadership & Communication in the Re-
quirements for Participation section of the release plan: https://wiki.opendaylight.org/view/Simultaneous_Release:
Carbon_Release_Plan#Requirements_for_Participation

[2] https://wiki.opendaylight.org/view/Template:Project_Facts

M2: Final Release Plan

(Project Name)

1. Does your project have any updates on any previously-incomplete items from prior milestone readouts?
(Yes/No)

• (If yes, list updates)

2. Were project-specific deliverables planned for this milestone delivered successfully? (No Deliverables/Yes/No)

• (If no, list incomplete deliverables)

3. Does your project have any special needs in CI Infrastructure [2]? (Yes/No)

• (If yes, link to helpdesk ticket number)

4. Is your project release plan finalized? (Yes/No)

• (If yes, link to final release plan wiki page)

• (If no, ETA to finalize release plan)

5. Do you have all APIs intended to be externally consumable listed? (Yes/No)

• Does each API have a useful short name? (Yes/No)

3.5. OpenDaylight Release Process Guide 1585

https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan#M0:_Declare_Intent
https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan#Requirements_for_Participation
https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan#Requirements_for_Participation
https://wiki.opendaylight.org/view/Template:Project_Facts

OpenDaylight Documentation Documentation, Release Carbon

• Are the Java interface and/or YANG files listed for each API? (Yes/No)

• Are they labeled as tentative, provisional, or stable as appropriate for each API? (Yes/No)

• Do you call out the OSGi bundles and/or Karaf features providing the API for each API? (Yes/No)

6. Have all project dependencies requests on other project’s release plans been acknowledged and documented by
upstream projects? (Yes/No)

• (List of all project dependencies and if they have been acknowledged, unacknowledged)

7. Will your project have top-level features not requiring system test? (Yes/No)

• (If yes, link to system test waiver request email)

8. Will your project use the OpenDaylight CI infrastructure for testing top-level features requiring system test?
(Yes/No)

• (If no, link to system test plan explaining why [3])

• (If no, link to system test plan identifying external lab testing [4])

** FOR NEW PROJECTS ONLY **

9. Have you completed the project checklist [1]? (Yes/No)

• (link to a merged patch in gerrit)

• (link to a mail from your mailing list)

• (link to a bug for your project; you can create a dummy one and close it if need be)

• (link to an artifact published from your project in nexus)

• (link to a sonar report)

• (link to your root pom file)

[0] https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan

[1] https://wiki.opendaylight.org/view/GettingStarted:Project_Main#New_Project_Checklist

[2] Special needs include tools or configuration. Note that generally, the only available tools in CI are ba-
sic RHEL/CentOS linux images with Java. You should note and ask for anything beyond that here. Email
helpdesk@opendaylight.org

[3] It is recommended to use the OpenDaylight CI infrastructure unless there is some HW or SW resource that cannot
be installed there. Update the test plan with explanation on why your top-level features will not be using the Open-
Daylight CI Infrastructure: https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Feature_Integration_
System_Test_Template#Test_Infrastructure

[4] Projects running system test in external Labs are required to report system test results in a timely fashion
after release creations, e.g., weekly, RC, and formal releases. Update the test plan with plans on testing in
external lab: https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Feature_Integration_System_Test_
Template#Test_Infrastructure

M3: Functionality Freeze

<Project Name>

Please provide updates on any previously-incomplete items from prior milestone readouts.

Functionality Freeze:

1. Final list of externally consumable APIs defined: Yes/No

1586 Chapter 3. Content for OpenDaylight Contributors

https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan
https://wiki.opendaylight.org/view/GettingStarted:Project_Main#New_Project_Checklist
mailto:helpdesk@opendaylight.org
https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Feature_Integration_System_Test_Template#Test_Infrastructure
https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Feature_Integration_System_Test_Template#Test_Infrastructure
https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Feature_Integration_System_Test_Template#Test_Infrastructure
https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Feature_Integration_System_Test_Template#Test_Infrastructure

OpenDaylight Documentation Documentation, Release Carbon

• If you had an Tentative APIs, have they been moved to Provisional or dropped? Yes/No (link to
release plan)

• If any of your Tentative APIs were dropped, have you notified all projects that were expecting them?
Yes/No (link to e-mail)

– Also please list all dropped APIs.

2. Are all your inter-project dependencies are resolved (i.e., have the other projects you were counting on given
you what you needed)? Yes/No

• If no, please list the features you were expecting that haven’t been delivered and the project you were
expecting to receive them from.

• Note that you can only reasonably hold a a project to something if you formally asked for it during the
release planning process and they acknowledged that ask saying they would do it.

3. Were there any project-specific deliverables planned for this milestone? Yes/No

• If so, were they delivered? Yes/No

Karaf Features Defined:

1. Are all your project’s features that are intended for release added to the features.xml and checked into integration
git repository. Yes/No (please provide link to the gerrit patch)

2. List all top-level, user-facing, and stable Karaf features for your project.

• For top-level and user-facing features, please provide a one-sentence description which a developer and/or
user would find helpful.

Documentation:

1. List the kinds of documentation you will provide including at least:

• One user/operator guide section per user-facing feature.

• One developer guide per top-level feature.

• An installation guide for any top-level features that require more than feature:install
<feature-name> to install.

• Optional tutorials and how tos.

2. Have you checked in an AsciiDoc outline to the docs repository? Yes/No (link to gerrit patch)

Integration and Test:

1. Have you started automated system testing for your top-level features. Yes/No

• If yes, link to test report

• If no, why?

2. Have you filled out basic system test plan template for each top-level feature (karaf and not karaf) and a compre-
hensive system test plan template including functionality, cluster, scalability, performance, longevity/stability
for each stable feature? Yes/No

• If yes, link to test plans

• If no, why?

Project Specific:

1. Were there any project-specific deliverables planned for this milestone? Yes/No

• If so, were they delivered? Yes/No

3.5. OpenDaylight Release Process Guide 1587

OpenDaylight Documentation Documentation, Release Carbon

2. Have you updated your project facts with the project type category? Yes/No

3. Do you acknowledge the changes to the RC Blocking Bug Policy for Carbon Release [1]? Yes/No

[1] https://lists.opendaylight.org/pipermail/tsc/2016-December/006468.html

M4: API Freeze

<Project Name>

1. Please provide updates on any previously-incomplete items from prior milestone readouts.

2. Has your project achieved API freeze such that all externally accessible Stable or Provisional APIs will not be
modified after now? (Yes/No)

• (Link to gerrit search for patches modifying the API [1])

3. Do you have content in your project documentation? (Yes/No)

• (For each document, provide current word count)

• (For each document, link to the file in gerrit)

• (Link to pending gerrit patches waiting approval)

4. Has your project met the requirements to be included in Maven Central [2]? (Yes/No)

5. Were project-specific deliverables planned for this milestone delivered successfully? (No Deliverables/Yes/No)

6. Have you started automated system testing for your top-level features. (Yes/No)

• (If yes, link to test report)

• (If no, explain why)

7. Does your project use any ports, including for testing? (Yes/No)

• (If yes, list of ports used)

• (If yes, have you updated the wiki [3] with all ports used? Yes/No)

8. Does your project build successful in Autorelease?

• (If yes, link to successful autorelease job [4])

• (If not, explain why)

[1] Provide a link to a gerrit search for patches modifying the files defined as specifying the API. For exam-
ple: https://git.opendaylight.org/gerrit/#/q/file:%255Eopendaylight/md-sal/sal-binding-api/.%252B+status:merged+
project:controller

[2] http://central.sonatype.org/pages/requirements.html

[3] https://wiki.opendaylight.org/view/Ports

[4] https://wiki.opendaylight.org/view/RelEng/Autorelease/Project_Autorelease_Requirements

M5: Code Freeze

<Project Name>

1. Please provide updates on any previously-incomplete items from prior milestone readouts.

2. Has your project met code freeze, i.e., only bug fixes are allowed from now on? (Yes/No)

1588 Chapter 3. Content for OpenDaylight Contributors

https://lists.opendaylight.org/pipermail/tsc/2016-December/006468.html
https://git.opendaylight.org/gerrit/#/q/file:%255Eopendaylight/md-sal/sal-binding-api/.%252B+status:merged+project:controller
https://git.opendaylight.org/gerrit/#/q/file:%255Eopendaylight/md-sal/sal-binding-api/.%252B+status:merged+project:controller
http://central.sonatype.org/pages/requirements.html
https://wiki.opendaylight.org/view/Ports
https://wiki.opendaylight.org/view/RelEng/Autorelease/Project_Autorelease_Requirements

OpenDaylight Documentation Documentation, Release Carbon

3. Are all externally visible strings frozen to allow for translation & documentation? (Yes/No)

4. Is your documentation complete such that only editing and enhancing should take place after this point?
(Yes/No)

• (For each document, link to the file in gerrit)

• (Link to pending gerrit patches waiting approval)

5. Were project-specific deliverables planned for this milestone delivered successfully? (No Deliverables/Yes/No)

6. Are you running at least one basic automated system test job for each top-level feature? (Yes/No)

• (If yes, link to test report)

• (If not, explain why)

Stables Features (Only for Projects with Stable Features)

1. Do your stable features fulfill quality requirements (i.e. unit and/or integration test coverage of at least 75%)?
(Yes/No)

• (If yes, link to sonar report)

• (If not, explain why)

2. Are you running several automated system test jobs including functionality, cluster, scalability, performance,
longevity/stability for each stable feature? (Yes/No)

• (If yes, link to test reports)

• (If not, explain why)

RCX: Release Candidate Testing

<Project Name>

1. Have you tested your code in the release candidate? Yes/No (provide a link to the release candidate you tested)

• If yes, did you find any issues?

• If you found issues, do you believe any of them should block this release of OpenDaylight until they are
resolved?

• Please list all the issues and note if they are blocking.

3.5.3 Supporting Documentation

The release management team maintains several documents in Google Drive to track releases. These documents can
be found at this link:

https://drive.google.com/drive/folders/0ByPlysxjHHJaUXdfRkJqRGo4aDg

3.6 Spectrometer Documentation

Contents:

3.6. Spectrometer Documentation 1589

https://drive.google.com/drive/folders/0ByPlysxjHHJaUXdfRkJqRGo4aDg

OpenDaylight Documentation Documentation, Release Carbon

3.6.1 Quick Start Guide

The Spectrometer project consists of two sub-projects, the `server` and `web`.

Server side is Python driven and provides the API to collect Git and Gerrit statistics for various OpenDaylight projects.

The web project is NodeJS/React based and provides the visualization by using the APIs provided by the server side.

In order to run the application, you need to install both `server` and `web` sub-projects.

This Quick Started Guide assumes you have Python3 and NodeJS 4.3 installed. To install NodeJS using NVM, see
Web > Installation section below.

The Spectrometer project collects data from repositories located locally in your system.

Setup spectrometer-server

Installing spectrometer from pypi is simple and will get you the latest version that is released. Then create a config.py
file in /etc/spectrometer/config.py (Example file can be found here)

pip install spectrometer
sudo mkdir /etc/spectrometer
sudo vi /etc/spectrometer/config.py
spectrometer server start

Verify that spectrometer-server is running by going to http://localhost:5000. You should see a Hello World page.

Setup spectrometer-web

Spectrometer Web is still in development so you will need to install it from Git at the time being as there is no package
for it yet.

git clone https://git.opendaylight.org/gerrit/spectrometer.git
cd spectrometer/web
npm install
npm start

Goto http://localhost:8000

Testing the setup

By default the OpenDaylight project repositories will be mirrored every 5 minutes (300s), so if this is the first time
starting you may have to wait until all repos are mirrored before you can exercise some of the apis.

Once the repos are mirrored you can try a few basic examples to make sure things are working properly:

Examples:

http://127.0.0.1:5000/gerrit/branches?project=controller
http://127.0.0.1:5000/gerrit/projects
http://127.0.0.1:5000/git/commits?project=integration/packaging

The full Rest APIs are documented here: https://opendaylight-spectrometer.readthedocs.io/en/latest/restapi.html

1590 Chapter 3. Content for OpenDaylight Contributors

https://git.opendaylight.org/gerrit/gitweb?p=spectrometer.git;a=blob_plain;f=server/example-config/config.py;hb=HEAD
https://opendaylight-spectrometer.readthedocs.io/en/latest/restapi.html

OpenDaylight Documentation Documentation, Release Carbon

3.6.2 User Guide

Spectrometer consists of 3 components:

• Spectrometer API Server (backend)

• Spectrometer Web Server (frontend)

• Spectrometer Report Tool

This guide will describe the uses of the 3 systems.

Spectrometer API Server

Production Deployment

When running in production the recommended way is to deploy with gunicorn.

gunicorn -b 0.0.0.0:5000 'spectrometer:run_app()'

If deploying behind a proxy under a sub-directory additional configuration is necessary for gunicorn application to
operate correctly.

example-nginx:

location /api {
proxy_pass http://127.0.0.1:5000;
proxy_redirect http://127.0.0.1:5000/api/ http://$host/api/;

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header SCRIPT_NAME /api;

}

Logging

Spectrometer logs to /var/log/spectrometer by default but that directory must be writeable by the spectrometer user.

sudo chown spectrometer /var/log/spectrometer

It is possible to override the default log directory by configuring the LOG_DIR parameter in config.py.

LOG_DIR = '/path/to/log/directory'

Spectrometer Web Server

TODO

Spectrometer Report Tool

The Spectrometer Report Tool can be used to generate reports between 2 reference points in time. Reference points
are git commit hashs, branches, or tags. A project like OpenDaylight that tags projects with the same tag name for
every release can use this tool to Generate release reports.

3.6. Spectrometer Documentation 1591

OpenDaylight Documentation Documentation, Release Carbon

spectrometer reporttool full <ref1> <ref2>
spectrometer reporttool --server-url=https://spectrometer.opendaylight.org/api full
→˓release/beryllium-sr2 release/beryllium-sr1

3.6.3 Project Info Specification

Spectrometer supports a PROJECT_INFO.yaml file placed in the root of a project repo. This file is used by spectrom-
eter to parse meta information about the project including things like project description, project contact, committers
irc, mailing lists, release names, etc...

This file is used by Spectrometer to determine project meta information
Please refer to the spec file located here:
https://opendaylight-spectrometer.readthedocs.io/en/latest/project-info-spec.html

name: spectrometer
display-name: Spectrometer
creation-date: 2015-11-19
termination-date: n/a
description: |

This is an example summary description of project

After leaving a blank line in the description we can provide a longer
more detailed description of the project.

The details can be as many lines as necessary.
primary-contact: Firstname Lastname <first.last@example.com>
project-lead: Firstname Lastname <first.last@example.com>
categories:

- application
- community
- documentation
- extensions
- kernel
- library
- protocols
- services

committers:
- Firstname Lastname <first.last@example.com>
- Another Committer <another.committer@example.com>

When Committers who have made significant contributions to OpenDaylight
become inactive and thus no longer committers. This key can be used to
acknowledge their huge contributions by appointing them to Committer
Emeritus status.
committers-emeritus:

- Firstname Lastname <first.last@example.com>
contributors:

- Firstname Lastname <first.last@example.com>
- Another Contributor <another.contributor@example.com>

wiki: https://wiki.example.org/project
irc: irc://irc.freenode.net/opendaylight-spectrometer
mailing-lists:

- email: spectrometer-dev@lists.opendaylight.org
archives: http://lists.opendaylight.org/pipermail/spectrometer-dev/

- email: spectrometer-users@lists.opendaylight.org
archives: http://lists.opendaylight.org/pipermail/spectrometer-users/

ci-server: https://jenkins.opendaylight.org

1592 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

issue-tracker: https://bugs.opendaylight.org
static-analysis: https://sonar.opendaylight.org
repository: https://git.opendaylight.org/gerrit/#/admin/projects/spectrometer
meetings: |

Free from text field for providing meeting information.
It can be multiple lines long as necessary.

releases:
- helium
- lithium
- beryllium
- boron

Required fields:

• name

• creation_date

• description

• primary_contact

• project_lead

3.6.4 Documentation Guide

This guide provides details on how to contribute to the documetantion of Spectrometer. The style guide we follow for
documentation is the python documentation style guide. See:

https://docs.python.org/devguide/documenting.html

To build and review the documentation locally you can simply run tox and open the html via your favourite web
browser.

tox -edocs
firefox .tox/docs/tmp/html/index.html

3.6.5 Developer Guide

This doc provides details for developers who want to hack on spectrometer. If you have not done so already please
refer to the Quick Start Guide.

• Style Guide

• Spectrometer Server

– Installing in Dev Mode

– Testing Code

• Spectrometer Web

– Installation

– Run spectrometer-web

– UI Technology Stack

3.6. Spectrometer Documentation 1593

https://docs.python.org/devguide/documenting.html

OpenDaylight Documentation Documentation, Release Carbon

– Run spectrometer-web in Production

– Run Test

– Roadmap

• Troubleshooting

– Adding new repository

Style Guide

We follow the Python PEP8 style guide. See: https://www.python.org/dev/peps/pep-0008/

For documentation we follow the Python Documentation Guide. See: https://docs.python.org/devguide/documenting.
html

Spectrometer Server

Installing in Dev Mode

In development we want to install spectrometer so that we can modify the code and use it as if in production with
changes taking effect immediately. We can achieve this using pip’s editable install mode.

cd server # From spectrometer repo root
pip install -e .
spectrometer server -c example-config/config.py start

Testing Code

We use tox to manage and run our unit tests. Simply run tox in the server directory to initiate the tests. If you don’t
have tox installed typically it is packaged as python-tox in most distros.

cd server/ # From spectrometer repo root
tox

Spectrometer Web

Installation

To install NodeJS in your system, use the Node Version Manager (NVM), which allows to co-exist multiple NodeJS
versions in the same system.

If you already have NodeJS older versions (<= 0.12), it is strongly recommended to completely remove them and
reinstall using NVM.

For Linux systems, you can do the following to remove NodeJS:

which node # Note down the path
sudo rm -r /path/bin/node /path/bin/npm /path/include/node /path/lib/node_modules ~/.
→˓npm

Install NVM, NodeJS 4.3.x and NPM:

1594 Chapter 3. Content for OpenDaylight Contributors

https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/devguide/documenting.html
https://docs.python.org/devguide/documenting.html

OpenDaylight Documentation Documentation, Release Carbon

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.0/install.sh | bash
nvm install 4.3.1 # By default this installs npm 2.14.x
npm install npm -g # This will upgrade npm to 3.7.x

Run spectrometer-web

cd web # From the root of the git repo npm install npm start

Goto `http://localhost:8000`

The web project is configured to hot-reload when any changes are made to the code. Most of the time the web browser
should auto refresh, if not simply refresh the page.

UI Technology Stack

• NodeJS 4.3 - Bootstrapping and Universal (isomorphic) Javascript execution

• ExpressJS - Web-server-side bootstrap for UI

• ReactJS 0.14 - View Layer

• Redux - Data and State management (Flux pattern)

• Webpack - Build tool

• Babel - Asset compilation, ES6 Transpiler

• FormidableLabs VictoryChart - D3-based React components

• Redux Dev Tools - Tool that allows to track state management

Run spectrometer-web in Production

Production build does not have Devtools and hot reloading middleware. It also minifies scripts and css.

For Production build, execute the following commands:

npm run build
npm run start-prod

Run Test

Unit Tests are executed using Mocha and Chai assert libraries.

npm test

Roadmap

1. Dynamic loading of repositories as opposed to loading via config.json

3.6. Spectrometer Documentation 1595

OpenDaylight Documentation Documentation, Release Carbon

Troubleshooting

Adding new repository

In order to add a new repository to collect statistics, you must make the following changes:

1. Create a soft link in ~/odl-spectrometer to the new repository

2. Edit the server/spectrometer/etc/repositories.yaml and specify the key and path to ~/odl-spectrometer/$repo

3. Edit the web/src/config.json add the project name in the list (this makes it appear in the dropdown)

4. Reload the web page

5. If reload web page does not work, restart python `python spectrometer-server` and web `npm
start`)

3.6.6 Rest API

Gerrit API

Git API

3.7 Genius Documentation

This documentation provides critical information needed to help you write ODL Applications/Projects that can co-exist
with other ODL Projects.

Contents:

3.7.1 Genius Pipeline

This document captures current OpenFlow pipeline as use by Genius and projects using Genius for app-coexistence.

High Level Pipeline

+---------+
| In Port |
+----+----+

|
|

+---------v---------+
| (0) Classifier |
| Table |
+-------------------+
| VM Port +------+
+-------------------+ +----------+
| Provider Network +------+ |
+-------------------+ |

+-------------------+ Internal Tunnel | |
| +-------------------+ |
| +------+ External Tunnel | |
| | +-------------------+ +---------v---------+
| | | (17) Dispatcher |

1596 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

| | | Table |
| +----------v--------+ +-------------------+
| | (18,20,38) | +-------------+Ing.ACL Service (1)|
| | Services External | | +-------------------+
| | Pipeline | | +-----------+IPv6 Service (2)|
| +-------------------+ | | +-------------------+
| | | |L3 Service (3)+-+
		+-------------------+			
		+-+L2 Service (4)			
			+-------------------+		
+------------------+					
+--------v--------+					
	(40 to 42)				
	Ingress ACL				
	Pipeline				
+-------+---------+					
+--v-+ +------------v------+					
	(17)		(45)		
+----+					
	IPv6 Pipeline				
+----------+ +--+-------+--------+ | |

| | | | |
+----------v--------+ +--v--+ +--v-+ +-----v-----------+ |
(36)		ODL		(17)		(50 to 55)	
Internal	+-----+ +----+						
Tunnel		L2 Pipeline					
+----------+--------+ +-+---------------+ |

| | |
| | +------------v----+
		(19 to 47)	
	+------------+		
			L3 Pipeline
		+----+-------+----+	
+----------------------------+ | | | |

| | | +--v--+ +--v-+
| | | | ODL | |(17)|
| | | +-----+ +----+
| | |

+-----------------+ +-v-v-v-------------+
| (251 to 253) <-----+ (220) Egress |
| Egress ACL +-----> Dispatcher Table|
| Pipeline | +--------+----------+
+-----------------+ |

|
|

+----v-----+
| Out Port |
+----------+

3.7. Genius Documentation 1597

OpenDaylight Documentation Documentation, Release Carbon

Services Pipelines

Ingress ACL Pipeline

+-----------------+
| (17) |

+------------+ Dispatcher <---------------------------+
| | Table | |
| +-----------------+ |
| |

+--------v--------+ |
(40)			
Ingress ACL	+-----------------+		
Table		(41)	
+-----------------+	Ingress ACL 2	+-----------------+	
Match Allowed +----> Table		(42)	
+-----------------+ +-----------------+ | Ingress ACL 2 +---+

| Match Allowed +----> Table |
+-----------------+ +-----------------+

Owner Project: Netvirt

TBD.

IPv6 Pipeline

+-----------------+ +--------v--------+
| (17) | | (45) |
| Dispatcher +----> IPv6 |
| Table | | Table |
+--------^--------+ +-----------------+ +---+

| | IPv6 ND for +---->ODL|
| | Router Interface| +---+
| +-----------------+
+-------------+ Other Packets |

+-----------------+

Owner Project: Netvirt

TBD.

L2 Pipeline

+-----------------+
| (17) |
| Dispatcher |
| Table |
+--------+--------+

|
|

+--------v--------+
| (50) |
| L2 SMAC Learning|

1598 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

| Table |
+-----------------+ +--------v--------+
| Known SMAC +----> (51) |
+-----------------+ | L2 DMAC Filter |
| Unknown SMAC +----> Table |
+-------+---------+ +-----------------+

| | Known DMAC +--------------------+
| +-----------------+ |

+-v-+ | Unknown DMAC | |
|ODL| | | |
+---+ +--------+--------+ |

| |
| |

+--------v--------+ |
(52)	
Unknown DMACs	
Table	
+-----------------+ |

+----+ Tunnel In Port | |
| +-----------------+ |
| | VM In Port | |
| +------+----------+ |
| | |
| +------v-----+ |
	Group	
	Full BCast +------+	
+-----+------+		
+-----v------+	+---v-------------+	
+----> Group +--+ | | (220) |

| Local BCast| | | |Egress Dispatcher|
+------------+ | | +--->+ Table |

| | | +-----------------+
| | |
| | |

+-------v---v-----+ |
(55)	
Filter Equal	
Table	
+-----------------+	
L Register +---+	
and Egress	
+-----------------+	
? Match Drop	
+-----------------+

Owner Project: Netvirt

TBD.

L3 Pipeline

+-----------------+
| Coming |
| Soon! |
+-----------------+

3.7. Genius Documentation 1599

OpenDaylight Documentation Documentation, Release Carbon

Owner Project: Netvirt

TBD.

Egress ACL Pipeline

+-----------------+
| (220) Egress |

+------------+ Dispatcher <---------------------------+
| | Table | |
| +-----------------+ |
| |

+--------v--------+ |
(251)			
Egress ACL	+-----------------+		
Table		(252)	
+-----------------+	Egress ACL 2	+-----------------+	
Match Allowed +----> Table		(253)	
+-----------------+ +-----------------+ | Egress ACL 2 +---+

| Match Allowed +----> Table |
+-----------------+ +-----------------+

Owner Project: Netvirt

TBD.

3.7.2 Genius Design Overview

Genius project provides generic infrastructure services and utilities for integration and co-existance of mulltiple net-
working services/applications. Following image presents a top level view of Genius framework -

Genius Module Dependencies

Genius modules are developed as karaf features which can be independently installed. However, there is some depen-
dency among these modules. The diagram below provides a dependency relationship of these modules.

All these modules expose Yang based API which can be used to configure/interact with these modules and fetch
services provided by these modules. Thus all these modules can be used/configured by other ODL modules and can
also be accessed via REST interface.

Genius based packet pipeline

Following picture presents an example of packet pipeline based on Genius framework. It also presents the functions
of diffrent genius components -

Following sections provide details about each of these components.

1600 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Interface Manager Design

The Interface Manager (IFM) uses MD-SAL based architecture, where different software components operate on,
and interact via a set of data-models. Interface manager defines configuration data-stores where other OpenDaylight
modules can write interface configurations and register for services. These configuration data-stores can also be ac-
cessed by external entities through REST interface. IFM listens to changes in these config data-stores and accordingly
programs the data-plane. Data in Configuration data-stores remains persistent across controller restarts.

Operational data like network state and other service specific operational data are stored in operational data-stores.
Change in network state is updated in southbound interfaces (OFplugin, OVSDB) data-stores. Interface Manager uses
ODL Inventory and Topology datastores to retrive southbound configurations and events. IFM listens to these updates
and accordingly updates its own operational data-stores. Operational data stores are cleaned up after a controller
restart.

Additionally, a set of RPCs to access IFM data-stores and provide other useful information. Following figure presents
different IFM data-stores and its interaction with other modules.

Follwoing diagram provides a toplevel architecture of Interface Manager.

InterfaceManager Dependencies

Interface Manager uses other Genius modules for its operations. It mainly interacts with following other genius
modules-

1. Id Manager – For allocating dataplane interface-id (if-index)

2. Aliveness Monitor - For registering the interfaces for monitoring

3. MdSalUtil – For interactions with MD-SAL and other openflow operations

Following picture shows interface manager dependencies

3.7. Genius Documentation 1601

OpenDaylight Documentation Documentation, Release Carbon

interfacemanager-impl

interfacemanager-api

idmanager-api

utils.southbound-utils

mdsalutil-api

model-flow-base

hwvtepsouthbound-api

javax.inject

southbound-api

guava

model-flow-service

alivenessmonitor-api

idmanager-impl

ietf-interfaces

openflowplugin-extension-nicira

testutils

lockmanager-impl

iana-if-type-2014-05-08

yang-binding

ietf-inet-types-2013-07-15

ietf-yang-types-20130715

yang-ext

model-inventory

interfacemanager interfacemanager-shell org.apache.karaf.shell.console

Code structure

Interface manager code is organized in following folders -

1. interfacemanager-api contains the interface yang data models and corresponding interface implementation.

2. interfacemanager-impl contains the interfacemanager implementation

3. interface-manager-shell contains Karaf CLI implementation for interfacemanager

interfacemanager-api

---main

---java

| ---org

| ---opendaylight

1602 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

| ---genius

| ---interfacemanager

| ---exceptions

| ---globals

| ---interfaces

---yang

interfacemanager-impl

---commons <--- contains common utility functions

---listeners <--- Contains interfacemanager DCN listenenrs for differnt MD-SAL datastores

---renderer <--- Contains different southbound renderers' implementation

| ---hwvtep <--- HWVTEP specific renderer

| | ---confighelpers

| | ---statehelpers

| | ---utilities

| ---ovs <--- OVS specific SBI renderer

| ---confighelpers

| ---statehelpers

| ---utilities

---servicebindings <--- contains interface service binding DCN listener and corresponding implementation

| ---flowbased

| ---confighelpers

| ---listeners

| ---statehelpers

| ---utilities

---rpcservice <--- Contains interfacemanager RPCs' implementation

---pmcounters <--- Contains PM counters gathering

---statusanddiag <--- contains status and diagnostics implementations

‘interfacemanager-shell

Interfacemanager Data-model

FOllowing picture shows different MD-SAL datastores used by intetrface manager. These datastores are created based
on YANG datamodels defined in interfacemanager-api.

Config Datastores

InterfaceManager mainly uses following two datastores to accept configurations.

3.7. Genius Documentation 1603

OpenDaylight Documentation Documentation, Release Carbon

1. odl-interface datamodel () where verious type of interface can be configuted.

2. service-binding datamodel () where different applications can bind services to interfaces.

In addition to these datamodels, it also implements several RPCs for accessing interface operational data. Details of
these datamodels and RPCs are described in following sections.

Interface Config DS

Interface config datamodel is defined in odl-interface.yang . It is based on ‘ietf-interfaces’ datamodel (imported in
odl_interface.yang) with additional augmentations to it. Common interface configurations are –

• name (string) : this is the unique interface name/identifier.

• type (identityref:iana-if-type) : this configuration sets the interface type. Interface types are defined in iana-if-
types data model. Odl-interfaces.yang data model adds augmentations to iana-if-types to define new interface
types. Currently supported interface types are -

– l2vlan (trunk, vlan classified sub-ports/trunk-member)

– tunnel (OVS based VxLAN, GRE, MPLSoverGRE/MPLSoverUDP)

• enabled (Boolean) : this configuration sets the administrative state of the interface.

• parent-refs : this configuration specifies the parent of the interface, which feeds data/hosts this interface. It can
be a physical switch port or a virtual switch port.

– Parent-interface (string) : is the port name with which a network port in dataplane in that appearing on the
southbound interface. E.g. neutron port. this can also be another interface, thus supporting a hierarchy of
linked interfaces.

– Node-identifier (topology_id, node_id) : is used for configuring parent node for HW nodes/VTEPs

Additional configuration parameters are defined for specific interface type. Please see the table below.

Vlan-xparent Vlan-trunk Vlan-trunk-member vxlan gre
Name =uuid Name =uuid Name =uuid Name =uuid Name =uuid
description description description description description
Type =l2vlan Type =l2valn Type =l2vlan Type =tunnel Type =tunnel
enabled enabled enabled enabled enabled
Parent-if =
port-name

Parent-if = port-name Parent-if =
vlan-trunkIf

Vlan-id Vlan-id

vlan-mode =
transparent

vlan-mode = trunk vlan-mode =
trunk-member

tunnel-type =
vxlan

tunnel-type =
gre

vlan-list=
[trunk-member-list]

Vlan-Id = trunk-vlanId dpn-id dpn-id

Parent-if =
vlan-trunkIf

Vlan-id Vlan-id

local-ip local-ip
remote-ip remote-ip
gayeway-ip gayeway-ip

Interface service binding config

Yang Data Model odl-interface-service-bindings.yang contains the service binding configuration daatmodel.

1604 Chapter 3. Content for OpenDaylight Contributors

https://github.com/opendaylight/genius/blob/master/interfacemanager/interfacemanager-api/src/main/yang/odl-interface.yang
https://github.com/opendaylight/genius/blob/master/interfacemanager/interfacemanager-api/src/main/yang/odl-interface-service-bindings.yang

OpenDaylight Documentation Documentation, Release Carbon

An application can bind services to a particular interface by configuring MD-SAL data node at path /config/interface-
service-binding. Binding services on interface allows particular service to pull traffic arriving on that interface, de-
pending upon the a service priority. It is possible to bind services at ingress interface (when packet enters into the
packet-pipeline from particular interface) as well as on the egress Interface (before the packet is sent out on particular
interafce). Service modules can specify openflow-rules to be applied on the packet belonging to the interface. Usually
these rules include sending the packet to specific service table/pipeline. Service modules/applications are responsible
for sending the packet back (if not consumed) to service dispatcher table, for next service to process the packet.

Following are the service binding parameters –

• interface-name is name of the interface to which service binding is being configured

• Service-Priority parameter is used to define the order in which the packet will be delivered to different services
bind to the particular interface.

• Service-Name

• Service-Info parameter is used to configure flow rule to be applied to the packets as needed by ser-
vices/applications.

– (for service-type openflow-based)

– Flow-priority

– Instruction-list

When a service is bind to an interface, Interface Manager programs the service dispatcher table with a rule to match
on the interface data-plane-id and the service-index (based on priority) and the instruction-set provided by the ser-
vice/application. Every time when the packet leaves the dispatcher table the service-index (in metadata) is incre-
mented to match the next service rule when the packet is resubmitted back to dispatcher table. Following table gives
an example of the service dispatcher flows, where one interface is bind to 2 services.

Service Dispatcher Table
Match Actions

• if-index = I
• ServiceIndex = 1

• Set SI=2 in metadata
• service specific actions <e.g., Goto prio 1 Service

table>

• if-index = I
• ServiceIndex = 2

• Set SI=3 in metadata
• service specific actions <e.g., Goto prio 2 Service

table>

miss Drop

Interface Manager programs openflow rules in the service dispatcher table.

Egress Service Binding

There are services that need packet processing on the egress, before sending the packet out to particular port/interface.
To accommodate this, interface manager also supports egress service binding. This is achieved by introducing a new
“egress dispatcher table” at the egress of packet pipeline before the interface egress groups.

On different application request, Interface Manager returns the egress actions for interfaces. Service modules program
use these actions to send the packet to particular interface. Generally, these egress actions include sending packet out
to port or appropriate interface egress group. With the inclusion of the egress dispatcher table the egress actions for
the services would be to

• Update REG6 - Set service_index =0 and egress if_index

3.7. Genius Documentation 1605

OpenDaylight Documentation Documentation, Release Carbon

• send the packet to Egress Dispatcher table

IFM shall add a default entry in Egress Dispatcher Table for each interface With -

• Match on if_index with REG6

• Send packet to corresponding output port or Egress group.

On Egress Service binding, IFM shall add rules to Egress Dispatcher table with following parameters –

• Match on

– ServiceIndex=egress Service priority

– if_index in REG6 = if_index for egress interface

• Actions

– Increment service_index

– Actions provided by egress service binding.

Egress Services will be responsible for sending packet back to Egress Dispatcher table, if the packet is not consumed
(dropped/ send out). In this case the packet will hit the lowest priority default entry and the packet will be send out.

Operational Datastores

Interface Manager uses ODL Inventory and Topology datastores to retrive southbound configurations and events.

Interface Manager modules

Interface manager is designed in a modular fashion to provide a flexible way to support multiple southbound protocols.
North-bound interface/data-model is decoupled from south bound plugins. NBI Data change listeners select and
interact with appropriate SBI renderers. The modular design also allows addition of new renderers to support new
southbound interfaces, protocols plugins. Following figure shows interface manager modules –

submodules/genius/docs/images/ifmsbirenderers.png

InterfaceManager uses the datastore-job-coordinator module for all its operations.

Datastore Job Coordination framework

The datastore job coordinator framework offers the following benefits :

1. “Datastore Job” is a set of updates to the Config/Operational Datastore.

2. Dependent Jobs (eg. Operations on interfaces on same port) that need to be run one after the other will continue
to be run in sequence.

3. Independent Jobs (eg. Operations on interfaces across different Ports) will be allowed to run paralelly.

4. Makes use of ForkJoin Pools that allows for work-stealing across threads. ThreadPool executor flavor is also
available. . . But would be deprecating that soon.

5. Jobs are enqueued and dequeued to/from a two-level Hash structure that ensures point 1 & 2 above are satisfied
and are executed using the ForkJoinPool mentioned in point 3.

1606 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

6. The jobs are enqueued by the application along with an application job-key (type: string). The Coordinator
dequeues and schedules the job for execution as appropriate. All jobs enqueued with the same job-key will be
executed sequentially.

7. DataStoreJob Coordination to distribute jobs and execute them paralelly within a single node.

8. This will still work in a clustered mode by handling optimistic lock exceptions and retrying of the job.

9. Framework provides the capability to retry and rollback Jobs.

10. Applications can specify how-many retries and provide callbacks for rollback.

11. Aids movement of Application Datastore listeners to “Follower” also listening mode without any change to the
business logic of the application.

12. Datastore Job Coordination function gets the list of listenable futures returned from each job.

13. The Job is deemed complete only when the onSuccess callback is invoked and the next enqueued job for that
job-key will be dequeued and executed.

14. On Failure, based on application input, retries and/or rollback will be performed. Rollback failures are consid-
ered as double-fault and system bails out with error message and moves on to the next job with that Job-Key.

Datastore job coordinator solves the following problems which is observed in the previous Li-based interface manager
:

1. The Business Logic for the Interface configuration/state handling is performed in the Actor Thread itself.

2. This will cause the Actor’s mailbox to get filled up and may start causing unnecessary back-pressure.

3. Actions that can be executed independently will get unnecessarily serialized.

4. Can cause other unrelated applications starve for chance to execute.

5. Available CPU power may not be utilized fully. (for instance, if 1000 interfaces are created on different ports,
all 1000 interfaces creation will happen one after the other.)

6. May depend on external applications to distribute the load across the actors.

IFM Listeners

IFM listeners listen to data change events for different MD-SAL data-stores. On the NBI side it implements data
change listeners for interface config data-store and the service-binding data store. On the SBI side IFM implements
listeners for Topology and Inventory data-stores in opendaylight.

Interface Config change listener

Interface config change listener listens to ietf-interface/interfaces data node.

service-binding change listener

Interface config change listener listens to ietf-interface/interfaces data node.

Topology state change listener

Interface config change listener listens to ietf-interface/interfaces data node.

3.7. Genius Documentation 1607

OpenDaylight Documentation Documentation, Release Carbon

inventory state change listener

+++ this page is under construction +++

Dynamic Behavior

when a l2vlan interface is configured

1. Interface ConfigDS is populated

2. Interface DCN in InterfaceManager does the following :

• Add interface-state entry for the new interface along with if-index generated

• Add ingress flow entry

• If it is a trunk VLAN, need to add the interface-state for all child interfaces, and add ingress flows for all
child interfaces

when a tunnel interface is configured

1. Interface ConfigDS is populated

2. Interface DCN in InterfaceManager does the following :

• Creates bridge interface entry in odl-interface-meta Config DS

• Add port to Bridge using OVSDB

– retrieves the bridge UUID corresponding to the interface and

– populates the OVSDB Termination Point Datastore with the following information

tpAugmentationBuilder.setName(portName);

tpAugmentationBuilder.setInterfaceType(type);

options.put(“key”, “flow”);
options.put(“local_ip”, localIp.getIpv4Address().getValue());

options.put(“remote_ip”, remoteIp.getIpv4Address().getValue());

tpAugmentationBuilder.setOptions(options);

OVSDB plugin acts upon this data change and configures the tunnel end

points on the switch with the supplied information.

NodeConnector comes up on vSwitch

Inventory DCN Listener in InterfaceManager does the following:

1. Updates interface-state DS.

2. Generate if-index for the interface

3. Update if-index to interface reverse lookup map

1608 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

4. If interface maps to a vlan trunk entity, operational states of all vlan trunk members are updated

5. If interface maps to tunnel entity, add ingress tunnel flow

Bridge is created on vSWitch

Topology DCN Listener in InterfaceManager does the following:

1. Update odl-interface-meta OperDS to have the dpid to bridge reference

2. Retrieve all pre provisioned bridge Interface Entries for this dpn, and add ports to bridge using ovsdb

ELAN/VPNManager does a bind service

1. Interface service-bindings config DS is populated with service name, priority and lport dispatcher flow instruc-
tion details

2. Based on the service priority, the higher priority service flow will go in dispatcher table with match as if-index

3. Lower priority service will go in the same lport dispatcher table with match as if-index and service priority

Interface Manager Sequence Diagrams

Following gallery contains sequence diagrams for different IFM operations -

3.7. Genius Documentation 1609

OpenDaylight Documentation Documentation, Release Carbon

Removal of Tunnel Interface When OF Switch is Connected

Removal of Tunnel Interfaces in Pre provisioning Mode

Updating of Tunnel Interfaces in Pre provisioning Mode

creation of tunnel-interface when OF switch is connected and PortName already in OperDS

creation of vlan interface in pre provisioning mode

creation of vlan interface when switch is connected

deletion of vlan interface in pre provisioning mode

deletion of vlan interface when switch is connect

Node connector added updated DCN handling

Node connector removed DCN handling

updation of vlan interface in pre provisioning mode

updation of vlan interface when switch is connect

Internal Transport Manager (ITM)

Internal Transport Manager creates and maintains mesh of tunnels of type VXLAN or GRE between Openflow
switches forming an overlay transport network. ITM also builds external tunnels towards DC Gateway. ITM does
not provide redundant tunnel support.

The diagram below gives a pictorial representation of the different modules and data stores and their interactions.

ITM Dependencies

ITM mainly interacts with following other genius modules-

1. Interface Manager – For creating tunnel interfaces

2. Aliveness Monitor - For monitoring the tunnel interfaces

3. MdSalUtil – For openflow operations

Following picture shows interface manager dependencies

1610 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

genius

resourcemanager

arputil

itm

interfacemanager

lockmanager

idmanager

alivenessmonitor

mdsalutil

resourcemanager-apiresourcemanager-impl

interfacemanager-impl

alivenessmonitor-api

idmanager-api

interfacemanager-api

mdsalutil-api

idmanager-impl

lockmanager-impl

arputil-api

arputil-impl

itm-impl

itm-api

alivenessmonitor-impl-protocols

alivenessmonitor-impl

interfacemanager-shell

lockmanager-api

idmanager-shell

mdsalutil-testutils

mdsalutil-impl

Code Structure

As shown in the diagram, ITM has a common placeholder for various datastore listeners, RPC implementation, config
helpers. Config helpers are responsible for creating / delete of Internal and external tunnel.

ITM Data Model

ITM uses the following data model to create and manage tunnel interfaces Tunnels interfces are created by writing to
Interface Manager’s Config DS.

itm.yang

follwoing datamodel is defined in itm.yang This DS stores the transport zone information populated through REST or
Karaf CLI

|image33|

3.7. Genius Documentation 1611

https://github.com/opendaylight/genius/blob/master/itm/itm-api/src/main/yang/itm.yang

OpenDaylight Documentation Documentation, Release Carbon

Itm-state.yang

This DS stores the tunnel end point information populated through REST or Karaf CLI. The internal and external
tunnel interfaces are also stored here.

|image34|

Itm-rpc.yang

This Yang defines all the RPCs provided by ITM.

|image35|

Itm-config.yang

|image36|

ITM Design

ITM uses the datastore job coordinator module for all its operations.

When tunnel end point are configured in ITM datastores by CLI or REST, corresponding DTCNs are fired. ITM Trans-
portZoneListener listens to the . Based on the add/remove end point operation, the transport zone listener queues the
approporiate job (ItmInternalTunnelAddWorker or ItmInternalTunnelDeleteWorker) to the DataStoreJob Coordinator.
Jobs within transport zones are queued to be executed serially and jobs across transport zones are done parallel.

Tunnel Building Logic

ITM will iterate over all the tunnel end points in each of the transport zones and build the tunnels between every pair
of tunnel end points in the given transport zone. The type of the tunnel (GRE/VXLAN) will be indicated in the YANG
model as part of the transport zone.

ITM Operations

ITM builds the tunnel infrastructure and maintains them. ITM builds two types of tunnels namely, inter-
nal tunnels between openflow switches and external tunnels between openflow switches and an external
device such as datacenter gateway. These tunnels can be Vxlan or GRE. The tunnel endpoints are config-
ured using either individual endpoint configuration or scheme based auto configuration method or REST.
ITM will iterate over all the tunnel end points in each of the transport zones and build the tunnels between
every pair of tunnel end points in the given transport zone.

• ITM creates tunnel interfaces in Interface manager Config DS.

• Stores the tunnel mesh information in tunnel end point format in ITM config DS

• ITM stores the internal and external trunk interface names in itm-state yang

• Creates external tunnels to DC Gateway when VPN manager calls the RPCs for creating tunnels towards DC
gateway.

ITM depends on interface manager for the following functionality.

• Provides interface to create tunnel interfaces

1612 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

• Provides configuration option to enable monitoring on tunnel interfaces.

• Registers tunnel interfaces with monitoring enabled with alivenessmonitor.

ITM depends on Aliveness monitor for the following functionality.

• Tunnel states for trunk interfaces are updated by alivenessmonitor. Sets OperState for tunnel interfaces

RPCs

The following are the RPCs supported by ITM

Get-tunnel-interface-id RPC

|image37|

Get-internal-or-external-interface-name

|image38|

Get-external-tunnel-interface-name

|image39|

Build-external-tunnel-from-dpns

|image40|

Add-external-tunnel-endpoint

|image41|

Remove-external-tunnel-from-dpns

|image42|

Remove-external-tunnel-endpoint

|image43|

Create-terminating-service-actions

|image44|

3.7. Genius Documentation 1613

OpenDaylight Documentation Documentation, Release Carbon

Remove-terminating-service-actions

|image45|

1. Aliveness Monitor

2. ID-Manager

3. MDSAL Utils

4. Resource Manager

5. FCAPS manager

3.7.3 Genius Design Specifications

Starting from Carbon, Genius uses RST format Design Specification document for all new features. These specifica-
tions are perfect way to understand various Genius features.

Contents:

Table of Contents

• Title of the feature

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

1614 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Title of the feature

[link to gerrit patch]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

Configuration impact

Any configuration parameters being added/deprecated for this feature? What will be defaults for these? How will it
impact existing deployments?

Note that outright deletion/modification of existing configuration is not allowed due to backward compatibility. They
can only be deprecated and deleted in later release(s).

3.7. Genius Documentation 1615

OpenDaylight Documentation Documentation, Release Carbon

Clustering considerations

This should capture how clustering will be supported. This can include but not limited to use of CDTCL, EOS, Cluster
Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change? Does it help improve scale and performance or
make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature will be used in an actual deployment.

For most Genius features users will be other projects but this should still capture any user visible CLI/API etc. e.g.
ITM configuration.

This section will be primary input for Test and Documentation teams. Along with above this should also capture REST
API and CLI.

Features to Install

odl-genius-ui

Identify existing karaf feature to which this change applies and/or new karaf features being introduced. These can be
user facing features which are added to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture these for User Guide, CSIT, etc.

1616 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assignee and other contributors.

Primary assignee: <developer-a>

Other contributors: <developer-b> <developer-c>

Work Items

Break up work into individual items. This should be a checklist on Trello card for this feature. Give link to trello card
or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal [other ODL projects] as well as external
[OVS, karaf, JDK etc.] This should also capture specific versions if any of these dependencies. e.g. OVS version,
Linux kernel version, JDK etc.

This should also capture impacts on existing project that depend on Genius. Following projects currently depend on
Genius: * Netvirt * SFC

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is impact on documentation for this change? If documentation change is needed call out one of the <contribu-
tors> who will work with Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

3.7. Genius Documentation 1617

OpenDaylight Documentation Documentation, Release Carbon

References

Add any useful references. Some examples:

• Links to Summit presentation, discussion etc.

• Links to mail list discussions

• Links to patches in other projects

• Links to external documentation

[1] OpenDaylight Documentation Guide

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note: This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. http://creativecommons.org/
licenses/by/3.0/legalcode

Table of Contents

• OF Tunnels

– Problem description

* Use Cases

– Proposed change

* Using OVSDB Plugin

* MDSALUtil changes

* Pipeline changes

* YANG changes

* Workflow

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release(s)

* Known Limitations

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

1618 Chapter 3. Content for OpenDaylight Contributors

http://docs.opendaylight.org/en/latest/documentation.html
https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenDaylight Documentation Documentation, Release Carbon

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

OF Tunnels

https://git.opendaylight.org/gerrit/#/q/topic:of-tunnels

OF Tunnels feature adds support for flow based tunnels to allow scalable overlay tunnels.

Problem description

Today when tunnel interfaces are created, InterFaceManager [IFM] creates one OVS port for each tunnel interface i.e.
source-destination pair. For N devices in a TransportZone this translates to N*(N-1) tunnel ports created across all
devices and N-1 ports in each device. This has obvious scale limitations.

Use Cases

This feature will support following use cases:

• Use case 1: Allow user to specify if they want to use flow based tunnels at the time of configuration.

• Use case 2: Create single OVS Tunnel Interface if flow based tunnels are configured and this is the first tunnel
on this device/tep.

• Use case 3: Flow based and non flow based tunnels should be able to exist in a given transport zone.

• Use case 4: On tep delete, if this is the last tunnel interface on this tep/device and it is flow based tunnel, delete
the OVS Tunnel Interface.

Following use cases will not be supported:

• Configuration of flow based and non-flow based tunnels of same type on the same device. OVS requires
one of the following: remote_ip, local_ip, type and key to be unique. Currently we don’t support
multiple local_ip and key is always set to flow. So remote_ip and type are the only unique identifiers.
remote_ip=flow is a super set of remote_ip=<fixed-ip> and we can’t have two interfaces with all
other fields same except this.

• Changing tunnel from one flow based to non-flow based at runtime. Such a change will require deletion and
addition of tep. This is inline with existing model where tunnel-type cannot be changed at runtime.

• Configuration of Source IP for tunnel through flow. It will still be fixed. Though we’re adding option in IFM
YANG for this, implementation for it won’t be done till we get use case(s) for it.

3.7. Genius Documentation 1619

https://git.opendaylight.org/gerrit/#/q/topic:of-tunnels

OpenDaylight Documentation Documentation, Release Carbon

Proposed change

OVS 2.0.0 onwards allows configuration of flow based tunnels through interface option:remote_ip=flow.
Currently this field is set to IP address of the destination endpoint.

remote_ip=flow means tunnel destination IP will be set by an OpenFlow action. This allows us to add different
actions for different destinations using the single OVS/OF port.

This change will add optional parameters to ITM and IFM YANG files to allow OF Tunnels. Based on this option,
ITM will configure IFM which in turn will create tunnel ports in OVSDB.

Using OVSDB Plugin

OVSDB Plugin provides following field in Interface to configure options:

Listing 3.1: ovsdb.yang

list options {
description "Port/Interface related optional input values";
key "option";
leaf option {

description "Option name";
type string;

}
leaf value {

description "Option value";
type string;

}

For flow based tunnels we will set option name remote_ip to value flow.

MDSALUtil changes

Following new actions will be added to mdsalutil/ActionType.java

• set_tunnel_src_ip

• set_tunnel_dest_ip

Following new matches will be added to mdsalutil/NxMatchFieldType.java

• tun_src_ip

• tun_dest_ip

Pipeline changes

This change adds a new match in Table0. Today we match in in_port to determine which tunnel interface
this pkt came in on. Since currently each tunnel maps to a source-destination pair it tells us about source de-
vice. For interfaces configured to use flow based tunnels this will add an additional match for tun_src_ip. So,
in_port+tunnel_src_ip will give us which tunnel interface this pkt belongs to.

When services call getEgressActions(), they will get one additional action,
``set_tunnel_dest_ip before the output:ofport action.

1620 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

YANG changes

Changes will be needed in itm.yang and odl-interface.yang to allow configuring a tunnel as flow based or
not.

ITM YANG changes

A new parameter option-of-tunnel will be added to list-vteps

Listing 3.2: itm.yang

list vteps {
key "dpn-id portname";
leaf dpn-id {

type uint64;
}
leaf portname {

type string;
}
leaf ip-address {

type inet:ip-address;
}
leaf option-of-tunnel {

type boolean;
default false;

}
}

Same parameter will also be added to tunnel-end-points in itm-state.yang. This will help eliminate need
to retrieve information from TransportZones when configuring tunnel interfaces.

Listing 3.3: itm-state.yang

list tunnel-end-points {
ordered-by user;
key "portname VLAN-ID ip-address tunnel-type";
/* Multiple tunnels on the same physical port but on different VLAN can be

→˓supported */

leaf portname {
type string;

}
...
...
leaf option-of-tunnel {

type boolean;
default false;

}
}

This will allow to set OF Tunnels on per VTEP basis. So in a transport-zone we can have some VTEPs (devices) that
use OF Tunnels and others that don’t. Default of false means it will not impact existing behavior and will need to be
explicitly configured. Going forward we can choose to set default true.

3.7. Genius Documentation 1621

OpenDaylight Documentation Documentation, Release Carbon

IFM YANG changes

We’ll add a new tunnel-optional-params and add them to iftunnel

Listing 3.4: odl-interface.yang

grouping tunnel-optional-params {
leaf tunnel-source-ip-flow {

type boolean;
default false;

}

leaf tunnel-remote-ip-flow {
type boolean;
default false;

}

list tunnel-options {
key "tunnel-option";
leaf tunnel-option {

description "Tunnel Option name";
type string;

}
leaf value {

description "Option value";
type string;

}
}

}

The list tunnel-options is a list of key-value pairs of strings, similar to options in OVSDB Plugin. These are
not needed for OF Tunnels but is being added to allow user to configure any other Interface options that OVS supports.
Aim is to enable developers and users try out newer options supported by OVS without needing to add explicit support
for it. Note that there is no counterpart for this option in itm.yang. Any options that we want to explicitly support
will be added as a separate option. This will allow us to do better validations for options that are needed for our specific
use cases.

augment "/if:interfaces/if:interface" {
ext:augment-identifier "if-tunnel";
when "if:type = 'ianaift:tunnel'";
...
...
uses tunnel-optional-params;
uses monitor-params;

}

Workflow

Adding tep

1. User: While adding tep user gives option-of-tunnel:true for tep being added.

2. ITM: When creating tunnel interfaces for this tep, if option-of-tunnel:true, set
tunnel-remote-ip:true for the tunnel interface.

1622 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

3. IFM: If option-of-tunnel:true and this is first tunne on this device, set option:remote_ip=flow
when creating tunnel interface in OVSDB. Else, set option:remote_ip=<destination-ip>.

Deleting tep

1. If tunnel-remote-ip:true and this is last tunnel on this device, delete tunnel port in OVSDB. Else, do
nothing.

2. If tunnel-remote-ip:false, follow existing logic.

Configuration impact

This change doesn’t add or modify any configuration parameters.

Clustering considerations

Any clustering requirements are already addressed in ITM and IFM, no new requirements added as part of this feature.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

This solution will help improve scale numbers by reducing no. of interfaces created on devices as well as no. of
interfaces and ports present in inventory and network-topology.

Targeted Release(s)

Carbon. Boron-SR3.

Known Limitations

BFD monitoring will not work when OF Tunnels are used. Today BFD monitoring in OVS relies on destination_ip
configured in remote_ip when creating tunnel port to determine target IP for BFD packets. If we use flow it won’t
know where to send BFD packets. Unless OVS allows adding destination IP for BFD monitoring on such tunnels,
monitoring cannot be enabled.

3.7. Genius Documentation 1623

OpenDaylight Documentation Documentation, Release Carbon

Alternatives

LLDP/ARP based monitoring was considered for OF tunnels to overcome lack of BFD monitoring but was rejected
because LLDP/ARP based monitoring doesn’t scale well. Since driving requirement for this feature is scale setups, it
didn’t make sense to use an unscalable solution for monitoring.

XML/CFG file based global knob to enable OF tunnels for all tunnel interfaces was rejected due to inflexible nature of
such a solution. Current solution allows a more fine grained and device based configuration at runtime. Also, wanted
to avoid adding yet another global configuration knob.

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Adding TEPs to transport zone

For most users TEP Addition is the only configuration they need to do to create tunnels using genius. The REST API
to add TEPs with OF Tunnels is same as earlier with one small addition.

URL: restconf/config/itm:transport-zones/

Sample JSON data

{
"transport-zone": [

{
"zone-name": "TZA",
"subnets": [

{
"prefix": "192.168.56.0/24",
"vlan-id": 0,
"vteps": [

{
"dpn-id": "1",
"portname": "eth2",
"ip-address": "192.168.56.101",
"option-of-tunnel":"true"

}
],
"gateway-ip": "0.0.0.0"

}
],
"tunnel-type": "odl-interface:tunnel-type-vxlan"

}
]

}

1624 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Creating tunnel-interface directly in IFM

This use case is mainly for those who want to write applications using Genius and/or want to create individual tunnel
interfaces. Note that this is a simpler easy way to create tunnels without needing to delve into how OVSDB Plugin
creates tunnels.

Refer Genius User Guide for more details on this.

URL: restconf/config/ietf-interfaces:interfaces

Sample JSON data

{
"interfaces": {
"interface": [

{
"name": "vxlan_tunnel",
"type": "iana-if-type:tunnel",
"odl-interface:tunnel-interface-type": "odl-interface:tunnel-type-vxlan",
"odl-interface:datapath-node-identifier": "1",
"odl-interface:tunnel-source": "192.168.56.101",
"odl-interface:tunnel-destination": "192.168.56.102",
"odl-interface:tunnel-remote-ip-flow": "true",
"odl-interface:monitor-enabled": false,
"odl-interface:monitor-interval": 10000,
"enabled": true

}
]

}
}

CLI

A new boolean option, remoteIpFlow will be added to tep:add command.

DESCRIPTION
tep:add
adding a tunnel end point

SYNTAX
tep:add [dpnId] [portNo] [vlanId] [ipAddress] [subnetMask] [gatewayIp]

→˓[transportZone]
[remoteIpFlow]

ARGUMENTS
dpnId

DPN-ID
portNo

port-name
vlanId

vlan-id
ipAddress

ip-address
subnetMask

subnet-Mask
gatewayIp

gateway-ip

3.7. Genius Documentation 1625

http://docs.opendaylight.org/en/latest/user-guide/genius-user-guide.html#creating-overlay-tunnel-interfaces

OpenDaylight Documentation Documentation, Release Carbon

transportZone
transport_zone

remoteIpFlow
Use flow for remote ip

Implementation

Assignee(s)

Primary assignee: <Vishal Thapar>

Other contributors: <Vacancies available>

Work Items

1. YANG changes

2. Add relevant match and actions to MDSALUtil

3. Add set_tunnel_dest_ip action to actions returned in getEgressActions() for OF Tunnels.

4. Add match on tun_src_ip in Table0 for OF Tunnels.

5. Add CLI.

6. Add UTs.

7. Add ITs.

8. Add CSIT.

9. Add Documentation

Dependencies

This doesn’t add any new dependencies. This requires minimum of OVS 2.0.0 which is already lower than required
by some of other features.

This change is backwards compatible, so no impact on dependent projects. Projects can choose to start using this when
they want. However, there is a known limitation with monitoring, refer Limitations section for details.

Following projects currently depend on Genius:

• Netvirt

• SFC

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

1626 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Integration Tests

Integration tests will be added once IT framework for ITM and IFM is ready.

CSIT

CSIT already has test cases for tunnels which test with non OF Tunnels. Similar test cases will be added for OF
Tunnels. Alternatively, some of the existing test cases that use multiple teps can be tweaked to use OF Tunnels for one
of them.

Following test cases will need to be added/expanded in Genius CSIT:

1. Create a TZ with more than one TEPs set to use OF Tunnels and test datapath.

2. Create a TZ with mix of OF and non OF Tunnels and test datapath.

3. Delete a TEP using OF Tunnels and add it again with non OF tunnels and test the datapath.

4. Delete a TEP using non OF Tunnels and add it again with OF Tunnels and test datapath.

Documentation Impact

This will require changes to User Guide and Developer Guide.

User Guide will need to add information on how to add TEPs with flow based tunnels.

Developer Guide will need to capture how to use changes in IFM to create individual tunnel interfaces.

References

• https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

ITM Tunnel Auto-Configuration

https://git.opendaylight.org/gerrit/#/q/topic:itm-auto-config

Internal Transport Manager (ITM) Tunnel Auto configuration feature proposes a solution to migrate from REST/CLI
based Tunnel End Point (TEP) configuration to automatic learning of Openvswitch (OVS) TEPs from the switches,
thereby triggering automatic configuration of tunnels.

Problem description

User has to use ITM REST APIs for addition/deletion of TEPs into/from Transport zone. But, OVS and other TOR
switches that support OVSDB can be configured for TEP without requring TEP configuration through REST API,
which leads to redundancy and makes the process cumbersome and error-prone.

Use Cases

This feature will support following use cases:

• Use case 1: Add tep to existing transport-zone from southbound interface(SBI).

• Use case 2: Delete tep from SBI.

3.7. Genius Documentation 1627

https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan
https://git.opendaylight.org/gerrit/#/q/topic:itm-auto-config

OpenDaylight Documentation Documentation, Release Carbon

• Use case 3: Move the tep from one transport zone to another from SBI.

• Use case 4: User can specify the Datapath Node (DPN) bridge for tep other than br-int from SBI.

• Use case 5: Allow user to configure a tep from SBI if they want to use flow based tunnels.

• Use case 6: TEP-IP, Port, vlan, subnet, gateway IP are optional parameters for creating a transport zone from
REST.

• Use case 7: User must configure Transport zone name and tunnel type parameters while creating a transport
zone from REST, as both are mandatory parameters.

• Use case 8: Store teps received on OVS connect for transport-zone which is not yet created and also allow to
move such teps into transport-zone when it gets created from northbound.

• Use case 9: Allow user to control creation of default transport zone through start-up configurable parameter
def-tz-enabled in config file.

• Use case 10: Tunnel-type for default transport zone should be configurable through configurable parameter
def-tz-tunnel-type in config file.

• Use case 11: Allow user to change def-tz-enabled configurable parameter from OFF to ON during Open-
Daylight controller restart.

• Use case 12: Allow user to change def-tz-enabled configurable parameter from ON to OFF during Open-
Daylight controller restart.

• Use case 13: Default value for configurable parameter def-tz-enabled is OFF and if it is not changed by
user, then it will be OFF after OpenDaylight controller restart as well.

Following use cases will not be supported:

• If a switch gets disconnected, the corresponding TEP entries will not get cleared off from the ITM config
datastore (DS) and operator must explicitly clean it up.

• Operator is not supposed to delete default-transport-zone from REST, such scenario will be taken as
incorrect configuration.

• Dynamic change in the bridge for tunnel creation via change in Openvswitch table’s external_ids parameter
br-name is not supported.

• Dynamic change for of-tunnel tep configuration via change in Openvswitch table’s external_ids parameter
of-tunnel is not supported.

• Dynamic change for configurable parameters def-tz-enabled and def-tz-tunnel-type is not sup-
ported.

Proposed change

ITM will create a default transport zone on OpenDaylight start-up if configurable parameter def-tz-enabled is
true in genius-itm-config.xml file (by default, this flag is false). When the flag is true, default transport
zone is created and configured with:

• Default transport zone will be created with name default-transport-zone.

• Tunnel type: This would be configurable parameter via config file. ITM will take tunnel type value from config
file for default-transport-zone. Tunnel-type value cannot be changed dynamically. It will take value
of def-tz-tunnel-type parameter from config file genius-itm-config.xml on startup.

– If def-tz-tunnel-type parameter is changed and def-tz-enabled remains true during Open-
Daylight restart, then default-transport-zone with previous value of tunnel-type would be first
removed and then default-transport-zone would be created with newer value of tunnel-type.

1628 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

If def-tz-enabled is configured as false, then ITM will delete default-transport-zone if it is present
already.

When transport-zone is added from northbound i.e. REST interface. Few of the transport-zone parameters are manda-
tory and fewer are optional now.

Status Transport zone parameters
Mandatory transport-zone name, tunnel-type
Optional TEP IP-Address, Subnet prefix, Dpn-id, Gateway-ip, Vlan-id, Portname

When a new transport zone is created, check for any TEPs if present in tepsNotHostedInTransportZone
for that transport zone. If present, remove from tepsNotHostedInTransportZone and add them under the
transport zone and include the TEP in the tunnel mesh.

ITM will register listeners to the Node of network topology Operational DS to receive Data Tree Change Notification
(DTCN) for add/update/delete notification in the OVSDB node so that such DTCN can be parsed and changes in the
external_ids for TEP parameters can be determined to perform TEP add/update/delete operations.

URL: restconf/operational/network-topology:network-topology/topology/ovsdb:1

Sample JSON output

{
"topology": [

{
"topology-id": "ovsdb:1",
"node": [
{
"node-id": "ovsdb://uuid/83192e6c-488a-4f34-9197-d5a88676f04f",
"ovsdb:db-version": "7.12.1",
"ovsdb:ovs-version": "2.5.0",
"ovsdb:openvswitch-external-ids": [
{

"external-id-key": "system-id",
"external-id-value": "e93a266a-9399-4881-83ff-27094a648e2b"

},
{

"external-id-key": "tep-ip",
"external-id-value": "20.0.0.1"

},
{

"external-id-key": "tzname",
"external-id-value": "TZA"

},
{

"external-id-key": "of-tunnel",
"external-id-value": "true"

}
],
"ovsdb:datapath-type-entry": [
{

"datapath-type": "ovsdb:datapath-type-system"
},
{

"datapath-type": "ovsdb:datapath-type-netdev"
}

],
"ovsdb:connection-info": {
"remote-port": 45230,
"local-ip": "10.111.222.10",

3.7. Genius Documentation 1629

OpenDaylight Documentation Documentation, Release Carbon

"local-port": 6640,
"remote-ip": "10.111.222.20"

}

...

...

}
]

}
]

}

OVSDB changes

Below table covers how ITM TEP parameter are mapped with OVSDB and which fields of OVSDB would provide
ITM TEP parameter values.

ITM TEP
parameter

OVSDB field

DPN-ID ovsdb:datapath-id from bridge whose name is pre-configured with
openvswitch:external_ids:br-name:value

IP-Address openvswitch:external_ids:tep-ip:value
Transport Zone
Name

openvswitch:external_ids:tzname:value

of-tunnel openvswitch:external_ids:of-tunnel:value

NOTE: If openvswitch:external_ids:br-name is not configured, then by default br-int will be consid-
ered to fetch DPN-ID which in turn would be used for tunnel creation.

MDSALUtil changes

getDpnId() method is added into MDSALUtil.java.

/**
* This method will be utility method to convert bridge datapath ID from

* string format to BigInteger format.

*
* @param datapathId datapath ID of bridge in string format

*
* @return the datapathId datapath ID of bridge in BigInteger format

*/
public static BigInteger getDpnId(String datapathId);

Pipeline changes

N.A.

Yang changes

Changes are needed in itm.yang and itm-config.yang which are described in below sub-sections.

1630 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

itm.yang changes

Following changes are done in itm.yang file.

1. A new list tepsNotHostedInTransportZone will be added to container transport-zones for stor-
ing details of TEP received from southbound having transport zone which is not yet hosted from northbound.

2. Existing list transport-zone would be modified for leaf zone-name and tunnel-type to make them
mandatory parameters.

Listing 3.5: itm.yang

list transport-zone {
ordered-by user;
key zone-name;
leaf zone-name {

type string;
mandatory true;

}
leaf tunnel-type {

type identityref {
base odlif:tunnel-type-base;

}
mandatory true;

}
}

list tepsNotHostedInTransportZone {
key zone-name;
leaf zone-name {

type string;
}
list unknown-vteps {

key "dpn-id";
leaf dpn-id {

type uint64;
}
leaf ip-address {

type inet:ip-address;
}
leaf of-tunnel {

description "Use flow based tunnels for remote-ip";
type boolean;
default false;

}
}

}

itm-config.yang changes

itm-config.yang file is modified to add new container to contain following parameters which can be configured
in genius-itm-config.xml on OpenDaylight controller startup.

• def-tz-enabled: this is boolean type parameter which would create or delete
default-transport-zone if it is configured true or false respectively. By default, value is false.

• def-tz-tunnel-type: this is string type parameter which would allow user to configure tunnel-type for
default-transport-zone. By default, value is vxlan.

3.7. Genius Documentation 1631

OpenDaylight Documentation Documentation, Release Carbon

Listing 3.6: itm-config.yang

container itm-config {
config true;
leaf def-tz-enabled {

type boolean;
default false;

}
leaf def-tz-tunnel-type {

type string;
default "vxlan";

}
}

Workflow

TEP Addition

When TEP IP external_ids:tep-ip and external_ids:tzname are configured at OVS side using
ovs-vsctl commands to add TEP, then TEP parameters details are passed to the OVSDB plugin via OVSDB
connection which in turn, is updated into Network Topology Operational DS. ITM listens for change in Network
Topology Node.

When TEP parameters (like tep-ip, tzname, br-name, of-tunnel) are received in add notification of OVSDB
Node, then TEP is added.

For TEP addition, TEP-IP and DPN-ID are mandatory. TEP-IP is obtained from tep-ip TEP parameter and DPN-ID
is fetched from OVSDB node based on br-name TEP parameter:

• if bridge name is specified, then datapath ID of the specified bridge is fetched.

• if bridge name is not specified, then datapath ID of the br-int bridge is fetched.

TEP-IP and fetched DPN-ID would be needed to add TEP in the transport-zone. Once TEP is added in config datastore,
transport-zone listener of ITM would internally take care of creating tunnels on the bridge whose DPN-ID is passed
for TEP addition. It is noted that TEP parameter of-tunnel would be checked if it is true, then of-tunnel flag
would be set for vtep to be added under transport-zone or tepsNotHostedInTransportZone.

TEP would be added under transport zone with following conditions:

• TEPs not configured with external_ids:tzname i.e. without transport zone will be placed
under the default-transport-zone if def-tz-enabled parameter is configured to true in
genius-itm-config.xml. This will fire a DTCN to transport zone yang listener and ITM tunnels gets
built.

• TEPs configured with external_ids:tzname i.e. with transport zone and if the specified transport zone
exists in the ITM Config DS, then TEP will be placed under the specified transport zone. This will fire a DTCN
to transport zone yang listener and the ITM tunnels gets built.

• TEPs configured with external_ids:tzname i.e. with transport zone and if the speci-
fied transport zone does not exist in the ITM Config DS, then TEP will be placed under the
tepsNotHostedInTransportZone under ITM config DS.

1632 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

TEP Movement

When transport zone which was not configured earlier, is created through REST, then it is checked whether any
“orphan” TEPs already exists in the tepsNotHostedInTransportZone for the newly created transport zone, if
present, then such TEPs are removed from tepsNotHostedInTransportZone, and then added under the newly
created transport zone in ITM config DS and then TEPs are added to the tunnel mesh of that transport zone.

TEP Updation

• TEP updation for IP address is considered as TEP deletion followed by TEP addition. Remove existing TEP-IP
external_ids:tep-ip and then add new TEP-IP using ovs-vsctl commands. TEP with old TEP-IP is
deleted and then TEP with new TEP-IP gets added.

• TEP updation for transport zone can be done dynamically. When external_ids:tzname is updated at
OVS side, then such change will be notified to OVSDB plugin via OVSDB protocol, which in turn is reflected
in Network topology Operational DS. ITM gets DTCN for Node update. Parsing Node update notification for
external_ids:tzname parameter in old and new node can determine change in transport zone for TEP. If
it is updated, then TEP is deleted from old transport zone and added into new transport zone. This will fire a
DTCN to transport zone yang listener and the ITM tunnels gets updated.

TEP Deletion

When an openvswitch:external_ids:tep-ip parameter gets deleted through ovs-vsctl command, then
network topology Operational DS gets updated via OVSB update notification. ITM which has regis-
tered for the network-topology DTCNs, gets notified and this deletes the TEP from Transport zone or
tepsNotHostedInTransportZone stored in ITM config DS based on external_ids:tzname parameter
configured for TEP.

• If external_ids:tzname is configured and corresponding transport zone exists in Configuration DS, then
remove TEP from transport zone. This will fire a DTCN to transport zone yang listener and the ITM tunnels of
that TEP gets deleted.

• If external_ids:tzname is configured and corresponding transport zone does not exist in Configuration
DS, then check if TEP exists in tepsNotHostedInTransportZone, if present, then remove TEP from
tepsNotHostedInTransportZone.

• If external_ids:tzname is not configured, then check if TEP exists in the default transport zone in Con-
figuration DS, if and only if def-tz-enabled parameter is configured to true in genius-itm-config.
xml. In case, TEP is present, then remove TEP from default-transport-zone. This will fire a DTCN
to transport zone yang listener and ITM tunnels of that TEP gets deleted.

Configuration impact

Following are the configuation changes and impact in the OpenDaylight.

• genius-itm-config.xml configuation file is introduced newly into ITM in which following parameters
are added:

– def-tz-enabled: this is boolean type parameter which would create or delete
default-transport-zone if it is configured true or false respectively. Default value is false.

– def-tz-tunnel-type: this is string type parameter which would allow user to configure tunnel-type
for default-transport-zone. Default value is vxlan.

3.7. Genius Documentation 1633

OpenDaylight Documentation Documentation, Release Carbon

Listing 3.7: genius-itm-config.xml

<itm-config xmlns="urn:opendaylight:genius:itm:config">
<def-tz-enabled>false</def-tz-enabled>
<def-tz-tunnel-type>vxlan</def-tz-tunnel-type>

</itm-config>

Runtime changes to the parameters of this config file would not be taken into consideration.

Clustering considerations

Any clustering requirements are already addressed in ITM, no new requirements added as part of this feature.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

This feature would not introduce any significant scale and performance issues in the OpenDaylight.

Targeted Release

OpenDaylight Carbon

Known Limitations

• Dummy Subnet prefix 255.255.255.255/32 under transport-zone is used to store the TEPs listened from
southbound.

Alternatives

N.A.

Usage

Features to Install

This feature doesn’t add any new karaf feature. This feature would be available in already existing odl-genius
karaf feature.

1634 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

REST API

Creating transport zone

As per this feature, the TEP addition is based on the southbound configuation and respective transport zone should be
created on the controller to form the tunnel for the same. The REST API to create the transport zone with mandatory
parameters.

URL: restconf/config/itm:transport-zones/

Sample JSON data

{
"transport-zone": [

{
"zone-name": "TZA",
"tunnel-type": "odl-interface:tunnel-type-vxlan"

}
]

}

Retrieving transport zone

To retrieve the TEP configuations from all the transport zones.

URL: restconf/config/itm:transport-zones/

Sample JSON output

{
"transport-zones": {

"transport-zone": [
{
"zone-name": "default-transport-zone",
"tunnel-type": "odl-interface:tunnel-type-vxlan"

},
{
"zone-name": "TZA",
"tunnel-type": "odl-interface:tunnel-type-vxlan",
"subnets": [
{
"prefix": "255.255.255.255/32",
"vteps": [
{
"dpn-id": 1,
"portname": "",
"ip-address": "10.0.0.1"

},
{
"dpn-id": 2,
"portname": "",
"ip-address": "10.0.0.2"

}
],
"gateway-ip": "0.0.0.0",
"vlan-id": 0

}

3.7. Genius Documentation 1635

OpenDaylight Documentation Documentation, Release Carbon

]
}

]
}

}

CLI

No CLI is added into OpenDaylight for this feature.

OVS CLI

ITM TEP parameters can be added/removed to/from the OVS switch using the ovs-vsctl command:

DESCRIPTION
ovs-vsctl
Command for querying and configuring ovs-vswitchd by providing a
high-level interface to its configuration database.
Here, this command usage is shown to store TEP parameters into
``openvswitch`` table of OVS database.

SYNTAX
ovs-vsctl set O . [column]:[key]=[value]

* To set TEP params on OVS table:

ovs-vsctl set O . external_ids:tep-ip=192.168.56.102
ovs-vsctl set O . external_ids:tzname=TZA
ovs-vsctl set O . external_ids:br-name=br0
ovs-vsctl set O . external_ids:of-tunnel=true

* To clear TEP params in one go by clearing external_ids column from
OVS table:

ovs-vsctl clear O . external_ids

* To clear specific TEP paramter from external_ids column in OVS table:

ovs-vsctl remove O . external_ids tep-ip
ovs-vsctl remove O . external_ids tzname

* To check TEP params are set or cleared on OVS table:

ovsdb-client dump -f list Open_vSwitch

Implementation

Assignee(s)

Primary assignee:

• Tarun Thakur

1636 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Other contributors:

• Sathish Kumar B T

• Nishchya Gupta

• Jogeswar Reddy

Work Items

1. YANG changes

2. Add code to create xml config file for ITM to configure flag which would control creation of
default-transport-zone during bootup and configure tunnel-type for default transport zone.

3. Add code to handle changes in the def-tz-enabled configurable parameter during OpenDaylight restart.

4. Add code to handle changes in the def-tz-tunnel-type configurable parameter during OpenDaylight
restart.

5. Add code to create listener for OVSDB to receive TEP-specific parameters configured at OVS.

6. Add code to update configuation datastore to add/delete TEP received from southbound into transport-zone.

7. Check tunnel mesh for transport-zone is updated correctly for TEP add/delete into transport-zone.

8. Add code to update configuation datastore for handling update in TEP-IP.

9. Add code to update configuation datastore for handling update in TEP’s transport-zone.

10. Check tunnel mesh is updated correctly against TEP update.

11. Add code to create tepsNotHostedInTransportZone list in configuation datastore to store TEP received
with not-configured transport-zone.

12. Add code to move TEP from tepsNotHostedInTransportZone list to transport-zone configured from
REST.

13. Check tunnel mesh is formed for TEPs after their movement from tepsNotHostedInTransportZone list
to transport-zone.

14. Add UTs.

15. Add ITs.

16. Add CSIT.

17. Add Documentation.

Dependencies

This feature should be used when configuration flag i.e. use-transport-zone in
netvirt-neutronvpn-config.xml for automatic tunnel configuration in transport-zone is disabled in
Netvirt’s NeutronVpn, otherwise netvirt feature of dynamic tunnel creation may duplicate tunnel for TEPs in the
tunnel mesh.

3.7. Genius Documentation 1637

OpenDaylight Documentation Documentation, Release Carbon

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in, once UT framework is in place.

Integration Tests

Integration tests will be added, once IT framework for ITM is ready.

CSIT

Following test cases will need to be added/expanded in Genius CSIT:

1. Verify default-transport-zone is not created when def-tz-enabled flag is false.

2. Verify tunnel-type change is considered while creation of default-transport-zone.

3. Verify ITM tunnel creation on default-transport-zone when TEPs are configured without transport zone or with
default-transport-zone on switch when def-tz-enabled flag is true.

4. Verify default-transport-zone is deleted when def-tz-enabled flag is changed from true to
false during OpenDaylight controller restart.

5. Verify ITM tunnel creation by TEPs configured with transport zone on switch and respective transport zone
should be pre-configured on OpenDaylight controller.

6. Verify auto-mapping of TEPs to corresponding transport zone group.

7. Verify ITM tunnel deletion by deleting TEP from switch.

8. Verify TEP transport zone change from OVS will move the TEP to corresponding transport-zone in OpenDay-
light controller.

9. Verify TEPs movement from tepsNotHostedInTransportZone to transport-zone when transport-zone
is configured from northbound.

10. Verify ITM tunnel details persist after OpenDaylight controller restart, switch restart.

Documentation Impact

This will require changes to User Guide and Developer Guide.

User Guide will need to add information for below details:

• TEPs parameters to be configured from OVS side to use this feature.

• TEPs added from southbound can be viewed from REST APIs.

• TEPs added from southbound will be added under dummy subnet (255.255.255.255/32) in transport-zone.

• Usage details of genius-itm-config.xml config file for ITM to configure def-tz-enabled flag and
def-tz-tunnel-type to create/delete default-transport-zone and its tunnel-type respec-
tively.

• User is explicitly required to configure def-tz-enabled as true if TEPs needed to be added into
default-transport-zone from northbound.

1638 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Developer Guide will need to capture how to use changes in ITM to create tunnel automatically for TEPs configured
from southbound.

References

• Genius: Carbon Release Plan

Table of Contents

• Service Binding On Tunnels

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* RPC Changes

* Yang changes

* Workflow

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

3.7. Genius Documentation 1639

https://wiki.opendaylight.org/view/Genius:Carbon_Release_Plan

OpenDaylight Documentation Documentation, Release Carbon

Service Binding On Tunnels

https://git.opendaylight.org/gerrit/#/q/topic:service-binding-on-tunnels

Service Binding On Tunnels Feature enables applications to bind multiple services on an ingress/egress tunnel.

Problem description

Currently GENIUS does not provide a generic mechanism to support binding services on all interfaces.Ingress ser-
vice binding pipeline is different for l2vlan interfaces and tunnel interfaces.Similarly, egress Service Binding is only
supported for l2vlan interfaces.

Today when ingress services are bound on a tunnel, the highest priority service gets bound in INTERFACE INGRESS
TABLE(0) itself, and remaining service entries get populated in LPORT DISPATCHER TABLE(17), which is not
in alignment with the service binding logic for VM ports. As part of this feature, we enable ingress/egress service
binding support for tunnels in the same way as for VM interfaces. This feature also enables service-binding based on
a tunnel-type which is basically meant for optimizing the number of flow entries in dispatcher tables.

Use Cases

This feature will support following use cases:

• Use case 1: IFM should support binding services based on tunnel type.

• Use case 2: All application traffic ingressing on a tunnel should go through the LPORT DISPATCHER
TABLE(17).

• Use case 3: IFM should support binding multiple ingress services on tunnels.

• Use case 4: IFM should support priority based ingress service handling for tunnels.

• Use case 5: IFM should support unbinding ingress services on tunnels.

• Use case 6: IFM should support binding multiple egress services on tunnels.

• Use case 7: IFM should support priority based egress service handling for tunnels.

• Use case 8: All application traffic egressing on a tunnel should go through the egress dispatcher table(220).

• Use case 9: Datapath should be intact even if there is no egress service bound on the tunnel.

• Use case 10: IFM should support unbinding egress services on tunnels.

• Use case 11: IFM should support handling of lower layer interface deletions gracefully.

• Use case 12: IFM should support binding services based on tunnel type and lport-tag on the same tunnel interface
on a priority basis.

• Use case 13: Applications should bind on specific tunnel types on module startup

• Use case 13: IFM should take care of programming the tunnel type based binding flows on each DPN.

Following use cases will not be supported:

• Use case 1 : Update of service binding on tunnels. Any update should be done as delete and re-create

1640 Chapter 3. Content for OpenDaylight Contributors

https://git.opendaylight.org/gerrit/#/q/topic:service-binding-on-tunnels

OpenDaylight Documentation Documentation, Release Carbon

Proposed change

The proposed change extends the current l2vlan service binding functionality to tunnel interfaces. With this feature,
multiple applications can bind their services on the same tunnel interface, and traffic will be processed on an application
priority basis. Applications are given the flexibility to provide service specific actions while they bind their services.
Normally service binding actions include go-to-service-pipeline-entry-table. Packets will enter a particular service
based on the service priority, and if the packet is not consumed by the service, it is the application’s responsibility to
resubmit the packet back to the egress/ingress dispatcher table for further processing by next priority
service. Egress Dispatcher Table will have a default service priority entry per tunnel interface to egress the packet on
the tunnel port.So, if there are no egress services bound on a tunnel interface, this default entry will take care of taking
the packet out of the switch.

The feature also enables service binding based on tunnel type. This way number of entries in Dispatcher Tables can
be optimized if all the packets entering on tunnel of a particular type needs to be handled in the same way.

Pipeline changes

There is a pipeline change introduced as part of this feature for tunnel egress as well as ingress, and is captured in
genius pipeline document patch2.

With this feature, all traffic from INTERFACE_INGRESS_TABLE(0) will be dispatched to
LPORT_DISPATCHER_TABLE(17), from where the packets will be dispatched to the respective applications
on a priority basis.

Register6 will be used to set the ingress tunnel-type in Table0, and this can be used to match in Table17 to identify the
respective applications bound on the tunnel-type. Remaining logic of ingress service binding will remain as is, and
service-priority and interface-tag will be set in metadata as usual. The bits from 25-28 of Register6 will be used to
indicate tunnel-type.

After the ingress service processing, packets which are identified to be egressed on tunnel interfaces, currently directly
go to the tunnel port. With this feature, these packets will goto Egress Dispatcher Table[Table 220] first, where the
packet will be processed by Egress Services on the tunnel interface one by one, and finally will egress the switch.

Register6 will be used to indicate service priority as well as interface tag for the egress tunnel interface, in Egress
Dispatcher Table, and when there are N services bound on a tunnel interface, there will be N+1 entries in Egress
Dispatcher Table, the additional one for the default tunnel entry. The first 4 bits of Register6 will be used to indicate
the service priority and the next 20 bits for interface Tag, and this will be the match criteria for packet redirection to
service pipeline in Egress Dispatcher Table. Before sending the packet to the service, Egress Dispatcher Table will set
the service index to the next service’ priority. Same as ingress, Register6 will be used for egress tunnel-type matching,
if there are services bound on tunnel-type.

TABLE MATCH ACTION
INTER-
FACE_INGRESS_TABLE

in_port SI=0,reg6=interface_type, metadata=lport
tag, goto table 17

LPORT_DISPATCHER_TABLEmetadata=service priority &&
lport-tag(priority=10)

increment SI, apply service specific actions,
goto ingress service

reg6=tunnel-type priority=5 increment SI, apply service specific actions,
goto ingress service

EGRESS_DISPATCHER_TABLEReg6==service Priority &&
lport-tag(priority=10)

increment SI, apply service specific actions,
goto egress service

reg6=tunnel-type priority=5 increment SI, apply service specific actions,
goto egress service

2 Netvirt Pipeline Diagram http://docs.opendaylight.org/en/latest/submodules/genius/docs/pipeline.html

3.7. Genius Documentation 1641

http://docs.opendaylight.org/en/latest/submodules/genius/docs/pipeline.html

OpenDaylight Documentation Documentation, Release Carbon

RPC Changes

GetEgressActionsForInterface RPC in interface-manager currently returns the output:port action for tun-
nel interfaces. This will be changed to return set_field_reg6(default-service-index + interface-tag) and resub-
mit(egress_dispatcher_table).

Yang changes

No yang changes are needed, as binding on tunnel-type is enabled by having reserved keywords for interface-names

Workflow

Create Tunnel

1. User: User created a tunnel end point

2. IFM: When tunnel port is created on OVS, and the respective OpenFlow port Notification comes, IFM binds a
default service in Egress Dispatcher Table for the tunnel interface, which will be the least priority service, and
the action will be to take the packet out on the tunnel port.

Bind Service on Tunnel Interface

1. User: While binding service on tunnels user gives service-priority, service-mode and
instructions for service being bound on the tunnel interface.

2. IFM: When binding the service for the tunnel, if this is the first service being bound, program flow
rules in Dispatcher Table(ingress/egress based on service mode) to match on service-priority and
interface-tag value with actions pointing to the service specific actions supplied by the application.

3. IFM: When binding a second service, based on the service priority one more flow will be created in Dispatcher
Table with matches specific to the new service priority.

Unbind Service on Tunnel Interface

1. User: While unbinding service on tunnels user gives service-priority and service-mode for service
being unbound on the tunnel interface.

2. IFM: When unbinding the service for the tunnel, IFM removes the entry in Dispatcher Tables for the service.
IFM also rearranges the remaining flows for the same tunnel interface to adjust the missing service priority

Bind Service on Tunnel Type

1. Application: While binding service on tunnel type user gives a reserved keyword indicating the tunnel-type
apart from‘‘service-priority‘‘, service-mode and instructions for service being bound. The reserved
keywords will be ALL_VXLAN_INTERNAL, ALL_VXLAN_EXTERNAL, and ALL_MPLS_OVER_GRE.

2. IFM: When binding the service for the tunnel-type,program flow rules in Dispatcher Table(ingress/egress based
on service mode) to match on service-priority and tunnel-type value with actions pointing to the
service specific actions supplied by the application will be created on each DPN.

1642 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

3. IFM: When binding a second service, based on the service priority one more flow will be created in Dispatcher
Table with matches specific to the new service priority will be created on each DPN..

Unbind Service on Tunnel Type

1. User: While unbinding service on tunnels user gives a reserved keyword indicating the tunnel-type ,‘‘service-
priority‘‘ and service-mode for service being unbound on all connected DPNs.

2. IFM: When unbinding the service for the tunnel-type, IFM removes the entry in Dispatcher Tables for the
service. IFM also rearranges the remaining flows for the same tunnel type to adjust the missing service priority

Delete Tunnel

1. User: User deleted a tunnel end point

2. IFM: When tunnel port is deleted on OVS, and the respective OpenFlow Port Notification comes, IFM unbinds
the default service in Egress Dispatcher Table for the tunnel interface.

3. IFM: If there are any outstanding services bound on the tunnel interface, all the Dispatcher Table Entries for this
Tunnel will be deleted by IFM.

Application Module Startup

1. Applications: When Application bundle comes up, they can bind respective applications on the tunnel types
they are interested in, with their respective service priorities.

Configuration impact

This change doesn’t add or modify any configuration parameters.

Clustering considerations

The solution is supported on a 3-node cluster.

Other Infra considerations

N.A.

Security considerations

N.A.

Scale and Performance Impact

• The feature adds one extra transaction during tunnel port creation, since the default Egress Dispatcher Table
entry has to be programmed for each tunnel.

3.7. Genius Documentation 1643

OpenDaylight Documentation Documentation, Release Carbon

• The feature provides support for service-binding on tunnel type with the primary purpose of minimizing the
number of flow entries in ingress/egress dispatcher tables.

Targeted Release

Carbon.

Alternatives

N/A

Usage

Features to Install

This feature doesn’t add any new karaf feature.Installing any of the below features can enable the service:

odl-genius-ui odl-genius-rest odl-genius

REST API

Creating tunnel-interface directly in IFM

This use case is mainly for those who want to write applications using Genius and/or want to create individual tunnel
interfaces. Note that this is a simpler easy way to create tunnels without needing to delve into how OVSDB Plugin
creates tunnels.

Refer Genius User Guide [4]_ for more details on this.

URL: restconf/config/ietf-interfaces:interfaces

Sample JSON data

{
"interfaces": {
"interface": [

{
"name": "vxlan_tunnel",
"type": "iana-if-type:tunnel",
"odl-interface:tunnel-interface-type": "odl-interface:tunnel-type-vxlan",
"odl-interface:datapath-node-identifier": "1",
"odl-interface:tunnel-source": "192.168.56.101",
"odl-interface:tunnel-destination": "192.168.56.102",
"odl-interface:monitor-enabled": false,
"odl-interface:monitor-interval": 10000,
"enabled": true

}
]

}
}

1644 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Binding Egress Service On Tunnels

URL: http://localhost:8181/restconf/config/interface-service-bindings:service-bindings/services-info/{tunnel-
interface-name}/interface-service-bindings:service-mode-egress

Sample JSON data

{
"bound-services": [

{
"service-name": "service1",
"flow-priority": "5",
"service-type": "service-type-flow-based",
"instruction": [
{
"order": 1,
"go-to-table": {

"table_id": 88
}

}],
"service-priority": "2",
"flow-cookie": "1"

}
]

}

CLI

N.A.

Implementation

Assignee(s)

Primary assignee: Faseela K

Work Items

1. Create Table 0 tunnel entries to set tunnel-type and lport_tag and point to LPORT_DISPATCHER_TABLE

2. Support of reserved keyword in interface-names for tunnel type based service binding.

3. Program tunnel-type based service binding flows on DPN connect events.

4. Program Lport Dispatcher Flows(17) on bind service

5. Remove Lport Dispatcher Flows(17) on unbind service

6. Handle multiple service bind/unbind on tunnel interface

7. Create default Egress Service for Tunnel on Tunnel Creation

8. Add set_field_reg_6 and resubmit(220) action to actions returned in
getEgressActionsForInterface() for Tunnels.

9. Program Egress Dispatcher Table(220) Flows on bind service

3.7. Genius Documentation 1645

http://localhost:8181/restconf/config/interface-service-bindings:service-bindings/services-info

OpenDaylight Documentation Documentation, Release Carbon

10. Remove Egress Dispatcher Table(220) Flows on unbind service

11. Handle multiple egress service bind/unbind on tunnel interface

12. Delete default Egress Service for Tunnel on Tunnel Deletion

13. Add UTs.

14. Add CSIT.

15. Add Documentation

16. Trello Card : https://trello.com/c/S8lNGd9S/6-service-binding-on-tunnel-interfaces

Dependencies

Genius, Netvirt

There will be several impacts on netvirt pipeline with this change. A brief overview is given in the table below:

Testing

Capture details of testing that will need to be added.

Unit Tests

New junits will be added to InterfaceManagerConfigurationTest to cover the following :

1. Bind/Unbind single ingress service on tunnel-type

2. Bind/Unbind single egress service on tunnel-type

3. Bind single ingress service on tunnel-interface

4. Unbind single ingress service on tunnel-interface

5. Bind multiple ingress services on tunnel in priority order

6. Unbind multiple ingress services on tunnel in priority order

7. Bind multiple ingress services out of priority order

8. Unbind multiple ingress services out of priority order

9. Delete tunnel port to check if ingress dispatcher flows for bound services get deleted

10. Add tunnel port back to check if ingress dispatcher flows for bound services get added back

11. Bind single egress service on tunnel

12. Unbind single egress service on tunnel

13. Bind multiple egress services on tunnel in priority order

14. Unbind multiple egress services on tunnel in priority order

15. Bind multiple egress services out of priority order

16. Unbind multiple egress services out of priority order

17. Delete tunnel port to check if egress dispatcher flows for bound services get deleted

18. Add tunnel port back to check if egress dispatcher flows for bound services get added back

1646 Chapter 3. Content for OpenDaylight Contributors

https://trello.com/c/S8lNGd9S/6-service-binding-on-tunnel-interfaces

OpenDaylight Documentation Documentation, Release Carbon

Integration Tests

CSIT

The following TCs should be added to CSIT to cover this feature:

1. Bind/Unbind single ingress/egress service on tunnel-type to see the corresponding table entries are created in
switch.

2. Bind single ingress service on tunnel to see the corresponding table entries are created in switch.

3. Unbind single ingress service on tunnel to see the corresponding table entries are deleted in switch.

4. Bind multiple ingress services on tunnel in priority order to see if metadata changes are proper on the flow table.

5. Unbind multiple ingress services on tunnel in priority order to see if metadata changes are proper on the flow
table on each unbind.

6. Bind multiple ingress services out of priority order to see if metadata changes are proper on the flow table.

7. Unbind multiple ingress services out of priority order.

8. Delete tunnel port to check if ingress dispatcher flows for bound services get deleted.

9. Add tunnel port back to check if ingress dispatcher flows for bound services get added back.

10. Bind single egress service on tunnel to see the corresponding table entries are created in switch.

11. Unbind single egress service on tunnel to see the corresponding table entries are deleted in switch.

12. Bind multiple egress services on tunnel in priority order to see if metadata changes are proper on the flow table.

13. Unbind multiple egress services on tunnel in priority order to see if metadata changes are proper on the flow
table on each unbind.

14. Bind multiple egress services out of priority order to see if metadata changes are proper on the flow table.

15. Unbind multiple egress services out of priority order.

16. Delete tunnel port to check if egress dispatcher flows for bound services get deleted.

17. Add tunnel port back to check if egress dispatcher flows for bound services get added back.

Documentation Impact

This will require changes to User Guide and Developer Guide.

There is a pipeline change for tunnel datapath introduced due to this change. This should go in User Guide.

Developer Guide should capture how to configure egress service binding on tunnels.

References

Note: This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. http://creativecommons.org/
licenses/by/3.0/legalcode

3.7. Genius Documentation 1647

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenDaylight Documentation Documentation, Release Carbon

Table of Contents

• Load balancing and high availability of multiple VxLAN tunnels

– Problem description

* Use Cases

– Proposed change

* ITM Changes

* IFM Changes

* Netvirt Changes

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Load balancing and high availability of multiple VxLAN tunnels

https://git.opendaylight.org/gerrit/#/q/topic:vxlan-tunnel-aggregation

1648 Chapter 3. Content for OpenDaylight Contributors

https://git.opendaylight.org/gerrit/#/q/topic:vxlan-tunnel-aggregation

OpenDaylight Documentation Documentation, Release Carbon

The purpose of this feature is to enable resiliency and load balancing of VxLAN encapsulated traffic between pair of
OVS nodes.

Additionally, the feature will provide infrastructure to support more complex use cases such as policy-based path
selection. The exact implementation of policy-based path selection is out of the scope of this document and will be
described in a different spec [2].

Problem description

The current ITM implementation enables creation of a single VxLAN tunnel between each pair of hypervisors.

If the hypervisor is connected to the network using multiple links with different capacity or connected to different L2
networks in different subnets, it is not possible to utilize all the available network resources to increase the throughput
of traffic to remote hypervisors.

In addition, link failure of the network card forwarding the VxLAN traffic will result in complete traffic loss to/from
the remote hypervisor if the network card is not part of a bonded interface.

Use Cases

• Forwarding of VxLAN traffic between hypervisors with multiple network cards connected to L2 switches in
different networks.

• Forwarding of VxLAN traffic between hypervisors with multiple network cards connected to the same L2
switch.

Proposed change

ITM Changes

The ITM will continue to create tunnels based on transport-zone configuration similarly to the current implementation
- TEP IP per DPN per transport zone. When ITM creates TEP interfaces, in addition to creating the actual tunnels,
it will create logical tunnel interface for each pair of DPNs in the ietf-interface config data-store representing
the tunnel aggregation group between the DPNs. The logical tunnel interface be created only when the first tunnel
interface on each OVS is created. In addition, this feature will be guarded by a global configuration option in the ITM
and will be turned off by default. Only when the feature is enabled, the logical tunnel interfaces will be created.

Creation of transport-zone with multiple IPs per DPN is out of the scope of this document and will be described in [2]
However, the limitation of configuring no more than one TEP ip per transport zone will remain.

The logical tunnel will reference all member tunnel interfaces in the group using interface-child-info model.
In addition, it would be possible to add weight to each member of the group to support unequal load-sharing of traffic.

The proposed feature depends on egress tunnel service binding functionality detailed in [3].

When the logical tunnel interface is created, a default egress service would be bound to it. The egress service will
create an OF select group based on the actual list of tunnel members in the logical group. Each tunnel member can
be assigned a weight field that will be applied on it’s corresponding bucket in the OF select group. If weight was not
defined, the bucket weight will be configured with a default value of 1 resulting in uniform distribution if weight was
not configured for any of the buckets. Each bucket in the select group will route the egress traffic to one of the tunnel
members in the group by loading the lport-tag of the tunnel member interface to NXM register6.

Logical tunnel egress service pipeline example:

3.7. Genius Documentation 1649

OpenDaylight Documentation Documentation, Release Carbon

cookie=0x6900000, duration=0.802s, table=220, n_packets=0, n_bytes=0, priority=6,
→˓reg6=0x500
actions=load:0xe000500->NXM_NX_REG6[],write_metadata:0xe000500000000000/
→˓0xfffffffffffffffe,group:80000
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,
→˓reg6=0x600 actions=output:3
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,
→˓reg6=0x700 actions=output:4
cookie=0x8000007, duration=0.546s, table=220, n_packets=0, n_bytes=0, priority=7,
→˓reg6=0x800 actions=output:5
group_id=800000,type=select,
bucket=weight:50,watch_port=3,actions=load:0x600->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=4,actions=load:0x700->NXM_NX_REG6[],resubmit(,220),
bucket=weight:25,watch_port=5,actions=load:0x800->NXM_NX_REG6[],resubmit(,220)

Each bucket of the LB group will set the watch_port property to be the tunnel member OF port number. This will
allow the OVS to monitor the bucket liveness and route egress traffic only to live buckets.

BFD monitoring is required to probe the tunnel state and update the OF select group accordingly. Using OF tunnels
[4] or turning off BFD monitoring will not allow the logical group service to respond to tunnel state changes.

OF select group for logical tunnel can contain a mix of IPv4 and IPv6 tunnels, depending on the transport-zone
configuration.

A new pool will be allocated to generate OF group ids of the default select group and the policy groups described in
[2]. The pool name VXLAN_GROUP_POOL will allocate ids from the id-manager in the range 300,000-310,000. ITM
RPC calls to get internal tunnel interface between source and destination DPNs will return the logical tunnel interface
group name if such exits, otherwise the lower layer tunnel will be returned.

IFM Changes

The logical tunnel group is an ietf-interface thus it has an allocated lport-tag. RPC call to
getEgressActionsForInterface for the logical tunnel will load register6 with its corresponding lport-
tag and resubmit the traffic to the egress dispatcher table.

The state of the logical tunnel group is affected by the states of the group members. If at least one of the tunnels is in
oper-status UP, the logical group is considered UP.

If the logical tunnel was set as admin-status DOWN, all the tunnel members will be set accordingly.

Ingress traffic from VxLAN tunnels would not be bounded to any logical group service as part of this feature and it
will continue to use the same workflow while traversing the ingress services pipeline.

Other applications would be able to utilize this infrastructure to introduce new services over logical tunnel group
interface e.g. policy-based path selection. These services will take precedence over the default egress service for
logical tunnel.

Netvirt Changes

L3 models map each combination of VRF id and destination prefix to a list of nexthop ip addresses. When calling
getInternalOrExternalInterfaceName RPC from the FIB manager, if the DPN id of the remote nexthop

1650 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

is known it will be sent along with the nexthop ip. If logical tunnel exists between the source and destination DPNs it
will be set as the lport-tag of register6 in the remote nexthop actions.

Pipeline changes

For the flows below it is assumed that a logical tunnel group was configured for both ingress and egress DPNs. The
logical tunnel group is composed of { tunnnel1, tunnel2 } and bound to the default logical tunnel egress service.

Traffic between VMs on the same DPN

No pipeline changes required

L3 traffic between VMs on different DPNs

VM originating the traffic (Ingress DPN):

• Remote next hop group in the FIB table references the logical tunnel group.

• The default logical group service uses OF select group to load balance traffic between the tunnels.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id,dst-ip=vm2-ip set dst-mac=vm2-mac
tun-id=vm2-label reg6=logical-tun-lport-tag =>
Egress table (220) match: reg6=logical-tun-lport-tag =>
Logical tunnel LB select group set reg6=tun1-lport-tag =>
Egress table (220) match: reg6=tun1-lport-tag output to tunnel1

VM receiving the traffic (Ingress DPN):

• No pipeline changes required

Classifier table (0) =>
Internal tunnel Table (36) match:tun-id=vm2-label =>
Local Next-Hop group: set dst-mac=vm2-mac,reg6=vm2-lport-tag =>
Egress table (220) match: reg6=vm2-lport-tag output to VM 2

SNAT traffic from non-NAPT switch

VM originating the traffic is non-NAPT switch:

• NAPT group references the logical tunnel group.

3.7. Genius Documentation 1651

OpenDaylight Documentation Documentation, Release Carbon

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) match: vpn-id=router-id,dst-mac=router-interface-mac =>
FIB table (21) match: vpn-id=router-id =>
Pre SNAT table (26) match: vpn-id=router-id =>
NAPT Group set tun-id=router-id reg6=logical-tun-lport-tag =>
Egress table (220) match: reg6=logical-tun-lport-tag =>
Logical tunnel LB select group set reg6=tun1-lport-tag =>
Egress table (220) match: reg6=tun1-lport-tag output to tunnel1

Traffic from NAPT switch punted to controller:

• No explicit pipeline changes required

Classifier table (0) =>
Internal tunnel Table (36) match:tun-id=router-id =>
Outbound NAPT table (46) set vpn-id=router-id, punt-to-controller

L2 unicast traffic between VMs in different DPNs

VM originating the traffic (Ingress DPN):

• ELAN DMAC table references the logical tunnel group

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) =>
Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>
ELAN base table (48) =>
ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>
ELAN DMAC table (51) match: elan-tag=vxlan-net-tag,dst-mac=vm2-mac set
tun-id=vm2-lport-tag reg6=logical-tun-lport-tag =>
Egress table (220) match: reg6=logical-tun-lport-tag =>
Logical tunnel LB select group set reg6=tun2-lport-tag =>
Egress table (220) match: reg6=tun2-lport-tag output to tunnel2

VM receiving the traffic (Ingress DPN):

• No explicit pipeline changes required

Classifier table (0) =>
Internal tunnel Table (36) match:tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>
Egress table (220) match: reg6=vm2-lport-tag output to VM 2

1652 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

L2 multicast traffic between VMs in different DPNs

VM originating the traffic (Ingress DPN):

• ELAN broadcast group references the logical tunnel group.

Classifier table (0) =>
Dispatcher table (17) l3vpn service: set vpn-id=router-id =>
GW Mac table (19) =>
Dispatcher table (17) l2vpn service: set elan-tag=vxlan-net-tag =>
ELAN base table (48) =>
ELAN SMAC table (50) match: elan-tag=vxlan-net-tag,src-mac=vm1-mac =>
ELAN DMAC table (51) =>
ELAN DMAC table (52) match: elan-tag=vxlan-net-tag =>
ELAN BC group goto_group=elan-local-group, set tun-id=vxlan-net-tag
reg6=logical-tun-lport-tag =>
Egress table (220) match: reg6=logical-tun-lport-tag =>
Logical tunnel LB select group set reg6=tun1-lport-tag =>
Egress table (220) match: reg6=tun1-lport-tag output to tunnel1

VM receiving the traffic (Ingress DPN):

• No explicit pipeline changes required

Classifier table (0) =>
Internal tunnel Table (36) match:tun-id=vxlan-net-tag =>
ELAN local BC group set tun-id=vm2-lport-tag =>
ELAN filter equal table (55) match: tun-id=vm2-lport-tag set reg6=vm2-lport-tag =>
Egress table (220) match: reg6=vm2-lport-tag output to VM 2

Yang changes

The following changes would be required to support configuration of logical tunnel group:

IFM Yang Changes

Add a new tunnel type to represent the logical group in odl-interface.yang.

identity tunnel-type-logical-group {
description "Aggregation of multiple tunnel endpoints between two DPNs";
base tunnel-type-base;

}

Each tunnel member in the logical group can have an assigned weight as part of tunnel-optional-params in
odl-interface:if-tunnel augment to support unequal load sharing.

3.7. Genius Documentation 1653

OpenDaylight Documentation Documentation, Release Carbon

grouping tunnel-optional-params {
leaf tunnel-source-ip-flow {

type boolean;
default false;

}

leaf tunnel-remote-ip-flow {
type boolean;
default false;

}

leaf weight {
type uint16;

}

...
}

ITM Yang Changes

Each tunnel endpoint in itm:transport-zones/transport-zone can be configured with optional weight
parameter. Weight configuration will be propagated to tunnel-optional-params.

list vteps {
key "dpn-id portname";
leaf dpn-id {

type uint64;
}

leaf portname {
type string;

}

leaf ip-address {
type inet:ip-address;

}

leaf weight {
type unit16;
default 1;

}

leaf option-of-tunnel {
type boolean;
default false;

}
}

The internal tunnel will be enhanced to contain multiple tunnel interfaces

container tunnel-list {
list internal-tunnel {

key "source-DPN destination-DPN transport-type";
leaf source-DPN {

type uint64;
}

1654 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

leaf destination-DPN {
type uint64;

}

leaf transport-type {
type identityref {

base odlif:tunnel-type-base;
}

}

leaf-list tunnel-interface-name {
type string;

}
}

}

The RPC call itm-rpc:get-internal-or-external-interface-name will be enhanced to contain the
destination dp-id as an optional input parameter

rpc get-internal-or-external-interface-name {
input {

leaf source-dpid {
type uint64;

}

leaf destination-dpid {
type uint64;

}

leaf destination-ip {
type inet:ip-address;

}

leaf tunnel-type {
type identityref {

base odlif:tunnel-type-base;
}

}
}

output {
leaf interface-name {

type string;
}

}
}

Configuration impact

Creation of logical tunnel group will be guarded by configuration in itm-config per tunnel-type

container itm-config {
config true;
leaf def-tz-enabled {

type boolean;

3.7. Genius Documentation 1655

OpenDaylight Documentation Documentation, Release Carbon

default false;
}

leaf def-tz-tunnel-type {
type string;
default "vxlan";

}

list tunnel-aggregation {
key "tunnel-type";
leaf tunnel-type {

type string;
}

leaf enabled {
type boolean;
default false;

}
}

}

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

This feature is expected to increase the datapath throughput by utilizing all available network resources.

Targeted Release

Carbon

Alternatives

There are certain use cases where it would be possible to add the network cards to a separate bridge with LACP enabled
and patch it to br-int but this alternative was rejected since it imposes limitations on the type of links and the overall
capacity.

1656 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

Create multiple uplinks between pair of OVS nodes

URL: restconf/config/itm:transport-zones/

Sample JSON data

The following REST will create 3 bi-directional tunnels between two OVS nodes.

{
"transport-zone": [
{

"zone-name": "underlay-net1",
"subnets": [
{
"prefix": "0.0.0.0/0",
"vteps": [
{
"dpn-id": 273348439543366,
"portname": "tunnel_port",
"ip-address": "20.2.1.2",
"option-of-tunnel": false

},
{
"dpn-id": 110400932149974,
"portname": "tunnel_port",
"ip-address": "20.2.1.3",
"option-of-tunnel": false

}
],
"gateway-ip": "0.0.0.0",
"vlan-id": 0

}
],

"tunnel-type": "odl-interface:tunnel-type-vxlan"
},
{

"zone-name": "underlay-net2",
"subnets": [
{
"prefix": "0.0.0.0/0",
"vteps": [
{
"dpn-id": 273348439543366,
"portname": "tunnel_port",
"ip-address": "30.3.1.2",
"option-of-tunnel": false

},
{

3.7. Genius Documentation 1657

OpenDaylight Documentation Documentation, Release Carbon

"dpn-id": 110400932149974,
"portname": "tunnel_port",
"ip-address": "30.3.1.3",
"option-of-tunnel": false

}
],
"gateway-ip": "0.0.0.0",
"vlan-id": 0

}
],

"tunnel-type": "odl-interface:tunnel-type-vxlan"
},

{
"zone-name": "underlay-net3",
"subnets": [
{
"prefix": "0.0.0.0/0",
"vteps": [
{
"dpn-id": 273348439543366,
"portname": "tunnel_port",
"ip-address": "40.4.1.2",
"option-of-tunnel": false

},
{
"dpn-id": 110400932149974,
"portname": "tunnel_port",
"ip-address": "40.4.1.3",
"option-of-tunnel": false

}
],
"gateway-ip": "0.0.0.0",
"vlan-id": 0

}
],

"tunnel-type": "odl-interface:tunnel-type-vxlan"
}

]
}

ITM RPCs

URL: restconf/operations/itm-rpc:get-tunnel-interface-name

{
"input": {

"source-dpid": "40146672641571",
"destination-dpid": "102093507130250",
"tunnel-type": "odl-interface:tunnel-type-vxlan"

}
}

URL: restconf/operations/itm-rpc:get-internal-or-external-interface-name

{
"input": {

1658 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

"source-dpid": "40146672641571",
"destination-dpid": "102093507130250",
"tunnel-type": "odl-interface:tunnel-type-vxlan"

}
}

CLI

tep:show-state will be enhanced to extract the state of the logical tunnel interface in addition to the actual TEP
state.

Implementation

Assignee(s)

Primary assignee: Olga Schukin <olga.schukin@hpe.com>

Other contributors: Tali Ben-Meir <tali@hpe.com>

Work Items

Trello card: https://trello.com/c/Q7LgiHH7/92-multiple-vxlan-endpoints-for-compute

• Add support to ITM for creation of multiple tunnels between pair of DPNs

• Create logical tunnel group in ietf-interface if more than one tunnel exist between two DPNs. Update
the interface-child-info model with the list of individual tunnel members

• Bind a default service for the logical tunnel interface to create OF select group based on the tunnel members

• Change ITM RPC calls to getTunnelInterfaceName and getInternalOrExternalInterfaceName
to prefer the logical tunnel group over the tunnel members

• Support OF weighted select group

Dependencies

None

Testing

Unit Tests

• ITM unitests will be enhanced with test cases of multiple tunnels

• IFM unitests will be enhanced to handle CRUD operations on logical tunnel group

3.7. Genius Documentation 1659

mailto:olga.schukin@hpe.com
mailto:tali@hpe.com
https://trello.com/c/Q7LgiHH7/92-multiple-vxlan-endpoints-for-compute

OpenDaylight Documentation Documentation, Release Carbon

Integration Tests

CSIT

Transport zone creation with multiple tunnels

• Verify tunnel endpoint creation

• Verify logical tunnel group creation

• Verify logical tunnel service binding flows/group

Transport zone removal with multiple tunnels

• Verify tunnel endpoint removal

• Verify logical tunnel group removal

• Verify logical tunnel service binding flows/group removal

Transport zone updates to single/multiple tunnels

• Verify tunnel endpoint creation/removal

• Verify logical tunnel group creation/removal

• Verify logical tunnel service binding flows/group creation/removal

Transport zone creation with multiple OF tunnels

• Verify tunnel endpoint creation

• Verify logical tunnel group creation

• Verify logical tunnel service binding flows/group

Documentation Impact

None

References

[1] OpenDaylight Documentation Guide

[2] Policy based path selection

[3] Service Binding On Tunnels

[4] OF tunnels

Table of Contents

1660 Chapter 3. Content for OpenDaylight Contributors

http://docs.opendaylight.org/en/latest/documentation.html
http://docs.opendaylight.org/en/latest/submodules/netvirt/docs/specs/policy-based-path-selection.html
http://docs.opendaylight.org/en/latest/submodules/genius/docs/specs/service-binding-on-tunnels.html
http://docs.opendaylight.org/en/latest/submodules/genius/docs/specs/of-tunnels.html

OpenDaylight Documentation Documentation, Release Carbon

• Traffic shaping with Ovsdb QoS queues

– Problem description

* Use Cases

– Proposed change

* Pipeline changes

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– References

Traffic shaping with Ovsdb QoS queues

QoS patches: https://git.opendaylight.org/gerrit/#/q/topic:qos-shaping

The current Boron implementation provides support for ingress rate limiting configuration of OVS. The Carbon release
will add egress traffic shaping to QoS feature set. (Note, the direction of traffic flow (ingress, egress) is from the
perspective of the OpenSwitch)

Problem description

OVS supports traffic shaping for traffic that egresses from a switch. To utilize this functionality, Genius implementation
should be able to create ‘set queue’ output action upon connection of new OpenFlow node.

3.7. Genius Documentation 1661

https://git.opendaylight.org/gerrit/#/q/topic:qos-shaping

OpenDaylight Documentation Documentation, Release Carbon

Use Cases

Use case 1: Allow Unimgr to shape egress traffic from UNI

Proposed change

Unimgr or Neutron VPN creates ietf vlan interface for each port connected to particular service. The Ovsdb provides a
possibility to create QoS and mapped Queue with egress rate limits for lower level port. Such queue should be created
on parent physical interface of vlan or trunk member port if service has definition of limits. The ovsdb southbound
provides interface for creation of ovs QoS and Queues. This functionality may be utilized by netvirt qos service.
Below is the dump from ovsdb with queues created for one of the ports.

Port table
_uuid : a6cf4ca9-b15c-4090-aefe-23af2d5ce4f2
name : "ens5"
qos : 9779ce41-4347-4383-b308-75f46d6a258c

QoS table
_uuid : 9779ce41-4347-4383-b308-75f46d6a258c
other_config : {max-rate="50000"}
queues : {1=3cc34bb7-7df8-4538-9fd7-4a6c6c467c69}
type : linux-htb

Queue table
_uuid : 3cc34bb7-7df8-4538-9fd7-4a6c6c467c69
dscp : []
other_config : {max-rate="50000", min-rate="5000"}

The queues creation is out of scope of this document. The definition of vlan or trunk member port will be aug-
mented with relevant queue reference and number if queue was created successful. That will allow to create openflow
‘set_queue’ output action during service binding.

Pipeline changes

New ‘set_queue’ action will be supported in Egress Dispatcher table

Table Match Action
Egress Dispatcher [220] no changes Set queue id (optional) and output to port

Yang changes

A new augment “ovs-qos” is added to if:interface in odl-interface.yang

/* vlan port to qos queue */
augment "/if:interfaces/if:interface" {

ext:augment-identifier "ovs-qos";
when "if:type = 'ianaift:l2vlan'";

leaf ovs-qos-ref {
type instance-identifier;
description
"represents whether service port has associated qos. A reference to a

→˓ovsdb QoS entry";
}
leaf service-queue-number {

1662 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

type uint32;
description
"specific queue number within the list of queues in the qos entry";

}
}

Configuration impact

None

Clustering considerations

None

Other Infra considerations

None

Security considerations

None

Scale and Performance Impact

Additional OpenFlow action will be performed on part of the packages. Egress packages will be processed via linux-
htp if service configured accordanly.

Targeted Release

Carbon

Alternatives

The unified REST API for ovsdb port adjustment could be created if future release. The QoS engress queues and
ingress rate limiting should be a part of this API. Usage ===== User will configure unimgr service with egress rate
limits. That will follow to process described above.

Features to Install

• odl-genius (unimgr using genius feature for flows creation)

REST API

None

3.7. Genius Documentation 1663

OpenDaylight Documentation Documentation, Release Carbon

CLI

None

Implementation

Assignee(s)

Primary assignee: konsta.pozdeev@hpe.com

Work Items

Dependencies

Minimum OVS version 1.8.0 is required.

Testing

Unimgr test cases with configured egress rate limits will cover this functionality.

Unit Tests

Integration Tests

CSIT

References

[1] OpenDaylight Documentation Guide <http://docs.opendaylight.org/en/latest/documentation.html>

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

3.8 Infrautils Documentation

This documentation provides critical information needed to help you write ODL Applications/Projects using Infrautils,
which offers various generic utilities and infrastructure for ease of application development.

Contents:

3.8.1 InfraUtils Design Specifications

Starting from Carbon, InfraUtils project uses RST format Design Specification document for all new features. These
specifications are perfect way to understand various InfraUtils features.

Contents:

1664 Chapter 3. Content for OpenDaylight Contributors

mailto:konsta.pozdeev@hpe.com
https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

OpenDaylight Documentation Documentation, Release Carbon

Table of Contents

• Title of the feature

– Problem description

* Use Cases

– Proposed change

* Yang changes

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

* Scale and Performance Impact

* Targeted Release

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

– Documentation Impact

– References

Title of the feature

[link to gerrit patch]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

3.8. Infrautils Documentation 1665

OpenDaylight Documentation Documentation, Release Carbon

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Yang changes

This should detail any changes to yang models.

Configuration impact

Any configuration parameters being added/deprecated for this feature? What will be defaults for these? How will it
impact existing deployments?

Note that outright deletion/modification of existing configuration is not allowed due to backward compatibility. They
can only be deprecated and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but not limited to use of CDTCL, EOS, Cluster
Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change? Does it help improve scale and performance or
make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

1666 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Usage

How will end user use this feature? Primary focus here is how this feature will be used in an actual deployment.

For most InfraUtils features users will be other projects but this should still capture any user visible CLI/API etc. e.g.
Counters

This section will be primary input for Test and Documentation teams. Along with above this should also capture REST
API and CLI.

Features to Install

odl-infrautils-all

Identify existing karaf feature to which this change applies and/or new karaf features being introduced. These can be
user facing features which are added to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture these for User Guide, unit tests etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a primary assigne and other contributors.

Primary assignee: <developer-a>

Other contributors: <developer-b> <developer-c>

Work Items

Break up work into individual items. This should be a checklist on Trello card for this feature. Give link to trello card
or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal [other ODL projects] as well as external
[OVS, karaf, JDK etc.] This should also capture specific versions if any of these dependencies. e.g. OVS version,
Linux kernel version, JDK etc.

This should also capture impacts on existing project that depend on InfraUtils. Following projects currently depend
on Infrautils: * Netvirt * GENIUS

3.8. Infrautils Documentation 1667

OpenDaylight Documentation Documentation, Release Carbon

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

Documentation Impact

What is impact on documentation for this change? If documentation change is needed call out one of the <contribu-
tors> who will work with Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

• Links to Summit presentation, discussion etc.

• Links to mail list discussions

• Links to patches in other projects

• Links to external documentation

[1] OpenDaylight Documentation Guide

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note: This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. http://creativecommons.org/
licenses/by/3.0/legalcode

Table of Contents

• Job Coordinator

– Problem description

* Use Cases

– Proposed change

* YANG changes

* Workflow

* Configuration impact

* Clustering considerations

* Other Infra considerations

* Security considerations

1668 Chapter 3. Content for OpenDaylight Contributors

http://docs.opendaylight.org/en/latest/documentation.html
https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenDaylight Documentation Documentation, Release Carbon

* Scale and Performance Impact

* Targeted Release(s)

* Known Limitations

* Alternatives

– Usage

* Features to Install

* REST API

* CLI

* JAVA API

– Implementation

* Assignee(s)

* Work Items

– Dependencies

– Testing

* Unit Tests

* Integration Tests

* CSIT

– Documentation Impact

– References

Job Coordinator

https://git.opendaylight.org/gerrit/#/q/topic:JC

Job Coordinator is a framework for executing jobs in sequential/parallel based on their job-keys. One such job,to give
an example, can be for MD-SAL config/operational datastore updates.

Problem description

The concept of datastore jobcordinator was derived from the following pattern seen in many ODL project implemen-
tations :

• The Business Logic for the configuration/state handling is performed in the Actor Thread itself. This will cause
the Actor’s mailbox to get filled up and may start causing unnecessary back-pressure.

• Actions that can be executed independently will get unnecessarily serialized. Can cause other unrelated appli-
cations starve for chance to execute.

• Available CPU power may not be utilized fully. (for instance, if 1000 interfaces are created on different ports,
all 1000 interfaces creation will happen one after the other.)

• May depend on external applications to distribute the load across the actors.

3.8. Infrautils Documentation 1669

https://git.opendaylight.org/gerrit/#/q/topic:JC

OpenDaylight Documentation Documentation, Release Carbon

Use Cases

This feature will support following use cases:

• Use case 1: JC framework should enable applications to enqueue their jobs based on a job key.

• Use case 2: JC framework should run jobs queued on same key sequentially, and different keys parallelly.

• Use case 3: JC framework should provide a framework for retry mechanism in case the jobs fail.

• Use case 4: JC framework should provide a framework for rollback in case the jobs fail permanently.

• Use case 3: JC should provide applications the flexibility to input the number of retries on a need basis.

Proposed change

The proposed feature adds a new module in infrautils called “jobcoordinator”, which will have the following function-
alities:

• “Job” is a set of operations, (eg : updates to the Config/Operational MD-SAL Datastore)

• Dependent Jobs [eg. Operations on interfaces on same port] that need to be run one after the other will continue
to be run in sequence.

• Independent Jobs [eg. Operations on interfaces across different Ports] will be allowed to run parallel.

• Makes use of ForkJoin Pools that allows for work-stealing across threads. ThreadPool executor flavor is also
available. But would be deprecating that soon.

• Jobs are enqueued and dequeued to/from a Hash structure that ensures point 2 & 3 above are satisfied and are
executed using the ForkJoinPool mentioned in point 4.

• The jobs are enqueued by the application along with an application job-key (type: string). The Coordinator
dequeues and schedules the job for execution as appropriate. All jobs enqueued with the same job-key will be
executed sequentially.

• Job Coordination function gets the list of listenable futures returned from each job.

• The Job is deemed complete only when the onSuccess callback is invoked and the next enqueued job for that
job-key will be dequeued and executed.

• On Failure, based on application input, retries and/or rollback will be performed. Rollback failures are consid-
ered as double-fault and system bails out with error message and moves on to the next job with that Job-Key.

YANG changes

N/A

Workflow

Define Job Workers

Applications can define their own worker threads for their job. A job is defined as a piece of code that can be
independently executed.

1670 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

Define Rollback Workers

Applications should define a rollback worker, which will have the code to be executed in case the main job fails
permanently. In usual scenarios, this will be the code to clean up all partially completed transactions by the main
worker.

Decide Job Key

Applications should carefully choose the job-key for their job worker. All jobs based on the same job-key will be
executed sequentially, and all jobs on different keys will be executed parallelly depending on the available threadpool
size.

Enqueue Job

Applications can enqueue their job worker to JC framework for execution.JC has a hash structure to handle the execu-
tion of the tasks sequentially/parallelly. Whenever a job is enqueued, JC creates a Job Entry for the particular job. A
Job Entry is characterized by - job-key, the main worker, the rollback worker and the number of retries. This JobEntry
will be added to a JobQueue, which inturn is part of a JobQueueMap.

Job Queue Handling

There is a JobQueueHandler task which runs periodically, which will poll each of the JobQueues to execute the main
task of the corresponding JobEntry. Within a JobQueue, execution will be synchronized.

Retries in case of failure

The list of listenable futures for the transactions from the application main worker will be available to JC, and if at all
the transaction fails, the main worker will be retried the ‘max-retries’ number of times which is application specified.
If all the retries fail, JC will bail out and the rollback worker will be executed.

Configuration impact

N/A

Clustering considerations

• Job Coordinator synchronization is not cluster-wide

• This will still work in a clustered mode by handling optimistic lock exceptions and retrying of the job.

• Future scope can be : Cluster-Wide Datastore & Switch Job Coordination in:

• Fully replicated Followers also listening Mode.

• Distributed system where no. of replicas is less than the no. of nodes in the cluster.

Other Infra considerations

N.A.

3.8. Infrautils Documentation 1671

OpenDaylight Documentation Documentation, Release Carbon

Security considerations

N.A.

Scale and Performance Impact

This feature is aiming at improving the scale and performance of applications by providing the cabability to execute
their functions parallelly wherever it can be done.

Targeted Release(s)

Carbon.

Known Limitations

JC synchronization is not currently clusterwide.

Alternatives

N/A

Usage

Features to Install

This feature doesn’t add any new karaf feature.

REST API

N/A

CLI

N/A

JAVA API

JobCoordinator provides the below APIs which can be used by other applications:

void enqueueJob(String key, Callable<List<ListenableFuture<Void>>> mainWorker).

void enqueueJob(String key, Callable<List<ListenableFuture<Void>>> mainWorker,
→˓RollbackCallable rollbackWorker).

void enqueueJob(String key, Callable<List<ListenableFuture<Void>>> mainWorker, int
→˓maxRetries).

1672 Chapter 3. Content for OpenDaylight Contributors

OpenDaylight Documentation Documentation, Release Carbon

void enqueueJob(String key, Callable<List<ListenableFuture<Void>>> mainWorker,
→˓RollbackCallable rollbackWorker,

int maxRetries).

key is the JobKey for synchronization, mainWorker will be the actual Job Task, maxRetries is the number of times a
Job will be retried if the mainWorker results in ERROR, rollbackWorker is the Task to be executed if the Job fails with
any ERROR maxRetries times.

Implementation

Assignee(s)

Primary assignee: <Periyasamy Palanisamy>

Other contributors: <Yakir Dorani> <Faseela K>

Work Items

1. spec review.

2. jobcoordinator module bring-up.

3. API definitions.

4. Enqueue Job Implementation.

5. Job Queue Handler Implementation.

6. Job Callback Implementation including retry and rollback

7. Add CLI.

8. Add UTs.

9. Add Documentation.

Dependencies

Following projects currently depend on InfraUtils:

• Netvirt

• Genius

Testing

Unit Tests

Appropriate UTs will be added for the new code coming in once framework is in place.

Integration Tests

N/A

3.8. Infrautils Documentation 1673

OpenDaylight Documentation Documentation, Release Carbon

CSIT

N/A

Documentation Impact

This will require changes to Developer Guide.

Developer Guide can capture the new set of APIs added by JobCoordinator as mentioned in API section.

References

• https://wiki.opendaylight.org/view/Infrastructure_Utilities:Carbon_Release_Plan

3.9 NetVirt Contributor Guide

3.10 Openflowplugin Documentation

This documentation provides information needed to help you write ODL Applications/Projects that can co-exist with
other ODL Projects.

Contents:

1674 Chapter 3. Content for OpenDaylight Contributors

https://wiki.opendaylight.org/view/Infrastructure_Utilities:Carbon_Release_Plan

Bibliography

[QBGP] Quagga Routing Suite

[RFC2385] IETF RFC 2385: Protection of BGP Sessions via the TCP MD5 Signature Option

[TBaseProcessor] thrift java library’s TBaseProcessor.process

[ZRPC] Zebra Remote Procedure Call

1675

http://www.nongnu.org/quagga
https://tools.ietf.org/html/rfc2385
https://github.com/apache/thrift/blob/0.9.1/lib/java/src/org/apache/thrift/TBaseProcessor.java#L25-L41
https://github.com/6WIND/zrpcd/

	Content for OpenDaylight Users
	Content for OpenDaylight Developers
	Content for OpenDaylight Contributors
	Bibliography

